
IBM Language Environment for z/VSE

Debugging Guide and Run-Time Messages
Version 1 Release 4 Modification Level 9

SC33-6681-11

���

IBM Language Environment for z/VSE

Debugging Guide and Run-Time Messages
Version 1 Release 4 Modification Level 9

SC33-6681-11

���

Note: Before using this information and the product it supports, be sure to read the general information under “Notices”
on page ix.

This edition applies to Version 1 Release 4 Modification Level 9 of IBM Language Environment for z/VSE,
5686-CF9, and to any subsequent releases and modifications until otherwise indicated in new editions.

This edition replaces SC33-6681–10.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the addresses given below.

A form for readers' comments is provided at the back of this publication. If the form has been removed, address
your comments to:
IBM Deutschland Research & Development GmbH
Department 3282
Schoenaicher Strasse 220
D-71032 Boeblingen
Federal Republic of Germany

You may also send your comments by FAX or via the Internet:
Internet: s390id@de.ibm.com
FAX (Germany): 07031-16-3456
FAX (other countries): (+49)+7031-16-3456

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 1991, 2014.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures v

Tables vii

Notices ix
Trademarks ix

Accessibility xi
Using Assistive Technologies xi

About this Publication xiii
What Is LE/VSE? xiii
LE/VSE-Conforming Languages xiv
Terms Used in This Publication. xv
Where to Find More Information xv

Summary Of Changes xix
Changes Introduced with Twelfth Edition xix
Changes Introduced with Eleventh Edition . . . xix
Changes Introduced with Tenth Edition. xix
Changes Introduced with Ninth Edition xx
Changes Introduced with Eighth Edition xxi

Part 1. Introduction to Debugging in
LE/VSE. 1

Chapter 1. Preparing Your Routine for
Debugging 3
Setting Compile-Time Options 3
Using LE/VSE Run-Time Options 6
Controlling Storage Allocation 9
Modifying Condition Handling Behavior 12
Using the Assembler User Exit 15
Establishing Enclave Termination Behavior for
Unhandled Conditions 16
Using Messages in Your Routine 17
Using Condition Information 17

Chapter 2. Classifying Errors 21
Identifying Problems in Routines 21
Interpreting Run-Time Messages 23
Understanding Abend Codes and VSE Cancel Codes 24

Chapter 3. Using LE/VSE Debugging
Facilities 27
Using the Debug Tool for VSE/ESA 27
Using Attention Routine Interface Commands . . . 27
Using the LE/VSE Dump Service 31
Multiple Enclave Dumps 51
Generating a System Dump 53
Requesting an LE/VSE Trace for Debugging . . . 54
Diagnosing Storage Leak Problems 56

Part 2. Debugging
Language-Specific Routines 59

Chapter 4. Debugging C Routines . . . 61
Debugging C Input/Output Programs 61
Using C Compiler Listings 66
Generating an LE/VSE Dump of a C Routine . . . 75
Finding C Information in an LE/VSE Dump . . . 81
C Contents of the LE/VSE Trace Table 87
Debugging Example of C Routines 87

Chapter 5. Debugging COBOL Routines 97
Determining the Source of Error 97
Using COBOL Listings 101
Generating an LE/VSE Dump of a COBOL Routine 101
Debugging Example COBOL Routines 108

Chapter 6. Debugging PL/I Routines 121
Determining Errors in PL/I Routines 121
Using PL/I Compiler Listings 124
Generating an LE/VSE Dump of a PL/I Routine 130
Finding PL/I Information in a Dump 132
Debugging Example PL/I Routines 136

Chapter 7. Debugging under CICS . . 145
Accessing Debugging Information 145
Ensuring Transaction Rollback. 150
Finding Data When LE/VSE Returns a Nonzero
Reason Code 150
Finding Data When LE/VSE Abends Internally . . 150
Finding Data When LE/VSE Abends from an
EXEC CICS Command 151

Part 3. Run-Time Messages and
Codes 153

Chapter 8. LE/VSE Run-Time
Messages 155
VSE/POWER LSTQ Support Run-Time Messages 202
LE/VSE Run-Unit Work-Area Trace Function
Messages 204
Attention Routine Support Run-Time Messages . . 205
CLER CICS Transaction Support Message 209

Chapter 9. C Utility Messages 211
Prelinker Messages 211
localedef Utility Messages 215
iconv Utility Messages 225
genxlt Utility Messages 227
uconvdef() Utility Messages 228
DSECT Utility Messages. 231

© Copyright IBM Corp. 1991, 2014 iii

Chapter 10. C Run-Time Messages 235
TCP/IP-Related Messages 250

Chapter 11. PL/I Run-Time Messages 253

Chapter 12. COBOL Run-Time
Messages 299

Chapter 13. LE/VSE Abend Codes . . 319

Chapter 14. Return Codes to CICS 327
LE/VSE Return Codes to CICS 327
C Return Codes to CICS. 332
COBOL Return Codes to CICS 332
PL/I Return Codes to CICS 333

Part 4. Appendixes 335

Appendix. Diagnosing Problems with
LE/VSE 337
Diagnosis Checklist 337
Locating the Name of the Failing Routine in a
System Dump 338
Searching the IBM Software Support Database . . 341
Preparing Documentation for an Authorized
Program Analysis Report (APAR). 341

Language Environment Glossary . . . 345

Index 353

iv LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Figures

1. Options Report Produced by LE/VSE Run-Time
Option RPTOPTS(ON) 8

2. Storage Report Produced by LE/VSE
Run-Time Option RPTSTG(ON) 10

3. LE/VSE Condition Token 19
4. Message and Output for Nested Conditions 20
5. Example Dump Using CEE5DMP 35
6. Stack Frame 42
7. Common Anchor Area (Part 1) 43
8. Common Anchor Area (Part 2) 44
9. Condition Information Block (Part 1 of 2) 48

10. Condition Information Block (Part 2 of 2) 49
11. Machine State Information Block 50
12. LE/VSE Dump of Multiple Enclaves 52
13. Trace Table Entry Format 55
14. Trace Table in Dump Output 55
15. Sections of the HEAPCHK Diagnostics Report

Showing a Leak Problem 57
16. __amrc Structure 62
17. __amrc2 Structure 62
18. Example Routine Using perror(). 66
19. Example of a Storage Offset Listing in

Compiled Code 67
20. Writable Static Map Produced by Prelinker 69
21. Partial Storage Offset Listing 69
22. Location of RENT Static Variable in Storage 70
23. Writable Static Map Produced by Prelinker 71
24. Partial Storage Offset Listing 71
25. Location of NORENT Static Variable in Storage 72
26. Example Code for Parameter Variable 72
27. Partial Storage Offset Listing 72
28. Example Code for Structure Variable 73
29. Example of Structure Map 73
30. Writable Static Map Produced by Prelinker 74
31. Partial Storage Offset Listing 74
32. Example C Routine Using cdump() to

Generate a Dump 76
33. Fetched C Routine 77
34. Example Dump from Sample C Routine 78
35. Storage for Active Routines Section of a Dump 82
36. C Fields in the CAA 82
37. C-Specific CAA Fields 83
38. atexit() Information in Dump 83
39. fetch Information in Dump 84
40. File Control Block Information for a

non-VSAM File 85
41. File Control Block Information for a-VSAM

File 85
42. Memory File Control Block 86
43. __amrc Structure Information in Dump 86
44. C Routine with a Divide-by-Zero Error 88
45. Dump Sections from C Example of

Divide-by-Zero Error 89
46. Pseudo Assembly Listing 90
47. C CAA Information in Dump 91
48. Writable Static Map 91

49. Enclave Storage Section of Dump 91
50. C Example of Calling a Nonexistent

Subroutine 92
51. Dump Sections from C Example of Calling a

Non-Existent Function 92
52. Pseudo Assembly Listing 94
53. Writable Static Map 94
54. CAA and Enclave Storage Information in

Dump 95
55. Message Generated When Using TEST(,SYM)

Option 95
56. Condition Information for Active Routines

When Using TEST(,SYM) Option 95
57. Example of Using the WITH DEBUGGING

MODE Clause 100
58. COBOL Routine COBDUMP1 Calling

COBDUMP2 102
59. COBOL Routine COBDUMP2 Calling the

LE/VSE Dump Service 103
60. Sections of the LE/VSE Dump Called from

COBDUMP2 103
61. Control Block Information for Active COBOL

Routines 105
62. Storage for Active COBOL Routines 106
63. Enclave Level Data for COBOL Routines 107
64. Process Level Control Blocks for COBOL

Routines 107
65. COBOLX Example of Moving a Value

Outside an Array Range 108
66. Sections of LE/VSE Dump for COBOLX 109
67. COBOLX Listing 110
68. COBOLY Example of Calling a Nonexistent

Subroutine 110
69. Sections of LE/VSE Dump for COBOLY 111
70. COBOLY Listing 111
71. Storage for Active Routines Section of Dump

for COBOLY 112
72. Main COBOLZ1 Routine, COBOLZ2

Subroutine, and ASSEMZ3 Routine 115
73. Sections of LE/VSE Dump for Routine

COBOLZ1. 116
74. COBOL Listing for COBOLZ2 117
75. Listing for ASSEMZ3 118
76. Variables Section of LE/VSE Dump for

COBOLZ2. 118
77. Listing for COBOLZ2 119
78. Variables Section of LE/VSE Dump for

COBOLZ1. 119
79. PL/I Routine Compiled with LIST and MAP 125
80. Compiler-Generated Listings from Example

PL/I Routine 125
81. Traceback Section of Dump 133
82. Control Blocks for Active Routines Section of

the Dump. 134
83. Control Blocks Associated with the Thread

Section of the Dump 135

© Copyright IBM Corp. 1991, 2014 v

84. Example of Moving a Value Outside an Array
Range 137

85. Sections of the LE/VSE Dump 138
86. Example of Calling a Nonexistent Subroutine 139
87. Object Code Listing from Example PL/I

Routine 139
88. Sections of the LE/VSE Dump 140
89. PL/I Routine with a Divide-by-Zero Error 141
90. Variables from Routine SAMPLE 142
91. Object Code Listing from Example PL/I

Routine 142
92. LE/VSE Dump from Example PL/I Routine 142

93. LE/VSE Message in CESE Transient Data
Queue 146

94. LE/VSE Traceback Written to the Transient
Data Queue 146

95. LE/VSE Abend and Reason Code. 148
96. Return Code Written Only to CICS 148
97. LE/VSE PPA1 339
98. Compile Unit Block 340
99. C PPA1 340

100. Nonconforming Save Area with Sample
Dump 341

vi LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Tables

1. LE/VSE-Conforming Languages xiv
2. LE/VSE Publications xv
3. z/VSE Publications xv
4. IBM C for VSE/ESA Publications xvi
5. IBM COBOL for VSE/ESA Publications xvi
6. IBM PL/I for VSE/ESA Publications xvi
7. Debug Tool for VSE/ESA Publications xvii
8. TEST Suboptions 3
9. C Compile-Time Options Useful in Debugging 4

10. COBOL Compile-Time Options Useful in
Debugging 5

11. PL/I Compile-Time Options Useful in
Debugging 5

12. LE/VSE Run-Time Options Useful in
Debugging 6

13. STACK and LIBSTACK Statistics 11
14. HEAP, ANYHEAP, and BELOWHEAP

Statistics 11
15. HEAP, ANYHEAP, BELOWHEAP, and

Additional Heap Statistics. 11
16. Additional Heap Statistics. 12
17. LE/VSE Callable Services Used to Process

Nonzero Condition Tokens 18
18. Common Errors in Routines 21
19. Common Error Symptoms, Possible Causes,

and Programmer Responses 22
20. Message Prefixes and Associated LE/VSE

Components 23
21. CEE5DMP Options and Related Information 32
22. Suboptions for TERMTHDACT 34
23. Fields of CAA. 44
24. Condition Flag 4 49

25. Status Flag 5, LE/VSE Events 49
26. Status Flag 6, LE/VSE Actions 50
27. Status Flag 7, LE/VSE Named Conditions 50
28. Language-Specific Function Codes 50
29. __last_op Codes and Diagnosis Information 63
30. Contents of Listing and Associated

Compile-Time Options 66
31. Contents of Listing and Associated

Compile-Time Options 101
32. Contents of Listing and Associated

Compile-Time Options 124
33. Comments Found in a Static Storage Listing

with Explanations 127
34. Comments and Their Functions in the Object

Code Listing 128
35. Mnemonics the Compiler Uses to Identify the

Type of Operand 130
36. Location of Debugging Information under

CICS 145
37. Output When a Nonzero Reason Code is

Returned to CICS 150
38. Output When LE/VSE Abends Internally 150
39. Output When LE/VSE Abends from an EXEC

CICS Command 151
40. Return Codes from Prelinker 211
41. Return Codes from the localedef Utility 216
42. Return Codes from the iconv Utility 225
43. Return Codes from the DSECT utility 231
44. Limits for Floating-Point Precision 288
45. Problem Resolution Documentation

Requirements 342

© Copyright IBM Corp. 1991, 2014 vii

viii LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any of
the intellectual property rights of IBM may be used instead of the IBM product,
program, or service. The evaluation and verification of operation in conjunction
with other products, except those expressly designated by IBM, are the
responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785, U.S.A.

Any pointers in this publication to non-IBM websites are provided for convenience
only and do not in any manner serve as an endorsement. IBM accepts no
responsibility for the content or use of non-IBM websites specifically mentioned in
this publication or accessed through an IBM website that is mentioned in this
publication.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:
IBM Deutschland GmbH
Dept. M358
IBM-Allee 1
71139 Ehningen
Germany

Such information may be available, subject to appropriate terms and conditions,
including in some cases payment of a fee.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at "Copyright and
trademark information" at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

© Copyright IBM Corp. 1991, 2014 ix

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

IPv6/VSE is a registered trademark of Barnard Software, Inc.

x LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/VSE enable users to:
v Use assistive technologies such as screen readers and screen magnifier software
v Operate specific or equivalent features using only the keyboard
v Customize display attributes such as color, contrast, and font size

Using Assistive Technologies
Assistive technology products, such as screen readers, function with the user
interfaces found in z/VSE. Consult the assistive technology documentation for
specific information when using such products to access z/VSE interfaces.

© Copyright IBM Corp. 1991, 2014 xi

xii LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

About this Publication

This publication provides assistance with detecting and locating programming
errors that occur during run time while using the IBM Language Environment for
z/VSE (LE/VSE) licensed program.

It is designed to help you establish a debugging process that replaces the work of
guessing where an error may have occurred with a process of analyzing data and
narrowing the scope and location of the problem.

This publication is for application programmers interested in techniques for
debugging run-time programs. To use this publication, you should be familiar
with:
v The LE/VSE product
v An LE/VSE-conforming language such as C, COBOL, or PL/I
v Program storage concepts

What Is LE/VSE?
LE/VSE is a set of common services and language-specific routines that provide a
single run-time environment for applications written in LE/VSE-conforming versions
of the C, COBOL, and PL/I high level languages (HLLs), and for many
applications written in previous versions of COBOL. (For a list of
LE/VSE-conforming languages, and a description of compatibility with previous
versions of COBOL, see “LE/VSE-Conforming Languages” on page xiv.) LE/VSE
also supports applications written in assembler language using LE/VSE-provided
macros and assembled using High Level Assembler (HLASM).

Prior to LE/VSE, each programming language provided its own separate run-time
environment. LE/VSE combines essential and commonly-used run-time
services—such as message handling, condition handling, storage management, date
and time services, and math functions—and makes them available through a set of
interfaces that are consistent across programming languages. With LE/VSE, you
can use one run-time environment for your applications, regardless of the
application's programming language or system resource needs, because most
system dependencies have been removed.

Services that work with only one language are available within language-specific
portions of LE/VSE.

LE/VSE consists of:
v Basic routines for starting and stopping programs, allocating storage,

communicating with programs written in different languages, and indicating
and handling error conditions.

v Common library services, such as math services and date and time services, that
are commonly needed by programs running on the system. These functions are
supported through a library of callable services.

v Language-specific portions of the common run-time library.

© Copyright IBM Corp. 1991, 2014 xiii

LE/VSE is the implementation of Language Environment on the VSE platform.
Language Environment is also offered on platforms z/OS® and VM, and on
OS/400® as Integrated Language Environment®.

LE/VSE-Conforming Languages
An LE/VSE-conforming language is any HLL that adheres to the LE/VSE common
interface. Table 1 lists the LE/VSE-conforming language compiler products you can
use to generate applications that run with LE/VSE Release 4.

Table 1. LE/VSE-Conforming Languages

Language LE/VSE-Conforming Language Minimum Release

C IBM C for VSE/ESA Release 1

COBOL IBM COBOL for VSE/ESA Release 1

PL/I IBM PL/I for VSE/ESA Release 1

Any HLL not listed in Table 1 is known as a non-LE/VSE-conforming or,
alternatively, a pre-LE/VSE-conforming language. Some examples of
non-LE/VSE-conforming languages are:
v C/370
v DOS/VS COBOL
v VS COBOL II
v DOS PL/I
v DOS/VS RPG II

Only the following products can generate applications that run with LE/VSE:
v LE/VSE-conforming languages
v HLASM using LE/VSE-provided macros (for details, see LE/VSE Programming

Guide, SC33-6684)
v DOS/VS COBOL and VS COBOL II, with some restrictions (see “LE/VSE

Compatibility with Previous Versions of COBOL” below).

LE/VSE Compatibility with Previous Versions of COBOL
Although DOS/VS COBOL and VS COBOL II are non-LE/VSE-conforming
languages, many applications generated with these compilers can run with
LE/VSE without recompiling. For details about compatibility, see LE/VSE Run-Time
Migration Guide, SC33-6687.

However relinking under LE/VSE is the minimum effort in order to migrate
run-time, and involve LE/VSE COBOL-compatibility routines (rather than the old
and unsupported library routines of non-LE/VSE conforming COBOL compilers).
This particularily applies to NORES-compiled units or applications that involve
former initialization techniques such as ILBDSET0. There are even restrictions with
this approach, such as:
v No use of 4-digit dates.
v No exploitation of LE/VSE functionality.
v Interlanguage communication capabilities, and so on.

Therefore you are strongly recommended to carry out a (subsequent) full migration to
a higher ANSI standard and LE/VSE-conforming COBOL compiler (COBOL for
VSE/ESA).

xiv LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

VS COBOL II can also dynamically call some LE/VSE date and time callable
services. For details, see LE/VSE Programming Reference, SC33-6685.

Terms Used in This Publication
Unless otherwise stated, the following terms are used in this publication to refer to
the specified languages:

Term... Refers to the language supported by...

C The IBM C for VSE/ESA compiler

COBOL
The IBM COBOL for VSE/ESA and VS COBOL II compilers

PL/I The IBM PL/I for VSE/ESA compilers

For a list of LE/VSE-conforming language compilers, see “LE/VSE-Conforming
Languages” on page xiv.

Where to Find More Information
These are the manuals that describe LE/VSE:

Table 2. LE/VSE Publications

Publication Form Number

LE/VSE Fact Sheet GC33-6679

LE/VSE Concepts Guide GC33-6680

LE/VSE Customization Guide SC33-6682

LE/VSE Programming Guide SC33-6684

LE/VSE Programming Reference SC33-6685

LE/VSE C Run-Time Programming Guide SC33-6688

LE/VSE C Run-Time Library Reference SC33-6689

LE/VSE Debugging Guide and Run-Time Messages SC33-6681

LE/VSE Writing Interlanguage Communication Applications SC33-6686

LE/VSE Run-Time Migration Guide SC33-6687

These are the z/VSE manuals to which you might need to refer:

Table 3. z/VSE Publications

Publication Form Number

z/VSE Administration SC34-2627

z/VSE Messages and Codes, Volume 1 SC34-2632

z/VSE Messages and Codes, Volume 2 SC34-2633

z/VSE Messages and Codes, Volume 3 SC34-2634

z/VSE Planning SC34-2635

z/VSE System Control Statements SC34-2637

z/VSE System Macros Reference SC34-2638

z/VSE System Macros User's Guide SC33-8407

z/VSE System Upgrade and Service SC34-2639

About this Publication xv

Table 3. z/VSE Publications (continued)

Publication Form Number

VSE/VSAM User's Guide and Application Programming SC34-2742

VSE/VSAM Commands SC33-8315

z/VSE TCP/IP Support SC34-2640

These are the manuals that describe IBM C for VSE/ESA:

Table 4. IBM C for VSE/ESA Publications

Publication Form Number

Licensed Program Specifications GC09-2421

Installation and Customization Guide GC09-2422

Migration Guide SC09-2423

User's Guide SC09-2424

Language Reference SC09-2425

Diagnosis Guide GC09-2426

These are the manuals that describe IBM COBOL for VSE/ESA:

Table 5. IBM COBOL for VSE/ESA Publications

Publication Form Number

General Information GC33-6679

Licensed Program Specifications GC33-6680

Migration Guide SC33-6682

Installation and Customization Guide GC33-6680

Programming Guide SC33-6684

Language Reference SC33-6685

Diagnosis Guide SC33-6684

Reference Summary SX26-3834

These are the manuals that describe IBM PL/I for VSE/ESA:

Table 6. IBM PL/I for VSE/ESA Publications

Publication Form Number

Fact Sheet GC26-8052

Programming Guide SC26-8053

Language Reference SC26-8054

Licensed Program Specifications GC26-8055

Migration Guide SC33-6684

Installation and Customization Guide SC26-8057

Diagnosis Guide SC26-8058

Compile-Time Messages and Codes SC26-8059

Reference Summary SX26-3836

xvi LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

These are the manuals that describe Debug Tool for VSE/ESA:

Table 7. Debug Tool for VSE/ESA Publications

Publication Form Number

User's Guide and Reference SC26-8797

Installation and Customization Guide SC26-8798

Fact Sheet GC26-8925

You might also refer to the ...

z/VSE Home Page

z/VSE has a home page on the World Wide Web, which offers up-to-date
information about VSE-related products and services, new z/VSE functions, and
other items of interest to VSE users.

You can find the z/VSE home page at

http://www.ibm.com/systems/z/os/zvse/

You can also find VSE User Examples (in zipped format) at

http://www.ibm.com/systems/z/os/zvse/downloads/samples.html

Softcopy Publications
The following collection kit contains the LE/VSE and LE/VSE-conforming
language product publications:

VSE Collection, SK2T-0060

About this Publication xvii

http://www.ibm.com/systems/z/os/zvse/
http://www.ibm.com/systems/z/os/zvse/downloads/samples.html

xviii LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Summary Of Changes

This section describes the changes introduced with the current and previous three
editions of the manual.

Changes Introduced with Twelfth Edition
This section describes the changes that are introduced with LE/VSE 1.4.9:
v Information about the new CICS® Run-Unit Work-Area (RUWA) trace facility via

LE/VSE-supplied CRUT transaction was provided. Refer to “CICS Run-Unit
Work-Area Storage Tracing” on page 148. Respective new messages are
CEL2001I, CEL2002E, CEL2003E, CEL2004E, CEL2005E, CEL2006I, CEL2007E,
and CEL2008E described in Chapter 8, “LE/VSE Run-Time Messages,” on page
155.

v In addition to listed above, the following changes have been made to Chapter 8,
“LE/VSE Run-Time Messages,” on page 155:
– Messages CEE3514C, CEE3555E, CEL4006W, CEL4004I, and CEL4005I are

changed.
v The following changes have been made to Chapter 10, “C Run-Time Messages,”

on page 235:
– Message EDC5119I is changed.

v The following changes have been made to Chapter 14, “Return Codes to CICS,”
on page 327:
– Return code 13070 is changed.

v Other minor changes and improvements have been included in this manual.

Changes Introduced with Eleventh Edition
This section describes the changes that were introduced with LE/VSE 1.4.8:
v The following changes were made to Chapter 8, “LE/VSE Run-Time Messages,”

on page 155:
– Messages CEE3216S, CEE3217S, CEE3218S, CEE3219S, CEE3228S, and

CEE3229S were new.
– Message CEE3220S was changed.
– Message CEE3902W was new.

Changes Introduced with Tenth Edition
This section describes the changes that were introduced with LE/VSE 1.4.7:
v Information was provided about the use of the BEAR (“breaking event address

register”) when analyzing dumps. See “Debugging with Tracebacks, Condition
Information, and Data Values” on page 40 and “Debugging With Bad Branch
Information” on page 95.

v Additional functionality was provided for debugging in the situation where a
nonexistent routine has been called. See “Debugging With Bad Branch
Information” on page 95.

v Messages CEE3458E, CEE3519S, and CEE3559W were new. See Chapter 8,
“LE/VSE Run-Time Messages,” on page 155.

v Messages EDCT010S, EDCT011S, and EDCV020W were new. Messages
EDCT001S, EDCT002S, EDCV001I, and EDCV099I were changed. These changes

© Copyright IBM Corp. 1991, 2014 xix

are mainly related to the introduction of the TCP/IP Socket API Multiplexer. See
“TCP/IP-Related Messages” on page 250.

v Message IBM0565S and IBM0566S were new, and message IBM0900S was
changed. For details, see Chapter 11, “PL/I Run-Time Messages,” on page 253.

v An additional reason code 160 (X'A0') was added for message U4093, together
with a corresponding programmer response for this reason code. See Chapter 13,
“LE/VSE Abend Codes,” on page 319.

v Message U4083 (X'FF3') was changed. See Chapter 13, “LE/VSE Abend Codes,”
on page 319.

v The explanation of abend code U4093 was changed. See Chapter 13, “LE/VSE
Abend Codes,” on page 319.

v The programmer response for message 51001 was changed. See “COBOL Return
Codes to CICS” on page 332.

v Other minor changes and improvements were included in this manual.

Changes Introduced with Ninth Edition
This section describes the changes that were introduced with LE/VSE 1.4.6:
v Attention routine (AR) commands were provided that allow the operator to

manage LE/VSE batch run-time override options. The operator can use:
– D CEE,OPTS to display any batch run-time override options that might be

set.
– S CEE,OPTS=run-time option overrides string to enter run-time option override

settings from the console.
– S CEE,CLEAR to clear the LE/VSE run-time option override settings

See “Using Attention Routine Interface Commands” on page 27.
v The default run-time option UEN (upper-case U.S. English) was changed to

ENU (mixed-case U.S. English). See Figure 1 on page 8.
v Message CEE3632I, was new. See Chapter 8, “LE/VSE Run-Time Messages,” on

page 155.
v The message text for messages CEL4004E and CEL4005E were changed. In

addition, messages CEL4020I, CEL4028I, CEL4043E, CEL4045W, CEL4067I,
CEL4070I, CEL4080E, and CEL4090I were new. See “Attention Routine Support
Run-Time Messages” on page 205.

v Additional reason codes were added for abend codes 4045 and 4082. See
Chapter 13, “LE/VSE Abend Codes,” on page 319.

v Return code 13070 was new. See Chapter 14, “Return Codes to CICS,” on page
327.

Note: The CEETRACE High-Level Language tracing tool was also introduced with
LE/VSE 1.4.6, but on an “AS IS” basis (IBM® does not officially support this
feature). This feature is not described in any of the LE/VSE Version 1 Release 4
Modification Level 6 manuals. CEETRACE is not intended to replace the LE/VSE
dump information. Instead, it is designed to complement the already-available
LE/VSE dump to assist in application-problem analysis by providing an
execution-statement history prior to any subsequent application failure. A
COBOL/VSE source-code extraction utility is supplied with the CEETRACE
feature. This utility can produce original source code from a COBOL/VSE load
module that was originally compiled using the SEPARATE sub-option of the
compiler TEST option. For details, refer to the document CEETRACE Feature,
Installation and User's Guide. You can find this document on the z/VSE Home Page at
http://www.ibm.com/systems/z/os/zvse/downloads/tools.html.

xx LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

http://www.ibm.com/systems/z/os/zvse/downloads/tools.html

Changes Introduced with Eighth Edition

This section describes the changes that were introduced with LE/VSE 1.4.5:
v The name IBM Language Environment® for VSE/ESA was changed to IBM

Language Environment for z/VSE. However, the short form LE/VSE remained
unchanged. In addition, the names of programs related to IBM Language
Environment for z/VSE remained unchanged (such as IBM COBOL for
VSE/ESA, IBM C for VSE/ESA, IBM PL/I for VSE/ESA, or IBM Debug Tool for
VSE/ESA).

v The command D CEE,CEECOPT was new, which you can use to produce a report
of the current CICS® installation-wide default run-time options. For details, see
“Using Attention Routine Interface Commands” on page 27.

v Messages CEE5176S, CEE5177S, and CEE5178S were changed. For details, see
Chapter 8, “LE/VSE Run-Time Messages,” on page 155.

v Messages CEE3903W, CEE3931W, CEE5179S, CEE5180I, and CEL4019I were new.
For details, see Chapter 8, “LE/VSE Run-Time Messages,” on page 155.

v Message IBM0931S was new. For details, see Chapter 11, “PL/I Run-Time
Messages,” on page 253.

Summary Of Changes xxi

xxii LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Part 1. Introduction to Debugging in LE/VSE

Chapter 1. Preparing Your Routine for Debugging 3
Setting Compile-Time Options 3

C Compile-Time Options 3
COBOL Compile-Time Options 4
PL/I Compile-Time Options 5

Using LE/VSE Run-Time Options 6
Determining Run-Time Options in Effect 7
Using the CLER CICS Transaction to Display and
Set Run-Time Options 8
Activating Changed CICS-Wide Run-Time Options 9
Printing CICS-Wide Run-Time Options to the
Console 9

Controlling Storage Allocation 9
Controlling Storage Allocation 9

Modifying Condition Handling Behavior 12
LE/VSE Callable Services. 13
LE/VSE Run-Time Options 13
User-Written Condition Handlers 15

Using the Assembler User Exit 15
Establishing Enclave Termination Behavior for
Unhandled Conditions 16

The Assembler User Exit 16
Using the ABTERMENC Run-Time Option . . . 16

Using Messages in Your Routine 17
Using Condition Information 17

Using the Feedback Code. 18
Using the Symbolic Feedback Code 20

Chapter 2. Classifying Errors 21

Identifying Problems in Routines 21
LE/VSE Module Names 21
Common Errors in Routines 21

Interpreting Run-Time Messages 23
Understanding Abend Codes and VSE Cancel Codes 24

User Abends 24
VSE Cancel Codes and VSE System Abends . . 25

Chapter 3. Using LE/VSE Debugging Facilities 27
Using the Debug Tool for VSE/ESA 27
Using Attention Routine Interface Commands . . . 27
Using the LE/VSE Dump Service 31

Generating a Dump with CEE5DMP 31
Generating a Dump with TERMTHDACT . . . 33
Generating a Dump with Language-Specific
Functions 34
Understanding an LE/VSE Dump 35
Debugging with Tracebacks, Condition
Information, and Data Values 40
Debugging with the Stack Frame 41
Debugging with the Common Anchor Area. . . 42
Debugging with the Condition Information Block 47

Multiple Enclave Dumps 51
Generating a System Dump 53
Requesting an LE/VSE Trace for Debugging . . . 54

Locating the Trace Dump 54
Understanding the Trace Table Entry (TTE) . . . 54
Sample Dump for the Trace Table Entry 55

Diagnosing Storage Leak Problems 56

This part of the publication provides information about options and features you
can use to prepare your routine for debugging, describes some common errors that
occur in routines, and offers methods for identifying errors and obtaining the
information you need to debug your routine.

© Copyright IBM Corp. 1991, 2014 1

2 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Chapter 1. Preparing Your Routine for Debugging

This chapter describes options and features that you can use to prepare your
routine for debugging. The following topics are covered:
v Compile-time options for C, COBOL, and PL/I
v LE/VSE run-time options
v Use of storage in routines
v Options for modifying condition handling (see Note 1. below)
v User-created messages
v LE/VSE feedback codes and condition tokens

Setting Compile-Time Options
The following sections discuss language-specific compile-time options important
for debugging routines in LE/VSE. These sections cover only the compile-time
options that are important for debugging. For a complete list of compile-time
options, refer to the appropriate language publications.

Each LE/VSE-conforming language offers options you can set during application
development to assist you as you debug your application. You must set these
options before you compile, and often you remove them before delivering the
application.

Note: The use of some compile-time options (TEST, for example) can affect the
performance of your routine. In some cases, you might need to remove the option
and recompile your routine.

C Compile-Time Options
When using C, set the ALL suboption, of the TEST compile-time option; this is
equivalent to setting the suboptions SYM, BLOCK, and LINE. Table 8 lists TEST
suboptions that you can use to simplify run-time debugging.

Table 8. TEST Suboptions

Suboption Function

ALL Sets all of the TEST suboptions.

SYM Generates symbol table information and enables LE/VSE to generate a
dump at run time.

When you specify the SYM, you also get the value and type of variables
displayed in the Local Variables section of the dump. For example, if in
block 4 the variable x is a signed integer of 12 and in block 2 the
variable x is a signed integer of 1, the following output appears in the
Local Variables section of the dump:

%BLOCK4:>x signed int 12
%BLOCK2:>x signed int 1

If a nonzero optimization level is used, variables do not appear in the
dump.

1. Terms are used in this publication that might be unfamiliar to you. Each such word is highlighted (like condition handling) the first
time it appears, and is defined in “Language Environment Glossary” on page 345.

© Copyright IBM Corp. 1991, 2014 3

Table 8. TEST Suboptions (continued)

Suboption Function

BLOCK Generates symbol information for nested blocks.

LINE Generates line number hooks and allows a debugging tool to generate a
symbolic dump.

GONUMBER Generates line number tables, offset values, and statement numbers.
Specifying the TEST option implicitly turns on GONUMBER.

Table 9 lists C compile-time options that you can use to simplify run-time
debugging.

Table 9. C Compile-Time Options Useful in Debugging

Option Function

AGGREGATE Specifies that a layout for struct and union type variables appear in
the listing.

CHECKOUT
Provides informational messages indicating possible programming
errors.

FLAG Specifies the minimum severity level that is tolerated.

GONUMBER Generates line number tables corresponding to the input source file.
This option is turned on when the TEST option is used. This option is
needed to show statement numbers in dump output.

LIST Includes the object routine in the compiler listing.

OFFSET Displays the offset addresses relative to the entry point of each
function.

SOURCE Includes source input statements and diagnostic messages in the
listing.

TEST Generates information for the debugging interface. This also generates
symbol tables needed for symbolic variables in the dump.

XREF Includes a cross-reference table of names used in the routine and line
numbers in the source listing.

For more detail on C compile-time options, see LE/VSE C Run-Time Programming
Guide, SC33-6688.

COBOL Compile-Time Options
When using COBOL, set the SYM suboption of the TEST compile-time option. The
SYM suboption of TEST causes the compiler to add debugging information into
the object module to resolve user names in the routine and to generate a symbolic
dump of the data division. With this suboption specified, statement numbers can
also be used in the dump output along with offset values.

Several compile-time options affect the type of listings generated for your routine
at compile time. They are LIST, MAP, SOURCE, XREF, VBREF, and OFFSET.

To simplify debugging, set optimization to NOOPT. Higher optimization levels can
change the location where parameters and instructions appear in the dump output.

Table 10 on page 5 lists the COBOL compile-time options you can use to prepare
your routine for run-time debugging.

Preparing Your Routine for Debugging

4 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Table 10. COBOL Compile-Time Options Useful in Debugging

Option Function

ADATA Produces a file containing information about the compiled program.

LIST Produces a listing of the assembler expansion of your source code and
global tables, literal pools, information about working storage, and size
of routine’s working storage.

MAP Produces lists of items in the data division including the data division
map, global tables, literal pools, nested program structure map and
attributes.

OFFSET Produces a condensed procedure division listing containing line
numbers, statement references, and location of the first instruction
generated for each statement.

OUTDD Specifies the destination of DISPLAY statement messages.

SOURCE Produces a listing of your source routine with any statements embedded
by PROCESS or COPY statements.

TEST Specifies whether dictionary tables are to be generated in the object
module. The hook-location suboption of the TEST compiler option is
provided for compile-time option compatibility with COBOL/370, and
has no effect on the behavior of your application. When specified with
any of the hook-location suboption values except NONE, this option
forces the NOOPTIMIZE option. SYM suboption includes statement
numbers in the LE/VSE dump and produces a symbolic dump. Use
TEST only for debugging.

VBREF Produces a cross-reference of all verb types used in the source routine
and a summary of how many times each verb is used.

XREF Creates a sorted cross-reference listing.

For more detail on COBOL compile-time options, see IBM COBOL for VSE/ESA
Programming Guide

PL/I Compile-Time Options
When using PL/I, specify the TEST compile-time option to control the level of
testing capability that is generated as part of the object code. Suboptions of the TEST
option such as SYM, BLOCK, STMT, and PATH control the location of test hooks
and specify whether or not a symbol table is generated. For more information
about TEST, its suboptions, and the placement of test hooks, see IBM PL/I for
VSE/ESA Programming Guide

To simplify debugging and decrease compile time, set optimization to
NOOPTIMIZE or OPTIMIZE(0). Higher optimization levels can change the location
where parameters and instructions appear in the dump output.

Table 11 lists some compile-time options that you can use to prepare PL/I routines
for debugging.

Table 11. PL/I Compile-Time Options Useful in Debugging

Option Function

AGGREGATE Specifies that a layout for arrays and major structures appears in the
listing.

ESD Includes the external symbol dictionary in the listing.

Preparing Your Routine for Debugging

Chapter 1. Preparing Your Routine for Debugging 5

Table 11. PL/I Compile-Time Options Useful in Debugging (continued)

Option Function

GONUMBER Tells the compiler to produce additional information specifying that line
numbers from the source routine can be included in run-time messages
and in the LE/VSE dump.

GOSTMT Specifies that statement numbers are included in run-time messages and
in the LE/VSE dump.

LIST Produces a listing of the assembler expansion of source code and global
tables, literal pools, information about working storage, and size of
routine’s working storage.

LMESSAGE Tells the compiler to produce run-time messages in a long form. If the
cause of a run-time malfunction is a programmer’s understanding of
language semantics, specifying LMESSAGE could better explain
warnings or other information generated by the compiler.

MAP Tells the compiler to produce tables showing how the variables are
mapped in the static internal control section and in the stack frames, thus
enabling static internal and automatic variables to be found in the
LE/VSE dump. If LIST is also specified, the MAP option also produces
tables showing constants, control blocks, and INITIAL variable values.

OFFSET Specifies that the compiler prints a table of statement or line numbers
for each procedure with their offset addresses relative to the primary
entry point of the procedure.

SOURCE Specifies that the compiler includes a listing of the source routine in the
listing.

STORAGE Includes a table of the main storage requirements for the object module
in the listing.

TEST Specifies the level of testing capability that is generated as part of the
object code. TEST also controls the location of test hooks and whether or
not the symbol table is generated. Because the TEST option increases the
size of the object code and can affect performance, limit the number and
placement of hooks.

XREF and
ATTRIBUTES

Creates a sorted cross-reference listing with attributes.

For more detail on PL/I compile-time options, see IBM PL/I for VSE/ESA
Programming Guide

Using LE/VSE Run-Time Options
There are numerous run-time options that affect debugging in LE/VSE. The
ABPERC, CHECK, DEPTHCONDLMT, ERRCOUNT, TERMTHDACT, and TRAP
options, for example, affect condition handling. The ABTERMENC option affects
how an application ends (that is, with an abend or with a return code and reason
code) when an unhandled condition of severity 2 or greater occurs.

Table 12 shows LE/VSE run-time options that affect debugging.

Table 12. LE/VSE Run-Time Options Useful in Debugging

Option Function

ABPERC Specifies that the indicated VSE cancel code, program-interruption
code, or user-abend code bypasses the condition handler.

Preparing Your Routine for Debugging

6 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Table 12. LE/VSE Run-Time Options Useful in Debugging (continued)

Option Function

ABTERMENC Specifies enclave termination behavior for an enclave ending with an
unhandled condition of severity 2 or greater.

CHECK Determines whether run-time checking is performed.

DEBUG Controls the COBOL USE FOR DEBUGGING declarative.

DEPTHCONDLMT Specifies the limit for the depth of nested conditions in user-written
condition handlers.

ERRCOUNT Specifies the number of conditions of severity 2 or greater tolerated.

MSGFILE Specifies the filename of the LE/VSE message file.

MSGQ Specifies the number of instance specific information (ISI) blocks that
are allocated on a per-thread basis for use by an application. Located
within the LE/VSE condition token, the ISI contains information
used by the condition manager to identify and react to a specific
occurrence of a condition.

STORAGE Specifies that LE/VSE initializes all heap and stack storage to a
user-specified value.

TERMTHDACT Controls response when an enclave terminates due to an unhandled
condition of severity 2 or greater. From LE/VSE 1.4.2 onwards,
TERMTHDACT allows you to specify the dump output destination
in a CICS environment.

TEST Specifies the conditions under which a debugging tool assumes
control.

TRACE Activates LE/VSE run-time library tracing and controls the size of
the trace table, the type of trace, and whether the trace table should
be dumped unconditionally upon termination of the application.

TRAP Specifies how the LE/VSE routines handle abends and program
interrupts. LE/VSE expects TRAP(ON,MIN) to be in effect for
successful execution of the application.

USRHDLR Specifies the name of a user condition handler, if any, to be registered
at stack frame 0.

XUFLOW Specifies whether or not an exponent underflow causes a routine
interrupt.

For a more detailed discussion of these run-time options, see the LE/VSE
Programming Guide, SC33-6684.

Determining Run-Time Options in Effect
The run-time options in effect at the time the routine is run can affect routine
behavior. You can use the run-time option RPTOPTS(ON) to generate a report that
lists run-time options and indicates where they were set.

With RPTOPTS set to ON, an options report is written to the LE/VSE message file
when your routine terminates. If an abend occurs, however, the RPTOPTS output
is not produced. Figure 1 on page 8 shows a sample options report.

Note: When TERMTHDACT is set with the LSTQ suboption, an LSTQ Options
Report will be produced that shows the settings that were active when producing
the LSTQ entries. When you set the LE/VSE default run-time options, you can
change these settings using the CEELOPT macro that is supplied with the sample
CEEDOPT/CEECOPT. Figure 1 on page 8 is an example of a sample LSTQ Options

Preparing Your Routine for Debugging

Chapter 1. Preparing Your Routine for Debugging 7

Report.

Using the CLER CICS Transaction to Display and Set
Run-Time Options

The CLER CICS transaction allows you to interactively display and modify
LE/VSE CICS-wide default run-time options, while your CICS system is running.
It uses a CICS Basic Mapping Support (BMS) panel.

For details, refer to the section “CLER: Interactively Process CICS-Wide Run-Time
Options” in the LE/VSE Customization Guide, SC33-6682.

Options Report for Enclave CBLDATE 06/20/08 11:41:31 AM
Language Environment for z/VSE V1 R4.6

LAST WHERE SET OPTION

Programmer default ABPERC(NONE)
Installation default ABTERMENC(ABEND)
Installation default NOAIXBLD
Programmer default ALL31(OFF)
Programmer default ANYHEAP(16384,8192,ANYWHERE,FREE)
Installation default BELOWHEAP(8192,4096,FREE)
Installation default CBLOPTS(ON)
Installation default CBLPSHPOP(OFF)
Installation default CHECK(OFF)
Non-overrideable COUNTRY(US)
Installation default NODEBUG
Installation default DEPTHCONDLMT(10)
Installation default ENVAR("")
Programmer default ERRCOUNT(20)
Installation default HEAP(32768,32768,ANYWHERE,KEEP,8192,4096)
Installation default HEAPCHK(OFF,1,0)
Installation default LIBSTACK(12288,4096,FREE)
Installation default MSGFILE(SYSLST)
Installation default MSGQ(15)
Installation default NATLANG(ENU)
Installation default RETZERO(OFF)
Invocation command RPTOPTS(ON)
Installation default RPTSTG(OFF)
Installation default NORTEREUS
Installation default STACK(131072,131072,BELOW,KEEP)
Assembler user exit STORAGE(00,NONE,NONE,32768)
Programmer default TERMTHDACT(DUMP,LSTQ,0)
Installation default NOTEST(ALL,"*","PROMPT","")
Installation default TRACE(OFF,4096,DUMP,LE=0)
Installation default TRAP(ON,MAX)
Installation default UPSI(00000000)
Installation default NOUSRHDLR()
Programmer default XUFLOW(AUTO)

LSTQ Options Report

LSTQ Class Setting L
LSTQ Disposition Setting D

Figure 1. Options Report Produced by LE/VSE Run-Time Option RPTOPTS(ON)

Preparing Your Routine for Debugging

8 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Activating Changed CICS-Wide Run-Time Options
The NEWC CICS transaction allows you to activate changed LE/VSE CICS-wide
default run-time options, while your CICS system is running.

For details, refer to the section “NEWC: Activate Changed CICS-Wide Run-Time
Options” in the LE/VSE Customization Guide, SC33-6682.

Printing CICS-Wide Run-Time Options to the Console
The ROPC CICS transaction allows you to print LE/VSE CICS-wide run-time
options to your z/VSE console.

For details, refer to the section “ROPC: Print CICS-Wide Run-Time Options to
Console” in the LE/VSE Customization Guide, SC33-6682.

Controlling Storage Allocation
This section provides information about storage report statistics to help you control
storage allocation.

Controlling Storage Allocation
The following run-time options control storage allocation: STACK, LIBSTACK,
HEAP, ANYHEAP, and BELOWHEAP. Ensure that these options are tuned
appropriately to avoid performance problems.

To generate a report of the storage that a routine (or more specifically, an enclave)
has used during its run, specify the RPTSTG(ON) run-time option. The storage
report, generated during enclave termination, provides statistics that can help you
understand how space is being consumed as the enclave runs. If storage
management tuning is desired, the statistics can help you set the corresponding
storage-related run-time options for future runs. The output is written to the
LE/VSE message file.

Neither the storage report nor the corresponding run-time options include the
storage that LE/VSE acquires during early initialization, before run-time options
processing, and before the start of space management monitoring.

Figure 2 on page 10 shows a sample storage report, and the sections that follow
describe the contents of the report.

Preparing Your Routine for Debugging

Chapter 1. Preparing Your Routine for Debugging 9

The statistics for initial and incremental allocations of storage types that have a
corresponding run-time option differ from the run-time option settings when their
values have been rounded up by the implementation, or when allocations larger
than the amounts specified were required during execution. All of the following
are rounded up to an integral number of double-words:

Initial STACK allocations
Initial allocations of all types of heap
Incremental allocations of all types of stack and heap

Storage Report for Enclave IGZTGMT 06/24/08 11:39:18 AM
Language Environment for z/VSE V1 R4.6

STACK statistics:
Initial size: 131072
Increment size: 131072
Total stack storage used (sugg. initial size): 9056
Number of segments allocated: 1
Number of segments freed: 0

LIBSTACK statistics:
Initial size: 12288
Increment size: 4096
Total stack storage used (sugg. initial size): 1152
Number of segments allocated: 1
Number of segments freed: 0

HEAP statistics:
Initial size: 32768
Increment size: 32768
Total heap storage used (sugg. initial size): 152
Successful Get Heap requests: 1
Successful Free Heap requests: 0
Number of segments allocated: 1
Number of segments freed: 0

ANYHEAP statistics:
Initial size: 16384
Increment size: 8192
Total heap storage used (sugg. initial size): 632
Successful Get Heap requests: 2
Successful Free Heap requests: 1
Number of segments allocated: 1
Number of segments freed: 0

BELOWHEAP statistics:
Initial size: 8192
Increment size: 4096
Total heap storage used (sugg. initial size): 1320
Successful Get Heap requests: 7
Successful Free Heap requests: 4
Number of segments allocated: 1
Number of segments freed: 0

Additional Heap statistics:
Successful Create Heap requests: 0
Successful Discard Heap requests: 0
Total heap storage used: 0
Successful Get Heap requests: 0
Successful Free Heap requests: 0
Number of segments allocated: 0
Number of segments freed: 0

End of Storage Report

Figure 2. Storage Report Produced by LE/VSE Run-Time Option RPTSTG(ON)

Preparing Your Routine for Debugging

10 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Stack Storage Statistics
LE/VSE stack storage is managed at the thread level—each thread has its own
stack-type resources.

Note: LE/VSE Version 1 Release 4 supports only one thread within an enclave.

STACK and LIBSTACK Statistics:

Table 13. STACK and LIBSTACK Statistics

Statistic Description

Initial size The actual size of the initial segment assigned to each thread.

Increment size The size of each incremental segment acquired, as determined
by the increment portion of the corresponding run-time option.

Total stack storage used The largest amount used by the thread at any one time.

Number of segments
allocated

The number of incremental segments allocated.

Number of segments freed The number of incremental segments freed.

Note: The number of incremental segments freed may be less than the number
allocated if any of the segments were not freed individually during the life of the
thread, but rather were freed implicitly in the course of thread termination.

Allocating Stack Storage: Another type of stack, called the reserve stack, is
allocated for each thread and used to handle out-of-storage conditions. Its size is
controlled by the 4th subparameter of the STORAGE run-time option, but its usage
is neither tracked nor reported in the storage report.

LE/VSE acquires some initial storage, which is neither stack nor heap, at thread
creation time; this storage is allocated from BELOWHEAP if ALL31(OFF) is in
effect, or from ANYHEAP if ALL31(ON) is in effect.

Heap Storage Statistics
LE/VSE heap storage, is managed at the enclave level—each enclave has its own
heap-type resources, which are shared by the threads that execute within the
enclave.

HEAP, ANYHEAP, and BELOWHEAP Statistics:

Table 14. HEAP, ANYHEAP, and BELOWHEAP Statistics

Statistic Description

Initial size The default initial allocation, as specified by the corresponding
run-time option.

Increment size The minimum incremental allocation, as specified by the
corresponding run-time option.

HEAP, ANYHEAP, BELOWHEAP, and Additional Heap Statistics:

Table 15. HEAP, ANYHEAP, BELOWHEAP, and Additional Heap Statistics

Statistic Description

Total heap storage used The largest total amount used by the enclave at any one time.

Successful Get Heap
requests

The number of Get Heap requests.

Preparing Your Routine for Debugging

Chapter 1. Preparing Your Routine for Debugging 11

Table 15. HEAP, ANYHEAP, BELOWHEAP, and Additional Heap Statistics (continued)

Statistic Description

Successful Free Heap
requests

The number of Free Heap requests.

Number of segments
allocated

The number of incremental segments allocated.

Number of segments freed The number of incremental segments individually freed.

Note: The number of Free Heap requests may be less than the number of Get
Heap requests if the pieces of heap storage acquired by individual Get Heap
requests were not freed individually, but rather were freed implicitly in the course
of enclave termination.

The number of incremental segments individually freed may be less than the
number allocated if the segments were not freed individually, but rather were freed
implicitly in the course of enclave termination.

These statistics, in all cases, specify totals for the whole enclave.

Additional Heap Statistics: Besides the fixed types of heap, additional types of
heap can be created, each with its own heap id. You can create and discard these
additional types of heap by using the CEECRHP and CEEDSHP callable services.

Table 16. Additional Heap Statistics

Statistic Description

Successful Create Heap
requests

The number of successful Create Heap requests.

Successful Discard Heap
requests

The number of successful Discard Heap requests.

Note: The number of Discard Heap requests may be less than the number of
Create Heap requests if the special heaps allocated by individual Create Heap
requests were not freed individually, but rather were freed implicitly in the course
of enclave termination.

For more information about stack and heap storage, see LE/VSE Programming
Guide, SC33-6684.

Modifying Condition Handling Behavior
Setting the condition handling behavior of your routine affects the response that
occurs when the routine encounters an error.

You can modify condition handling behavior in the following ways:
v Callable services
v Run-time options
v User-written condition handlers

Preparing Your Routine for Debugging

12 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

LE/VSE Callable Services
The callable services listed and described below can also be used to modify
condition handling.

CEE5ABD
You can use the CEE5ABD callable service to terminate an enclave using
an abend.

CEEMRCR
The CEEMRCR callable service moves the resume cursor relative to the
current position of the handle cursor.

CEE5SPM
The CEE5SPM callable service specifies the settings of the routine mask.
The routine mask controls:
v Fixed overflow
v Decimal overflow
v Exponent underflow
v Significance

Note: Modifications to the LE/VSE hardware conditions can affect the
behavior of your routine. Use only this service to modify any hardware
conditions.

See LE/VSE Programming Reference, SC33-6685 for more information about callable
services.

LE/VSE Run-Time Options
Some of the LE/VSE run-time options listed earlier can affect your routine's
condition handling behavior. The following text describes these options:

ABPERC
The ABPERC run-time option specifies a VSE cancel code, a
program-interruption code, or a user-specified abend code that is exempted
from condition handling when the LE/VSE condition handler is enabled.
Normal condition handling activities are performed for everything except
the specified cancel code, program-interruption code, or user-abend code.
VSE cancel codes are specified as Shh, where hh is a hexadecimal cancel
code. Program-interruption codes are specified as Ihh, where hh is a
hexadecimal interruption code. User abends are specified as Udddd, where
dddd is a decimal user abend code. Any other 4-character EBCDIC string,
such as NONE, can also be specified as a user-specified abend code. You
can specify only one VSE cancel code, program-interruption code, or abend
code with this option. This option assumes the use of TRAP(ON). ABPERC
is not supported in CICS.

LE/VSE ignores ABPERC(S20). In this instance, VSE cancel code 20, which
represents a program check, is not exempted from condition handling, and
LE/VSE condition handling semantics are in effect. You can, however,
specify one program check interruption code, in the form Ihh, to be
exempted from LE/VSE condition handling.

CHECK (COBOL Only)
The CHECK run-time option specifies that “checking errors” within a
COBOL application are detected.

Preparing Your Routine for Debugging

Chapter 1. Preparing Your Routine for Debugging 13

DEPTHCONDLMT
The DEPTHCONDLMT run-time option limits the extent to which
conditions can be nested in a user-written condition handler. For example,
with a 5 value the initial condition and four nested conditions are
processed. If the limit is exceeded, the application terminates with abend
code 4091 and reason code 21 (X'15').

ERRCOUNT
The ERRCOUNT run-time option specifies the number of conditions of
severity 2, 3, and 4 that are tolerated before the enclave terminates
abnormally. If you specify 0 an unlimited number of conditions is
tolerated.

TERMTHDACT
The TERMTHDACT run-time option sets the level of information that is
produced when a condition of severity 2 or greater remains unhandled
within the enclave. There are five possible parameter settings for different
levels of information:
v QUIET for no information
v MSG for message only
v TRACE for message and a traceback

v DUMP for message, traceback, and LE/VSE dump
v UADUMP for message, traceback, LE/VSE dump, and system dump

Note:

1. TERMTHDACT provides sub-options:
v MSGFL and LSTQ that utilize VSE POWER LST QUEUE as LE/VSE

dump destination under CICS.
v reg_stor_amount that controls the amount of storage to be dumped

around registers.

For details, refer to the description of TERMTHDACT in the LE/VSE
Customization Guide, SC33-6682.

2. The LSTQ option can also be used to tailor LE/VSE dump destinations
under batch.

TRAP(OFF)
The TRAP(OFF) run-time option disables the LE/VSE condition handler. In
the batch environment, neither STXIT AB nor STXIT PC is issued. This
causes abends and program interruptions to be ignored by the run-time
environment and handled by the operating system. However, with
TRAP(OFF) it is still possible to invoke the condition handler through the
CEESGL callable service and pass conditions to registered user-written
condition handlers. Be careful when using TRAP(OFF). Doing so can cause
unpredictable results. For more information about the effects of using
TRAP(OFF), see the TRAP run-time option in LE/VSE Programming
Reference, SC33-6685. You are recommended to use TRAP(ON,MIN) instead
of TRAP(OFF) as this will minimise the involvement of the LE/VSE
condition handler and circumvent any possible unexpected failures that
could occur when using TRAP(OFF).

TRAP(ON)
The TRAP(ON) run-time option enables the LE/VSE condition handler.
This causes the LE/VSE condition handler to intercept abends and
program interruptions. During normal processing, LE/VSE expects at least
TRAP(ON,MIN) to be in effect for sucessful running of the application.

Preparing Your Routine for Debugging

14 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

USRHDLR() or NOUSRHDLR()
The USRHDLR run-time option registers a user condition handler at stack
frame 0, allowing you to register a user condition handler without having
to include a call to CEEHDLR in your application, and then to recompile
the application. The NOUSRHDLR run-time option (the default) does not
register a user condition handler without recompiling the application to
include a call to CEEHDLR. For both USRHDLR and NOUSRHDLR, you
specify a phase name that contains the user condition handler that is to be
registered at stack frame 0. For further details, refer to the LE/VSE
Customization Guide, SC33-6682.

XUFLOW
Specifies whether an exponent underflow causes a routine interrupt.

User-Written Condition Handlers
User-written condition handlers permit you to customize condition handling for
certain conditions. You can register user-written condition handlers for the current
stack frame by using the CEEHDLR callable service. When the LE/VSE condition
manager encounters the condition, it requests the most recent condition handler
associated with the current frame to handle the condition. If the condition is not
handled, the LE/VSE condition manager percolates the condition to the next
condition handler associated with the stack frame. If the condition is not handled
by any of the condition handlers associated with the stack frame, the LE/VSE
condition manager percolates the condition to the next (earlier) stack frame, and so
forth to earlier stack frames until the condition has been handled or the earliest
stack frame has been reached. Conditions that remain unhandled after the first
(earliest) stack frame has been reached are presented to the LE/VSE condition
handler. One of the following LE/VSE default actions is then taken, depending on
the severity of the condition:
v Resume
v Percolate
v Promote

See LE/VSE Programming Guide, SC33-6684 for more information about user-written
condition handlers and the LE/VSE condition manager.

Using the Assembler User Exit
For debugging purposes, the CEEBXITA assembler user exit can be invoked during:
v Enclave initialization
v Enclave termination
v Process termination

The functions of the CEEBXITA user exit depend on when the user exit is invoked
and whether it is application-specific or installation-wide. Application-specific user
exits must be linked with the application phase and run only when that
application runs. Installation-wide user exits must be linked with the LE/VSE
initialization/termination library routines and run with all LE/VSE library
routines. Because an application-specific user exit has priority over any
installation-wide user exit, you can customize a user exit for a particular
application without affecting the user exit for any other applications.

Preparing Your Routine for Debugging

Chapter 1. Preparing Your Routine for Debugging 15

At enclave initialization, the CEEBXITA user exit runs prior to the enclave
establishment. Thus you can modify the environment in which your application
runs in the following ways:
v Specify run-time options
v List VSE cancel codes, program-interruption codes, and abend codes to be

exempted from LE/VSE condition handling
v Check the values of routine arguments

At enclave termination, the CEEBXITA user exit runs prior to the termination
activity. Thus, you can request an abend and perform specified actions based on
received return and reason codes. (This does not apply when LE/VSE terminates
with an abend.)

At process termination, the CEEBXITA user exit runs after the enclave termination
activity completes. Thus you can request an abend.

The assembler user exit must have an entry point of CEEBXITA, must be reentrant,
and must be capable of running in AMODE(ANY) and RMODE(ANY).

See LE/VSE Programming Guide, SC33-6684 for more information on the assembler
user exit.

Establishing Enclave Termination Behavior for Unhandled Conditions
You can establish enclave termination behavior when an unhandled condition of
severity 2 or greater occurs by using one of the following methods:
v The assembler user exit
v The ABTERMENC run-time option

The assembler user exit and the ABTERMENC run-time option are briefly
discussed in the following sections. For additional information, see “Using the
Assembler User Exit” on page 15 and LE/VSE Programming Guide, SC33-6684.

The Assembler User Exit
You can use the assembler user exit to establish enclave termination behavior for
an enclave ending with an unhandled condition of severity 2 or greater in the
following ways:
v If you do not request an abend in the assembler user exit for the enclave

termination call, LE/VSE honors the setting of the ABTERMENC option to
determine how to end the enclave.

v If you request an abend in the assembler user exit for the enclave termination
call, LE/VSE issues an abend to end the enclave.

See LE/VSE Programming Guide, SC33-6684 for more information on the assembler
user exit.

Using the ABTERMENC Run-Time Option
The ABTERMENC run-time option sets the enclave termination behavior for an
enclave ending with an unhandled condition of severity 2 or greater.

If you specify the IBM-supplied default suboption RETCODE, LE/VSE uses the
CEEAUE_ABND flag value set by the assembler user exit (which is called for
enclave termination) to determine whether or not to issue an abend to end the
enclave when an unhandled condition of severity 2 or greater occurs.

Preparing Your Routine for Debugging

16 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

If you specify the ABEND suboption, LE/VSE issues an abend to end the enclave
regardless of the setting of the CEEAUE_ABND flag. Additionally, the assembler
user exit can alter the abend code, abend reason code, and abend dump attribute.

See LE/VSE Programming Reference, SC33-6685 for more information on using
ABTERMENC.

Using Messages in Your Routine
You can create messages and use them in your routine to indicate the status and
progress of the routine during run time, and to display variable values. The process
of creating messages and using them requires that you create a message source file,
and convert the source file into a loadable phase for use in your routine. For a
complete explanation of how to create messages and use them in your routine, see
LE/VSE Programming Guide, SC33-6684.

You can use the LE/VSE callable service CEEMOUT to direct user-created message
output to the LE/VSE message file. To direct the message output to another
destination, use the LE/VSE MSGFILE run-time option to specify the filename of
the file.

Each LE/VSE-conforming language also provides ways to display both
user-created and run-time messages. (See “Interpreting Run-Time Messages” on
page 23 for an explanation of LE/VSE run-time messages.)

For C routines, output from the printf() function is directed to stdout, which is
associated with SYSLST. All C run-time messages and perror() messages are
directed to stderr. stderr corresponds to the filename associated with the LE/VSE
MSGFILE run-time option. The destination of the printf() function output can be
changed by using the redirection 1>&2 at routine invocation to redirect stdout to
the stderr destination. Both streams can then be controlled by the MSGFILE
run-time option.

For COBOL routines, you can use the DISPLAY statement to display messages.
Output from the DISPLAY statement is directed to SYSLST. SYSLST is the
IBM-supplied default for the LE/VSE message file. The OUTDD compile-time
option can be used to change the destination of the DISPLAY messages.

Under PL/I, run-time messages are directed to the file specified in the LE/VSE
MSGFILE run-time option, instead of the PL/I SYSPRINT STREAM PRINT file.
User-specified output is still directed to the PL/I SYSPRINT STREAM PRINT file.
To direct this output to the LE/VSE MSGFILE file, specify the run-time option
MSGFILE(SYSPRINT).

For a more detailed explanation of handling message output in C, COBOL, and
PL/I routines, see LE/VSE Programming Guide, SC33-6684.

Using Condition Information
If a condition that might require attention occurs while an application is running,
LE/VSE builds a condition token. The condition token contains 12 bytes of
information about the condition that LE/VSE or your routines can use to respond
appropriately. Each condition is associated with a single LE/VSE run-time
message.

You can use this condition information in two main ways:

Preparing Your Routine for Debugging

Chapter 1. Preparing Your Routine for Debugging 17

v Specify the feedback code parameter when calling LE/VSE services (see “Using
the Feedback Code”).

v Code a symbolic feedback code in a user-written condition handler (see “Using the
Symbolic Feedback Code” on page 20).

Using the Feedback Code

The feedback code is a parameter of the LE/VSE callable services. The feedback
code can be optional or required, depending on the programming language you
use. 2

When you provide the feedback code (fc) parameter, the callable service in which
the condition occurs sets the feedback code to a specific value called a condition
token.

When you do not provide the fc parameter, any nonzero condition is signaled and
processed by LE/VSE condition handling routines. If you have registered a
user-written condition handler, LE/VSE passes control to the handler, which
determines the next action to take. If the condition remains unhandled, LE/VSE
writes a message to the LE/VSE message file. The message is the translation of the
condition token into English (or another supported national language).

LE/VSE provides callable services that can be used to convert condition tokens to
routine variables, messages, or signaled conditions. Table 17 lists these callable
services and their functions.

Table 17. LE/VSE Callable Services Used to Process Nonzero Condition Tokens

Callable Service Function

CEEMSG Transforms the condition token into a message and writes the
message to the message file.

CEEMGET Transforms the condition token into a message and stores the
message in a buffer.

CEEDCOD Decodes the condition token; that is, separates it into distinct
user-supplied variables.

CEESGL Signals the condition. This passes control to any registered
user-written condition handlers. If a user-written condition handler
does not exist, or the condition is not handled, LE/VSE by default
writes the corresponding message to the message file and
terminates the routine for severity 2 or higher. For severity 0,
LE/VSE continues without writing a message. For severity 1,
LE/VSE continues. If the severity 1 condition is associated with a
COBOL routine, a message is issued. If the severity 1 condition is
associated with a non-COBOL routine, a message is not issued. For
details, see LE/VSE Programming Guide, SC33-6684.

There are two types of condition tokens. Case 1 condition tokens contain condition
information, including the LE/VSE message number. All LE/VSE callable services
and most application routines use case 1 condition tokens. Case 2 condition tokens
contain condition information and a user-specified class and cause code.
Application routines, user-written condition handlers, assembler user exits, and
some operating systems can use case 2 condition tokens.

2. For COBOL routines, you must provide the fc parameter in each call to an LE/VSE callable service. For C and PL/I routines, this
parameter is optional. See LE/VSE Programming Guide, SC33-6684 for more information about fc and condition tokens.

Preparing Your Routine for Debugging

18 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Figure 3 illustrates the structure of the condition token.

For example, in the condition token: X’0003032D 59C3C5C5 00000000’

v X'0003' is severity.
v X'032D' is message number 813.
v X'59' are hexadecimal flags for case, severity, and control.
v X'C3C5C5' is the CEE facility ID.
v X'00000000' is the ISI (In this case, no ISI was provided.)

If an LE/VSE traceback or dump is generated while a condition token is being
processed or when a condition exists, LE/VSE writes the run-time message to the
condition section of the traceback or dump. If a condition is detected when a
callable service is invoked without a feedback code, the condition token is passed
to the LE/VSE condition manager. The condition manager polls active condition
handlers for a response. If a condition of severity 0 or 1 remains unhandled,
LE/VSE resumes. For a severity 0 condition, a message is not issued. For a severity
1 condition, if the condition is associated with a COBOL routine, a message is
issued. If the severity 1 condition is associated with a non-COBOL routine, a
message is not issued. For unhandled conditions of severity 2 or greater, LE/VSE
issues a message and terminates. See Part 3, “Run-Time Messages and Codes,” on
page 153 for a list of LE/VSE run-time messages and corrective information.

If a second condition is raised while LE/VSE is attempting to handle a condition,
the message CEE0374C CONDITION = <message no.>. can be displayed using a
write-to-operator (WTO). The message number in the CEE0374C message indicates
the original condition that was being handled when the second condition was
raised. This can happen when a critical error is signaled (for example, when
internal control blocks are damaged).

If the output for this error message appears several times in sequence, the
conditions appear in order of occurrence. Correcting the earliest condition can
cause your application to run successfully.

Figure 3. LE/VSE Condition Token

Preparing Your Routine for Debugging

Chapter 1. Preparing Your Routine for Debugging 19

Figure 4 shows the error message and associated output for a nested condition.

The token is the hexadecimal condition token for the original condition. The
routine address is the location of the routine in which the original error occurred.
The last word of the program status word (PSW) indicates the location where the
original error occurred. The GPRs are the hexadecimal values in the registers at the
time of the original error. If CEE3250 is the original condition, the abend code can
be found in GPR1 and the reason code for the abend can be found in GPR15.

Using the Symbolic Feedback Code
The symbolic feedback code represents the first 8 bytes of a 12-byte condition
token. You can think of the symbolic feedback code as the nickname for a
condition. As such, the symbolic feedback code can be used in user-written
condition handlers to screen for a given condition, even if it occurs at different
locations in an application.

For more details on symbolic feedback codes, see LE/VSE Programming Guide,
SC33-6684.

CEE0374C CONDITION = CEE3207S TOKEN = 00030C87 59C3C5C5 00000000
WHILE RUNNING PROGRAM PROCB WHICH STARTS AT 00020584
AT THE TIME OF INTERRUPT
PSW FFE40007 D002040E
GPR 0-3 00000000 00000001 00000002 00000003
GPR 4-7 00000004 00000005 00000006 00000007
GPR 8-B 00000008 00000009 0000000A 00020280
GPR C-F 00362308 002D1240 500203E0 00000000

Figure 4. Message and Output for Nested Conditions

Preparing Your Routine for Debugging

20 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Chapter 2. Classifying Errors

This chapter describes errors that commonly occur in LE/VSE routines, and
explains how to use run-time messages and abend codes to obtain information
about errors in your routine. It consists of these main sections:
v “Identifying Problems in Routines”
v “Interpreting Run-Time Messages” on page 23
v “Understanding Abend Codes and VSE Cancel Codes” on page 24

Identifying Problems in Routines
The following sections describe how you can identify errors in LE/VSE routines.
Included are common error symptoms and solutions.

LE/VSE Module Names
You can identify LE/VSE-supplied module elements by any of the following
three-character prefixes:
v CEE (LE/VSE)
v EDC (C)
v IGZ (COBOL)
v IBM (PL/I)

Module elements with other prefixes are not part of the LE/VSE product.

Common Errors in Routines
Table 18 lists some common errors with simple solutions.

Table 18. Common Errors in Routines

Error Solution

Lack of virtual storage 3 Increase your partition GETVIS size or
decrease your storage usage (stack size) by
using the storage-related run-time options
and callable services.

Lack of disk space Increase your disk allocation.

Unavailable executable phases Check your LIBDEF statements.

If one of the items listed above is not the cause of error, examine your routine or
routines for changes since the last successful run. If there have been changes,
review these changes for errors that might be causing the problem. One way to
isolate the problem is to branch around or comment out recent changes and rerun
the routine. If the run is successful, the error can be narrowed to the scope of the
changes. Also, review changes to files that can affect routine behavior.

Changes in levels of optimization, addressing modes, and input/output file formats
can also cause unanticipated problems in your routine.

3. See “Controlling Storage Allocation” on page 9 for information about using storage in routines.

© Copyright IBM Corp. 1991, 2014 21

In most cases, run-time messages or generated condition tokens point to the nature
of the error and the most efficient corrective action. To help you classify the error
and determine the most useful method to fix the problem, Table 19 lists types of
errors, possible symptoms, and possible corrections.

Table 19. Common Error Symptoms, Possible Causes, and Programmer Responses

Error Symptom Possible Cause Programmer Response

Numbered run-time message appears Condition raised in routine For any messages you receive, read
the Programmer Response for the
messages listed in Part 3, “Run-Time
Messages and Codes,” on page 153.
For information about message
structure, see “Interpreting Run-Time
Messages” on page 23.

User abend code ≥ 4000 a) LE/VSE detected an error and
could not proceed

b) An unhandled software-raised
condition occurred and
ABTERMENC(ABEND) was in effect

c) The assembler user exit requested
an abend for an unhandled condition
of severity 4

For any abends you receive, read the
appropriate Explanation listed in
Chapter 13, “LE/VSE Abend Codes,”
on page 319.

User abend code < 4000 a) A non-LE/VSE abend occurred

b) The assembler user exit requested
an abend for an unhandled condition
of severity ≥2

See Chapter 13, “LE/VSE Abend
Codes,” on page 319. Check for a
subsystem-generated abend or a
user-specified abend.

System abend with TRAP(OFF) Cause depends on type of
malfunction

Respond appropriately. Refer to the
messages and codes publication of the
operating system.

System abend with TRAP(ON) System detected error Refer to the messages and codes
publication of the operating system.

No response (wait/loop) Application logic failure Check routine logic.
Note: Ensure ERRCOUNT and
DEPTHCONDLMT run-time options
are set to a nonzero value.

Unexpected message (message
received was not from most recent
service)

Condition caused by something
related to current service

Generate a traceback using CEE5DMP
and see Part 3, “Run-Time Messages
and Codes,” on page 153.

Incorrect output Incorrect file definitions, storage
overlay, incorrect routine mask
setting, references to uninitialized
variables, data input errors, or
application routine logic error

Correct the appropriate parameters.

No output Check filename, file definitions, and
message file setting

Correct the appropriate parameters.

Nonzero return code from enclave Unhandled condition of severity 2, 3,
or 4, or the return code was issued by
the application routine

Check the LE/VSE message file for
run-time messages.

22 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Interpreting Run-Time Messages
The first step in debugging your routine is to look up any run-time messages that
appear in the traceback. Run-time messages are written to the LE/VSE message file
(default filename is SYSLST). The message file filename can be changed with the
MSGFILE run-time option. For more information about displaying run-time
messages for C, COBOL, and PL/I routines, see LE/VSE Programming Guide,
SC33-6684.

Run-time messages provide users with additional information about a condition
and possible solutions for any errors that occurred. Run-time messages can be
issued by LE/VSE common routines or language-specific run-time routines.
Run-time messages contain a message prefix, message number, severity code, and
descriptive text. The message prefix indicates the LE/VSE component that
generated the message. The message number identifies the condition raised and
references additional condition and programmer response information. Severity
codes indicate the severity of the condition that occurred. The message text
provides a brief explanation of the condition. In the following example LE/VSE
message:
CEE3206S The system detected a specification exception.

v The message prefix is CEE.
v The message number is 3206.
v The severity code is S.
v The message text is “The system detected a specification exception”.

The message prefix is the first three characters of the message number and is also
the facility ID in the condition token. Table 20 provides additional information
about LE/VSE run-time messages.

Table 20. Message Prefixes and Associated LE/VSE Components

Message Prefix LE/VSE Component For a List, See

CEE Common run-time Chapter 8, “LE/VSE Run-Time
Messages,” on page 155

EDC C run-time Chapter 10, “C Run-Time Messages,”
on page 235

IGZ COBOL run-time Chapter 12, “COBOL Run-Time
Messages,” on page 299

IBM PL/I run-time Chapter 11, “PL/I Run-Time
Messages,” on page 253

The message number is the 4-digit number following the message prefix. Leading
zeros are inserted if the message number is less than four digits.

The severity code is the letter following the message number. Severity codes
indicate the level of attention called for by the condition. Messages with severity of
I are informational messages and do not usually require any corrective action. In
general, if more than one run-time message appears, the first noninformational
message indicates the problem. For a complete list of severity codes, severity
values, condition information, and default actions, see LE/VSE Programming Guide,
SC33-6684.

Note: LE/VSE messages can appear even though you made no explicit calls to
LE/VSE services. This is because C, COBOL, and PL/I run-time library routines

Chapter 2. Classifying Errors 23

commonly use the LE/VSE services.

Understanding Abend Codes and VSE Cancel Codes
When using LE/VSE, an abnormal termination is usually accompanied by an
LE/VSE abnormal termination message containing a user abend code or a VSE
cancel code, or a VSE system abend message. User abend codes have the format
dddd, where dddd is a decimal user abend code. VSE cancel codes have the format
hh, where hh is a hexadecimal cancel code. LE/VSE abend codes are usually in the
range of 4000 to 4095. User-specified abends use the range of 0 to 3999.

Examples of abnormal termination messages containing user abend codes are:
v User (LE/VSE) abend code: U4082

CEE3322C EXECUTION ABNORMALLY TERMINATED WITH USER-ABEND CODE 4082
AND REASON CODE 00

v User-specified abend code: U0005
CEE3322C EXECUTION ABNORMALLY TERMINATED WITH USER-ABEND CODE 0005

AND REASON CODE 00

An example of an abnormal termination message containing a VSE cancel code is:
CEE3321C EXECUTION ABNORMALLY TERMINATED WITH VSE CANCEL CODE 20

AND INTERRUPTION CODE 05

An example of a VSE system abend message is:
0S03I PROGRAM CHECK INTERRUPTION - HEX LOCATION 0006D2D0 -
CONDITION CODE 04 - PROTECTION EXCEPTION

User Abends
If you receive an LE/VSE abend code, see Chapter 13, “LE/VSE Abend Codes,” on
page 319 for a list of abend codes, error descriptions, and programmer responses.

The LE/VSE callable service CEE5ABD terminates your application with an abend.
You can set the clean-up parameter value to determine how the abend is processed
and how LE/VSE handles the raised condition. For more information about
CEE5ABD and clean-up, see LE/VSE Programming Reference, SC33-6685.

The TRAP(OFF) run-time option disables LE/VSE condition handling for program
checks and abends. With TRAP(OFF), program checks such as addressing
exceptions, data exceptions, and decimal divide exceptions result in VSE system
abends rather than LE/VSE conditions.

Note: The use of TRAP(OFF) does not affect the LE/VSE callable service CEESGL,
which signals a condition to the LE/VSE condition manager.

You can specify the ABTERMENC run-time option to determine what action is
taken when an unhandled condition of severity 2 or greater occurs. For more
information on ABTERMENC, see “Using the ABTERMENC Run-Time Option” on
page 16 and LE/VSE Programming Reference, SC33-6685.

User abends, such as LE/VSE 4xxx abends or abends raised by a call to the
CEE5ABD service, can cause the generation of a system dump. Although system
dumps are sometimes required for debugging complex error situations, it is
usually better to generate an LE/VSE formatted dump. To request an LE/VSE
dump whenever an unhandled condition is raised, specify both TRAP(ON) and
TERMTHDACT(DUMP) run-time options. Your routine can also produce an

24 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

LE/VSE dump at any time by calling the CEE5DMP callable service. The
TRAP(ON) run-time option causes the LE/VSE condition handler to attempt to
handle the abend. For a detailed explanation of the run-time options and callable
services discussed in this section, see LE/VSE Programming Guide, SC33-6684.

VSE Cancel Codes and VSE System Abends
If you receive an LE/VSE abnormal termination message containing a VSE cancel
code, look up the code and the corresponding information in z/VSE Messages and
Codes, Volume 1, z/VSE Messages and Codes, Volume 2, z/VSE Messages and Codes,
Volume 3.

If you receive a VSE system abend message, look up the message and the
corresponding information in z/VSE Messages and Codes, Volume 1, z/VSE Messages
and Codes, Volume 2, z/VSE Messages and Codes, Volume 3.

When a VSE system abend occurs, the operating system can generate a system
dump. System dumps are written to SYSLST, or to a dump sublibrary if one is
defined. See “Generating a System Dump” on page 53 for more information about
system dumps.

Chapter 2. Classifying Errors 25

26 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Chapter 3. Using LE/VSE Debugging Facilities

This chapter describes methods of debugging routines in LE/VSE. Currently, most
problems in LE/VSE and member language routines can be determined through
information provided in the LE/VSE dump.

It consists of these main sections:
v “Using the Debug Tool for VSE/ESA”
v “Using Attention Routine Interface Commands”
v “Using the LE/VSE Dump Service” on page 31
v “Multiple Enclave Dumps” on page 51
v “Generating a System Dump” on page 53
v “Requesting an LE/VSE Trace for Debugging” on page 54
v “Diagnosing Storage Leak Problems” on page 56

Note: The CEETRACE tracing tool is available on an “AS IS” basis (IBM does not
officially support this feature). It is not described in this manual. For details, refer
to the document CEETRACE Feature, Installation and User's Guide. You can find this
document on the z/VSE Home Page, together with other files to download:

http://www.ibm.com/systems/z/os/zvse/

Using the Debug Tool for VSE/ESA
Debugging tools are designed to help you detect errors early in your routine. IBM
offers the Debug Tool for VSE/ESA, which you can use to examine, monitor, and
control how your routines run, and debug your routines interactively or in batch
mode. Debug Tool for VSE/ESA also provides facilities for setting breakpoints and
altering the contents and values of variables. LE/VSE run-time options can be used
with Debug Tool for VSE/ESA to debug or analyze your routine. Refer to the
Debug Tool for VSE/ESA publications for a detailed explanation of how to invoke
and run Debug Tool for VSE/ESA. For a list of Debug Tool for VSE/ESA
publications, see “Where to Find More Information” on page xv. If you are using
another debugging facility, refer to the appropriate documentation.

Using Attention Routine Interface Commands
The attention routine (AR) interface is pre-customized and activated in z/VSE. You
can use the attention routine commands described below, to display Language
Environment® information:
v The AR interface can be used to display LE/VSE run-time option, exit and status

reports.
v From z/VSE 4.2 onwards, the AR interface provides commands for managing

LE/VSE batch run-time override options. The AR interface is also a prerequisite
for the “AS-IS” CEETRACE feature.

v You are recommended to keep the AR interface enabled.

Command
Description

D CEE,CEEDOPT
Displays a report of the current BATCH environment system-wide default
run-time option settings. This can be useful for assisting in the debugging

© Copyright IBM Corp. 1991, 2014 27

http://www.ibm.com/systems/z/os/zvse/

of application programs and for application-storage tuning. Before you can
use this command, the sample job CELOPT (member CEEWOPTJ.Z)
must be:
v Resident in the VSE/POWER reader queue.
v Configured to execute in a VSE/POWER class that has an available

partition each time this command is issued.

Note: CEEUOPT members that might be included in application programs
will not affect the options report produced by this command.

Here is an example of the type of report that is produced by the
D CEE,CEEDOPT command:
1Q47I C1 CELOPT 33557 FROM (SYSA) , TIME=12:06:07
// JOB CEL4OPTS - PRODUCE REQUESTED INSTALLATION-WIDE OPTIONS REPORT
DATE 06/24/2008, CLOCK 12/06/07
Options Report for Enclave BATCHOPT 06/24/08 12:06:08 PM
Language Environment for z/VSE V1 R4.6

LAST WHERE SET OPTION
--
Installation default ABPERC(NONE)
Installation default ABTERMENC(ABEND)
Installation default NOAIXBLD
Installation default ALL31(OFF)
Installation default ANYHEAP(16384,8192,ANYWHERE,FREE)
Installation default BELOWHEAP(8192,4096,FREE)
Installation default CBLOPTS(ON)
Installation default CBLPSHPOP(OFF)
Installation default CHECK(OFF)
Installation default COUNTRY(US)
Installation default NODEBUG
Installation default DEPTHCONDLMT(10)
Installation default ENVAR("")
Installation default ERRCOUNT(20)
Installation default HEAP(32768,32768,ANYWHERE,KEEP,8192,4096)
Installation default HEAPCHK(OFF,1,0)
Installation default LIBSTACK(12288,4096,FREE)
Installation default MSGFILE(SYSLST)
Installation default MSGQ(15)
Installation default NATLANG(ENU)
Installation default RETZERO(OFF)
Installation default RPTOPTS(OFF)
Installation default RPTSTG(OFF)
Installation default NORTEREUS
Installation default STACK(131072,131072,BELOW,KEEP)
Installation default STORAGE(00,NONE,NONE,32768)
Installation default TERMTHDACT(TRACE,MSGFL,32)
Installation default NOTEST(ALL,"*","PROMPT","")
Installation default TRACE(OFF,4096,DUMP,LE=0)
Installation default TRAP(ON,MAX)
Installation default UPSI(00000000)
Installation default NOUSRHDLR()
Installation default XUFLOW(AUTO)

EOJ CEL4OPTS MAX.RETURN CODE=0000
DATE 06/24/2008, CLOCK 12/06/10, DURATION 00/00/02

D CEE,CEECOPT
Displays a report similar to that produced by D CEE,CEEDOPT, but for
the current CICS installation-wide default run-time options. This command
can be issued even if there are no currently-active CICS systems.

Note:

28 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

1. If there are multiple default run-time option settings for different CICS
systems, only those options that are catalogued in PRD2.SCEEBASE (or
in the SVA) as CEECOPT.PHASE will be reported. Alternatively, you
can tailor the CELOPT job (supplied as member CEEWOPTJ in ICCF
library 62) to search a different library containing your cataloged
installations options. Any other CEECOPT.PHASE options resident on
the z/VSE system will not be reported.

2. Any option overrides set by the IBM-supplied CLER transaction,
assembler user exits, or CEEUOPT modules included in application
programs, will not be reported.

D CEE,CEEEXIT
Produces a report of all installed Language Environment exits, and the
status of these exits. The report only includes exits that are currently
resident in the SVA. Version information for the assembler user exit is only
available for IBM-supplied or IBM-sample-tailored exit routines. OEM
versions may not conform to the standard entry code requirements, and so
version information may not be available.

Note: Any assembler user exits are not included in the report if they are
included in specific applications during the link-edit.

Here is an example of the type of report that is produced by the
D CEE,CEEEXIT command:
AR 0015 CEL4001I Currently defined BATCH Language Environment for z/VSE Exits
AR 0015 --
AR 0015 CEL4002I Exit Name Exit Type Dump Cntrl
AR 0015 CEL4007I CEL4RPRT Abnorm Term. Predump
AR 0015 CEL4007I CEEBNATX Abnorm Term. Postdump
AR 0015
AR 0015 CEL4004I A Language Environment for z/VSE EXIT module not found in SVA
AR 0015
AR 0015 CEL4090I Language Environment for z/VSE Assembler User Exit details
AR 0015 --
AR 0015 CEL4000I Exit Name Exit Type Exit Status Version
AR 0015 CEL4010I CEEBXITA Asm User. Default V1.R4.M9
AR 0015
AR 0015 CEL4005I Language Environment for z/VSE Assembler Exit not in the SVA.

CEL4006W Language Environment for z/VSE command processing incomplete.

D CEE,CEESTAT
Displays all the available Language Environment system information.
These types of detail are displayed:
v Current Language Environment level.
v Latest Language Environment APAR installed.
v Languages that are installed.
v Latest APAR levels of the installed languages.
v Information about certain core Language Environment load modules

(which might be required for Level 2 support and analysis).

Note: If maintenance is applied to any of the Language Environment
components, a refresh of the attention routine interface is required using
the IBM-supplied sample CEEWARC. For details, refer to the section
“Planning to Activate LE/VSE Attention Routine Commands” in the
manual LE/VSE Customization Guide, SC33-6682.

Here is an example of the type of report that is produced by the
D CEE,CEESTAT command:
CEL4014I Current Language Environment for z/VSE Status Information
--
CEL4011I Language Environment Version : 01.04.06 LE146GA
CEL4018I Report Produced by CEL4CMDR at 83B2B938 LE146GA

Chapter 3. Using LE/VSE Debugging Facilities 29

CEL4012I Language Installed SVA Resident SVA Load Addr APAR
CEL4013I LE/COBOL YES NO - LE146GA
CEL4013I LE/PLI YES NO - LE146GA
CEL4013I C/Locale YES YES 03B737D0 Unknown
CEL4013I LE/C YES YES 039ED270 LE146GA

CEL4015I Module Installed SVA Resident SVA Load Addr
CEL4015I CEEBINIT YES YES 001C4AC8
CEL4015I CEEPLPKA YES YES 03A7F7E0
CEL4015I CEEPLPKD YES NO -
CEL4015I CEEPIPI YES NO -
CEL4015I CEECCICS YES YES 001D70F0

CEL4067I CEETRACE Current Status is Not Installed
CEL4019I Language Environment for z/VSE command complete.

D CEE,? | HELP
Displays the help information available with the LE for z/VSE command
interface.

D CEE,OPTS
Displays any attention routine BATCH run-time over-ride options that may
be set:
v If option over-rides have not been set, message CEL4027I will be issued

with the text “No LE/VSE Option Over-rides”.
v If option over-rides have been set, message CEL4027I will be issued

followed by the string of options that are set as over-rides.

Here are two examples of the use of the D CEE,OPTS command:
v Example where attention routine over-rides have not been set:

CEL4027I No LE z/VSE Option Over-rides
CEL4019I Language Environment for z/VSE command complete.

v Example where attention routine over-rides have been set:
CEL4027I RPTSTG(ON),CHECK(ON)
CEL4019I Language Environment for z/VSE command complete.

S CEE,CLEAR
Removes any attention routine BATCH run-time option over-rides that
might have been set. Will always return with message CEL4019I.

For example, the operator enters S CEE,CLEAR. LE/VSE then responds with:
CEL4019I Language Environment for z/VSE command complete.

S CEE,OPTS=run-time option over-rides string
Allows the operator to enter LE/VSE run-time option over-ride settings
from the console:
v These over-rides will apply to any BATCH LE/VSE applications that are

subsequently executed.
v The run-time option over-rides string must not exceed 120 characters.

Truncation will occur if this limit is exceeded, which causes run-time
option processing error messages to be reported in LE/VSE batch
applications.

v The run-time option over-ride string must conform to the LE/VSE JCL
PARM over-ride format. Each option must be separated by the same
separator character.

v The over-ride string will be accepted immediately and no syntax or
validation checking will be performed until the first LE/VSE BATCH
application is executed.

30 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

v Options cannot be appended to a set of overrides that already exists.
Instead, each S CEE,OPTS= command entered by the operator will
completely replace any existing overrides with the most recent options
string.

This example illustrates the use of the previous three commands.
1. The operator enters S CEE,OPTS=RPTSTG(ON),CHECK(ON). LE/VSE

responds with:
CEL4019I Language Environment for z/VSE command complete.

2. The operator enters D CEE,OPTS. LE/VSE responds with:
CEL4020I RPTSTG(ON),CHECK(ON)
CEL4019I Language Environment for z/VSE command complete.

3. The operator enters S CEE,CLEAR. LE/VSE responds with:
CEL4019I Language Environment for z/VSE command complete.

4. The operator enters D CEE,OPTS. LE/VSE responds with:
CEL4020I No LE/VSE Option Over-rides
CEL4019I Language Environment for z/VSE command complete.

Each line of the console reports described above has a message number associated
with it. These message numbers are described later in this manual. By referring to
these messages, you can obtain further details about a report.

Using the LE/VSE Dump Service
The following sections provide information about using the LE/VSE dump service,
and describe the contents of the LE/VSE dump.

There are three ways to invoke the LE/VSE dump service:
v CEE5DMP callable service
v TERMTHDACT run-time option
v Language-specific functions

Generating a Dump with CEE5DMP
The CEE5DMP callable service generates a dump of LE/VSE and the loaded
member language library routines. CEE5DMP can be called directly from an
application routine, and generates a dump of the run-time environment at the
point of the CEE5DMP call.

The dump can contain information about conditions, tracebacks, variables, control
blocks, stack and heap storage, file status and attributes, and language-specific
information, depending on the options you specify. No conditions are necessary for
this callable service to be used.

All output from CEE5DMP is written to the default filename CEEDUMP, unless
you use the FNAME option to specify another filename. If you do not provide
run-time JCL for the file CEEDUMP (or any other file you specify using the
FNAME option), all output from CEE5DMP is written to SYSLST. The syntax for
CEE5DMP is shown below.

Syntax

�� CEE5DMP (title , options , fc) ��

Chapter 3. Using LE/VSE Debugging Facilities 31

title
An 80-byte fixed-length character string that contains a title to be printed at the
top of each page of the dump.

options
A 255-byte fixed-length character string that contains options describing the
type, format, and destination of dump information. The options are declared as
a string of keywords separated by blanks or commas. Some options also have
suboptions that follow the option keyword, and are contained in parentheses.
The last option declaration is honored if there is a conflict between it and any
preceding options.

fc (output)
A 12-byte feedback token code that indicates the result of a call to CEE5DMP.
If specified as an argument, then feedback information, in the form of a
condition token, is returned to the calling routine. If not specified, and the
requested operation was not successfully completed, the condition is signaled
to the condition manager.

You can use options with CEE5DMP to specify what information is included in the
dump. Table 21 lists dump options and related information.

Table 21. CEE5DMP Options and Related Information

Dump Options Abbreviation Action Taken

ENCLAVE(ALL) ENCL Dumps all enclaves associated with the current process.1

This is the default setting for ENCLAVE.

ENCLAVE(CURRENT) ENCL(CUR) Dumps the current enclave.2

ENCLAVE(n) ENCL(n) Dumps a fixed number of enclaves, indicated by n.

THREAD(CURRENT) THR(CUR) Dumps the current thread in this enclave.

TRACEBACK TRACE Includes a traceback of all active routines. The traceback
shows transfer of control from either calls or exceptions.
Calls include PL/I transfers of control from BEGIN-END
blocks or ON-units.

NOTRACEBACK NOTRACE Does not include a traceback of all active routines.

FILES FILE Includes attributes of all open files. File control blocks are
included when the BLOCKS option is also specified. File
buffers are included when the STORAGE option is
specified.

NOFILES NOFILE Does not include file attributes.

VARIABLES VAR Includes a symbolic dump of all variables, arguments, and
registers.

NOVARIABLES NOVAR Does not include variables, arguments, and registers.

BLOCKS BLOCK Dumps control blocks from LE/VSE and member
language libraries.

NOBLOCKS NOBLOCK Does not include control blocks.

STORAGE STOR Dumps the storage used by the routine. The number of
routines dumped is controlled by the STACKFRAME
option.

NOSTORAGE NOSTOR Suppresses storage dumps.

STACKFRAME(ALL) SF(ALL) Dumps all stack frames from the call chain. This is the
default setting for STACKFRAME.

32 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Table 21. CEE5DMP Options and Related Information (continued)

Dump Options Abbreviation Action Taken

STACKFRAME(n) SF(n) Dumps a fixed number of stack frames, indicated by n,
from the call chain. The specific information dumped for
each stack frame depends on the VARIABLES, BLOCK,
and STORAGE options declarations. The first stack frame
dumped is the caller of CEE5DMP, followed by its caller,
and proceeding backward up the call chain.

PAGESIZE(n) PAGE(n) Specifies the number of lines on each page of the dump.

FNAME(s) FNAME(s) Specifies the filename of the file to which the dump is
written.

CONDITION COND Dumps condition information for each condition active on
the call chain.

NOCONDITION NOCOND For each condition active on the call chain, does not dump
condition information.

ENTRY ENT Includes a description of the program unit that called
CEE5DMP and the registers on entry to CEE5DMP.

NOENTRY NOENT Does not include a description of the program unit that
called CEE5DMP or registers on entry to CEE5DMP.

REGSTOR(n) REGST(n) Controls the amount of storage to be dumped around
registers. n must be in the range 0 to 256, and indicates
the storage (in bytes) to be dumped around each register.
n is rounded up to the nearest multiple of 32.

If you do not require a dump of storage around registers
(regardless of the reg_stor_amount value on the
TERMTHDACT run-time option), you must specify
REGSTor(0) as a CEE5DMP option.

Note:

1. In ILC applications in which a C routine calls another member language routine, and that routine in turn calls
CEE5DMP, traceback information for the C routine is not provided in the dump.

2. On CICS, only (CURRENT) and (1) values are supported for the ENCLAVE dump option.

In the batch environment, all values for ENCLAVE are supported.

The IBM-supplied default settings for CEE5DMP are:
TRACEBACK THREAD(CURRENT) FILES VARIABLES NOBLOCKS
NOSTORAGE STACKFRAME(ALL) PAGESIZE(60)
FNAME(CEEDUMP) CONDITION ENTRY

For additional information about the CEE5DMP callable service and dump options,
see LE/VSE Programming Reference, SC33-6685. For an example of an LE/VSE
dump, see “Understanding an LE/VSE Dump” on page 35.

Generating a Dump with TERMTHDACT
You can use the TERMTHDACT run-time option to produce a traceback or dump
upon abnormal termination of a thread due to an unhandled condition of severity
2 or greater (when this occurs, LE/VSE terminates the enclave). See LE/VSE
Programming Guide, SC33-6684 for information on enclave termination.

The TERMTHDACT run-time option calls CEE5DMP to produce a dump during
program checks, abnormal terminations, or calls to the CEESGL service. Enclave-
and process-related storage could have changed from the time the dump request
was issued.

Chapter 3. Using LE/VSE Debugging Facilities 33

The TERMTHDACT suboptions QUIET, MSG, TRACE, DUMP, and UADUMP
control the level of information available. Table 22 lists these suboptions, the levels
of information produced, and the destination of each.

Table 22. Suboptions for TERMTHDACT

Suboption Level of Information Destination

QUIET No information No destination.

MSG Message Filename specified in MSGFILE
run-time option.

TRACE Message and dump containing only
a traceback

Message goes to filename specified
in MSGFILE run-time option.
Traceback goes to CEEDUMP file
or SYSLST.

DUMP Message and complete dump Message goes to filename specified
in MSGFILE run-time option.
Dump goes to CEEDUMP file or
SYSLST.

UADUMP Message, complete dump, and VSE
system dump.

Message goes to filename specified
in MSGFILE run-time option.
Dump goes to CEEDUMP file or
SYSLST. System dump goes to
dump sublibrary or SYSLST.

Note: From VSE/ESA 2.7 onwards, TERMTHDACT provides additional sub-option
reg_stor_amount that controls the amount of storage to be dumped around
registers. For details, refer to the description of TERMTHDACT in the LE/VSE
Customization Guide, SC33-6682.

Although you can modify CEE5DMP options, you cannot change options for a
traceback or dump produced by TERMTHDACT.

The TRACE suboption of TERMTHDACT uses the following dump options:
NOENTRY, CONDITION, TRACEBACK, THREAD(ALL), NOBLOCKS,
NOSTORAGE, VARIABLES, FILES, STACKFRAME(ALL), PAGESIZE(60), and
FNAME(CEEDUMP).

The DUMP and UADUMP suboptions of TERMTHDACT use the following dump
options: NOENTRY, CONDITION, TRACEBACK, THREAD(ALL), BLOCKS,
STORAGE, VARIABLES, FILES, STACKFRAME(ALL), PAGESIZE(60), and
FNAME(CEEDUMP).

See LE/VSE Customization Guide, SC33-6682 for more information about the
TERMTHDACT run-time option.

Generating a Dump with Language-Specific Functions
In addition to the CEE5DMP callable service and the TERMTHDACT run-time
option, you can use language-specific conventions such as C functions and the
PL/I PLIDUMP service to generate a dump.

C routines can use the functions cdump(), csnap(), and ctrace() to produce an
LE/VSE dump. All three functions call the CEE5DMP callable service, and each
function includes an options string, consisting of different CEE5DMP options, that

34 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

you can use to control the information contained in the dump. For more
information on these functions, see “Generating an LE/VSE Dump of a C Routine”
on page 75.

PL/I routines can call PLIDUMP instead of CEE5DMP to produce a dump.
PLIDUMP includes options that you can specify to obtain a variety of information
in the dump. For a detailed explanation about PLIDUMP, see “Generating an
LE/VSE Dump of a PL/I Routine” on page 130.

Understanding an LE/VSE Dump
The LE/VSE dump service generates output of data and storage from the LE/VSE
run-time environment on an enclave basis. Figure 5 illustrates a dump for enclave
DRVHAND, and “Sections of the LE/VSE Dump” on page 37 describes the
information contained in the dump.

Note: This example assumes full use of the CEE5DMP dump options. Not all
information appears in dumps generated by unhandled conditions. Ellipses are
used to summarize some sections of the dump.

For easy reference, the sections of the dump are numbered to correspond with the
description of each section that follows.

CEE5DMP V1 R4.7: Sample LE/VSE dump �1� 11/27/10 11:45:54 AM PAGE: 1

CEE5DMP CALLED BY PROGRAM UNIT HANDLER AT OFFSET +0000035C. �2�

REGISTERS ON ENTRY TO CEE5DMP: �3�

PM....... 0000
GPR0..... 0057476C GPR1..... 00574788 GPR2..... 0051F7EC GPR3..... 00578250
GPR4..... 00578150 GPR5..... 0054F018 GPR6..... 0054F608 GPR7..... 0054F540
GPR8..... 0054F614 GPR9..... 00578100 GPR10.... 00500754 GPR11.... 00500898
GPR12.... 00519E48 GPR13.... 00574620 GPR14.... 80541EEE GPR15.... 83A01D68
FPR0..... 40404040 40404040 FPR2..... 40404040 40404040
FPR4..... 40404040 40404040 FPR6..... 40404040 40404040
GPREG STORAGE:
STORAGE AROUND GPR 0 (00000000)
+0000 00000000 INACCESSIBLE STORAGE.
+0020 00000020 INACCESSIBLE STORAGE.
+0040 00000040 INACCESSIBLE STORAGE.

STORAGE AROUND GPR 1 (00515608)
-0020 005155E8 0054F7D8 00020518 0054F528 C5000000 00000000 00000002 00000000 00000000 |..7Q......5.E...................|
+0000 00515608 0054F540 0054F608 0054F614 005159FC 00000000 00000000 0054F604 0054F528 |..5 ..6...6..&.#169;......6...5.|
+0020 00515628 0054F614 005159FC 00000001 010C0002 40254000 00000000 00000020 00000009 |..6..&.#169;....................|...

STORAGE AROUND GPR15 (00500658)
-0020 00500638 58602008 50605134 D20F5138 3116D203 51483126 D20F5150 312A98EC D00C07FE |.-..&-&.#169;.K.169;..K.169;....|
+0000 00500658 47F0F028 00C3C5C5 00000000 00000014 47F0F001 4ACEAC00 00500704 00000000 |.00..CEE.........00......&......|
+0020 00500678 00000000 00000000 90ECD00C 4110F038 98EFF04C 07FF0000 00500658 0050074C |..............0.q.0<.....&...&.<|

INFORMATION FOR ENCLAVE DRVHAND �4�

INFORMATION FOR THREAD 8000000000000000 �5�

REGISTERS ON ENTRY TO CEE5DMP:
PM....... 0000
GPR0..... 0057476C GPR1..... 00574788 GPR2..... 0051F7EC GPR3..... 00578250
GPR4..... 00578150 GPR5..... 0054F018 GPR6..... 0054F608 GPR7..... 0054F540
GPR8..... 0054F614 GPR9..... 00578100 GPR10.... 00500754 GPR11.... 00500898
GPR12.... 00519E48 GPR13.... 00574620 GPR14.... 80541EEE GPR15.... 83A01D68
FPR0..... 40404040 40404040 FPR2..... 40404040 40404040
FPR4..... 40404040 40404040 FPR6..... 40404040 40404040
GPREG STORAGE:
STORAGE AROUND GPR 0 (0057476C)
-0020 0057474C 00000000 005780C8 00578100 00000000 0054F608 0054F614 0054F540 005159FC |.......H..a.......6...6..5 #.169|
+0000 0057476C 00000000 005008C8 005008C8 C0000000 00000000 00000000 00000000 00578100 |.....&.H.&.H..................a.|
+0020 0057478C 00578150 80578250 00000000 00574620 005780C8 00578100 00000000 00574000 |..a&..b&...........H..a....... .|

STORAGE AROUND GPR 1 (00574788)
-0020 00574768 005159FC 00000000 005008C8 005008C8 C0000000 00000000 00000000 00000000 |.&-#169;.......&.H.&.H..........|
+0000 00574788 00578100 00578150 80578250 00000000 00574620 005780C8 00578100 00000000 |..a...a&..b.&..........H..a.....|
+0020 005747A8 00574000 000002D8 FB000000 FFFFFFFF 0000003C C3C5C5C4 E4D4D740 FFFFFFFF |..Q............CEEDUMP|

Figure 5. Example Dump Using CEE5DMP

Chapter 3. Using LE/VSE Debugging Facilities 35

...
STORAGE AROUND GPR15 (83A01D68)
-0020 03A01D48 00000014 03A01318 F2F0F0F1 F0F7F1F0 F1F2F2F6 F0F0F0F1 F0F4F0F2 00000778 |........20010710122600010402....|
+0000 03A01D68 47F0F014 00C3C5C5 00000B48 00004C84 47F0F001 90ECD00C 18BF41A0 BFFF4190 |.00..CEE......&.d.00............|
+0020 03A01D88 AFFF4180 9FFF4170 8FFF4160 7FFF5800 7CDC5810 D04C1E01 5500C00C 47D0B048 |...........-"...@....<..........|

STORAGE AROUND GPR15 (83A01D68) (24-BIT)
-0020 00A01D48 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 |................................|
+0000 00A01D68 - +00003F 00A01DA7 SAME AS ABOVE

TRACEBACK: �6�
DSA ADDR PROGRAM UNIT PU ADDR PU OFFSET ENTRY E ADDR E OFFSET STATEMENT STATUS
00574620 HANDLER 00500658 +0000035C HANDLER 00500658 +0000035C CALL
0054F018 CEEHDSP 03A58D38 +000017A0 CEEHDSP 03A58D38 +000017A0 CALL
00574038 DRVHAND 00500078 +00000350 DRVHAND 00500078 +00000350 EXCEPTION

CONDITION INFORMATION FOR ACTIVE ROUTINES �7�
CONDITION INFORMATION FOR DRVHAND (DSA ADDRESS 00574038)
CIB ADDRESS: 0054F528
CURRENT CONDITION:
CEE3209S THE SYSTEM DETECTED A FIXED-POINT DIVIDE EXCEPTION.

LOCATION:
PROGRAM UNIT: DRVHAND ENTRY: DRVHAND STATEMENT: OFFSET: +00000350

MACHINE STATE:
ILC..... 0004 INTERRUPTION CODE..... 0009
PSW..... 071D2000 805003CC
PM....... 0000
GPR0..... 00574178 GPR1..... 00574198 GPR2..... 00000000 GPR3..... 00000001
GPR4..... 005000B0 GPR5..... 00572188 GPR6..... 0051F1AC GPR7..... 00000000
GPR8..... 0051FA70 GPR9..... 00578070 GPR10.... 00500178 GPR11.... 005002C4
GPR12.... 0050016C GPR13.... 00574038 GPR14.... 80500386 GPR15.... 00000000

STORAGE DUMP NEAR CONDITION, BEGINNING AT LOCATION: 005003B8
+000000 005003B8 A014D203 9010A010 58209010 8E200020 5D209008 50309018 5820D05C 58F0202C |..K.............)...&......*.0..|

PARAMETERS, REGISTERS, AND VARIABLES FOR ACTIVE ROUTINES: �8�
HANDLER (DSA ADDRESS 00574620):
SAVED REGISTERS:
GPR0..... 0057476C GPR1..... 00574788 GPR2..... 0051F7EC GPR3..... 00578250
GPR4..... 00578150 GPR5..... 0054F018 GPR6..... 0054F608 GPR7..... 0054F540
GPR8..... 0054F614 GPR9..... 00578100 GPR10.... 00500754 GPR11.... 00500898
GPR12.... 00519E48 GPR13.... 00574620 GPR14.... 80541EEE GPR15.... 83A01D68...

LOCAL VARIABLES:...
CONTROL BLOCKS FOR ACTIVE ROUTINES: �9�
DSA FOR HANDLER: 00574620
+000000 FLAGS.... 0010 member... 8001 BKC...... 0054F018 FWC...... 00552018 R14...... 80541EEE
+000010 R15...... 83A01D68 R0....... 0057476C R1....... 00574788 R2....... 0051F7EC R3....... 00578250
+000024 R4....... 00578150 R5....... 0054F018 R6....... 0054F608 R7....... 0054F540 R8....... 0054F614
+000038 R9....... 00578100 R10...... 00500754 R11...... 00500898 R12...... 00519E48 reserved. F3E3C7E3
+00004C NAB...... 00552018 PNAB..... 03000000 reserved. 41030220 00572188 0051F7EC 00574798
+000064 reserved. 00000000 reserved. 00000151 MODE..... 805009B6 reserved. 00000000 005780B8
+000078 reserved. 00000000 reserved. 00000000...

STORAGE FOR ACTIVE ROUTINES: �10�
HANDLER:...

CONTROL BLOCKS ASSOCIATED WITH THE THREAD: �11�
CAA: 00519E48
+000000 00519E48 00000800 00000000 00552000 00572000 00000000 00000000 00000000 00000000 |................................|
+000020 00519E68 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 |................................|
+000040 00519E88 - +00005F 00519EA7 SAME AS ABOVE
+000060 00519EA8 00000000 00000000 00000000 00000000 00000000 80204A90 00000000 00000000 |................................|
+000080 00519EC8 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 |................................|
+0000A0 00519EE8 - +00011F 00519F67 SAME AS ABOVE
+000120 00519F68 00513EF8 00000000 00000000 00000000 00000000 00000000 00000000 00000000 |.&.#169;.8......................|
+000140 00519F88 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 |................................|...

DUMMY DSA: 0051A608
+000000 FLAGS.... 0000 member... 0000 BKC...... 00438000 FWC...... 00000000 R14...... 00572488
+000010 R15...... 00500078 R0....... 00000000 R1....... 001F9160 R2....... 00000000 R3....... 00000000
+000024 R4....... 00000000 R5....... 00000000 R6....... 00000000 R7....... 00000000 R8....... 00000000
+000038 R9....... 00000000 R10...... 00000000 R11...... 00000000 R12...... 00519E48 reserved. 00000000
+00004C NAB...... 00552018 PNAB..... 00552018 reserved. 00000000 00000000 00000000 00000000
+000064 reserved. 00000000 reserved. 00000000 MODE..... 00000000 reserved. 00000000 00000000
+000078 reserved. 00000000 reserved. 00000000

ENCLAVE CONTROL BLOCKS: �12�
EDB: 00519060
+000000 00519060 C3C5C5C5 C4C24040 C0000001 00519D08 005195F8 00000000 00000000 00000000 |CEEEDB&.#169....&.#169.n8|
+000020 00519080 005194B0 005194E0 00541038 00518D40 00000000 00000000 001F9160 00008000 |.&.#169.m..169.m................|
+000040 005190A0 00000000 00000000 00438000 00000000 00000000 00000000 00519120 005190B8 |.........................169.169|
+000060 005190C0 00000000 00000000 00000000 00000000 00000000 00000000 03A892F8 00519E48 |.........................yk8.169|
+000080 005190E0 70000000 00000000 00000000 00000000 00000001 00000000 00000000 00000000 |................................|

MEML: 00519D08
+000000 00519D08 00000000 00000000 03A41338 00000000 00000000 00000000 03A41338 00000000 |.........u...............u......|
+000020 00519D28 - +00003F 00519D47 SAME AS ABOVE
+000040 00519D48 00000000 00000000 03A41338 00000000 00000000 00572188 8051A800 00000000 |.........u.............h.169y...|
+000060 00519D68 00000000 00000000 03A41338 00000000 00000000 00000000 03A41338 00000000 |.........u...............u......|
+000080 00519D88 - +00011F 00519E27 SAME AS ABOVE

36 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

...
ENCLAVE STORAGE: �13�
Initial (User) Heap
+000000 00578000 C8C1D5C3 00519480 00519480 00000000 00578000 00578258 00008000 00007DA8 |HANC.&.169m..169m...........b.’y|
+000020 00578020 00578000 00000090 00000088 00000000 00000000 00000000 00000000 00000000 |...........h....................|...

LE Anywhere Heap
+000000 00574000 C8C1D5C3 005194B0 005194B0 005194B0 00574000 00575530 00004000 00002AD0 |HANC.&.169m..169m..169m.........|
+000020 00574020 00574000 00000198 00000190 00000000 005741C0 005723F8 00108001 0051A608 |..q...............8....169.|...

LE Below Heap
+000000 00572000 C8C1D5C3 005194E0 005194E0 005194E0 80572000 00572758 00002000 000018A8 |HANC.&169m..169m..169m.........y|
+000020 00572020 00572000 00000040 C8E7E2E3 001FEFF0 001FE2E8 0051E800 00000000 00000000 |....... HXST...0..SY.169Y.......|...

PROCESS CONTROL BLOCKS: �14�

PCB: 00518D40
+000000 00518D40 C3C5C5D7 C3C24040 04030290 00000000 00000000 00000000 00518F38 03A8A6B0 |CEEPCB169...yw.|
+000020 00518D60 03A86838 03A89690 03A891C8 005089C8 00518118 00000000 00000000 00519060 |.y...yo..yjH.iH..a.........169...-|
+000040 00518D80 03A894E8 00000000 00000000 00000000 00000000 00000000 00000000 00000000 |.ymY..............................|

MEML: 00518F38
+000000 00518F38 00000000 00000000 03A41338 00000000 00000000 00000000 03A41338 00000000 |.........u...............u......|
+000020 00518F58 - +00003F 00518F77 SAME AS ABOVE
+000040 00518F78 00000000 00000000 03A41338 00000000 00000000 0051FA70 8051A800 00000000 |.........u...........169...16y..|
+000060 00518F98 00000000 00000000 03A41338 00000000 00000000 00000000 03A41338 00000000 |.........u...............u......|
+000080 00518FB8 - +00011F 00519057 SAME AS ABOVE...

Sections of the LE/VSE Dump
The sections of the dump listed here appear independently of the
LE/VSE-conforming languages used. Each conforming language adds
language-specific storage and file information to the dump.

For a detailed explanation of language-specific dump output:
v For C routines, see “Finding C Information in an LE/VSE Dump” on page 81.
v For COBOL routines, see “Finding COBOL Information in a Dump” on page 105.
v For PL/I routines, see “Finding PL/I Information in a Dump” on page 132.

�1� Page Heading

The page heading section appears on the top of each page of the dump and
contains:
v CEE5DMP identifier
v Title

Note: For dumps generated as a result of an unhandled condition, the title is
CONDITION PROCESSING RESULTED IN THE UNHANDLED CONDITION.

v Product abbreviation of LE/VSE
v Version number
v Release number
v Date
v Time
v Page number

�2� Caller Program Unit and Offset

This information identifies the routine name and offset in the calling routine of the
call to the dump service.

�3� Registers on Entry to CEE5DMP

This section of the dump shows data at the time of the call to the dump service.

Chapter 3. Using LE/VSE Debugging Facilities 37

v Program mask
The program mask contains the bits for the fixed-point overflow mask, decimal
overflow mask, exponent underflow mask, and significance mask.

v General purpose registers (GPRs) 0–15
On entry to CEE5DMP, the GPRs contain:

GPR 0 Working register

GPR 1 Pointer to the argument list

GPR 2–11
Working registers

GPR 12
Address of CAA

GPR 13
Pointer to caller’s stack frame

GPR 14
Address of next instruction to run if ALL31(ON) is specified

GPR 15
Entry point of CEE5DMP

v Floating point registers (FPRs) 0, 2, 4, 6

�4� Enclave Identifier

This statement names the enclave for which information in the dump is provided.
If multiple enclaves exist, the dump service generates data and storage information
for the most current enclave, followed by previous enclaves in a last-in-first-out
(LIFO) order. For more information about dumps for multiple enclaves, see
“Multiple Enclave Dumps” on page 51.

�5� Information for thread

This section shows the system identifier for the thread. (Note that LE/VSE Version
1 Release 4 supports only a single thread in an enclave.)

�6� Traceback

For all active routines, the traceback section shows:
v Stack frame address
v Program unit

The primary entry point of the external procedure. For COBOL routines, this is
the routine unit name. For C and PL/I routines, this is the compile unit name.
For LE/VSE-conforming assemblers, this is the EPNAME = value on the
CEEPPA macro.

v Program unit address
The starting address of the program unit.

v Program unit offset
The offset of the last instruction to run in the routine. If the offset is a negative
number, zero, or a very large positive number, the routine associated with the
offset probably did not allocate a save area. Adding the program unit address to
the offset gives you the location of the current instruction in the routine. This
offset is from the starting address of the routine.

38 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

v Entry
For COBOL and PL/I routines, this is the entry point name. For C routines, this
is the function name.

v Entry point address
v Entry point offset
v Statement number

The statement number of the last statement to run in the routine. The statement
number appears only if your routine was compiled with the options required to
generate statement numbers.

v Status
Routine status can be call, exception, or running.

�7� Condition Information for Active Routines

This section displays the following information for all conditions currently active
on the call chain:
v Statement showing failing routine and stack frame address of routine
v Condition information block (CIB) address
v Current condition, in the form of an LE/VSE message for the condition raised or

an LE/VSE abend code, if the condition was caused by an abend.
v Location. For the failing routine, this is the program unit, entry routine,

statement number, and offset.
v Machine state, which shows:

Instruction length counter
Interruption code
Program status word (PSW)
Contents of GPRs 0–15

Note:

1. These values are the current values at the time the condition was raised.
2. This area of the dump also displays the storage area near to the point where

the condition occurred.

�8� Parameters, Registers, and Variables for Active Routines

For each active routine, this section shows:
v Routine name and stack frame address
v Parameters

For C, parameters are shown here rather than with the local variables. For
COBOL, parameters are shown as part of local variables For PL/I, parameters
are not displayed in the LE/VSE dump.

v Saved registers
This lists the contents of GPRs 0–15 at the time the routine transferred control.

v Local variables
This section displays the local variables and arguments for the routine. This
section also shows the variable type. Variables are displayed only if the symbol
tables are available. To generate a symbol table and display variables, use the
following compile-time options:
– For C, use TEST(ALL,SYM).

Chapter 3. Using LE/VSE Debugging Facilities 39

– For COBOL, use TEST(ALL,SYM).
– For PL/I, arguments and variables are not displayed.

�9� Control Blocks for Active Routines

For each active routine controlled by the STACKFRAME option, this section lists
contents of related control blocks. The LE/VSE-conforming language determines
which language-specific control blocks appear. The possible control blocks are:
v Stack frame
v Condition information block
v Language-specific control blocks

�10� Storage for Active Routines

This displays local storage for each active routine. The storage is dumped in
hexadecimal, with EBCDIC translations on the right side of the page. There can be
other information, depending on the language used. For C routines, this is the
stack frame storage. For COBOL routines, this is language-specific information and
WORKING-STORAGE.

�11� Control Blocks Associated with the Thread

This section lists the contents of the LE/VSE common anchor area (CAA) and
dummy stack frame.

Note: Other language-specific control blocks can appear in this section.

�12� Enclave Control Blocks

This section lists the contents of the LE/VSE enclave data block (EDB), enclave
member list (MEML), and the language control blocks for the enclave level.

Note: Other language-specific control blocks can appear in this section.

�13� Enclave Storage

This section shows the LE/VSE heap storage. For C and PL/I routines, heap
storage is the dynamically allocated storage. For COBOL routines, it is the run unit
storage.

�14� Process Control Blocks

This section lists the contents for the LE/VSE process control block (PCB), process
member list (MEML), and the language control blocks for the process level.

Debugging with Tracebacks, Condition Information, and Data
Values

The CEE5DMP call with dump options TRACEBACK, CONDITION, and
VARIABLES generates run-time output that contains a traceback, information
about any conditions, and a list of arguments, registers, and variables. This output
contains the information needed to debug most basic routine errors.

40 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

The traceback, condition, and variable information provided in the LE/VSE dump
can help you determine the location and context of the error without any
additional information.

The condition information section displays:
v a message describing the condition.
v the address of the condition information block.
v the possible bad branch originator details (if an appropriate interrupt occurs due

to a branch instruction).

If available in the hardware, LE/VSE will use the BEAR (“breaking event address
register”) for bad branch information. If there is no BEAR support available,
LE/VSE will attempt to calculate the bad branch details using the available DSA
information.

The arguments, variables, and registers section shows the values of your arrays,
structures, arguments, and data during the sequence of calls in your application.
Thus, you can check the values passed to each routine. Static data values do not
appear. Single quotes indicate character fields.

These sections of the dump are shown in Figure 5 on page 35.

Debugging with the Stack Frame
You might find it helpful to check the contents of the stack frame. The stack frame
for each active routine is listed in the full dump. Stack frames are also called
dynamic storage areas (DSA).

A stack frame chain is associated with each thread in the run-time environment. A
stack frame is acquired every time a separately compiled procedure or block is
entered. A stack frame is also allocated for each call to an LE/VSE service. All
stack frames are back-chained with a stopping stack frame (also called a dummy
DSA) as the first stack frame on the stack. Register 13 addresses the recently active
stack frame or a standard register save area (RSA). The standard save area back
chain must be initialized, and it holds the address of the previous save area. Not
all LE/VSE-conforming compilers set the forward chain; thus, it cannot be
guaranteed in all instances. Calling routines establish the member-defined fields.

When a routine makes a call, registers 0–15 contain the following values:
v R0 is used by COBOL static call.
v R1 is a pointer to parameter list or 0 if no parameter list passed.
v R2–R11 is unreferenced by LE/VSE. Caller’s values are passed transparently.
v R12 is the pointer to the CAA if entry to an external routine.
v R13 is the pointer to caller’s stack frame.
v R14 is the return address.
v R15 is the address of the called entry point.

With an optimization level other than 0, C routines save only the registers used
during the running of the current routine. Non-LE/VSE RSAs can be in the save
area chain. The length of the save area and the saved register contents do not
always conform to LE/VSE conventions. For a detailed description of LE/VSE
storage management, see LE/VSE Programming Guide, SC33-6684. Figure 6 on page
42 shows the format of the stack frame.

Chapter 3. Using LE/VSE Debugging Facilities 41

Debugging with the Common Anchor Area
Each thread is represented by a common anchor area (CAA), which is the central
communication area for LE/VSE. All thread- and enclave-related resources are
anchored, provided for, or can be obtained through the CAA. The CAA is
generated during thread initialization and deleted during thread termination.
When calling LE/VSE-conforming routines, register 12 points to the address of the
CAA.

Use CAA fields as described. Do not modify fields and do not use routine
addresses as entry points, except as specified. Fields marked ‘Reserved’ exist for
migration of specific languages, or internal use by LE/VSE. LE/VSE defines their
location in the CAA, but not their use. Do not use or reference them except as
specified by the language that defines them.

Figure 7 on page 43 and Figure 8 on page 44 show the format of the LE/VSE CAA.

Figure 6. Stack Frame

42 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Figure 7. Common Anchor Area (Part 1)

Chapter 3. Using LE/VSE Debugging Facilities 43

Table 23 lists the fields of the CAA and explanations.

Table 23. Fields of CAA

CAA Field Explanation

CEECAAFLAG0 CAA flag bits. The bits are defined as follows:

Bit Description

0 - 5 Reserved.

6 CEECAAXHDL. A flag used by the condition
handler. If the flag is set to 1, the application
requires immediate return/percolation to the
system on any interrupt or condition handler event.

7 Reserved.

CEECAALANGP PL/I language compatibility flags external to LE/VSE. The
bits are defined as follows:

Bit Description

0 - 3 Reserved.

4 CEECAATHFN. A flag set by PL/I to indicate a
PL/I FINISH ON-unit is active. If the flag is set to
1, no PL/I FINISH ON-unit is active. If the flag is
set to 0, a PL/I FINISH ON-unit could be active.

5 - 7 Reserved.

CEECAABOS Start of the current storage segment.

This field is initially set during thread initialization. It
indicates the start of the current stack storage segment. It is
altered when the current stack storage segment is changed.

CEECAAEOS End of the current storage segment. This field is initially set
during thread initialization. It indicates the end of the
current stack storage segment. It is altered when the current
stack storage segment is changed.

CEECAAATTN Reserved.

Figure 8. Common Anchor Area (Part 2)

44 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Table 23. Fields of CAA (continued)

CAA Field Explanation

CEECAAHOOKS Hook area. This is the start of 18 fullword execute hooks.
LE/VSE initializes each fullword to X'07000000'. The hooks
can be altered to support various debugging hook
mechanisms.

CEECAASYSTM The value indicates the operating system supporting the
active environment.

Value Operating System

0 Undefined. This value should not appear after
LE/VSE is initialized.

1 Unsupported.

2 Unsupported.

3 Unsupported.

4 Unsupported

5 VSE

CEECAAHRDWR This value indicates the type of hardware on which the
routine is running.

Value Hardware

0 Undefined. This value should not appear after
LE/VSE is initialized.

1 Unsupported.

2 System/370, non-XA.

3 System/370, XA.

4 System/370, ESA.

CEECAASBSYS This value indicates the subsystem (if any) on which the
routine is running.

Value Subsystem

0 Undefined. This value should not occur after
LE/VSE is initialized.

1 Unsupported.

2 The routine is not running under an
LE/VSE-recognized subsystem.

3 Unsupported.

4 Unsupported.

5 CICS.

CEECAAFLAG2
Bit Description

0 Bimodal addressing is available.

CEECAALEVEL LE/VSE level identifier. This contains a unique value that
identifies each release of LE/VSE. This number is
incremented for each new release of LE/VSE. Its value is 2
for LE/VSE Version 1 Release 4.

CEECAAGETLS Address of stack overflow for library routines.

Chapter 3. Using LE/VSE Debugging Facilities 45

Table 23. Fields of CAA (continued)

CAA Field Explanation

CEECAACELV Address of the LE/VSE library vector. This field is used to
locate dynamically loaded LE/VSE routines.

CEECAAGETS Address of the LE/VSE prolog stack overflow routine. The
address of the LE/VSE get stack storage routine is included
in prolog code for fast reference.

CEECAALBOS Start of the library stack storage segment. This field is
initially set during thread initialization. It indicates the start
of the library stack storage segment. It is altered when the
library stack storage segment is changed.

CEECAALEOS End of the library stack storage segment. This field is
initially set during thread initialization. It indicates the end
of the library stack storage segment. It is altered when the
library stack storage segment is changed.

CEECAALNAB Next available library stack storage byte. This contains the
address of the next available byte of storage on the library
stack. It is modified when library stack storage is obtained
or released.

CEECAADMC LE/VSE shunt routine address. Its value is initially set to 0
during thread initialization. If it is nonzero, this is the
address of a routine used in specialized exception
processing.

CEECAAABCODE Reserved

CEECAARSNCODE Reserved

CEECAAERR Address of the current condition information block. After
completion of initialization, this always points to a condition
information block. During exception processing, the current
condition information block contains information about the
current exception being processed. Otherwise, it indicates no
exception being processed.

CEECAAGETSX Address of the user stack extender routine. This routine is
called to extend the current stack frame in the user stack. Its
address is in the CEECAA for performance reasons.

CEECAADDSA Address of the LE/VSE dummy DSA. This address
determines whether a stack frame is the dummy DSA, also
known as the zeroth DSA.

CEECAASECTSIZ Reserved.

CEECAAPARTSUM Reserved.

CEECAASSEXPNT Reserved.

CEECAAEDB Address of the LE/VSE EDB. This field points to the
encompassing EDB.

CEECAAPCB Address of the LE/VSE PCB. This field points to the
encompassing PCB.

CEECAAEYEPTR Address of the CAA eye catcher. The CAA eye catcher is
CEECAA. This field can be used for validation of the CAA.

CEECAAPTR Address of the CAA. This field points to the CAA itself and
can be used in validation of the CAA.

46 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Table 23. Fields of CAA (continued)

CAA Field Explanation

CEECAAGETS1 Non-DSA stack overflow. This field is the address of a stack
overflow routine, which cannot guarantee that the current
register 13 is pointing at a stack frame. Register 13 must
point, at a minimum, to a save area.

CEECAASHAB LE/VSE abend shunt routine address. Its value is initially
set to 0 during thread initialization. If it is nonzero, this is
the address of a routine used in specialized abend
processing.

CEECAAPRGCK Routine interrupt code for CEECAADMC. If CEECAADMC
is nonzero, and a routine interrupt occurs, this field is set to
the routine interrupt code and control is passed to the
address in CEECAADMC.

CEECAAFLAG1 CAA flag bits. The bits are defined as follows:

Bit Description

0 CEECAASORT. A call to the sort program is active.

1 - 7 Reserved.

CEECAAURC Thread level return code. This is the common place for
members to set the return codes for subroutine-to-subroutine
return code processing.

CEECAARSRV1 Reserved.

CEECAAPICICB Reserved.

CEECAARSRV2 Reserved.

CEECAAGOSMR Reserved.

Debugging with the Condition Information Block
The LE/VSE condition manager creates a condition information block (CIB) for each
condition encountered in the LE/VSE environment. The CIB holds data required
by the condition handling facilities and pointers to locations of other data. The
address of the current CIB is located in the CAA.

LE/VSE provides members that map the CIB to language-specific structures:
v _ceecib structure in leawi.h (for C)
v CEEIGZCI.C (for COBOL)
v CEEIBMCI.P (for PL/I)
v CEECIB.A (for Assembler)

If LE/VSE has been installed in the default sublibrary, you can find these members
in the PRD2.SCEEBASE sublibrary.

Figure 9 on page 48 and Figure 10 on page 49 show the condition information
block.

Chapter 3. Using LE/VSE Debugging Facilities 47

Note: For an explanation of Status Flag 5, see Table 25 on page 49. For an
explanation of Status Flag 6, see Table 26 on page 50. For an explanation of Status
Flag 7, see Table 27 on page 50.

Figure 9. Condition Information Block (Part 1 of 2)

48 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Note: For an explanation of Member Function Code, see Table 28 on page 50.

Table 24 shows the flags for Condition Flag 4.

Table 24. Condition Flag 4

Value Description

2 The resume cursor has been moved.

4 Message service has processed the condition.

8 The resume cursor has been moved explicitly.

Table 25 shows the flags for Status Flag 5, LE/VSE events.

Table 25. Status Flag 5, LE/VSE Events

Value Description

2 Caused by a signaled condition

4 Caused by a promoted condition

8 Caused by a condition management raised TIU

64 Caused by a program check

128 Caused by an abend

Table 26 on page 50 shows the flags for Status Flag 6, LE/VSE actions.

Figure 10. Condition Information Block (Part 2 of 2)

Chapter 3. Using LE/VSE Debugging Facilities 49

Table 26. Status Flag 6, LE/VSE Actions

Value Description

2 Doing stack frame zero scan

4 H-cursor pointing to owning SF

8 Enable only pass (no condition pass)

16 MRC type 1

32 Resume allowed

64 Math service condition

128 Abend reason code valid

Table 27 shows the flags for Status Flag 7, LE/VSE named cond itions

Table 27. Status Flag 7, LE/VSE Named Conditions

Value Description

64 STXIT save area associated with condition

128 Storage condition

Table 28 shows the language-specific function codes for the CIB.

Table 28. Language-Specific Function Codes

Value Description

X'1' For condition procedure

X'2' For enablement

X'3' For stack frame zero conditions

Using the Machine State Information Block
The LE/VSE machine state information block contains condition informat ion
pertaining to the hardware state at the time of the error. The address of the
machine state information block is in the CIB at offset 36 (X'00000024'). Figure 11
shows the machine state information block.

Figure 11. Machine State Information Block

50 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Using the STXIT Save Area
If Status Flag 7 indicates a STXIT save area is associated with the condition, offset
252 (X'000000FC') in the CIB contains the address of an extended-format STXIT
save area. For a description of the save area, see z/VSE System Macros Reference,
SC34-2638.

Multiple Enclave Dumps
If multiple enclaves are used, the dump service generates data and storage
information from the most current enclave and moves up the chain of enclaves to
the starting enclave. For example, if two enclaves are used, the dump service first
generates output for the most current enclave. Then the service creates output for
the previous enclave.

Figure 12 on page 52 illustrates the information available in the LE/VSE dump and
the order of information for multiple enclaves.

Chapter 3. Using LE/VSE Debugging Facilities 51

Enclave 2

Process

Information for Enclave 1

Traceback:
Call chain of routines

Condition Information for Active Routine:
Failing routine information

Arguments, Registers, and Variables for Active
Routines:

Symbolic dump for routines

Control Blocks for Active Routines:
DSAs for routines
CIBs for routines
Language-specific control blocks

Storage for Active Routines:
Language-specific information
Variables for routines

Control Blocks Associated with the Thread:
Common anchor area (CAA)
Dummy DSA

Enclave Control Blocks:
Enclave data block (EDB)
Enclave-level member list (MEML)

Enclave Storage:
Heap storage for routines

Process Control Blocks:
Process control block (PCB)
Process-level member list (MEML)
Language-specific control blocks

Language Environment Language Environment

Thread 2
Main 2
subroutine
subroutine
subroutine

.

.

.

Enclave 1

Thread 1
Main 1
subroutine
subroutine
subroutine

.

.

.

Entry Information
(CEE5DMP calls only)

Information for Enclave 2

Traceback:
Call chain of routines

Condition Information for Active Routine:
Failing routine information

Arguments, Registers, and Variables for Active
Routines:
Symbolic dump for routines

Control Blocks for Active Routines:
DSAs for routines
CIBs for routines
Language-specific control blocks

Storage for Active Routines:
Language-specific information
Storage for routines
Variables for routines

Control Blocks Associated with the Thread:
Common anchor area (CAA)
Dummy DSA

Enclave Control Blocks:
Enclave data block (EDB)
Enclave-level member list (MEML)
Language-specific control blocks

Enclave Storage:
Heap storage for routines

Process Control Blocks:
Process control block (PCB)
Process-level member list (MEML)
Language-specific control blocks

Figure 12. LE/VSE Dump of Multiple Enclaves

52 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Generating a System Dump
A system dump contains storage information for the current system task or job
step and serves as a map to the active routines. Refer to system or subsystem
documentation for detailed system dump information.

When a program abends, a system dump is written (either to the dump sublibrary
or SYSLST, depending on whether the VSE SYSDUMP or NOSYSDUMP option is
specified) if the VSE DUMP or PARTDUMP option is specified, and if one of the
following is true:
v One of the following LE/VSE options is used:

TRAP(OFF)
If you set the run-time option TRAP to OFF, LE/VSE does not handle
program exceptions and abends. Instead, the operating system usually
handles exceptions or abends and generates a system dump.

If you rerun your application with TRAP set to OFF and a new
condition appears, the new condition might be one that LE/VSE
condition handling normally corrects when TRAP is set to ON.

The recommended methods of generating a system dump are:
1. TRAP(ON,MAX),TERMTHDACT(UADUMP). This will generate a

CEE5DMP formatted dump as well as a system dump.
2. TRAP(ON,MIN). Will only generate a system dump. Conditions that

are to be handled normally will not terminate the environment or
produce a system dump.

ABPERC(abcode)
The ABPERC run-time option enables you to specify one VSE cancel
code, program-interruption code, or user abend code to be exempted
from LE/VSE condition handling. When a program abends with the
specified VSE cancel code, program-interruption code, or user abend
code, LE/VSE uses operating system services to produce a system dump
before terminating.

ABPERC is ignored under CICS.
v The assembler user exit has set the CEEAUE_ABND and CEEAUE_DUMP flags

to ON. See LE/VSE Programming Guide, SC33-6684 for more information about
assembler user exits.

v The abend is an LE/VSE-generated abend. When LE/VSE generates an abend, a
system dump is produced regardless of the TRAP option that is specified.

v The VSE cancel code, program-interruption code, or user abend code is specified
in the assembler user exit. When a program abends with a VSE cancel code,
program-interruption code, or user abend code listed in the initialization
assembler user exit (CEEBXITA), the LE/VSE condition handler uses operating
system services to produce a system dump before terminating.

v The CEE5ABD callable service is used to cause an abend to be handled by the
operating system.

v An unhandled condition of severity 2 or greater occurs, causing LE/VSE to
invoke a batch abnormal termination exit that generates a system dump.

Note: The default batch abnormal termination exit, CEEBDATX, does not
generate a system dump; it is a null module that immediately returns to the
caller when invoked. For information on customizing the batch abnormal exit to
generate a system dump, see LE/VSE Customization Guide, SC33-6682.

Chapter 3. Using LE/VSE Debugging Facilities 53

Requesting an LE/VSE Trace for Debugging
LE/VSE provides an in-storage, wrapping trace facility that can reconstruct the
events leading to the point where a dump is taken. The events recorded by the
trace facility are entry and exit library calls. LE/VSE produces a trace table in its
dump report under any of the following conditions:
v The CEE5DMP callable service parameter BLOCKS is specified.
v The TRACE run-time option is set to NODUMP and the TERMTHDACT

run-time option is set to DUMP.
v The TRACE run-time option is set to DUMP (the default).

For more information about the CEE5DMP callable service, the TERMTHDACT
run-time option, or the TRACE run-time option, see LE/VSE Programming Reference,
SC33-6685.

The TRACE run-time option activates LE/VSE run-time library tracing and
controls the size of the trace buffer, the type of trace events to record, and it
determines whether a dump containing only the trace table should be
unconditionally taken when the application (enclave) terminates.

The contents of the dump depend on the values set in the TERMTHDACT
run-time option. Under abnormal termination, the following dump contents are
generated:
v TERMTHDACT(QUIET)—generates a dump containing the trace table only
v TERMTHDACT(MSG)—generates a dump containing the trace table only
v TERMTHDACT(TRACE)—generates a dump containing the trace table and the

traceback
v TERMTHDACT(DUMP)—generates a dump containing thread/enclave/process

storage and control blocks (the trace table is included as an enclave control
block)

v TERMTHDACT(UADUMP)—generates a CEE5DMP, which is the same as
TERMTHDACT(DUMP), as well as producing a complete VSE system dump.

Under normal termination, independent of the TERMTHDACT setting, LE/VSE
generates a dump containing the trace table only.

Locating the Trace Dump
If your application calls CEE5DMP, the LE/VSE dump is written to the file
specified in the FNAME parameter of CEE5DMP (the default is CEEDUMP).

Understanding the Trace Table Entry (TTE)
The LE/VSE trace table is established unconditionally at enclave initialization time
if the TRACE sub-option LE= is set to 0.

Each trace table entry is a fixed-length record consisting of a fixed-format portion
(containing such items as the timestamp, thread ID, and member ID) and a
member-specific portion. The member-specific portion has a fixed length, of which
some (or all) can be unused. For information about how participating products use
the trace table entry, refer to the product-specific documentation. Figure 13 on page
55 shows the trace table entry format.

54 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Each field is defined below:

Time The 64-bit value obtained from a store clock instruction (STCK).

Thread ID
The 8-byte thread ID of the thread that is adding the trace table entry.

Member ID and Flags
Contains 2 fields:

Field Meaning

Member ID
The 1-byte member ID of the member making the trace table entry.

Flags 24 flags reserved for internal use.

Member Entry Type
A number that indicates the type of the member-specific trace information
that follows the field.

Note: To uniquely identify the information contained in a specific TTE,
you must consider Member ID as well as Member Entry Type.

Member Specific Information
Based on the member ID and the member entry type, this field contains
the specific information for the entry, up to 104 bytes.

Sample Dump for the Trace Table Entry
The following is an example of a dump of the trace table when you specify the
LE=1 suboption (the library call/return trace):

...
LANGUAGE ENVIRONMENT TRACE TABLE:

MOST RECENT TRACE ENTRY IS AT DISPLACEMENT: 000480

DISPLACEMENT TRACE ENTRY IN HEXADECIMAL TRACE ENTRY IN EBCDIC
------------ -- --------------------------------
+000000 TIME...... ACAAC0AB0FC0C801 THREAD ID......... 8000000000000000
+000010 MEMBER ID.... 03 FLAGS..... 000000 ENTRY TYPE..... 00000001
+000018 F001183F 58F0C31C 184E05EF 00000000 47F0303A 90E7D00C 58E0D04C 4100E098 |0....0C..+.......0...X.....<...q|
+000038 60606E4D F0F7F95D 40869697 85954D5D 40404040 40404040 40404040 40404040 |-->(079) fopen() |
+000058 40404040 40404040 40404040 40404040 40404040 40404040 40000000 00000000 ||
+000078 00000000 00000000 |........ |

+000080 TIME...... ACAAC0AB0FDD5601 THREAD ID......... 8000000000000000
+000090 MEMBER ID.... 03 FLAGS..... 000000 ENTRY TYPE..... 00000002
+000098 4C60604D F0F7F95D 40D9F1F5 7EF0F1C3 C2F7F6F6 C340C5D9 D9D5D67E F0F0F0F0 |<--(079) R15=01CB766C ERRNO=0000|
+0000B8 F0F0F0F0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 |0000............................|
+0000D8 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 |................................|
+0000F8 00000000 00000000 |........ |

+000100 TIME...... ACAAC0AB0FDE4301 THREAD ID......... 8000000000000000
+000110 MEMBER ID.... 03 FLAGS..... 000000 ENTRY TYPE..... 00000001
+000118 F001183F 58F0C31C 184E05EF 00000000 47F0303A 90E7D00C 58E0D04C 4100E098 |0....0C..+.......0...X.....<...q|

Figure 13. Trace Table Entry Format

Figure 14. Trace Table in Dump Output

Chapter 3. Using LE/VSE Debugging Facilities 55

+000138 60606E4D F0F7F95D 40869697 85954D5D 40404040 40404040 40404040 40404040 |-->(079) fopen() |
+000158 40404040 40404040 40404040 40404040 40404040 40404040 40000000 00000000 ||
+000178 00000000 00000000 |........ |

+000180 TIME...... ACAAC0AB0FF1EF01 THREAD ID......... 8000000000000000
+000190 MEMBER ID.... 03 FLAGS..... 000000 ENTRY TYPE..... 00000002
+000198 4C60604D F0F7F95D 40D9F1F5 7EF0F1C3 C2F7F9C2 C340C5D9 D9D5D67E F0F0F0F0 |<--(079) R15=01CB79BC ERRNO=0000|
+0001B8 F0F0F0F0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 |0000............................|
+0001D8 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 |................................|
+0001F8 00000000 00000000 |........ |

+000200 TIME...... ACAAC0AB0FF28A01 THREAD ID......... 8000000000000000
+000210 MEMBER ID.... 03 FLAGS..... 000000 ENTRY TYPE..... 00000001
+000218 F001183F 58F0C31C 184E05EF 00000000 47F0303A 90E7D00C 58E0D04C 4100E098 |0....0C..+.......0...X.....<...q|
+000238 60606E4D F0F8F35D 40869799 8995A386 4D5D4040 40404040 40404040 40404040 |-->(083) fprintf() |
+000258 40404040 40404040 40404040 40404040 40404040 40404040 40000000 00000000 ||
+000278 00000000 00000000 |........ |

+000280 TIME...... ACAAC0AB0FFF0001 THREAD ID......... 8000000000000000
+000290 MEMBER ID.... 03 FLAGS..... 000000 ENTRY TYPE..... 00000002
+000298 4C60604D F0F8F35D 40D9F1F5 7EF0F0F0 F0F0F0F2 F540C5D9 D9D5D67E F0F0F0F0 |<--(083) R15=00000025 ERRNO=0000|
+0002B8 F0F0F0F0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 |0000............................|
+0002D8 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 |................................|
+0002F8 00000000 00000000 |........ |
+000300 TIME...... ACAAC0AB0FFF9101 THREAD ID......... 8000000000000000
+000310 MEMBER ID.... 03 FLAGS..... 000000 ENTRY TYPE..... 00000001
+000318 F001183F 58F0C31C 184E05EF 00000000 47F0303A 90E7D00C 58E0D04C 4100E098 |0....0C..+.......0...X.....<...q|
+000338 60606E4D F0F8F35D 40869799 8995A386 4D5D4040 40404040 40404040 40404040 |-->(083) fprintf() |
+000358 40404040 40404040 40404040 40404040 40404040 40404040 40000000 00000000 ||
+000378 00000000 00000000 |........ |

+000380 TIME...... ACAAC0AB10027701 THREAD ID......... 8000000000000000
+000390 MEMBER ID.... 03 FLAGS..... 000000 ENTRY TYPE..... 00000002
+000398 4C60604D F0F8F35D 40D9F1F5 7EF0F0F0 F0F0F0F2 F640C5D9 D9D5D67E F0F0F0F0 |<--(083) R15=00000026 ERRNO=0000|
+0003B8 F0F0F0F0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 |0000............................|
+0003D8 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 |................................|
+0003F8 00000000 00000000 |........ |

+000400 TIME...... ACAAC0AB10030101 THREAD ID......... 8000000000000000
+000410 MEMBER ID.... 03 FLAGS..... 000000 ENTRY TYPE..... 00000001
+000418 F001183F 58F0C31C 184E05EF 00000000 47F0303A 90E7D00C 58E0D04C 4100E098 |0....0C..+.......0...X.....<...q|
+000438 60606E4D F0F7F75D 40868393 96A2854D 5D404040 40404040 40404040 40404040 |-->(077) fclose() |
+000458 40404040 40404040 40404040 40404040 40404040 40404040 40000000 00000000 ||
+000478 00000000 00000000 |........ |
+000480 TIME...... ACAAC0AB10067801 THREAD ID......... 8000000000000000
+000490 MEMBER ID.... 03 FLAGS..... 000000 ENTRY TYPE..... 00000002
+000498 4C60604D F0F7F75D 40D9F1F5 7EF0F0F0 F0F0F0F0 F040C5D9 D9D5D67E F0F0F0F0 |<--(077) R15=00000000 ERRNO=0000|
+0004B8 F0F0F0F0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 |0000............................|
+0004D8 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 |................................|
+0004F8 00000000 00000000 |........ |...

Diagnosing Storage Leak Problems
A storage leak occurs when a program does not return storage back to the heap,
after it has finished using it. To determine if a storage leak exists, you should set
the HEAPCHK run-time option to HEAPCHK(ON,n,n). A report will then be
produced in the CEEDUMP output.

HEAPCHK identifies storage that is still allocated (that is, storage not freed) and
lists such storage, together with a corresponding traceback, in the CEEDUMP
output. For more information about setting the HEAPCHK run-time option, refer
to the LE/VSE Customization Guide, SC33-6682.

Figure 15 on page 57 provides an example of the CEEDUMP output that includes
storage not freed, as well as the calls involved in allocating this storage.

56 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

The numbers in Figure 15 refer to these parts of the CEEDUMP output:

�1� Heap storage diagnostics report heading.

�2� The name of the user application which has been executed. This is
identifiable by the load module name (CVSEPRG3) and function name
(main). This traceback shows that function main at offset +X’DE’ caused
X’28’ bytes of storage to be acquired which was not released at program
termination time. If the application terminated abnormally, this may be
acceptable. However, if the application did not terminate abnormally, then
this X’28’ bytes of storage was never “freed”.

Note: @@MNINV is the LE/VSE C run-time function used to invoke the
C/VSE user application, and so will always appear first in the traceback
report.

�3� This line of the traceback report shows the start address (STG ADDR) and
length of the storage acquired.

Note: Some traceback reports may show the LE run-time with storage remaining.
This is because the run-time requires more permanent storage areas that must be
available for the entire duration of the application. In most cases these permanent
areas will be freed, but only after the diagnostics report has been produced.

�1� HEAP STORAGE DIAGNOSTICS
STG ADDR ID LENGTH ENTRY E ADDR E OFFSET LOAD MOD
007EF820 007EB094 00000048 CEEV#GTS 005855A8 +00000000 CEEPLPKA

CEEVGTST 0052D7E8 +00000072 CEEBINIT
identify_cu 006029B8 +00602BD4 CEEEV003
SetDumpVars 0060DC88 +0060DEB2 CEEEV003
__zdmpd 006402B8 +00640552 CEEEV003
@@ZDMPS 00644948 +000000EA CEEEV003
CEEKDUMP 007C7378 +00002472 CEEKDS
CEEHDSP 00562898 +000029FA CEEEV003
main 005200F8 +000000DE CVSEPRG3
@@MNINV 00649D3E +000000B4 CEEEV003

�3� 007EF868 007EB094 00000028 CEEV#GTS 005855A8 +00000000 CEEPLPKA
CEEVGTST 0052D7E8 +00000072 CEEBINIT
identify_cu 006029B8 +00602D34 CEEEV003
SetDumpVars 0060DC88 +0060DEB2 CEEEV003
__zdmpd 006402B8 +00640552 CEEEV003
@@ZDMPS 00644948 +000000EA CEEEV003
CEEKDUMP 007C7378 +00002472 CEEKDS
CEEHDSP 00562898 +000029FA CEEEV003

�2� main 005200F8 +000000DE CVSEPRG3
@@MNINV 00649D3E +000000B4 CEEEV003

Figure 15. Sections of the HEAPCHK Diagnostics Report Showing a Leak Problem

Chapter 3. Using LE/VSE Debugging Facilities 57

58 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Part 2. Debugging Language-Specific Routines

Chapter 4. Debugging C Routines 61
Debugging C Input/Output Programs 61

Using the __amrc and __amrc2 Structures . . . 61
__last_op Values 63
Displaying an Error Message with the perror()
Function 65

Using C Compiler Listings 66
Generating C Listings and Maps 66
Finding Variables 67

Generating an LE/VSE Dump of a C Routine . . . 75
cdump() 75
ctrace() 75
csnap() 76
Sample C Routine that Calls cdump(). 76
Sample LE/VSE Dump with C-Specific
Information 77

Finding C Information in an LE/VSE Dump . . . 81
Storage for Active Routines 81
Control Blocks Associated with the Active Thread 82
atexit() Information 83
fetch Information 84
File Control Block Information 84
Memory File Control Block 86
Information for __amrc 86

C Contents of the LE/VSE Trace Table 87
Debugging Example of C Routines 87

Divide-by-Zero Error 87
Calling a Nonexistent Function 91
Debugging With Bad Branch Information . . . 95

Chapter 5. Debugging COBOL Routines 97
Determining the Source of Error 97

Tracing Routine Logic 97
Finding Input/Output Errors 98
Handling Input/Output Errors 98
Validating Data (Class Test) 98
Assessing Switch Problems 98
Generating Information about Procedures . . . 99

Using COBOL Listings 101
Generating an LE/VSE Dump of a COBOL Routine 101

Finding COBOL Information in a Dump . . . 105
Debugging Example COBOL Routines 108

Subscript Range Error 108
Calling a Nonexistent Subroutine 110
Divide-by-Zero Error 113

Chapter 6. Debugging PL/I Routines 121
Determining Errors in PL/I Routines 121

Errors in Logic in the Source Routine 121
Invalid Use of PL/I 121
Unforeseen Errors 122
Invalid Input Data. 122
Compiler or Run-Time Routine Malfunction . . 122
System Malfunction 122
Unidentified Routine Malfunction 122
Storage Overlay Problems 123

Using PL/I Compiler Listings 124
Generating PL/I Listings 124
Finding Information in PL/I Listings 125

Generating an LE/VSE Dump of a PL/I Routine 130
PLIDUMP Syntax and Options 130
PLIDUMP Usage Notes 131

Finding PL/I Information in a Dump 132
Traceback. 132
Control Blocks for Active Routines 133
Control Blocks Associated with the Thread . . 135

Debugging Example PL/I Routines 136
Subscript Range Error 136
Calling a Nonexistent Subroutine. 139
Divide-by-Zero Error 141

Chapter 7. Debugging under CICS 145
Accessing Debugging Information 145

Locating LE/VSE Run-Time Messages 146
Locating the LE/VSE Traceback 146
Locating the LE/VSE Dump 146
Using CICS Transaction Dump 147
Using CICS Register and Program Status Word
Contents 147
Using LE/VSE Abend and Reason Codes . . . 147
Using LE/VSE Return Codes to CICS 148
CICS Run-Unit Work-Area Storage Tracing . . 148

Ensuring Transaction Rollback. 150
Finding Data When LE/VSE Returns a Nonzero
Reason Code 150
Finding Data When LE/VSE Abends Internally . . 150
Finding Data When LE/VSE Abends from an
EXEC CICS Command 151

This part of the publication provides specific information for debugging
applications written in C, COBOL, and PL/I. It also discusses techniques for
debugging under CICS.

© Copyright IBM Corp. 1991, 2014 59

60 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Chapter 4. Debugging C Routines

This chapter provides specific information to help you debug applications that
contain one or more C routines. It includes the following topics:
v Debugging C I/O routines
v Using C compiler listings
v Generating an LE/VSE dump of a C routine
v Finding C information in an LE/VSE dump
v Debugging example of C routines

There are several debugging features that are unique to C routines. Before
examining the C techniques to find errors, you might want to consider the
following areas of potential problems:
v If you suspect that you are using uninitialized storage, you may want to use the

STORAGE run-time option.
v If you are using the fetch() function, see LE/VSE C Run-Time Programming

Guide, SC33-6688 to ensure that you are creating the fetchable phase correctly.
v Ensure that the entry point of the phase is CEESTART.
v You should avoid:

– Incorrect casting
– Referencing an array element with a subscript outside the declared bounds
– Copying a string to a target with a shorter length than the source string
– Declaring but not initializing a pointer variable, or using a pointer to

allocated storage that has already been freed
If a routine exception is the problem and you need more information than the
condition handler provided, run your routine with the TRAP(OFF) run-time
option. Note, however, that using TRAP(OFF) can cause unpredictable results
and should be used only in special debugging circumstances. For more
information about the effects of running with TRAP(OFF), see LE/VSE
Programming Reference, SC33-6685.

Debugging C Input/Output Programs
You can use C conventions such as __amrc and perror() when you debug I/O
operations.

Using the __amrc and __amrc2 Structures
__amrc, a structure defined in stdio.h, can help you determine the cause of errors
resulting from an I/O operation, because it contains diagnostic information (for
example, the return code from a failed VSAM operation).

There are two structures: __amrc and __amrc2, which are defined by types
__amrc_type and __amrc2_type, respectively. The __amrc2_type structure contains
secondary information that C can provide.

Because any I/O function calls, such as printf(), can change the value of __amrc
or __amrc2, make sure you save the contents into temporary structures of
__amrc_type and __amrc2_type respectively, before dumping them.

© Copyright IBM Corp. 1991, 2014 61

Figure 16 shows the __amrc structure as it appears in stdio.h. Figure 17 shows the
__amrc2 structure as it appears in stdio.h. A description of information contained
in both structures follows.

�1� __code
The error or warning value from an I/O operation is in either __error,
__abend, __feedback, or __alloc. You must look at __last_op to determine
how to interpret the __code union.

�2� __error
__error contains the return code from the system macro or utility. Refer to
Table 29 on page 63 for further information.

�3� __abend
This structure contains the abend code when errno is set to indicate a

typedef struct __amrctype {

union { �1�
long int __error; �2�

struct {
unsigned short __syscode,

__rc;
} __abend; �3�
struct {

unsigned char __fdbk_fill,
__rc,
__ftncd,
__fdbk;

} __feedback; �4�
struct {

unsigned short __svc99_info,
__svc99_error;

} __alloc; �5�
} __code;
unsigned long __RBA; �6�

unsigned int __last_op; �7�
struct {
unsigned long __len_fill;
unsigned long __len;
char __str[120];
unsigned long __parmr0;
unsigned long __parmr1;
unsigned long __fill2[2];
char __str2[64];
} __msg; �8�

} __amrc_type;

Figure 16. __amrc Structure

struct {
long int __error2; �9� */
FILE *__fileptr; �10� */
long int __reserved[6];

}

Figure 17. __amrc2 Structure

62 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

recoverable I/O abend. __syscode is the system cancel code and __rc is set
to zero. The macros __abendcode() and __rsncode() may be set to the
abend code and reason code of a command when invoked with system().

�4� __feedback
This structure is used for VSAM only. The __rc field stores the VSAM
register 15 and the __fdbk field stores the VSAM error code or reason code.
See also the __RBA field, below.

�5� __alloc
This structure contains no valid information under VSE.

�6� __RBA
This is the relative byte address (RBA) value returned by VSAM after an
ESDS or KSDS record is written out. For a RRDS, it is the calculated value
from the record number. It may be used in subsequent calls to flocate().

�7� __last_op
This field contains a value that indicates the last I/O operation being
performed by C at the time the error occurred. These values are shown in
Table 29.

�8� __msg
This structure may contain an error message from read or write operations,
but is not always filled.

This structure is used by the SIGIOERR handler.

�9� __error2
This field is not used under VSE.

�10� __fileptr
This field is used by the signal SIGIOERR to pass back a FILE pointer that
can then be passed to fldata() to get the name of the file causing the
error.

__last_op Values
The __last_op field is the most important of the __amrc fields. It defines the last
I/O operation C was performing at the time of the I/O error. You should note that
the structure is neither cleared nor set by non-I/O operations, so querying this
field outside of a SIGIOERR handler should only be done immediately after I/O
operations. Table 29 lists __last_op values you may receive and where to look for
further information.

Table 29. __last_op Codes and Diagnosis Information

Code Further Information

__IO_INIT Will never be seen by SIGIOERR exit value given at
initialization.

__BSAM_OPEN Sets __error with return code from VSE OPEN macro.

__BSAM_CLOSE Sets __error with return code from VSE CLOSE macro.

__BSAM_READ No return code (either __abend (errno == 92) or __msg
(errno == 66) filled in).

__BSAM_NOTE NOTE returned 0 unexpectedly, no return code.

__BSAM_POINT This will not appear as an error lastop.

__BSAM_WRITE No return code (either __abend (errno == 92) or __msg
(errno == 65) filled in).

__BSAM_CLOSE_T Not supported under VSE, but retained for compatibility.

Chapter 4. Debugging C Routines 63

Table 29. __last_op Codes and Diagnosis Information (continued)

Code Further Information

__BSAM_BLDL Not supported under VSE, but retained for compatibility.

__BSAM_STOW Not supported under VSE, but retained for compatibility.

__TGET_READ Not supported under VSE, but retained for compatibility.

__TPUT_WRITE Not supported under VSE, but retained for compatibility.

__IO_DEVTYPE Sets __error with return code from VSE EXTRACT macro.

__IO_TRKCALC Sets __error with return code from VSE GETVCE macro.

__IO_OBTAIN Not supported under VSE, but retained for compatibility.

__IO_LOCATE Not supported under VSE, but retained for compatibility.

__IO_CATALOG Not supported under VSE, but retained for compatibility.

__IO_UNCATALOG Not supported under VSE, but retained for compatibility.

__IO_RENAME Not supported under VSE, but retained for compatibility.

__C_TRUNCATE Set when C truncates output data. Usually this is data
written to a text file with no newline such that the record
fills up to capacity and subsequent characters cannot be
written. For a record I/O file this refers to an fwrite writing
more data than the record can hold. Truncation is always
rightmost data. There is no return code.

__C_FCBCHECK Set when C FCB is corrupted. This is due to a pointer
corruption somewhere. File cannot be used after this.

__C_DBCS_TRUNCATE This occurs when writing DBCS data to a text file and there
is no room left in a physical record for anymore double byte
characters. A new-line is not acceptable at this point.
Truncation will continue to occur until an SI is written or
the file position is moved. Cannot happen if MB_CUR_MAX
is 1.

__C_DBCS_SO_TRUNCATE This occurs when there is not enough room in a record to
start any DBCS string or else when a redundant SO is
written to the file before an SI. Cannot happen if
MB_CUR_MAX is 1.

__C_DBCS_SI_TRUNCATE This occurs only when there was not enough room to start a
DBCS string and data was written anyways, with an SI to
end it. Cannot happen if MB_CUR_MAX is 1.

__C_DBCS_UNEVEN This occurs when an SI is written before the last double byte
character is completed, thereby forcing C to fill in the last
byte of the DBCS string with a padding byte X'FE'. Cannot
happen if MB_CUR_MAX is 1.

__C_CANNOT_EXTEND This occurs when an attempt is made to extend a file that
allows writing, but cannot be extended. Typically this is a
member of a VSE Librarian sublibrary being opened for
update.

__VSAM_OPEN_FAIL Set when a low level VSAM OPEN fails, sets __rc and
__fdbk fields in the __amrc struct.

__VSAM_OPEN_ESDS Does not indicate an error; set when the low level VSAM
OPEN succeeds, and the file type is ESDS.

__VSAM_OPEN_RRDS Does not indicate an error; set when the low level VSAM
OPEN succeeds, and the file type is ESDS.

__VSAM_OPEN_KSDS Does not indicate an error; set when the low level VSAM
OPEN succeeds, and the file type is ESDS.

64 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Table 29. __last_op Codes and Diagnosis Information (continued)

Code Further Information

__VSAM_OPEN_ESDS_PATH Does not indicate an error; set when the low level VSAM
OPEN succeeds, and the file type is ESDS.

__VSAM_OPEN_KSDS_PATH Does not indicate an error; set when the low level VSAM
OPEN succeeds, and the file type is ESDS.

__VSAM_MODCB Set when a low level VSAM MODCB macro fails, sets __rc
and __fdbk fields in the __amrc struct.

__VSAM_TESTCB Set when a low level VSAM TESTCB macro fails, sets __rc
and __fdbk fields in the __amrc struct.

__VSAM_SHOWCB Set when a low level VSAM SHOWCB macro fails, sets __rc
and __fdbk fields in the __amrc struct.

__VSAM_GENCB Set when a low level VSAM GENCB macro fails, sets __rc
and __fdbk fields in the __amrc struct.

__VSAM_GET Set when the last op was a low level VSAM GET; if the GET
fails, sets __rc and __fdbk in the __amrc struct.

__VSAM_PUT Set when the last op was a low level VSAM PUT; if the PUT
fails, sets __rc and __fdbk in the __amrc struct.

__VSAM_POINT Set when the last op was a low level VSAM POINT; if the
POINT fails, sets __rc and __fdbk in the __amrc struct.

__VSAM_ERASE Set when the last op was a low level VSAM ERASE; if the
ERASE fails, sets __rc and __fdbk in the __amrc struct.

__VSAM_ENDREQ Set when the last op was a low level VSAM ENDREQ; if the
ENDREQ fails, sets __rc and __fdbk in the __amrc struct.

__VSAM_CLOSE Set when the last op was a low level VSAM CLOSE; if the
CLOSE fails, sets __rc and __fdbk in the __amrc struct.

__QSAM_GET __error is not set (if abend (errno == 92), __abend is set,
otherwise if read error (errno == 66), look at __msg.

__QSAM_PUT __error is not set (if abend (errno == 92), __abend is set,
otherwise if write error (errno == 65), look at __msg.

__QSAM_TRUNC This is an intermediate operation. You will only see this if
an I/O abend occurred.

__QSAM_CLOSE Sets __error to result of VSE CLOSE macro.

__QSAM_OPEN Sets __error to result of VSE OPEN macro.

__CICS_WRITEQ_TD Sets __error with error code from EXEC CICS WRITEQ TD.

Displaying an Error Message with the perror() Function
To find a failing routine, check the return code of all function calls. After you have
found the failing routine, use the perror() function after the routine to display the
error message. perror() displays the string that you pass to it and an error
message corresponding to the value of errno. perror() writes to the standard error
stream (stderr). Figure 18 on page 66 shows an example of a routine using
perror().

Chapter 4. Debugging C Routines 65

Using C Compiler Listings
The following sections discuss C compiler-generated listings, and explain how to
use these listings to locate information, such as variable values and the timestamp,
in the dump.

Generating C Listings and Maps
C listings and maps show the compile, prelink, and link-edit steps that provide
many pieces of information necessary for performing problem analysis tasks.

When you are debugging, you can use one or more of the following:
v Pseudo-assembler listing
v Storage offset listing
v Structure map
v Prelinker map
v Inline report
v Linkage editor module map
v Source listing

This section gives an overview of each of these listings and specifies the
compile-time option you use to obtain the listing. For a detailed description of
available listings, see LE/VSE C Run-Time Programming Guide, SC33-6688.

Table 30. Contents of Listing and Associated Compile-Time Options

Name
Compile-Time
Option Function

Pseudo-assembler
listing

LIST Generates a pseudo-assembler listing, which
shows the source listing for the current
routine

Storage Offset Listing XREF Produces a storage offset listing, which
includes in the source listing a cross reference
table of names used in the routine and the
line numbers on which they were declared or
referenced.

Structure Map AGGREGATE Causes a structure map to be included in the
source listing. The structure map shows the
layout of variables for the type struct or
union.

Inline Report INLINE(,REPORT,...) Generates an inline report that summarizes
all functions inlined and a provides a detailed
call structure of all the functions.

#include <stdio.h>
int main(void)

FILE *fp;

fp = fopen("myfile.dat", "w");
if (fp == NULL)

perror("fopen error");

Figure 18. Example Routine Using perror()

66 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Table 30. Contents of Listing and Associated Compile-Time Options (continued)

Name
Compile-Time
Option Function

Prelinker Map MAP (prelink
option)

Creates the prelinker map when invoking the
Prelinker. (This is the default.) Prelinker maps
can be used to determine the location of static
and external C variables compiled with the
RENT option.

Linkage Editor
Module Map

MAP (link-time
option)

Creates the linkage editor map when
invoking C. (This is the default.) Linkage
editor maps can expose incorrect linkage; for
example, if CEESTART was not the entry
point or a fetch phase was created incorrectly.

Source Listing SOURCE Generates the source listing, which contains
the original source input statements and any
compile-time diagnostic messages issued for
the source.

Finding Variables
You can determine the value of a variable in the routine at the point of interrupt
by using the compiled code listing as a guide to its address, then finding this
address in the LE/VSE dump. The method you use depends on the storage class of
variable.

This method is generally used when no symbolic variables have been dumped
(symbolic variables can be dumped by using the TEST compile-time option).

It is possible for the routine to be interrupted before the value of the variable is
placed in the location provided for it. This can explain unexpected values in the
dump.

Finding Automatic Variables
To find automatic variables in the LE/VSE dump, use the following steps:
1. Identify the start of the stack frame. When a dump is produced, each stack

frame is dumped. The stack frames can be cross-referenced to the function
name in the traceback.

2. Add the offset of the variable (which is given in decimal) in the storage offset
listing, shown in Figure 19, to the stack frame address.

In the example, variable aa1 can be found in the dump by first determining the
value of the base register (in this case, GPR13) in the Saved Registers section
for the function you are interested in. Add this base address to the offset of the
variable. The contents of the variable can then be read in the DSA Frame
section corresponding to the function the variable is contained in.

aa1 85-0:85 Class = automatic, Offset = 164(r13), Length = 40

Figure 19. Example of a Storage Offset Listing in Compiled Code

Chapter 4. Debugging C Routines 67

Finding the Writable Static Area
If you have C code compiled with the RENT option (hereafter called RENT code):
v You must determine the base address of the writable static area (WSA) if you

want to calculate the address of a static or external variable.
v The WSA for application code is in the WSA field of the CAA (see page 82 for

an explanation of WSA).
v The WSA for a fetched phase is in the WSA field of the Fetch Information

section for the fetch function pointer you are interested in.

Finding the Static Storage Area
If you have C code compiled with the NORENT option (hereafter called NORENT
code):
v You must determine the base address of the static storage area if you want to

calculate the address of a static variable. A CSECT is generated for the static
storage area for each source file. In order to determine the origin and length of
the CSECT from the prelinker map, you must name the static storage area
CSECT by using the pragma csect directive.

v External variables are stored in a corresponding CSECT with the same name.
The origin and length of the external variable CSECT can be determined from
the prelinker map.

Address calculation for static and external variables uses the static storage area as
a base address with 1 or more offsets added to this address.

The storage associated with these CSECTs is not dumped when an exception
occurs. This is dumped when you call cdump(), which invokes the VSE SDUMP
macro. SDUMP output is written to either SYSLST or the dump sublibrary. See
“Generating an LE/VSE Dump of a C Routine” on page 75 for information about
cdump(), SDUMP, and CEE5DMP.

Finding RENT Static Variables
1. Find the address of the WSA (see “Finding the Writable Static Area”). For this

example, the address of writable static is X'02D66E40'.
2. Find the offset of @STATIC (associated with the file where the static variable is

located) in the Writable Static Map section of the prelinker map, shown in
Figure 20 on page 69. In this example, the offset is X'00000058'. Add this offset
to the WSA to get the base address of static variables. The result is X'02D66E98'
(X'02D66E40' + X'00000058').

68 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

3. Find the offset of the static variable in the partial storage offset compiler listing
shown in Figure 21. In this example, the offset of the static variable sa0 is 96
(X'00000060').

4. Add this offset to the base address of static variables, calculated above. In this
example, the sum is X'02D66EF8' (X'02D66E98' + X'00000060'). This is the
address of the value of the static variable sa0 in the LE/VSE dump.
Figure 22 on page 70 shows the path to locate RENT C static variables by
adding the address of writable static, the offset of @STATIC, and the variable
offset.

==
| Writable Static Map |
==

OFFSET LENGTH FILE ID INPUT NAME

0 1 00001 DFHC0011
4 1 00001 DFHC0010
8 2 00001 DFHDUMMY
C 2 00001 DFHB0025
10 2 00001 DFHB0024
14 2 00001 DFHB0023
18 2 00001 DFHB0022
1C 2 00001 DFHB0021
20 2 00001 DFHB0020
24 2 00001 DFHEIB0
28 4 00001 DFHEIPTR
2C 4 00001 DFHCP011
30 4 00001 DFHCP010
34 4 00001 DFHBP025
38 4 00001 DFHBP024
3C 4 00001 DFHBP023
40 4 00001 DFHBP022
44 4 00001 DFHBP021
48 4 00001 DFHBP020
4C 4 00001 DFHEICB
50 4 00001 DFHEID0
54 4 00001 DFHLDVER
58 278 00001 @STATIC
720 30 00002 @STATIC

Figure 20. Writable Static Map Produced by Prelinker

sa0 66-0:66 Class = static, Location = WSA @STATIC + 96, Length = 4

Figure 21. Partial Storage Offset Listing

Chapter 4. Debugging C Routines 69

Finding External RENT Variables
Locating external variables in the LE/VSE dump requires several steps:
1. Find the address of the WSA (see “Finding the Writable Static Area” on page

68). In this example, the address of writable static is X'02D66E40'.
2. Find the offset of the external variable in the Prelinker Writable Static Map,

shown in Figure 23 on page 71. In this example, the offset for DFHEIPTR is
X'00000028'.

Figure 22. Location of RENT Static Variable in Storage

70 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

3. Add the offset of the external variable to the address of writable static. The
result is X'02D66E68', (X'02D66E40' + X'00000028'). This is the address of the
value of the external variable in the LE/VSE dump.

Finding NORENT Static Variables
1. Find the name and address of the static storage area (see “Finding the Static

Storage Area” on page 68). For this example, the static storage area is called
STATSTOR and has an address of X'02D66E40'.

2. Find the offset of the static variable in the partial storage offset compiler listing
shown in Figure 24. The offset is 96 (X'00000060').

3. Add this offset to the base address of static variables, calculated above. The
sum is X'02D66EA0' (X'02D66E40' + X'00000060'). This is the address of the
value of the static variable in the LE/VSE dump.
Figure 25 on page 72 shows how to locate NORENT C static variables by
adding the Static Storage Area CSECT address to the variable offset.

==
| Writable Static Map |
==

OFFSET LENGTH FILE ID INPUT NAME

0 1 00001 DFHC0011
4 1 00001 DFHC0010
8 2 00001 DFHDUMMY
C 2 00001 DFHB0025
10 2 00001 DFHB0024
14 2 00001 DFHB0023
18 2 00001 DFHB0022
1C 2 00001 DFHB0021
20 2 00001 DFHB0020
24 2 00001 DFHEIB0
28 4 00001 DFHEIPTR
2C 4 00001 DFHCP011
30 4 00001 DFHCP010
34 4 00001 DFHBP025
38 4 00001 DFHBP024
3C 4 00001 DFHBP023
40 4 00001 DFHBP022
44 4 00001 DFHBP021
48 4 00001 DFHBP020
4C 4 00001 DFHEICB
50 4 00001 DFHEID0
54 4 00001 DFHLDVER
58 420 00001 @STATIC

Figure 23. Writable Static Map Produced by Prelinker

sa0 66-0:66 Class = static, Location = STATSTOR +96, Length = 4

Figure 24. Partial Storage Offset Listing

Chapter 4. Debugging C Routines 71

Finding External NORENT Variables
1. Find the address of the external variable CSECT (see “Finding the Static

Storage Area” on page 68). In this example, the address is X'02D66E40'. This is
the address of the value of the external variable in the LE/VSE dump.

Finding the C Parameter List
A pointer to the parameter list is passed to the called function in register 1. This is
the address of the start of the parameter list. Figure 26 shows the example code for
the parameter variable.

Parameters ppx and pp0 correspond to copies of a1 and a2 in the stack frame
belonging to func0.

To locate a parameter in the LE/VSE dump:
1. Find the register and offset in the partial storage offset listing shown in

Figure 27. In this example the offset is 4 (X'0000004') from register 1.

2. Determine the value of GPR1 in the Saved Registers section for the function that
called the function you are interested in. Add this base address to the offset of
the parameter. The contents of the variable can then be read in the DSA frame
section corresponding to the function the parameter was passed from.

Finding Members of Aggregates
You can define aggregates in any of the storage classes or pass them as parameters
to a called function. The first step is to find the start of the aggregate. You can
compute the start of the aggregate as described in previous sections, depending on
the type of aggregate used.

Figure 25. Location of NORENT Static Variable in Storage

func0()...
func1(a1,a2);...

func1(int ppx, int pp0)...

Figure 26. Example Code for Parameter Variable

pp0 62-0:62 Class = parameter, Location = 4(r1), Length = 4

Figure 27. Partial Storage Offset Listing

72 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

The aggregate map provided for each declaration in a routine can further assist in
finding the offset of a specific variable within a aggregate. Structure maps are
generated using the AGGREGATE compile-time option. Figure 28 shows an
example of a static aggregate.

Figure 29 shows an example structure map.

Assume the structure has been compiled as RENT. To find the value of variable
sz0[0]:
1. Find the address of the writable static. For this example the address of writable

static is X'02D66E40'.
2. Find the offset of @STATIC in the Writable Static Map. In this example, the

offset is X'00000058'. Add this offset to the address of writable static. The result
is X'02D66E98' (X'02D66E40' + X'00000058'). Figure 30 on page 74 shows the
Writable Static Map produced by the prelinker.

static struct {
short int ss01;
char ss02[56];
int sz0[6];
int ss03;

} ss0;

Figure 28. Example Code for Structure Variable

==
| Aggregate map for: ss0
==
| Offset | Length | Member Name
| Bytes(Bits) | Bytes(Bits) |
====================|===================|=======================================
| 0 | 2 | ss01
| 2 | 56 | ss02[56]
| 58 | 2 | ***PADDING***
| 60 | 24 | sz0[6]
| 84 | 4 | ss03
==

Figure 29. Example of Structure Map

Chapter 4. Debugging C Routines 73

3. Find the offset of the static variable in the storage offset listing. The offset is 96
(X'00000060').
Figure 31 shows a partial storage offset listing.

Add this offset to the result from step 2. The result is X'02D66EF8' (X'02D66E98'
+ X'00000060'). This is the address of the value of the static variable in the
dump.

4. Find the offset of sz0 in the Aggregate Map, shown in Figure 29 on page 73.
The offset is 60.

Add the offset from the Aggregate Map to the address of the ss0 struct. The result
is X'00000060', (X'0000003C' + X'00000060'). This is the address of the values of sz0
in the dump.

Finding the Timestamp
The timestamp can be located in the compile unit block. The address for the
compile unit block is located at eight bytes past the function entry point. The
compile unit block is the same for all functions in the same compilation. The
fourth word of the compile unit block points to the timestamp. The timestamp is
16 bytes long and has the following format:
YYYYMMDDHHMMSSSS

==
| Writable Static Map |
==

OFFSET LENGTH FILE ID INPUT NAME

0 1 00001 DFHC0011
4 1 00001 DFHC0010
8 2 00001 DFHDUMMY
C 2 00001 DFHB0025
10 2 00001 DFHB0024
14 2 00001 DFHB0023
18 2 00001 DFHB0022
1C 2 00001 DFHB0021
20 2 00001 DFHB0020
24 2 00001 DFHEIB0
28 4 00001 DFHEIPTR
2C 4 00001 DFHCP011
30 4 00001 DFHCP010
34 4 00001 DFHBP025
38 4 00001 DFHBP024
3C 4 00001 DFHBP023
40 4 00001 DFHBP022
44 4 00001 DFHBP021
48 4 00001 DFHBP020
4C 4 00001 DFHEICB
50 4 00001 DFHEID0
54 4 00001 DFHLDVER
58 320 00001 @STATIC

Figure 30. Writable Static Map Produced by Prelinker

ss0 66-0:66 Class = static, Location = GPR13(96), Length = 4

Figure 31. Partial Storage Offset Listing

74 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Generating an LE/VSE Dump of a C Routine
You can use either the CEE5DMP callable service or the ctrace(), csnap(), and
cdump() C functions to generate an LE/VSE dump of C routines. These C functions
call CEE5DMP with specific options.

To use these functions, you must add #include <ctest.h> to your C code.

The output, which is written to filename CEEDUMP (if present) or SYSLST
(otherwise), is identified by the dumptitle string parameter you pass with the C
function.

For more detail about the syntax of these functions, see LE/VSE C Run-Time Library
Reference, SC33-6689.

For more detail about CEE5DMP, see “Generating a Dump with CEE5DMP” on
page 31.

cdump()
The cdump() function produces a main storage dump with the activation stack.

cdump() is equivalent to calling CEE5DMP with the option string:
TRACEBACK BLOCKS VARIABLES FILES STORAGE STACKFRAME(ALL)
CONDITION ENTRY

Usage Notes:

1. If a routine calls cdump() more than once, use the cdump(dumptitle) parameter
to help identify the beginning of each dump.

2. Output from cdump() is directed to the filename CEEDUMP (if defined) or
SYSLST (otherwise).

3. When you call cdump(), the C library issues a VSE SDUMP macro to obtain a
snap dump of virtual storage. The first invocation of cdump() results in a snap
dump identifier of 0. For each successive invocation, the identifier is increased
by one to a maximum of 255, after which it is reset to 0.

4. Support for SDUMP dumps using cdump() is provided only in the batch
environment. SDUMP dumps are not produced in a CICS environment.

5. If the SDUMP does not succeed, the CEE5DMP DUMP file displays the
message:
Snap was unsuccessful

6. If the SDUMP is successful, CEE5DMP displays the message:
Snap was successful; snap ID = nnn

where nnn corresponds to the snap dump identifier described above. The
identifier is incremented only if SDUMP is successful.

ctrace()
The ctrace() function produces a traceback and includes the offset addresses from
which the calls were made.

ctrace() is equivalent to calling CEE5DMP with the option string:
TRACEBACK NOFILES NOBLOCKS NOVARIABLES NOSTORAGE
STACKFRAME(ALL) NOCONDITION NOENTRY

Chapter 4. Debugging C Routines 75

csnap()
The csnap() function produces a condensed storage dump.

csnap() function is equivalent to calling CEE5DMP with the option string:
TRACEBACK FILES BLOCKS VARIABLES NOSTORAGE STACKFRAME(ALL)
CONDITION ENTRY

Sample C Routine that Calls cdump()
Figure 32 shows a sample C routine. This fetches the routine in Figure 33 on page
77, which calls the cdump() function to generate a dump. To run this sample, you
must have:
v included this JCL statement:

// DLBL TMP0001,’MYFILE.DATA’,,VSAM,CAT=VSESPUC
v created a VSAM SAM ESDS file that has a fixed block record format (RECSIZE

80, BLKSIZE 80).

“Sample LE/VSE Dump with C-Specific Information” on page 77 shows the dump
output.

#include <stdio.h>
#include <signal.h>
#include <stdlib.h>

void hsigfpe(int);
void hsigterm(int);
void atf1(void);
typedef int (*FuncPtr_T)(void);

int st1 = 99;
int st2 = 255;
int xcount = 0;

int main(void) {
/*
* 1) Open multiple files
* 2) Register 2 signals
* 3) Register 1 atexit function
* 4) Fetch and execute phase
*/
FuncPtr_T fetchPtr;
FILE* fp1;
FILE* fp2;
int rc;
fp1 = fopen("DD:TMP0001", "w");
if (!fp1) {

perror("Could not open myfile.data for write");
exit(101);

}

fprintf(fp1, "record 1\n");
fprintf(fp1, "record 2\n");
fprintf(fp1, "record 3\n");

fp2 = fopen("memory.data", "wb,type=memory");
if (!fp2) {

perror("Could not open memory.data for write");
exit(102);

}

Figure 32. Example C Routine Using cdump() to Generate a Dump

76 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

fprintf(fp2, "some data");
fprintf(fp2, "some more data");
fprintf(fp2, "even more data");

signal(SIGFPE , hsigfpe);
signal(SIGTERM, hsigterm);

rc = atexit(atf1);
if (rc) {

fprintf(stderr,"Failed on registration of atexit function atf1\n");
exit(103);

}

fetchPtr =(FuncPtr_T) fetch("PHASE1");
if (!fetchPtr) {

fprintf(stderr,"Failed to fetch PHASE1\n");
exit(104);

}
fetchPtr();
return(0);
}

void hsigfpe(int sig) {
++st1;
return;

}

void hsigterm(int sig) {
++st2;
return;

}

void atf1() {
++xcount;

}

Figure 33 shows the routine fetched by the routine in Figure 32 on page 76.

Sample LE/VSE Dump with C-Specific Information
This sample dump was produced by compiling the routine in Figure 32 on page 76
with the TEST(ALL) compile-time option, then running it. Notice the sequence of
calls in the traceback section: @@MNINV is the C management module that
invokes main and @@FECBFUNC1 fetches the user-defined function func1, which
in turn calls the library routine __cdump.

If source code is compiled with the GONUMBER or TEST compile option, statement
numbers are shown in the trace back. If source code is compiled with the
TEST(ALL) compile option, variables and their associated type and value are
dumped out. See “Finding C Information in an LE/VSE Dump” on page 81 for
more information about C-specific information contained in a dump.

#include <ctest.h>

#pragma linkage(func1, fetchable)
int func1(void) {

cdump("This is a sample dump");
return(0);

}

Figure 33. Fetched C Routine

Chapter 4. Debugging C Routines 77

CEE5DMP V1 R4.7: This is a sample dump 11/27/10 3:13:21 PM PAGE: 1

CEE5DMP CALLED BY PROGRAM UNIT (ENTRY POINT __cdump) AT OFFSET +039BA334.

Snap was successful; snap ID = 0

REGISTERS ON ENTRY TO CEE5DMP:

PM....... 0100
GPR0..... 00000000 GPR1..... 0066B5A0 GPR2..... 0066B550 GPR3..... 839BA1CE
GPR4..... 006AB300 GPR5..... 0066B534 GPR6..... 00000000 GPR7..... 00000000
GPR8..... 00000005 GPR9..... 00000000 GPR10.... 806AB080 GPR11.... 806AB080
GPR12.... 00657E48 GPR13.... 0066B490 GPR14.... 8065AEEE GPR15.... 83A01D68
FPR0..... 4E800000 00000000 FPR2..... 487FFFFF FF000000
FPR4..... 41A00000 00000000 FPR6..... 40404040 40404040
GPREG STORAGE:
STORAGE AROUND GPR 0 (0066B490)
-0020 0066B470 00000000 00000000 0066B338 0066B340 8066B368 0066B4A0 006AB300 0066B49C |...............|
+0000 0066B490 1066B4A4 0066B3F8 0066B5B0 8065AEEE 83A01D68 00000000 0066B5A0 0066B550 |...u...8........c..............&|
+0020 0066B4B0 839BA1CE 006AB300 0066B534 00000000 00000000 00000005 00000000 806AB080 |c...............................|

STORAGE AROUND GPR 1 (0066B488)
-0020 0066B468 00000000 00000000 00000000 00000000 0066B338 0066B340 8066B368 0066B4A0 |.......................|
+0000 0066B488 006AB300 0066B49C 1066B4A4 0066B3F8 0066B5B0 8065AEEE 83A01D68 00000000 |...........u...8........c.......|
+0020 0066B4A8 0066B5A0 0066B550 839BA1CE 006AB300 0066B534 00000000 00000000 00000005 |.......&c.......................|...

INFORMATION FOR ENCLAVE main

INFORMATION FOR THREAD 8000000000000000

REGISTERS ON ENTRY TO CEE5DMP:
PM....... 0100
GPR0..... 00000000 GPR1..... 0066B5A0 GPR2..... 0066B550 GPR3..... 839BA1CE
GPR4..... 006AB300 GPR5..... 0066B534 GPR6..... 00000000 GPR7..... 00000000
GPR8..... 00000005 GPR9..... 00000000 GPR10.... 806AB080 GPR11.... 806AB080
GPR12.... 00657E48 GPR13.... 0066B490 GPR14.... 8065AEEE GPR15.... 83A01D68
FPR0..... 4E800000 00000000 FPR2..... 487FFFFF FF000000
FPR4..... 41A00000 00000000 FPR6..... 40404040 40404040
GPREG STORAGE:
STORAGE AROUND GPR 0 (00000000)
+0000 00000000 INACCESSIBLE STORAGE.
+0020 00000020 INACCESSIBLE STORAGE.
+0040 00000040 INACCESSIBLE STORAGE.

STORAGE AROUND GPR 1 (0066B5A0)
-0020 0066B580 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 | |
+0000 0066B5A0 0066B550 039BA6BB 8066B534 00000001 00000000 0066B490 0066C0F8 83A059D8 |...&..w....................8c..Q|
+0020 0066B5C0 03A07768 0000001F 0066B8D0 00000002 00000000 00000008 0066BD50 03A06D63 |...........................&.._.|...

TRACEBACK:
DSA ADDR PROGRAM UNIT PU ADDR PU OFFSET ENTRY E ADDR E OFFSET STATEMENT STATUS
0066B490 039BA180 +000001B4 __cdump 039BA180 +000001B4 CALL
0066B3F8 DD:SYSIPT 006AB080 +0000006A func1 006AB080 +0000006A 5 CALL
0066B348 0068EC70 +00000000 0068EC70 +00000000 CALL
0066B290 03911CE0 +0000001A @@GETFN 03911C38 +000000C2 CALL
0066B1E8 DD:SYSIPT 005000F8 +0000038C main 005000F8 +0000038C 59 CALL
0066B0D8 039BF1E6 +000000B4 @@MNINV 039BF1E6 +000000B4 CALL
0066B018 CEEBBEXT 001FA3E0 +00000132 CEEBBEXT 001FA3E0 +00000132 CALL

PARAMETERS, REGISTERS, AND VARIABLES FOR ACTIVE ROUTINES:...
main (DSA ADDRESS 0066B1E8):
SAVED REGISTERS:
GPR0..... 0068ED48 GPR1..... 83968A28 GPR2..... 0066B1E8 GPR3..... 80500144
GPR4..... 00501538 GPR5..... 0068ED48 GPR6..... 00501A08 GPR7..... 00501664
GPR8..... 00501660 GPR9..... 80000000 GPR10.... 839BF1DA GPR11.... 801FA3E0
GPR12.... 00657E48 GPR13.... 0066B1E8 GPR14.... 80500486 GPR15.... 03911C38

GPREG STORAGE:
STORAGE AROUND GPR 0 (0068ED48)
-0020 0068ED28 0068D000 00000018 00000001 0068ED38 0068EB80 00000000 0068D000 00000028 |................................|
+0000 0068ED48 180F58FF 001007FF 0068EC70 00000000 03911C38 FFFFFFFF 006AB5E8 0068ED48 |.................j.........Y....|
+0020 0068ED68 0068ED18 00000000 00000010 00000000 00000000 00000000 00000000 00000000 |................................|

STORAGE AROUND GPR 1 (83968A28)
-0020 03968A08 F018401C 50F0F01C 50F05088 47F03524 18F458D0 D00458E0 D00C982B D01C051E |0. .&00.&0&h.0...4.........q....|
+0000 03968A28 07070000 D200F000 10000000 FFFFFFFF 00000020 58FF0010 80000000 000000A8 |....K.0........................y|
+0020 03968A48 00000010 0000003D 00000003 039563A8 03969460 039683D8 039540A8 03911C38 |.............n.y.om-.ocQ.n y.j..|...

LOCAL VARIABLES:
fetchPtr signed int (*) (void)

0x68ED48
fp2 struct __ffile * 0x69984C
fp1 struct __ffile * 0x69866C
rc signed int 0...

CONTROL BLOCKS FOR ACTIVE ROUTINES:
DSA FOR __cdump: 0066B490

Figure 34. Example Dump from Sample C Routine

78 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

...
DSA FOR func1: 0066B3F8
+000000 FLAGS.... 1000 member... 0000 BKC...... 0066B348 FWC...... 0066B4E0 R14...... 806AB0EC
+000010 R15...... 039BA180 R0....... 0066B490 R1....... 0066B488 R2....... 0066B3F8 R3....... 806AB0CE
+000024 R4....... 006AB300 R5....... 0068ED48 R6....... 00501A08 R7....... 00501664 R8....... 00501660
+000038 R9....... 03A03D66 R10...... 03A02D67 R11...... 83A01D68 R12...... 00657E48 reserved. 0068B180
+00004C NAB...... 0066B490 PNAB..... 00000000 reserved. 00000000 00000000 00000000 00000000
+000064 reserved. 00000000 reserved. 00000000 MODE..... 83A3FE6A reserved. 00000000 00000000
+000078 reserved. 00000000 reserved. 00000000...

STORAGE FOR ACTIVE ROUTINES:
DSA frame: 0066B490
+000000 0066B490 1066B4A4 0066B3F8 0066B5B0 8065AEEE 83A01D68 00000000 0066B5A0 0066B550 |...u...8........c..............&|
+000020 0066B4B0 839BA1CE 006AB300 0066B534 00000000 00000000 00000005 00000000 806AB080 |c...............................|
+000040 0066B4D0 806AB080 00657E48 0068B180 0066B5B0 00007FC8 0066B3F8 0066B590 8065B0BA |......=..........."H...8........|...

CONTROL BLOCKS ASSOCIATED WITH THE THREAD:
CAA: 00657E48
+000000 00657E48 00000800 00000000 0066B000 0068B000 00000000 00000000 00000000 00000000 |................................|
+000020 00657E68 00000000 00000000 0068B3C8 00000000 00000000 00000000 00000000 00000000 |...........H....................|
+000040 00657E88 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 |................................|
+000060 00657EA8 00000000 00000000 00000000 00000000 00000000 80204A90 00000000 00000000 |................................|
+000080 00657EC8 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 |................................|
+0000A0 00657EE8 - +00011F 00657F67 SAME AS ABOVE...

C CAA information :
C Specific CTHD............. 0068E548
C Specific CEDB............. 0068D028

C Specific Thread block: 0068E548
+000000 0068E548 C3E3C8C4 00000220 0068E548 00000000 03959768 00000000 00000000 00000000 |CTHD......V......np.............|
+000020 0068E568 00000000 00000000 00000000 00000000 0068E770 00000000 00000000 00000000 |..................X.............|
+000040 0068E588 00000000 00000000 00000000 00695838 00695920 00000000 00000000 00000000 |................................|
+000060 0068E5A8 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 |................................|
+000080 0068E5C8 - +0000FF 0068E647 SAME AS ABOVE...

C Specific EDB block: 0068D028
+000000 0068D028 C3C5C4C2 00000480 0068D028 00501A40 00030000 0068D610 0068D960 005000F8 |CEDB.........&.O...R-.&.8|
+000020 0068D048 00000080 806A0300 00000000 00000000 00000000 0068D4B0 03963458 039622E0 |......................M..o...o..|
+000040 0068D068 0068EC70 00000001 00000000 0068ED30 0069852C 006982AC 006983EC 0390D71A |..................e...b...c...P.|
+000060 0068D088 00000000 0068D5C0 40400000 00000000 00100000 00000000 00000000 00000000 |......N.|...

errno value................. 0
memory file block chain..... 006999E8
open FCB chain.............. 00699860
GTAB table.................. 0068E8A8

signal information :
SIGFPE :
function pointer... 00500E58 WSA address... N/A function name... hsigfpe

SIGTERM :
function pointer... 00500F90 WSA address... N/A function name... hsigterm

ENCLAVE VARIABLES:
DD:SYSIPT:>xcount

signed int 0
DD:SYSIPT:>st2 signed int 255
DD:SYSIPT:>st1 signed int 99

ENCLAVE CONTROL BLOCKS:
EDB: 00657060
+000000 00657060 C3C5C5C5 C4C24040 C0000001 00657D08 006575F8 00000000 00000000 00000000 |CEEEDB’....8............|
+000020 00657080 006574B0 006574E0 0065A038 00656D40 00000000 80656008 00657180 00008000 |.............._-.........|
+000040 006570A0 00000000 00000000 00438000 00000000 00000000 00000000 00657120 006570B8 |................................|
+000060 006570C0 00000000 00000000 00000000 00000000 00000000 00000000 03A892F8 00657E48 |.........................yk8..=.|
+000080 006570E0 40000000 00000000 00000000 00000000 00000001 00000000 00000000 00000000 ||

MEML: 00657D08
+000000 00657D08 00000000 00000000 03A41338 00000000 00000000 00000000 03A41338 00000000 |.........u...............u......|
+000020 00657D28 00000000 00000000 03A41338 00000000 0068D028 00000000 839B3B80 00000000 |.........u..............c.......|
+000040 00657D48 00000000 00000000 03A41338 00000000 00000000 00000000 03A41338 00000000 |.........u...............u......|
+000060 00657D68 - +00011F 00657E27 SAME AS ABOVE

WSA address.................00000000

atexit information :
function pointer... 805010C8 WSA address... N/A function name... atf1

fetch information :
fetch pointer : 0068EC70
function pointer... 806AB080

ENCLAVE STORAGE:
Initial (User) Heap
+000000 0068D000 C8C1D5C3 00657480 00657480 00000000 0068D000 0068ED68 00008000 00006298 |HANC...........................q|
+000020 0068D020 0068D000 00000488 C3C5C4C2 00000480 0068D028 00501A40 00030000 0068D610 |.......hCEDB.........&.O.|
+000040 0068D040 0068D960 005000F8 00000080 806A0300 00000000 00000000 00000000 0068D4B0 |..R-.&.8......................M.|...

LE Anywhere Heap

Chapter 4. Debugging C Routines 79

+000000 0069B000 C8C1D5C3 006574B0 006574B0 006574B0 0069B000 0069B908 00004000 000036F8 |HANC......................8|
+000020 0069B020 0069B000 000002D8 FB000000 FFFFFFFF 0000003C C3C5C5C4 E4D4D740 FFFFFFFF |.......Q............CEEDUMP|
+000040 0069B040 003C0015 E38889A2 4089A240 8140A281 94979385 4084A494 97000000 00000000 |....This is a sample dump.......|
+000060 0069B060 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 |................................|
+000080 0069B080 00280013 F0F761F3 F061F0F1 40F37AF1 F37AF2F1 40D7D440 40404040 40404040 |....07/30/01 3:13:21 PM |
+0000A0 0069B0A0 40404040 40404040 40404040 00000014 0000000C 00000003 00000000 003C001C ||
+0000C0 0069B0C0 C9D5C6D6 D9D4C1E3 C9D6D540 C6D6D940 C5D5C3D3 C1E5C540 94818995 D77A0000 |INFORMATION FOR ENCLAVE mainP:..|
+0000E0 0069B0E0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 000003F2 |...............................3|
+000100 0069B100 003C0010 C5D5C3D3 C1E5C540 E2E3D6D9 C1C7C57A C2D3D6C3 D2E27A40 E3C8C540 |....ENCLAVE STORAGE:BLOCKS: THE |
+000120 0069B120 E3C8D9C5 C1C47AE3 C8D9C5C1 C47AC3E3 C9E5C540 D9D6E4E3 C9D5C5E2 7A000000 |THREAD:THREAD:CTIVE ROUTINES:...|
+000140 0069B140 0000008E 003C003C D3C540C1 95A8A688 85998540 C8858197 40404040 40404040 |........LE Anywhere Heap |...

LE Below Heap
+000000 0068B000 C8C1D5C3 006574E0 006574E0 006574E0 8068B000 0068B540 00002000 00001AC0 |HANC...................|
+000020 0068B020 0068B000 00000040 C8E7E2E3 001FEFF0 001FE2E8 00658800 00000000 00000000 |....... HXST...0..SY..h.........|
+000040 0068B040 0068B068 0068B068 0001000A 0068B0F0 0068B0F0 0001000A 00000000 00000000 |...............0...0............|
+000060 0068B060 0068B000 00000088 00000000 00000000 001FEFF0 00658800 00000009 00000000 |.......h...........0..h.........|...

Additional Heap, heapid = 0069B8D4
+000000 006AC000 C8C1D5C3 0069B8D4 0069B8D4 0069B8D4 006AC000 006AC3B0 000003E8 00000038 |HANC...M...M...M......C....Y....|
+000020 006AC020 006AC000 00000048 00000000 006AB124 006AB080 006AC088 0068EC70 40F11000 |.......................h.... 1..|
+000040 006AC040 00000003 006AB2EC 00020000 006AC070 00000000 006AB080 006AB080 00000000 |................................|
+000060 006AC060 006AB1DC 006AB134 006AC000 00000018 0009C4C4 7AE2E8E2 C9D7E300 00000000 |..................DD:SYSIPT.....|...

FILE STATUS AND ATTRIBUTES:
File Control Block: 00699860
+000000 00699860 00699BBD 00000000 000003DB 00699930 00699950 00000000 00699988 0000002C |..............r...r&......rh....|
+000020 00699880 00000030 00000000 00000000 00698680 00000000 00699860 00000000 00000000 |..............f.......q-........|
+000040 006998A0 00000000 FFFFFFFF 00080055 006999C0 00699980 03925030 03927818 03927A68 |..............r...r..k&..k...k:.|
+000060 006998C0 03927E98 03915BA8 00000000 00000400 00000400 00000000 00000000 00000400 |.k=q.j$y........................|
+000080 006998E0 00699B98 00699B98 00000000 00000000 00000000 00000000 00000000 00000000 |...q...q........................|
+0000A0 00699900 00000000 00000000 00000000 00000000 0391CE70 00000000 00000000 00000000 |.................j..............|
+0000C0 00699920 43020008 80001080 00000000 00000000 58FF0008 07FF0000 0391C9A0 00000000 |.........................jI.....|
+0000E0 00699940 00000000 00000000 00000000 00000000 58FF0008 07FF0000 039236B8 00000000 |.........................k......|
+000100 00699960 00000000 00000000 00000000 00000000 01000000 00000000 00000000 00000000 |................................|

fldata FOR FILE: CDMPPR1.MEMORY.DATA
__recfmF:1........ 1
__recfmV:1........ 0
__recfmU:1........ 0
__recfmS:1........ 0
__recfmBlk:1...... 0
__recfmASA:1...... 0
__recfmM:1........ 0
__recfmPO:1....... 0
__dsorgPDSmem:1... 0
__dsorgPS:1....... 0
__dsorgMem:1...... 1
__dsorgTemp:1..... 0
__dsorgVSAM:1..... 0
__openmode:2...... 1
__modeflag:4...... 2
__device.......... 8
__blksize......... 1024
__maxreclen....... 1024
__dsname.......... CDMPPR1.MEMORY.DATA

FILE pointer........ 0069984C

Buffer at current file position: 00699B98
+000000 00699B98 A2969485 408481A3 81A29694 85409496 99854084 81A38185 A5859540 94969985 |some datasome more dataeven more|
+000020 00699BB8 408481A3 81000000 00000000 00000000 00000000 00000000 00000000 00000000 | data...........................|
+000040 00699BD8 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 |................................|
+000060 00699BF8 - +0003FF 00699F97 SAME AS ABOVE

Saved Buffer........ NULL
first data space.... NULL

File Control Block: 00698680
+000000 00698680 00695BE0 00000000 00000050 00698750 00698770 80000000 006987A8 0000002C |..$........&..g&..g.......gy....|
+000020 006986A0 00000030 00000000 00000000 00698170 00699860 00698680 00000000 E3D4D7F0 |..............a...q-..f.....TMP0|
+000040 006986C0 F0F0F140 FFFFFFFF 0000002A 006987E0 006987A0 03B54700 03B53BD0 03B572A8 |001g...g............y|
+000060 006986E0 03B569D0 03B57D78 00000000 00000050 00000050 00000000 00000000 00000051 |..............&...&.........169.|
+000080 00698700 00695BE0 00695BE0 00695BE0 00000000 00000000 00000000 00000000 00000000 |..$...$...$.....................|
+0000A0 00698720 00000000 00000000 00000000 00000000 03B2CC68 00000000 00000000 00000000 |................................|
+0000C0 00698740 43520020 80000880 00000000 00000000 58FF0008 07FF0000 03B2C798 00000000 |..........................Gq....|
+0000E0 00698760 00000000 00000000 00000000 00000000 58FF0008 07FF0000 03B509F0 00000000 |...........................0....|
+000100 00698780 00000000 00000000 00000000 00000000 01000000 00000000 00000000 00000000 |................................|

fldata FOR FILE: DD:TMP0001
__recfmF:1........ 1
__recfmV:1........ 0
__recfmU:1........ 0
__recfmS:1........ 0
__recfmBlk:1...... 0
__recfmASA:1...... 0
__recfmM:1........ 0
__recfmPO:1....... 0
__dsorgPDSmem:1... 0
__dsorgPS:1....... 1
__dsorgMem:1...... 0

80 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

__dsorgTemp:1..... 0
__dsorgVSAM:1..... 0
__openmode:2...... 0
__modeflag:4...... 2
__device.......... 0
__blksize......... 80
__maxreclen....... 80
__dsname.......... MYFILE.DATA

FILE pointer........ 0069866C
ddname.............. TMP0001

Buffer at current file position: 00695BE0
+000000 00695BE0 99858396 998440F3 40404040 40404040 40404040 40404040 40404040 40404040 |record 3 |
+000020 00695C00 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 | |
+000040 00695C20 40404040 40404040 40404040 40404040 40000000 00000000 000023C8 00000000 |H....|

Saved Buffer........ NULL

DTF: 006A1818
+000000 006A1818 00509204 0C000162 006A1300 00000000 0013C740 2064E3D4 D7F0F0F0 F10E0000 |.&k...............G ..TMP0001...|
+000020 006A1838 00000000 0022000E 0050007E 0000007E 0000007F 000E0000 007E0000 01000050 |.........&.=...=...".....=.....&|
+000040 006A1858 206A11C0 806A120E 076A184E 40000006 316A1850 40000005 086A1868 00000000 |...........+&|
+000060 006A1878 036A1878 20000001 056A1880 20000001 316A1850 40000005 086A1888 00000000 |...................&h....|
+000080 006A1898 1E6A18A8 30000008 126A18A8 00000008 00000000 01000000 9E000000 00001000 |...y.......y....................|
+0000A0 006A18B8 00001000 00010A0A 00000000 00695B7C 00000000 00000000 00000000 00000000 |..............$@................|
+0000C0 006A18D8 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 |................................|
+0000E0 006A18F8 - +00011F 006A1937 SAME AS ABOVE

__amrc_type structure: 0066C700
+000000 0066C700 0013C740 00000000 00000005 00000000 00000000 00000000 00000000 00000000 |..G|
+000020 0066C720 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 |................................|
+000040 0066C740 - +0000BF 0066C7BF SAME AS ABOVE
+0000C0 0066C7C0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 000000DC |................................|

amrc __code union fields
__error................. 1296192(13C740)
__abend.__syscode....... 19(13)
__abend.__rc............ 51008(C740)
__feedback.rc........... 19(13)
__feedback.__ftncd...... 199(C7)
__feedback.__fdbk....... 64(40)
__alloc.__svc99_info.... 19(13)
__alloc.__svc99_error... 51008(C740)
__RBA............... 0(0)
__last_op........... 5(5)
__msg.__str......... NULL
__msg.__parmr0...... 0(0)
__msg.__parmr1...... 0(0)
__msg.__str2........ NULL

__amrc2_type structure: 0066C600
+000000 0066C600 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 |................................|

__error2............ 0(0)
__fileptr........... NULL

PROCESS CONTROL BLOCKS:

PCB: 00656D40
+000000 00656D40 C3C5C5D7 C3C24040 04030290 00000000 00000000 00000000 00656F38 03A8A6B0 |CEEPCB?..yw.|
+000020 00656D60 03A86838 03A89690 03A891C8 006469C8 00656118 00000000 00000000 00657060 |.y...yo..yjH...H../............-|
+000040 00656D80 03A894E8 00000000 00000000 00000000 00000000 00000000 00000000 00000000 |.ymY............................|

MEML: 00656F38
+000000 00656F38 00000000 00000000 03A41338 00000000 00000000 00000000 03A41338 00000000 |.........u...............u......|
+000020 00656F58 00000000 00000000 03A41338 00000000 039B3B80 0068DE50 839B3B80 00000000 |.........u.............&c.......|
+000040 00656F78 00000000 00000000 03A41338 00000000 00000000 00000000 03A41338 00000000 |.........u...............u......|
+000060 00656F98 - +00011F 00657057 SAME AS ABOVE

Finding C Information in an LE/VSE Dump
When an LE/VSE traceback or dump is generated for a C routine, information is
provided that is unique to C routines. C-specific information includes:
v Control block information for active routines
v Condition information for active routines
v Enclave level data

This information is located in the sections of the dump described below.

Storage for Active Routines
The Storage for Active Routines section of the dump shows the DSAs for the active
C routines. To relate a DSA frame to a particular function name, use the address

Chapter 4. Debugging C Routines 81

associated with the frame to find the corresponding DSA. Figure 35 shows this
section of the dump. In this example, the function func1 DSA address is
X'0066B3F8'.

Control Blocks Associated with the Active Thread
In the Control Blocks associated with the Thread section of the dump, the
following information appears:
v C fields from the CAA
v C Specific CAA
v Signal information

C Fields of the CAA
The CAA contains several fields that the C programmer can use to find
information about the run-time environment. This information is dumped as
shown in Figure 36. An explanation of each field follows.

C Specific CTHD and CEDB
For each C program, there is a C Specific Thread area and a C Specific
Enclave area.

WSA address
This is available for all C programs except those compiled with the
NORENT compile-time option. It points to the base address of the writable
static area.

C Specific CAA
The C-specific CAA fields that are of interest to users are shown in Figure 37 on
page 83.

...
CONTROL BLOCKS FOR ACTIVE ROUTINES:...
DSA FOR func1: 0066B3F8
+000000 FLAGS.... 1000 member... 0000 BKC...... 0066B348 FWC...... 0066B4E0 R14...... 806AB0EC
+000010 R15...... 039BA180 R0....... 0066B490 R1....... 0066B488 R2....... 0066B3F8 R3....... 806AB0CE
+000024 R4....... 006AB300 R5....... 0068ED48 R6....... 00501A08 R7....... 00501664 R8....... 00501660
+000038 R9....... 03A03D66 R10...... 03A02D67 R11...... 83A01D68 R12...... 00657E48 reserved. 0068B180
+00004C NAB...... 0066B490 PNAB..... 00000000 reserved. 00000000 00000000 00000000 00000000
+000064 reserved. 00000000 reserved. 00000000 MODE..... 83A3FE6A reserved. 00000000 00000000
+000078 reserved. 00000000 reserved. 00000000...

STORAGE FOR ACTIVE ROUTINES:
DSA frame: 0066B490
+000000 0066B490 1066B4A4 0066B3F8 0066B5B0 8065AEEE 83A01D68 00000000 0066B5A0 0066B550 |...u...8........c..............&|
+000020 0066B4B0 839BA1CE 006AB300 0066B534 00000000 00000000 00000005 00000000 806AB080 |c...............................|
+000040 0066B4D0 806AB080 00657E48 0068B180 0066B5B0 00007FC8 0066B3F8 0066B590 8065B0BA |......=..........."H...8........|...

Figure 35. Storage for Active Routines Section of a Dump

C CAA information :
C Specific CTHD............. 0068E548
C Specific CEDB............. 0068D028...
WSA address.................00000000

Figure 36. C Fields in the CAA

82 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

errno value
A variable used to display error information. Its value can be set to a
positive number that corresponds to an error message. The functions
perror() and strerror() print the error message that corresponds to the
value of errno.

Memory file control block
You can use the memory file control block (MFCB) to locate additional
information about memory files. This control block resides at the C thread
level. See “Memory File Control Block” on page 86 for more information
about the MFCB.

Open FCB chain
A pointer to the start of a linked list of open file control blocks (FCBs). For
more information about FCBs, see “File Control Block Information” on
page 84.

Signal Information
Signal information is provided in the dump to aid you in debugging. For each
signal that is disabled with SIG_IGNORE, an entry value of 00000001 is made in the
first field of the Signal Information field for the specified signal name.

For each signal that has a handler registered, the signal name and the handler
name are listed. If the handler is a fetched C function, the value @@FECB is entered
as the function name and the address of the fetched pointer is in the first field.

If you compile a C routine as NORENT, the WSA address is not available (N/A).
See LE/VSE C Run-Time Programming Guide, SC33-6688 for more information about
the signal() function.

atexit() Information
The atexit() information lists the functions registered with atexit() to be run at
normal termination. The functions are listed in chronological order of registration.

If you compile a C routine as NORENT, the WSA address is not available (N/A).
See LE/VSE C Run-Time Library Reference, SC33-6689 for more information about the
atexit() function.

Figure 38 shows atexit() information in the dump.

errno value................. 0
memory file block chain..... 006999E8
open FCB chain.............. 00699860

Figure 37. C-Specific CAA Fields

...
atexit information :
function pointer... 805010C8 WSA address... N/A function name... atf1...

Figure 38. atexit() Information in Dump

Chapter 4. Debugging C Routines 83

fetch Information
The fetch information shows information about phases that you have dynamically
loaded using fetch(). For each phase that was fetched, the fetch (stub) pointer
(ptr1 in the following example) and the function pointer addresses are included.

ptr1 = fetch("MOD");

If you compile a C routine as NORENT, the WSA address is not available (N/A).
See LE/VSE C Run-Time Programming Guide, SC33-6688 for more information about
the fetch function.

Figure 39 shows fetch information in the dump.

File Control Block Information
This section of the dump includes the file control block (FCB) information for each
C file. The FCB contains file status and attributes for files open during C active
routines. You can use this information to find the data set or file name.

The FCB is a handle that points to the following file information, which is
displayed when applicable, for the file:
v Access method control block (ACB) address
v Define the file (DTF) address
v RPL address
v Current buffer address
v Saved buffer address
v filename (appears in the listing as ddname)
v file ID (appears in the listing as __dsname)

Figure 40 on page 85 shows some of the fields that are dumped for a non-VSAM
file.

...
fetch information :
fetch pointer : 0068EC70
function pointer... 806AB080...

Figure 39. fetch Information in Dump

84 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Figure 41 shows some of the fields that are dumped for a VSAM data set.

Not all FCB fields are always filled in. For example:
v RPLs are used only for VSAM data sets.
v The ddname (filename) field contains blanks if it is not used.
v DTFs are not used for memory files.

FILE STATUS AND ATTRIBUTES:
File Control Block: 01CB92C0
+000000 01CB92C0 00771CE9 00000000 00000085 01CB9390 01CB93B0 80000000 01CB9870 00000009 |...Z.......e..l...l.......q.....|
+000020 01CB92E0 00000030 E2E8E2D3 E2E30000 01CB9680 00000000 01CB92C0 00000000 00000000 |....SYSLST....o.......k.........|...

fldata FOR FILE: dd:SYSLST
__recfmF:1........ 1
__recfmV:1........ 0
__recfmU:1........ 0...
__dsname..........

FILE pointer........ 01CB92AC

Buffer at current file position: 00771CE9
+000000 00771CE9 E3C5E2E3 40D9C5C3 F240C6D9 D6D440C3 E3C5E2E3 F6404040 40404040 40404040 |TEST REC2 FROM CTEST6 |
+000020 00771D09 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 | |
+000040 00771D29 - +00007F 00771D68 SAME AS ABOVE
+000080 00771D69 40404040 40000000 00229000 00000000 00000000 00000000 00000000 00000000 ||

Saved Buffer........ NULL

DTF: 00777818
+000000 00777818 00008000 0C000003 00744D90 00744DA0 011187A0 08B20909 00777851 00000000 |..........(...(...g........é....|
+000020 00777838 07004700 0000000C 09777851 20000085 80000000 00000000 00E3C5E2 E340D9C5 |...........é...e.........TEST RE|

Figure 40. File Control Block Information for a non-VSAM File

File Control Block: 01CB9680
+000000 01CB9680 01CB9807 00000002 00000000 01CB9750 01CB9770 80000000 01CB97A8 0000002C |..q...........p&..p.......py....|
+000020 01CB96A0 00000030 00000000 00000000 01CB9170 01CB92C0 01CB9680 00000000 C9D5C6C9 |..............j...k...o.....INFI|...

fldata FOR FILE: dd:INFILE
__recfmF:1........ 0
__recfmV:1........ 0
__recfmU:1........ 1...
__dsname.......... RTURNER.CTEST6.ESDS

FILE pointer........ 01CB966C
ddname.............. INFILE

Buffer at current file position: 01CB97E0
+000000 01CB97E0 E3C5E2E3 40D9C5C3 F240C6D9 D6D440C3 E3C5E2E3 F6404040 40404040 40404040 |TEST REC2 FROM CTEST6 |
+000020 01CB9800 40404040 40404040 15000000 00000000 00000000 00000000 00000000 00000000 ||
+000040 01CB9820 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 |................................|
+000060 01CB9840 - +00007F 01CB985F SAME AS ABOVE
+000080 01CB9860 00000000 00000000 80000038 01C 9000 C4C47AE2 E8E2D3E2 E3000000 00000000 |................DD:SYSLST.......|

Saved Buffer........ NULL

Access Method Control Block: 00771BC0
+000000 00771BC0 A040004C 00791618 001B00D8 00000000 00005C00 28100100 00000000 C9D5C6C9 |. .<.......Q......*.........INFI|
+000020 00771BE0 D3C54040 0074F898 00000000 00777C00 00000000 00000000 00080004 00771834 |LE ..8q......@.................|
+000040 00771C00 00000000 80000000 00000000 00000000 00100034 00000028 00771B6C 01CB97E0 |...........................%..p.|

Read Request Parameter List: 00771C10
+000000 00771C10 00100034 00000028 00771B6C 01CB97E0 00000028 00000088 00771BC0 01040000 |...........%..p........h........|
+000020 00771C30 60100000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 |-...............................|

Write Request Parameter List: 00771C48
+000000 00771C48 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 |................................|
+000020 00771C68 00000000 00000000 00000000 00000000 00000000 00000000 80000060 00771000 |...........................-....|

Figure 41. File Control Block Information for a-VSAM File

Chapter 4. Debugging C Routines 85

The save block buffer represents auxiliary buffers that are used to save the contents
of the main buffers. Such saving occurs only when a reposition is performed and
there is new data; for example, an incomplete text record or an incomplete
fixed-block standard (FBS) block in the buffers that cannot be flushed out of the
system. Since the main buffers represent the current position in the file, while the
save buffers merely indicate a save has occurred, check the save buffers only if
data appears to be missing from the external device and is not found in the main
buffers. Also, do not infer that the presence of save buffers means that data present
there belongs at the end of the file. (The buffers remain, even when the data is
eventually written).

Memory File Control Block
This section of the dump, shown in Figure 42, holds the memory file control block
information for each closed memory file the routine used.

Information for __amrc
__amrc is a structure defined in the stdio.h header file to assist in determining
errors resulting from I/O operations. The contents of __amrc (shown in Figure 43)
can be checked for system information, such as the return code for VSAM. Certain
fields of the __amrc structure can provide useful information about what occurred
previously in your routine.

For more information about __amrc, see “Debugging C Input/Output Programs”
on page 61 and LE/VSE C Run-Time Programming Guide, SC33-6688.

Memory File Control Block: 01CBDB58
+000000 01CBDB58 01CBDBC8 00000000 00000000 00000000 00000000 00010000 01CBDCD0 0000002C |...H............................|
+000020 01CBDB78 00000030 00000000 00000000 01CBD170 01CBD680 01CBDB58 00000000 01CBD808 |..............J...O...........Q.|
+000040 01CBDB98 01CBDB58 00000000 00000000 00000000 00000000 00000000 00000000 01CBDBC8 |...............................H|
+000060 01CBDBB8 00010000 00000000 00000000 00000000 00000000 00000000 01CBE110 00000026 |................................|

memory file name......... CTEST6.MEMORY.FILE.TWO

Figure 42. Memory File Control Block

__amrc_type structure: 000763CC
+000000 000763CC 00000004 00000000 00000007 00000000 00000000 00000000 00000000 00000000 |................................|
+000020 000763EC 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 |................................|
+000040 0007640C - +0000BF 0007648B same as above
+0000C0 0007648C 00000000 00000000 00000000 00000000 00000000 00000000 00000000 000000DC |................................|

amrc __code union fields
__error................. 4(4)
__abend.__syscode....... 0(0)
__abend.__rc............ 4(4)
__feedback.rc........... 0(0)
__feedback.__ftncd...... 0(0)
__feedback.__fdbk....... 4(4)
__alloc.__svc99_info.... 0(0)
__alloc.__svc99_error... 4(4)

__RBA............... 0(0)
__last_op........... 7(7)
__msg.__str......... NULL
__msg.__parmr0...... 0(0)
__msg.__parmr1...... 0(0)
__msg.__str2........ NULL

__amrc2_type structure: 000762D0
+000000 000762D0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 |................................|

__error2............ 0(0)
__fileptr........... NULL

Figure 43. __amrc Structure Information in Dump

86 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

C Contents of the LE/VSE Trace Table
LE/VSE provides two C trace table entry types that contain character data:
v Trace entry 1 occurs when a base C library function is called.
v Trace entry 2 occurs when a base C library function returns.

The format for trace table entry 1 is:
––>(xxx) NameOfCallingFunction NameOfCalledFunction

The format for trace table entry 2 is:
<––(xxx) R15=value ERRNO=value

In both entry types, (xxx) is a number associated with the called library function
and is used to associate a specific entry record with its corresponding return
record.

For more information about the LE/VSE trace table format, see “Understanding
the Trace Table Entry (TTE)” on page 54.

Debugging Example of C Routines
This section contains examples that demonstrate the debugging process for C
routines. Important areas of the output are highlighted. Data unnecessary to the
debugging examples has been replaced by ellipses.

Note: From LE/VSE 1.4.2 onwards, dumps taken with run-time option
TER(UADUMP...) or TER(DUMP...) are capable of generating a run-time options
report, independently of the setting for RPTOPTS(ON|OFF). For an example, see
Figure 51 on page 92.

Divide-by-Zero Error
Figure 44 on page 88 illustrates a C program that contains a divide-by-zero error.
The code was compiled with RENT so static and external variables need to be
calculated from the WSA field. The code was compiled with XREF, LIST and
OFFSET to generate a listing, which is used to calculate addresses of functions and
data. The code was prelinked with MAP to generate a prelinker map, which is
used to calculate addresses of static and external variables. This routine was run
with the option TERMTHDACT(DUMP).

Chapter 4. Debugging C Routines 87

To debug this routine, use the following steps:
1. Locate the Current Condition message in the Condition Information for Active

Routines section of the dump. In this example, the message is CEE3209S The
system detected a Fixed Point divide exception. This message indicates the
error was caused by an attempt to divide by zero. See Chapter 8, “LE/VSE
Run-Time Messages,” on page 155 for additional information about CEE3209S.
The traceback section of the dump indicates that the exception occurred at
offset X'00000084' within function funcb. This information is used along with
the compiler-generated Pseudo Assembly Listing to determine where the
problem occurred.
If the TEST compile-time option is specified, variable information is in the
dump. If the GONUMBER compile-time option is specified, statement number
information is in the dump. Figure 45 on page 89 shows the generated
traceback from the dump.

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
int statint = 73;
void funcb(int *pp);

int main(void) {
int aa, bb=1;
aa = bb;
funcb(&aa);
return(99);

}

void funcb(int *pp) {
int fa, result;
fa = *pp;
result = fa/(statint-73);
return;

}

Figure 44. C Routine with a Divide-by-Zero Error

88 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

2. Locate the instruction with the divide-by-zero error in the Pseudo Assembly
Listing in Figure 46 on page 90.
The offset (within funcb in Figure 46 on page 90) of the exception from the
traceback (X'00000084') reveals the divide instruction: DR r4,r6 at that
location. Instructions X'00006C' through X'000086' refer to the result =
fa/(statint-73); line of the C routine.

CEE5DMP V1 R4.7: CONDITION PROCESSING RESULTED IN THE UNHANDLED CONDITION. 11/27/10 1:22:59 PM PAGE: 1

INFORMATION FOR ENCLAVE main

INFORMATION FOR THREAD 8000000000000000

TRACEBACK:
DSA ADDR PROGRAM UNIT PU ADDR PU OFFSET ENTRY E ADDR E OFFSET STATEMENT STATUS
00668018 CEEHDSP 03A58D38 +000029DA CEEHDSP 03A58D38 +000029DA CALL
0066B288 DD:SYSIPT 00500358 +00000084 funcb 00500358 +00000084 18 EXCEPTION
0066B1E8 DD:SYSIPT 005000F8 +00000078 main 005000F8 +00000078 11 CALL
0066B0D8 039BF1E6 +000000B4 @@MNINV 039BF1E6 +000000B4 CALL
0066B018 CEEBBEXT 001FA3E0 +00000132 CEEBBEXT 001FA3E0 +00000132 CALL

CONDITION INFORMATION FOR ACTIVE ROUTINES
CONDITION INFORMATION FOR DD:SYSIPT (DSA ADDRESS 0066B288)
CIB ADDRESS: 00668528
CURRENT CONDITION:
CEE0198S THE TERMINATION OF A THREAD WAS SIGNALED DUE TO AN UNHANDLED CONDITION.

ORIGINAL CONDITION:
CEE3209S THE SYSTEM DETECTED A FIXED-POINT DIVIDE EXCEPTION.

LOCATION:
PROGRAM UNIT: DD:SYSIPT ENTRY: funcb STATEMENT: 18 OFFSET: +00000084

MACHINE STATE:
ILC..... 0002 INTERRUPTION CODE..... 0009
PSW..... 071D2400 805003DE
PM....... 0000
GPR0..... 0066B320 GPR1..... 0066B280 GPR2..... 0066B288 GPR3..... 805003A6
GPR4..... 00000000 GPR5..... 00000001 GPR6..... 00000000 GPR7..... 00500554
GPR8..... 00500550 GPR9..... 80000000 GPR10.... 839BF1DA GPR11.... 801FA3E0
GPR12.... 00657E48 GPR13.... 0066B288 GPR14.... 80500172 GPR15.... 0068B180

STORAGE DUMP NEAR CONDITION, BEGINNING AT LOCATION: 005003CC
+000000 005003CC 58606000 4B603066 5840D090 8E400020 1D465050 D0944400 C1AC4400 C1DC47F0 |.--..-...&&.m..A...A..0|

PARAMETERS, REGISTERS, AND VARIABLES FOR ACTIVE ROUTINES:
CEEHDSP (DSA ADDRESS 00668018):
SAVED REGISTERS:
GPR0..... 00000000 GPR1..... 006683BC GPR2..... 00000008 GPR3..... 006535E0
GPR4..... 00000003 GPR5..... 0065A038 GPR6..... 03A5CD34 GPR7..... 00669017
GPR8..... 03A5BD35 GPR9..... 03A5AD36 GPR10.... 03A59D37 GPR11.... 83A58D38
GPR12.... 00657E48 GPR13.... 00668018 GPR14.... 8065AEEE GPR15.... 83A01D68...

Figure 45. Dump Sections from C Example of Divide-by-Zero Error

Chapter 4. Debugging C Routines 89

3. Verify the value of the divisor statint. The procedure specified below is to be
used for determining the value of static variables only. If the divisor is an
automatic variable, there is a different procedure for finding the value of the
variable. See “Finding Automatic Variables” on page 67 for more information
about finding automatic variables in a dump.
Because this routine was compiled with the RENT option, find the WSA
address in the C CAA information section of the dump. In this example this
address is X'0068EA18'. Figure 47 on page 91 shows the WSA address.

000000 110 funcb DS 0F
000000 47F0 F026 111 B 38(,r15)
00001C 41E0 F03A 112 LA r14,58(,r15)
000020 58F0 C074 113 L r15,116(,r12)
000024 07FF 114 BR r15
000026 90E6 D00C 115 STM r14,r6,12(r13)
00002A 5820 D04C 116 L r2,76(,r13)
00002E 4100 2098 117 LA r0,152(,r2)
000032 5500 C00C 118 CL r0,12(,r12)
000036 4720 F01C 119 BH 28(,r15)
00003A 58F0 D048 120 L r15,72(,r13)
00003E 90F0 2048 125 STM r15,r0,72(r2)
000042 9210 2000 126 MVI 0(r2),16
000046 50D0 2004 127 ST r13,4(,r2)
00004A 18D2 128 LR r13,r2
00004C 0530 129 BALR r3,r0
00004E End of Prolog
00004E 5010 D088 131 ST r1,136(,r13)

*
00015 | * void funcb(int *pp) {

000052 4400 C1B0 134 EX r0,HOOK..PGM-ENTRY
* int fa, result;

00017 | * fa = *pp;
000056 4400 C1AC 137 EX r0,HOOK..STMT
00005A 5840 D088 138 L r4,136(,r13)
00005E 5840 4000 139 L r4,0(,r4)
000062 D203 D090 4000 140 MVC 144(4,r13),0(r4)

00018 | * result = fa/(statint-73);
000068 4400 C1AC 142 EX r0,HOOK..STMT
00006C 5860 **** 143 L r6,=Q(statint)
000070 5A60 C1F4 144 A r6,500(,r12)
000074 5860 6000 145 L r6,0(,r6)
000078 4B60 **** 146 SH r6,=H’73’
00007C 5840 D090 147 L r4,144(,r13)
000080 8E40 0020 148 SRDA r4,32
000084 1D46 149 DR r4,r6
000086 5050 D094 150 ST r5,148(,r13)

00019 | * return;
00008A 4400 C1AC 152 EX r0,HOOK..STMT
00008E 4400 C1DC 153 EX r0,HOOK..GOTO
000092 47F0 **** 154 B @5L2
000096 **** **** 155 DC A(@5L2-ep)

00020 | * }
00009A 157 @5L2 DS 0H
00009A Start of Epilog

Figure 46. Pseudo Assembly Listing

90 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

4. Routines compiled with the RENT option must also be prelinked. The prelinker
produces the Writable Static Map. Find the offset of statint in the Writable
Static Map in Figure 48. In this example, the offset is X'00000000'.

5. Add the WSA address of X'0068EA18' to the offset of statint (X'00000000'). The
result is X'0068EA18'. This is the address of the variable statint, which is in
the writable static area. The writable static area is storage allocated by the C
run time for the C user, so it is in the user heap. The heap content is displayed
in the Enclave Storage section of the dump, shown in Figure 49.

6. To find the variable statint in the heap, locate the closest address listed that is
at or before the address of statint. In this case, that address is X'0068EA18'.
The value at that location is X'49' (that is, statint is 73), and hence the fixed
point divide exception.

Calling a Nonexistent Function
Figure 50 on page 92 demonstrates the error of calling a nonexistent function. This
routine was compiled with the compile-time options LIST and RENT and was run
with the option TERMTHDACT(DUMP).

This routine was not compiled with the TEST(ALL) compile option. As a result,
arguments and variables do not appear in the dump.

...
C CAA information :
C Specific CTHD............. 0068E548
C Specific CEDB............. 0068D028...
WSA address.................0068EA18...

Figure 47. C CAA Information in Dump

...
==
| Writable Static Map |
==

OFFSET LENGTH FILE ID INPUT NAME

0 4 00001 statint...

Figure 48. Writable Static Map

...
ENCLAVE STORAGE:
Initial (User) Heap
+000000 0068D000 C8C1D5C3 00657480 00657480 00000000 0068D000 0068ED50 00008000 000062B0 |HANC...................&........|...
+000380 0068D380 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0066C37C |..............................C@|
+0003A0 0068D3A0 00000000 00000000 00000000 00000000 0068EA18 00657180 839B3B80 039B4348 |........................c.......|
+0003C0 0068D3C0 00000000 00657E48 00695948 00000008 00000000 00000000 00040000 00698170 |......=.......................a.|...

Figure 49. Enclave Storage Section of Dump

Chapter 4. Debugging C Routines 91

The only prelinker option used was MAP.

To debug this routine, use the following steps:
1. Locate the Current Condition message in the Condition Information for Active

Routines section of the dump, shown in Figure 51. In this example, the message
is CEE3201S The system detected an operations exception. This message
suggests that the error was caused by an attempt to branch to an unknown
address. See Chapter 8, “LE/VSE Run-Time Messages,” on page 155 for
additional information about CEE3201S.
The traceback section of the dump indicates that the exception occurred at
offset X'00000000' within function funca . The zero offset indicates that the
offset cannot be used to locate the instruction that caused the error. Another
indication of bad data is the value of X'80000002' in the instruction address of
the PSW. This address indicates that an instruction in the routine branched
outside the bounds of the routine.

CEE5DMP V1 R4.7: Condition processing resulted in the unhandled condition. 11/26/10 1:01:21 PM Page: 1

Information for enclave main
Information for thread 8000000000000000

Traceback:
DSA Addr Program Unit PU Addr PU Offset Entry E Addr E Offset Statement Service Status
00672018 CEEHDSP 03AA25B8 +0000358C CEEHDSP 03AA25B8 +0000358C LE146GA Call
00675288 005001B8 +00000000 funca 005001B8 +00000000 Exception
006751E8 005000F8 +00000068 main 005000F8 +00000068 Call
006750D8 039FD07E +000000B4 §§MNINV 039FD07E +000000B4 Call
00675018 CEEBBEXT 001C6F68 +00000132 CEEBBEXT 001C6F68 +00000132 LE146GA Call

Condition Information for Active Routines
Condition Information for (DSA address 00675288)
CIB Address: 00672508
Current Condition:
CEE3201S The system detected an operation exception.

Location:
Program Unit: Entry: funca Statement: Offset: +00000000

Machine State:
ILC..... 0002 Interruption Code..... 0001
PSW..... 071D1400 80000002

PM....... 0000

GPR0..... 00675318 GPR1..... 00675280 GPR2..... 00675288 GPR3..... 80500206
GPR4..... 00698A18 GPR5..... 00698A20 GPR6..... 00675278 GPR7..... 00000000
GPR8..... 00500238 GPR9..... 80000000 GPR10.... 839FD072 GPR11.... 801C6F68
GPR12.... 00657F60 GPR13.... 00675288 GPR14.... 80500220 GPR15.... 00000000

Storage dump near condition, beginning at location: 00000000
+000000 00000000 Inaccessible storage.

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <signal.h>
void funca(int* aa);
int (*func_ptr)(void)=0;
int main(void) {

int aa;
funca(&aa);
printf("result of funca = %d\n",aa);
return;

}
void funca(int* aa) {

*aa = func_ptr();
return;

}

Figure 50. C Example of Calling a Nonexistent Subroutine

Figure 51. Dump Sections from C Example of Calling a Non-Existent Function

92 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

GPREG STORAGE:
Storage around GPR 0 (00675318)
+0000 00675318 00000000 00672018 00675FB0 83A44DA8 03A46BF0 0000001F 00675764 00675BF8

Storage around GPR 1 (00675280)
+0000 00675280 00675278 00000000 10000000 006751E8 00000000 00000000 00000000 00000000

Storage around GPR 2 (00675288)
+0000 00675288 10000000 006751E8 00000000 00000000 00000000 00000000 00000000 00000000

Storage around GPR 3 (80500206)
+0000 00500206 5840C1F4 5010D088 5870D088 58607000 5870302E 58F47000 05EF50F0 600058D0

Storage around GPR 4 (00698A18)
+0000 00698A18 00000000 00000000 9985A2A4 93A34096 864086A4 95838140 7E406C84 15000000

Storage around GPR 5 (00698A20)
+0000 00698A20 9985A2A4 93A34096 864086A4 95838140 7E406C84 15000000 00697000 00000148

Storage around GPR 6 (00675278)
+0000 00675278 00000000 00000000 00675278 00000000 10000000 006751E8 00000000 00000000

Storage around GPR 7 (00000000)
+0000 00000000 Inaccessible storage.

Storage around GPR 8 (00500238)
+0000 00500238 01000001 005000F8 005005C0 00000000 00000008 00000000 005005E8 005005F0

Storage around GPR 9 (80000000)
+0000 00000000 Inaccessible storage.

Storage around GPR10 (839FD072)
+0000 039FD072 90ECD00C 41F0A00C 50F0D010 47F0F042 14CEB010 039FD09C 00000000 00000110

Storage around GPR10 (839FD072) (24-bit)
+0000 009FD072 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

Storage around GPR11 (801C6F68)
+0000 001C6F68 47F0F014 00C3C5C5 000000C0 00000238 47F0F001 90E1D00C 904CD024 18BF5800

Storage around GPR12 (00657F60)
+0000 00657F60 00000800 00000000 00675000 00695000 00000000 00000000 00000000 00000000

Storage around GPR13 (00675288)
+0000 00675288 10000000 006751E8 00000000 00000000 00000000 00000000 00000000 00000000

Storage around GPR14 (80500220)
+0000 00500220 50F06000 58D0D004 58E0D00C 9827D01C 051E0707 00000000 01000001 005000F8

Storage around GPR15 (00000000)
+0000 00000000 Inaccessible storage.

Parameters, Registers, and Variables for Active Routines:
CEEHDSP (DSA address 00672018):
Saved Registers:
GPR0..... 006726EC GPR1..... 006723BC GPR2..... 83AA5B48 GPR3..... 00000008
GPR4..... 006724B7 GPR5..... 03AA61C0 GPR6..... 03AA65B4 GPR7..... 00673017
GPR8..... 03AA55B5 GPR9..... 03AA45B6 GPR10.... 03AA35B7 GPR11.... 83AA25B8
GPR12.... 00657F60 GPR13.... 00672018 GPR14.... 80662EF6 GPR15.... 83A40D40

GPREG STORAGE:
Storage around GPR 0 (006726EC)
+0000 006726EC E9D4C3C8 00D80001 00675318 00675280 00675288 80500206 00698A18 00698A20...

RUN-TIME OPTIONS REPORT ASSOCIATED WITH DUMP FOR ENCLAVE : main
LAST WHERE SET OPTION

Installation default ABPERC(NONE)
Installation default ABTERMENC(ABEND)
Installation default NOAIXBLD
Installation default ALL31(OFF)
Installation default ANYHEAP(16384,8192,ANYWHERE,FREE)
Installation default BELOWHEAP(8192,4096,FREE)
Installation default CBLOPTS(ON)
Installation default CBLPSHPOP(OFF)
Installation default CHECK(OFF)
Non-overrideable COUNTRY(US)
Installation default NODEBUG
Installation default DEPTHCONDLMT(10)
Installation default ENVAR("")
Installation default ERRCOUNT(20)
Installation default HEAP(32768,32768,ANYWHERE,KEEP,8192,4096)
Installation default HEAPCHK(OFF,1,0)
Installation default LIBSTACK(12288,4096,FREE)
Installation default MSGFILE(SYSLST)
Installation default MSGQ(15)
Installation default NATLANG(ENU)
Installation default RETZERO(OFF)
Installation default RPTOPTS(OFF)
Installation default RPTSTG(OFF)
Installation default NORTEREUS
Installation default STACK(131072,131072,BELOW,KEEP)
Assembler user exit STORAGE(00,NONE,NONE,32768)
Invocation command TERMTHDACT(DUMP,,96)
Installation default NOTEST(ALL,"*","PROMPT","")
Installation default TRACE(OFF,4096,DUMP,LE=0)
Installation default TRAP(ON,MAX)
Installation default UPSI(00000000)
Installation default NOUSRHDLR()
Installation default XUFLOW(AUTO)

2. Find the branch instructions for funca in the listing in Figure 52 on page 94.
Notice the BALR r14,r15 instruction at offset X'00000126'. This branch is part of

Chapter 4. Debugging C Routines 93

the instruction *aa = func_ptr();.

3. Find the offset of FUNC@PTR in the Writable Static Map, shown in Figure 53, as
produced by the prelinker.

4. Add the offset of FUNC@PTR (X'00000000') to the WSA address (X'0068EA18'). The
result (X'0068EA18') is the address of the function pointer func_ptr in the
writable static storage area within the heap. This value is 0, indicating the
variable is uninitialized.
Figure 54 on page 95 shows the sections of the CAA and heap from the dump.

0000C0 91 funca DS 0F
0000C0 47F0 F026 92 B 38(,r15)
0000DC 41E0 F03A 93 LA r14,58(,r15)
0000E0 58F0 C074 94 L r15,116(,r12)
0000E4 07FF 95 BR r15
0000E6 90E7 D00C 96 STM r14,r7,12(r13)
0000EA 5820 D04C 97 L r2,76(,r13)
0000EE 4100 2090 98 LA r0,144(,r2)
0000F2 5500 C00C 99 CL r0,12(,r12)
0000F6 4720 F01C 100 BH 28(,r15)
0000FA 58F0 D048 101 L r15,72(,r13)
0000FE 90F0 2048 102 STM r15,r0,72(r2)
000102 9210 2000 103 MVI 0(r2),16
000106 50D0 2004 104 ST r13,4(,r2)
00010A 18D2 105 LR r13,r2
00010C 0530 106 BALR r3,r0
00010E End of Prolog
00010E 5840 C1F4 108 L r4,500(,r12)
000112 5010 D088 109 ST r1,136(,r13)

* }
00013 | * void funca(int* aa) {
00014 | * *aa = func_ptr();

000116 5870 D088 113 L r7,136(,r13)
00011A 5860 7000 114 L r6,0(,r7)
00011E 5870 **** 115 L r7,=Q(func_ptr)
000122 58F4 7000 116 L r15,0(r4,r7)
000126 05EF 117 BALR r14,r15
000128 50F0 6000 118 ST r15,0(,r6)

00015 | * return;

Figure 52. Pseudo Assembly Listing

...
==
| Writable Static Map |
==

OFFSET LENGTH FILE ID INPUT NAME

0 4 00001 func_ptr
8 18 00001 @STATIC...

Figure 53. Writable Static Map

94 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Debugging With Bad Branch Information
From LE/VSE V1R4.7 onwards, you can use the additional functionality described
in this topic to debug when an “application bad branch” results in a failure.

“Bad branch” information might be extracted by the run-time routines that
produce a dump. Such information is provided in the:
v Section of the dump that is contained under “Condition Information for Active

Routine” .
v Initial condition information message.

If the BEAR (breaking event address register) feature is active on the IBM
processor being used, LE/VSE will use this feature to produce the appropriate bad
branch information. If the BEAR feature is not active, the DSA information will be
used in an attempt to produce invalid branch details.

Figure 55 shows a sample using the same simple C program above when compiled
with the TEST(,SYM) option.

In addition to Figure 55, the same information will be shown in the “Condition
Information for Active Routines” dump section, as shown in Figure 56:

The output information of Figure 56 shows that a bad branch was detected from
line number 14 in entry point funca. A review of the program listing for Figure 56
produces this information:

...
C CAA information :
C Specific CTHD............. 0068E548
C Specific CEDB............. 0068D028...
WSA address.................0068EA18

ENCLAVE STORAGE:
Initial (User) Heap
+000000 0068D000 C8C1D5C3 00657480 00657480 00000000 0068D000 0068ED68 00008000 00006298 |HANC...........................q|...
+0019E0 0068E9E0 FFFFFFFF FFFFFFFF 03CB9694 03CB9694 03CB9694 03CB9694 03CB9640 E0BDADD0 |..........om..om..om..om..o|
+001A00 0068EA00 C05FA15A 7B4F5B7C 79000000 00000000 0068D000 00000028 00000000 00000000 |.^.!#|$@........................|
+001A20 0068EA20 9985A2A4 93A34096 864086A4 95838140 7E406C84 15000000 0068D000 00000148 |result of funca = %d............|...

Figure 54. CAA and Enclave Storage Information in Dump

CEE3201S The system detected an operation exception.
From compile unit DD:SYSIPT at entry point funca at compile unit offset -00500370 at address 00000000.
Possible Bad Branch: Statement: 14 Offset: +0000006A

Figure 55. Message Generated When Using TEST(,SYM) Option

Condition Information for Active Routines
Condition Information for DD:SYSIPT (DSA address 0052A288)

CIB Address: 00527508
Current Condition:

CEE3201S The system detected an operation exception.
Location:

Program Unit: DD:SYSIPT Entry: funca Statement: Offset: +00000000
Possible Bad Branch: Statement: 14 Offset: +0000006A

Figure 56. Condition Information for Active Routines When Using TEST(,SYM) Option

Chapter 4. Debugging C Routines 95

LINE STMT
*...+....1....+....2....+....3....+....4....+.

1 | #include <stdio.h>
2 | #include <stdlib.h>
3 | #include <errno.h>
4 | #include <signal.h>
5 | void funca(int* aa);
6 | int (*func_ptr)(void)=0;
7 | int main(void) {
8 | int aa;
9 1 | funca(&aa);
10 2 | printf("result of funca = %d\n",aa);
11 3 | return;
12 | }
13 | void funca(int* aa) {
14 4 | *aa = func_ptr();
15 5 | return; 16 | }

Line number 14 of the above program listing shows a call to an unresolved
func_ptr. This results in the operation exception. We can see this func_ptr as
unresolved by using this variable information that is contained in the LE-formatted
dump:

Enclave variables:
DD:SYSIPT:>func_ptr

signed int (*) (void)
0x0

96 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Chapter 5. Debugging COBOL Routines

This chapter provides information for debugging applications that contain one or
more COBOL routines. The chapter includes information about:
v Determining the source of error
v Generating COBOL listings and the LE/VSE dump
v Finding COBOL information in a dump
v Debugging example for COBOL routines

Determining the Source of Error
The following sections describe tasks that you can perform to determine the source
of error in your COBOL routine, and explain how the use of features such as the
DISPLAY statement, scope terminators, declaratives, and file status keys can simplify
the process of debugging COBOL routines. The following methods for determining
errors are covered:
v Tracing routine logic
v Finding and handling input/output errors
v Validating data
v Assessing switch problems
v Generating information about procedures

Tracing Routine Logic
You can add DISPLAY statements to help you trace through the logic of the routine
in a non-CICS environment. If, for example, you determine that the problem
appears in an EVALUATE statement or in a set of nested IF statements, DISPLAY
statements in each path tell you how the logic flows. You can also use DISPLAY
statements to show you the value of interim results.

For example, to check logic flow, you might insert:
DISPLAY "ENTER CHECK PROCEDURE"....
(checking procedure routine)...
DISPLAY "FINISHED CHECK PROCEDURE".

to determine whether you started and finished a particular routine. After you are
sure that the routine works correctly, put asterisks in position 7 of the DISPLAY
statement lines to convert them to comment lines. See IBM COBOL for VSE/ESA
Language Reference for a detailed description of the DISPLAY statement.

Scope terminators can also help you trace the logic of your routine because they
clearly indicate the end of a statement. See IBM COBOL for VSE/ESA Programming
Guide for a detailed description of scope terminators.

LE/VSE also provides the optional additional feature CEETRACE, which can be
used to trace program statement execution.

You can download the CEETRACE tool from this URL:

© Copyright IBM Corp. 1991, 2014 97

http://www.ibm.com/servers/eserver/zseries/zvse/downloads/tools.html

The file you download includes the documentation containing details of:
v how to activate the CEETRACE feature,
v which compile options are required to trace your application program,

Note: Before you run the routine in production, delete all debugging aids and
recompile the routine. The routine runs more efficiently and uses less storage.

Finding Input/Output Errors
VSAM file status keys can help you determine whether routine errors are due to
the logic of your routine or are I/O errors occurring on the storage media.

To use file status keys as a debugging aid, include a test after each I/O statement
to check for a value other than 0 in the status key. If the value is other than 0, you
can expect to receive an error message. You can use a nonzero value as an
indication to look at the way the I/O procedures in the routine were coded. You
can also include procedures to correct the error based on the status key value.

The status key values and their associated meanings are described in IBM COBOL
for VSE/ESA Language Reference

Handling Input/Output Errors
If you have determined that the problem lies in one of the I/O procedures in your
routine, you can include the USE EXCEPTION/ERROR declarative to help debug
the problem. If the file does not open, the appropriate EXCEPTION/ERROR
declarative is activated. You can specify the appropriate declarative for the file or
for the different open attributes—INPUT, OUTPUT, I/O, or EXTEND.

Code each USE AFTER STANDARD ERROR statement in a separate section. Code
this section immediately after the Declarative Section keyword of the Procedure
Division. See the rules for coding these statements in IBM COBOL for VSE/ESA
Language Reference

Validating Data (Class Test)
If you suspect that your routine is trying to perform arithmetic on nonnumeric
data or is somehow receiving the wrong type of data on an input record, you can
use the class test to validate the type of data. See IBM COBOL for VSE/ESA
Programming Guide for a detailed discussion of how to use the class test to check
for incompatible data.

Assessing Switch Problems
Using INITIALIZE or SET statements to initialize a table or variable is useful when
you suspect that a problem is caused by residual data left in those fields. If your
problem occurs intermittently and not always with the same data, the problem
could be that a switch is not initialized, but is generally set to the right value (0 or
1). By including a SET statement to ensure that the switch is initialized, you can
determine whether or not the uninitialized switch is the cause of the problem. See
IBM COBOL for VSE/ESA Programming Guide for a detailed discussion of how to
use the INITIALIZE and SET statements.

98 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

http://www.ibm.com/systems/z/os/zvse/downloads/tools.html

Generating Information about Procedures
You can use debugging lines in your source programs to generate debugg ing
information. Debugging lines are placed in your program anywhere after the
OBJECT-COMPUTER paragraph, and are identified by a 'D' in position 7.
Debugging lines allow you, for example, to check the value of a data-name at
certain points in a procedure.

You can also use debugging statements in your source programs to generate
debugging information. Debugging statements are coded in the Declaratives
Section of the Procedure Division. You can use the USE FOR DEBUGGING
declarative to include debugging statements in a COBOL routine and specify when
they should run. Use these statements to generate information about your routine
and how it is running.

For example, to check how many times a procedure is run, include a debugging
procedure in the USE FOR DEBUGGING declarative, adding 1 to a counter each
time control passes to that procedure.

Code each USE FOR DEBUGGING declarative in a separate section in the
Declaratives Section of the Procedure Division. See the rules for coding them in
IBM COBOL for VSE/ESA Language Reference

To use debugging lines and statements in your routine, you must include both:
v WITH DEBUGGING MODE in the SOURCE-COMPUTER paragraph in the

Environment Division
v The DEBUG run-time option

With USE FOR DEBUGGING, the TEST compile-time option must have the NONE
suboption specified or the NOTEST compile-time option must be specified.

Note: The TEST compile-time option and the DEBUG run-time option are
mutually exclusive, with DEBUG taking precedence.

The adding-to-a-counter technique can be used as a check for:
v How many times a PERFORM ran. This shows you whether the control flow

you are using is correct.
v How many times a loop routine actually runs. This tells you whether the loop is

running and whether the number you have used for the loop is accurate.

Figure 57 on page 100 shows how to use the DISPLAY statement and the USE FOR
DEBUGGING declarative to test a routine.

Chapter 5. Debugging COBOL Routines 99

In the example in Figure 57, portions of a routine are shown to illustrate the kind
of statements needed to use the USE FOR DEBUGGING declarative. The DISPLAY
statement specified in the Declaratives Section issues the:
Trace For Procedure-Name : 501-Some-Routine nn

message every time the PERFORM 501-SOME-ROUTINE runs. The total shown,
nn, is the value accumulated in the data item named TOTAL.

Another use for the DISPLAY statement technique shown above is to show the
flow through your routine. You do this by changing the USE FOR DEBUGGING
declarative in the Declaratives Section to:
USE FOR DEBUGGING ON ALL PROCEDURES.

and dropping the word TOTAL from the DISPLAY statement.

Environment Division
Source Computer . . . With Debugging Mode....
Data Division....
File Section.

Working-Storage Section.

/*(among other entries you would need:)*/

01 Trace-Msg PIC X(30)
Value " Trace for Procedure-Name : ".

01 Total PIC 99 Value Zeros.

/*(balance of Working-Storage Section)*/

Procedure Division.
Declaratives.
Debug-Declar Section.

Use For Debugging On 501-Some-Routine.
Debug-Declar-Paragraph.

Display Trace-Msg, Debug-Name, Total.
Debug-Declar-End.

Exit.

End Declaratives.

Begin-Program Section....
Perform 501-Some-Routine.

/*(within the module where you want to test, place:)*/

Add 1 To Total

/*(whether you put a period at the end depends on */
/* where you put this statement.) */

Figure 57. Example of Using the WITH DEBUGGING MODE Clause

100 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Using COBOL Listings
When you are debugging, you can use one or more of the following listings:
v Sorted Cross-Reference listing
v Data Map listing
v Verb Cross-Reference listing
v Procedure Division listings

This section gives an overview of each of these listings and specifies the
compile-time option you use to obtain each listing. For a detailed description of
available listings, sample listings, and a complete description of COBOL
compile-time options, see IBM COBOL for VSE/ESA Programming Guide

Table 31. Contents of Listing and Associated Compile-Time Options

Name
Compile-Time
Option Function

Sorted Cross-Reference
Listings

XREF Provides sorted cross-reference listings of DATA
DIVISION, PROCEDURE DIVISION, and routine
names. The listings provide the location of all
references to this information.

Data Map Listing MAP Provides information about the locations of all
DATA DIVISION items and all implicitly declared
variables. This option also supplies a nested
routine map, which indicates where the routines
are defined and provides routine attribute
information.

Verb Cross-Reference
Listing

VBREF Produces an alphabetic listing of all the verbs in
your routine and indicates where each is
referenced.

Procedure Division
Listings

LIST Tells the COBOL compiler to generate a listing of
the PROCEDURE DIVISION along with the
assembler coding produced by the compiler. The
list output includes the assembler source code, a
map of the task global table (TGT), information
about the location and size of
WORKING-STORAGE and control blocks, and
information about the location of literals and code
for dynamic storage usage.

Instead of the full PROCEDURE DIVISION listing
with assembler expansion information, you can
use the OFFSET compile-time option to get a
condensed listing that provides information about
the routine verb usage, global tables,
WORKING-STORAGE, and literals. The OFFSET
option takes precedence over the LIST option.
That is, OFFSET and LIST are mutually exclusive;
if you specify both, only OFFSET takes effect.

Generating an LE/VSE Dump of a COBOL Routine

Note: From LE/VSE 1.4.2 onwards, dumps taken with run-time option
TER(UADUMP...) or TER(DUMP...) are capable of generating a run-time options
report, independently of the setting for RPTOPTS(ON|OFF). For an example, see
Figure 71 on page 112.

Chapter 5. Debugging COBOL Routines 101

Consider the two sample routines shown in Figure 58 and Figure 59 on page 103.
In the examples, routine COBDUMP1 calls COBDUMP2 (sequence number
COB00330 in COBDUMP1), which in turn calls the LE/VSE dump service
CEE5DMP (sequence number COB00400 in COBDUMP2).

IDENTIFICATION DIVISION. COB00010
PROGRAM-ID. COBDUMP1. COB00020
AUTHOR. USER NAME COB00030

COB00040
ENVIRONMENT DIVISION. COB00050
INPUT-OUTPUT SECTION. COB00060
FILE-CONTROL. COB00070

SELECT SEQ-FILE1 COB00080
ASSIGN TO S-SYSFILE1 COB00090
ORGANIZATION IS SEQUENTIAL. COB00100

COB00110
DATA DIVISION. COB00120
FILE SECTION. COB00130
FD SEQ-FILE1 IS GLOBAL COB00140

RECORDING MODE V. COB00150
01 GLOBAL-REC1. COB00160

05 G1-OBJ1 PIC 9. COB00170
COB00180

WORKING-STORAGE SECTION. COB00190
01 SOME-WORKINGSTG. COB00200

05 SUB-LEVEL PIC X(80). COB00210
COB00220

01 SALARY-RECORDA. COB00230
02 NAMEA PIC X(10). COB00240
02 DEPTA PIC 9(4). COB00250
02 SALARYA PIC 9(6). COB00260

COB00270
COB00280

PROCEDURE DIVISION. COB00290
START-SEC. COB00300

DISPLAY "STARTING TEST COBDUMP1". COB00310
MOVE "THIS IS IN WORKING STORAGE" TO SUB-LEVEL. COB00320
CALL "COBDUMP2" USING SALARY-RECORDA. COB00330
DISPLAY "END OF TEST COBDUMP1" COB00340
STOP RUN. COB00350

END PROGRAM COBDUMP1. COB00360

Figure 58. COBOL Routine COBDUMP1 Calling COBDUMP2

102 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

The call in routine COBDUMP2 to CEE5DMP generates an LE/VSE dump, shown
in Figure 60. The dump includes a traceback section, which shows the names of
both routines; a section on register usage at the time the dump was generated; and
a variables section, which shows the stack frame and variable values for each
routine. Character fields in the dump are indicated by single quotes. For an
explanation of these sections of the dump, see “Finding COBOL Information in a
Dump” on page 105.

CEE5DMP V1 R4.2: COBOL/VSE DUMP 07/27/01 1:50:17 PM PAGE: 1

CEE5DMP CALLED BY PROGRAM UNIT COBDUMP2 AT STATEMENT 40 (OFFSET +000003EE).

REGISTERS ON ENTRY TO CEE5DMP:

PM....... 0000
GPR0..... 006B296C GPR1..... 006B29D0 GPR2..... 006B62E0 GPR3..... 006B61E0

IDENTIFICATION DIVISION. COB00010
PROGRAM-ID. COBDUMP2. COB00020
AUTHOR. USER NAME COB00030

COB00040
ENVIRONMENT DIVISION. COB00050
INPUT-OUTPUT SECTION. COB00060
FILE-CONTROL. COB00070

SELECT OPTIONAL IOFSS1 ASSIGN AS-ESDS1DD COB00080
ORGANIZATION SEQUENTIAL ACCESS SEQUENTIAL. COB00090

COB00100
DATA DIVISION. COB00110
FILE SECTION. COB00120
FD IOFSS1 GLOBAL. COB00130

1 IOFSS1R PIC X(40). COB00140
COB00150

WORKING-STORAGE SECTION. COB00160
01 Temp4. COB00170

05 a-1 occurs 2 times. COB00180
10 a-2 occurs 2 times. COB00190

15 a-3v pic x(3). COB00200
15 a-6 Picture x(3). COB00210

77 DMPTITLE PIC X(80). COB00220
77 OPTIONS PIC X(255). COB00230
77 FC PIC X(12). COB00240

COB00250
LINKAGE SECTION. COB00260
01 SALARY-RECORD. COB00270
02 NAME PIC X(10). COB00280
02 DEPT PIC 9(4). COB00290
02 SALARY PIC 9(6). COB00300

COB00310
PROCEDURE DIVISION USING SALARY-RECORD. COB00320
START-SEC. COB00330

DISPLAY "STARTING TEST COBDUMP2" COB00340
MOVE "COBOL/VSE DUMP" TO DMPTITLE. COB00350
MOVE "XXX" to a-6(1, 1). COB00360
MOVE "YYY" to a-6(1, 2). COB00370
MOVE "ZZZ" to a-6(2, 1). COB00380
MOVE " BLOCKS STORAGE PAGE(55) FILES" TO OPTIONS. COB00390
CALL "CEE5DMP" USING DMPTITLE, OPTIONS, FC. COB00400
DISPLAY "END OF TEST COBDUMP2" COB00410
GOBACK. COB00420

END PROGRAM COBDUMP2. COB00430

Figure 59. COBOL Routine COBDUMP2 Calling the LE/VSE Dump Service

Figure 60. Sections of the LE/VSE Dump Called from COBDUMP2

Chapter 5. Debugging COBOL Routines 103

GPR4..... 005027F0 GPR5..... 006B2038 GPR6..... 0065D1AC GPR7..... 00000000
GPR8..... 0065DA70 GPR9..... 006B6178 GPR10.... 005028CC GPR11.... 00502A70
GPR12.... 00657E48 GPR13.... 006B2828 GPR14.... 8067FEEE GPR15.... 83A01D68
FPR0..... 40404040 40404040 FPR2..... 40404040 40404040
FPR4..... 40404040 40404040 FPR6..... 40404040 40404040...
GPREG STORAGE:
STORAGE AROUND GPR 0 (006B2170)
-0020 006B2150 00000000 00000000 00000000 00000000 006B6038 006B6070 00000000 00000000 |.................,-..,-.........|
+0000 006B2170 006B0588 00000000 005004AC 07FE07FE 00000000 00000000 00001FFF 07FE0000 |.,.h.....&......................|
+0020 006B2190 00000000 0000C3D6 C2C4E4D4 D7F24040 40404040 40404040 40404040 40404040 |......COBDUMP2 |

STORAGE AROUND GPR 1 (006B21D8)
-0020 006B21B8 00500354 00500354 006B2210 C0000000 00000000 00000000 006B2310 00000000 |.&...&...,...............,......|
+0000 006B21D8 806B60C0 00000000 006B2038 006B0450 006B2210 006B2310 006B6038 006B6070 |.,-......,...,.&.,...,...,-..,-.|
+0020 006B21F8 006B2000 000001C8 000001C0 00000000 006B6028 006B0440 C6C3C200 01020000 |.,.....H.........,-..,. FCB.....|...

STORAGE AROUND GPR15 (005027B8)
-0020 00502798 0050274A 00000000 00000000 00000000 00000000 00502350 00000000 00000000 |.&...................&.&........|
+0000 005027B8 47F0F028 00C3C5C5 00000000 00000014 47F0F001 4ACEAC00 00502864 00000000 |.00..CEE.........00......&......|
+0020 005027D8 00000000 00000000 90ECD00C 4110F038 98EFF04C 07FF0000 005027B8 005028AC |..............0.q.0<.....&...&..|

INFORMATION FOR ENCLAVE COBDUMP1

INFORMATION FOR THREAD 8000000000000000

REGISTERS ON ENTRY TO CEE5DMP:
PM....... 0000
GPR0..... 006B296C GPR1..... 006B29D0 GPR2..... 006B62E0 GPR3..... 006B61E0
GPR4..... 005027F0 GPR5..... 006B2038 GPR6..... 0065D1AC GPR7..... 00000000
GPR8..... 0065DA70 GPR9..... 006B6178 GPR10.... 005028CC GPR11.... 00502A70
GPR12.... 00657E48 GPR13.... 006B2828 GPR14.... 8067FEEE GPR15.... 83A01D68
FPR0..... 40404040 40404040 FPR2..... 40404040 40404040
FPR4..... 40404040 40404040 FPR6..... 40404040 40404040...

TRACEBACK:
DSA ADDR PROGRAM UNIT PU ADDR PU OFFSET ENTRY E ADDR E OFFSET STATEMENT STATUS
006B2828 COBDUMP2 005027B8 +000003EE COBDUMP2 005027B8 +000003EE 40 CALL
006B2038 COBDUMP1 00500078 +00000394 COBDUMP1 00500078 +00000394 33 CALL

PARAMETERS, REGISTERS, AND VARIABLES FOR ACTIVE ROUTINES:
COBDUMP2 (DSA ADDRESS 006B2828):
SAVED REGISTERS:
GPR0..... 006B296C GPR1..... 006B29D0 GPR2..... 006B62E0 GPR3..... 006B61E0
GPR4..... 005027F0 GPR5..... 006B2038 GPR6..... 0065D1AC GPR7..... 00000000
GPR8..... 0065DA70 GPR9..... 006B6178 GPR10.... 005028CC GPR11.... 00502A70
GPR12.... 00657E48 GPR13.... 006B2828 GPR14.... 8067FEEE GPR15.... 83A01D68...

LOCAL VARIABLES:
13 IOFSS1 FILE SPECIFIED AS: OPTIONAL, ORGANIZATION=VSAM SEQUENTIAL,

ACCESS MODE=SEQUENTIAL, RECFM=FIXED. CURRENT STATUS OF
FILE IS: NOT OPEN, VSAM STATUS CODE=00, VSAM FEEDBACK=000,
VSAM RET CODE=000, VSAM FUNCTION CODE=000.

14 01 IOFSS1R X(40) DISP ’ ’
17 01 TEMP4 AN-GR
18 02 A-1 AN-GR OCCURS 2
19 03 A-2 AN-GR OCCURS 2
20 04 A-3V XXX

SUB(1,1) DISP ’ ’
SUB(1,2) TO SUB(2,2) ELEMENTS SAME AS ABOVE.

21 04 A-6 XXX
SUB(1,1) DISP ’XXX’
SUB(1,2) ’YYY’
SUB(2,1) ’ZZZ’
SUB(2,2) ’ ’

22 77 DMPTITLE X(80) DISP ’COBOL/VSE DUMP
’

23 77 OPTIONS X(255) DISP ’ BLOCKS STORAGE PAGE(55) FILES

’
24 77 FC X(12) DISP ’ ’
27 01 SALARY-RECORD AN-GR
28 02 NAME X(10) DISP ’ ’
29 02 DEPT 9999 DISP
30 02 SALARY 9(6) DISP

COBDUMP1 (DSA ADDRESS 006B2038):
SAVED REGISTERS:
GPR0..... 006B2170 GPR1..... 006B21D8 GPR2..... 006B60C0 GPR3..... 0050039A
GPR4..... 005000B0 GPR5..... 006B0188 GPR6..... 0065D1AC GPR7..... 00000000
GPR8..... 0065DA70 GPR9..... 006B6070 GPR10.... 0050018C GPR11.... 00500324
GPR12.... 00657E48 GPR13.... 006B2038 GPR14.... 8050040E GPR15.... 005027B8

LOCAL VARIABLES:
14 SEQ-FILE1 FILE SPECIFIED AS: ORGANIZATION=SEQUENTIAL, ACCESS

MODE=SEQUENTIAL, RECFM=VARIABLE. CURRENT STATUS OF FILE
IS: NOT OPEN, SAM STATUS CODE=00.

16 01 GLOBAL-REC1 AN-GR
17 02 G1-OBJ1 9 *** Invalid address for this item, no value displayed ***
20 01 SOME-WORKINGSTG AN-GR
21 02 SUB-LEVEL X(80) DISP ’THIS IS IN WORKING STORAGE

104 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

’
23 01 SALARY-RECORDA AN-GR
24 02 NAMEA X(10) DISP ’ ’
25 02 DEPTA 9999 DISP
26 02 SALARYA 9(6) DISP...

Finding COBOL Information in a Dump
In addition to the standard LE/VSE dump format, dumps generated from COBOL
routines contain:
v Control block information for active routines
v Storage for each active routine
v Enclave-level data
v Process-level data

Control Block Information for Active Routines
The Control Blocks for Active Routines section of the dump, shown in Figure 61,
displays the following information for each active COBOL routine:
v Program Message
v COBOL compiler Version, Release, Modification, and User Level
v COBOL control blocks TGT, CLLE, FCB, FIB, and GMAREA

PROGRAM COBDUMP2 WAS COMPILED 07/27/01 1:48:57 PM

COBOL VERSION = 01 RELEASE = 01 MODIFICATION = 01 USER LEVEL = ’ ’
TGT FOR COBDUMP2: 006B2828
+000000 006B2828 00108001 006B2038 00690018 8067FEEE 83A01D68 006B296C 006B29D0 006B62E0 |.....,..........c....,.%.,...,..|
+000020 006B2848 006B61E0 005027F0 006B2038 0065D1AC 00000000 0065DA70 006B6178 005028CC |.,/..&.0.,....J..........,/..&..|
+000040 006B2868 00502A70 00657E48 F3E3C7E3 00690018 03000000 43030220 006B0188 0065D7EC |.&....=.3TGT.............,.h..P.|
+000060 006B2888 006B29E0 00000001 00000174 80502BA8 00000000 006B6130 00000000 00000000 |.,...........&.y.....,/.........|...

CLLE FOR COBDUMP2: 006B0588
+000000 006B0588 C3D6C2C4 E4D4D7F2 00000100 00000000 84810000 005027B8 006B2828 00500078 |COBDUMP2........da...&...,...&..|
+000020 006B05A8 00000000 006B26D4 006B27E0 006B0408 006B0000 00000088 C3E2E3D2 00000000 |.....,.M.,...,...,.....hCSTK....|

DSA FOR COBDUMP1: 006B2038
+000000 FLAGS.... 0010 member... 8001 BKC...... 00658608 FWC...... 00000000 R14...... 8050040E
+000010 R15...... 005027B8 R0....... 006B2170 R1....... 006B21D8 R2....... 006B60C0 R3....... 0050039A
+000024 R4....... 005000B0 R5....... 006B0188 R6....... 0065D1AC R7....... 00000000 R8....... 0065DA70
+000038 R9....... 006B6070 R10...... 0050018C R11...... 00500324 R12...... 00657E48 reserved. F3E3C7E3
+00004C NAB...... 00690018 PNAB..... 03000000 reserved. 65030220 006B0188 0065D7EC 006B21E0
+000064 reserved. 00000001 reserved. 00000064 MODE..... 00000000 reserved. 00000000 006B6028
+000078 reserved. 00000000 reserved. 00000000

PROGRAM COBDUMP1 WAS COMPILED 07/27/01 1:50:13 PM
COBOL VERSION = 01 RELEASE = 01 MODIFICATION = 01 USER LEVEL = ’ ’
TGT FOR COBDUMP1: 006B2038
+000000 006B2038 00108001 00658608 00000000 8050040E 005027B8 006B2170 006B21D8 006B60C0 |......f......&...&...,...,.Q.,-.|
+000020 006B2058 0050039A 005000B0 006B0188 0065D1AC 00000000 0065DA70 006B6070 0050018C |.&...&...,.h..J..........,-..&..|
+000040 006B2078 00500324 00657E48 F3E3C7E3 00690018 03000000 65030220 006B0188 0065D7EC |.&....=.3TGT.............,.h..P.|
+000060 006B2098 006B21E0 00000001 00000064 00000000 00000000 006B6028 00000000 00000000 |.,...................,-.........|
+000080 006B20B8 00657E48 000001A8 00000000 00000000 00000001 00000001 E2E8E2D6 E4E34040 |..=....y................SYSOUT |
+0000A0 006B20D8 C9C7E9E2 D9E3C3C4 00000000 00000000 00000000 00000000 00000000 00000000 |IGZSRTCD........................|
+0000C0 006B20F8 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 |................................|
+0000E0 006B2118 00000000 00000000 0050016C 00000001 006B21C4 006B0408 005001F0 006B2174 |.........&.%.....,.D.,...&.0.,..|
+000100 006B2138 00500078 00500190 006B21B8 00500188 006B21C0 006B6070 00000000 00000000 |.&...&...,...&.h.,...,-.........|
+000120 006B2158 00000000 00000000 006B6038 006B6070 00000000 00000000 006B0588 00000000 |.........,-..,-..........,.h....|
+000140 006B2178 005004AC 07FE07FE 00000000 00000000 00001FFF 07FE0000 00000000 0000C3D6 |.&............................CO|
+000160 006B2198 C2C4E4D4 D7F24040 40404040 40404040 40404040 40404040 40404040 00000000 |BDUMP2|
+000180 006B21B8 00500354 00500354 006B2210 C0000000 00000000 00000000 006B2310 00000000 |.&...&...,...............,......|
+0001A0 006B21D8 806B60C0 00000000 006B2038 006B0450 006B2210 006B2310 006B6038 006B6070 |.,-......,...,.&.,...,...,-..,-.|

CLLE FOR COBDUMP1: 006B0408
+000000 006B0408 C3D6C2C4 E4D4D7F1 00000100 00000000 94810000 00500078 006B2038 00500078 |COBDUMP1........ma...&...,...&..|
+000020 006B0428 00000000 00000000 00000000 00000000 006B0000 00000080 00000078 00000000 |.................,..............|...

Figure 61. Control Block Information for Active COBOL Routines

Chapter 5. Debugging COBOL Routines 105

Storage for Each Active Routine
The Storage for Active Routines section of the dump, shown in Figure 62, displays
the following information for each COBOL routine:
v Routine name
v Contents of the base locators for files, WORKING-STORAGE, the linkage

section, variably located areas, and EXTERNAL data.
v Working storage, including the base locator for working storage (BLW) and

program class storage

Enclave Level Data
The Enclave Storage section of the dump, shown in Figure 63 on page 107,
provides the following information:
v RUNCOM enclave control block
v Storage for all run units

...
STORAGE FOR ACTIVE ROUTINES:
COBDUMP2:
CONTENTS OF BASE LOCATORS FOR FILES ARE:

0-006B60F8

CONTENTS OF BASE LOCATORS FOR WORKING STORAGE ARE:
0-006B6178

CONTENTS OF BASE LOCATORS FOR THE LINKAGE SECTION ARE:
1-00000000 2-006B60C0

NO VARIABLY LOCATED AREAS WERE USED IN THIS PROGRAM.

NO EXTERNAL DATA WAS USED IN THIS PROGRAM.

NO INDEXES WERE USED IN THIS PROGRAM.

ESDS1DD (BLF-0): 006B60F8
+000000 006B60F8 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 |................................|
+000020 006B6118 00000000 00000000 00000000 00000000 006B6000 000001D0 000001C8 00000000 |.................,-........H....|

WORKING STORAGE FOR COBDUMP2
BLW-0: 006B6178
+000000 006B6178 000000E7 E7E70000 00E8E8E8 000000E9 E9E90000 00000000 C3D6C2D6 D361E5E2 |...XXX...YYY...ZZZ......COBOL/VS|
+000020 006B6198 C540C4E4 D4D74040 40404040 40404040 40404040 40404040 40404040 40404040 |E DUMP |
+000040 006B61B8 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 | |
+000060 006B61D8 40404040 40404040 40C2D3D6 C3D2E240 E2E3D6D9 C1C7C540 D7C1C7C5 4DF5F55D | BLOCKS STORAGE PAGE(55)|
+000080 006B61F8 40C6C9D3 C5E24040 40404040 40404040 40404040 40404040 40404040 40404040 | FILES |
+0000A0 006B6218 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 | |
+0000C0 006B6238 - +00015F 006B62D7 SAME AS ABOVE
+000160 006B62D8 40404040 40404000 00000000 00000000 00000000 00000000 00000000 00000000 ||

PROGRAM CLASS STORAGE: 006B6130
+000000 006B6130 000001C8 00000000 00000000 006B2A00 00000000 00000000 00000000 00000000 |...H.........,..................|
+000020 006B6150 00000000 00000000 E2E8E2D6 E4E34040 00000000 00000000 0E000000 00000000 |........SYSOUT|
+000040 006B6170 0F000000 00000000 000000E7 E7E70000 00E8E8E8 000000E9 E9E90000 00000000 |...........XXX...YYY...ZZZ......|
+000060 006B6190 C3D6C2D6 D361E5E2 C540C4E4 D4D74040 40404040 40404040 40404040 40404040 |COBOL/VSE DUMP |...

Figure 62. Storage for Active COBOL Routines

106 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Process Level Data

This section of the dump, shown in Figure 64, displays COBOL process level
control blocks THDCOM, COBCOM, COBVEC, and ITBLK 4.

4. In a non-CICS environment, the ITBLK control block only appears when a VS COBOL II or DOS/VS COBOL routine is active. In
a CICS environment, the ITBLK control block always appears.

...
ENCLAVE CONTROL BLOCKS:...
RUNCOM: 006B0188
+000000 006B0188 C3F3D9E4 D5C3D6D4 00000268 00A00040 00657060 00000000 00438000 00000000 |C3RUNCOM....... ...-............|
+000020 006B01A8 00000000 00500078 006B0408 00000000 001F9160 00000000 00500078 00000000 |.....&...,........j-.....&......|
+000040 006B01C8 0065DA70 0065D1AC 00000000 0065D7EC 00000000 00000000 00657E48 00000000 |......J.......P...........=.....|
+000060 006B01E8 00000000 006B2818 006B2038 00000000 00000000 F0F0F0F0 F0F0F0F0 006B27E0 |.....,...,..........00000000.,..|...

ENCLAVE STORAGE:...
RUNUNIT CLASS STORAGE: 006B2818
+000000 006B2818 000001E0 00000000 00000000 006B0578 00108001 006B2038 00690018 8067FEEE |.............,.......,..........|
+000020 006B2838 83A01D68 006B296C 006B29D0 006B62E0 006B61E0 005027F0 006B2038 0065D1AC |c....,.%.,...,...,/..&.0.,....J.|...

RUNUNIT CLASS STORAGE: 006B0578
+000000 006B0578 00000040 00000000 006B2818 006B23C8 C3D6C2C4 E4D4D7F2 00000100 00000000 |...,...,.HCOBDUMP2........|
+000020 006B0598 84810000 005027B8 006B2828 00500078 00000000 006B26D4 006B27E0 006B0408 |da...&...,...&.......,.M.,...,..|

RUNUNIT CLASS STORAGE: 006B23C8
+000000 006B23C8 00000448 00000000 006B0578 006B04C0 C8C1E340 00000100 00000000 00000000 |.........,...,..HAT|
+000020 006B23E8 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 |................................|...

RUNUNIT CLASS STORAGE: 006B04C0
+000000 006B04C0 000000B0 00000000 006B23C8 006B2028 00000000 00000000 00000000 00000000 |.........,.H.,..................|
+000020 006B04E0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 |................................|...

RUNUNIT CLASS STORAGE: 006B2028
+000000 006B2028 000001D0 00000000 006B04C0 006B03F8 00108001 00658608 00000000 8050040E |.........,...,.8......f......&..|
+000020 006B2048 005027B8 006B2170 006B21D8 006B60C0 0050039A 005000B0 006B0188 0065D1AC |.&...,...,.Q.,-..&...&...,.h..J.|...

RUNUNIT CLASS STORAGE: 006B03F8
+000000 006B03F8 00000040 00000000 006B2028 00000000 C3D6C2C4 E4D4D7F1 00000100 00000000 |...,......COBDUMP1........|
+000020 006B0418 94810000 00500078 006B2038 00500078 00000000 00000000 00000000 00000000 |ma...&...,...&..................|...

Figure 63. Enclave Level Data for COBOL Routines

...
PROCESS CONTROL BLOCKS:...
THDCOM: 0065DA70
+000000 0065DA70 C3F3E3C8 C4C3D6D4 000001E8 81000000 00000100 00000000 0065D0F8 0065D1AC |C3THDCOM...Ya..............8..J.|
+000020 0065DA90 006AF188 00000000 C3D6C2C4 E4D4D7F1 00000000 00000000 00000000 00000000 |..1h....COBDUMP1................|
+000040 0065DAB0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 |................................|...

COBCOM: 0065D0F8
+000000 0065D0F8 C3F3C3D6 C2C3D6D4 00000978 00000000 00000000 00000000 00000000 00000000 |C3COBCOM........................|
+000020 0065D118 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 |................................|
+000040 0065D138 00000000 00000000 00000000 00000000 00000000 00000000 908100D6 0065D1AC |.........................a.O..J.|...

COBVEC: 0065D1AC
+000000 0065D1AC 0065D42C 0065D432 0065D438 0065D43E 0065D444 0065D44A 0065D450 0065D456 |..M...M...M...M...M...M...M&..M.|
+000020 0065D1CC 0065D45C 0065D462 0065D468 0065D46E 0065D474 0065D47A 0065D480 0065D486 |..M*..M...M...M>..M...M:..M...Mf|
+000040 0065D1EC 0065D48C 0065D492 0065D498 0065D49E 0065D4A4 0065D4AA 0065D4B0 0065D4B6 |..M...Mk..Mq..M...Mu..M...M...M.|...

Figure 64. Process Level Control Blocks for COBOL Routines

Chapter 5. Debugging COBOL Routines 107

Debugging Example COBOL Routines
The following examples help demonstrate techniques for debugging COBOL
routines. Important areas of the dump output are highlighted. Data unnecessary to
debugging has been replaced by ellipses.

Note: These examples were run using the CHECK(ON) run-time option. If the
(default) CHECK(OFF) run-time option was used, the SSRANGE compile would not
have had any effect!.

Subscript Range Error
Figure 65 illustrates the error of moving a value outside the range of an array. The
COBOLX routine was compiled with LIST, TEST(STMT,SYM), and SSRANGE. The
SSRANGE compile-time option causes the compiler to generate code that checks
during run time for data that has been stored or referenced outside of its defined
area because of incorrect indexing and subscripting. The SSRANGE option takes
effect during run time, unless you specify CHECK(OFF) as a run-time option.

The routine was run with TERMTHDACT(TRACE) to generate the traceback
information shown in Figure 66 on page 109.

To understand the traceback information and debug this routine, use the following
steps:
1. Locate the current error message in the Condition Information for Active

Routines section of the LE/VSE traceback, shown in Figure 66 on page 109. The
message is IGZ0006S The reference to table SLOT by verb number 01 on line
000011 addressed an area outside the region of the table. The message
indicates that line 11 was the current COBOL statement when the error
occurred. For more information about this message, see Chapter 12, “COBOL
Run-Time Messages,” on page 299.

2. Statement 11 in the traceback section of the dump occurred in routine
COBOLX.

CBL LIST,SSRANGE,TEST(STMT,SYM) DX100010
ID DIVISION. DX100020
PROGRAM-ID. COBOLX. DX100030
ENVIRONMENT DIVISION. DX100040
DATA DIVISION. DX100050
WORKING-STORAGE SECTION. DX100060
77 J PIC 9(4) USAGE COMP. DX100070
01 TABLE-X. DX100080
02 SLOT PIC 9(4) USAGE COMP OCCURS 8 TIMES. DX100090
PROCEDURE DIVISION. DX100100

MOVE 9 TO J. DX100110
MOVE 1 TO SLOT (J). DX100120
GOBACK. DX100130

Figure 65. COBOLX Example of Moving a Value Outside an Array Range

108 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

3. Find the statement on line 11 in the listing for routine COBOLX, shown in
Figure 67 on page 110. This statement moves the 1 value to the array SLOT (J).

CEE5DMP V1 R4.2: CONDITION PROCESSING RESULTED IN THE UNHANDLED CONDITION. 07/27/01 1:51:50 PM PAGE: 1
INFORMATION FOR ENCLAVE COBOLX

INFORMATION FOR THREAD 8000000000000000

TRACEBACK:
DSA ADDR PROGRAM UNIT PU ADDR PU OFFSET ENTRY E ADDR E OFFSET STATEMENT STATUS
0068D018 CEEHDSP 03A58D38 +000032C0 CEEHDSP 03A58D38 +000032C0 CALL
00690528 CEEHSGLT 03A62890 +0000005C CEEHSGLT 03A62890 +0000005C EXCEPTION
00690018 IGZCMSG 0066C688 +0000037A IGZCMSG 0066C688 +0000037A CALL
00501978 COBOLX 00500078 +0000021C COBOLX 00500078 +0000021C 11 CALL

CONDITION INFORMATION FOR ACTIVE ROUTINES
CONDITION INFORMATION FOR CEEHSGLT (DSA ADDRESS 00690528)
CIB ADDRESS: 0068D528
CURRENT CONDITION:
IGZ0006S THE REFERENCE TO TABLE SLOT BY VERB NUMBER 01 ON LINE 000011 ADDRESSED AN AREA OUTSIDE THE REGION OF THE TABLE.

LOCATION:
PROGRAM UNIT: CEEHSGLT ENTRY: CEEHSGLT STATEMENT: OFFSET: +0000005C

STORAGE DUMP NEAR CONDITION, BEGINNING AT LOCATION: 03A628DC
+000000 03A628DC F010D20B D0801000 58A0C2B8 58F0A01C 05EFD20B D098B118 41A0D098 50A0D08C |0.K.......B..0....K..q.....q&...|

PARAMETERS, REGISTERS, AND VARIABLES FOR ACTIVE ROUTINES:
CEEHDSP (DSA ADDRESS 0068D018):
SAVED REGISTERS:
GPR0..... 0068D704 GPR1..... 0068D3BC GPR2..... 0068D528 GPR3..... 0068D4D7
GPR4..... 03A5C628 GPR5..... 0068E018 GPR6..... 03A5CD34 GPR7..... 0068E017
GPR8..... 03A5BD35 GPR9..... 03A5AD36 GPR10.... 03A59D37 GPR11.... 83A58D38
GPR12.... 00657E48 GPR13.... 0068D018 GPR14.... 8067FEEE GPR15.... 83A01D68

GPREG STORAGE:
STORAGE AROUND GPR 0 (0068D704)
-0020 0068D6E4 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 |................................|
+0000 0068D704 E9D4C3C8 00D00001 00690528 006901E8 006901E8 00000000 0067F038 0067F038 |ZMCH...........Y...Y......0...0.|
+0020 0068D724 005001DE 00000005 0065DA70 00501978 0067F038 83A62890 00657E48 00690528 |.&...........&....0.cw....=.....|...

CEEHSGLT (DSA ADDRESS 00690528):
SAVED REGISTERS:
GPR0..... 00690528 GPR1..... 006901E8 GPR2..... 006901E8 GPR3..... 00000000
GPR4..... 0067F038 GPR5..... 0067F038 GPR6..... 005001DE GPR7..... 00000005
GPR8..... 0065DA70 GPR9..... 00501978 GPR10.... 0067F038 GPR11.... 83A62890
GPR12.... 00657E48 GPR13.... 00690528 GPR14.... 8067FEDA GPR15.... 801FD878

GPREG STORAGE:
STORAGE AROUND GPR 0 (00690528)
-0020 00690508 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40400000 | ..|
+0000 00690528 00000000 00690018 006905E8 8067FEDA 801FD878 00690528 006901E8 006901E8 |...........Y......Q........Y...Y|
+0020 00690548 00000000 0067F038 0067F038 005001DE 00000005 0065DA70 00501978 0067F038 |......0...0..&...........&....0.|...

IGZCMSG (DSA ADDRESS 00690018):
SAVED REGISTERS:
GPR0..... 00690528 GPR1..... 006901E8 GPR2..... 006901E8 GPR3..... 00000000
GPR4..... 0067F038 GPR5..... 0067F038 GPR6..... 005001DE GPR7..... 00000005
GPR8..... 0065DA70 GPR9..... 00501978 GPR10.... 006B0188 GPR11.... 8066C688
GPR12.... 00657E48 GPR13.... 00690018 GPR14.... 8068344A GPR15.... 83A62890

GPREG STORAGE:
STORAGE AROUND GPR 0 (00690528)
-0020 00690508 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40400000 | ..|
+0000 00690528 00000000 00690018 006905E8 8067FEDA 801FD878 00690528 006901E8 006901E8 |...........Y......Q........Y...Y|...

COBOLX (DSA ADDRESS 00501978):
SAVED REGISTERS:
GPR0..... 00690128 GPR1..... 005001DE GPR2..... 00000010 GPR3..... 0065D1AC
GPR4..... 005000B0 GPR5..... 006B0188 GPR6..... 0065D1AC GPR7..... 00000000
GPR8..... 0065DA70 GPR9..... 00501B40 GPR10.... 00500174 GPR11.... 00500248
GPR12.... 0050016C GPR13.... 00501978 GPR14.... 40500296 GPR15.... 8066C688

GPREG STORAGE:
STORAGE AROUND GPR 0 (00690128)
-0020 00690108 00657180 00000000 00000000 00000000 00000000 00000000 00000000 00000000 |................................|
+0000 00690128 00101001 00690018 00000078 8066C688 001E0000 00000008 00000000 00000000 |..............Fh................|...

LOCAL VARIABLES:
6 77 J 9999 COMP 00009
7 01 TABLE-X AN-GR
8 02 SLOT 9999 OCCURS 8

SUB(1) COMP 00000
SUB(2) TO SUB(8) ELEMENTS SAME AS ABOVE.

Figure 66. Sections of LE/VSE Dump for COBOLX

Chapter 5. Debugging COBOL Routines 109

4. Find the values of the local variables in the Arguments, Registers, and Variables
for Active Routines section of the traceback, shown in Figure 66 on page 109. J,
which is of type PIC 9(4) with usage COMP, has a 9 value. J is the index to the
array SLOT.

Note: The array SLOT contains eight positions. When the routine tries to move
a value into the J or 9th element of the 8-element array named SLOT, the error
of moving a value outside the area of the array occurs.

Calling a Nonexistent Subroutine
Figure 68 demonstrates the error of calling a nonexistent subroutine in a COBOL
routine. In this example, the routine COBOLY was compiled with the compile-time
options LIST and MAP, and run with the run-time option TERMTHDACT(DUMP).
Figure 68 shows the routine.

To understand the traceback information and debug this routine, use the following
steps:
1. Locate the error message for the current condition under the “Condition

Information for Active Routines” section of the dump, shown in Figure 69 on
page 111. The message is CEE3501S The phase phase name was not found. For
more information about this message, see Chapter 8, “LE/VSE Run-Time
Messages,” on page 155.

2. Note the sequence of calls in the Traceback section of the dump. COBOLY
called IGZCLNK; IGZCLNK (a COBOL library subroutine used for dynamic

PP 5686-068 IBM COBOL FOR VSE/ESA 1.1.1 DATE 07/27/2001 TIME 13:51:47 PAGE 2
NOWORD
XREF(SHORT)
YEARWINDOW(1900)
ZWB

PP 5686-068 IBM COBOL FOR VSE/ESA 1.1.1 COBOLX DATE 07/27/2001 TIME 13:51:47 PAGE 3
LINEID PL SL ----+-*A-1-B--+----2----+----3----+----4----+----5----+----6----+----7-|--+----8 MAP AND CROSS REFERENCE

/* COBOLX
000001 ID DIVISION.
000002 PROGRAM-ID. COBOLX.
000003 ENVIRONMENT DIVISION.
000004 DATA DIVISION.
000005 WORKING-STORAGE SECTION.
000006 77 J PIC 9(4) USAGE COMP. BLW=0000+000 2C
000007 01 TABLE-X. BLW=0000+008 0CL16
000008 02 SLOT PIC 9(4) USAGE COMP OCCURS 8 TIMES. BLW=0000+008,0000000 2C
000009 PROCEDURE DIVISION.
000010 MOVE 9 TO J. 6
000011 MOVE 1 TO SLOT (J). 8 6
000012 GOBACK....

Figure 67. COBOLX Listing

CBL LIST,MAP DX200010
ID DIVISION. DX200020
PROGRAM-ID. COBOLY. DX200030
ENVIRONMENT DIVISION. DX200040
DATA DIVISION. DX200050
WORKING-STORAGE SECTION. DX200060
77 SUBNAME PIC X(8) USAGE DISPLAY. DX200070
PROCEDURE DIVISION. DX200080

MOVE "COBSUB1" TO SUBNAME. DX200090
CALL SUBNAME. DX200100
GOBACK. DX200110

Figure 68. COBOLY Example of Calling a Nonexistent Subroutine

110 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

calls) called IGZCLDL; then IGZCLDL (a COBOL library subroutine used to
load routines) attempted to load and call a nonexistent routine. This caused an
exception, resulting in a call to CEEHDSP.
This sequence indicates that the exception occurred in IGZCLDL when
COBOLY was attempting to make a dynamic call.

Note:

a. COBOLY was compiled with the SYM sub-option of the TEST compile-time
option.

b. The call statement in COBOLY is located at offset “+0000030C”.

CEE5DMP V1 R4.6: Condition processing resulted in the unhandled condition. 06/26/08 1:18:55 PM Page: 1

Information for enclave COBOLY

Information for thread 8000000000000000

Traceback:
DSA Addr Program Unit PU Addr PU Offset Entry E Addr E Offset Statement Service Status
0069E018 CEEHDSP 03AA25B8 +00002BA8 CEEHDSP 03AA25B8 +00002BA8 LE146GA Call
006A11D0 IGZCLDL 00677568 +000000F4 IGZCLDL 00677568 +000000F4 LE146GA Exception
006A1018 IGZCLNK 00640200 +00000478 IGZCLNK 00640200 +00000478 LE146GA Call
005019E0 COBOLY 00500078 +0000030C COBOLY 00500078 +0000030C 9 Call

Condition Information for Active Routines
Condition Information for IGZCLDL (DSA address 006A11D0)
CIB Address: 0069E508
Current Condition:
CEE0198S The termination of a thread was signaled due to an unhandled condition.

Original Condition:
CEE3501S The phase COBSUB1 was not found.

Location:
Program Unit: IGZCLDL Entry: IGZCLDL Statement: Offset: +000000F4

Storage dump near condition, beginning at location: 0067764C
+000000 0067764C 30045060 30085850 C2B81813 58F0501C 05EF47F0 B21A41A0 000850A0 D0D85070 !..&-...&B...0&....0......&..Q&.!...

Parameters, Registers, and Variables for Active Routines:...

3. Use the offset of X'0000030C' from the COBOL listing, shown in Figure 70, to
locate the statement that caused the exception in the COBOLY routine. The
offset X'0000030C' is an instruction for statement 9. Statement 9 is a call with
the identifier SUBNAME specified.

Note: In the Data Division Map, SUBNAME is at Base Locator for Working
Storage (BLW) 0 with offset of 0. This offset points to the SUBNAME value.

PP 5686-068 IBM COBOL FOR VSE/ESA 1.1.1 COBOLY DATE 06/26/2008 TIME 13:18:53 PAGE 3
LINEID PL SL ----+-*A-1-B--+----2----+----3----+----4----+----5----+----6----+----7-!--+----8 MAP AND CROSS REFERENCE

/* COBOLY
000001 ID DIVISION.
000002 PROGRAM-ID. COBOLY.
000003 ENVIRONMENT DIVISION.
000004 DATA DIVISION.
000005 WORKING-STORAGE SECTION.
000006 01 SUBNAME PIC X(8) USAGE DISPLAY. BLW=0000+000 8C
000007 PROCEDURE DIVISION.
000008 MOVE "COBSUB1" TO SUBNAME 6
000009 CALL SUBNAME. 6
000010 GOBACK.

*/ COBOLY
PP 5686-068 IBM COBOL FOR VSE/ESA 1.1.1 COBOLY DATE 06/26/2008 TIME 13:18:53 PAGE 4
AN "M" PRECEDING A DATA-NAME REFERENCE INDICATES THAT THE DATA-NAME IS MODIFIED BY THIS REFERENCE.

DEFINED CROSS-REFERENCE OF DATA NAMES REFERENCES

6 SUBNAME. M8 9...
PP 5686-068 IBM COBOL FOR VSE/ESA 1.1.1 COBOLY DATE 06/26/2008 TIME 13:18:53 PAGE 11

Figure 69. Sections of LE/VSE Dump for COBOLY

Figure 70. COBOLY Listing

Chapter 5. Debugging COBOL Routines 111

000298 START EQU * COBOLY
000298 58A0 C018 L 10,24(0,12) CBL=1
00029C 5890 D124 L 9,292(0,13) BLW=0
0002A0 D203 D0EC A004 MVC 236(4,13),4(10) TGTFIXD+236 PGMLIT AT +0
0002A6 9180 D174 TM 372(13),X’80’ IPCB=1
0002AA 58B0 C01C L 11,28(0,12) PBL=1
0002AE 4780 B000 BC 8,0(0,11) GN=5(0002C0)
0002B2 5820 D05C L 2,92(0,13) TGTFIXD+92
0002B6 58F0 21CC L 15,460(0,2) V(IGZEMSG)
0002BA 4110 A165 LA 1,357(0,10) PGMLIT AT +353
0002BE 05EF BALR 14,15
0002C0 GN=5 EQU *
0002C0 9680 D174 OI 372(13),X’80’ IPCB=1
0002C4 9640 D174 OI 372(13),X’40’ IPCB=1
0002C8 45E0 D134 BAL 14,308(0,13) TGT TEST INFORMATION AREA +8
0002CC GN=7 EQU *

000008 *
000008 MOVE

0002CC 45E0 D136 BAL 14,310(0,13) TGT TEST INFORMATION AREA +10
0002D0 GN=8 EQU *
0002D0 D207 9000 A008 MVC 0(8,9),8(10) SUBNAME PGMLIT AT +4

000009 CALL
0002D6 45E0 D136 BAL 14,310(0,13) TGT TEST INFORMATION AREA +10
0002DA GN=9 EQU *
0002DA D207 D188 9000 MVC 392(8,13),0(9) TS2=0 SUBNAME
0002E0 DC07 D188 A016 TR 392(8,13),22(10) TS2=0 PGMLIT AT +18
0002E6 D207 D14E D188 MVC 334(8,13),392(13) TGT TEST INFORMATION AREA +34 TS2=0
0002EC D215 D156 C000 MVC 342(22,13),0(12) TGT TEST INFORMATION AREA +34+8 SYSLIT AT +0
0002F2 45E0 D142 BAL 14,322(0,13) TGT TEST INFORMATION AREA +22
0002F6 12FF LTR 15,15
0002F8 58B0 C01C L 11,28(0,12) PBL=1
0002FC 4770 B04E BC 7,78(0,11) GN=10(00030E)
000300 5820 D05C L 2,92(0,13) TGTFIXD+92
000304 58F0 205C L 15,92(0,2) V(IGZCLNK)
000308 4110 A15C LA 1,348(0,10) PGMLIT AT +344
00030C 05EF BALR 14,15
00030E GN=10 EQU *
00030E 45E0 D134 BAL 14,308(0,13) TGT TEST INFORMATION AREA +8
000312 GN=11 EQU *

000010 GOBACK
000312 45E0 D136 BAL 14,310(0,13) TGT TEST INFORMATION AREA +10
000316 GN=12 EQU *
000316 45E0 D134 BAL 14,308(0,13) TGT TEST INFORMATION AREA +8
00031A GN=13 EQU *
00031A 58B0 C01C L 11,28(0,12) PBL=1
00031E 47F0 B080 BC 15,128(0,11) GN=1(000340)
000322 45E0 D134 BAL 14,308(0,13) TGT TEST INFORMATION AREA +8
000326 GN=14 EQU *
000326 9120 D054 TM 84(13),X’20’ TGTFIXD+84
00032A 58B0 C01C L 11,28(0,12) PBL=1
00032E 47E0 B080 BC 14,128(0,11) GN=1(000340)
000332 5820 D05C L 2,92(0,13) TGTFIXD+92
000336 58F0 21CC L 15,460(0,2) V(IGZEMSG)
00033A 4110 A14A LA 1,330(0,10) PGMLIT AT +326
00033E 05EF BALR 14,15
000340 GN=1 EQU *
000340 947F D174 NI 372(13),X’7F’ IPCB=1
000344 9140 D055 TM 85(13),X’40’ TGTFIXD+85

PP 5686-068 IBM COBOL FOR VSE/ESA 1.1.1 COBOLY DATE 06/26/2008 TIME 13:18:53 PAGE 12
000348 47E0 B09A BC 14,154(0,11) GN=6(00035A)
00034C 4110 0008 LA 1,8(0,0)
000350 5820 D05C L 2,92(0,13) TGTFIXD+92
000354 58F0 2020 L 15,32(0,2) V(IGZCCTL)
000358 05EF BALR 14,15
00035A GN=6 EQU *
00035A 5820 D05C L 2,92(0,13) TGTFIXD+92
00035E 58F0 2224 L 15,548(0,2) V(IGZETRM)
000362 4110 A13A LA 1,314(0,10) PGMLIT AT +310
000366 05EF BALR 14,15

4. The content of the storage at offset 0 of BLW 0 is C3D6C2E2 E4C2F140 in the
Storage for Active Routines section of the dump, shown in Figure 71. This
indicates that the variable SUBNAME was initialized, or the VALUE clause was
specified for the identifier.

...
STORAGE FOR ACTIVE ROUTINES:
COBOLY:
NO FILES WERE USED IN THIS PROGRAM.

CONTENTS OF BASE LOCATORS FOR WORKING STORAGE ARE:
0-00501B48

Figure 71. Storage for Active Routines Section of Dump for COBOLY

112 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

CONTENTS OF BASE LOCATORS FOR THE LINKAGE SECTION ARE:
CEE5DMP V1 R4.2: CONDITION PROCESSING RESULTED IN THE UNHANDLED CONDITION. DATE 06/26/2008 13:18:53 PM PAGE: 8

1-00000000

NO VARIABLY LOCATED AREAS WERE USED IN THIS PROGRAM.

NO EXTERNAL DATA WAS USED IN THIS PROGRAM.

NO INDEXES WERE USED IN THIS PROGRAM.

WORKING STORAGE FOR COBOLY
BLW-0: 00501B48
+000000 00501B48 C3D6C2E2 E4C2F140 00000008 00000000 00501B70 00501B78 00000000 00501BF8 |COBSUB1&...&.......&.8|...

RUN-TIME OPTIONS REPORT ASSOCIATED WITH DUMP FOR ENCLAVE : COBOLY

LAST WHERE SET OPTION

Installation default ABPERC(NONE)
Installation default ABTERMENC(ABEND)
Installation default NOAIXBLD
Installation default ALL31(OFF)
Installation default ANYHEAP(16384,8192,ANYWHERE,FREE)
Installation default BELOWHEAP(8192,4096,FREE)
Installation default CBLOPTS(ON)
Installation default CBLPSHPOP(OFF)
Installation default CHECK(OFF)
Non-overrideable COUNTRY(US)
Installation default NODEBUG
Installation default DEPTHCONDLMT(10)
Installation default ENVAR("")
Installation default ERRCOUNT(20)
Installation default HEAP(32768,32768,ANYWHERE,KEEP,8192,4096)
Installation default HEAPCHK(OFF,1,0)
Installation default LIBSTACK(12288,4096,FREE)
Installation default MSGFILE(SYSLST)
Installation default MSGQ(15)
Installation default NATLANG(ENU)
Installation default RETZERO(OFF)
Installation default RPTOPTS(OFF)
Installation default RPTSTG(OFF)
Installation default NORTEREUS
Installation default STACK(131072,131072,BELOW,KEEP)
Assembler user exit STORAGE(00,NONE,NONE,32768)
Invocation command TERMTHDACT(DUMP,,96)
Installation default NOTEST(ALL,"*","PROMPT","")
Installation default TRACE(OFF,4096,DUMP,LE=0)
Installation default TRAP(ON,MAX)
Installation default UPSI(00000000)
Installation default NOUSRHDLR()
Installation default XUFLOW(AUTO)

When a call to a nonexistent COBOL subroutine is made as a static call, the
condition information displayed in the dump may report an “operation exception”.
In this case, LE/VSE will attempt to report any available “bad branch”
information.
v If the BEAR (“breaking event address register”) support is active on the IBM

processor you are using, LE/VSE will use this feature to report the bad branch.
v If the BEAR support is not active or available, LE/VSE will attempt to use

available DSA information to report on where the bad branch occurred.

If available, the “bad branch” information will be reported in the:
v Initial condition information error message.
v “Condition Information for Active Routines” section of the LE/VSE formatted

dump.

Divide-by-Zero Error
The following example demonstrates the error of calling an assembler routine that
tries to divide by zero. The main routine was:
v compiled with TEST(STMT,SYM) compile-time option, so that at run-time,

statement numbers are displayed in the traceback.
v run with the TERMTHDACT(TRACE) run-time option.

Chapter 5. Debugging COBOL Routines 113

Figure 72 on page 115 shows the main COBOL routine (COBOLZ1), which
dynamically calls:
v COBOL subroutine (COBOLZ2), which dynamically calls:

assembler routine (ASSEMZ3).

Both programs COBOLZ1 and COBOLZ2 were compiled using the DYNAM
compile option (so that they are loaded dynamically at run time), and the XREF
compile option (so that a detailled view of registers is generated). The use of the
XREF option is demonstrated in Figure 74 on page 117.

Note: The application structure shown above, which uses dynamically-called
subroutines, requires that each routine is generated as a single phase unit.

114 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

To debug this application, use the following steps:
1. Locate the error message for the current condition in the Condition Information

section of the traceback, shown in Figure 68 on page 110. The message is
CEE3209S The system detected a fixed-point divide exception.

See Chapter 8, “LE/VSE Run-Time Messages,” on page 155 for additional
information about this message.

2. Note the sequence of calls in the call chain in the traceback section:

[Main Program]

ID DIVISION.
PROGRAM-ID. COBOLZ1.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 D-VAL PIC 9(4) USAGE COMP VALUE 0.
PROCEDURE DIVISION.

CALL "COBOLZ2" USING D-VAL.

[Subroutine]

ID DIVISION.
PROGRAM-ID. COBOLZ2.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 DV-VAL PIC 9(4) USAGE COMP.

LINKAGE SECTION.
77 D-VAL PIC 9(4) USAGE COMP.
PROCEDURE DIVISION USING D-VAL.

MOVE D-VAL TO DV-VAL.
CALL ’ASSEMZ3’ USING DV-VAL.
GOBACK.

[Assembler Routine]

ASSEMZ3 CSECT
ASSEMZ3 AMODE 31
ASSEMZ3 RMODE ANY

STM 14,12,12(13) SAVE CALLERS REGS
LR 12,15 SET BASE REG
USING ASSEMZ3,12
LA 2,SAVE CROSS CHAIN SAVE AREAS
ST 13,4(2) "
ST 2,8(,13) "
ST 13,0(,2) "
LR 13,2 NEW SAVE AREA PTR TO R13
LA 5,2348 LOW ORDER PART OF QUOTIENT
SR 4,4 HI ORDER PART OF QUOTIENT
L 6,0(1) GET POINTER TO DIVISOR
LA 6,0(6) CLEAR HI BIT
D 4,0(6) DO DIVISION
L 13,4(13) CALLERS SAVE AREA PTR TO R13
RETURN (14,12),RC=0 RETURN TO CALLER

SAVE DC 9D’0’
ASSEMZ3 CSECT

END ASSEMZ3

Figure 72. Main COBOLZ1 Routine, COBOLZ2 Subroutine, and ASSEMZ3 Routine

Chapter 5. Debugging COBOL Routines 115

a. COBOLZ1 called IGZCLNK, which is a COBOL library subroutine used for
dynamic calls.

b. IGZCLNK called COBOLZ2.
c. COBOLZ2 then called IGZCLNK.
d. IGZCLNK attempted to call an unlisted routine. The exception occurred at

this point, resulting in a call to CEEHDSP, an LE/VSE condition handling
routine.

The call to the unlisted routine occurred at statement 11 of COBOLZ2. The
offset is reported as X'00000000' because the routine (in this case, ASSEMZ3) is
not LE/VSE-enabled. To calculate the offset, subtract the program unit address
from the program status word, then subtract the instruction length code from
the result (offset = PSW - PU Addr - ILC). Using this calculation, you can
determine that the exception occurred at offset +26 in the unknown routine:
(X’6405AA’ - X’640580’ - X’000004’) = X’26’

If your system is operating in extended-addressing mode, ignore the high-order
bit of the address in the PSW. If your system is operating in 370 mode, ignore
the high-order byte of the address in the PSW.

CEE5DMP V1 R4.2: CONDITION PROCESSING RESULTED IN THE UNHANDLED CONDITION. 07/27/01 1:56:25 PM PAGE: 1

INFORMATION FOR ENCLAVE COBOLZ1

INFORMATION FOR THREAD 8000000000000000

TRACEBACK:
DSA ADDR PROGRAM UNIT PU ADDR PU OFFSET ENTRY E ADDR E OFFSET STATEMENT STATUS
0068D018 CEEHDSP 03A58D38 +000032C0 CEEHDSP 03A58D38 +000032C0 CALL
006405C0 00640580 +00000000 00640580 +00000000 EXCEPTION
006901B0 IGZCLNK 0067C780 +000003D8 IGZCLNK 0067C780 +000003D8 CALL
006B2488 COBOLZ2 006B6000 +00000258 COBOLZ2 006B6000 +00000258 11 CALL
00690018 IGZCLNK 0067C780 +000003D8 IGZCLNK 0067C780 +000003D8 CALL
00501918 COBOLZ1 00500078 +000001D8 COBOLZ1 00500078 +000001D8 8 CALL

CONDITION INFORMATION FOR ACTIVE ROUTINES
CONDITION INFORMATION FOR (DSA ADDRESS 006405C0)
CIB ADDRESS: 0068D528
CURRENT CONDITION:
CEE3209S THE SYSTEM DETECTED A FIXED-POINT DIVIDE EXCEPTION.

LOCATION:
PROGRAM UNIT: ENTRY: STATEMENT: OFFSET: +00000000

MACHINE STATE:
ILC..... 0004 INTERRUPTION CODE..... 0009
PSW..... 071D0000 806405AA
GPR0..... 00690348 GPR1..... 006B2620 GPR2..... 006405C0 GPR3..... 006B231C
GPR4..... 00000000 GPR5..... 0000092C GPR6..... 006B9070 GPR7..... 806B6000
GPR8..... 8067CB5C GPR9..... 006B2488 GPR10.... 006B0188 GPR11.... 8067C780
GPR12.... 80640580 GPR13.... 006405C0 GPR14.... 8067CB5A GPR15.... 80640580

STORAGE DUMP NEAR CONDITION, BEGINNING AT LOCATION: 00640596
+000000 00640596 18D24150 092C1B44 58610000 41660000 5D460000 58DD0004 41F00000 58ED000C |.K.&...../......)........0......|

PARAMETERS, REGISTERS, AND VARIABLES FOR ACTIVE ROUTINES:
CEEHDSP (DSA ADDRESS 0068D018):
SAVED REGISTERS:
GPR0..... 0068D704 GPR1..... 0068D3BC GPR2..... 0068D528 GPR3..... 0068D4D7
GPR4..... 03A5C628 GPR5..... 0068E018 GPR6..... 03A5CD34 GPR7..... 0068E017
GPR8..... 03A5BD35 GPR9..... 03A5AD36 GPR10.... 03A59D37 GPR11.... 83A58D38
GPR12.... 00657E48 GPR13.... 0068D018 GPR14.... 8067FEEE GPR15.... 83A01D68

GPREG STORAGE:
STORAGE AROUND GPR 0 (0068D704)
-0020 0068D6E4 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 |................................|
+0000 0068D704 E9D4C3C8 00D00001 00690348 006B2620 006405C0 006B231C 00000000 0000092C |ZMCH.........,.......,..........|
+0020 0068D724 006B9070 806B6000 8067CB5C 006B2488 006B0188 8067C780 80640580 006405C0 |.,...,-....*.,.h.,.h..G.........|...

(DSA ADDRESS 006405C0):
SAVED REGISTERS:
GPR0..... 00690348 GPR1..... 006B2620 GPR2..... 006405C0 GPR3..... 006B231C
GPR4..... 00000000 GPR5..... 0000092C GPR6..... 006B9070 GPR7..... 806B6000
GPR8..... 8067CB5C GPR9..... 006B2488 GPR10.... 006B0188 GPR11.... 8067C780
GPR12.... 80640580 GPR13.... 006405C0 GPR14.... 8067CB5A GPR15.... 80640580

GPREG STORAGE:
STORAGE AROUND GPR 0 (00690348)
-0020 00690328 006B7FB0 00656D40 00000000 006B7C08 0069040C 00000000 006903C4 03A4619F |.,"..._,@............D.u/.|

Figure 73. Sections of LE/VSE Dump for Routine COBOLZ1

116 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

+0000 00690348 00001001 0068D018 00690E90 83A059D8 03A07768 0000001F 00690668 00000001 |............c..Q................|
+0020 00690368 00000000 00000004 00690AE8 03A06D63 03A05D64 03A04D65 03A03D66 03A02D67 |...........Y.._...)...(.........|...

IGZCLNK (DSA ADDRESS 006901B0):
SAVED REGISTERS:
GPR0..... 00690348 GPR1..... 006B2620 GPR2..... 00000000 GPR3..... 006B231C
GPR4..... 006B6169 GPR5..... 006B25C0 GPR6..... 006B0520 GPR7..... 806B6000
GPR8..... 8067CB5C GPR9..... 006B2488 GPR10.... 006B0188 GPR11.... 8067C780
GPR12.... 00657E48 GPR13.... 006901B0 GPR14.... 8067CB5A GPR15.... 80640580

GPREG STORAGE:
STORAGE AROUND GPR 0 (00690348)
-0020 00690328 006B7FB0 00656D40 00000000 006B7C08 0069040C 00000000 006903C4 03A4619F |.,"..._,@............D.u/.|
+0000 00690348 00001001 0068D018 00690E90 83A059D8 03A07768 0000001F 00690668 00000001 |............c..Q................|
+0020 00690368 00000000 00000004 00690AE8 03A06D63 03A05D64 03A04D65 03A03D66 03A02D67 |...........Y.._...)...(.........|...

COBOLZ2 (DSA ADDRESS 006B2488):
SAVED REGISTERS:
GPR0..... 006902C0 GPR1..... 006B6169 GPR2..... 0065D7EC GPR3..... 006B6220
GPR4..... 006B6038 GPR5..... 00690018 GPR6..... 0065D1AC GPR7..... 00000000
GPR8..... 0065DA70 GPR9..... 006B9070 GPR10.... 006B6100 GPR11.... 006B6198
GPR12.... 006B60F4 GPR13.... 006B2488 GPR14.... 806B625A GPR15.... 8067C780

GPREG STORAGE:
STORAGE AROUND GPR 0 (006902C0)
-0020 006902A0 006B0188 8067C780 00657E48 00000000 00000000 006B6177 00000000 006B25C0 |.,.h..G...=..........,/......,..|
+0000 006902C0 006B610C 006B2620 806B6000 00000000 8066F340 00010D34 49C3C5C5 00000000 |.,/..,...,-.......3CEE....|
+0020 006902E0 006B0534 006902CC 006902D4 0065D0F8 0065D1AC 0065DA70 0065D1AC C1E2E2C5 |.,.........M...8..J.......J.ASSE|...

LOCAL VARIABLES:
6 77 DV-VAL 9999 COMP 00000
8 77 D-VAL 9999 COMP 00000...

IGZCLNK (DSA ADDRESS 00690018):
SAVED REGISTERS:
GPR0..... 006901B0 GPR1..... 00501AA8 GPR2..... 0065D119 GPR3..... 00501AA8
GPR4..... 005001D1 GPR5..... 00501A4C GPR6..... 006B0450 GPR7..... 00500078
GPR8..... 8067CB5C GPR9..... 00501918 GPR10.... 006B0188 GPR11.... 8067C780
GPR12.... 00657E48 GPR13.... 00690018 GPR14.... 8067CB5A GPR15.... 806B6000

GPREG STORAGE:
STORAGE AROUND GPR 0 (006901B0)
-0020 00690190 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 |................................|
+0000 006901B0 00102401 006B2488 006B2620 8067CB5A 80640580 00690348 006B2620 00000000 |.....,.h.,.....!.........,......|
+0020 006901D0 006B231C 006B6169 006B25C0 006B0520 806B6000 8067CB5C 006B2488 006B0188 |.,...,/..,...,...,-....*.,.h.,.h|...

COBOLZ1 (DSA ADDRESS 00501918):
SAVED REGISTERS:
GPR0..... 00690128 GPR1..... 005001D1 GPR2..... 0065D1AC GPR3..... 00000000
GPR4..... 005000B0 GPR5..... 006B0188 GPR6..... 0065D1AC GPR7..... 00000000
GPR8..... 0065DA70 GPR9..... 00501AE8 GPR10.... 00500174 GPR11.... 00500228
GPR12.... 0050016C GPR13.... 00501918 GPR14.... 50500252 GPR15.... 8067C780

GPREG STORAGE:
STORAGE AROUND GPR 0 (00690128)
-0020 00690108 006B0188 8067C780 00657E48 00000000 00000000 005001DF 00000000 00501A4C |.,.h..G...=..........&.......&.<|
+0000 00690128 0050017C 00501AA8 00500078 006B7C08 00000000 00000000 00000000 83A6AD68 |.&.@.&.y.&...,@.............cw..|
+0020 00690148 006B0464 00690134 0069013C 00000000 00000000 00000000 00000000 C3D6C2D6 |.,..........................COBO|...

LOCAL VARIABLES:
6 77 D-VAL 9999 COMP 00000

3. Locate statement 11 in the COBOL listing for the COBOLZ2 routine, shown in
Figure 74. This is a call to the assembler routine ASSEMZ3.

PP 5686-068 IBM COBOL FOR VSE/ESA 1.1.1 COBOLZ2 DATE 07/27/2001 TIME 13:55:40 PAGE 3
LINEID PL SL ----+-*A-1-B--+----2----+----3----+----4----+----5----+----6----+----7-|--+----8 MAP AND CROSS REFERENCE

/* COBOLZ2
000001 ID DIVISION.
000002 PROGRAM-ID. COBOLZ2.
000003 ENVIRONMENT DIVISION.
000004 DATA DIVISION.
000005 WORKING-STORAGE SECTION.
000006 77 DV-VAL PIC 9(4) USAGE COMP VALUE 0. BLW=0000+000 2C
000007 LINKAGE SECTION.
000008 77 D-VAL PIC 9(4) USAGE COMP. BLL=0001+000 2C
000009 PROCEDURE DIVISION USING D-VAL. 8
000010 MOVE D-VAL TO DV-VAL. 8 6
000011 CALL ’ASSEMZ3’ USING DV-VAL. EXT 6
000012 GOBACK....

Figure 74. COBOL Listing for COBOLZ2

Chapter 5. Debugging COBOL Routines 117

4. Check offset +26 in the listing for the assembler routine ASSEMZ3, shown in
Figure 75.
This shows an instruction to divide the contents of register 4 by the variable
pointed to by register 6. You can see the two instructions preceding the divide
instruction load register 6 from register 1, and prepare register 6 for the divide.
Because of linkage conventions, you can infer that register 1 contains a pointer
to a parameter list that passed to ASSEMZ3. Register 6 points to a 0 value
because that was the value passed to ASSEMZ3 when it was called by a higher
level routine.

Note: To translate assembler instructions, see System/390® Reference Summary

5. Check local variables for COBOLZ2 in the Local Variables section of the
traceback, shown in Figure 76. From the traceback and listings, you know that
COBOLZ2 called ASSEMZ3 and passed a parameter in the variable DV-VAL.
The two variables DV-VAL and D-VAL have 0 values.

External Symbol Dictionary Page 2
Symbol Type Id Address Length LD ID Flags Alias-of HLASM R4.0 2001/07/27 13.55
ASSEMZ3 SD 00000001 00000000 00000088 06

Page 3
Active Usings: None
Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R4.0 2001/07/27 13.55

000000 00000 00088 1 ASSEMZ3 CSECT
2 ASSEMZ3 AMODE 31
3 ASSEMZ3 RMODE ANY

000000 90EC D00C 0000C 4 STM 14,12,12(13) SAVE CALLERS REGS
000004 18CF 5 LR 12,15 SET BASE REG

R:C 00000 6 USING ASSEMZ3,12
000006 4120 C040 00040 7 LA 2,SAVE CROSS CHAIN SAVE AEREAS
00000A 50D2 0004 00004 8 ST 13,4(2) CROSS CHAIN SAVE AEREAS
00000E 5010 D008 00008 9 ST 1,8(,13) CROSS CHAIN SAVE AEREAS
000012 50D0 2008 00008 10 ST 13,8(,2) CROSS CHAIN SAVE AEREAS
000016 18D2 11 LR 13,2 NEW SAVE AEREA PTR TO R13
000018 4150 092C 0092C 12 LA 5,2348 LOW ORDER PART OF QUOTIENT
00001C 1B44 13 SR 4,4 HI ORDER PART OF QUOTIENT
00001E 5861 0000 00000 14 L 6,0(1) GET POINTER TO DIVISOR
000022 4166 0000 00000 15 LA 6,0(6) CLEAR HI BIT
000026 5D46 0000 00000 16 D 4,0(6) DO DIVISION
00002A 58DD 0004 00004 17 L 13,4(13) CALLERS SAVE AEREA PTR TO R13

18 RETURN (14,12),RC=0 RETURN TO CALLER
19+* SUPERVISOR - RETURN - 5686-032-06

00002E 41F0 0000 00000 20+ LA 15,0 LOAD RETURN CODE @D51IDMZ 01-RETUR
000032 58ED 000C 0000C 21+ L 14,12+4*(14+2-(14+2)/16*16)(13) 01-RETUR
000036 980C D014 00014 22+ LM 0,12,12+4*(0+2-(0+2)/16*16)(13) 01-RETUR
00003A 07FE 23+ BR 14 01-RETUR
00003C 00000000
000040 0000000000000000 24 SAVE DC 9D’0’
000088 00000 00088 25 ASSEMZ3 CSECT
000000 26 END ASSEMZ3...

Figure 75. Listing for ASSEMZ3

...
LOCAL VARIABLES:

6 77 DV-VAL 9999 COMP 00000
8 77 D-VAL 9999 COMP 00000...

Figure 76. Variables Section of LE/VSE Dump for COBOLZ2

118 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

6. In the COBOLZ2 subroutine, the variable D-VAL is moved to DV-VAL, the
parameter passed to the assembler routine. D-VAL appears in the Linkage
section of the COBOLZ2 listing, shown in Figure 77, indicating that the value
passed from COBOLZ1 to COBOLZ2.

7. In the Local Variables section of the dump for routine COBOLZ1, shown in
Figure 78, D-VAL has a 0 value. This indicates that the error causing a
fixed-point divide exception in ASSEMZ3 was actually caused by the value of
D-VAL in COBOLZ1.

PP 5686-068 IBM COBOL FOR VSE/ESA 1.1.1 COBOLZ2 DATE 07/27/2001 TIME 13:55:40 PAGE 3
LINEID PL SL ----+-*A-1-B--+----2----+----3----+----4----+----5----+----6----+----7-|--+----8 MAP AND CROSS REFERENCE

/* COBOLZ2
000001 ID DIVISION.
000002 PROGRAM-ID. COBOLZ2.
000003 ENVIRONMENT DIVISION.
000004 DATA DIVISION.
000005 WORKING-STORAGE SECTION.
000006 77 DV-VAL PIC 9(4) USAGE COMP VALUE 0. BLW=0000+000 2C
000007 LINKAGE SECTION.
000008 77 D-VAL PIC 9(4) USAGE COMP. BLL=0001+000 2C
000009 PROCEDURE DIVISION USING D-VAL. 8
000010 MOVE D-VAL TO DV-VAL. 8 6
000011 CALL ’ASSEMZ3’ USING DV-VAL. EXT 6
000012 GOBACK.

Figure 77. Listing for COBOLZ2

...
LOCAL VARIABLES:

6 77 D-VAL 9999 COMP 00000...

Figure 78. Variables Section of LE/VSE Dump for COBOLZ1

Chapter 5. Debugging COBOL Routines 119

120 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Chapter 6. Debugging PL/I Routines

This chapter contains information that can help you debug applications that
contain one or more PL/I routines. Following a discussion about potential errors in
PL/I routines, the first part of this chapter discusses how to use
compiler-generated listings to obtain information about PL/I routines, and how to
use PLIDUMP to generate an LE/VSE dump of a PL/I routine. The last part of the
chapter provides examples of PL/I routines and explains how to debug them using
information contained in the traceback information provided in the dump. The
topics covered are listed below.
v Determining errors in PL/I routines
v Using PL/I compiler listings
v Generating an LE/VSE dump of a PL/I routine
v Finding PL/I information in a dump
v Debugging examples for PL/I routines

Determining Errors in PL/I Routines
Most errors in PL/I routines can be identified by the information provided in PL/I
run-time messages, which begin with the ‘IBM’ prefix. For a list of these messages,
see Chapter 11, “PL/I Run-Time Messages,” on page 253.

A malfunction in running a PL/I routine can be caused by:
v Errors in logic in the source routine
v Invalid use of PL/I
v Unforeseen errors
v Invalid input data
v Compiler or run-time routine malfunction
v System malfunction
v Unidentified routine malfunction
v Overlaid storage

Errors in Logic in the Source Routine
Errors of this type are often difficult to detect, and sometimes it may appear as if
there has been a compiler or library malfunction.
v Not converting correctly from arithmetic data
v Incorrect arithmetic and string manipulation operations
v Not matching data lists with their format lists

Invalid Use of PL/I
A misunderstanding of the language or a failure to provide the correct
environment for using PL/I can result in an apparent malfunction of a PL/I
routine.

Any of the following, for example, might cause a malfunction:
v Using uninitialized variables
v Using controlled variables that have not been allocated

© Copyright IBM Corp. 1991, 2014 121

v Reading records into incorrect structures
v Misusing array subscripts
v Misusing pointer variables
v Incorrect conversion
v Incorrect arithmetic operations
v Incorrect string manipulation operations

Unforeseen Errors
If an error is detected during run time, and no ON-unit is provided in the routine
to terminate the run or attempt recovery, the job terminates abnormally. However,
the status of a routine at the point where the error occurred can be recorded by
using an ERROR ON-unit that contains the statements:
ON ERROR
BEGIN;
ON ERROR SYSTEM;
CALL PLIDUMP; /* generates a dump */
PUT DATA; /* displays variables */
GOTO ENDLABEL; /* handle condition */
END;

The statement ON ERROR SYSTEM, contained in the ON-unit, ensures that further
errors do not result in a permanent loop.

Invalid Input Data
A routine should contain checks to ensure that any incorrect input data is detected
before it can cause the routine to malfunction.

Use the COPY option of the GET statement to check values obtained by
stream-oriented input. The values are listed on the file named in the COPY option.
If no file name is given, SYSPRINT is assumed.

Compiler or Run-Time Routine Malfunction
If you are certain that the malfunction is caused by a compiler or run-time routine
error, see “Diagnosing Problems with LE/VSE,” on page 337 for information about
determining whether the problem has been previously documented and, if not,
how to report the problem to IBM. Meanwhile, you can try an alternative way to
perform the operation that is causing the trouble. A bypass is often feasible, since
the PL/I language frequently provides an alternative method of performing
operations.

System Malfunction
System malfunctions include machine malfunctions and operating system errors.
System messages identify these malfunctions and errors to the operator.

Unidentified Routine Malfunction
In most circumstances, an unidentified routine malfunction does not occur when
using the compiler. If your routine terminates abnormally without an
accompanying LE/VSE run-time diagnostic message, it is probable that the error
causing the termination also inhibited the production of a message. This might
occur:
v If your job control statements are in error, particularly in defining files.
v If your routine overwrites main storage areas containing executable instructions.

This can happen if you accidentally do any of the following:

122 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

– Assign a value to a nonexistent array element. For example:
DCL ARRAY(10);...
DO I = 1 TO 100;
ARRAY(I) = VALUE;

To detect this type of error in a compiled module, enable the
SUBSCRIPTRANGE condition so that each attempt to access an element
outside the declared range of subscript values raises the SUBSCRIPTRANGE
condition. If there is no ON-unit for this condition, a diagnostic message is
printed and the ERROR condition is raised. This facility, though expensive in
run time and storage space, is a valuable routine-testing aid.

– Use an incorrect locator value for a locator (pointer or offset) variable. This
type of error can occur if a locator value is obtained by means of
record-oriented transmission. Ensure that locator values created in one
routine, transmitted to a data set, and subsequently retrieved for use in
another routine, are valid for use in the second routine.

– Attempt to free a nonbased variable. This can happen when you free a based
variable after its qualifying pointer value has been changed. For example:
DCL A STATIC,B BASED (P);
ALLOCATE B;
P = ADDR(A);
FREE B;

– Use the SUBSTR pseudovariable to assign a string to a location beyond the
end of the target string. For example:
DCL X CHAR(3);
I=3;
SUBSTR(X,2,I) = ’ABC’;

To detect this type of error, enable the STRINGRANGE condition during
compilation.

Storage Overlay Problems
If you suspect an error in your PL/I application is a storage overlay problem,
check for the following:
v The use of a subscript outside the declared bounds (SUBSCRIPTRANGE)
v An attempt to assign a string to a target with an insufficient maximum length

(STRINGSIZE)
v The failure of the arguments to a SUBSTR reference to comply with the rules

described for the SUBSTR built-in function (STRINGRANGE)
v The loss of significant last high-order (left-most) binary or decimal digits during

assignment to an intermediate result or variable or during an input/output
operation (SIZE)

v The reading of a variable-length file record into a variable that is too small
v The misuse of a pointer variable
v The invocation of an LE/VSE callable service with fewer arguments than are

required

The first four situations are associated with the indicated PL/I conditions, all of
which are disabled by default. If you suspect one of these problems exists in your
routine, use the appropriate condition prefix on the suspected statement or on the
BEGIN or PROCEDURE statement of the containing block.

Chapter 6. Debugging PL/I Routines 123

The fifth situation occurs when you read a data record into a variable that is too
small. This type of problem only happens with variable-length files. You can often
isolate the problem by examining the data in the file information and buffer.

The sixth situation occurs when you misuse a pointer variable. This type of storage
overlay is particularly difficult to isolate. There are a number of ways pointer
variables can be misused:
v When a READ statement runs with the SET option, a value is placed in a

pointer. If you then run a WRITE statement or another READ SET option with
another pointer, you overlay your storage if you try to use the original pointer.

v When you try to use a pointer to address storage that has already been freed,
you can also cause a storage overlay.

v When you attempt to use a pointer set with the ADDR built-in function as a
base for data with different attributes, you can cause a storage overlay.

The last situation occurs when an LE/VSE callable service is passed fewer
arguments than its interface requires. The following example might cause a storage
overlay because LE/VSE assumes that the fourth item in the argument list is the
address of a feedback code, when in reality it could be residue data pointing
anywhere in storage.
DCL CEEDATE ENTRY OPTIONS(ASM);
CALL CEEDATE(x,y,z); /* invalid */

These examples illustrate valid calls:
DCL CEEDATE ENTRY(*,*,*,* OPTIONAL) OPTIONS(ASM);
CALL CEEDATE(x,y,z,*); /* valid */
CALL CEEDATE(x,y,z,fc); /* valid */

Using PL/I Compiler Listings
The following sections explain how to use PL/I compile-time options to obtain
listings that contain information about your routine, and describe the contents of
those listings.

Generating PL/I Listings
PL/I listings show machine instructions, constants, and external or internal
addresses that the linkage editor resolves. This information can help you find other
information, such as variable values, in a dump of a PL/I routine.

Note: From LE/VSE 1.4.2 onwards, dumps taken with run-time option
TER(UADUMP...) or TER(DUMP...) are capable of generating a run-time options
report, independently of the setting for RPTOPTS(ON|OFF).

Table 32 shows compiler-generated listings that you might find helpful when you
use information in dumps to debug PL/I routines. For more information about
compiler output, see IBM PL/I for VSE/ESA Programming Guide

Table 32. Contents of Listing and Associated Compile-Time Options

Name Contents
Compile-Time
Option

Source program Source program statements SOURCE

Cross reference Cross reference of names with attributes XREF and
ATTRIBUTES

Aggregate table Names and layouts of structures and arrays AGGREGATE

124 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Table 32. Contents of Listing and Associated Compile-Time Options (continued)

Name Contents
Compile-Time
Option

Variable map Offsets of automatic and static internal
variables (from their defining base)

MAP

Object code Contents of the program control section in
hexadecimal notation and translated into a
pseudo-assembler format

LIST

Variable Map, Object Code,
Static Storage

Same as MAP and LIST options above, plus
contents of static internal and static external
control sections in hexadecimal notation
with comments

MAP and LIST

Finding Information in PL/I Listings
Figure 79 shows an example of a PL/I routine that was compiled with the LIST
and MAP compile-time options.

Figure 80 shows the output generated from this routine, including the static storage
map, variable storage map, and the object code listing. The sections following this
example describe the contents of each type of listing.

STATIC INTERNAL STORAGE MAP

000000 E00000C4 PROGRAM ADCON
000004 00000008 PROGRAM ADCON
000008 00000096 PROGRAM ADCON
00000C 00000096 PROGRAM ADCON
000010 00000096 PROGRAM ADCON
000014 00000000 A..IBMSJDSA
000018 00000000 A..IBMSPFRA
00001C 00000000 A..STATIC
000020 0000000000000044 LOCATOR..B
000028 0000008800140000 LOCATOR..C
000030 91E091E0 CONSTANT
000034 0A000000C5E7E3D9 FECB..EXTR

40404040
000040 80000034 A..FECB..EXTR
000044 0000000C00000008 DESCRIPTOR

*PROCESS SOURCE, LIST, MAP;...
SOURCE LISTING

STMT

1 EXAMPLE: PROC OPTIONS(MAIN);
2 DCL EXTR ENTRY EXTERNAL;
3 DCL B(2,2) FIXED BIN(31) STATIC EXTERNAL INIT((4)0);
4 DCL C CHAR(20) STATIC INIT(’SAMPLE CONSTANT’);
5 DCL D FIXED BIN(31) STATIC;
6 DCL E FIXED BIN(31);
7 FETCH EXTR;
8 CALL EXTR(A,B,C,D,E);
9 DISPLAY(C);
10 END;

Figure 79. PL/I Routine Compiled with LIST and MAP

Figure 80. Compiler-Generated Listings from Example PL/I Routine

Chapter 6. Debugging PL/I Routines 125

0000000200000001
0000000400000002
00000001

000060 80000034 A..FECB..EXTR
000064 00000000 A..B
000068 00000000 A..A
00006C 00000020 A..LOCATOR
000070 00000028 A..LOCATOR
000074 000000A0 A..D
000078 80000000 A..E
00007C 00000000 A..ENTRY EXTR
000080 80000028 A..LOCATOR
000084
000088 E2C1D4D7D3C540C3 INITIAL VALUE..C

D6D5E2E3C1D5E340
40404040

STATIC EXTERNAL CSECTS

000000 0000000000000000 CSECT FOR EXTERNAL VARIABLE
0000000000000000...

VARIABLE STORAGE MAP

IDENTIFIER LEVEL OFFSET (HEX) CLASS BLOCK

E 1 184 B8 AUTO EXAMPLE
D 1 160 A0 STATIC EXAMPLE
C 1 136 88 STATIC EXAMPLE
A 1 188 BC AUTO EXAMPLE...
OBJECT LISTING

* STATEMENT NUMBER 7
000096 58 B0 C 004 L 11,4(0,12)
00009A 58 FB 0 000 L 15,PR..EXTR

* STATEMENT NUMBER 1 00009E 59 F0 C 064 C 15,100(0,12)
000000 DC C’EXAMPLE’ 0000A2 47 70 2 01E BNE CL.5
000007 DC AL1(7) 0000A6 41 10 3 040 LA 1,64(0,3)

0000AA 58 F0 3 018 L 15,A..IBMSPFRA
* PROCEDURE EXAMPLE 0000AE 05 EF BALR 14,15

0000B0 58 FB 0 000 L 15,PR..EXTR
* REAL ENTRY 0000B4 CL.5 EQU *
000008 90 EC D 00C STM 14,12,12(13)
00000C 47 F0 F 04C B *+72
000010 00000000 DC A(STMT. NO. TABLE) * STATEMENT NUMBER 8
000014 000000D8 DC F’216’ 0000B4 D2 13 D 0C0 3 068 MVC 192(20,13),104(3)
000018 00000000 DC A(STATIC CSECT) 0000BA 41 70 D 0BC LA 7,A
00001C 00000000 DC A(SYMTAB VECTOR) 0000BE 50 70 D 0C0 ST 7,192(0,13)
000020 00000000 DC A(COMPILATION INFO) 0000C2 41 70 D 0B8 LA 7,E
000024 A8000000 DC X’A8000000’ 0000C6 50 70 D 0D0 ST 7,208(0,13)
000028 00010100 DC X’00010100’ 0000CA 96 80 D 0D0 OI 208(13),X’80’
00002C 00000000 DC X’00000000’ 0000CE 58 FB 0 000 L 15,PR..EXTR
000030 00000000 DC X’00000000’ 0000D2 59 F0 C 064 C 15,100(0,12)
000034 00000000 DC A(ENTRY LIST VECTOR)0000D6 47 70 2 052 BNE CL.6
000038 80000000 DC X’80000000’ 0000DA 41 10 3 060 LA 1,96(0,3)
00003C 01000200 DC X’01000200’ 0000DE 58 F0 3 018 L 15,A..IBMSPFRA
000040 00000000 DC A(REGION TABLE) 0000E2 05 EF BALR 14,15
000044 00000002 DC X’00000002’ 0000E4 58 FB 0 000 L 15,PR..EXTR
000048 00000000 DC A(PRIMARY ENTRY) 0000E8 CL.6 EQU *
00004C 00000000 DC X’00000000’ 0000E8 1B 55 SR 5,5
000050 00000000 DC X’00000000’ 0000EA 41 10 D 0C0 LA 1,192(0,13)
000054 58 30 F 010 L 3,16(0,15) 0000EE 05 EF BALR 14,15
000058 58 10 D 04C L 1,76(0,13)
00005C 58 00 F 00C L 0,12(0,15)
000060 1E 01 ALR 0,1 * STATEMENT NUMBER 9
000062 55 00 C 00C CL 0,12(0,12) 0000F0 41 10 3 080 LA 1,128(0,3)
000066 47 D0 F 068 BNH *+10 0000F4 58 F0 3 014 L 15,A..IBMSJDSA
00006A 58 F0 C 074 L 15,116(0,12) 0000F8 05 EF BALR 14,15
00006E 05 EF BALR 14,15
000070 58 E0 D 048 L 14,72(0,13)
000074 18 F0 LR 15,0 * STATEMENT NUMBER 10
000076 90 E0 1 048 STM 14,0,72(1) 0000FA 18 0D LR 0,13
00007A 50 D0 1 004 ST 13,4(0,1) 0000FC 58 D0 D 004 L 13,4(0,13)
00007E 92 80 1 000 MVI 0(1),X’80’ 000100 58 E0 D 00C L 14,12(0,13)
000082 92 21 1 001 MVI 1(1),X’21’ 000104 98 2C D 01C LM 2,12,28(13)
000086 92 02 1 076 MVI 118(1),X’02’ 000108 05 1E BALR 1,14
00008A 41 D1 0 000 LA 13,0(1,0)
00008E D2 03 D 054 3 030 MVC 84(4,13),48(3) * END PROCEDURE
000094 05 20 BALR 2,0 00010A 07 07 NOPR 7

* PROCEDURE BASE * END PROGRAM

126 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Static Storage Map
The static storage map is a formatted listing of the contents of the static internal
and static external control sections. To obtain this listing, specify the MAP and
LIST options in the %PROCESS statement.

To obtain a complete variable storage map and static storage map, but not a
complete LIST, specify a single statement for LIST to minimize the size of the
listing; for example, LIST(1).

Each line of the static storage map contains the following information:
1. Six-digit hexadecimal offset.
2. Hexadecimal text, in 8-byte sections where possible.
3. Comment, indicating the type of item to which the text refers. The comment

appears on the first line of the text for an item.

Table 33 lists typical comments found in a static storage listing.

Table 33. Comments Found in a Static Storage Listing with Explanations

Comment Explanation

A..xxx Address constant for xxx.

COMPILER LABEL CL.n Compiler-generated label n.

CONDITION CSECT Control section for programmer-named condition.

CONSTANT Constant.

CSECT FOR EXTERNAL
VARIABLE

Control section for external variable.

D..xxx Descriptor for xxx.

DED..xxx Data element descriptor for xxx.

DESCRIPTOR Data descriptor.

ENVB Environment control block.

FECB..xxx Fetch control block for xxx.

DCLCB Declare control block.

FED..xxx Format element descriptor for xxx.

KD..xxx Key descriptor for xxx.

LOCATOR..xxx Locator for xxx.

ONCB ON statement control block.

PICTURED DED..xxx Pictured data element descriptor for xxx.

PROGRAM ADCON Program address constant.

RD..xxx Record descriptor for xxx.

SYMBOL TABLE
ELEMENT

Symbol table address.

SYMBOL TABLE..xxx Symbol table for xxx.

SYMTAB DED..xxx Symbol table DED for xxx.

USER LABEL..xxx Source program label for xxx.

xxx Variable with name xxx.. If the variable is not initialized, no text
appears against the comment. There is also no static offset if the
variable is an array (the static offset can be calculated from the
array descriptor, if required).

Chapter 6. Debugging PL/I Routines 127

Variable Storage Map
The variable storage map shows how automatic and static internal variables are
mapped in storage. To obtain this listing, specify the MAP compiler option in the
%PROCESS statement.

For automatic and static internal variables, the variable storage map contains the
following information:
v PL/I identifier name
v Level
v Storage class
v Name of the PL/I block in which it is declared
v Offset from the start of the storage area, in both decimal and hexadecimal form

If the LIST option is also specified, a map of the static internal and external control
sections, called the static storage map, is also produced.

Object Code Listing
By specifying the LIST compile-time option in the %PROCESS statement, you can
obtain a listing of the compiled code, known as the object code listing. This listing
consists of the machine instructions and a translation of these instructions into a
form that resembles assembler and includes comments, such as source program
statement numbers.

To limit the size of the listing, specify a certain statement or range of statements to
be listed; for example, LIST(20) or LIST(10,30).

The machine instructions are formatted into blocks of code, headed by the
statement or line number in the PL/I source program listing. Generally, only
executable statements appear in the listing. DECLARE statements are not normally
included. To simplify understanding of the listing, the names of PL/I variables are
listed, rather than the addresses that appear in the machine code. Special
mnemonics are used to refer to some items, including test hooks, descriptors, and
address constants.

Statements in the object code listing are ordered by block, as they are sequentially
encountered in the source program. Statements in the external procedure are given
first, followed by the statements in each inner block. As a result, the order of
statements frequently differs from that of the source program.

Every object code listing begins with the name of the external procedure. The
actual entry point of the external procedure immediately follows the heading
comment REAL ENTRY. The subsequent machine code is the prolog for the block,
which performs block activation. The comment PROCEDURE BASE marks the end of
the prolog. Following this is a translation of the first executable statement in the
PL/I source program. Table 34 contains the comments used in the listing.

Table 34. Comments and Their Functions in the Object Code Listing

Comment Function

BEGIN BLOCK xxx Indicates the start of the begin block with label xxx

BEGIN BLOCK NUMBER n Indicates the start of the begin block with number n

CALCULATION OF
COMMONED EXPRESSION
FOLLOWS

Indicates that an expression used more than once in the
routine is calculated at this point

128 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Table 34. Comments and Their Functions in the Object Code Listing (continued)

Comment Function

CODE MOVED FROM
STATEMENT NUMBER n

Indicates object code moved by the optimization process to
a different part of the routine and gives the number of the
statement from which it originated

COMPILER GENERATED
SUBROUTINE xxx

Indicates the start of compiler-generated subroutine xxx

CONTINUATION OF
PREVIOUS REGION

Identifies the point at which addressing from the previous
routine base recommences

END BLOCK Indicates the end of a begin block

END INTERLANGUAGE
PROCEDURE xxx

Identifies the end of an ILC procedure xxx

END OF COMMON CODE Identifies the end of code used in running more than one
statement

END OF COMPILER
GENERATED SUBROUTINE

Indicates the end of the compiler-generated subroutine

END PROCEDURE Identifies the end of a procedure

END PROGRAM Indicates the end of the external procedure

INITIALIZATION CODE FOR
xxx

Indicates the start of initialization code for variable xxx

INITIALIZATION CODE FOR
OPTIMIZED LOOP
FOLLOWS

Indicates that some of the code that follows was moved
from within a loop by the optimization process

INTERLANGUAGE
PROCEDURE xxx

Identifies the start of an implicitly generated ILC procedure
xxx

METHOD OR ORDER OF
CALCULATING
EXPRESSIONS CHANGED

Indicates that the order of the code following was changed
to optimize the object code

ON-UNIT BLOCK NUMBER
n

Indicates the start of an ON-unit block with number n

ON-UNIT BLOCK END Indicates the end of the ON-unit block

PROCEDURE xxx Identifies the start of the procedure labeled xxx

PROCEDURE BASE Identifies the address loaded into the base register for the
procedure

PROGRAM
ADDRESSABILITY REGION
BASE

Identifies the address where the routine base is updated if
the routine size exceeds 4096 bytes and consequently cannot
be addressed from one base

PROLOGUE BASE Identifies the start of the prolog code common to all entry
points into that procedure

REAL ENTRY Precedes the actual executable entry point for a procedure

STATEMENT LABEL xxx Identifies the position of source program statement label xxx

STATEMENT NUMBER n Identifies the start of code generated for statement number n
in the source listing

In certain cases the compiler uses mnemonics to identify the type of operand in an
instruction and, where applicable, follows the mnemonic by the name of a PL/I
variable. Table 35 on page 130 lists typical mnemonics.

Chapter 6. Debugging PL/I Routines 129

Table 35. Mnemonics the Compiler Uses to Identify the Type of Operand

Mnemonic Explanation

A..xxx Address constant for xxx

ADD..xxx Aggregate descriptor for xxx

BASE..xxx Base address of variable xxx

BLOCK.n Identifier created for an otherwise unlabeled block

CL.n Compiler-generated label number n

D..xxx Descriptor for xxx

DED..xxx Data element descriptor for xxx

HOOK...ENTRY Debugging aid block entry hook

HOOK...BLOCK-EXIT Debugging aid block exit hook

HOOK...PGM-EXIT Debugging aid program exit hook

HOOK...PRE-CALL Debugging aid pre-call hook

HOOK...INFO Additional pre-call hook information

HOOK...POST-CALL Debugging aid post call hook

HOOK...STMT Debugging aid statement hook

HOOK...IF-TRUE Debugging aid IF true hook

HOOK...IF-FALSE Debugging aid ELSE hook

HOOK...WHEN Debugging aid WHEN true hook

HOOK...OTHERWISE Debugging aid OTHERWISE true hook

HOOK...LABEL Debugging aid label hook

HOOK...DO Debugging aid iterative DO hook

HOOK...ALLOC Debugging aid ALLOCATE controlled hook

WSP.n Workspace, followed by identifying number n

L..xxx Length of variable xxx

PR..xxx Pseudoregister vector slot for xxx

LOCATOR..xxx Locator for xxx

RKD..xxx Record or key descriptor for xxx

VO..xxx Virtual origin for xxx (the address where element 0 is held
for a one-dimensional array, element 0,0 for a
two-dimensional array, and so on)

Generating an LE/VSE Dump of a PL/I Routine
To obtain a dump of a PL/I routine, you can either invoke the LE/VSE callable
service CEE5DMP or specify a call to PLIDUMP.

PLIDUMP Syntax and Options
A call to PLIDUMP results in calls to intermediate PL/I library routines, which
convert most PLIDUMP options to CEE5DMP options. In the following list of
PLIDUMP options, for those that have a corresponding CEE5DMP option, the
CEE5DMP option is given as the definition. For more information about these
options, see Table 21 on page 32.

130 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Some PLIDUMP options do not have corresponding CEE5DMP options, but
continue to function as PL/I default options. The list following the syntax diagram
provides a description of those options.

The syntax and options for PLIDUMP are shown below.

Syntax

�� PLIDUMP (character-string-expression 1 , �

� character-string-expression 2) ��

character-string-expression 1
A dump options character string consisting of one or more of the following:

B BLOCKS (PL/I hexadecimal dump).

C Continue. The routine continues after the dump.

E Exit. The enclave terminates with a dump.

F FILES.

H STORAGE.

Note: When the H option is specified, the VSE SDUMP system macro
is used to produce a dump of storage. Output is directed either to
SYSLST or the dump sublibrary.

K BLOCKS (when running under CICS). The Transaction Work Area is
included.

NB NOBLOCKS.

NF NOFILES.

NH NOSTORAGE.

NK NOBLOCKS (when running under CICS).

NT NOTRACEBACK.

S Stop. The enclave terminates with a dump.

T TRACEBACK.

T, F, and C are the default options.

character-string-expression 2
A user-identified string that is printed as the dump header (the string can be
up to 80 characters long, but is truncated by CEE5DMP to 60 characters).

PLIDUMP Usage Notes
If you use PLIDUMP, the following considerations apply:
v If a routine calls PLIDUMP a number of times, use a unique user-identifier for

each PLIDUMP invocation. This simplifies identifying the beginning of each
dump.

v Output from PLIDUMP is directed to the file PL1DUMP, PLIDUMP, or
CEEDUMP, or, if you do not define one of these files in your JCL, to SYSLST.
If PL1DUMP is available, PLIDUMP output is directed to it. If PL1DUMP is not
available, PLIDUMP output is directed to PLIDUMP. If neither PL1DUMP nor

Chapter 6. Debugging PL/I Routines 131

PLIDUMP is available, PLIDUMP is directed to CEEDUMP. If none of these files
is available, PLIDUMP output is directed to SYSLST.

v The file (PL1DUMP, PLIDUMP, or CEEDUMP) should have a logical record
length (LRECL) of at least 131 to prevent dump records from wrapping.

v When you specify the H option in a call to PLIDUMP, the PL/I library issues a
VSE SDUMP macro to obtain a snap dump of virtual storage. The first
invocation of PLIDUMP results in a snap dump identifier of 1. For each
successive invocation, the identifier is increased by one to a maximum of 256,
after which it is reset to 1.

v Support for SDUMP dumps using PLIDUMP is provided only in the batch
environment. SDUMP dumps are not produced in a CICS environment.
– If the SDUMP does not succeed, the CEE5DMP DUMP file displays the

message:
Snap was unsuccessful

– If the SDUMP is successful, CEE5DMP displays the message:
Snap was successful; snap ID = nnn

where nnn corresponds to the snap dump identifier described above.
The identifier is incremented only if SDUMP is successful.

To ensure portability across system platforms, use PLIDUMP to generate a dump
of your PL/I routine.

Finding PL/I Information in a Dump
The following sections discuss PL/I-specific information located in the following
sections of an LE/VSE dump:
v Traceback
v Control Blocks for Active Routines
v Control Block Associated with the Thread
v File Status and Attributes

Traceback
Examine the traceback section of the dump, shown in Figure 81 on page 133, for
condition information about your routine and information about the statement
number and address where the exception occurred.

132 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Condition Information
If the dump was called from an ON-unit, the type of ON-unit is identified in the
traceback as part of the entry information. For ON-units, the values of any relevant
condition built-in functions (for example, ONCHAR and ONSOURCE for
conversion errors) appear. In cases where the cause of entry into the ON-unit is not
stated, usually when the ERROR ON-unit is called, the cause of entry appears in
the condition information.

If the condition relates to a failed branch instruction, the condition information
might also contain “bad branch” information. Providing it is active on your IBM
processor, LE/VSE will use the BEAR (“breaking event address register”) feature. If
the BEAR feature is not active, LE/VSE will attempt to establish the bad branch
information using the available DSA information.

Statement Number and Address Where Error Occurred
This information, which is the point at which the condition that caused entry to
the ON-unit occurred, can be found in the traceback section of the dump.

If the condition occurs in compiled code, and you compiled your routine with
either GOSTMT or GONUMBER, the statement numbers appear in the dump. To
identify the assembler instruction that caused the error, use the traceback
information in the dump to find the program unit (PU) offset of the statement
number in which the error occurred. Then find that offset and the corresponding
instruction in the object code listing.

Control Blocks for Active Routines
This section shows the stack frames for all active routines, and the static storage.
Use this section of the dump to identify variable values, determine the contents of
parameter lists, and locate the timestamp.

CEE5DMP V1 R4.7: Plidump called from error ON-unit 11/30/10 3:21:51 PM PAGE: 1

DUMP WAS CALLED FROM STATEMENT NUMBER 6 AT OFFSET +000000EA FROM ERR ON-UNIT WITH ENTRY ADDRESS 005001F8

INFORMATION FOR ENCLAVE EXAMPLE

INFORMATION FOR THREAD 8000000000000000

TRACEBACK:
DSA ADDR PROGRAM UNIT PU ADDR PU OFFSET ENTRY E ADDR E OFFSET STATEMENT STATUS
006A79B0 CEEKKMRA 00227FA0 +000008C4 CEEKKMRA 00227FA0 +000008C4 CALL
006C77C0 IBMRKDM 00675258 +000000BA IBMRKDM 00675258 +000000BA CALL
006A78B0 EXAMPLE 005000F8 +000001EA ERR ON-UNIT 005001F8 +000000EA 6 CALL
006A76A0 IBMRERPL 0068CF98 +0000063E IBMRERPL 0068CF98 +0000063E CALL
006A75B8 CEEEV010 00658800 +00000126 CEEEV010 00658800 +00000126 CALL
006A4018 CEEHDSP 03A58D38 +000012FE CEEHDSP 03A58D38 +000012FE CALL
006A7430 IBMRERRI 0068DDD8 +0000036E IBMRERRI 0068DDD8 +0000036E EXCEPTION
006A7360 EXAMPLE 005000F8 +000002E2 LABL1: BEGIN 00500308 +000000D2 11 CALL
006A7260 EXAMPLE 005000F8 +000000E0 EXAMPLE 00500100 +000000D8 8 CALL
006A71C0 IBMRPMIA 00692E60 +0000028E IBMRPMIA 00692E60 +0000028E CALL
006A70D8 CEEEV010 00658800 +00000282 CEEEV010 00658800 +00000282 CALL
006A7018 CEEBBEXT 001FA3E0 +00000132 CEEBBEXT 001FA3E0 +00000132 CALL

CONDITION INFORMATION FOR ACTIVE ROUTINES
CONDITION INFORMATION FOR IBMRERRI (DSA ADDRESS 006A7430)
CIB ADDRESS: 006A4528
CURRENT CONDITION:
IBM0281I A PRIOR CONDITION WAS PROMOTED TO THE ’ERROR’ CONDITION

ORIGINAL CONDITION:
IBM0421I ’ONCODE’=520 ’SUBSCRIPTRANGE’ CONDITION RAISED

LOCATION:
PROGRAM UNIT: IBMRERRI ENTRY: IBMRERRI STATEMENT: OFFSET: +0000036E

STORAGE DUMP NEAR CONDITION, BEGINNING AT LOCATION: 0068E136
+000000 0068E136 5030D080 58A0C2B8 58F0A01C 4110D080 05EF9108 204F4710 B3849104 204F47E0 |&.....B..0........j..|...dj..|..|

...

Figure 81. Traceback Section of Dump

Chapter 6. Debugging PL/I Routines 133

Figure 82 shows this section of the dump.

Automatic Variables
To find automatic variables, use an offset from the stack frame of the block in
which they are declared. This information appears in the variable storage map
generated when the MAP compile-time option is in effect. If you have not used the
MAP option, you can determine the offset by studying the listing of compiled code
instructions.

Static Variables
If your routine is compiled with the MAP option, you can find static variables by
using an offset in the variable storage map. If the MAP option is not in effect, you
can determine the offset by studying the listing of compiled code.

Based Variables
To locate based variables, use the value of the defining pointer. Find this value by
using one of the methods described above to find static and automatic variables. If
the pointer is itself based, you must find its defining pointer and follow the chain
until you find the correct value.

The following is an example of typical code for X BASED (P), with P
AUTOMATIC:

CEE5DMP V1 R4.7: Plidump called from error ON-unit 11/30/10 3:21:51 PM PAGE: 1

...
CONTROL BLOCKS FOR ACTIVE ROUTINES:
DSA FOR CEEKKMRA: 006A79B0
+000000 FLAGS.... 0000 member... 40C3 BKC...... 006C77C0 FWC...... 006A7EF8 R14...... 80696EEE
+000010 R15...... 83A01D68 R0....... 00000001 R1....... 006A7A40 R2....... 006C7338 R3....... 0000003C
+000024 R4....... 00000001 R5....... 006A7C90 R6....... 006C7180 R7....... 00000000 R8....... 00696038
+000038 R9....... 00000000 R10...... 00228F9F R11...... 80227FA0 R12...... 00657E48 reserved. 006C78B0
+00004C NAB...... 006A7EF8 PNAB..... D6D94040 reserved. 40404040 40404040 40404040 40404040
+000064 reserved. 40404040 reserved. 40404040 MODE..... 80228866 reserved. 40404040 40404040
+000078 reserved. 40404040 reserved. 40404040

...
DSA FOR ERR ON-UNIT: 006A78B0
+000000 FLAGS.... CC25 member... AC8F BKC...... 006A76A0 FWC...... 00657E48 R14...... 8068A45A
+000010 R15...... 80675258 R0....... 006A79B0 R1....... 0050049C R2....... 80500284 R3....... 00500420
+000024 R4....... 006A7260 R5....... 00000000 R6....... 006A7968 R7....... 006A7788 R8....... 006A7980
+000038 R9....... 006A79A4 R10...... 00000064 R11...... 0068DF97 R12...... 03A0658C reserved. 006C77C0
+00004C NAB...... 006A79B0 PNAB..... 006A79B0 reserved. 91E091E0 006A7260 005004E0 03A065BC
+000064 reserved. 006A7950 reserved. 006A7950 MODE..... 805002E4 reserved. 006A7968 006A0224
+000078 reserved. 006A77C4 reserved. 006A77C8

DYNAMIC STORAGE AREA (ERR ON-UNIT): 006A78B0
+000000 006A78B0 CC25AC8F 006A76A0 00657E48 8068A45A 80675258 006A79B0 0050049C 80500284 |..........=...u!.........&...&.d|
+000020 006A78D0 00500420 006A7260 00000000 006A7968 006A7788 006A7980 006A79A4 00000064 |.&.....-...........h.......u....|
+000040 006A78F0 0068DF97 03A0658C 006C77C0 006A79B0 006A79B0 91E091E0 006A7260 005004E0 |...p.....%..........j.j....-.&..|
+000060 006A7910 03A065BC 006A7950 006A7950 805002E4 006A7968 006A0224 006A77C4 006A77C8 |.......&...&.&.U...........D...H|
+000080 006A7930 006A77CC 006A7B64 006A77D0 006A77D8 006A77DC 006A77E0 006A7D58 00000000 |......#........Q..........’.....|
+0000A0 006A7950 00000000 00000000 00000000 0E654940 40404040 40404040 0C014040 40404040 |............... .. |
+0000C0 006A7970 A3829586 A2404040 006A7970 00050000 D7938984 A4949740 83819393 85844086 |tbnfsPlidump called f|
+0000E0 006A7990 99969440 85999996 9940D6D5 60A49589 A340C9D5 006A7980 00210000 C1D5C4D3 |rom error ON-unit IN........ANDL|

STATIC FOR PROCEDURE EXAMPLE TIMESTAMP: 30 JULY 01 15:21:49
STARTING FROM: 00500420
+000000 00500420 E00001E4 00500100 005001A8 005001B8 005001F8 00500284 00500308 0050037E |...U.&...&.y.&...&.8.&.d.&...&.=|
+000020 00500440 0050037E 0050037E 0050037E 00501420 B0000002 1F800004 00000000 00500474 |.&.=.&.=.&.=.&...............&..|
+000040 00500460 00000000 00050000 00000000 00210000 91E091E0 00000004 00000004 0000000A |................j.j.............|
+000060 00500480 00000001 91A091A0 00000014 00000001 0A200000 0000000A 00000002 006A7978 |....j.j.........................|
+000080 005004A0 806A79A4 005010F0 A3829586 A2D79389 84A49497 40838193 93858440 86999694 |...u.&.0tbnfsPlidump called from|
+0000A0 005004C0 40859999 969940D6 D560A495 89A30000 005001C4 005001B8 0C160000 005001F8 | error ON-unit...&.D.&.......&.8|
+0000C0 005004E0 0C960000 00000000 00500620 00000000 00000000 0050051C 00500530 0050054C |.o.......&...........&...&...&.<|
+0000E0 00500500 00500564 00000000 005004E8 00000000 005004F4 00000000 005004F4 85000001 |.&.......&.Y.....&.4.....&.4e...|
+000100 00500520 00500452 000000C8 00000000 0001C900 85000001 00500452 000000CC 00000000 |.&.....H......I.e....&..........|
+000120 00500540 0009C1D9 D9C1E86D C5D5C400 81000101 00500452 000000C0 00000000 0005C1D9 |..ARRAY_END.a....&............AR|
+000140 00500560 D9C1E800 0D020001 00500450 005004D0 00000000 0005D3C1 C2D3F100 00000001 |RAY......&.&.&........LABL1.....|
+000160 00500580 00500100 000000F6 005005A4 00000001 00BD0004 00C40008 00C90008 00DF000E |.&.....6.&.u.........D...I......|
+000180 005005A0 00F80004 005001F8 00000108 005005C4 00000004 00910005 00990006 00F10007 |.8...&.8.....&.D.....j...r...1..|
+0001A0 005005C0 01080008 00500308 00000116 005005EC 00000008 007B0009 008B000A 00AF000B |.....&.......&.......#..........|
+0001C0 005005E0 00E5000C 0105000D 0104000D 0E0E0E0E F3F040D1 E4D3E840 F0F140F1 F57AF2F1 |.V..............30 JULY 01 15:21|
+0001E0 00500600 7AF4F940 80000011 00500078 00000000 01000001 00500100 005010C8 00000000 |:49&...........&...&.H....|

Figure 82. Control Blocks for Active Routines Section of the Dump

134 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

58 60 D 0C8 L 6,P

58 E0 6 000 L 14,X

P is held at offset X'000000C8' from register 13. This address points to X.

Take care when examining a based variable to ensure that the pointers are still
valid.

Area Variables
Area variables are located using one of the methods described above, according to
their storage class.

The following is an example of typical code:
v For an area variable A declared AUTOMATIC

41 60 D 0F8 LA 6,A

v The area starts at offset X'000000F8' from register 13.

Variables in Areas
To find variables in areas, locate the area and use the offset to find the variable.

Contents of Parameter Lists
To find the contents of a passed parameter list, first find the register 1 value in the
save area of the calling routine's stack frame. Use this value to locate the parameter
list in the dump. If R1=0, no parameters were passed. For additional information
about parameter lists, see IBM PL/I for VSE/ESA Programming Guide

Timestamp
If the TSTAMP compiler installation option is in effect, the date and time of
compilation appear within the last 32 bytes of the static internal control section.
The last three bytes of the first word give the offset to this information. The offset
indicates the end of the timestamp. Register 3 addresses the static internal control
section. If the BLOCK option is in effect, the timestamp appears in the static
storage section of the dump.

Control Blocks Associated with the Thread
This section of the dump, shown in Figure 83, includes information about PL/I
fields of the CAA and other control block information.

CEE5DMP V1 R4.7: Plidump called from error ON-unit 11/30/10 3:21:51 PM PAGE: 1

...
CONTROL BLOCKS ASSOCIATED WITH THE THREAD:
CAA: 00657E48
+000000 00657E48 00000000 006C77A8 006A7000 006C7000 00000000 00657E58 00000000 006C7300 |.....%.y.....%........=......%..|
+000020 00657E68 00000000 00000000 006C7180 00000000 006C7390 00000000 006C7358 00000000 |.........%.......%.......%......|
+000040 00657E88 006C7320 00000000 006929A0 00000000 00693220 0068CE70 00000000 00000000 |.%..............................|
+000060 00657EA8 00000000 0068CDC8 006C77A8 00692530 00692858 80204A90 0068DDD8 10001111 |.......H.%.y...............Q....|...

DUMMY DSA: 00658608
+000000 FLAGS.... 0000 member... 0000 BKC...... 00438000 FWC...... 006A7018 R14...... 80500B3C
+000010 R15...... 801FA3E0 R0....... 00500078 R1....... 001F9160 R2....... 00000000 R3....... 00000000
+000024 R4....... 00000000 R5....... 00000000 R6....... 00000000 R7....... 00696038 R8....... 00500610
+000038 R9....... 00438618 R10...... 00000000 R11...... 80500A12 R12...... 00657E48 reserved. 006C73E0
+00004C NAB...... 006A7018 PNAB..... 006A7018 reserved. 00000000 00000000 00000000 00000000
+000064 reserved. 00000000 reserved. 00000000 MODE..... 00000000 reserved. 00000000 00000000
+000078 reserved. 00000000 reserved. 00000000

TCA IMPLEMENTATION APPENDAGE (TIA): 006C7180
+000000 006C7180 00000000 00000000 00000000 00000030 00000000 00000000 00000000 00000000 |................................|
+000020 006C71A0 006C7338 00000000 00000000 00000000 00000000 00000000 00000000 00000000 |.%..............................|
+000040 006C71C0 00000000 00000000 00000000 00000000 00657E48 00000000 00000000 00000000 |..................=.............|

Figure 83. Control Blocks Associated with the Thread Section of the Dump

Chapter 6. Debugging PL/I Routines 135

+000060 006C71E0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 |................................|
+000080 006C7200 - +0000DF 006C725F SAME AS ABOVE
+0000E0 006C7260 00000000 00000000 00000000 00000000 00000000 00000000 00008000 00000000 |................................|
+000100 006C7280 00000000 00000000 00000000 00000000 00000000 00000000 00000000 006C9034 |.............................%..|

ENCLAVE CONTROL BLOCKS:
EDB: 00657060
+000000 00657060 C3C5C5C5 C4C24040 C0000001 00657D08 006575F8 00000000 00000000 00000000 |CEEEDB’....8............|
+000020 00657080 006574B0 006574E0 00696038 00656D40 00000000 00000000 001F9160 00008000 |..........-..._j-....|
+000040 006570A0 00000000 00000000 00438000 00000000 00000000 00000000 00657120 006570B8 |................................|
+000060 006570C0 00000000 00000000 00000000 00000000 00000000 00000000 03A892F8 00657E48 |.........................yk8..=.|
+000080 006570E0 40000000 00000000 00000000 00000000 00000001 00000000 00000000 00000000 ||

MEML: 00657D08
+000000 00657D08 00000000 00000000 03A41338 00000000 00000000 00000000 03A41338 00000000 |.........u...............u......|
+000020 00657D28 - +00009F 00657DA7 SAME AS ABOVE
+0000A0 00657DA8 00000000 00000000 80658800 00000000 00000000 00000000 03A41338 00000000 |..........h..............u......|
+0000C0 00657DC8 00000000 00000000 03A41338 00000000 00000000 00000000 03A41338 00000000 |.........u...............u......|
+0000E0 00657DE8 - +00011F 00657E27 SAME AS ABOVE

PROCESS CONTROL BLOCKS:

PCB: 00656D40
+000000 00656D40 C3C5C5D7 C3C24040 04030290 00000000 00000000 00000000 00656F38 03A8A6B0 |CEEPCB?..yw.|
+000020 00656D60 03A86838 03A89690 03A891C8 006469C8 00656118 00000000 00000000 00657060 |.y...yo..yjH...H../............-|
+000040 00656D80 03A894E8 00000000 00000000 00000000 00000000 00000000 00000000 00000000 |.ymY............................|

MEML: 00656F38
+000000 00656F38 00000000 00000000 03A41338 00000000 00000000 00000000 03A41338 00000000 |.........u...............u......|
+000020 00656F58 - +00009F 00656FD7 SAME AS ABOVE
+0000A0 00656FD8 00640838 00000000 80658800 00000000 00000000 00000000 03A41338 00000000 |..........h..............u......|
+0000C0 00656FF8 00000000 00000000 03A41338 00000000 00000000 00000000 03A41338 00000000 |.........u...............u......|
+0000E0 00657018 - +00011F 00657057 SAME AS ABOVE

PL/I PROCESS CONTROL BLOCK: 00640838
+000000 00640838 E9D7D9C2 40404040 00640800 00000000 00000000 00000000 0068CDC8 00000000 |ZPRBH....|
+000020 00640858 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 |................................|
+000040 00640878 - +00005F 00640897 SAME AS ABOVE

The CAA
The address of the CAA control block appears in this section of the dump. If the
BLOCK option is in effect, the complete CAA (including the PL/I implementation
appendage) appears separately from the body of the dump. Register 12 addresses
the CAA.

File Status and Attribute Information
This part of the dump includes the following information:
v The default and declared attributes of all open files
v Buffer contents of all file buffers
v The contents of FCBs, DTFs, DCLCBs, IOCBs, and control blocks for the process

or enclave

Debugging Example PL/I Routines
This section contains examples of PL/I routines and instructions for using
information in the LE/VSE dump to debug them. Important areas in the source
code and in the dump for each routine are highlighted.

Subscript Range Error
Figure 84 on page 137 illustrates an error caused by an array subscript value
outside the declared range. In this example, the declared array value is 10.

This routine was compiled with the options LIST, TEST(ALL), GOSTMT, and MAP. In
the ERROR ON-unit, PLIDUMP is called with option T to generate a traceback for
the condition.

136 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Figure 85 on page 138 shows sections of the dump generated by a call to
PLIDUMP.

5686-069 IBM PL/I FOR VSE/ESA VER 1 REL 4 MOD 7 with MLE 30 NOV 2010 15:21:49 PAGE 1
OPTIONS SPECIFIED
*PROCESS INCLUDE,SYSTEM(VSE),GOSTMT,MAP,LIST,TEST(ALL);
*PROCESS LINECOUNT(100);...
5686-069 IBM PL/I FOR VSE/ESA EXAMPLE: PROC OPTIONS(MAIN); PAGE 2

SOURCE LISTING
STMT

1 EXAMPLE: PROC OPTIONS(MAIN);
2 DCL Array(10) Fixed bin(31);
3 DCL (I,Array_End) Fixed bin(31);
4 On error

Begin;
5 On error system;
6 Call plidump(’tbnfs’,’Plidump called from error ON-unit’);
7 End;
8 (subrg): /* Enable subscriptrange condition */

Labl1: Begin;
9 Array_End = 20;
10 Do I = 1 to Array_End; /* Loop to initialize array */
11 Array(I) = 2; /* Set array elements to 2 */
12 End;
13 End Labl1;
14 End Example;...

5686-069 IBM PL/I FOR VSE/ESA EXAMPLE: PROC OPTIONS(MAIN); PAGE 4
VARIABLE STORAGE MAP

IDENTIFIER LEVEL OFFSET (HEX) CLASS BLOCK

I 1 200 C8 AUTO EXAMPLE
ARRAY_END 1 204 CC AUTO EXAMPLE
ARRAY 1 208 D0 AUTO EXAMPLE...

Figure 84. Example of Moving a Value Outside an Array Range

Chapter 6. Debugging PL/I Routines 137

To debug this routine, use the following steps:
1. In the dump, PLIDUMP was called by the ERROR ON-unit in statement 6. The

traceback information in the dump shows that the exception occurred following
statement 11.

2. Locate the Original Condition message in the Condition Information for Active
Routines section of the dump. The message is IBM0421S ONCODE=520
SUBSCRIPTRANGE CONDITION RAISED. This message indicates that the exception
occurred when an array element value exceeded the subscript range value (in
this case, 10). For more information about this message, see Chapter 11, “PL/I
Run-Time Messages,” on page 253.

3. Locate statement 9 in the routine in Figure 84 on page 137. The instruction is
Array_End = 20. This statement assigns a 20 value to the variable Array_End.

4. Statement 10 begins the DO-loop instruction Do I = 1 to Array_End. Since the
previous instruction (statement 9) specified that Array_End = 20, the loop in
statement 10 should run until I reaches a 20 value.
The instruction in statement 2, however, declared a 10 value for the array
range. Therefore, when the I value reached 11, the SUBSCRIPTRANGE
condition was raised.

Note: The following steps provide another method for finding the value that
raised the SUBSCRIPTRANGE condition.

CEE5DMP V1 R4.7: Plidump called from error ON-unit 11/30/10 3:21:51 PM PAGE: 1

DUMP WAS CALLED FROM STATEMENT NUMBER 6 AT OFFSET +000000EA FROM ERR ON-UNIT WITH ENTRY ADDRESS 005001F8

INFORMATION FOR ENCLAVE EXAMPLE

INFORMATION FOR THREAD 8000000000000000

TRACEBACK:
DSA ADDR PROGRAM UNIT PU ADDR PU OFFSET ENTRY E ADDR E OFFSET STATEMENT STATUS
006A79B0 CEEKKMRA 00227FA0 +000008C4 CEEKKMRA 00227FA0 +000008C4 CALL
006C77C0 IBMRKDM 00675258 +000000BA IBMRKDM 00675258 +000000BA CALL
006A78B0 EXAMPLE 005000F8 +000001EA ERR ON-UNIT 005001F8 +000000EA 6 CALL
006A76A0 IBMRERPL 0068CF98 +0000063E IBMRERPL 0068CF98 +0000063E CALL
006A75B8 CEEEV010 00658800 +00000126 CEEEV010 00658800 +00000126 CALL
006A4018 CEEHDSP 03A58D38 +000012FE CEEHDSP 03A58D38 +000012FE CALL
006A7430 IBMRERRI 0068DDD8 +0000036E IBMRERRI 0068DDD8 +0000036E EXCEPTION
006A7360 EXAMPLE 005000F8 +000002E2 LABL1: BEGIN 00500308 +000000D2 11 CALL
006A7260 EXAMPLE 005000F8 +000000E0 EXAMPLE 00500100 +000000D8 8 CALL
006A71C0 IBMRPMIA 00692E60 +0000028E IBMRPMIA 00692E60 +0000028E CALL
006A70D8 CEEEV010 00658800 +00000282 CEEEV010 00658800 +00000282 CALL
006A7018 CEEBBEXT 001FA3E0 +00000132 CEEBBEXT 001FA3E0 +00000132 CALL

CONDITION INFORMATION FOR ACTIVE ROUTINES
CONDITION INFORMATION FOR IBMRERRI (DSA ADDRESS 006A7430)
CIB ADDRESS: 006A4528
CURRENT CONDITION:
IBM0281I A PRIOR CONDITION WAS PROMOTED TO THE ’ERROR’ CONDITION

ORIGINAL CONDITION:
IBM0421I ’ONCODE’=520 ’SUBSCRIPTRANGE’ CONDITION RAISED

LOCATION:
PROGRAM UNIT: IBMRERRI ENTRY: IBMRERRI STATEMENT: OFFSET: +0000036E

STORAGE DUMP NEAR CONDITION, BEGINNING AT LOCATION: 0068E136
+000000 0068E136 5030D080 58A0C2B8 58F0A01C 4110D080 05EF9108 204F4710 B3849104 204F47E0 |&.....B..0........j..|...dj..|..|

CONTROL BLOCKS FOR ACTIVE ROUTINES:...
DYNAMIC STORAGE AREA (EXAMPLE): 006A7260
+000000 006A7260 C0257060 006A71C0 00000000 805001DA 00500308 006A7360 006A7260 805001B8 |...-.........&...&.....-...-.&..|
+000020 006A7280 00500420 00000001 006A7260 006A7330 00500614 005004D8 006A7098 00500614 |.&.........-.....&...&.Q...q.&..|
+000040 006A72A0 00000003 00657E48 006C73E0 006A7360 006A7360 91E091A0 8800000C 005004D8 |......=..%.....-...-j.j.h....&.Q|
+000060 006A72C0 006A74D8 8069B03E 83A58B30 00000000 006A7318 00690238 0065F868 006579B8 |...Q....cv................8.....|
+000080 006A72E0 00657060 00640838 00657E58 006C72ED 006C72A0 00660867 00689038 00657E48 |...-......=..%...%............=.|
+0000A0 006A7300 00000000 006A74D8 00000000 00000080 00000000 00000000 0C010000 00000000 |.......Q........................|
+0000C0 006A7320 006A7330 00500474 0000000B 00000014 00000002 00000002 00000002 00000002 |.....&..........................|
+0000E0 006A7340 00000002 00000002 00000002 00000002 00000002 00000002 00000000 00000000 |................................|

Figure 85. Sections of the LE/VSE Dump

138 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

1. Locate the offset of variable I in the variable storage map in Figure 84 on page
137. Use this offset to find the I value at the time of the dump. In this example,
the offset is X'000000C8'.

2. Now find offset X'000000C8' from the start of the stack frame in Figure 85 on
page 138.
The block located at this offset contains the value that exceeded the array
range, X'B' or 11.

Calling a Nonexistent Subroutine
Figure 86 demonstrates the error of calling a nonexistent subroutine. This routine
was compiled with the LIST, MAP, and GOSTMT compile-time options. In the
ERROR ON-unit, PLIDUMP is called with option T to generate a traceback.

The routine in Figure 86 was compiled with the LIST compile-time option, which
generated an object code listing, part of which is shown in Figure 87.

Figure 88 on page 140 shows the traceback and condition information from the
dump.

5686-069 IBM PL/I FOR VSE/ESA VER 1 REL 4 MOD 7 with MLE 30 NOV 2010 11/30/10 PAGE 1
OPTIONS SPECIFIED
*PROCESS INCLUDE,SYSTEM(VSE),GOSTMT,MAP,LIST;...
5686-069 IBM PL/I FOR VSE/ESA EXAMPLE1: PROC OPTIONS(MAIN); PAGE 2

SOURCE LISTING
STMT

1 EXAMPLE1: PROC OPTIONS(MAIN);
2 DCL Prog01 entry external;
3 On error

Begin;
4 On error system;
5 Call plidump(’tbnfs’,’Plidump called from error ON-unit’);
6 End;
7 Call Prog01; /* Call external program PROG01 */
8 End Example1;

Figure 86. Example of Calling a Nonexistent Subroutine

* STATEMENT NUMBER 7
0000B8 1B 11 SR 1,1
0000BA 1B 55 SR 5,5
0000BC 58 F0 3 040 L 15,64(0,3)
0000C0 05 EF BALR 14,15

* STATEMENT NUMBER 8
0000C2 18 0D LR 0,13
0000C4 58 D0 D 004 L 13,4(0,13)
0000C8 58 E0 D 00C L 14,12(0,13)
0000CC 98 2C D 01C LM 2,12,28(13)
0000D0 05 1E BALR 1,14

* END PROCEDURE

Figure 87. Object Code Listing from Example PL/I Routine

Chapter 6. Debugging PL/I Routines 139

To debug this example routine, use the following steps:
1. Find the Current Condition message in the Condition Information for Active

Routines section of the dump. The message is CEE3201S The system detected
an operation exception. For more information abo ut this message, see
Chapter 8, “LE/VSE Run-Time Messages,” on page 155.

2. The Condition Information for Active Routines section of the dump provides
the name of the active routine and, if available, the current statement number
at the time the condition occurred. In this example, because the condition
occurred as a result of a call to a nonexistent subroutine, the statement number
is not available. When the statement number is unavailable, you can use the
address in the PSW and the instruction length code (ILC) from the Machine
State section of the dump to determine where the condition occurred.
Subtract the ILC (X'0002') from the address in the PSW (X'00000002') to get the
address of the instruction that caused the condition. If your system is operating
in extended-addressing mode, ignore the high-order bit of the address in the
PSW. If your system is operating in 370 mode, ignore the high-order byte of the
address in the PSW.

3. In this example, the condition occurred at address X'00000000'. An instruction
address of X'00000000' usually indicates a call to a nonexistent subroutine.
Standard linkage convention means that the address of the instruction
immediately following the call to the nonexistent subroutine is in register 14. In
this example, the address in register 14 is X'005001BA'.

4. Determine the PU address of the routine in control (EXAMPLE1) from the
traceback listing. Subtract the PU address (X'005000F8') from the address in
register 14 to obtain the offset of the instruction following the call. Use the
resultant offset (X'000000C2') to locate the instruction following the call in the

CEE5DMP V1 R4.7: Plidump called from error ON-unit 11/30/10 3:16:49 PM PAGE: 1

DUMP WAS CALLED FROM STATEMENT NUMBER 5 AT OFFSET +000000BE FROM ERR ON-UNIT WITH ENTRY ADDRESS 005001CC

INFORMATION FOR ENCLAVE EXAMPLE1

INFORMATION FOR THREAD 8000000000000000

TRACEBACK:
DSA ADDR PROGRAM UNIT PU ADDR PU OFFSET ENTRY E ADDR E OFFSET STATEMENT STATUS
006A7718 CEEKKMRA 00227FA0 +000008C4 CEEKKMRA 00227FA0 +000008C4 CALL
006C78A0 IBMRKDM 00675258 +000000BA IBMRKDM 00675258 +000000BA CALL
006A7618 EXAMPLE1 005000F8 +00000192 ERR ON-UNIT 005001CC +000000BE 5 CALL
006A7408 IBMRERPL 0068CF98 +0000063E IBMRERPL 0068CF98 +0000063E CALL
006A7320 CEEEV010 00658800 +00000126 CEEEV010 00658800 +00000126 CALL
006A4018 CEEHDSP 03A58D38 +000012FE CEEHDSP 03A58D38 +000012FE CALL
006A7260 EXAMPLE1 005000F8 -005000F6 EXAMPLE1 00500104 -00500102 EXCEPTION
006A71C0 IBMRPMIA 00692E60 +0000028E IBMRPMIA 00692E60 +0000028E CALL
006A70D8 CEEEV010 00658800 +00000282 CEEEV010 00658800 +00000282 CALL
006A7018 CEEBBEXT 001FA3E0 +00000132 CEEBBEXT 001FA3E0 +00000132 CALL

CONDITION INFORMATION FOR ACTIVE ROUTINES
CONDITION INFORMATION FOR EXAMPLE1 (DSA ADDRESS 006A7260)
CIB ADDRESS: 006A4528
CURRENT CONDITION:
CEE3201S THE SYSTEM DETECTED AN OPERATION EXCEPTION.

LOCATION:
PROGRAM UNIT: EXAMPLE1 ENTRY: EXAMPLE1 STATEMENT: OFFSET: -005000F6

MACHINE STATE:
ILC..... 0002 INTERRUPTION CODE..... 0001
PSW..... 071D0E00 80000002
PM....... 0000
GPR0..... 006A7320 GPR1..... 00000000 GPR2..... 805001AC GPR3..... 005002A0
GPR4..... 00000001 GPR5..... 00000000 GPR6..... 006A7318 GPR7..... 0050038C
GPR8..... 00500310 GPR9..... 006A7098 GPR10.... 0050038C GPR11.... 00000003
GPR12.... 00657E48 GPR13.... 006A7260 GPR14.... 805001BA GPR15.... 00000000

STORAGE DUMP NEAR CONDITION, BEGINNING AT LOCATION: 00000000
+000000 00000000 INACCESSIBLE STORAGE....

Figure 88. Sections of the LE/VSE Dump

140 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

compiler-generated object listing. As Figure 87 on page 139 shows, the
statement at offset X'000000C2' is statement 8. Therefore, you can see from the
compilation listing in Figure 86 on page 139 that the statement in error is
statement 7, the call to Prog01.

5. Check the linkage editor output for error messages.

From LE/VSE V1R4.7 onwards, the condition information message and the
“Condition Information for Active Routines” dump section might contain “bad
branch” information. This information will either be:
v Taken from the BEAR (“breaking event address register”) feature, if active on

your IBM processor.
v Calculated using the information available in the active DSAs.

If the application is compiled with the supporting options, this “bad branch”
information will consist of the calling statement number and relative offset.

Divide-by-Zero Error
Figure 89 demonstrates a divide-by-zero error. In this example, the main PL/I
routine passed bad data to a PL/I subroutine. The bad data in this example is 0,
and the error occurred when the subroutine SUB1 attempted to use this data as a
divisor.

Since variables are not normally displayed in a PLIDUMP dump, this routine
included a PUT DATA statement, which generated a listing of arguments and
variables used in the routine. Figure 90 on page 142 shows this output.

SOURCE LISTING
STMT

1 SAMPLE: PROC OPTIONS(MAIN) ;
2 On error

begin;
3 On error system; /* prevent nested error conditioNS */
4 Call PLIDUMP(’TBC’,’PLIDUMP called from error ON-unit’);
5 Put Data; /* Display variables */
6 End;
7 DECLARE

A_number Fixed Bin(31),
My_name Char(13),
An_Array(3) Fixed Bin(31) init(1,3,5);

8 Put skip list(’Sample Starting’);
9 A_number = 0;
10 My_name = ’G. Sutherland’;
11 Call Sub1(a_number, my_name, an_array);
12 SUB1: PROC(divisor, name1, Array1);
13 Declare

Divisor Fixed Bin(31),
Name1 Char(13),
Array1(3) Fixed Bin(31);

14 Put skip list(’Sub1 Starting’);
15 Array1(1) = Array1(2) / Divisor;
16 Put skip list(’Sub1 Ending’);
17 End SUB1;
18 Put skip list(’Sample Ending’);
19 End;

Figure 89. PL/I Routine with a Divide-by-Zero Error

Chapter 6. Debugging PL/I Routines 141

The routine in Figure 89 on page 141 was compiled with the LIST compile-time
option, and run with the GOSTMT and MAP run-time options (otherwise, the ERR
ON-UNIT statement number is not generated in the traceback).

The object code listing shown in Figure 91 was generated.

Figure 92 shows the LE/VSE dump for routine SAMPLE.

CEE5DMP V1 R4.7: PLIDUMP called from error ON-unit 11/30/10 3:22:01 PM PAGE: 1

DUMP WAS CALLED FROM STATEMENT NUMBER 4 AT OFFSET +000000BE FROM ERR ON-UNIT WITH ENTRY ADDRESS 005002A4

INFORMATION FOR ENCLAVE SAMPLE

INFORMATION FOR THREAD 8000000000000000

TRACEBACK:
DSA ADDR PROGRAM UNIT PU ADDR PU OFFSET ENTRY E ADDR E OFFSET STATEMENT STATUS
006A78B0 CEEKKMRA 00227FA0 +000008C4 CEEKKMRA 00227FA0 +000008C4 CALL
006C78A0 IBMRKDM 00675258 +000000BA IBMRKDM 00675258 +000000BA CALL
006A7788 SAMPLE 005000F8 +0000026A ERR ON-UNIT 005002A4 +000000BE 4 CALL
006A7578 IBMRERPL 0068CF98 +0000063E IBMRERPL 0068CF98 +0000063E CALL
006A7490 CEEEV010 00658800 +00000126 CEEEV010 00658800 +00000126 CALL
006A4018 CEEHDSP 03A58D38 +000012FE CEEHDSP 03A58D38 +000012FE CALL
006A7390 SAMPLE 005000F8 +0000039E SUB1 005003C0 +000000D6 15 EXCEPTION
006A7260 SAMPLE 005000F8 +0000015C SAMPLE 00500100 +00000154 11 CALL
006A71C0 IBMRPMIA 00692E60 +0000028E IBMRPMIA 00692E60 +0000028E CALL
006A70D8 CEEEV010 00658800 +00000282 CEEEV010 00658800 +00000282 CALL
006A7018 CEEBBEXT 001FA3E0 +00000132 CEEBBEXT 001FA3E0 +00000132 CALL

CONDITION INFORMATION FOR ACTIVE ROUTINES
CONDITION INFORMATION FOR SAMPLE (DSA ADDRESS 006A7390)
CIB ADDRESS: 006A4528
CURRENT CONDITION:
IBM0281I A PRIOR CONDITION WAS PROMOTED TO THE ’ERROR’ CONDITION

ORIGINAL CONDITION:
CEE3209S THE SYSTEM DETECTED A FIXED-POINT DIVIDE EXCEPTION.

LOCATION:
PROGRAM UNIT: SAMPLE ENTRY: SUB1 STATEMENT: 15 OFFSET: +0000039E

MACHINE STATE:
ILC..... 0004 INTERRUPTION CODE..... 0009
PSW..... 071D2E00 8050049A
PM....... 0000
GPR0..... 006A7490 GPR1..... 006A7468 GPR2..... 8050042C GPR3..... 005004F0

Sample Starting
Sub1 Starting A_NUMBER= 0 MY_NAME=’G. Sutherland’ AN_ARRAY(1)= 1
AN_ARRAY(2)= 3 AN_ARRAY(3)= 5;

Figure 90. Variables from Routine SAMPLE

* STATEMENT NUMBER 15
000372 58 B0 D 0C8 L 11,200(0,13)
000376 58 40 B 004 L 4,4(0,11)
00037A 58 90 3 0AC L 9,172(0,3)
00037E 5C 80 4 004 M 8,4(0,4)
000382 58 70 3 0CC L 7,204(0,3)
000386 5C 60 4 004 M 6,4(0,4)
00038A 58 80 D 0C0 L 8,192(0,13)
00038E 58 60 B 000 L 6,0(0,11)
000392 5F 60 4 000 SL 6,0(0,4)
000396 58 E7 6 000 L 14,VO..ARRAY1(7)
00039A 8E E0 0 020 SRDA 14,32
00039E 5D E0 8 000 D 14,DIVISOR
0003A2 50 F9 6 000 ST 15,VO..ARRAY1(9)

Figure 91. Object Code Listing from Example PL/I Routine

Figure 92. LE/VSE Dump from Example PL/I Routine

142 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

GPR4..... 005005AC GPR5..... 006A7260 GPR6..... 006A7334 GPR7..... 00000008
GPR8..... 006A7330 GPR9..... 00000004 GPR10.... 005007A4 GPR11.... 006A7328
GPR12.... 00657E48 GPR13.... 006A7390 GPR14.... 00000000 GPR15.... 00000003

STORAGE DUMP NEAR CONDITION, BEGINNING AT LOCATION: 00500486
+000000 00500486 5860B000 5F604000 58E76000 8EE00020 5DE08000 50F96000 41E0D0D8 50E03124 |.-..^- ..X-.....)...&9-....Q&...|

CONTROL BLOCKS FOR ACTIVE ROUTINES:...
DSA FOR ERR ON-UNIT: 006A7788
+000000 FLAGS.... CC25 member... AC8F BKC...... 006A7578 FWC...... 00657E48 R14...... 8068A45A
+000010 R15...... 80675258 R0....... 006A78B0 R1....... 005005E8 R2....... 80500318 R3....... 005004F0
+000024 R4....... 006A7260 R5....... 00000000 R6....... 006A7840 R7....... 006A7660 R8....... 006A7878
+000038 R9....... 006A78A8 R10...... 00000064 R11...... 0068DF97 R12...... 03A0658C reserved. 006C78A0
+00004C NAB...... 006A78B0 PNAB..... 006A78B0 reserved. 91E091E0 006A7260 00500690 03A065BC
+000064 reserved. 006A7828 reserved. 006A7828 MODE..... 80500364 reserved. 006A7840 006A02FC
+000078 reserved. 006A769C reserved. 006A76A0

DYNAMIC STORAGE AREA (ERR ON-UNIT): 006A7788
+000000 006A7788 CC25AC8F 006A7578 00657E48 8068A45A 80675258 006A78B0 005005E8 80500318 |..........=...u!.........&.Y.&..|
+000020 006A77A8 005004F0 006A7260 00000000 006A7840 006A7660 006A7878 006A78A8 00000064 |.&.0...-....... ...-.......y....|
+000040 006A77C8 0068DF97 03A0658C 006C78A0 006A78B0 006A78B0 91E091E0 006A7260 00500690 |...p.....%..........j.j....-.&..|
+000060 006A77E8 03A065BC 006A7828 006A7828 80500364 006A7840 006A02FC 006A769C 006A76A0 |.............&.....|
+000080 006A7808 006A76A4 006A7A3C 006A76A8 006A76B0 006A76B4 006A76B8 006A7C30 00000000 |...u..:....y..............@.....|
+0000A0 006A7828 00000000 00000000 00000000 0E6C9070 40404040 40404040 0C014040 40404040 |.............%.. .. |
+0000C0 006A7848 40404040 40404040 40404040 40404040 00500039 C3D6D5C4 C9E3C9D6 D540D7D9 | .&..CONDITION PR|
+0000E0 006A7868 D6C3C5E2 E2C9D5C7 40D9C5E2 E4D3E3C5 E3C2C3D5 006A7878 00030000 D7D3C9C4 |OCESSING RESULTETBCN........PLID|
+000100 006A7888 E4D4D740 83819393 85844086 99969440 85999996 9940D6D5 60A49589 A3404040 |UMP called from error ON-unit |
+000120 006A78A8 006A7884 00210000 0000C5D5 006C78A0 006A7DF8 80696EEE 83A01D68 00000001 |...d......EN.%....’8..>.c.......|

STATIC FOR PROCEDURE SAMPLE TIMESTAMP: 30 JULY 01 15:21:59
STARTING FROM: 005004F0
+000000 005004F0 E00002A4 00500100 005001A8 005001DE 005002A4 00500318 005003C0 0050042C |...u.&...&.y.&...&.u.&...&...&..|
+000020 00500510 0050042C 0050042C 0050042C 00501280 00501298 005012B0 00501358 00501460 |.&...&...&...&...&.q.&...&...&.-|
+000040 00500530 005014A8 005014D8 00501538 00501580 005015E0 005015F8 00501610 00501640 |.&.y.&.Q.&...&...&...&.8.&...&. |
+000060 00500550 20000002 1F800000 0050061C 000F0000 00000000 000D0000 00000000 005005AC |.........&...................&..|
+000080 00500570 00500638 000D0000 00000000 00030000 00000000 00210000 00500669 000D0000 |.&.......................&......|
+0000A0 00500590 00500676 000B0000 91E091E0 00000001 00000003 00000005 00000000 00000004 |.&......j.j.....................|
+0000C0 005005B0 00000004 00000003 00000001 00000002 005007B0 005007B0 006A7368 8050059C |.................&...&.......&..|
+0000E0 005005D0 006A7330 006A7320 806A7328 005007B0 00000000 8050059C 006A787C 806A78A8 |.............&.......&.....@...y|
+000100 005005F0 00501490 005007B0 80000000 00000000 80500698 005007B0 006A7468 8050059C |.&...&...........&.q.&.......&..|
+000120 00500610 005007B0 00000000 8050059C E2819497 938540E2 A38199A3 899587C7 4B40E2A4 |.&.......&..Sample StartingG. Su|
+000140 00500630 A3888599 93819584 E2819497 938540C5 95848995 87E3C2C3 D7D3C9C4 E4D4D740 |therlandSample EndingTBCPLIDUMP |
+000160 00500650 83819393 85844086 99969440 85999996 9940D6D5 60A49589 A3E2A482 F140E2A3 |called from error ON-unitSub1 St|
+000180 00500670 8199A389 9587E2A4 82F140C5 95848995 87000000 00000000 0C160000 005002A4 |artingSub1 Ending............&.u|
+0001A0 00500690 0C960000 00000000 005006AC 005006C8 005006E4 00000000 00000000 85000001 |.o.......&...&.H.&.U........e...|
+0001C0 005006B0 00500552 000000D0 00000000 0008C16D D5E4D4C2 C5D90000 81000001 00500550 |.&............A_NUMBER..a....&.&|
+0001E0 005006D0 000000C0 00000000 0007D4E8 6DD5C1D4 C5000000 81000101 00500552 000000C8 |..........MY_NAME...a....&.....H|
+000200 005006F0 00000000 0008C1D5 6DC1D9D9 C1E80000 00000001 00500100 000001A4 00500734 |......AN_ARRAY.......&.....u.&..|
+000220 00500710 00000001 00DE0002 00E20008 01200009 0128000A 012E000B 01560012 01940013 |.........S...................m..|
+000240 00500730 01A40002 005002A4 00000112 00500758 00000002 00740003 00780004 00C00005 |.u...&.u.....&..................|
+000260 00500750 01020006 0114000C 005003C0 0000012C 0050077C 0000000C 006C000E 00AA000F |.........&.......&.@.....%......|
+000280 00500770 00DE0010 011C0011 011C0011 0E0E0E0E F3F040D1 E4D3E840 F0F140F1 F57AF2F1 |................30 JULY 01 15:21|
+0002A0 00500790 7AF5F940 80000011 00500078 00000000 01000001 00500100 00501258 00000000 |:59&...........&...&......|...

DSA FOR SUB1: 006A7390
+000000 FLAGS.... 8025 member... 0000 BKC...... 006A7260 FWC...... 00000000 R14...... 8050049A
+000010 R15...... 00000003 R0....... 006A7490 R1....... 006A7468 R2....... 8050042C R3....... 005004F0
+000024 R4....... 005005AC R5....... 006A7260 R6....... 006A7334 R7....... 00000008 R8....... 006A7330
+000038 R9....... 00000004 R10...... 005007A4 R11...... 006A7328 R12...... 00657E48 reserved. 006C73E0
+00004C NAB...... 006A7490 PNAB..... 006A7490 reserved. 91E091E0 006A7260 00000000 00000000
+000064 reserved. 00000000 reserved. 00000000 MODE..... 8050046A reserved. 00000000 00000200
+000078 reserved. 00000000 reserved. 00000000

CIB FOR SUB1: 006A4528
+000000 006A4528 C3C9C240 00000000 00000000 010C0002 00000005 E2E30000 00030119 59C9C2D4 |CIBST.......IBM|
+000020 006A4548 00000000 006A4634 00030C89 59C3C5C5 00000001 00000005 006A7260 80658800 |...........i.CEE...........-..h.|
+000040 006A4568 00000000 006A7390 0050049A 00653928 0000000A 00000000 00000000 00000000 |.........&......................|
+000060 006A4588 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 |................................|
+000080 006A45A8 00000000 00000000 00000000 00000000 00540100 00008000 00000000 00000000 |................................|
+0000A0 006A45C8 00000000 00000000 00000000 00000000 44234000 00000020 00000009 40404040 |.................. |
+0000C0 006A45E8 40404040 00000000 006A7390 006A7390 00500496 00000000 00000000 00000001 |&.o............|
+0000E0 006A4608 006A7260 0000000A 00000064 00000000 FFFFFFFC 00000000 00000000 006C77C0 |...-.........................%..|
+000100 006A4628 00000000 00653A0C 00000000 E9D4C3C8 00D00001 006A7490 006A7468 8050042C |............ZMCH.............&..|

CEE5DMP V1 R4.7: PLIDUMP called from error ON-unit 11/30/10 3:22:01 PM PAGE: 4

DYNAMIC STORAGE AREA (SUB1): 006A7390
+000000 006A7390 80250000 006A7260 00000000 8050049A 00000003 006A7490 006A7468 8050042C |.......-.....&...............&..|
+000020 006A73B0 005004F0 005005AC 006A7260 006A7334 00000008 006A7330 00000004 005007A4 |.&.0.&.....-.................&.u|
+000040 006A73D0 006A7328 00657E48 006C73E0 006A7490 006A7490 91E091E0 006A7260 00000000 |......=..%..........j.j....-....|
+000060 006A73F0 00000000 00000000 00000000 8050046A 00000000 00000200 00000000 00000000 |.............&..................|
+000080 006A7410 00000000 C9C2D4D9 D6D7C1C1 0050061C 000F0000 E6E2C1E3 006A7390 00000000 |....IBMROPAA.&......WSAT........|
+0000A0 006A7430 88000000 006A41E0 006A7638 80234B8C 80234A48 80640480 006A44E0 00000002 |h...............................|
+0000C0 006A7450 006A7330 006A7320 006A7328 00000001 006A7468 005007A4 00500588 00500550 |.....................&.u.&.h.&.&|
+0000E0 006A7470 80234A48 8050059C 00407300 006CD010 00000000 802042B4 00010000 006C75C0 |.....&... ...%...............%..|

DSA FOR SAMPLE: 006A7260
+000000 FLAGS.... C025 member... 7060 BKC...... 006A71C0 FWC...... 00000000 R14...... 80500256
+000010 R15...... 005003C0 R0....... 006A7390 R1....... 005005D0 R2....... 805001DE R3....... 005004F0
+000024 R4....... 00000005 R5....... 006A7260 R6....... 006A7338 R7....... 006A7328 R8....... 00000001
+000038 R9....... 006A7098 R10...... 005007A4 R11...... 00000003 R12...... 00657E48 reserved. 006C73E0
+00004C NAB...... 006A7390 PNAB..... 006A7390 reserved. 91E091E0 8800000C 00500688 006A74D8
+000064 reserved. 8069B03E reserved. 83A58B30 MODE..... 80500220 reserved. 006A7318 00690238
+000078 reserved. 0065F868 reserved. 006579B8

DYNAMIC STORAGE AREA (SAMPLE): 006A7260

Chapter 6. Debugging PL/I Routines 143

+000000 006A7260 C0257060 006A71C0 00000000 80500256 005003C0 006A7390 005005D0 805001DE |...-.........&...&.......&...&..|
+000020 006A7280 005004F0 00000005 006A7260 006A7338 006A7328 00000001 006A7098 005007A4 |.&.0.......-...............q.&.u|
+000040 006A72A0 00000003 00657E48 006C73E0 006A7390 006A7390 91E091E0 8800000C 00500688 |......=..%..........j.j.h....&.h|
+000060 006A72C0 006A74D8 8069B03E 83A58B30 80500220 006A7318 00690238 0065F868 006579B8 |...Q....cv...&............8.....|
+000080 006A72E0 00657060 00640838 00657E58 006C72ED 006C72A0 00660867 00689038 00657E48 |...-......=..%...%............=.|
+0000A0 006A7300 00000000 006A74D8 00000000 00000080 00000000 00000000 0C010000 00000000 |.......Q........................|
+0000C0 006A7320 006A7344 000D0000 006A7338 005005AC 00000000 00000000 00000001 00000003 |.............&..................|
+0000E0 006A7340 00000005 C74B40E2 A4A38885 99938195 84000000 00000000 00000000 00000000 |....G. Sutherland...............|
+000100 006A7360 006A7368 00000000 00500558 00500550 00000000 8050059C 00400000 006CD010 |.........&...&.&.....&... ...%..|
+000120 006A7380 10000000 00000000 00010000 006C75C0 80250000 006A7260 00000000 8050049A |.............%.........-.....&..|

To understand the dump information and debug this routine, use the following
steps:
1. Notice the title of the dump: PLIDUMP called from error ON-unit. This was the

title specified when PLIDUMP was invoked, and it indicates that the ERROR
condition was raised and PLIDUMP was called from within the ERROR
ON-unit.

2. Locate the messages in the Condition Information section of the dump.
There are two messages. The current condition message indicates that a prior
condition was promoted to the ERROR condition. The promotion of a condition
occurs when the original condition is left unhandled (no PL/I ON-units are
assigned to gain control). The original condition message is CEE3209S The
system detected a fixed-point divide exception. The original condition
usually indicates the actual problem. For more information about this message,
see Chapter 8, “LE/VSE Run-Time Messages,” on page 155.

3. In the traceback section, note the sequence of calls in the call chain. SAMPLE
called SUB1 at statement 11, and SUB1 raised an exception at statement 15, PU
offset X'0000039E'.

4. Find the statement in the listing for SUB1 that raised the ZERODIVIDE
condition. If SUB1 was compiled with GOSTMT and SOURCE, find statement
15 in the source listing.
Since the object listing was generated in this example, you can also locate the
actual assembler instruction causing the exception at offset X'0000039E' in the
object listing for this routine, shown in Figure 91 on page 142. Either method
shows that divisor was used as the divisor in a divide operation.

5. You can see from the declaration of SUB1 that divisor is a parameter passed
from SAMPLE. Because of linkage conventions, you can infer that register 1 in
the SAMPLE save area points to a parameter list that was passed to SUB1.
divisor is the first parameter in the list.

6. In the SAMPLE DSA, the R1 value is X'005005D0'. This is the address of the
parameter list, which is located in static storage.

7. Find the parameter list in the static storage section of the dump; the first
parameter address points to location X'006A7330', which is in the dynamic
storage area for SAMPLE.

8. The value of the parameter at location X'006A7330' is X'00000000'. Thus, the
exception occurred when SAMPLE passed a 0 value used as a divisor in
subroutine SUB1.

144 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Chapter 7. Debugging under CICS

This chapter provides information for debugging under the Customer Information
Control System (CICS). The following sections explain how to access debugging
information under CICS, and describe features unique to debugging under CICS.

For quick reference, Table 36 shows debugging information and where the
debugging information appears.

Table 36. Location of Debugging Information under CICS

Debugging Information Location

LE/VSE Run-Time Messages CESE Transient Data Queue

LE/VSE Traceback CESE Transient Data Queue

LE/VSE Dump Output CESE Transient Data Queue

CICS Transaction Dump CICS DFHDMPA or DFHDMPB data set

LE/VSE Abend and Reason Codes System Console

LE/VSE Return Codes to CICS System Console

CICS Shutdown Statistics CSSL Transient Data Queue

LE/VSE Run-Unit Work-Area Storage
Information

CESE Transient Data Queue

Interactive User Interface (IUI) OLPD
records, including abend information
from LE/VSE

The Interactive Interface “ONLINE PROBLEM
DETERMINATION” dialog.
Note:

1. The IUI-supplied exit IESPDATX is predefined.
It is auto-enabled using the LE/VSE–CICS
abnormal termination exit. Standard OLPD
records that fail and that are related to
LE/VSE-conforming applications, will include
LE/VSE CICS 40xx-type abends and LE/VSE
traceback information.

2. For detailed information about how OLPD is
used, refer to the section “Online Analysis of
CICS TS Transaction Abends” in the manual
z/VSE Guide for Solving Problems, SC34-2605.

If the EXEC CICS HANDLE ABEND command is active and the application or
CICS initiates an abend or application interrupt, LE/VSE does not produce any
run-time messages, tracebacks, or dumps.

Accessing Debugging Information
The following sections list the debugging information available to CICS users, and
describe where you can find this information.

Under CICS the LE/VSE run-time messages, LE/VSE traceback, and LE/VSE
dump output are written to the CESE transient data queue. The transaction
identifier, terminal identifier, date, and time precede the data in the queue. For
detailed information about the format of records written to the transient data
queue, see LE/VSE Programming Guide, SC33-6684.

© Copyright IBM Corp. 1991, 2014 145

The CESE transient data queue is defined in the CICS destination control table
(DCT). The CICS macro DFHDCT is used to define entries in the DCT. For a
detailed explanation of how to define a transient data queue in the DCT, see CICS
Transaction Server for VSE/ESA Resource Definition (Macro) For details about specific
LE/VSE definition requirements in the DCT, see LE/VSE Customization Guide,
SC33-6682. If you are not sure how to define the CESE transient data queue, see
your system programmer.

For information about using the Interactive Interface dialog “Inspect Message Log”
to access the CESE transient data queue, see LE/VSE Customization Guide,
SC33-6682.

Locating LE/VSE Run-Time Messages
Under CICS, LE/VSE run-time messages are written to the CESE transient data
queue. Figure 93 shows an example of the LE/VSE message that appears when an
application abends due to an unhandled condition from an EXEC CICS command.

Locating the LE/VSE Traceback
Under CICS, the LE/VSE traceback is written to the CESE transient data queue.
Because LE/VSE invokes your application routine, the LE/VSE routines that
invoked your routine appear in the traceback. Figure 94 shows an example
LE/VSE traceback written to the CESE transient data queue. Data unnecessary for
this example has been replaced by ellipses.

Locating the LE/VSE Dump
Under CICS, the LE/VSE dump output is normally written to the transient data
queue specified in the MSGFILE run-time option (which defaults to CESE).
Alternatively, the run-time option TERMTHDACT allows you to specify the LSTQ
sub-option for writing dump output to VSE POWER LST QUEUE. For active routines,
the LE/VSE dump contains the traceback, condition information, variables, storage,

P039UTV9 19960916145313 CEE3250C The system or user abend AEI0 was issued.
P039UTV9 19960916145313 From program unit UT9CVERI at entry point UT9CVERI at offset +0000011E
P039UTV9 19960916145313 at address 0006051E.

Figure 93. LE/VSE Message in CESE Transient Data Queue

A0019132 19960418105907 CEE3209S THE SYSTEM DETECTED A FIXED-POINT DIVIDE EXCEPTION.
A0019132 19960418105907 FROM COMPILE UNIT CIC9132 AT ENTRY POINT CIC9132 AT COMPILE UNIT OFFSET +00000674 AT ADDRESS 014D7
1A0019132 19960418105907 CEE5DMP V1 R4.0: CONDITION PROCESSING RESULTED IN THE UNHANDLED CONDITION. 05/14/96 10:59:07 AM
A0019132 19960418105907
A0019132 19960418105907 INFORMATION FOR ENCLAVE CIC9132
A0019132 19960418105907
A0019132 19960418105907 INFORMATION FOR THREAD 8000000000000000
A0019132 19960418105907
A0019132 19960418105907 TRACEBACK:
A0019132 19960418105907 DSA ADDR PROGRAM UNIT PU ADDR PU OFFSET ENTRY E ADDR E OFFSET STATEMENT STATUS
A0019132 19960418105907 014C8798 CEEHDSP 005C96E8 +00001D4C CEEHDSP 005C96E8 +00001D4C CALL
A0019132 19960418105907 014D08D0 CEECGEX 005C4688 +000001A6 CEECGEX 005C4688 +000001A6 CALL
A0019132 19960418105907 014D47B0 00000000 +00000000 00000000 +00000000 CALL
A0019132 19960418105907 014D15E0 CIC9132 014D75A0 +00000674 CIC9132 014D75A0 +00000674 EXCEPTION
A0019132 19960418105907 014D04C0 IGZCEV5 016D5600 +00000814 IGZCEV5 016D5600 +00000814 CALL
A0019132 19960418105907 014D0398 CEECRINV 005C7A28 +000003D0 CEECRINV 005C7A28 +000003D0 CALL
A0019132 19960418105907 014D02C0 CEECCICS 005B1480 +0000039C CEECCICS 005B1480 +0000039C CALL...

Figure 94. LE/VSE Traceback Written to the Transient Data Queue

146 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

and control block information for the thread, enclave, and process levels. Use the
LE/VSE dump with the CICS transaction dump to locate problems when operating
under CICS.

For an example LE/VSE dump, see “Understanding an LE/VSE Dump” on page
35.

Using CICS Transaction Dump
The CICS transaction dump is generated to the DFHDMPA or DFHDMPB data set.
The offline CICS dump utility routine converts the transaction dump into
formatted, understandable output.

The CICS transaction dump contains information for the storage areas and
resources associated with the current transaction. This information includes the
Communication Area (COMMAREA), Transaction Work Area (TWA), Exec
Interface Block (EIB), and any storage obtained by the EXEC CICS commands. This
information does not appear in the LE/VSE dump. It can be helpful to use the
CICS transaction dump with the LE/VSE dump to locate problems when operating
under CICS.

When the location of an error is uncertain, it can be helpful to insert EXEC CICS
DUMP statements in and around the code suspected of causing the problem. This
generates CICS transaction dumps close to the error for debugging reference.

For information about interpreting CICS dumps, see CICS Transaction Server for
VSE/ESA Problem Determination Guide

Using CICS Register and Program Status Word Contents
When a routine interrupt occurs (code = ASRA or ASRC) and a CICS dump is
generated, CICS formats the contents of the program status word (PSW) and the
registers at the time of the interrupt.

The address of the interrupt can be found from the second word of the PSW,
giving the address of the instruction following the point of interrupt. The address
of the entry point of the function can be subtracted from this address, giving the
offset of the statement that caused the interrupt.

For C routines, you can find the address of the entry point in register 3.

If register 15 is corrupted, the contents of the first phase of the active enclave
appear in the program storage section of the CICS transaction dump.

Using LE/VSE Abend and Reason Codes
An application can end with an abend in two ways:
v User-specified abend (that is, an abend requested by the assembler user exit or

the ABTERMENC run-time option).
v LE/VSE-detected unrecoverable error (in which case there is no LE/VSE

condition handling).

When LE/VSE detects an unrecoverable error under CICS, LE/VSE terminates the
transaction with an EXEC CICS ABEND command. The abend code has a number
between 4000 and 4095. A write-to-operator (WTO) is performed to write a
CEE1000S message to the system console. This message contains the abend code
and its associated reason code.

Chapter 7. Debugging under CICS 147

Note: The WTO is performed only for unrecoverable errors detected by LE/VSE.
No WTO occurs for user-requested abends.

Although this type of abend is performed only for unrecoverable error conditions,
an abend code of 4000–4095 does not necessarily indicate an internal error within
LE/VSE. For example, an application routine can write a variable outside its
storage and corrupt the LE/VSE control blocks.

Possible causes of a 4000–4095 abend are corrupted LE/VSE control blocks and
internal LE/VSE errors. See Chapter 13, “LE/VSE Abend Codes,” on page 319 for
more information about abend codes 4000–4095. Figure 95 shows an example
LE/VSE abend and reason code. Abend codes and reason codes appear in
hexadecimal.

Using LE/VSE Return Codes to CICS
When the LE/VSE condition handler encounters a severe condition that i s specific
to CICS, the condition handler generates a CICS-specific return code. This return
code is written to the system console.

Possible causes of an LE/VSE return code to CICS are:
v Incorrect partition size
v Incorrect DCT
v Incorrect CSD definitions

See Chapter 14, “Return Codes to CICS,” on page 327 for a list of the reason codes
written only to CICS. Figure 96 shows an example return code that was returned to
CICS.

CICS Run-Unit Work-Area Storage Tracing

CICS transaction CRUT, which is supplied with LE/VSE, can be used to activate,
query and de-activate the run-unit work-area tracing function. This function
provides information on a LE/VSE CICS program's run-unit storage requirements.
This information consists of both application and run-time storage amounts needed
to successfully execute the program. This information can be used to help debug or
monitor CICS program storage requirements for both above and below the 16MB
line.

The trace information is only displayed when a program is either manually or
dynamically (via CICS auto-install) installed. So second or subsequent executions
of the same program while tracing is active may not create a new trace output
entry. The exception to this is if the program is reloaded using the PHASEIN
option or a CICS CSD Group or List re-install for the program(s) being traced is

F2 0002 CEE1000S LE/VSE internal abend. ABCODE = 00000FFD
REASON = 00000028

Figure 95. LE/VSE Abend and Reason Code

+DFH1568 A CICS request to LE for VSE/ESA has failed. Reason code 0012030.

Figure 96. Return Code Written Only to CICS

148 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

performed.

Enabling the Run-Unit Work-Area Storage Trace

The run-unit work-area trace is activated using the supplied CICS transaction -
CRUT - that can be run from a blank CICS session with the appropriate security
authorization. Please ensure you have authorized transaction CRUT for execution
using your systems active security manager as required. The transaction definition
can be found in member CEECCSD.Z in your LE/VSE installation library or in
member CEECCSD in ICCF Library 62. If you use the appropriate supplied
CEECCSD member during the CICS system configuration process, then transaction
CRUT is already defined.

Controlling CRUT Transaction

The transaction CRUT (CICS Run-Unit Tracing) will accept any one of the below
three parameters per execution. They are:
v ON - Activate the run-unit work-area tracing
v OFF - Deactivate the run-unit work-area tracing
v QRY- Query the current state of the run-unit work-area trace

For instance:
v CRUT ON will activate the run-unit work-area trace.
v CRUT OFF will terminate the run-unit work-area trace.

The target program, CEL4CRUT, of the CRUT transaction can also be defined in
the PLTPI. In this situation the action will be to turn the tracing “ON” only.
Review the CICS output log after initialization is complete for activation messages.
Further control of the tracing function is then performed using the CRUT
transaction after CICS initialization.

Understanding Run-Unit Work-Area Trace Entries

Trace information is displayed in two lines of information per program executed.
The first line is the LE/VSE run-time storage information requirements for the
program. The second line displays the information required by the program itself
and any extraneous storage amounts specific to the supporting language run-time.
All the values displayed are rounded, so they do not show any accurate correlation
to such information as compiler produced storage information reports.

The trace entries written to the CESE destination may resemble the following. Here
the ROPC CICS transaction is used as an example:
ET04ROPC 20111130 RUWA Trace - Program : main Lang Code : 0003 RUWA24:00001240 RUWA31:0000A6F8
ET04ROPC 20111130 RUWA Trace - Program : main Lang Code : 0003 MBRU24:00000250 MBRU31:00001DA0

The first line for the ROPC transaction shows the name of the program (may be
different from the PHASE name) being executed. The "Lang Code" displays the
member-id number for the programs language - in this case 0003 which is C/VSE.
See the CEEDSA.A member and field CEEDSAMEMD in your LE z/VSE®

installation library for a list of member-id numbers. The "RUWA24" and "RUWA31"
respectively show the amount of 24-bit and 31-bit storage required by the LE/VSE
run-time to execute this program. The second line, which will be for the same
program and member-id, shows additional language- related storage amounts that
will be required for program execution. This is in addition to the first trace entry
storage values. All reported storage values are rounded and displayed in
hexadecimal.

Chapter 7. Debugging under CICS 149

It is recommended that the CICS system being used to execute LE/VSE
applications use the RUWAPOOL=YES System Initialization Table (SIT) parameter.
This will enable LE/VSE and CICS to more efficiently manage the storage
requirements of the applications being executed.

Ensuring Transaction Rollback
If your application does not run to normal completion and there is no CICS
transaction abend, take steps to ensure that transaction rollback (the backing out of
any updates to recoverable resources made by the malfunctioning application)
takes place.

There are two ways to ensure that a transaction rollback occurs when an
unhandled condition of severity 2 or greater is detected:
v Use the ABTERMENC run-time option with the ABEND suboption

(ABTERMENC(ABEND)). This is the IBM-supplied default under CICS.
v Use an assembler user exit that requests an abend for unhandled conditions of

severity 2 or greater.

See “Using the Assembler User Exit” on page 15 and LE/VSE Programming Guide,
SC33-6684 for more information about the assembler user exit.

Finding Data When LE/VSE Returns a Nonzero Reason Code
This example shows the output generated when LE/VSE returns a nonzero reason
code to CICS. LE/VSE does not write any messages to the CESE transient data
queue. Table 37 shows example output and the location where the output appears.

Table 37. Output When a Nonzero Reason Code is Returned to CICS

Output Message Location Issued By

DFH2206 14:43:54 DBDCCICS Transaction
UTV2 has failed with abend AEC7. Resource
backout was successful.

User’s terminal CICS

DFH1568 A CICS request to LE VSE/ESA
has failed. Reason code 0012030.

System console CICS

DFH2236 14:43:48 DBDCCICS Transaction
UTV2 abend AEC7 in routine UT2CVERI
term P021 backout successful.

Transient data queue
CSMT

CICS

Finding Data When LE/VSE Abends Internally
This example shows the output generated when LE/VSE abends internally.
LE/VSE does not write any messages to the CESE transient data queue. Table 38
shows example output and the location where the output appears.

Table 38. Output When LE/VSE Abends Internally

Output Message Location Issued By

DFH2206 14:35:24 LE03CC01 Transaction
UTV8 has failed with abend 4095. Resource
backout was successful.

User’s terminal CICS

CEE1000S LE/VSE internal abend. ABCODE
= 00000FFF REASON = 00001234

System console LE/VSE

150 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Table 38. Output When LE/VSE Abends Internally (continued)

Output Message Location Issued By

DFH2236 14:35:24 DBDCCICS Transaction
UTV8 abend 4095 in routine UT8CVERI
term P021 backout successful.

Transient data queue
CSMT

CICS

Finding Data When LE/VSE Abends from an EXEC CICS Command
This example shows the output generated when an application abends from an
EXEC CICS command. Table 39 shows example output and the location where the
output appears.

This error assumes the use of LE/VSE run-time option TERMTHDACT(MSG).

Table 39. Output When LE/VSE Abends from an EXEC CICS Command

Output Message Location Issued By

DFH2206 14:35:34 DBDCCICS Transaction
UTV8 has failed with abend AEI0. Resource
backout was successful.

User’s terminal CICS

DFH2236 14:35:17 DBDCCICS Transaction
UTV9 abend AEI0 in routine UT9CVERI
term P021 backout successful.

Transient data queue
CSMT

CICS

P021UTV9 19960421143516 CEE3250C The
system or user abend AEI0 was issued.

Transient data queue
CESE

LE/VSE

Chapter 7. Debugging under CICS 151

152 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Part 3. Run-Time Messages and Codes

Chapter 8. LE/VSE Run-Time Messages. . . . 155
VSE/POWER LSTQ Support Run-Time Messages 202
LE/VSE Run-Unit Work-Area Trace Function
Messages 204
Attention Routine Support Run-Time Messages . . 205
CLER CICS Transaction Support Message 209

Chapter 9. C Utility Messages 211
Prelinker Messages 211

Return Codes Issued by the Prelinker 211
Messages Issued by the Prelinker 211

localedef Utility Messages 215
Return Codes Issued by the localedef Utility 216
Messages Issued by the localedef Utility . . . 216

iconv Utility Messages 225
Return Codes Issued by the iconv Utility . . . 225
Messages Issued by the iconv Utility 225

genxlt Utility Messages 227
uconvdef() Utility Messages 228

DSECT Utility Messages. 231
Return Codes Issued by the DSECT Utility . . 231
Messages Issued by the DSECT Utility 231

Chapter 10. C Run-Time Messages 235
TCP/IP-Related Messages 250

Chapter 11. PL/I Run-Time Messages 253

Chapter 12. COBOL Run-Time Messages . . . 299

Chapter 13. LE/VSE Abend Codes. 319

Chapter 14. Return Codes to CICS 327
LE/VSE Return Codes to CICS 327
C Return Codes to CICS. 332
COBOL Return Codes to CICS 332
PL/I Return Codes to CICS 333

This part of the publication provides lists of LE/VSE and LE/VSE-component
run-time messages and abend and reason codes that can appear as a result of
errors in your routine.

© Copyright IBM Corp. 1991, 2014 153

154 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Chapter 8. LE/VSE Run-Time Messages

The following messages relate to LE/VSE. Each message is followed by an
explanation describing the condition that caused the message, a programmer
response suggesting how you might prevent the message from occurring again,
and a system action indicating how the system responds to the condition that
caused the message.

The messages also contain a symbolic feedback code, which represents the first 8
bytes of a 12-byte condition token. You can think of the symbolic feedback code as
the nickname for a condition. As such, the symbolic feedback code can be used in
user-written condition handlers to screen for a given condition, even if it occurs at
different locations in an application.

For a description of the format of LE/VSE run-time messages, see “Interpreting
Run-Time Messages” on page 23.

Within this chapter, these LE/VSE run-time messages are contained in their own
sections:
v “VSE/POWER LSTQ Support Run-Time Messages” on page 202
v “Attention Routine Support Run-Time Messages” on page 205
v “CLER CICS Transaction Support Message” on page 209

CEE0102S An unrecognized condition token was
passed to routine and could not be used.

Explanation: The condition token passed to routine
contained fields that were not within the range of
accepted values.

System action: Unless the condition is handled, the
default action is to terminate the enclave.

Programmer response: Verify that the condition token
passed to routine does not contain invalid fields.

Symbolic Feedback Code: CEE036

CEE0198S The termination of a thread was
signaled due to an unhandled condition.

Explanation: Termination imminent due to an
unhandled condition was signaled or was the target of
a promote.

System action: If this condition is signaled, or is the
target of a promote, and it remains unhandled at stack
frame zero, the thread will terminate without re-raising
this condition. If this condition was raised with
CEESGL specifying a feedback code, the feedback code
is returned to the caller of CEESGL and control is
returned to the next sequential instruction following the
call to CEESGL.

Programmer response: Call CEEITOK from a
user-written condition handler to determine what
condition was unhandled. With that information, you

can either recover appropriately or allow termination to
continue.

Symbolic Feedback Code: CEE066

CEE0199W The termination of a thread was
signaled due to a STOP statement.

Explanation: The termination of a thread was
signaled.

System action: The thread is terminated in a normal
manner.

Programmer response: No response is required. A
thread is terminating normally.

Symbolic Feedback Code: CEE067

CEE0201I An unhandled condition was returned
in a feedback code.

Explanation: No language run-time component event
handler or CEEHDL routine handled the condition.

System action: LE/VSE returns to the point at which
the original condition was signaled.

Programmer response: See the original condition.

Symbolic Feedback Code: CEE069

© Copyright IBM Corp. 1991, 2014 155

CEE0250S An unrecognized label variable was
detected. The stack frame address could
not be associated with an active stack
frame.

Explanation: A call to CEEGOTO was made with a
bad label variable. The label variable should be a valid
code point that is subject to a current save area.

System action: The thread is terminated.

Programmer response: The label variable applies to a
program that is no longer active, or the label variable
was not initialized. Make sure that the program is
active.

Symbolic Feedback Code: CEE07Q

CEE0252W CEEHDLU was unable to find the
requested user-written condition
handler routine.

Explanation: A call to CEEHDLU was made to
unregister a user-written condition handler that was
not registered.

System action: No user-written condition handlers are
removed.

Programmer response: Ensure that the user-written
condition handler you are trying to free is registered.

Symbolic Feedback Code: CEE07S

CEE0253W A user-written condition handler was
unregistered. Additional registration
remain in the queue.

Explanation: A call to CEEHDLU was made to
unregister a user-written condition handler. The
user-written condition handler had been registered a
multiple number of times.

System action: The first occurrence of the user-written
condition handler is removed from the queue. Other
registrations remain on the queue.

Programmer response: No programmer action is
required.

Symbolic Feedback Code: CEE07T

CEE0254W The first parameter passed to
CEEMRCR was not 0 or 1.

Explanation: The first parameter passed to CEEMRCR
was neither 0 nor 1.

System action: The resume cursor is not moved.

Programmer response: Change the first parameter
(type_of_move) passed to CEEMRCR to a valid value (0
or 1).

Symbolic Feedback Code: CEE07U

CEE0255S The first parameter passed to CEEMRCE
was an unrecognized label.

Explanation: A move resume cursor must be made to
a valid label pointed to by CEEMRCE.

System action: The thread is terminated.

Programmer response: Change the position parameter
pointed to by CEEMRCE to a valid label.

Symbolic Feedback Code: CEE07V

CEE0256W The user-written condition handler
routine specified was already registered
for this stack frame. It was registered
again.

Explanation: CEEHDLR provided for multiple
registration of user-written condition handler routines
but the registration of the same routine again for the
same stack frame is considered unusual.

System action: The handler is registered.

Programmer response: No response is required. This
message is just a warning.

Symbolic Feedback Code: CEE080

CEE0257S The routine specified contained an
invalid entry variable.

Explanation: CEEHDLR could not validate the entry
variable passed.

System action: The thread is terminated.

Programmer response: Build and pass CEEHDLR a
valid entry variable.

Symbolic Feedback Code: CEE081

CEE0259S A move to stack frame zero using
CEEMRCR was attempted from a MAIN
routine.

Explanation: The handler for the first stack frame
beyond stack frame zero attempted to do a move of the
resume cursor with type_of_move = 1. The resume
cursor was not moved.

System action: The resume cursor is not moved. The
thread is terminated.

Programmer response: Do not attempt to move the
resume cursor to the caller of the main routine. If you
want to end the thread, signal Termination Imminent.

Symbolic Feedback Code: CEE083

CEE0250S • CEE0259S

156 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

CEE0260S No condition was active when a call to a
condition management routine was
made. The requested function was not
performed.

Explanation: The condition manager had no record of
an active condition.

System action: Unless the condition is handled, the
default action is to terminate the enclave.

Programmer response: No response is required. Calls
to these routines should only be made within the
handler routine.

Symbolic Feedback Code: CEE084

CEE0264S An invalid request to resume a
condition was detected.

Explanation: A user-written condition handler
attempted to resume for a condition for which
resumption is not allowed unless the resume cursor is
moved.

System action: The resume request that triggered this
condition is ignored.

Programmer response: Move the resume cursor as
part of handling the condition.

Symbolic Feedback Code: CEE088

Note: CEE088 may not be handled and resumed
without moving the resume cursor. If resumption is
requested without moving the resume cursor, the
environment is terminated with abend 4091-12.

CEE0277W CEEMRCR was called to perform an
unnecessary move.

Explanation: A user-written condition handler
attempted to move the resume cursor with
type_of_move = 0 and with the handle and resume
cursors pointing to the same stack frame. The handle
and resume cursor might point to the same stack frame
either because the handler is for the incurring frame or
because the resume cursor has already been moved to
the frame being handled.

System action: No action is taken by the condition
manager. The resume cursor is not moved.

Programmer response: No response is necessary.

Symbolic Feedback Code: CEE08L

CEE0355C The user-written condition handler that
was scheduled using CEEHDLR
returned an unrecognized result code.

Explanation: A user-written handler passed an invalid
result code. A user-written condition handler has either
returned without setting a reason code variable to a
valid response code or has moved the resume cursor

that caused a return to condition management without
a valid response code being set.

System action: The thread is terminated.

Programmer response: Supply a valid result code.

Symbolic Feedback Code: CEE0B3

CEE0356C An internal condition handler returned
an unrecognized result code.

Explanation: A language run-time component
condition handler passed an invalid result code.

System action: The thread is terminated.

Programmer response: Contact your service
representative.

Symbolic Feedback Code: CEE0B4

CEE0374C CONDITION = condition-id TOKEN =
condition-token WHILE PROCESSING
PROGRAM program-unit WHICH
STARTS AT address AT THE TIME OF
INTERRUPT

Explanation: An unrecoverable condition has occurred
while processing a previously-unhandled condition.
The condition-id corresponds to the LE/VSE message
number associated with the failure, and
condition-token is the internal representation of the
event (where the condition-id and condition-token
translate to each other). The message is issued to the
operator console when nested conditions occur. The
message display includes the registers and PSW
information relating to the displayed condition token.
This is the condition that was being processed when
the unrecoverable error occurred. If this message
appears more than once, the conditions appear in order
of occurrence.

PSW psw
GPR 0-3 gpr 0 gpr 1 gpr 2 gpr 3
GPR 4-7 gpr 4 gpr 5 gpr 6 gpr 7
GPR 8-B gpr 8 gpr 9 gpr A gpr B
GPR C-F gpr C gpr D gpr E gpr F

System action: The thread is terminated abnormally.

Programmer response: The earliest condition is the
one that should be investigated and corrected. For
information on condition tokens and how the
CEE0374C message is used to debug errors, refer to the
section “Using Condition Information” of “Chapter 1.
Preparing Your Routine for Debugging” in the LE/VSE
Debugging Guide and Run-Time Messages.

Symbolic Feedback Code: CEE0BM

CEE0260S • CEE0374C

Chapter 8. LE/VSE Run-Time Messages 157

CEE0398W Resume with new input.

Explanation: This condition was returned from a
user-written condition handler to tell LE/VSE to retry
the operation with new input.

System action: LE/VSE attempts to retry the
operation.

Programmer response: No programmer response is
required.

Symbolic Feedback Code: CEE0CE

CEE0399W Resume with new output.

Explanation: This condition was returned from a
user-written condition handler to tell LE/VSE to retry
the operation with new output.

System action: LE/VSE resumes execution with new
output.

Programmer response: No programmer response is
required.

Symbolic Feedback Code: CEE0CF

CEE0400E An invalid action code action-code was
passed to routine routine-name.

Explanation: An action code parameter passed to
routine did not contain a valid value.

System action: No system action is performed. The
output is undefined.

Programmer response: Provide a valid action code.

Symbolic Feedback Code: CEE0CG

CEE0401S An invalid case code case-code was
passed to routine routine-name.

Explanation: A case code parameter must be a 2-byte
integer with a value of 1 or 2.

System action: No system action is performed. The
output is undefined.

Programmer response: Provide a valid case code.

Symbolic Feedback Code: CEE0CH

CEE0402S An invalid control code control-code was
passed to routine routine-name.

Explanation: A control code parameter must be a
2-byte integer with a value of 0 or 1.

System action: No system action is performed.

Programmer response: Provide a valid control code.

Symbolic Feedback Code: CEE0CI

CEE0403S An invalid severity code severity-code
was passed to routine routine-name.

Explanation: Severity code parameter must be a
2-byte integer with a value between 0 and 4.

System action: No system action is performed.

Programmer response: Provide a valid severity code.

Symbolic Feedback Code: CEE0CJ

CEE0404W Facility ID facility-id with
non-alphanumeric characters was passed
to routine routine-name.

Explanation: A facility ID parameter was passed with
characters not in the range A–Z, a–z, or 0–9. Processing
will continue.

System action: No system action is performed.
Processing continues.

Programmer response: Verify that the facility ID
passed is the correct value.

Symbolic Feedback Code: CEE0CK

CEE0450S The message inserts for the condition
token with message number
message-number and facility ID facility-id
could not be located.

Explanation: An insert area for the given condition
token did not exist. It possibly was never allocated, or
was reused by another condition.

System action: No system action is performed.

Programmer response: Verify that the message-number
and facility_ID passed contain the correct values. If so,
verify that the program was run with the MSGQ option
specifying a large enough value to contain all the insert
areas necessary for this program to run.

Symbolic Feedback Code: CEE0E2

CEE0451S An invalid destination code
destination-code was passed to routine
routine-name.

Explanation: A destination code must be a 4-byte
integer with a value of 2.

System action: No system action is performed. The
message is not written.

Programmer response: Provide a valid destination
code.

Symbolic Feedback Code: CEE0E3

CEE0398W • CEE0451S

158 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

CEE0452S An invalid facility ID facility-id was
passed to routine routine-name.

Explanation: Facility ID parameter must be a
3-alphanumeric character field.

System action: No system action is performed. The
output is undefined.

Programmer response: Provide a facility ID made up
of three alphanumeric characters that corresponds to a
product recognized by LE/VSE. The IBM-supplied
facility IDs are IBM, IGZ, and EDC.

Symbolic Feedback Code: CEE0E4

CEE0454S The message number message-number
could not be found for facility ID
facility-id.

Explanation: The message could not be located within
the source message files for facility-id.

System action: No system action is performed. The
message is not written.

Programmer response: Ensure the message number is
contained within the source message file for facility-id.

Symbolic Feedback Code: CEE0E6

CEE0455W The message with message number
message-number and facility ID facility-id
was truncated.

Explanation: The message could not fit within the
message buffer supplied. Msg_index contains the index
into the message returned.

System action: The index into the message is returned
in msg_index.

Programmer response: Subsequent calls to CEEMGET
with the previously returned msg_index value will
retrieve the remainder of the message.

Symbolic Feedback Code: CEE0E7

CEE0457S The message file destination filename
could not be located.

Explanation: An error was detected trying to access
the given message file filename. If filename is SYSLST,
this message indicates that SYSLST is unassigned.

System action: No system action is performed. The
message is not written.

Programmer response: Verify that the file exists and is
usable.

Symbolic Feedback Code: CEE0E9

CEE0458S The message repository repository-name
could not be located.

Explanation: The phase containing the table of
message file names cannot be located. The name of
each IBM-supplied phase is xxxMSGT, where xxx is the
facility ID. The name of each user-defined phase is
txxxMSGT, where t is ‘U’ for a user-assigned facility ID,
and xxx is the facility ID. MSGT is the letters ‘MSGT’.

System action: No system action is performed. The
message is not written.

Programmer response: Verify that the table exists and
is appropriately named.

Symbolic Feedback Code: CEE0EA

CEE0459S Not enough storage was available to
create a new instance specific
information block.

Explanation: A new ISI could not be created because
not enough storage was available.

System action: No storage is allocated.

Programmer response: Ensure that the partition
GETVIS size is sufficient to run the application. Verify
that the storage size specified in the HEAP run-time
option is reasonable, given the partition GETVIS size
allocated to the application.

Symbolic Feedback Code: CEE0EB

CEE0460W Multiple instances of the condition
token with message number
message-number and facility ID facility-id
were detected.

Explanation: A message insert block for the given
condition token already exists. A new message insert
block was created. The two were differentiated by the
i_s_info field in the condition token.

System action: A call to CEEMSG or CEEMGET will
format the message associated with the instance of the
message insert block indicated by the i_s_info field of
the condition token.

Programmer response: No response is required.

Symbolic Feedback Code: CEE0EC

CEE0461S The maximum number of unique
message insert blocks was reached. This
condition token had its I_S_info field
set to 1.

Explanation: The maximum number of 2,147,483,647
unique message insert blocks was reached. The
condition token passed will have its i_s_info field wrap
around to 1.

CEE0452S • CEE0461S

Chapter 8. LE/VSE Run-Time Messages 159

System action: The i_s_info field in the condition
token is set to 1.

Programmer response: No response is required.

Symbolic Feedback Code: CEE0ED

CEE0462S Instance specific information for the
condition token with message number
message-number and facility ID facility-id
could not be found.

Explanation: The instance specific information
associated with the condition token was not located. It
possibly was reused by another condition if the number
specified in the MSGQ run-time option has been
exceeded.

System action: No system action is performed. The
message is not written.

Programmer response: Specify a MSGQ run-time
option that is sufficient to contain all the active ISIs.

Symbolic Feedback Code: CEE0EE

CEE0463S The maximum size for an insert data
item was exceeded.

Explanation: The maximum size of 254 for the length
of an insert data item was exceeded.

System action: No system action is performed. The
insert is not created.

Programmer response: Make the insert 254 characters
or less. If this is not possible, divide the insert into 2 or
more inserts.

Symbolic Feedback Code: CEE0EF

CEE0464S Instance-specific information for the
condition token with message number
message-number and facility ID facility-id
did not exist.

Explanation: No ISI was associated with the condition
token. It is most likely that the information was never
created.

System action: No system action is performed. The
message is not written.

Programmer response: If this condition was returned
by an LE/VSE service, contact your service
representative. Otherwise, make sure that the correct
i_s_info was identified.

Symbolic Feedback Code: CEE0EG

CEE0553S An internal error was detected in
creating the inserts for a condition.

Explanation: An invalid insert number was passed to
the routine to format inserts.

System action: No system action is performed.

Programmer response: Contact your service
representative.

Symbolic Feedback Code: CEE0H9

CEE0554W A value outside the range of 0 through
999,999 was supplied. However, the
value was still used as the enclave
return code.

Explanation: LE/VSE prefers the user to set the
enclave return code to a value of 0 through 999,999.

System action: The value will still be used as the
enclave return code.

Programmer response: If possible, change the return
code to be within the range of 0 through 999,999.

Symbolic Feedback Code: CEE0HA

CEE0802C Heap storage control information was
damaged.

Explanation: Internal control information saved in
header records within the heap was damaged.

System action: No storage is allocated. A severity 4
condition is signaled and the application is terminated.

Programmer response: Ensure that your program does
not write data to an area larger than the original
allocation. For example, allocating a 100-byte area and
then writing 120 bytes to this area could cause damage
to storage headers.

Symbolic Feedback Code: CEE0P2

CEE0803S The heap identifier in a get storage
request or a discard heap request was
unrecognized.

Explanation: The heap identifier supplied in a call to
CEEGTST or CEEDSHP did not match any known heap
identifier, or the heap had already been discarded by a
call to CEEDSHP (discard heap) prior to the request.

System action: No storage is allocated. The value of
the address parameter is undefined.

Programmer response: For get heap storage requests,
ensure that the value in the heap identifier parameter is
either 0, indicating the default heap, or an identifier
returned by the CEECRHP (create heap) service. For all
other requests, ensure that the heap is not discarded
prior to the request.

Symbolic Feedback Code: CEE0P3

CEE0462S • CEE0803S

160 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

CEE0804S The initial size value supplied in a
create heap (CEECRHP) request was
invalid.

Explanation: The initial size value supplied to
CEECRHP was a negative number.

System action: No heap is created. The value of the
heap identifier is undefined.

Programmer response: Ensure that the value in the
initial size parameter is either 0, indicating “same as
the initial heap,” or a positive integer.

Symbolic Feedback Code: CEE0P4

CEE0805S The increment size value supplied in a
create heap (CEECRHP) request was
invalid.

Explanation: The increment size value supplied to
CEECRHP was a negative number.

System action: No heap is created. The value of the
heap identifier is undefined.

Programmer response: Ensure that the value in the
increment size parameter is either 0, indicating “same
as the initial heap,” or a positive integer.

Symbolic Feedback Code: CEE0P5

CEE0806S The options value supplied in a create
heap (CEECRHP) request was
unrecognized.

Explanation: The value of the options parameter
supplied to CEECRHP was not recognized.

System action: No heap is created. The value of the
heap identifier is undefined.

Programmer response: Ensure that the value in the
options parameter is either 0, indicating “same as the
initial heap,” or one of the supported options values
documented in LE/VSE Programming Reference.

Symbolic Feedback Code: CEE0P6

CEE0808S Storage size in a get storage request
(CEEGTST) or a reallocate request
(CEECZST) was not a positive number.

Explanation: The size parameter supplied in a get
storage request call to CEEGTST or a reallocate call to
CEECZST was less than or equal to 0.

System action: No storage is allocated. The value of
the address parameter is undefined.

Programmer response: Ensure that the size parameter
is a positive integer representing the number of bytes
of storage to be obtained.

Symbolic Feedback Code: CEE0P8

CEE0809S The maximum number of heaps was
reached.

Explanation: The maximum number of heaps had
already been created.

System action: No heap is created. The value of the
heap identifier is undefined.

Programmer response: Modify the program to discard
unneeded heaps before attempting to create a new
heap or restructure the application so that it requires
fewer heaps.

Symbolic Feedback Code: CEE0P9

CEE0810S The storage address in a free storage
(CEEFRST) request was not recognized,
or heap storage (CEECZST) control
information was damaged.

Explanation: The address parameter supplied in a call
to CEEFRST or CEECZST did not contain the starting
address of a currently allocated area in the heap. Either
the supplied address was invalid, or the area had been
freed previously.

System action: No storage is freed. The address
parameter is left unchanged so that its value can be
examined.

Programmer response: Ensure that the address
parameter contains a value returned by a call to
CEEGTST or CEECZST. Ensure that the storage area to
be freed has not been freed previously.

Symbolic Feedback Code: CEE0PA

CEE0812S An invalid attempt to discard the initial
heap was made.

Explanation: The heap identifier supplied in a discard
heap request was zero (indicating the initial heap) but
the initial heap cannot be discarded.

System action: No storage is freed. The value of the
heap identifier remains unchanged.

Programmer response: Ensure that the heap identifier
supplied in the discard heap call is an identifier
returned by the create heap (CEECRHP) service.

Symbolic Feedback Code: CEE0PC

CEE0813S Insufficient storage was available to
satisfy a get storage (CEECZST) request.

Explanation: There was not enough free storage
available to satisfy a get storage call to CEEGTST or
reallocate request call to CEECZST. This message
indicates that storage management could not obtain
sufficient storage from the operating system to create
an additional heap segment or stack segment.

System action: No storage is allocated. The value of

CEE0804S • CEE0813S

Chapter 8. LE/VSE Run-Time Messages 161

the address parameter is undefined.

Programmer response: Ensure that the partition
GETVIS size is sufficient to run the application. Ensure
that the size parameter in the get storage request is not
an unusually large number. Verify that the storage sizes
specified in the HEAP and STACK run-time options are
reasonable, given the partition GETVIS size allocated to
the application. Verify that you are using storage
options that get your storage from above the 16MB
line, if you can, since you can run out of storage below
the line much more easily.

Symbolic Feedback Code: CEE0PD

CEE0814S Insufficient storage was available to
satisfy a get storage (CEECZST) request.
Request was for nbytes bytes from
location storage.

Explanation: There was not enough free storage
available to satisfy a get storage call to CEEGTST, or to
reallocate request call to CEECZST for nbytes from
location.

System action: No storage is allocated. The value of
the address parameter is undefined.

Programmer response: Ensure that the partition
GETVIS size is sufficient to run the application. Ensure
that the “size” parameter in the get storage request is
not too large. Verify that the storage sizes specified in
the HEAP run-time option are correct in relation to the
partition size allocated to the application. Verify that
the storage options being used obtain storage from
above the 16MB line (if possible), since running out of
storage below the line can happen more easily.

Symbolic Feedback Code: CEE0PE

CEE1000S Language Environment internal abend.
ABCODE = abend-code REASON =
reason-code

Explanation: This message was issued to the
operator's console in CICS to indicate that LE/VSE has
abended, with the abend code and reason code as
specified in the message, in hexadecimal.

System action: The transaction is terminated
abnormally with the abend code stated in this message.

Programmer response: See Chapter 13, “LE/VSE
Abend Codes,” on page 319 for information about the
cause of the abend.

Symbolic Feedback Code: CEE0V8

CEE1001E A cross program branching was
attempted as a result of a CICS
HANDLE command with the LABEL
options. This was not supported by the
language identified as identifier.

Explanation: The HLL does not support transferring
control to specified LABEL.

identifier
HLL

03 C

05 COBOL

10 PL/I

15 Assembler

System action: No system action is performed.

Programmer response: This is a language-specific
restriction. For more information about running
LE/VSE-conforming applications under CICS, see
LE/VSE Programming Guide.

Symbolic Feedback Code: CEE0V9

CEE2001E For an exponentiation operation (R**S)
where R and S are real values, R was
less than zero in math routine
routine-name.

Explanation: Invalid arguments were specified to the
scalar math routine.

System action: The output value from the math
routine is undefined.

Programmer response: Ensure the arguments are valid
to the math routine. You might want to register a user
handler that will gain control if this condition is
signaled (if the feedback token was omitted on the call
to the math routine, then the condition is signaled). If
you specify the feedback token on the call to the math
routine, examine the feedback token upon return from
the math routine and take appropriate action.

Symbolic Feedback Code: CEE1UH

CEE2002E The argument value was too close to
one of the singularities (plus or minus
pi/2, plus or minus 3pi/2, for the
tangent; or plus or minus pi, plus or
minus 2pi, for the cotangent) in math
routine routine-name.

Explanation: Invalid arguments were specified to the
scalar math routine.

System action: The output value from the math
routine is undefined.

Programmer response: Ensure the arguments are valid
to the math routine. You might want to register a user
handler that will gain control if this condition is
signaled (if the feedback token was omitted on the call
to the math routine, then the condition is signaled). If
you specify the feedback token on the call to the math
routine, examine the feedback token upon return from
the math routine and take appropriate action.

CEE0814S • CEE2002E

162 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Symbolic Feedback Code: CEE1UI

CEE2003E For an exponentiation operation (I**J)
where I and J are integers, I was equal
to zero and J was less than or equal to
zero in math routine routine-name.

Explanation: Invalid arguments were specified to the
scalar math routine.

System action: The output value from the math
routine is undefined.

Programmer response: Ensure the arguments are valid
to the math routine. You might want to register a user
handler that will gain control if this condition is
signaled (if the feedback token was omitted on the call
to the math routine, then the condition is signaled). If
you specify the feedback token on the call to the math
routine, examine the feedback token upon return from
the math routine and take appropriate action.

Symbolic Feedback Code: CEE1UJ

CEE2004E For an exponentiation operation (R**I)
where R is real and I is an integer, R
was equal to zero and I was less than or
equal to zero in math routine
routine-name.

Explanation: Invalid arguments were specified to the
scalar math routine.

System action: The output value from the math
routine is undefined.

Programmer response: Ensure the arguments are valid
to the math routine. You might want to register a user
handler that will gain control if this condition is
signaled (if the feedback token was omitted on the call
to the math routine, then the condition is signaled). If
you specify the feedback token on the call to the math
routine, examine the feedback token upon return from
the math routine and take appropriate action.

Symbolic Feedback Code: CEE1UK

CEE2005E The value of the argument was outside
the valid range range in math routine
routine-name.

Explanation: Invalid input parameters were specified
to the scalar math routine.

System action: The output value from the math
routine is undefined.

Programmer response: Ensure the arguments are valid
to the math routine. You might want to register a user
handler that will gain control if this condition is
signaled (if the feedback token was omitted on the call
to the math routine, then the condition is signaled). If
you specify the feedback token on the call to the math
routine, examine the feedback token upon return from

the math routine and take appropriate action.

Symbolic Feedback Code: CEE1UL

CEE2006E For an exponentiation operation (R**S)
where R and S are real values, R was
equal to zero and S was less than or
equal to zero in math routine
routine-name.

Explanation: Invalid arguments were specified to the
scalar math routine.

System action: The output value from the math
routine is undefined.

Programmer response: Ensure the arguments are valid
to the math routine. You might want to register a user
handler that will gain control if this condition is
signaled (if the feedback token was omitted on the call
to the math routine, then the condition is signaled). If
you specify the feedback token on the call to the math
routine, examine the feedback token upon return from
the math routine and take appropriate action.

Symbolic Feedback Code: CEE1UM

CEE2007E The exponent exceeded limit in math
routine routine-name.

Explanation: Invalid arguments were specified to the
scalar math routine.

System action: The output value from the math
routine is undefined.

Programmer response: Ensure the arguments are valid
to the math routine. You might want to register a user
handler that will gain control if this condition is
signaled (if the feedback token was omitted on the call
to the math routine, then the condition is signaled). If
you specify the feedback token on the call to the math
routine, examine the feedback token upon return from
the math routine and take appropriate action.

Symbolic Feedback Code: CEE1UN

CEE2008E For an exponentiation operation (Z**P)
where the complex base Z equals zero,
the real part of the complex exponent P,
or the integer exponent P was less than
or equal to zero in math routine
routine-name.

Explanation: Invalid arguments were specified to the
scalar math routine.

System action: The output value from the math
routine is undefined.

Programmer response: Ensure the arguments are valid
to the math routine. You might want to register a user
handler that will gain control if this condition is
signaled (if the feedback token was omitted on the call
to the math routine, then the condition is signaled). If

CEE2003E • CEE2008E

Chapter 8. LE/VSE Run-Time Messages 163

you specify the feedback token on the call to the math
routine, examine the feedback token upon return from
the math routine and take appropriate action.

Symbolic Feedback Code: CEE1UO

CEE2009E The value of the real part of the
argument was greater than limit in math
routine routine-name.

Explanation: Invalid arguments were specified to the
scalar math routine.

System action: The output value from the math
routine is undefined.

Programmer response: Ensure the arguments are valid
to the math routine. You might want to register a user
handler that will gain control if this condition is
signaled (if the feedback token was omitted on the call
to the math routine, then the condition is signaled). If
you specify the feedback token on the call to the math
routine, examine the feedback token upon return from
the math routine and take appropriate action.

Symbolic Feedback Code: CEE1UP

CEE2010E The argument was less than limit in
math routine routine-name.

Explanation: Invalid arguments were specified to the
scalar math routine.

System action: The output value from the math
routine is undefined.

Programmer response: Ensure the arguments are valid
to the math routine. You might want to register a user
handler that will gain control if this condition is
signaled (if the feedback token was omitted on the call
to the math routine, then the condition is signaled). If
you specify the feedback token on the call to the math
routine, examine the feedback token upon return from
the math routine and take appropriate action.

Symbolic Feedback Code: CEE1UQ

CEE2011E The argument was greater than limit in
math routine routine-name.

Explanation: Invalid arguments were specified to the
scalar math routine.

System action: The output value from the math
routine is undefined.

Programmer response: Ensure the arguments are valid
to the math routine. You might want to register a user
handler that will gain control if this condition is
signaled (if the feedback token was omitted on the call
to the math routine, then the condition is signaled). If
you specify the feedback token on the call to the math
routine, examine the feedback token upon return from
the math routine and take appropriate action.

Symbolic Feedback Code: CEE1UR

CEE2012E The argument was less than or equal to
limit in math routine routine-name.

Explanation: Invalid arguments were specified to the
scalar math routine.

System action: The output value from the math
routine is undefined.

Programmer response: Ensure the arguments are valid
to the math routine. You might want to register a user
handler that will gain control if this condition is
signaled (if the feedback token was omitted on the call
to the math routine, then the condition is signaled). If
you specify the feedback token on the call to the math
routine, examine the feedback token upon return from
the math routine and take appropriate action.

Symbolic Feedback Code: CEE1US

CEE2013E The absolute value of the imaginary
part of the argument was greater than
limit in math routine routine-name.

Explanation: Invalid arguments were specified to the
scalar math routine.

System action: The output value from the math
routine is undefined.

Programmer response: Ensure the arguments are valid
to the math routine. You might want to register a user
handler that will gain control if this condition is
signaled (if the feedback token was omitted on the call
to the math routine, then the condition is signaled). If
you specify the feedback token on the call to the math
routine, examine the feedback token upon return from
the math routine and take appropriate action.

Symbolic Feedback Code: CEE1UT

CEE2014E Both arguments were equal to limit in
math routine routine-name.

Explanation: Invalid arguments were specified to the
scalar math routine.

System action: The output value from the math
routine is undefined.

Programmer response: Ensure the arguments are valid
to the math routine. You might want to register a user
handler that will gain control if this condition is
signaled (if the feedback token was omitted on the call
to the math routine, then the condition is signaled). If
you specify the feedback token on the call to the math
routine, examine the feedback token upon return from
the math routine and take appropriate action.

Symbolic Feedback Code: CEE1UU

CEE2009E • CEE2014E

164 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

CEE2015E The absolute value of the imaginary
part of the argument was greater than or
equal to limit in math routine
routine-name.

Explanation: Invalid arguments were specified to the
scalar math routine.

System action: The output value from the math
routine is undefined.

Programmer response: Ensure the arguments are valid
to the math routine. You might want to register a user
handler that will gain control if this condition is
signaled (if the feedback token was omitted on the call
to the math routine, then the condition is signaled). If
you specify the feedback token on the call to the math
routine, examine the feedback token upon return from
the math routine and take appropriate action.

Symbolic Feedback Code: CEE1UV

CEE2016E The absolute value of the argument was
greater than limit in math routine
routine-name.

Explanation: Invalid arguments were specified to the
scalar math routine.

System action: The output value from the math
routine is undefined.

Programmer response: Ensure the arguments are valid
to the math routine. You might want to register a user
handler that will gain control if this condition is
signaled (if the feedback token was omitted on the call
to the math routine, then the condition is signaled). If
you specify the feedback token on the call to the math
routine, examine the feedback token upon return from
the math routine and take appropriate action.

Symbolic Feedback Code: CEE1V0

CEE2017E The absolute value of the argument was
greater than or equal to limit in math
routine routine-name.

Explanation: Invalid arguments were specified to the
scalar math routine.

System action: The output value from the math
routine is undefined.

Programmer response: Ensure the arguments are valid
to the math routine. You might want to register a user
handler that will gain control if this condition is
signaled (if the feedback token was omitted on the call
to the math routine, then the condition is signaled). If
you specify the feedback token on the call to the math
routine, examine the feedback token upon return from
the math routine and take appropriate action.

Symbolic Feedback Code: CEE1V1

CEE2018E The real and imaginary parts of the
argument were equal to limit in math
routine routine-name.

Explanation: Invalid arguments were specified to the
scalar math routine.

System action: The output value from the math
routine is undefined.

Programmer response: Ensure the arguments are valid
to the math routine. You might want to register a user
handler that will gain control if this condition is
signaled (if the feedback token was omitted on the call
to the math routine, then the condition is signaled). If
you specify the feedback token on the call to the math
routine, examine the feedback token upon return from
the math routine and take appropriate action.

Symbolic Feedback Code: CEE1V2

CEE2019E The absolute value of the real part of
the argument was greater than or equal
to limit in math routine routine-name.

Explanation: Invalid arguments were specified to the
scalar math routine.

System action: The output value from the math
routine is undefined.

Programmer response: Ensure the arguments are valid
to the math routine. You might want to register a user
handler that will gain control if this condition is
signaled (if the feedback token was omitted on the call
to the math routine, then the condition is signaled). If
you specify the feedback token on the call to the math
routine, examine the feedback token upon return from
the math routine and take appropriate action.

Symbolic Feedback Code: CEE1V3

CEE2020E For an exponentiation operation (R**S)
where R and S are real values, either R
is equal to zero and S is negative, or R
is negative and S is not an integer
whose absolute value is less than or
equal to limit in math routine
routine-name.

Explanation: Invalid arguments were specified to the
scalar math routine.

System action: The output value from the math
routine is undefined.

Programmer response: Ensure the arguments are valid
to the math routine. You might want to register a user
handler that will gain control if this condition is
signaled (if the feedback token was omitted on the call
to the math routine, then the condition is signaled). If
you specify the feedback token on the call to the math
routine, examine the feedback token upon return from
the math routine and take appropriate action.

CEE2015E • CEE2020E

Chapter 8. LE/VSE Run-Time Messages 165

Symbolic Feedback Code: CEE1V4

CEE2021E For an exponentiation operation (X**Y),
the argument combination of Y*log2(X)
generated a number greater than or
equal to limit in math routine
routine-name.

Explanation: Invalid arguments were specified to the
scalar math routine.

System action: The output value from the math
routine is undefined.

Programmer response: Ensure the arguments are valid
to the math routine. You might want to register a user
handler that will gain control if this condition is
signaled (if the feedback token was omitted on the call
to the math routine, then the condition is signaled). If
you specify the feedback token on the call to the math
routine, examine the feedback token upon return from
the math routine and take appropriate action.

Symbolic Feedback Code: CEE1V5

CEE2022E The value of the argument was plus or
minus limit in math routine routine-name.

Explanation: Invalid arguments were specified to the
scalar math routine.

System action: The output value from the math
routine is undefined.

Programmer response: Ensure the arguments are valid
to the math routine. You might want to register a user
handler that will gain control if this condition is
signaled (if the feedback token was omitted on the call
to the math routine, then the condition is signaled). If
you specify the feedback token on the call to the math
routine, examine the feedback token upon return from
the math routine and take appropriate action.

Symbolic Feedback Code: CEE1V6

CEE2025W An underflow has occurred in math
routine routine-name.

Explanation: An underflow has occurred in
calculating the results in the scalar math routine.

System action: The output value from the math
routine is undefined.

Programmer response: Ensure the arguments are valid
to the math routine. You might want to register a user
handler that will gain control if this condition is
signaled (if the feedback token was omitted on the call
to the math routine, then the condition is signaled). If
you specify the feedback token on the call to the math
routine, examine the feedback token upon return from
the math routine and take appropriate action.

Symbolic Feedback Code: CEE1V9

CEE2028E The value of the second argument was
outside the valid range range in math
routine routine-name.

Explanation: Invalid arguments were specified to the
scalar math routine.

System action: The output value from the math
routine is undefined.

Programmer response: Ensure the arguments are valid
to the math routine. You might want to register a user
handler that will gain control if this condition is
signaled (if the feedback token was omitted on the call
to the math routine, then the condition is signaled). If
you specify the feedback token on the call to the math
routine, examine the feedback token upon return from
the math routine and take appropriate action.

Symbolic Feedback Code: CEE1VC

CEE2502S The UTC/GMT was not available from
the system.

Explanation: A call to CEEUTC or CEEGMT failed
because the system clock was in an invalid state, or an
invalid date was specified in the DATE job control
statement. The current time cannot be determined.

System action: All output values are set to 0.

Programmer response: Notify systems support
personnel that the system clock is in an invalid state, or
correct the date specified in the DATE job control
statement.

Symbolic Feedback Code: CEE2E6

CEE2503S The offset from UTC/GMT to local time
was not available from the system.

Explanation: A call to CEEGMTO failed because either
(1) the current operating system could not be
determined, or (2) the time zone field in the operating
system control block appears to contain invalid data.

System action: All output values are set to 0.

Programmer response: Notify systems support
personnel that the local time offset stored in the
operating system appears to contain invalid data.

Symbolic Feedback Code: CEE2E7

CEE2505S The input_seconds value in a call to
CEEDATM or CEESECI was not within
the supported range.

Explanation: The input_seconds value passed in a call
to CEEDATM or CEESECI was not a floating-point
number between 86,400.0 and 265,621,679,999.999 The
input parameter should represent the number of
seconds elapsed since 00:00:00 on 14 October 1582, with
00:00:00.000 15 October 1582 being the first supported
date/time, and 23:59:59.999 31 December 9999 being

CEE2021E • CEE2505S

166 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

the last supported date/time.

System action: For CEEDATM, the output value is set
to blanks. For CEESECI, all output parameters are set
to 0.

Programmer response: Verify that input parameter
contains a floating-point value between 86,400.0 and
265,621,679,999.999.

Symbolic Feedback Code: CEE2E9

CEE2506S Japanese (<JJJJ>) or Chinese (<CCCC>
or <CCCCCCCC>) Era was used in a
picture string passed to CEEDATM, but
the input number-of-seconds value was
not within the supported range. The era
could not be determined.

Explanation: In a CEEDATM call, the picture string
indicated that the input value was to be converted to a
Japanese (<JJJJ>) or Chinese (<CCCC> or
<CCCCCCCC>) Era; however the input value that was
specified lies outside the range of supported eras.

System action: The output value is set to blanks.

Programmer response: Verify that the input value
contains a valid number-of-seconds value within the
range of supported eras.

Symbolic Feedback Code: CEE2EA

CEE2507S Insufficient data was passed to
CEEDAYS or CEESECS. The Lilian
value was not calculated.

Explanation: The picture string passed in a CEEDAYS
or CEESECS call did not contain enough information.
For example, it is an error to use the picture string
‘MM/DD’ (month and day only) in a call to CEEDAYS
or CEESECS, because the year value is missing. The
minimum information required to calculate a Lilian
value is either (1) month, day and year, or (2) year and
Julian day.

System action: The output value is set to 0.

Programmer response: Verify that the picture string
specified in a call to CEEDAYS or CEESECS specifies,
as a minimum, the location in the input string of either
(1) the year, month, and day, or (2) the year and Julian
day.

Symbolic Feedback Code: CEE2EB

CEE2508S The date value passed to CEEDAYS or
CEESECS was invalid.

Explanation: In a CEEDAYS or CEESECS call, the
value in the DD or DDD field is not valid for the given
year and/or month. For example, ‘MM/DD/YY’ with
‘02/29/90’, or ‘YYYY.DDD’ with ‘1990.366’ are invalid
because 1990 is not a leap year. This code may also be

returned for any non-existent date value such as June
31st, January 0.

System action: The output value is set to 0.

Programmer response: Verify that the format of the
input data matches the picture string specification and
that input data contains a valid date.

Symbolic Feedback Code: CEE2EC

CEE2509S The Japanese or Chinese Era passed to
CEEDAYS or CEESECS was not
recognized.

Explanation: The value in the Japanese (<JJJJ>) or
Chinese (<CCCC> or <CCCCCCCC>) Era field passed
in a call to CEEDAYS or CEESECS did not contain a
supported Japanese or Chinese Era name.

System action: The output value is set to 0.

Programmer response: Verify that the format of the
input data matches the picture string specification and
that the spelling of the Japanese or Chinese Era name is
correct. Note that the era name must be a proper DBCS
string, that is, the '<' position must contain a shift-out
character (X'0E') and the '>' position must contain a
shift-in character (X'0F').

Symbolic Feedback Code: CEE2ED

CEE2510S The hours value in a call to CEEISEC or
CEESECS was not recognized.

Explanation: (1) In a CEEISEC call, the hours
parameter did not contain a number between 0 and 23,
or (2) in a CEESECS call, the value in the HH (hours)
field does not contain a number between 0 and 23, or
the “AP” (a.m./p.m.) field is present and the HH field
does not contain a number between 1 and 12.

System action: The output value is set to 0.

Programmer response: For CEEISEC, verify that the
hours parameter contains an integer between 0 and 23.
For CEESECS, verify that the format of the input data
matches the picture string specification, and that the
hours field contains a value between 0 and 23, (or 1
and 12 if the “AP” field is used).

Symbolic Feedback Code: CEE2EE

CEE2511S The day parameter passed in a CEEISEC
call was invalid for year and month
specified.

Explanation: The day parameter passed in a CEEISEC
call did not contain a valid day number. The
combination of year, month, and day formed an invalid
date value. Examples: year=1990, month=2, day=29; or
month=6, day=31; or day=0.

System action: The output value is set to 0.

Programmer response: Verify that the day parameter

CEE2506S • CEE2511S

Chapter 8. LE/VSE Run-Time Messages 167

contains an integer between 1 and 31, and that the
combination of year, month, and day represents a valid
date.

Symbolic Feedback Code: CEE2EF

CEE2512S The Lilian date value passed in a call to
CEEDATE or CEEDYWK was not within
the supported range.

Explanation: The Lilian day number passed in a call
to CEEDATE or CEEDYWK was not a number between
1 and 3,074,324.

System action: The output value is set to blanks.

Programmer response: Verify that the input parameter
contains an integer between 1 and 3,074,324.

Symbolic Feedback Code: CEE2EG

CEE2513S The input date passed in a CEEISEC,
CEEDAYS, or CEESECS call was not
within the supported range.

Explanation: The input date passed in a CEEISEC,
CEEDAYS, or CEESECS call was earlier than 15
October 1582, or later than 31 December 9999.

System action: The output value is set to 0.

Programmer response: For CEEISEC, verify that the
year, month, and day parameters form a date greater
than or equal to 15 October 1582. For CEEDAYS and
CEESECS, verify that the format of the input date
matches the picture string specification, and that the
input date is within the supported range.

Symbolic Feedback Code: CEE2EH

CEE2514S The year value passed in a CEEISEC call
was not within the supported range.

Explanation: The year parameter passed in a CEEISEC
call did not contain a number between 1582 and 9999.

System action: The output value is set to 0.

Programmer response: Verify that the year parameter
contains valid data, and that the year parameter
includes the century, for example, specify year 1990, not
year 90.

Symbolic Feedback Code: CEE2EI

CEE2515S The milliseconds value in a CEEISEC
call was not recognized.

Explanation: In a CEEISEC call, the milliseconds
parameter (input_milliseconds) did not contain a number
between 0 and 999.

System action: The output value is set to 0.

Programmer response: Verify that the milliseconds
parameter contains an integer between 0 and 999.

Symbolic Feedback Code: CEE2EJ

CEE2516S The minutes value in a CEEISEC call
was not recognized.

Explanation: (1) In a CEEISEC call, the minutes
parameter (input_minutes) did not contain a number
between 0 and 59, or (2) in a CEESECS call, the value
in the MI (minutes) field did not contain a number
between 0 and 59.

System action: The output value is set to 0.

Programmer response: For CEEISEC, verify that the
minutes parameter contains an integer between 0 and
59. For CEESECS, verify that the format of the input
data matches the picture string specification, and that
the minutes field contains a number between 0 and 59.

Symbolic Feedback Code: CEE2EK

CEE2517S The month value in a CEEISEC call was
not recognized.

Explanation: (1) In a CEEISEC call, the month
parameter (input_month) did not contain a number
between 1 and 12, or (2) in a CEEDAYS or CEESECS
call, the value in the MM field did not contain a
number between 1 and 12, or the value in the MMM,
MMMM, etc. field did not contain a correctly spelled
month name or month abbreviation in the currently
active National Language.

System action: The output value is set to 0.

Programmer response: For CEEISEC, verify that the
month parameter contains an integer between 1 and 12.
For CEEDAYS and CEESECS, verify that the format of
the input data matches the picture string specification.
For the MM field, verify that the input value is
between 1 and 12. For spelled-out month names
(MMM, MMMM, etc.), verify that the spelling or
abbreviation of the month name is correct in the
currently active National Language.

Symbolic Feedback Code: CEE2EL

CEE2518S An invalid picture string was specified
in a call to a date/time service.

Explanation: The picture string supplied in a call to
one of the date/time services was invalid. Only one era
character string can be specified. The picture string
contained an invalid DBCS string or contained more
than one era descriptor, such as both Japanese (<JJJJ>)
and Chinese (<CCCC>) being specified in the same
picture string.

System action: The output value is set to 0.

Programmer response: Verify that the picture string
contains valid data. Only one era character string can
be specified. If the picture string contains the X'0E'
(shift-out) character, this indicates the presence of DBCS

CEE2512S • CEE2518S

168 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

data. Therefore, (1) the DBCS data must be terminated
by a X'0F' (shift-in) character, (2) there must be an even
number of characters between the shift-out and shift-in,
and (3) these characters must all be valid DBCS
characters.

Symbolic Feedback Code: CEE2EM

CEE2519S The seconds value in a CEEISEC call
was not recognized.

Explanation: (1) In a CEEISEC call, the seconds
parameter (input_seconds) did not contain a number
between 0 and 59, or (2) in a CEESECS call, the value
in the SS (seconds) field did not contain a number
between 0 and 59.

System action: The output value is set to 0.

Programmer response: For CEEISEC, verify that the
seconds parameter contains an integer between 0 and
59. For CEESECS, verify that the format of the input
data matches the picture string specification, and that
the seconds field contains a number between 0 and 59.

Symbolic Feedback Code: CEE2EN

CEE2520S CEEDAYS detected non-numeric data in
a numeric field, or the date string did
not match the picture string.

Explanation: The input value passed in a CEEDAYS
call did not appear to be in the format described by the
picture specification, for example, non-numeric
characters appear where only numeric characters are
expected.

System action: The output value is set to 0.

Programmer response: Verify that the format of the
input data matches the picture string specification and
that numeric fields contain only numeric data.

Symbolic Feedback Code: CEE2EO

CEE2521S The Japanese (<JJJJ>) or Chinese
(<CCCC>) year-within-Era value passed
to CEEDAYS or CEESECS was zero.

Explanation: In a CEEDAYS or CEESECS call, if the
YY or ZYY picture token was specified, and if the
picture string contained one of the era tokens such as
<CCCC> or <JJJJ>, then the year value must be greater
than or equal to 1. In this context, the YY or ZYY field
means “year within Era.”

System action: The output value is set to 0.

Programmer response: Verify that the format of the
input data matches the picture string specification and
that the input data is valid.

Symbolic Feedback Code: CEE2EP

CEE2522S The Japanese (<JJJJ>) or Chinese
(<CCCC> or <CCCCCCCC>) Era was
used in a picture string passed to
CEEDATE, but the Lilian date value was
not within the supported range. The Era
could not be determined.

Explanation: In a CEEDATE call, the picture string
indicated that the Lilian date was to be converted to a
Japanese or Chinese Era, but the Lilian date lies outside
the range of supported eras.

System action: The output value is set to blanks.

Programmer response: Verify that the input value
contains a valid Lilian day number within the range of
supported eras.

Symbolic Feedback Code: CEE2EQ

CEE2523W The system time was not available when
CEERAN0 was called. A seed value of 1
was used to generate a random number
and a new seed value.

Explanation: A seed value of 0 was specified in a
CEERAN0 call, indicating that the current system time
should be used as a seed value. Because the system
time was not available, a seed value of 1 was used to
generate a new seed value.

System action: A seed value of 1 is assumed.
CEERAN0 returns both a random number and a new
seed value.

Programmer response: If seed=1 is acceptable, no
action is required. Otherwise, code an appropriate
nonzero seed, or refer to message CEE2502.

Symbolic Feedback Code: CEE2ER

CEE2524S An invalid seed value was passed to
CEERAN0. The random number was set
to -1.

Explanation: CEERAN0 was called with a seed value
that was out of range.

System action: The random number output was set to
-1, and the seed value input was not changed.

Programmer response: Code a seed value between 0
and 2147483646, inclusive, for the CEERAN0 call.

Symbolic Feedback Code: CEE2ES

CEE2525S CEESECS detected non-numeric data in
a numeric field, or the timestamp string
did not match the picture string.

Explanation: The input value passed in a CEESECS
call did not appear to be in the format described by the
picture specification. For example, non-numeric
characters appear where only numeric characters are
expected, or the a.m./p.m. field (AP, A.P., etc.) did not

CEE2519S • CEE2525S

Chapter 8. LE/VSE Run-Time Messages 169

contain the strings ‘AM’ or ‘PM’.

System action: The output value is set to 0.

Programmer response: Verify that the format of the
input data matches the picture string specification and
that numeric fields contain only numeric data.

Symbolic Feedback Code: CEE2ET

CEE2526E The date string returned by CEEDATE
was truncated.

Explanation: In a CEEDATE call, the output string
was not large enough to contain the formatted date
value.

System action: The output value is truncated to the
length of the output parameter.

Programmer response: Verify that the output string
variable is large enough to contain the entire formatted
date. Ensure that the output parameter is at least as
long as the picture string parameter.

Symbolic Feedback Code: CEE2EU

CEE2527E The timestamp string returned by
CEEDATM was truncated.

Explanation: In a CEEDATM call, the output string
was not large enough to contain the formatted
timestamp value.

System action: The output value is truncated to the
length of the output parameter.

Programmer response: Verify that the output string
variable is large enough to contain the entire formatted
timestamp. Ensure that the output parameter is at least
as long as the picture string parameter.

Symbolic Feedback Code: CEE2EV

CEE2529S A debug tool has terminated the
enclave.

Explanation: A debugging tool has terminated the
enclave at the user’s request. Abend code 4094, reason
code X'28' is issued.

System action: The enclave is terminated with abend
code 4094, reason code X'28'.

Programmer response: No programmer response is
necessary.

Symbolic Feedback Code: CEE2F1

CEE2530S A debug tool was not available.

Explanation: Either the debug environment was
corrupted or could not load the debug event handler.

System action: No system action is taken.

Programmer response: Make sure the debug tool is

installed with the loadable name CEEEVDBG.

Symbolic Feedback Code: CEE2F2

CEE2531S The local time was not available from
the system.

Explanation: A call to CEELOCT failed because the
system clock was in an invalid state, or an invalid date
was specified in the DATE job control statement. The
current time cannot be determined.

System action: All output values are set to 0.

Programmer response: Notify systems support
personnel that the system clock is in an invalid state, or
correct the date specified in the DATE job control
statement.

Symbolic Feedback Code: CEE2F3

CEE2533S The value passed to CEESCEN was not
between 0 and 100.

Explanation: The century_start value passed in a
CEESCEN call was not between 0 and 100, inclusive.

System action: No system action is taken; the 100-year
window assumed for all 2-digit years is unchanged.

Programmer response: Ensure that the input
parameter is within range.

Symbolic Feedback Code: CEE2F5

CEE2534W Insufficient field width was specified
for a month or weekday name in a call
to CEEDATE or CEEDATM. Output set
to blanks.

Explanation: The CEEDATE or CEEDATM callable
services issued this message whenever: (1) the picture
string contained MMM, MMMMMZ, WWW, Wwww,
etc., requesting a spelled out month name or weekday
name, (2) the National Language currently in effect was
a double-byte character set (DBCS) language such as
NATLANG(JPN), and (3) the month name currently
being formatted contained more characters than can fit
in the indicated field.

System action: The month name and weekday name
fields that are of insufficient width are set to blanks.
The rest of the output string is unaffected. Processing
continues.

Programmer response: Increase the field width by
specifying enough Ms or Ws to contain the longest
month or weekday name being formatted, including
two bytes for the SO/SI characters. For Japanese, eight
characters are sufficient (3 DBCS + SO/SI), so specify
MMMMMMMM or MMMMMMMZ, WWWWWWWW
or WWWWWWWWZ in the picture string.

Symbolic Feedback Code: CEE2F6

CEE2526E • CEE2534W

170 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

CEE2537W An input date outside the specified
Japanese (<JJJJ>) or Chinese (<CCCC>)
Era was used in a call to CEECBLDY or
CEEDAYS.

Explanation: The name of a Japanese or Chinese Era
was specified in a call to CEECBLDY or CEEDAYS, but
the input date does not fall in the specified Era.

System action: The output date is calculated as if the
input date falls in the specified Era.

Programmer response: Modify input date or
corresponding Era as required.

Symbolic Feedback Code: CEE2F9

CEE2701S An invalid category parameter was
passed to a locale function.

Explanation: An invalid category parameter was
passed to a locale function. Valid categories are:
LC_ALL, LC_COLLATE, LC_CTYPE, LC_MESSAGES,
LC_MONETARY, LC_NUMERIC, and LC_TIME.

System action: The thread is terminated.

Programmer response: Supply a valid category to the
function.

Symbolic Feedback Code: CEE2KD

CEE2702S An invalid locale name parameter was
passed to a locale function.

Explanation: An invalid locale name parameter was
passed to a locale function. Locale name must be one
provided with the product or constructed using the
LOCALEDEF utility.

System action: The thread is terminated.

Programmer response: Supply a valid locale name to
the function.

Symbolic Feedback Code: CEE2KE

CEE2999C An internal logic error was detected in a
date/time routine.

Explanation: An internal logic error was detected in
one of the date/time services. Internal date/time
control blocks might have been damaged.

System action: The requested action is not completed.
The application is terminated.

Programmer response: Verify that the program doesn't
inadvertently overlay areas of storage reserved for
library use.

Symbolic Feedback Code: CEE2TN

CEE3098S The user routine traceback could not be
completed.

Explanation: The user routine traceback could not be
completed due to an error detected in tracing back
through the DSA chain.

System action: The user routine traceback is not
completed.

Programmer response: Attempt to perform problem
determination through the use of a dump.

Symbolic Feedback Code: CEE30Q

CEE3102E Invalid CEE5DMP options or
suboptions were found and ignored.

Explanation: Invalid options or suboptions were
found in the options parameter to CEE5DMP.

System action: The invalid options or suboptions are
ignored, valid options and suboptions are processed,
and a dump is performed.

Programmer response: Check the options string
passed to CEE5DMP. Make sure it has correct syntax
and values for options and suboptions as specified in
LE/VSE Programming Reference. Also, make sure the
options string is 255 characters long.

Symbolic Feedback Code: CEE30U

CEE3103S An error occurred in writing messages
to the dump file.

Explanation: An error occurred in trying to write
information to the dump file, whose filename was
specified with the FNAME option to CEE5DMP. The
default file name is CEEDUMP, or CESE transient data
queue under CICS.

System action: Dump processing is terminated at the
point where the file error is detected.

Programmer response: Make sure the file name is
correct as specified in the options to CEE5DMP. Also,
make sure there is enough room in the file to contain
the dump.

Symbolic Feedback Code: CEE30V

CEE3104S Information could not be successfully
extracted for this DSA.

Explanation: Some information associated with the
DSA or save area passed to CEETRCB could not be
determined.

System action: All information that could be extracted
is returned by CEETRCB. Any information that could
not be extracted is zero or blank (depending on
parameter type).

Programmer response: If no information could be
extracted by CEETRCB, then it is likely that the

CEE2537W • CEE3104S

Chapter 8. LE/VSE Run-Time Messages 171

DSAPTR parameter does not point to an actual DSA or
save area.

Symbolic Feedback Code: CEE310

CEE3105S The language dump exit was
unsuccessful.

Explanation: A language component of LE/VSE
returned this condition to the common component of
LE/VSE when an error had occurred in the language
component's dump event handler that was not covered
in the conditions returned by the low level dump CWI
services.

System action: The common component of LE/VSE
ignores this condition and continues dump processing.

Programmer response: Not applicable. This is an
internal condition within LE/VSE, and is never seen by
the application programmer.

Symbolic Feedback Code: CEE311

CEE3106S An invalid parameter value was
specified in a call to the CEEVDMP
CWI service.

Explanation: A parameter to the CEEVDMP low level
CWI service to format and write a variable value to the
dump was called with an invalid value for one of the
parameters.

System action: The CEEVDMP service returns to the
caller without adding any information to the dump.

Programmer response: Check to make sure the
parameters on the call to CEEVDMP are correct. In
particular, the lengths of the strings must be greater
than zero and less than the size specified in the
LE/VSE CWI documentation.

Symbolic Feedback Code: CEE312

CEE3107E The CEEHDMP or CEEBDMP CWI
service encountered inaccessible storage
during dump processing.

Explanation: The CEEHDMP CWI service encountered
inaccessible storage while dumping a storage area, or
the CEEBDMP CWI service encountered inaccessible
storage while dumping a control block.

System action: The message Inaccessible storage. is
printed in the dump at the point of the encounter. The
storage or control block dumping terminates, and
CEEHDMP or CEEBDMP returns to the calling routine.

Programmer response: Make sure the address and
length of the storage area are correct for CEEHDMP.
Make sure the address and offset are correct for
CEEBDMP, and that CEEBDMP is dumping the control
block with a correct mapping for the control block.

Symbolic Feedback Code: CEE313

CEE3108E An invalid option, suboption, or
delimiter was found in the dump option
string.

Explanation: An invalid option, suboption, or
delimiter was found in the dump option string.

System action: No system action is taken.

Programmer response: Correct the error location as
indicated in the position parameter.

Symbolic Feedback Code: CEE314

CEE3186E A field type parameter of the CEEBDMP
CWI service contained an invalid value.

Explanation: The field_ids, field_length, or field_types
parameter of the CEEBDMP CWI service contained an
invalid value.

System action: CEEBDMP returns to its caller.
Information might have been written to the dump.

Programmer response: Check to make sure the
mapping of the control block, specified to CEEBDMP
through these three parameters, is correct.

Symbolic Feedback Code: CEE33I

CEE3191E An attempt was made to initialize an
AMODE24 application without using
the ALL31(OFF) and STACK(,,BELOW)
run-time options.

Explanation: During initialization it was detected that
a program began in AMODE 24, yet the options
required for completely safe execution in AMODE 24
were not fully specified.

System action: Program initialization continues.

Programmer response: Specify run-time options
ALL31(OFF) and STACK(,,BELOW) for AMODE 24
operation if necessary.

Symbolic Feedback Code: CEE33N

CEE3192C The Language Environment anchor
support was not installed or was not
supported on the operating system.

Explanation: The LE/VSE anchor was the address of
the LE/VSE main control block, the CAA. The
underlying operating system must provide the celv.
anchor support for LE/VSE to obtain its main control
block, the CAA. Because the anchor was not installed,
the application was not able to run properly.

System action: The application is terminated.

Programmer response: Report the error to your
systems programmer. Check whether LE/VSE anchor
support is installed properly on the underlying
operating system.

CEE3105S • CEE3192C

172 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Symbolic Feedback Code: CEE33O

CEE3193I The invocation command parameter
string contained an unmatched quote
character.

Explanation: The invocation command parameter
string contained a beginning quote (either single quote
or double quote) but a matching end quote was not
found.

System action: The entire string is treated as user
parameters.

Programmer response: Correct the string.

Symbolic Feedback Code: CEE33P

CEE3194W An error occurred writing to the dump
sublibrary. SDUMP output is on
SYSLST.

Explanation: The dump sublibrary was either full, not
defined, or in error.

System action: The SDUMP output is redirected to
SYSLST.

Programmer response: Determine the cause of the
problem with the dump sublibrary.

Symbolic Feedback Code: CEE33Q

CEE3195W SDUMP output could not be written to
SYSLST.

Explanation: SYSLST is unassigned, assigned ignore,
or assigned to an unsupported device type. The
SDUMP output could not be written to SYSLST.

System action: No SDUMP dump was taken.

Programmer response: If an SDUMP dump is desired,
determine the reason the file could not be opened and
correct the problem.

Symbolic Feedback Code: CEE33R

CEE3196W The id number was not in the allowed
range.

Explanation: The id number was not in the required
range of 0 to 255.

System action: The id number MOD 256 was used.

Programmer response: This is an internal problem.
Contact your service representative.

Symbolic Feedback Code: CEE33S

CEE3197W An invalid value for reserved was
passed.

Explanation: An invalid value for the reserved
parameter was passed to the SDUMP dump service.

System action: The invalid value is ignored.

Programmer response: This is an internal problem.
Contact your service representative.

Symbolic Feedback Code: CEE33T

CEE3198S An SDUMP dump was requested on an
unsupported system.

Explanation: The SDUMP dump service was called to
produce an SDUMP dump on a system not running an
ESA-mode operating system, or was called when
running under CICS.

System action: The SDUMP dump was not produced.

Programmer response: Report the error to your
systems support personnel.

Symbolic Feedback Code: CEE33U

CEE3199S An error was returned from the SDUMP
system function.

Explanation: The SDUMP dump service was called. It
invoked the SDUMP system service which failed.

System action: The SDUMP dump was not produced.

Programmer response: This is an internal problem.
Contact your service representative.

Symbolic Feedback Code: CEE33V

CEE3200S The System detected a Segment
Translation Exception

Explanation: The segment-table entry indicated by the
segment-index portion of a virtual address is outside of
the allocated segment table. The Interrupt Code for this
error is X'10'. See the S/390® Principles of Operations
manual for more details.

System action: The thread is terminated.

Programmer response: Examine the base registers of
the operands of the failing instruction to determine the
invalid address being used. Some possible causes are
storage overlays, incorrect register save area
conventions or incorrect address calculation results.

Symbolic Feedback Code: CEE340

CEE3201S The system detected an operation
exception.

Explanation: The program attempted to execute an
instruction with an invalid operation code. The
operation code may be unassigned or the instruction

CEE3193I • CEE3201S

Chapter 8. LE/VSE Run-Time Messages 173

with that operation code cannot be installed on this
platform. See a Principles of Operations manual for a full
list of operation exceptions.

System action: The thread is terminated.

Programmer response: Examine the contents of
registers 14 and 15. If register 15 has a value of 0, then
the cause was probably a routine didn't exist and a
branch was made to location 0. This would indicate a
link-edit failure. Examine the contents of register 14 to
determine the point at which the branch was made.
Also examine the linkage editor map for any
unresolved references reported by the linkage editor.

Another possible cause is a routine branched to some
unintended location, such as a conflict in addressing
mode between the calling and the called routine, or any
other program error that branched to the wrong
location.

Symbolic Feedback Code: CEE341

CEE3202S The system detected a
privileged-operation exception.

Explanation: Attempted to execute a privileged
operation code while the machine was in a problem
state. See a Principles of Operations manual for a full list
of privileged-operation exceptions.

System action: The thread is terminated.

Programmer response: Examine the contents of
registers 14 and 15. If register 15 has a value of 0, then
the probable cause is that a routine doesn't exist and a
branch was made to location 0. This would indicate a
link-edit failure. Examine the contents of register 14 to
determine the point at which the branch was made.
Also examine the linkage editor map for any
unresolved references reported by the linkage editor.

Another possible cause is a routine branched to some
unintended location, such as a conflict in addressing
mode between the calling and the called routine, or any
other program error that branched to the wrong
location.

Symbolic Feedback Code: CEE342

CEE3203S The system detected an execute
exception.

Explanation: Your program attempted to execute an
EXECUTE instruction where the target of the first
EXECUTE instruction was another EXECUTE
instruction. See a Principles of Operations manual for a
full list of execute exceptions.

System action: The thread is terminated.

Programmer response: Check your application for
errors in the EXECUTE instructions. See a Principles of
Operations manual for a full list of execute exceptions.

Symbolic Feedback Code: CEE343

CEE3204S The system detected a protection
exception.

Explanation: your program attempted to access a
storage location to which it was not authorized.

System action: The thread is terminated.

Programmer response: Check your application for
these common errors:

v Using the wrong AMODE to reference storage

v Trying to use a pointer that has not been set

v Trying to store data into storage reserved for the
system

v Using an invalid index to an array

See a Principles of Operations manual for a full list of
protection exceptions.

Symbolic Feedback Code: CEE344

CEE3205S The system detected an addressing
exception.

Explanation: Your program attempted to reference a
main-storage location that was not available in the
configuration. See a Principles of Operations manual for a
full list of addressing exceptions.

System action: The thread is terminated.

Programmer response: Check your application for
these common errors:

v Using the wrong AMODE to reference storage

v Trying to use a pointer that has not been set

v Trying to store data into storage reserved for the
system

v Using an invalid index to an array

See a Principles of Operations manual for a full list of
addressing exceptions.

Symbolic Feedback Code: CEE345

CEE3206S The system detected a specification
exception.

Explanation: Your program attempted an invalid
operation such as incorrect use of registers. The register
used for an operation was invalid. Examples include
using an odd register number when an even register
number was required, using a bad number for floating
point registers, or having data that was not correctly
aligned.

System action: The thread is terminated.

Programmer response: If the program is being
produced by a compiler, then you might be able to
specify a different optimization level to by-pass the
problem. See a Principles of Operations manual for a full
list of specification exceptions.

CEE3202S • CEE3206S

174 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Symbolic Feedback Code: CEE346

CEE3207S The system detected a data exception.

Explanation: Your program attempted to use a
decimal instruction incorrectly. See a Principles of
Operations manual for a full list of data exceptions.

System action: The thread is terminated.

Programmer response: Check the variables associated
with the failing statement to make sure that they have
been initialized correctly.

Symbolic Feedback Code: CEE347

CEE3208S The system detected a fixed-point
overflow exception.

Explanation: Your program attempted to use signed
binary arithmetic or signed left-shift operations and an
overflow occurred. See a Principles of Operations manual
for a full list of fixed-point overflow exceptions.

System action: The thread is terminated.

Programmer response: You can use a condition
handling routine to correct the data values and resume
the application.

Symbolic Feedback Code: CEE348

CEE3209S The system detected a fixed-point divide
exception.

Explanation: Your program attempted to perform a
signed binary division and the divisor is zero. See a
Principles of Operations manual for a full list of
fixed-point divide exceptions.

System action: The thread is terminated.

Programmer response: You can use a condition
handling routine to correct the data values and resume
the application.

Symbolic Feedback Code: CEE349

CEE3210S The system detected a decimal-overflow
exception.

Explanation: Your program attempted to perform a
mathematical operation and one or more nonzero digits
were lost because the destination field in a decimal
operation was too short to contain the results. See a
Principles of Operations manual for a full list of
decimal-overflow exceptions.

System action: The thread is terminated.

Programmer response: You can use a condition
handling routine to correct the data values and resume
the application.

Symbolic Feedback Code: CEE34A

CEE3211S The system detected a decimal-divide
exception.

Explanation: Your program attempted to perform a
mathematical operation where, in decimal division, the
divisor is zero or the quotient exceeds the specified
data-field size. See a Principles of Operations manual for
a full list of decimal-divide exceptions.

System action: The thread is terminated.

Programmer response: You can use a condition
handling routine to correct the data values and resume
the application.

Symbolic Feedback Code: CEE34B

CEE3212S The system detected an
exponent-overflow exception.

Explanation: Your program attempted a floating-point
operation and the result characteristics exceeded 127
and the result fraction was not zero. See a Principles of
Operations manual for a full list of exponent-overflow
exceptions.

System action: The thread is terminated.

Programmer response: You can use a condition
handling routine to correct the data values and resume
the application.

Symbolic Feedback Code: CEE34C

CEE3213S The system detected an
exponent-underflow exception.

Explanation: Your program attempted a floating-point
operation and the result characteristics is less than zero
and the result fraction was not zero. See a Principles of
Operations manual for a full list of exponent-underflow
exceptions.

System action: The thread is terminated.

Programmer response: You can use a condition
handling routine to correct the data values and resume
the application.

Symbolic Feedback Code: CEE34D

CEE3214S The system detected a significance
exception.

Explanation: Your program attempted a floating-point
addition or subtraction and the resulting fraction was
zero. See a Principles of Operations manual for a full list
of significance exceptions.

System action: The thread is terminated.

Programmer response: You can use a condition
handling routine to correct the data values and resume
the application.

Symbolic Feedback Code: CEE34E

CEE3207S • CEE3214S

Chapter 8. LE/VSE Run-Time Messages 175

CEE3215S The system detected a floating-point
divide exception.

Explanation: Your program attempted a do a
floating-point divide and the divisor had a zero
fraction. See a Principles of Operations manual for a full
list of floating-point divide exceptions.

System action: The thread is terminated.

Programmer response: You can use a condition
handling routine to correct the data values and resume
the application.

Symbolic Feedback Code: CEE34F

CEE3216S The system detected an IEEE inexact
exception. The result was truncated.

Explanation: An IEEE-inexact condition is recognized
when the rounded result of an operation differs in
value from the intermediate result computed as if
exponent range and precision were unbounded.

System action: The process is terminated.

Programmer response: You can use a condition
handling routine to correct the data values and resume
the application.

Symbolic Feedback Code: CEE34G

CEE3217S The system detected an IEEE inexact
exception. The result was incremented.

Explanation: An IEEE-inexact condition is recognized
when the rounded result of an operation differs in
value from the intermediate result computed as if
exponent range and precision were unbounded.

System action: The process is terminated.

Programmer response: You can use a condition
handling routine to correct the data values and resume
the application.

Symbolic Feedback Code: CEE34H

CEE3218S The system detected an IEEE
exponent-underflow condition. The
result was truncated.

Explanation: An IEEE-underflow condition is
recognized when the exponent of the exact result of an
operation would be less than the minimum exponent of
the target format.

System action: The process is terminated.

Programmer response: You can use a condition
handling routine to correct the data values and resume
the application.

Symbolic Feedback Code: CEE34I

CEE3219S The system detected an IEEE
exponent-underflow exception. The
result is inexact and truncated.

Explanation: An IEEE-underflow condition is
recognized when the exponent of the exact result of an
operation would be less than the minimum exponent of
the target format.

System action: The process is terminated.

Programmer response: You can use a condition
handling routine to correct the data values and resume
the application.

Symbolic Feedback Code: CEE34J

CEE3220S The system detected an IEEE
exponent-underflow exception. The
result was inexact and incremented.

Explanation: An IEEE-underflow condition is
recognized when the exponent of the exact result of an
operation would be less than the minimum exponent of
the target format.

System action: The process is terminated.

Programmer response: You can use a condition
handling routine to correct the data values and resume
the application.

Symbolic Feedback Code: CEE34K

CEE3228S An IEEE underflow and inexact
exception was reported.

Explanation: IEEE interruption simulation (IIS) event
instructions were used to report an IEEE overflow
exception. Floating point software might detect that the
exact result of an operation was nonzero and less in
magnitude than the smallest normal number in the
target format, and the result could not be represented
exactly.

System action: The process is terminated.

Programmer response: Use a condition handling
routine to recover the error and resume the application.

Symbolic Feedback Code: CEE34S

CEE3229S An IEEE overflow exception was
reported.

Explanation: IEEE interruption simulation (IIS) event
instructions were used to report an IEEE overflow
exception. Floating point software might detect that the
rounded result of an operation was larger in magnitude
than the largest finite number in the target format, but
the scaled result could still be represented exactly.

System action: The process is terminated.

Programmer response: Use a condition handling
routine to recover the error and resume the application.

CEE3215S • CEE3229S

176 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Symbolic Feedback Code: CEE34T

CEE3250C The system or user abend abend-code was
issued.

Explanation: A CICS or user abend has occurred in
the application running under CICS.

System action: The program is terminated abnormally.

Programmer response: For CICS abend codes, see the
transaction abend codes in z/VSE Messages and Codes,
Volume 3. For user abend codes, see your application's
user documentation.

Symbolic Feedback Code: CEE35I

CEE3252C The SORT service service-name is not
supported in this environment.

Explanation: The SORT CWI service service-name was
called in the wrong execution environment. Either
CEE5SMG was called in CICS or CEE5SRT was called
in batch.

System action: The thread is terminated.

Programmer response: Ensure the appropriate SORT
CWI service is used for the execution environment.

Symbolic Feedback Code: CEE35K

CEE3253C A critical condition occurred during the
sort operation.

Explanation: An unrecoverable error prevented SORT
from completing.

System action: The thread is terminated.

Programmer response: Take the appropriate action
defined by the SORT messages.

Symbolic Feedback Code: CEE35L

CEE3254C An incorrect parameter list was passed
to CEE5SRT.

Explanation: Under CICS, the parameter list for the
CWI CEE5SRT must be the extended-format parameter
list specified by products such as DFSORT/MVS.

System action: The thread is terminated.

Programmer response: Correct the parameter list for
CEE5SRT.

Symbolic Feedback Code: CEE35M

CEE3255C An attempt to call the SORT service
service-name was made from within a
SORT exit routine.

Explanation: Only one sort can be active at a time. A
program called during the execution of SORT has
attempted to invoke sort again. The value of

service-name is either CEE5SMG in the batch
environment or CEE5SRT in the CICS environment.

System action: The thread is terminated.

Programmer response: Do not attempt a sort from
within a sort exit.

Symbolic Feedback Code: CEE35N

CEE3260W No condition was active when a call to a
condition management routine was
made.

Explanation: The requested function was not
performed. The condition manager has no record of an
active condition.

System action: No system action is performed.

Programmer response: No response is required. Calls
to condition management routines should only be
made within the handler routine.

Symbolic Feedback Code: CEE35S

CEE3261W service-name is not supported.

Explanation: The service was no longer supported. It
was provided for migration and compatibility with
previous releases of LE/VSE. This service is intended
to be removed in the future.

System action: The service did not take any action.

Programmer response: Migrate an application to a
supported function.

Symbolic Feedback Code: CEE35T

CEE3262W An invalid condition token was passed.
The condition token did not represent
an active condition.

Explanation: The condition token passed to CEE5CIB
did not represent a condition that is currently active.

System action: No system action is taken.

Programmer response: No programmer response
required.

Symbolic Feedback Code: CEE35U

CEE3263C The condition handler's condition
information block was damaged. The
requested function was not performed.

Explanation: The condition manager did not have a
valid CIB chain.

System action: The requested function is not
performed.

Programmer response: This is an internal problem.
Contact your service representative.

Symbolic Feedback Code: CEE35V

CEE3250C • CEE3263C

Chapter 8. LE/VSE Run-Time Messages 177

CEE3292W The language run-time component id
was already registered. No action was
taken.

Explanation: The CEEHDHDL CWI was invoked
previously with the same language run-time
component id.

System action: If this condition is not handled,
execution continues at the instruction after the
CEEHDHDL invocation.

Programmer response: No programmer response
required.

Symbolic Feedback Code: CEE36S

CEE3293C The language environment was
corrupted. The save area chain was
broken.

Explanation: The save area chain was not intact. If the
condition is not corrected the application may be
abended.

System action: The function was not completed, and
did not schedule the routine.

Programmer response: LE/VSE always expects the
save area to be valid, and usually abends when it is
not. Ensure that the save chain is valid.

Symbolic Feedback Code: CEE36T

CEE3294E The cancel request could not be
performed, since the routine was not
previously scheduled.

Explanation: A request was made to cancel a routine,
but that routine could not be found on the active chain.
The routine that was requested to cancel either was
never scheduled or was previously deleted.

System action: No routine is released.

Programmer response: Ensure that routines are
scheduled via CEEHDLR before an attempt is made to
delete them.

Symbolic Feedback Code: CEE36U

CEE3295E The condition string from CEE5SPM did
not contain all of the settings, because
the returned string was truncated.

Explanation: The QUERY option of the CEE5SPM
service needed a larger character string to represent the
conditions.

System action: Some items might have been filled in.

Programmer response: Try a character string larger
than 80.

Symbolic Feedback Code: CEE36V

CEE3296E Some of the data in the condition string
from CEE5SPM could not be recognized.

Explanation: The data encountered in the string could
not be interpreted.

System action: Only conditions that could be
recognized were set.

Programmer response: Correct the character
representation for the condition(s) and ensure that the
string is padded with blanks.

Symbolic Feedback Code: CEE370

CEE3297E The service completed successfully for
recognized condition(s), unsuccessfully
for unrecognized (invalid) condition(s).

Explanation: The data encountered in the string could
not be interpreted.

System action: Only conditions that could be
recognized were set.

Programmer response: Correct the character
representation for the conditions.

Symbolic Feedback Code: CEE371

CEE3298E CEE5SPM attempted to PUSH settings
onto a full stack.

Explanation: There was not enough storage for the
CEE5SPM PUSH service to save all of the conditions.

System action: No settings were changed.

Programmer response: Obtain more storage.

Symbolic Feedback Code: CEE372

CEE3299E CEE5SPM attempted to POP settings off
an empty stack.

Explanation: A call to CEE5SPM was made to POP the
stack. There were no elements on the stack to POP.

System action: No settings are changed.

Programmer response: Ensure that something is on
the stack before you attempt to POP it.

Symbolic Feedback Code: CEE373

CEE3300C The action parameter in CEE5SPM was
not one of the digits 1 to 5.

Explanation: A call to CEE5SPM was made requesting
an invalid action.

System action: No settings were changed.

Programmer response: Use an action parameter
between 1 and 5 when invoking CEE5SPM.

Symbolic Feedback Code: CEE374

CEE3292W • CEE3300C

178 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

CEE3301E The first parameter was not one of the
digits expected.

Explanation: A call was made to a condition
management subroutine that did not have a valid
parameter for the action parameter. This is an internal
error. The internal routine was called with an improper
argument.

System action: No system action is performed.

Programmer response: Contact your service
representative.

Symbolic Feedback Code: CEE375

CEE3320C PSW at ABEND psw.

Explanation: This message is issued to the operator's
console to indicate that an abend has occurred and
shows the value of the PSW at the time of the abend.

System action: The thread is terminated.

Programmer response: Use the value of the PSW to
determine the cause of the abend.

Symbolic Feedback Code: CEE37O

CEE3321C Execution abnormally terminated with
VSE cancel code cancel-code and
interruption code interruption-code.
cancel-code-information

Explanation: This message is issued to the operator's
console to indicate that an abend has occurred and
shows the VSE cancel code and, if applicable, the
interruption code, both in hexadecimal. A VSE cancel
code of 20 indicates a program check has occurred. The
following is a description of the interruption codes that
can accompany a cancel code of 20:

01 Operation exception

02 Privileged-operation exception

03 Execute exception

04 Protection exception

05 Addressing exception

06 Specification exception

07 Data exception

08 Fixed-point overflow exception

09 Fixed-point divide exception

10 Segment translation exception (may also be
reported as 00 in earlier releases)

0A Decimal-overflow exception

0B Decimal-divide exception

0C Exponent-overflow exception

0D Exponent-underflow exception

0E Significance exception

0F Floating-point divide exception

For some cancel codes, VSE provides additional
information in the SVUABINF field of the STXIT AB
exit save area. When provided, the message displays
this cancel-code-information in hexadecimal as follows:

SVUABINF: hex-digits

System action: The thread is terminated.

Programmer response: See z/VSE Messages and Codes,
Volume 1 for a list of VSE cancel codes and the
z/Architecture® Reference Guide for further information on
the above listed and unlisted interruption codes.

Symbolic Feedback Code: CEE37P

CEE3322C Execution abnormally terminated with
user-abend code abend-code and reason
code reason-code.

Explanation: This message was issued to the
operator's console to indicate that an abend has
occurred and shows the user abend code and reason
code, both in decimal.

System action: The thread is terminated.

Programmer response: See Chapter 13, “LE/VSE
Abend Codes,” on page 319 for a list of the abend
codes and reason codes issued by LE/VSE.

Symbolic Feedback Code: CEE37Q

CEE3323S An internal error was detected by
condition-management services while
trying to establish a STXIT exit.

Explanation: The STXIT exit address was not
provided.

System action: No system action is performed.

Programmer response: Contact your service
representative.

Symbolic Feedback Code: CEE37R

CEE3324W The STXIT exit is currently established.

Explanation: Condition-management services
determined that the STXIT exit being established is
already established.

System action: No system action is taken.

Programmer response: No programmer response
required.

Symbolic Feedback Code: CEE37S

CEE3301E • CEE3324W

Chapter 8. LE/VSE Run-Time Messages 179

CEE3325W A STXIT exit could not be canceled by
condition-management services.

Explanation: Condition-management services was
called to cancel a STXIT exit, but the STXIT exit could
not be found.

System action: No system action is taken.

Programmer response: No programmer response
required.

Symbolic Feedback Code: CEE37T

CEE3326W No STXIT exit was found to reestablish.

Explanation: Condition-management services was
called to reestablish a previously established STXIT
exit, but no previously established STXIT exit could be
found.

System action: No system action is taken.

Programmer response: No programmer response is
required.

Symbolic Feedback Code: CEE37U

CEE3329S Shunt already established.

Explanation: A call was made to the Establish Shunt
CWI to establish a shunt, but a previously established
shunt has not been reset.

System action: The shunt is not established.

Programmer response: Ensure that the previously
established shunt is reset before establishing a new
shunt.

Symbolic Feedback Code: CEE381

CEE3330S A shunt routine address was not
supplied to CEEHSXT.

Explanation: A call to the CEEHSXT Establish SHUNT
CWI did not pass an address for the shunt routine.

System action: A shunt routine is not established.

Programmer response: Ensure an address for a shunt
routine is passed when calling the CEEHSXT Establish
SHUNT CWI.

Symbolic Feedback Code: CEE382

CEE3331S The shunt routine type parameter was
not AB or PC.

Explanation: A call to the CEEHSXT Establish SHUNT
CWI was made specifying an invalid shunt routine
type.

System action: The shunt routine service was not
performed.

Programmer response: Ensure the shunt routine type

passed to the CEEHSXT establish SHUNT CWI is either
AB or PC.

Symbolic Feedback Code: CEE383

CEE3332S An abnormal termination exit with
OPTION=EARLY is currently
established.

Explanation: A call to the CEEHSXT Establish SHUNT
CWI or condition-management services was made to
establish an abnormal termination exit. The exit could
not be established because an abnormal termination
exit with OPTION=EARLY was found to be established.

System action: No system action is performed.

Programmer response: Contact your systems
programmer to determine the subsystem that has
established the abnormal termination exit with
OPTION=EARLY.

Symbolic Feedback Code: CEE384

CEE3333W A shunt routine was not currently
established.

Explanation: A call to the CEEHRXT Reset SHUNT
CWI was made to disable a shunt routine, but no shunt
routine was established.

System action: No system action is performed.

Programmer response: Ensure there is a shunt routine
established when calling the CEEHRXT Reset SHUNT
CWI.

Symbolic Feedback Code: CEE385

CEE3350S Unable to find the event handler.

Explanation: LE/VSE could not load the event
handler for one of the languages in your application.
The event handlers required by each language are:

C CEEEV003

COBOL
CEEEV005

PL/I CEEEV010

One possible cause for this message is that your
application contains a call to an LE/VSE locale callable
service, but the C run-time component of LE/VSE has
not been installed. LE/VSE locale callable services
require the C run-time component.

System action: Unless the condition is handled, the
default action is to terminate the enclave.

Programmer response: If you are using LE/VSE locale
callable services, check with your systems programmer
to ensure that the C run-time component of LE/VSE
has been installed. Ensure that the partition GETVIS
size is sufficient to run the application. Ensure that the

CEE3325W • CEE3350S

180 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

necessary event handlers are available in one of the
sublibraries in your LIBDEF PHASE search chain, and
run the application again. If this problem persists, there
may be an internal error; contact your service
representative.

Symbolic Feedback Code: CEE38M

CEE3351S Unable to properly initialize the event
handler.

Explanation: An internal error occurred when LE/VSE
attempted to initialize a required member support
phase.

System action: Unless the condition is handled, the
default action is to terminate the enclave.

Programmer response: Ensure that any ILC calls being
made follow the ILC requirements for the languages
involved. For further information, refer to LE/VSE
Writing Interlanguage Communication Applications.

Symbolic Feedback Code: CEE38N

CEE3352E The enclave terminated with a non-zero
return code.

Explanation: An internal error occurred while
attempting to terminate an enclave.

System action: No system action is performed

Programmer response: Contact your service
representative.

Symbolic Feedback Code: CEE38O

CEE3353S The parameter manipulation service was
called, but not during the create enclave
event, or not by a language run-time
component corresponding to the MAIN
program.

Explanation: The parameter manipulation service was
used during enclave initialization by the language in
which the main program was written. It was used in an
illegal manner.

System action: The requested parameter manipulation
is not performed and the main parameter list might not
be correct.

Programmer response: This is an internal problem.
Contact your service representative

Symbolic Feedback Code: CEE38P

CEE3354S The parameter list manipulation service
was called in a CICS environment.

Explanation: The parameter manipulation service was
used during enclave initialization by the language in
which the main program was written. It cannot be used
in a CICS environment.

System action: The requested parameter manipulation
is not performed and the main parameter list might not
be correct.

Programmer response: This is an internal problem.
Contact your service representative

Symbolic Feedback Code: CEE38Q

CEE3355S A language run-time component
initialization has failed.

Explanation: An internal error occurred while
attempting to establish a minimum environment for a
language run-time component.

System action: Unless the condition is handled, the
default action is to terminate the enclave.

Programmer response: This is an internal problem.
Contact your service representative.

Symbolic Feedback Code: CEE38R

CEE3356S The rc_modifier must be in the range of
1 through 4. The return code modifier
was not changed.

Explanation: The rc_modifier was not in the range of
1 through 4. The return code modifier that was first
established by the enclave termination services or by
the condition handling was kept.

System action: Unless the condition is handled, the
default action is to terminate the enclave.

Programmer response: Provide a valid rc_modifier.

Symbolic Feedback Code: CEE38S

CEE3358E The service was invoked outside of the
member enclave initialization. No action
was taken.

Explanation: This CWI service can only be invoked
from within member language enclave initialization.

System action: The service returns, without
performing the function of the service.

Programmer response: Move the use of this service to
within enclave initialization event handling, or,
determine the proper event to be using at the point
where you are trying to invoke this event.

Symbolic Feedback Code: CEE38U

CEE3360S The stack frame was not found on the
call chain.

Explanation: The stack frame parameter passed to the
CEEHSMS CWI did not point to a valid stack frame on
the call chain.

System action: The CEEHSMS CWI returns without
allocating a machine state control block.

CEE3351S • CEE3360S

Chapter 8. LE/VSE Run-Time Messages 181

Programmer response: This is an internal problem.
Contact your service representative.

Symbolic Feedback Code: CEE390

CEE3361W A nested enclave completed with an
unhandled condition of severity two or
greater.

Explanation: If a nested enclave is created explicitly
via a call to the CEEBCRE CWI, and it subsequently
abends or program checks, or it software-signals a
condition of severity two or greater, then condition
token CEE391 was signaled in the creator of the nested
enclave.

System action: If the signal of the CEE391 condition is
not handled, execution continues at the instruction after
the call to the CEEBCRI CWI.

Programmer response: Check condition token CEE391.

Symbolic Feedback Code: CEE391

CEE3362S No main or fetchable procedure or
function was present within the phase.

Explanation: The phase contained neither a main
procedure/function nor a fetchable procedure/function.

System action: The application is terminated.

Programmer response: Correct the phase.

Symbolic Feedback Code: CEE392

CEE3363S A second main procedure or function
was entered without crossing a nested
enclave boundary.

Explanation: A direct call was made to a main
procedure. The program should have been loaded
and/or called using a defined language construct like
system().

System action: The application is terminated.

Programmer response: Correct the phase.

Symbolic Feedback Code: CEE393

CEE3364W The enclave name was truncated by the
enclave naming service during
initialization.

Explanation: The enclave naming service was used by
the language in which the main program is written
during enclave initialization. It was passed a name
longer than 32 characters.

System action: The truncated name is used as the
enclave name.

Programmer response: This is an internal problem.
Contact your service representative.

Symbolic Feedback Code: CEE394

CEE3365S The enclave naming service was called,
but not during enclave initialization, or
not by a language run-time component
corresponding to the MAIN program.

Explanation: The enclave naming service was used by
the language in which the main program was written
during enclave initialization. It was used in an illegal
manner.

System action: The enclave name is not set.

Programmer response: This is an internal problem.
Contact your service representative

Symbolic Feedback Code: CEE395

CEE3370W The program invocation name could not
be found, and the returned name was
blank.

Explanation: CEEBGIN could not determine the name
under which the program was invoked.

System action: No system action is performed.

Programmer response: No response is required.

Symbolic Feedback Code: CEE39A

CEE3380W The target phase was not recognized by
Language Environment.

Explanation: The language list could not be returned
because the target phase was not recognized. A value
of zero was returned.

System action: No system action is performed.

Programmer response: No response is required.

Symbolic Feedback Code: CEE39K

CEE3400W The condition name was not recognized
and the value of the condition token
was undefined.

Explanation: CEEQFBC was passed in a condition
name that could not be translated into a corresponding
LE/VSE condition token.

System action: No system action is taken.

Programmer response: No programmer action is
required.

Symbolic Feedback Code: CEE3A8

CEE3401W The condition token was not recognized
and the value of the condition name
was undefined.

Explanation: CEEBFBC was passed a condition token
that was not able to be translated into a corresponding
condition name.

System action: No system action is taken.

CEE3361W • CEE3401W

182 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Programmer response: No programmer action is
required.

Symbolic Feedback Code: CEE3A9

CEE3402E The condition token passed was invalid
and the value of the condition name
was undefined.

Explanation: CEEBFBC was passed a condition token
that was determined to be invalid and could not be
translated into a corresponding condition name.

System action: No system action is taken.

Programmer response: No programmer action is
required.

Symbolic Feedback Code: CEE3AA

CEE3420W The offset from UTC/GMT to local time
was set to zero.

Explanation: The DATE job control statement was
used to override the system date. When you use the
DATE job control statement to override the system
date, LE/VSE sets UTC/GMT to local time, and sets
the offset from UTC/GMT to local time to zero.

System action: The offset from UTC/GMT is set to
zero.

Programmer response: If your application requires an
accurate offset from UTC/GMT to local time, remove
the DATE job control statement from your JCL.

Symbolic Feedback Code: CEE3AS

CEE3421W The local time was calculated using a
date supplied in the JCL.

Explanation: The DATE job control statement was
used to override the system date. When you use the
DATE job control statement to override the system
date, LE/VSE calculates local time using the date
specified in the DATE job control statement. However,
VSE does not increment the specified date at midnight.
Therefore, if your job runs past midnight, the local time
returned by LE/VSE might not be what you expect.

System action: Local time is calculated using the
specified date.

Programmer response: If your application requires an
accurate local time, or if your job might run past
midnight, remove the DATE job control statement from
your JCL.

Symbolic Feedback Code: CEE3AT

CEE3422W GMT was set to local time.

Explanation: The DATE job control statement was
used to override the system date. When you use the
DATE job control statement to override the system
date, LE/VSE sets GMT to local time.

System action: GMT is set to local time.

Programmer response: If your application requires an
accurate GMT, remove the DATE job control statement
from your JCL.

Symbolic Feedback Code: CEE3AU

CEE3423S Non-numeric data was detected in the
year field of the date supplied in the
JCL.

Explanation: A non-numeric year value was specified
on the DATE job control statement. The century
window could not be initialized.

System action: The first year of the century window is
set to zero.

Programmer response: Correct the date supplied on
the DATE job control statement.

Symbolic Feedback Code: CEE3AV

CEE3424S CEE5SMO was called from outside a
user-written condition handler.

Explanation: CEE5SMO can only be called from
within a user-written condition handler

System action: The application is terminated.

Programmer response: Only code calls to CEE5SMO
from within user-written condition handlers.

Symbolic Feedback Code: CEE3B0

CEE3425S Severity 0 or 1 condition was signaled
with CEESGLN.

Explanation: The caller of CEESGLN signaled a
severity 0 or 1 condition; however, resumption is never
allowed for a condition signaled from CEESGLN.

System action: The condition is changed to CEE3B1
and, if unhandled, the enclave is terminated.

Programmer response: Do not signal severity 0 and 1
conditions from CEESGLN. Use CEESGL when
signaling a severity 0 and 1 conditions.

Symbolic Feedback Code: CEE3B1

CEE3426S There was an invalid request to fix-up
and resume a condition.

Explanation: There was a request to fix-up and
resume from a user-written condition handler and
either (1) the resume cursor was moved, or (2) the

CEE3402E • CEE3426S

Chapter 8. LE/VSE Run-Time Messages 183

condition was signaled from CEESGLN or from
CEESGL without a feedback code. The resume cursor
can not be moved by a user-written condition handler
if fix-up and resume behavior is desired. Conditions
signaled from CEESGLN or from CEESGL without a
feedback code can not be resumed without moving the
resume cursor. The original condition is indicated in
the next message in the message file.

System action: The condition is promoted to CEE3B2
and, if unhandled, the enclave is terminated.

Programmer response: A user-written condition
handler must move the resume cursor and return a
result code of 10 (Resume) in order to resume a
condition signaled by CEESGLN or by CEESGL
without a feedback code.

Symbolic Feedback Code: CEE3B2

CEE3427S A user-written condition handler
promoted a condition signaled by
CEESGLN to severity 0 or 1.

Explanation: The condition handling mechanism
allows condition handlers to promote the condition
they were entered to handle to new conditions. If a
severity 2 or above condition signaled by CEESGLN
was promoted to a 0 or 1 condition, the purpose of
CEESGLN would be violated - programs can never
resume following a call to CEESGLN. (LE/VSE allows
severity 0 or 1 conditions to resume). Note that the
original condition is indicated in the next message in
the message file.

System action: The condition is promoted to CEE3B3
and if unhandled the enclave is terminated.

Programmer response: User-written condition
handlers must not promote conditions that are not
allowed to resume to severity 0 or 1.

Symbolic Feedback Code: CEE3B3

CEE3428S Condition signaled by CEESGLN is not
enabled by a language run-time
component.

Explanation: Some conditions are disabled by a
language run-time component. For example Fixed Point
Overflow conditions in COBOL are ignored and the
application is resumed. Such a condition must not be
signaled by CEESGLN. Note that the original condition
is indicated in the next message in the message file.

System action: The condition is promoted to CEE3B4
and if unhandled the enclave is terminated.

Programmer response: Do not use CEESGLN to signal
a condition from a language that does not enable the
condition.

Symbolic Feedback Code: CEE3B4

CEE3429S Move resume cursor relative is not
permitted in a user-written condition
handler registered with the USRHDLR
run-time option.

Explanation: You can register a user-written condition
handler at stack frame 0 with the USRHDLR run-time
option. The move resume cursor relative (CEEMRCR)
service was not permitted at stack frame 0.

System action: Unless the condition is handled, the
default action is to terminate the enclave.

Programmer response: Remove all references to
CEEMRCR in any user-written condition handler
registered with the USRHDLR run-time option.

Symbolic Feedback Code: CEE3B5

CEE3449S An internal message services error
occurred during termination.

Explanation: A message service was called to perform
a service during termination, but the service could not
be completed because certain resources were no longer
available.

System action: Unless the condition is handled, the
default action is to terminate the enclave.

Programmer response: Contact your service
representative.

Symbolic Feedback Code: CEE3BP

CEE3450E Only one language was on the stack
when a POP request was made to
CEE5LNG. The current language was
returned in the desired language
parameter.

Explanation: CEE5LNG cannot POP since the
resulting stack will be empty.

System action: The current language is returned in the
desired_language parameter and the stack remains
unchanged.

Programmer response: No programmer action is
required.

Symbolic Feedback Code: CEE3BQ

CEE3451S The desired language desired-language for
the PUSH or SET function for
CEE5LNG was invalid. No operation
was performed.

Explanation: The desired_language parameter was not
a valid 3-character national language id.

System action: Unless the condition is handled, the
default action is to terminate the enclave.

Programmer response: Provide a valid
desired_language parameter. A list of the valid national

CEE3427S • CEE3451S

184 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

languages is provided in LE/VSE Programming Reference.

Symbolic Feedback Code: CEE3BR

CEE3452S The function function specified for
CEE5LNG was not recognized. No
operation was performed.

Explanation: The function parameter must be a
fullword binary 1, 2, 3 or 4.

System action: Unless the condition is handled, the
default action is to terminate the enclave.

Programmer response: Provide a fullword binary 1, 2,
3 or 4 in the function parameter.

Symbolic Feedback Code: CEE3BS

CEE3454S The function requested in CEE5LNG
failed because at least one of the
high-level languages did not accept the
change from the function.

Explanation: An internal error prevented the
requested change from being made.

System action: Unless the condition is handled, the
default action is to terminate the enclave.

Programmer response: Contact your service
representative.

Symbolic Feedback Code: CEE3BU

CEE3455E Only one country code was on the stack
when a POP request was made to
CEE5CTY. The current country code was
returned in the country code parameter.

Explanation: CEE5CTY cannot POP since the resulting
stack will be empty.

System action: The current country code is returned
in the country code parameter and the stack remains
unchanged.

Programmer response: No programmer action is
required.

Symbolic Feedback Code: CEE3BV

CEE3456S The country code country-code for the
PUSH or SET function for CEE5CTY
was invalid. No operation was
performed.

Explanation: The country code parameter was not a
valid 2-character country code.

System action: Unless the condition is handled, the
default action is to terminate the enclave.

Programmer response: Provide a valid country code
parameter. A list of the valid country codes is provided
in LE/VSE Programming Reference.

Symbolic Feedback Code: CEE3C0

CEE3457S The function function specified for
CEE5CTY was not recognized. No
operation was performed.

Explanation: The function parameter must be a
fullword binary 1, 2, 3 or 4.

System action: Unless the condition is handled, the
default action is to terminate the enclave.

Programmer response: Provide a fullword binary 1, 2,
3 or 4 in the function parameter.

Symbolic Feedback Code: CEE3C1

CEE3458E The country code country_code was
invalid for CEE5MC2. The default
currency symbol currency_symbol was
returned. No international currency
symbol was returned.

Explanation: The country_code parameter was not a
valid 2-character country code. The default currency
symbol was returned. No international currency symbol
was returned.

System action: The default currency symbol is
returned. No international currency symbol is returned.

Programmer response: Provide a valid country_code
parameter.

Symbolic Feedback Code: CEE3C2

CEE3459S The function requested in CEE5CTY
failed because at least one of the
high-level languages did not accept the
change from the function.

Explanation: The function requested failed because
one of the high-level languages did not accept the
change.

System action: Unless the condition is handled, the
default action is to terminate the enclave.

Programmer response: An internal error prevented
the requested change from being made. Contact your
service representative.

Symbolic Feedback Code: CEE3C3

CEE3460E The decimal separator ' decimal-separator '
was truncated and was not defined in
CEE5MDS.

Explanation: The decimal separator parameter must
be a 2-character field. The resulting decimal separator
might not be valid. The decimal separator is left
justified and padded on the right with a blank if
necessary.

System action: The decimal separator is truncated and

CEE3452S • CEE3460E

Chapter 8. LE/VSE Run-Time Messages 185

placed into the given parameter.

Programmer response: Provide a 2-character decimal
separator parameter.

Symbolic Feedback Code: CEE3C4

CEE3461E The country code country-code was
invalid for CEE5MDS. The default
decimal separator ' decimal-separator ' was
returned.

Explanation: The country code parameter was not a
valid 2-character country code. The default decimal
separator is returned.

System action: The default decimal separator is
returned.

Programmer response: Provide a valid country_code
parameter. A list of the valid country codes is provided
in LE/VSE Programming Reference.

Symbolic Feedback Code: CEE3C5

CEE3462E The currency symbol ' currency-symbol '
was truncated and was not defined in
CEE5MCS.

Explanation: The currency symbol parameter must be
a 2-character field. The resulting currency symbol may
not be valid. The currency symbol is left justified and
padded on the right with a blank if necessary.

System action: The currency symbol is truncated and
placed into the given parameter.

Programmer response: Provide a 2-character currency
symbol parameter.

Symbolic Feedback Code: CEE3C6

CEE3463E The country code country-code was
invalid for CEE5MCS. The default
currency symbol ' currency-symbol ' was
returned.

Explanation: The country code parameter was not a
valid 2-character country code. The default currency
symbol is returned.

System action: The default currency symbol is
returned.

Programmer response: Provide a valid country code
parameter. A list of the valid country codes is provided
in LE/VSE Programming Reference.

Symbolic Feedback Code: CEE3C7

CEE3464E The thousands separator '
thousands-separator ' was truncated and
was not defined in CEE5MTS.

Explanation: The thousands separator parameter must
be a 2-character field. The resulting thousands

separator might not be valid. The thousands separator
is left justified and padded on the right with a blank if
necessary.

System action: The thousands separator is truncated
and placed into the given parameter.

Programmer response: Provide a 2-character
thousands separator parameter.

Symbolic Feedback Code: CEE3C8

CEE3465E The country code country-code was
invalid for CEE5MTS. The default
thousands separator ' thousands-separator '
was returned.

Explanation: The country code parameter was not a
valid 2-character country code. The default thousands
separator is returned.

System action: The default thousands separator is
returned.

Programmer response: Provide a valid country code
parameter. A list of the valid country codes is provided
in LE/VSE Programming Reference.

Symbolic Feedback Code: CEE3C9

CEE3466E The date picture string date-pic-string
was truncated and was not defined in
CEEFMDA.

Explanation: The date-pic-string parameter must be an
80-character field. The resulting date-pic-string may not
be valid. The date-pic-string is left justified and padded
on the right with a blank if necessary.

System action: The date-pic-string is truncated and
placed into the given parameter.

Programmer response: Provide an 80-character
date-pic-string parameter.

Symbolic Feedback Code: CEE3CA

CEE3467E The country code country-code was
invalid for CEEFMDA. The default date
picture string date-pic-string was
returned.

Explanation: The country-code parameter was not a
valid 2 character country code. The default date picture
string is returned.

System action: The default date picture string is
returned.

Programmer response: Provide a valid country code
parameter. A list of the valid country codes is provided
in LE/VSE Programming Reference.

Symbolic Feedback Code: CEE3CB

CEE3461E • CEE3467E

186 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

CEE3468E The time picture string time-pic-string
was truncated and was not defined in
CEEFMTM.

Explanation: The time-pic-string parameter must be an
80-character field. The resulting time-pic-string might
not be valid. The time-pic-string is left justified and
padded on the right with a blank if necessary.

System action: The time-pic-string is truncated and
placed into the given parameter.

Programmer response: Provide an 80-character
time-pic-string parameter.

Symbolic Feedback Code: CEE3CC

CEE3469E The country code country-code was
invalid for CEEFMTM. The default time
picture string time-pic-string was
returned.

Explanation: The country-code parameter was not a
valid 2-character country code. The default time picture
string is returned.

System action: The default time picture string is
returned.

Programmer response: Provide a valid country code
parameter. A list of the valid country codes is provided
in LE/VSE Programming Reference.

Symbolic Feedback Code: CEE3CD

CEE3470E The date and time string datetime-string
was truncated and was not defined in
CEEFMDT.

Explanation: The datetime-string parameter must be an
80-character field. The resulting datetime-string might
not be valid. The datetime-string was left-justified and
padded on the right with a blank if necessary.

System action: The datetime-string is truncated and
placed into the given parameter.

Programmer response: Provide an 80-character
datetime-string parameter.

Symbolic Feedback Code: CEE3CE

CEE3471E The country code country-code was
invalid for CEEFMDT. The default date
and time picture string datetime-string
was returned.

Explanation: The country-code parameter was not a
valid 2-character country code. The default datetime
string was returned.

System action: The default datetime string is returned.

Programmer response: Provide a valid country code
parameter. A list of the valid country codes is provided
in the LE/VSE Programming Reference.

Symbolic Feedback Code: CEE3CF

CEE3472S An internal message services error
occurred while getting storage for the
message inserts.

Explanation: Insufficient heap storage was available to
complete message services.

System action: No message insert area is created.

Programmer response: If possible, free unneeded heap
storage or contact your service representative.

Symbolic Feedback Code: CEE3CG

CEE3473S An internal message services error
occurred while processing the inserts for
this message.

Explanation: Corrupted storage was encountered
when attempting to initialize a message insert block.

System action: Unless the condition is handled, the
default action is to terminate the enclave.

Programmer response: Contact your service
representative.

Symbolic Feedback Code: CEE3CH

CEE3475S An internal message services error
occurred while freeing the insert area.

Explanation: Corrupted storage was encountered
when attempting to free a message insert block.

System action: Unless the condition is handled, the
default action is to terminate the enclave.

Programmer response: Contact your service
representative.

Symbolic Feedback Code: CEE3CJ

CEE3476S An internal message services error
occurred while freeing storage for the
message inserts.

Explanation: Message services detected a heap storage
freeing failure.

System action: Unless the condition is handled, the
default action is to terminate the enclave.

Programmer response: Contact your service
representative.

Symbolic Feedback Code: CEE3CK

CEE3480S An internal message services error
occurred while processing the inserts for
a message.

Explanation: Message services detected an insert error
while formatting a message.

CEE3468E • CEE3480S

Chapter 8. LE/VSE Run-Time Messages 187

System action: Unless the condition is handled, the
default action is to terminate the enclave.

Programmer response: Contact your service
representative.

Symbolic Feedback Code: CEE3CO

CEE3481S An internal message services error
occurred while processing the inserts for
a message.

Explanation: Corrupted storage was encountered
when attempting to process a message insert block.

System action: Unless the condition is handled, the
default action is to terminate the enclave.

Programmer response: Contact your service
representative.

Symbolic Feedback Code: CEE3CP

CEE3482S An internal message services error
occurred while processing the inserts for
a message.

Explanation: An invalid insert was encountered when
attempting to process a message insert block.

System action: Unless the condition is handled, the
default action is to terminate the enclave.

Programmer response: Contact your service
representative.

Symbolic Feedback Code: CEE3CQ

CEE3485S An internal message services error
occurred while locating the message
number within a message file.

Explanation: The message library for the given
message number was located and loaded, but the
message number could not be found within the library.

System action: The given message library is loaded,
but no other action is performed.

Programmer response: Contact your service
representative.

Symbolic Feedback Code: CEE3CT

CEE3486S An internal message services error
occurred while formatting a message.

Explanation: Corrupted storage was encountered
when attempting to process a message insert block.

System action: Unless the condition is handled, the
default action is to terminate the enclave.

Programmer response: Contact your service
representative.

Symbolic Feedback Code: CEE3CU

CEE3487S An internal message services error
occurred while locating a message
number within the ranges specified in
the repository.

Explanation: The message number could not be found
within the ranges in the message_library_table.

System action: Unless the condition is handled, the
default action is to terminate the enclave.

Programmer response: Contact your service
representative.

Symbolic Feedback Code: CEE3CV

CEE3488S An internal message services error
occurred while formatting a message.

Explanation: An invalid internal message buffer
length was detected while formatting a message.

System action: Unless the condition is handled, the
default action is to terminate the enclave.

Programmer response: Contact your service
representative.

Symbolic Feedback Code: CEE3D0

CEE3489S An internal message services error
occurred while getting storage necessary
to format a message.

Explanation: No heap storage was available to get
storage needed to complete the formatting of a
message.

System action: Unless the condition is handled, the
default action is to terminate the enclave.

Programmer response: If possible, free unneeded heap
storage or contact your service representative.

Symbolic Feedback Code: CEE3D1

CEE3490S An internal message services error
occurred while attempting to write a
message.

Explanation: The given filename or destination is not
valid or is not available.

System action: The message is not written.

Programmer response: Contact your service
representative.

Symbolic Feedback Code: CEE3D2

CEE3491S An internal message services error
occurred while getting storage.

Explanation: No heap storage was available to get
storage needed to write out a message.

System action: The message is not written.

CEE3481S • CEE3491S

188 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Programmer response: If possible, free unneeded heap
storage or contact your service representative.

Symbolic Feedback Code: CEE3D3

CEE3492S An internal message services error
occurred while attempting to write a
message.

Explanation: An I/O error was detected while trying
to OPEN, WRITE, or CLOSE a given filename or
destination.

System action: The enclave is terminated.

Programmer response:
v If the error occurs under CICS, check that CESE is

not full and is available.
v If the error occurs in BATCH with

TERMTHDACT(,,MSGFL,) set, ensure SYSLST is
available.

v If a CEEDUMP DLBL has been specified, ensure that
the file is available and not full.

v When TERMTHDACT(,,LSTQ,) is set in BATCH,
ensure that there is sufficient free space available in
the VSE/POWER data files and queue files, to
receive the required dump output. Also check that
VSE/POWER is active and able to accept spool
requests from external sources.

v For further diagnosis information when
TERMTHDACT(,,LSTQ,) is set, refer to the associated
CEEL011S message that is issued to the VSE operator
console.

Symbolic Feedback Code: CEE3D4

CEE3493W An internal message services error
occurred while attempting to close the
message file.

Explanation: LE/VSE could not close the specified
filename, because either LE/VSE did not own it, or the
file was not currently open.

System action: No system action is performed.

Programmer response: Contact your service
representative.

Symbolic Feedback Code: CEE3D5

CEE3494S An internal message services error
occurred while attempting to close the
message file.

Explanation: An error was detected while trying to
CLOSE the given filename.

System action: Unless the condition is handled, the
default action is to terminate the enclave.

Programmer response: Contact your service
representative.

Symbolic Feedback Code: CEE3D6

CEE3495S An internal message services error
occurred while formatting a message.

Explanation: An error preventing the completion of
message formatting was detected.

System action: Unless the condition is handled, the
default action is to terminate the enclave.

Programmer response: Contact your service
representative.

Symbolic Feedback Code: CEE3D7

CEE3496I An internal message services error
occurred while formatting a message.

Explanation: An internal error was detected while
locating the inserts for a message.

System action: No system action is performed.

Programmer response: Contact your service
representative.

Symbolic Feedback Code: CEE3D8

CEE3497E The message file was discovered to have
an insufficient LRECL of too-small.

Explanation: The message file cannot have an LRECL
less than 14. This is to allow for the message number
and 4 characters of text per line.

System action: The message file LRECL is forced to
the default LRECL value.

Programmer response: Specify an LRECL of 14 or
greater.

Symbolic Feedback Code: CEE3D9

CEE3498I The message file was already open.

Explanation: A request to open the message file via
CEEOPMF could not be completed because it was
already open.

System action: No system action is taken.

Programmer response: No programmer response is
necessary.

Symbolic Feedback Code: CEE3DA

CEE3499E The message file was unable to be
opened.

Explanation: A request to open the message file via
CEEOPMF could not be completed.

System action: No system action is taken.

Programmer response: Ensure that the filename used
for the message file is a valid name, and the file is
usable.

Symbolic Feedback Code: CEE3DB

CEE3492S • CEE3499E

Chapter 8. LE/VSE Run-Time Messages 189

CEE3500S Not enough storage was available to
load phase-name.

Explanation: Not enough storage was available to
load the requested phase into virtual memory.

System action: Phase is not loaded. The application
might abend.

Programmer response: Ensure that the partition
GETVIS size is sufficient to run the application. If
necessary, delete phases not currently needed by the
application or free unused storage and retry the load
request.

Symbolic Feedback Code: CEE3DC

CEE3501S The phase phase-name was not found.

Explanation: The system could not find the phase,
whose name was specified on the parameter list to the
LE/VSE load service, in any of the sublibraries in the
sublibrary search chain, or in the SVA.

System action: Phase is not loaded. The application
might abend.

Programmer response: Make sure the requested
program name is correct, and that the requested phase
is available in one of the sublibraries in the sublibrary
search chain, or in the SVA. Correct the error, and
execute the job again.

Symbolic Feedback Code: CEE3DD

CEE3502S The phase name phase-name was too
long.

Explanation: The phase name length is greater than
the name length supported by the underlying operating
system.

System action: Name length is truncated to the name
length supported by the underlying operating system.
The requested phase might or might not be loaded.

Programmer response: Correct the phase name length
and execute the job again.

Symbolic Feedback Code: CEE3DE

CEE3503S The load request for phase phase-name
was unsuccessful.

Explanation: The system could not load the phase.

System action: Phase was not loaded. The application
might abend.

Programmer response: Make sure the requested
program name is correct, and that the requested phase
is available in one of the sublibraries in the sublibrary
search chain, or in the SVA. Check that the requested
phase is not a move-mode phase.

Symbolic Feedback Code: CEE3DF

CEE3504S The delete request for phase phase-name
was unsuccessful.

Explanation: The phase might already have been
deleted, was never loaded, or exceeded the maximum
load count.

System action: None.

System action: Unless the condition is handled, the
default action is to terminate the enclave.

Programmer response: Make sure the requested phase
name is correct.

Symbolic Feedback Code: CEE3DG

CEE3505S The library vector table (LIBVEC)
descriptor phase phase-name could not be
loaded.

Explanation: During LIBVEC initialization the library
vector table descriptor phase could not be found.

System action: LIBVEC initialization is not performed.

Programmer response: Make sure you passed the
name of the library vector table descriptor rather than
the entry address. Make sure the name was not
incorrectly modified and that the phase is available in
one of the sublibraries in the sublibrary search chain, or
in the SVA.

Symbolic Feedback Code: CEE3DH

CEE3506S The library packaged subroutine phase
phase-name could not be loaded.

Explanation: The system could not find the phase,
whose name was specified in the library vector table
(LIBVEC) descriptor phase, in any of the sublibraries in
the sublibrary search chain, or in the SVA.

System action: Phase is not loaded and LIBVEC
initialization is not performed.

Programmer response: Make sure the requested
program name is correct, and that the requested phase
is available in one the sublibraries in the sublibrary
search chain, or in the SVA. Correct the error, and
execute the job again.

Symbolic Feedback Code: CEE3DI

CEE3507S Not enough storage was available for
the library vector table (LIBVEC)
table-name.

Explanation: Insufficient storage was available to
build the library vector table (LIBVEC).

System action: No storage is allocated for the LIBVEC.
LIBVEC initialization did not complete.

Programmer response: If necessary, free available
storage and retry LIBVEC initialization.

CEE3500S • CEE3507S

190 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Symbolic Feedback Code: CEE3DJ

CEE3508S The number of library packaged
subroutines specified in the descriptor
module phase-name exceeded the
maximum of 256 library packages. No
library packages were loaded.

Explanation: The maximum number of library
packages supported is 256.

System action: LIBVEC initialization did not complete.

Programmer response: Repackage the library routines
so that the number of library packages does not exceed
the maximum supported.

Symbolic Feedback Code: CEE3DK

CEE3509S The number of library vector slots
specified in the descriptor module
phase-name either exceeded 1024 or was
less than 1.

Explanation: A minimum of 1 library routine entry
name is required to build the library vector table. A
maximum of 1024 library routines entry names is
allowed in a library vector table.

System action: LIBVEC initialization did not complete.

Programmer response: If library vector slots exceed
the maximum, then you may have to build more than
one library vector table.

Symbolic Feedback Code: CEE3DL

CEE3510S The module module-name is a member of
the library packaged subroutine
module-name and could not be deleted.

Explanation: Library package subroutines are not
allowed to be deleted.

System action: Module not deleted.

Programmer response: Correct your program so that
it does not request a library package subroutine be
deleted.

Symbolic Feedback Code: CEE3DM

CEE3511S The function code function-code was
invalid.

Explanation: Valid functions codes for the verify
library vector subroutine are delete and load.

System action: Unless the condition is handled, the
default action is to terminate the enclave.

Programmer response: Make sure the function code
passed to the verify library vector subroutine is
delete/load. Correct the program and execute job step
again.

Symbolic Feedback Code: CEE3DN

CEE3513S The library vector table (LIBVEC)
table-name could not be terminated.

Explanation: LIBVEC termination failed due to an
inability to delete library subroutines or free the storage
obtained for the library vector table.

System action: LIBVEC termination did not complete.

Programmer response: Contact your service
representative.

Symbolic Feedback Code: CEE3DP

CEE3514C An internal error, Unknown Operating
System, was detected.

Explanation: The underlying operating system is
unsupported in the LE/VSE environment.

System action: LE/VSE terminates the application.

Programmer response: LE/VSE will run under the
control of, or in conjunction with, the following
operating systems/subsystems: z/VSE and CICS
Transaction Server for z/VSE.

Symbolic Feedback Code: CEE3DQ

CEE3515I No phases were loaded.

Explanation: No application phases have been loaded
via LE/VSE load service in the current application.

System action: No system action is taken.

Programmer response: No programmer response is
necessary.

Symbolic Feedback Code: CEE3DR

CEE3519S The version specified in the CEEFTCH
control block passed to the CEEFETCH
macro is not supported.

Explanation: The version of the CEEFTCH control
block used with the CEEFETCH macro is not
supported.

System action: Unless the condition is handled, the
default action is to terminate the enclave.

Operator response: None.

Programmer response: For the supported versions of
the CEEFTCH control block, refer to the CEEFTCH
section in the LE/VSE Programming Guide.

Symbolic Feedback Code: CEE3DV

CEE3508S • CEE3519S

Chapter 8. LE/VSE Run-Time Messages 191

CEE3520C The token passed to the CEERELES
macro was invalid.

Explanation: The token passed to the CEERELES
macro was not the one that was returned from the
CEEFETCH macro.

System action: Unless the condition is handled, the
default system action is to terminate the enclave.

Programmer response: Ensure CEEFETCH returned
successfully, and the returned token is the same as the
one passed to the CEERELES macro. (For details of the
CEEFETCH and CEERELES macros, refer to the LE/VSE
Programming Reference).

Symbolic Feedback Code: CEE3E0

CEE3550I LE/VSE C/VSE Run-Time Initialized.

Explanation: During LE/VSE initialization under
CICS, LE/VSE has successfully initialized the C for
VSE/ESA Run-Time Environment.

System action: Initialization Continues.

Programmer response: None.

Symbolic Feedback Code: None.

CEE3551I LE/VSE COBOL Run-Time Initialized.

Explanation: During LE/VSE initialization under
CICS, LE/VSE has successfully initialized the COBOL
Run-Time Environment.

System action: Initialization Continues.

Programmer response: None.

Symbolic Feedback Code: None.

CEE3552I LE/VSE PL/1 Run-Time Initialized.

Explanation: During LE/VSE initialization under
CICS, LE/VSE has successfully initialized the PL/1 for
VSE/ESA Run-Time Environment.

System action: Initialization Continues.

Programmer response: None.

Symbolic Feedback Code: None.

CEE3553I CICS Options Newcopy Started.

Explanation: The CICS session operator has started
the CICS-wide installation default runtime options
newcopy facility.

System action: Activation of the new CICS-wide
options begins.

Programmer response: None.

Symbolic Feedback Code: None.

CEE3554I CICS Options Newcopy Complete.

Explanation: The newcopy facility has finished
activating the new CICS-wide default runtime options.

System action: Activation of the new CICS-wide
options has completed sucessfully.

Programmer response: None.

Symbolic Feedback Code: None.

CEE3555E CICS Options Newcopy Failed.

Explanation: The newcopy facility has failed while
trying to activate the CICS-wide default runtime
options. These are the return codes and reason codes
you can receive, and their explanations:

Return Code 08
Reason Code 3 – NOSTG returned from CICS
during GETMAIN request. All other reason
codes – report to your Systems Programmer or
IBM Support Center.

Return Code 12
Reason Code 2 – PGMIDERR returned from
CICS during LOAD request on CEECOPT.
Reason Code 3 – NOTAUTH returned from
CICS during LOAD request on CEECOPT. All
other reason codes – report to your Systems
Programmer or IBM Support Center.

Return Code 16
Reason Code 2 – PGMIDERR returned from
CICS during RELEASE of CEECOPT. Reason
Code 3 – NOTAUTH returned from CICS
during RELEASE of CEECOPT. All other reason
codes – report to your Systems Programmer or
IBM Support Center.

Return Code 20
Reason Code 2 – PGMIDERR returned from
CICS during NEWCOPY request for
CEECOPT. Reason Code 3 – NOTAUTH
returned from CICS during NEWCOPY
request for CEECOPT. All other reason codes –
report to your Systems Programmer or IBM
Support Center.

System action: Activation of new CICS options is
aborted. Previous CICS-wide default runtime options
remain in effect.

Programmer response: Review CICS output log
(MSGFILE destination) for error information:

v For reason code 2, check that CEECOPT has been
defined to the CICS system by either the PPT or CSD
definitions.

v For reason code 3 with RC=08, check that sufficient
CICS TS EDSA storage is available.

v For reason code 3 with RC=20,16 or 12, check that
the correct authority has been granted to the NEWC

CEE3520C • CEE3555E

192 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

transaction, and that the CICS user has sufficent
authority to request the newcopy function.

v For any return or reason codes not listed above,
please report the failure with details from the CICS
output log, to your Systems Programmer or IBM
Support centre.

Symbolic Feedback Code: None.

CEE3556W Use of TD Queue queue has failed due
to a resp. Switching to CESE for this
Enclave.

Explanation: The transient data queue specified in the
active MSGFILE run time option experienced a failure
when LE/VSE attempted to write messages to it.

System action: LE/VSE automatically switches to the
CESE transient data queue and continues processing
the message request. All subsequent messages for this
enclave will be directed to the CESE transient data
queue, irrespective of the MSGFILE setting.

Programmer response: The field resp indicates the
response code returned from CICS when LE/VSE
issued the EXEC CICS WRITE command. Refer to the
CICS Application Programming Guide for an explanation
of the resp code.

Correct the MSGFILE run-time option so that it
specifies a transient data queue that has been defined
correctly, and that is available for LE/VSE to use.

Symbolic Feedback Code: None.

CEE3557W Write to LSTQ has failed. Dump
production aborted for this process.

Explanation: A failure has occurred while attempting
to output an LE/VSE dump to the LSTQ destination.
For further information, refer to message CEEL011S
displayed on the VSE operators console.

System action: The application terminates and the
dump is lost.

Programmer response: For error diagnosis
information, refer to message CEEL011S.

Symbolic Feedback Code: None.

CEE3558I LE/VSE LSTQ Support Unavailable.

Explanation: When LE/VSE attempted to establish the
resources required for the LSTQ dump output support,
one or more of these resources either failed or could
not be obtained.

System action: LE/VSE execution continues but with
LSTQ support disabled.

Programmer response: Check that:
1. Module CEELEDT is available to the CICS system,

or CEEBLEDT is available in BATCH.

2. The security settings for loading the appropriate
module are set correctly.

3. A CEELOPT macro has been included in the
generated run-time options module.

4. The included CEELOPT macro describes valid
LSTQ options that are supported by VSE/POWER.

Symbolic Feedback Code: None.

CEE3559W Closing of dump on LSTQ has failed.
Dump produced has been lost for this
transaction.

Explanation: An unrecoverable error occurred during
the closing of the dump output destined for the LSTQ.

System action: The dump produced is lost. LSTQ
processing for this transaction is terminated. Any
subsequent dumps produced will be sent to the
destination specified in the MSGFILE run-time option.

Operator response: A CICS restart will be required to
restore LSTQ dump support.

Programmer response: Review the CICS console log
for any further error messages that may assist in
explaining the reason for the error.

Symbolic Feedback Code: None.

CEE3601I The string ' string ' was found where a
delimiter was expected following a
quoted suboption for the run-time
option option.

Explanation: A quoted suboption must be followed by
a comma, a right parenthesis, or a space.

System action: The characters following suboption up
to the next comma, space, or parenthesis are ignored.

Programmer response: Correct the run-time options
string.

Symbolic Feedback Code: CEE3GH

CEE3602I An end quote delimiter did not occur
before the end of the run-time option
string.

Explanation: Quotes, either single or double, must be
in pairs.

System action: The end quote is assumed.

Programmer response: Correct the run-time options
string.

Symbolic Feedback Code: CEE3GI

CEE3603I The character ' character ' is not a valid
run-time option delimiter.

Explanation: Options must be separated by either a
space or a comma.

CEE3556W • CEE3603I

Chapter 8. LE/VSE Run-Time Messages 193

System action: character is ignored.

Programmer response: Correct the run-time options
string.

Symbolic Feedback Code: CEE3GJ

CEE3604I The character ' character ' is not a valid
suboption delimiter for run-time
options.

Explanation: Suboptions must be separated by a
comma.

System action: The separator is assumed to be a
comma.

Programmer response: Correct the run-time options
string.

Symbolic Feedback Code: CEE3GK

CEE3605I The string ' string ' was found where a
delimiter was expected following the
suboptions for the run-time option
option.

Explanation: Suboptions that are enclosed within
parentheses must be followed by either a space or a
comma.

System action: The characters following the right
parenthesis up to the next comma or space are ignored.

Programmer response: Correct the run-time options
string.

Symbolic Feedback Code: CEE3GL

CEE3606I The string ' string ' was too long and
was ignored.

Explanation: The maximum string length for an
option or suboption was exceeded.

System action: string is ignored.

Programmer response: Correct the run-time options
string.

Symbolic Feedback Code: CEE3GM

CEE3607I The end of the suboption string did not
contain a right parenthesis.

Explanation: A left parenthesis did not have a
matching right parenthesis.

System action: The right parenthesis is assumed.

Programmer response: Correct the run-time options
string.

Symbolic Feedback Code: CEE3GN

CEE3608I The following messages pertain to the
invocation command run-time options.

Explanation: The messages after this one up to the
next message of this type with a different source,
pertain to the invocation command.

System action: No system action is performed.

Programmer response: No programmer response is
required.

Symbolic Feedback Code: CEE3GO

CEE3609I The run-time option option is not
supported.

Explanation: option is an option from a previous
release that is not supported or mapped by LE/VSE.

System action: option is ignored.

Programmer response: Consult the appropriate
migration guide for a list of options supported for the
language. Correct the run-time options string.

Symbolic Feedback Code: CEE3GP

CEE3610I The run-time option old-option was
mapped to the run-time option le-option.

Explanation: old-option is an option from a previous
release that is supported by LE/VSE for compatibility.

System action: old-option is mapped to le-option.

Programmer response: Consult the appropriate
migration guide for a list of options supported for the
language. Change the run-time options string to use the
le-option instead.

Symbolic Feedback Code: CEE3GQ

CEE3611I The run-time option option was an
invalid run-time option.

Explanation: option is not an LE/VSE option or an
option that is recognized by LE/VSE for previous
release language compatibility.

System action: option is ignored.

Programmer response: Consult the appropriate
migration guide for a list of options supported for the
language. Correct the run-time options string.

Symbolic Feedback Code: CEE3GR

CEE3612I Too many suboptions were specified for
the run-time option option.

Explanation: The number of suboptions specified for
option exceeded that defined for the option.

System action: The extra suboptions are ignored.

Programmer response: A list of valid run-time options

CEE3604I • CEE3612I

194 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

is provided in LE/VSE Programming Reference. Correct
the run-time options string.

Symbolic Feedback Code: CEE3GS

CEE3613I The run-time option old-option appeared
in the options string.

Explanation: old-option (SPIE, NOSPIE, STAE, or
NOSTAE) is an option from a previous release that is
supported by LE/VSE for compatibility, but ignored if
TRAP is specified.

System action: old-option is ignored if TRAP is
specified, otherwise it is mapped to TRAP.

Programmer response: Change the run-time options
string to use the TRAP option instead of SPIE, NOSPIE,
STAE, or NOSTAE.

Symbolic Feedback Code: CEE3GT

CEE3614I An invalid character occurred in the
numeric string ' string ' of the run-time
option option.

Explanation: string did not contain all decimal
numeric characters.

System action: The string is ignored.

Programmer response: Correct the run-time options
string to contain all numeric characters.

Symbolic Feedback Code: CEE3GU

CEE3615I The installation default for the run-time
option option could not be overridden.

Explanation: option has been defined as
non-overridable at installation time.

System action: The option is ignored.

Programmer response: Correct the run-time options
string to not specify this option.

Symbolic Feedback Code: CEE3GV

CEE3616I The string ' string ' was not a valid
suboption of the run-time option option.

Explanation: string was not in the set of recognized
values.

System action: The suboption is ignored.

Programmer response: Correct the run-time options
string.

Symbolic Feedback Code: CEE3H0

CEE3617I The number number of the run-time
option option exceeded the range of
-2147483648 to 2147483647.

Explanation: number exceeded the range of
-2147483648 to 2147483647.

System action: The number is ignored.

Programmer response: Correct the run-time options
string.

Symbolic Feedback Code: CEE3H1

CEE3618I The run-time option option was not valid
from the invocation command.

Explanation: option is not valid from the invocation
command.

System action: option is ignored.

Programmer response: Correct the run-time options
string.

Symbolic Feedback Code: CEE3H2

CEE3619I The value value was not a valid MSGQ
number.

Explanation: value must be greater than zero.

System action: value is ignored.

Programmer response: Correct the run-time options
string.

Symbolic Feedback Code: CEE3H3

CEE3620I The following messages pertain to the
assembler user exit run-time options.

Explanation: The messages after this one up to the
next message of this type with a different source
pertain to the assembler user exit.

System action: No system action is performed.

Programmer response: No response is required.

Symbolic Feedback Code: CEE3H4

CEE3621I The run-time option option was not valid
from the assembler user exit.

Explanation: option is not valid from the assembler
user exit.

System action: option is ignored.

Programmer response: Correct the run-time options
string.

Symbolic Feedback Code: CEE3H5

CEE3613I • CEE3621I

Chapter 8. LE/VSE Run-Time Messages 195

CEE3622I The STORAGE option quoted
suboption string ' string ' was not one
character long.

Explanation: The only acceptable length for STORAGE
suboptions within quotes is one.

System action: The suboption is ignored.

Programmer response: Correct the run-time options
string.

Symbolic Feedback Code: CEE3H6

CEE3623I The UPSI option suboption string '
string ' was not eight characters long.

Explanation: The only acceptable length for the UPSI
sub-option is eight.

System action: The suboption is ignored.

Programmer response: Correct the run-time options
string.

Symbolic Feedback Code: CEE3H7

CEE3624I One or more error messages pertaining
to the run-time options included in the
invocation command were lost.

Explanation: The run-time options error table (ROET)
overflowed.

System action: The errors that are detected after the
table overflowed are discarded.

Programmer response: Correct the reported errors so
the discarded errors fit into the error table.

Symbolic Feedback Code: CEE3H8

CEE3625I One or more error messages pertaining
to the run-time options returned by the
assembler user exit were lost.

Explanation: The run-time options error table (ROET)
overflowed.

System action: The errors that are detected after the
table overflowed are discarded.

Programmer response: Correct the reported errors so
the discarded errors fit into the error table.

Symbolic Feedback Code: CEE3H9

CEE3626I One or more error messages pertaining
to the run-time options contained within
the programmer defaults were lost.

Explanation: The run-time options error table (ROET)
overflowed.

System action: The errors that are detected after the
table overflowed are discarded.

Programmer response: Correct the reported errors so
the discarded errors will then fit into the error table.

Symbolic Feedback Code: CEE3HA

CEE3627I The following messages pertain to the
programmer default run-time options.

Explanation: The messages after this one up to the
next message of this type with a different source,
pertain to the programmer default options.

System action: No system action is preformed.

Programmer response: No response is required.

Symbolic Feedback Code: CEE3HB

CEE3628I The run-time option option was not valid
from the programmer defaults.

Explanation: option is not valid from the programmer
defaults.

System action: The option is ignored.

Programmer response: Correct the run-time options
string.

Symbolic Feedback Code: CEE3HC

CEE3629I The run-time option old-option was
partially mapped to the run-time option
le-option.

Explanation: old-option is an old language option that
is being supported by LE/VSE for compatibility. The
user should use le-option instead.

System action: old-option is partially mapped to its
LE/VSE equivalent.

Programmer response: Change the run-time options
string to use the le-option instead.

Symbolic Feedback Code: CEE3HD

CEE3630I One or more settings of the run-time
options STAE or SPIE were ignored.

Explanation: STAE, SPIE, NOSTAE, and NOSPIE
(options from a previous release) were ignored when
the TRAP option was specified. See LE/VSE
Programming Reference for the interactions between
TRAP and SPIE, NOSPIE, STAE, or NOSTAE.

System action: STAE, SPIE, NOSTAE, or NOSPIE are
mapped to TRAP.

Programmer response: Change the run-time options
string to use the TRAP option instead of SPIE, STAE,
NOSPIE, or NOSTAE.

Symbolic Feedback Code: CEE3HE

CEE3622I • CEE3630I

196 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

CEE3631I One or more settings of the run-time
options STAE or SPIE were mapped to
TRAP.

Explanation: STAE, SPIE, NOSTAE, and NOSPIE are
options from a previous release that are supported by
LE/VSE for compatibility.

System action: STAE, SPIE, NOSTAE, or NOSPIE are
mapped to TRAP.

Programmer response: Change the run-time options
string to use the TRAP option instead.

Symbolic Feedback Code: CEE3HF

CEE3632I The following messages pertain to the
AR command overrides.

Explanation: LE/VSE run-time option override
supplied using the AR command 'S CEE,OPTS='
includes an invalid run-time option or sub-option.

System action: The invalid option(s) or sub-option(s)
are ignored.

Programmer response: Use the 'D CEE,OPTS' AR
command to display the currently-set overrides.
Remove the override option(s) and re-enter them
correctly using the 'S CEE,OPTS=' command.

Symbolic Feedback Code: CEE3HG

CEE3633W The total length of the combined
ENVAR strings exceeded 250 characters.

Explanation: The total length of the combined ENVAR
strings exceeded the maximum limit of 250 characters.

System action: The ENVAR string is ignored.

Programmer response: Reduce the total length of the
ENVAR strings to less than the 250 character
maximum.

Symbolic Feedback Code: CEE3HH

CEE3634I The number number of the run-time
option option exceeded the range of
-32768 to 32767.

Explanation: number exceeded the range of -32768 to
32767.

System action: The number is ignored.

Programmer response: Correct the run-time options
string to be within the range of -32768 to 32767.

Symbolic Feedback Code: CEE3HI

CEE3637I The number number specified in the
suboption suboption of the run-time
option option is not a valid hexadecimal
number in the range 0 to FFFFFFFF. X'00'

Explanation: An invalid hexadecimal numeral was
specified or the range of the number exceeds 0 to
FFFFFFFF.

System action: The number is ignored.

Programmer response: Correct the run-time options
string to be a valid hexadecimal number in the range of
0 to FFFFFFFF.

Symbolic Feedback Code: CEE3HL

CEE3638I The table size of size, specified in the
TRACE run-time option, exceeds the
maximum allowed value of 16777215.
X'00'

Explanation: size exceeded the maximum allowed
value of 16777215.

System action: The size is ignored.

Programmer response: Correct the TRACE run-time
options to not exceed the maximum of 16777215.

Symbolic Feedback Code: CEE3HM

CEE3639I The ID suboption suboption of the
TRACE run-time option must consist of
the keyword 'ID' followed by a one or
two digit number in the range 0 to
number X'00'

Explanation: The format of the ID suboption of the
TRACE run-time option is IDxx=nnnnnnnn where xx is
a one or two digit decimal number with no blanks
between it and either the ID or the equal-sign.

System action: The suboption is ignored.

Programmer response: Correct the ID suboption of the
TRACE run-time option to be the correct format where
xx is a one or two digit decimal number with no blanks
between it and either the ID or the equal-sign.

Symbolic Feedback Code: CEE3HN

CEE3649W The parameter string returned from
CEE5PRM exceeded the maximum
length of 80 bytes and was truncated.

Explanation: The output character string passed to
CEE5PRM is not long enough to contain the text of the
user parameters. It has been truncated.

System action: The user parameter string is truncated
to fit the character string argument passed to
CEE5PRM. The truncated value is returned to the caller
in the character string argument.

CEE3631I • CEE3649W

Chapter 8. LE/VSE Run-Time Messages 197

Programmer response: Execute with a shorter user
parameter string.

Symbolic Feedback Code: CEE3I1

CEE3700I The storage and options report heading
replaced a previous heading.

Explanation: The specified report heading has
replaced a heading set by an earlier call to CEERPTH.

System action: The report heading is replaced by the
new heading.

Programmer response: None required.

Symbolic Feedback Code: CEE3JK

CEE3701W Heap damage found by HEAPCHK
Run-time option.

Explanation: This is a title message for the Heap
Check section of the message file.

System action: None.

Programmer response: View the messages following
this one to see where damage was found.

Symbolic Feedback Code: CEE3JL

CEE3702S Program terminating due to Heap
damage.

Explanation: This is the last message in the Heap
Check section of the message file.

System action: The enclave is terminated with abend
code U4042.

Programmer response: Previous messages in the
message file will contain the address, and the expected
and actual data for each damaged area found.

Symbolic Feedback Code: CEE3JM

CEE3703I In controlblock Control Block, the
fieldname is damaged.

Explanation: An LE control block controlblock has
damage in the fieldname area.

System action: None.

Programmer response: The message following this
one in the message file will identify the address of the
damage and the expected data.

Symbolic Feedback Code: CEE3JN

CEE3704I Expected data at address : data.

Explanation: Provides the address address and
expected data data when heap damage is found.

System action: None.

Programmer response: The message following this
one in the message file will provide the actual data
found at the damaged location.

Symbolic Feedback Code: CEE3JO

CEE3705I Pointer at address should point to a valid
controlblock.

Explanation: The pointer at location address should
point to an LE control block with a controlblock eye
catcher.

System action: None.

Programmer response: The message following this
one in the message file will provide the actual data
found at the damaged location.

Symbolic Feedback Code: CEE3JP

CEE3706I The contents of the Free Tree Node at
address1 in the Heap Segment beginning
at address2 do not match the STORAGE
run-time option Heap_free_value.

Explanation: The contents of storage at address1
should match the heap_free_value specified with the
STORAGE run-time option. The first 16 bytes at
address1 contain header information and will not match
the heap_free_value. They are not used in the
comparison.

System action: None.

Programmer response: The message following this
one in the message file will provide the actual data
found at the damaged location.

Symbolic Feedback Code: CEE3JQ

CEE3707I branch pointer is bad in the Free Tree at
address1 in the Heap Segment beginning
at address2.

Explanation: The pointer to the branch branch of the
Free Tree Node at address address1 does not point to
another Free Tree Node.

System action: None.

Programmer response: The message following this
one in the message file will provide the actual data
found at the damaged location.

Symbolic Feedback Code: CEE3JR

CEE3708I branch length is bad in the Free Tree at
address1 in the Heap Segment beginning
at address2.

Explanation: The length of the branch branch of the
Free Tree Node at address address1 is damaged.

System action: None.

CEE3700I • CEE3708I

198 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Programmer response: The message following this
one in the message file will provide the actual data
found at the damaged location.

Symbolic Feedback Code: CEE3JS

CEE3709I Either the branch pointer or length is
damaged in the Free Tree at address1 in
the Heap Segment beginning at address2

Explanation: The pointer to the branch branch of the
Free Tree Node at address address1 plus its length does
not match a Heap Storage Element.

System action: None.

Programmer response: The message following this
one in the message file will provide the actual data
found at the damaged location.

Symbolic Feedback Code: CEE3JT

CEE3710I Heap Element at address is damaged.
Expected data is: word1 word2

Explanation: The header of the Heap Storage Element
at address does not match the expected data word1 and
word2.

System action: None.

Programmer response: The message following this
one in the message file will provide the actual data
found at the damaged location.

Symbolic Feedback Code: CEE3JU

CEE3711I Processing of the HEAPCHK run-time
option has been terminated due to a
previous error. Heaps are no longer
being checked for damage.

Explanation: A message preceding this one in the
message file will provide the actual error which caused
the HEAPCHK processing to be terminated.

System action: None.

Programmer response: Locate the message that
describes the actual error and take appropriate action to
correct the problem.

Symbolic Feedback Code: CEE3JV

CEE3750S Insufficient storage was available for
use by module-name.

Explanation: There is not enough free storage
available for the DTF builder CWI module-name to build
a DTF.

System action: The DTF is not built.

Programmer response: Ensure that the GETVIS
storage available in the partition is sufficient to run
your application. Verify that the storage sizes specified

in the HEAP run-time option are reasonable.

Symbolic Feedback Code: CEE3L6

CEE3751S A search of the LIOCS phase by
module-name did not locate the routine
routine-name.

Explanation: The DTF builder CWI module-name was
unable to find the routine routine-name in its associated
LIOCS phase.

System action: The DTF is not built.

Programmer response: Add the required routine to
the LIOCS phase using the CEEXCDMD, CEEXDUMD
or CEEXPRMD macro. For more information about
these customization macros, see LE/VSE Customization
Guide.

Symbolic Feedback Code: CEE3L7

CEE3756S The parameter parameter-name was
invalid in a call to module-name.

Explanation: The DTF builder CWI module-name was
passed an invalid value in parameter parameter-name.

System action: The DTF is not built.

Programmer response: Correct the parameter value.

Symbolic Feedback Code: CEE3LC

CEE3757S The parameter parameter-name1 conflicts
with the parameter parameter-name2 in a
call to module-name.

Explanation: The DTF builder CWI module-name was
passed the parameter parameter-name1 which conflicts
with parameter parameter-name2.

System action: The DTF is not built.

Programmer response: Correct the conflicting
parameters.

Symbolic Feedback Code: CEE3LD

CEE3758S The parameter parameter-name1 conflicts
with the parameters parameter-name2 and
parameter-name3 in a call to module-name.

Explanation: The DTF builder CWI module-name was
passed the parameter parameter-name1 which conflicts
with parameters parameter-name2 and parameter-name3.

System action: The DTF is not built.

Programmer response: Correct the conflicting
parameters.

Symbolic Feedback Code: CEE3LE

CEE3709I • CEE3758S

Chapter 8. LE/VSE Run-Time Messages 199

CEE3775W A conflict was detected between the
TERMTHDACT suboption LSTQ and
TERMTHDACT level setting.
TERMTHDACT level setting has been
set to TRACE.

Explanation: The thread termination dump
output-level setting conflicts with the destination
setting of LSTQ. A level of TRACE or more must be
used with LSTQ.

System action: The level setting was reset to TRACE.

Programmer response: Change the value of the detail
level to TRACE or more.

Symbolic Feedback Code: CEE3LV

CEE3781I The value of the reg_stor_amount
sub-option of the TERMTHDACT
option was not in the valid range 0-256.

Explanation: The value of the reg_stor_amount
sub-option was not a number in the range of 0-256.

System action: The value is ignored. The default value
of 0 is used.

Programmer response: Change the value of the
reg_stor_amount sub-option to be in the valid range
0-256.

Symbolic Feedback Code: CEE3M5

CEE3782E The value of the REGSTOR option of
CEE5DMP was not in the valid range
0-256.

Explanation: The value of the REGSTOR option of
CEE5DMP was not a number in the range of 0-256.

System action: The value is ignored. The default value
of 0 is used.

Programmer response: Change the value of the
REGSTOR option to be the valid range.

Symbolic Feedback Code: CEE3M6

CEE3800S The address passed to the stack segment
service was not within any LE stack
segment.

Explanation: The address passed to the stack segment
bounds service was not within any currently allocated
LE/VSE stack segment.

System action: The bounds, segment type and chain
are undefined.

Programmer response: This is an internal problem.
Contact your service representative.

Symbolic Feedback Code: CEE3MO

CEE3817E The member event handler did not
return a usable function pointer.

Explanation: The member language which compiled
the input load module either does not support the fetch
function, or encounted an unrecoverable error.

System action: The called service returns an unusable
function pointer.

Programmer response: Ensure the input load module
is compiled from a language which supports the fetch
function.

Symbolic Feedback Code: CEE3N9

CEE3818E The member event handler encountered
an error.

Explanation: The member language which compiled
the input load module either does not support the
release function, or encountered an unrecoverable error.

System action: The function is not released.

Programmer response: Ensure the input load module
is compiled from a language which supports the release
function.

Symbolic Feedback Code: CEE3NA

CEE3900S The function code passed to CEE5USR
was not 1 or 2.

Explanation: The function_code specified in a
CEE5USR call is invalid.

System action: Neither SET nor QUERY is performed.

Programmer response: Invoke CEE5USR with
function_code 1 (for SET) or 2 (for QUERY).

Symbolic Feedback Code: CEE3PS

CEE3901S The field number passed to CEE5USR
was not 1 or 2.

Explanation: The field number specified in a
CEE5USR call is invalid.

System action: Neither SET nor QUERY is performed.

Programmer response: Invoke CEE5USR with
field_number 1 or 2.

Symbolic Feedback Code: CEE3PT

CEE3902W The function code, use of, or
environment for CEEPUSR is invalid.

Explanation: Either: (1) The function code provided is
not supported or is invalid. (2) This service is being
called from a non-multitasking PL/1 environment. (3)
The TASKCOM SETPARM is missing or the values
specified are invalid.

CEE3775W • CEE3902W

200 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

System action: The service returns zero for all fields
and no action is taken.

Programmer response: Only call CEEPUSR from a
PL/1 multitasking environment and with supported
function codes. Ensure that a TASKCOM JCL SETPARM
variable is set, and that the specified values conform to
the requirements.

Symbolic Feedback Code: CEE3PU

CEE3903W CEE5DLY or CEEDLYM was called with
an invalid interval value.

Explanation: A delay service has been called, but the
delay interval value is not within the allowed range.
Permitted values are:
v 1 to 3,600 (60 minutes) for CEE5DLY.
v 1 to 3,600,000 (60 minutes) for CEEDLYM.

System action: The request is ignored. Processing
continues.

Programmer response: Correct the delay value being
passed to the appropriate service, and re-run the
application.

Symbolic Feedback Code: CEE3PV

CEE3907I Read-Access or Update-Access to
Supplied Storage Address is
Unavailable

Explanation: The CEE5TSTG service has been called
with an address that is not allowed for read-access.

System action: Processing continues with the next
sequential instruction after the call to CEE5TSTG.

Programmer response: Any attempt to use the
supplied address for any processing in the current
execution key will result in a program check.

Symbolic Feedback Code: CEE3PZ

CEE3908I Update-Access to Supplied Storage
Address is Unavailable

Explanation: The CEE5TSTG service has been called
with an address that is not allowed for update-access.

System action: Processing continues with the next
sequential instruction after the call to CEE5TSTG.

Programmer response: Any attempt to modify storage
pointed-to by the address supplied to CEE5TSTG in the
current execution key, will result in a program check.
Read-access is permitted in the current execution key.

Symbolic Feedback Code: CEE3Q0

CEE3909I Incompatible TRAP run-time option set.

Explanation: The CEE5TSTG service has been called
when TRAP(OFF) is set.

System action: Processing continues with the next
sequential instruction after the call to CEE5TSTG.

Programmer response: The CEE5TSTG service is only
available when TRAP(ON,MIN) or TRAP(ON,MAX) are
set.

Symbolic Feedback Code: CEE3Q1

CEE3931W CEEDLYM was invoked in a CICS
environment.

Explanation: The millisecond delay service has been
called within a CICS environment. However, CICS does
not support the specification of millisecond delay
values. Therefore, this service is not available under
CICS.

System action: The request is ignored. Processing
continues.

Programmer response: Change to use CEE5DLY
instead.

Symbolic Feedback Code: CEE3QR

CEE4001S General Failure: Service could not be
completed.

Explanation: An error was encountered attempting to
complete a C locale function.

System action: The thread is terminated.

Programmer response: Contact your service
representative.

Symbolic Feedback Code: CEE3T1

CEE4015S Input Error: The number of characters to
be transformed must be greater than
zero.

Explanation: An error was encountered attempting to
complete a C locale function. The CEESTXF callable
service was called with a number parameter that was
non-positive.

System action: The thread is terminated.

Programmer response: Make sure the parameter is
positive.

Symbolic Feedback Code: CEE3TF

CEE4086S Input Error: The number of characters to
be formatted must be greater than zero.

Explanation: An error was encountered attempting to
complete a C locale function. The CEEFMON or
CEEFTDS callable service was called with a maxsize

CEE3903W • CEE4086S

Chapter 8. LE/VSE Run-Time Messages 201

parameter that was non-positive.

System action: The thread is terminated.

Programmer response: Make sure the parameter is
positive.

Symbolic Feedback Code: CEE3VM

CEE5176S There was insufficient storage to process
an environment variable.

Explanation: The environment-variable processing
service was called, but there was insufficient storage to
process the request.

System action: Unless the condition is handled, the
default action is to terminate the enclave.

Programmer response: Additional 31-bit storage is
required before more environment variables can be
processed. Either free some heap-storage, or rerun the
application in a partition that has more available 31-bit
storage.

Symbolic Feedback Code: CEE51O

CEE5177S A bad input character was detected for
the environment variable name.

Explanation: The environment-variable processing
service was called, but the name specified contained an
invalid '=' character.

System action: Unless the condition is handled, the
default action is to terminate the enclave.

Programmer response: Correct the
environment-variable name, and retry.

Symbolic Feedback Code: CEE51P

CEE5178S The environment variable anchor or
array contained an invalid address.

Explanation: The environment-variable processing
service was called, but an invalid anchor or array
address was encountered.

System action: Unless the condition is handled, the
default action is to terminate the enclave.

Programmer response:

v C Environments: If **environ is used to set or clear
an environment variable, make sure that the address
is correct. Alternatively, you can use the getenv() or
setenv() functions.

v Assembler or PL/I Environments: You are
responsible for ensuring that the
environment-variable array or anchor pointers are
correctly used, and that no invalid modifications are
made. Alternatively, you can use the CEEENV
callable service to perform environment-variable
manipulation.

v COBOL Environments: Check that the environment
array anchor has been used correctly in any
non-COBOL applications that may be running or that
have been called. If only COBOL applications are
being used, check for any storage overlays. You
might also consider implementing the SSRANGE
compile option.

Symbolic Feedback Code: CEE51Q

CEE5179S A parameter to the environment-variable
processing routine contained an invalid
value.

Explanation: The environment-variable processing
service was called to get or set an environment
variable. However, one of the parameters specified
contained an invalid value. For example, the name
length or value length was negative, or the function
code was invalid.

System action: Unless the condition is handled, the
default action is to terminate the enclave.

Programmer response: Correct the parameter and
retry.

Symbolic Feedback Code: CEE51R

CEE5180I The specified environment variable
name already exists.

Explanation: An attempt was made to set an
environment variable whose name already exists.

System action: The original variable is not modified.

Programmer response: If you want to modify the
variable and are using the CEEENV service, specify
function code 5 to modify the existing variable's value.

Symbolic Feedback Code: CEE51S

VSE/POWER LSTQ Support Run-Time Messages
The following messages relate to the LE/VSE support of VSE/POWER LSTQ.

CEEL000S VSE/POWER is currently terminating.
Connection request denied.

Explanation: A request to output a failing dump to

the VSE/POWER LSTQ was aborted as VSE/POWER
was in termination mode and cannot accept any new
connections.

CEE5176S • CEEL000S

202 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

System action: The request to send the dump output
to a separate LSTQ member is ignored. Dump output is
instead directed to the default environment-dependent
location.

Programmer response: Ensure VSE/POWER is
currently active and not in shutdown mode.

Symbolic Feedback Code: None.

CEEL001S VSE/POWER in abnormal termination.
Connection disrupted.

Explanation: While sending dump output to the
VSE/POWER LSTQ, the request was aborted as
VSE/POWER abnormally terminated.

System action: The dump request is aborted. Dump
production is aborted.

Programmer response: Ensure VSE/POWER is
available for the complete duration of dump
production. Alternatively, set TERMTHDACT to
MSGFL and re-run failing transaction.

Symbolic Feedback Code: None.

CEEL002S Connection to VSE/POWER could not
be completed within a 10 second delay
limit.

Explanation: While requesting a connection to
VSE/POWER, the time limit of 10 seconds was reached
before the connection could be completed.

System action: The request to send the dump output
to a separate LSTQ member is ignored. Dump output is
instead directed to the default environment-dependent
location.

Programmer response: Ensure VSE/POWER is
available and sufficient system GETVIS storage is
available to process the required number of concurrent
connections to VSE/POWER.

Symbolic Feedback Code: None.

CEEL003S Insufficient storage to establish
identification with z/VSE.

Explanation: While sending an identification request
to VSE, an “insufficient storage” response was
returned.

System action: The request to send the dump output
to a separate LSTQ member is ignored. Dump output is
instead directed to the default environment-dependent
location.

Programmer response: Ensure sufficient system
GETVIS storage is available to process the required
number of concurrent connections to VSE/POWER.

Symbolic Feedback Code: None.

CEEL004S Insufficient storage to establish XPCC
connection with z/VSE.

Explanation: While requesting an XPCC connection
with VSE, an “insufficient storage” response was
returned.

System action: The request to send the dump output
to a separate LSTQ member is ignored. Dump output is
instead directed to the default environment-dependent
location.

Programmer response: Ensure sufficient system
GETVIS storage is available to process the required
number of concurrent XPCC connections.

Symbolic Feedback Code: None.

CEEL005I Removing Existing VSE/POWER
Connection.

Explanation: A previous task which was using the
LSTQ support (for details, see “Generating a Dump
with TERMTHDACT” on page 33) has failed. This task
has left an open connection to VSE/POWER.

System action: The open connection to VSE/POWER
is removed. A new connection to VSE/POWER is
established for the currently-active task.

Programmer response: None (information only).

Symbolic Feedback Code: None.

CEEL009S Abend queue missing while trying to
remove existing link. Restart CICS.

Explanation: While attempting to remove an old
connection with VSE/POWER, the queue that holds
required information for the removal process could not
be located.

System action: The link is not removed. Dump
production to the LSTQ is aborted. Dump output is
re-directed to the MSGFILE destination. Use of the
LSTQ destination from this terminal is no longer
available until CICS is restarted.

Programmer response: To remove the old link, a
restart of CICS is required.

Symbolic Feedback Code: None.

CEEL010E Write to TS Queue failed. Unable to
recover from connection failures.

Explanation: The LE/VSE spool interface stores
recovery information in a task-specific CICS temporary
storage queue. This queue is used if a later spool
connection is required but a duplication is detected.
Without the information in this CICS TS queue,
removal of orphaned spool connections is not possible.
A CICS restart would be required to terminate these
links.

CEEL001S • CEEL010E

Chapter 8. LE/VSE Run-Time Messages 203

System action: Any failure experienced by this spool
connection before completion is established cannot be
dynamically removed. A CICS restart would be
required.

Programmer response: Ensure that as a minimum,
CICS “main” temporary storage is available at all
times, and that the TS queue VSAM file is not full.

Symbolic Feedback Code: None.

CEEL011S REQ=reqid Failed at: block
VSE-RC/REAS=??/??
PWR-RC/FDBK=??/??

Explanation: While attempting to output an LE/VSE

dump to the VSE/POWER LSTQ, a failure occurred.
The VSE-RC/REAS fields refer to XPCC return code
and reason codes. The PWR-RC/FDBK fields refer to
VSE/POWER Spool-access return and reason codes.
Dump production for this application is prematurely
terminated.

System action: Dump production is terminated. The
dump is lost.

Programmer response: Refer to the appropriate
VSE/POWER manual using the displayed return and
reason codes. Correct the error before attempting to use
the LSTQ support again.

Symbolic Feedback Code: None.

LE/VSE Run-Unit Work-Area Trace Function Messages

CEL2001I LE z/VSE Run-Unit Work-Area Tracing
set {ON|OFF}

Explanation: Confirms the requested status of the
CICS Run-Unit Tracing facility.

System action: None.

Programmer response: None.

Symbolic Feedback Code: None.

CEL2002E CICS RECIEVE failed with unexpected
error: value

Explanation: The CRUT transaction attempted to
receive the parameter provided as input for actioning
but this receive request failed with the reported CICS
code.

System action: The CRUT request is not performed
and the tracing status remains unchanged.

Programmer response: Review the reported error code
response for an EXEC CICS RECIEVE request and
correct as required.

Symbolic Feedback Code: None.

CEL2003E Unable to locate CICS EIB. Response:
value

Explanation: The CRUT transaction attempted to
locate the CICS EIB but this request failed with the
reported CICS response code.

System action: The CRUT request is not performed
and the tracing status remains unchanged.

Programmer response: Review the reported error code
for an EXEC ADDRESS EIB request and correct as
required.

Symbolic Feedback Code: None.

CEL2004E Fetch of CEL4LOC failed. See CICS log.

Explanation: The CRUT transaction attempted to fetch
the CEL4LOC service routine but this request failed.

System action: The CRUT request is not performed
and the tracing status remains unchanged.

Programmer response: Review the CICS log for the
fetch request error message and correct as required.

Symbolic Feedback Code: None.

CEL2005E Unexpected error returned from
CEL4LOC : R15=value

Explanation: The CRUT transaction requested a
service of the CEL4LOC service routine but this request
failed.

System action: The CRUT request is not performed
and the tracing status remains unchanged.

Programmer response: Contact your IBM support
representative as this is an internal error situation.

Symbolic Feedback Code: None.

CEL2006I LE z/VSE Run-Unit Work-Area Tracing
currently {ON|OFF}

Explanation: Reports on the status of the CICS
Run-Unit Tracing facility.

System action: None.

Programmer response: None.

Symbolic Feedback Code: None.

CEL2007E Invalid option supplied. Tracing status
remains unchanged.

Explanation: The parameter provided to the CRUT
transaction is invalid or incorrect.

System action: The CRUT request is not performed
and the tracing status remains unchanged.

Programmer response: Correct the parameter to one

CEEL011S • CEL2007E

204 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

that is supported and re-try the request again.

Symbolic Feedback Code: None.

CEL2008E Execution under CICS/VSE detected.
Only CICS/TS is supported.

Explanation: The CRUT function is only available on
CICS/TS systems.

System action: The CRUT request is not performed.
Tracing status remains inactive.

Programmer response: Only attempt to use the CRUT
function on a CICS/TS system.

Symbolic Feedback Code: None.

Attention Routine Support Run-Time Messages
The following messages relate to the LE/VSE support of certain attention routine
(AR) commands. The messages are displayed in response to the attention routine
commands that are supported by LE/VSE.

CEL4000I exit-name exit-type exit-status version.

Explanation: Message Title. If available, the assembler
user exit shown is currently active in this LE/VSE
BATCH environment.

System action: None.

Programmer response: None (information only).

Symbolic Feedback Code: None.

CEL4001I Currently defined BATCH Language
Environment for z/VSE Exits.

Explanation: Message Title. The exits shown (if any)
are currently active in this LE/VSE environment.

System action: None.

Programmer response: None (information only).

Symbolic Feedback Code: None.

CEL4002I exit-name exit-type dump-cntrl.

Explanation: Message Title only.

System action: None.

Programmer response: None (information only).

Symbolic Feedback Code: None.

CEL4003E Unknown Language Environment for
z/VSE command entered.

Explanation: An operator's console command was
entered that contained the 'D CEE' prefix, but the
completed command was not recognized by LE/VSE.

System action: No command processing is performed.

Programmer response: Correct the command and
re-enter.

Symbolic Feedback Code: None.

CEL4004I Language Environment for z/VSE EXIT
modules not found in SVA.

Explanation: A 'D CEE,CEEEXIT' command was
issued, but one or more of the LE/VSE abnormal
termination exit modules were not resident in the SVA.

System action: A report is produced for any abnormal
termination exits found in the SVA. Message CEL4004E
is issued for any that are not in the SVA.

Programmer response: Either or both of the LE/VSE
abnormal termination exit modules could not be
reported-on because they were not found in the SVA.

Symbolic Feedback Code: None.

CEL4005I Language Environment for z/VSE
Assembler Exit not in the SVA.

Explanation: A 'D CEE,CEEEXIT' command was
issued but either CEEBXITA or CEECXITA assembler
user exit modules were not found in the SVA.

System action: Reports will be produced for any SVA
resident assembler user exits. Message CEL4005E will
be issued for any exit not found in the SVA.

Programmer response: Either or both of the LE/VSE
assembler user exit modules could not be reported-on
because they were not found in the SVA.

Symbolic Feedback Code: None.

CEL4006W Language Environment for z/VSE
command processing incomplete.

Explanation: The LE/VSE attention routine command
that was last entered, was not processed completely.

System action: Review the last entered LE/VSE
attention routine command and correct any relevant
errors reported.

Programmer response: Limited or no LE/VSE
information is displayed.

Symbolic Feedback Code: None.

CEL4007I exit-name exit-type dump-control.

Explanation: The displayed abnormal termination

CEL2008E • CEL4007I

Chapter 8. LE/VSE Run-Time Messages 205

exits are active in the BATCH environment and have
been defined with dump-control processing:
exit-name

The name of the exit that LE/VSE will call
when an abnormal termination condition
occurs.

exit-type
The exit type for this exit name. Can be an
abnormal termination exit.

dump-control
Displays the setting of the 'type' sub-option on
the CEEXART macro.

System action: LE/VSE exit information is displayed.

Programmer response: None (information displayed
describes the active exits details).

Symbolic Feedback Code: None.

CEL4008S AR-Interface Initialization has not
completed successfully.

Explanation: The execution of job CEEWARC has
either not been performed, or it has failed in some way.

System action: The LE/VSE command is not
performed.

Programmer response: Ensure that the CEEWARC job
has been run and that it has completed successfully.

Symbolic Feedback Code: None.

CEL4009S AR-Interface initialization only partially
completed.

Explanation: The job CEEWARC has been run but it
has not completed successfully.

System action: The issued LE/VSE command is not
performed.

Programmer response: Re-run the CEEWARC job and
ensure that it completes successfully with no error
messages. Verify that there is at least 4K
(approximately) of SVA-31 GETVIS available.

Symbolic Feedback Code: None.

CEL4010I exit-name exit-type exit-status version.

Explanation: The LE/VSE assembler user exit
information is displayed. version will only be displayed
if the exit-status reported is 'default'.
exit-name

The catalogued name of the assembler user
exit.

exit-type
Can be an assembler user exit.

exit-status
If the exit is detected to simply be the
supplied default version or another OEM
version.

version The version,release and modification level

information available from the default or
user-tailored sample versions of the assembler
user exit. It might not be possible to report on
OEM versions when non-standard entry code
has been used.

System action: None.

Programmer response: None.

Symbolic Feedback Code: None.

CEL4011I Language Environment Version:
version,release modification-level APAR-level

Explanation: The LE/VSE version,release and
modification-level are displayed, followed by the latest
APAR that has been correctly installed.

System action: None.

Programmer response: None.

Symbolic Feedback Code: None.

CEL4012I language installed SVA-resident SVA-address
APAR-level

Explanation: Message title only.

System action: None.

Programmer response: None (information only).

Symbolic Feedback Code: None.

CEL4013I language installed SVA-residency
SVA-load-address APAR-level

Explanation: The system displays the available
information for each of the available
LE/VSE-supported languages. The language may also
be shown as a module name when the system displays
information on LE/VSE core modules. The
SVA-load-address information can only be displayed
providing the specific language component's event
handler is resident in the SVA.

System action: None.

Programmer response: If the APAR-level shown is
“unknown”, the listed language component is either
not installed, or the component's level module is
unavailable. Ensure that xxxLVL.PHASE is resident in
the Language Environment installation library, where
xxx is the language component prefix identifier. For
example:
v IGZ = COBOL
v IBM = PL/I
v EDC = C language

Symbolic Feedback Code: None.

CEL4008S • CEL4013I

206 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

CEL4014I Current Language Environment for
z/VSE Status Information.

Explanation: The message title displays the latest
APAR level information for the current base
components of Language Environment for z/VSE.

System action: None.

Programmer response: None.

Symbolic Feedback Code: None.

CEL4015I module installed SVA-resident SVA-address

Explanation: Message Title only.

System action: None.

Programmer response: None (information only).

Symbolic Feedback Code: None.

CEL4016E CDLOAD failed with unexpected return
code for module CEEBXTAN.

Explanation: The load for CEEBXTAN has failed.

System action: The command is not processed.

Programmer response: Check that CEEBXTAN is
loaded in the SVA, and that the operator issuing the
command has the required authority to access this
module.

Symbolic Feedback Code: None.

CEL4017E CDLOAD failed with unexpected return
code for module CEEBXITA.

Explanation: The load for CEEBXITA has failed.

System action: The command is not processed.

Programmer response: Check that CEEBXITA is
loaded in the SVA, and that the operator issuing the
command has the required authority to access this
module.

Symbolic Feedback Code: None.

CEL4018I Produced by CEL4CMDR at X'????????'
APAR APAR-level.

Explanation: The system displays the current attention
routine interface details. This information may be
requested by Level 2 support for any problem
diagnosis.

System action: None.

Programmer response: None.

Symbolic Feedback Code: None.

CEL4019I Language Environment for z/VSE
command complete.

Explanation: The system has finished processing the
command.

System action: None.

Programmer response: None.

Symbolic Feedback Code: None.

CEL4020I No LE/VSE Option Overrides |
<LE/VSE override options set>

Explanation: Either no LE/VSE BATCH override
run-time options have been set, or the message will be
displayed with any option overrides that are currently
set.

System action: Any run-time options displayed will
be used whenever an LE/VSE-enabled BATCH
application is executed.

Operator response: None.

Programmer response: None.

Symbolic Feedback Code: None.

CEL4026W Load for CEELVL failed. APAR details
are unavailable.

Explanation: When initializing the attention routine
support, an attempt to load the CEELVL module failed.
LE/VSE APAR information will not be available until
this module is made available to load.

System action: None. Initialization continues with
LE/VSE APAR information unavailable.

Programmer response: Ensure that the CEELVL
module is in the LE/VSE installation library, and that
the executing job step has the authority required to
load this module.

Symbolic Feedback Code: None.

CEL4028I Attention Routine Interface Enabled.

Explanation: The LE/VSE attention routine has been
successfully initialized.

System action: LE/VSE operator commands can now
be issued.

Operator response: None.

Programmer response: None.

Symbolic Feedback Code: None.

CEL4014I • CEL4028I

Chapter 8. LE/VSE Run-Time Messages 207

CEL4032S Attention Interface cannot continue.
Terminating.

Explanation: A severe error has occurred while
attempting to initialize the attention routine interface
for LE/VSE.

System action: Initialization of the attention routine
interface is terminated.

Programmer response: Review the previous
message(s) issued prior to this one for problem
investigation.

Symbolic Feedback Code: None.

CEL4033I Refreshing Lang. Env. Status Info.
Interface already activated.

Explanation: The CEL4VNDR program (job
CEEWARC) has been executed when the AR interface
is already active. The Language Environment status
information has therefore been updated and placed
online.

System action: Any new status changes that may have
been made since the last time CEL4VNDR was
executed have now been placed online. They will be
available via the D CEE,CEESTAT command.

Programmer response: None (information only).

Symbolic Feedback Code: None.

CEL4034E GETVIS for Partition Storage failed.

Explanation: Insufficient partition GETVIS storage is
available to execute the attention routine interface for
LE/VSE.

System action: Initialization of the attention routine
interface is terminated.

Programmer response: Run the attention routine
initialization job in a larger partition, or make more
partition GETVIS (31/ANY) available.

Symbolic Feedback Code: None.

CEL4036E Load of module CEL4CMDR has failed.

Explanation: For the attention routine support,
module CEL4CMDR must be loaded in the SVA.

System action: Initialization of the attention routine
interface is terminated.

Programmer response: Ensure CEL4CMDR is loaded
in the SVA. If this module is already resident in the
SVA, collect the dump produced and contact your
systems programmer or IBM Support center.

Symbolic Feedback Code: None.

CEL4037E Attention routine Interface module
CEL4CMDR not found in the SVA.

Explanation: Module CEL4CMDR loaded successfully
but was not found resident in the SVA.

System action: Initialization of the attention routine
interface is terminated.

Programmer response: Ensure CEL4CMDR is loaded
in the SVA, and that this version is the first to be found
in the active PHASE search chain.

Symbolic Feedback Code: None.

CEL4039E Insufficient SVA GETVIS-31 storage
available.

Explanation: While attempting to acquire some
SVA-31 GETVIS storage, the request failed.

System action: Initialization of the attention routine
interface is terminated.

Programmer response: Ensure there is sufficient
contiguous SVA-31 GETVIS storage available for the
attention routine. At least 4096 bytes of contiguous
storage needs to be available.

Symbolic Feedback Code: None.

CEL4040I SVA-31 GETVIS Storage has been freed.

Explanation: The SVA-31 storage that is required by
the AR interface task has been freed. This is because
either this action was requested, or because of an
initialization problem.

System action: None.

Programmer response: None (informational only).

Symbolic Feedback Code: None.

CEL4041E SVA-31 Storage FREEVIS request has
failed.

Explanation: While attempting to free the SVA-31
GETVIS storage previously acquired, the FREEVIS
request failed.

System action: Deactivation of the attention routine
interface completed but the SVA-31 GETVIS storage is
not freed.

Programmer response: Gather the dump produced
and contact your systems programmer or IBM Support
center. An IPL will be required to free the orphaned
SVA-31 storage. Subsequent executions of CEEWARC
will acquire another 4 KB (approximately) of SVA-31
GETVIS storage.

Symbolic Feedback Code: None.

CEL4032S • CEL4041E

208 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

CEL4043E Invalid SVA GETVIS-31 storage request.

Explanation: During attention routine initialization,
the GETVIS request returned an “invalid” request
return code.

System action: The Attention Routine support is not
activated.

Operator response: None.

Programmer response: Retain the dump produced
and send it to IBM Support for analysis.

Symbolic Feedback Code: None.

CEL4045W One or more installed languages
information extraction failed due to
insufficient storage.

Explanation: When attempting to load each supported
language information, this load request failed due to
insufficient storage being available.

System action: The CEEWARC job continues without
information being loaded for the failed language(s).

Operator response: Information displayed in response
to the D CEE,CEESTAT command will be incomplete
until this problem is corrected. Try re-running the
CEEWARC job in a larger partition.

Programmer response: Increase the available
GETVIS-31 storage in the partition being used, and
re-run the job.

Symbolic Feedback Code: None.

CEL4067I CEETRACE Current status is <current
status>

Explanation: Informational message only, displayed in
response to the D CEE,CEESTAT command showing
the status of the CEETRACE feature.

System action: None.

Operator response: None.

Programmer response: If you are not using the
CEETRACE feature, this message can be ignored. If you
are using the CEETRACE feature, this informational
message will indicate the current status of the feature.

Symbolic Feedback Code: None.

CEL4070I LE for z/VSE AR Command Help
Display

Explanation: Following this message are displayed all
the available commands supported by 'D CEE' and
'S CEE'. The AR commands that are supported by the
CEETRACE feature are not included.

System action: Help information for the LE for z/VSE
AR command support is displayed

Operator response: None.

Programmer response: None.

Symbolic Feedback Code: None.

CEL4080E CEL4CMDR: Function <function>
terminated with
R15=<value>,R0=<value>

Explanation: The attention routine interface module
has experienced a failure when using the indicated
function to issue a console command.

System action: The requested attention routine
command is not processed.

Operator response: None.

Programmer response: Deactivate any third-party
console-support products that might be active, and
re-attempt the command. If the failure still occurs, keep
a record of the error message information and contact
your IBM support center.

Symbolic Feedback Code: None.

CEL4090I Language Environment Assembler User
Exit details

Explanation: Informational message displayed as a
title in response to the D CEE,CEEEXIT command.

System action: None.

Operator response: None.

Programmer response: None.

Symbolic Feedback Code: None.

CLER CICS Transaction Support Message
The following messages relate to the LE/VSE support of the CICS CLER
transaction, which allows you to interactively display and modify LE/VSE
CICS-wide default runtime options while your CICS system is running. For details
about the CLER transaction, refer to the LE/VSE Customization Guide, SC33-6682.

CEL4101E Executing on an Unsupported LE/VSE
Run-Time.

Explanation: While attempting to use the CICS CLER
transaction, it was found that the executing LE/VSE

level is not at the level required to support the version
of the CLER function being used. A possible mismatch
exists between the installed LE/VSE level and the VSE
version being used.

CEL4043E • CEL4101E

Chapter 8. LE/VSE Run-Time Messages 209

System action: The application is terminated.

Programmer response: Check that the correct LE/VSE
level is installed for the executing VSE level, and that
the LE/VSE level is executing in the CICS system
where the CLER transaction is being used. The options
reports generated by the NEWC or ROPC transactions
can be used to determine the currently-active LE/VSE
level in the CICS system. The SIR console command
can be used to determine the currently-active VSE level.

Symbolic Feedback Code: None.

210 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Chapter 9. C Utility Messages

This chapter describes return codes and messages from the:
v Prelinker utility (see page “Prelinker Messages”)
v localedef utility (see page “localedef Utility Messages” on page 215)

v iconv utility (see page “iconv Utility Messages” on page 225)

v genxlt utility (see page “genxlt Utility Messages” on page 227)

v DSECT utility (see page “DSECT Utility Messages” on page 231)

v uconvdef() utility (see page “uconvdef() Utility Messages” on page 228)

For more information about the prelinker, see LE/VSE Programming Guide, SC33-6684.
For more information about the other C utilities, see LE/VSE C Run-Time Programming
Guide, SC33-6688.

Prelinker Messages
This section describes return codes and messages from the prelinker.

Return Codes Issued by the Prelinker
The prelinker can issue the following return codes, indicating the degree of
prelinking success:

Table 40. Return Codes from Prelinker

Return Code Meaning

0 No error detected; processing completed; successful execution anticipated.
4 Possible error (warning) detected; processing completed; successful execution

probable.
8 Error detected; processing might have been completed; successful execution

impossible.
12 Severe error detected; processing terminated abnormally; successful execution

impossible.

Messages Issued by the Prelinker
The message numbers in this section contain a suffix indicating the message
severity:

I Informational message

W Warning message

E Error message

S Severe error message

The C prelinker can issue the following messages:

EDC4000S Unable to open filename.

Explanation: An error was encountered during a file
open.

System action: Processing terminates.

Programmer response: Make sure that the file has the
proper attributes (that is, RECFM, BLKSIZE, LRECL).

© Copyright IBM Corp. 1991, 2014 211

EDC4001S Unable to read filename.

Explanation: An error was encountered during a file
read.

System action: Processing terminates.

Programmer response: Make sure that the file has the
proper attributes (that is, RECFM, BLKSIZE, LRECL). If
the file has been corrupted, recreate it.

EDC4002S Unable to write to filename.

Explanation: An error was encountered during a file
write.

System action: Processing terminates.

Programmer response: Make sure that the file has the
proper attributes (that is, RECFM, BLKSIZE, LRECL).
Also ensure that sufficient disk space is available.

EDC4004W Invalid options: option-string

Explanation: The listed prelinker options were invalid.

System action: The invalid prelinker options are
ignored and processing continues.

Programmer response: Enter the list of valid options.

EDC4005E No input decks were specified.

Explanation: No input decks were specified for the
prelink.

System action: The prelinker will process nothing.

Programmer response: Input at least one deck.

EDC4006S Object deck was missing TXT
statements.

Explanation: A corrupted input deck was encountered
during the prelink.

System action: Processing terminates.

Programmer response: Recompile the source routine
and run it again. If the problem persists, call your IBM
service representative.

EDC4007S Object deck had multiple initialized
CSECTs.

Explanation: A corrupted input deck was encountered
during the prelink.

System action: Processing terminates.

Programmer response: Recompile the source routine
and run it again. If the problem persists, call your IBM
service representative.

EDC4008S Invalid initialization deck (RLDs span
statements).

Explanation: A corrupted input deck was encountered
during the prelink.

System action: Processing terminates.

Programmer response: Recompile the source routine
and run it again. If the problem persists, call your IBM
service representative.

EDC4009S Invalid initialization deck (RLDs and
TXTs not in sync).

Explanation: A corrupted input deck was encountered
during the prelink.

System action: Processing terminates.

Programmer response: Recompile the source routine
and run it again. If the problem persists, call your IBM
service representative.

EDC4010W A zero length static object was found in
assembler deck.

Explanation: A zero length static object was
encountered in an assembler deck.

System action: Incorrect or undefined execution could
result.

Programmer response: Redefine the object with the
appropriate size.

EDC4011E Unresolved writable static references
were detected.

Explanation: Undefined writable static objects were
encountered at prelink termination.

System action: Prelinker produces an object module
with unresolved writable static references. Use of this
object module could result in incorrect or undefined
execution.

Programmer response: Prelink with the MAP option
to find the objects in question and include these objects
with the prelink step.

EDC4012E No input decks were found.

Explanation: Input decks were not found for the
prelink.

System action: The prelinker will process nothing.

EDC4013I No map displayed as no writable static
was found.

Explanation: No writable static objects were found
during the prelink.

System action: If MAP option is specified, no static

EDC4001S • EDC4013I

212 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

map is produced because no writable static objects
were found.

EDC4014E Undefined writable static objects were
detected:

Explanation: The listed writable static objects were
undefined at prelink termination.

System action: Incorrect or undefined execution could
result.

Programmer response: Include these objects during
the prelink.

EDC4015W Unresolved references were detected:

Explanation: The listed objects were unresolved at
prelink termination. Unresolved C library objects are
not required for the prelink step, but should be
resolved during the link-edit step. Unresolved writable
static objects or unresolved objects referring to writable
static objects are required for prelink.

System action: Prelinker only resolve writable static
objects or unresolved objects referring to writable static
objects.

Programmer response: To correct the latter, include
these objects during the prelink.

EDC4016W Duplicate objects were detected:

Explanation: The listed objects were defined multiple
times.

System action: Incorrect execution could occur unless
the objects are defined consistently.

Programmer response: Define the objects consistently.

EDC4017W Duplicate object object-name was defined
with different sizes.

Explanation: An object had been defined multiple
times with different sizes. The larger of the different
sizes was taken. Incorrect execution could occur unless
the object is defined consistently.

System action: The largest size is used.

Programmer response: Define the object consistently.

EDC4019S Invalid or missing XSD statements.

Explanation: A corrupted input deck was encountered
during processing.

System action: Processing terminates.

Programmer response: Recompile your source routine
and repeat the step. If the problem persists, call your
IBM service representative.

EDC4020W Continuation statement missing for
statement-type control statement.

Explanation: A control statement of statement-type was
encountered with the continuation column set, but
there was no next statement or the next statement was
not a valid continuation statement.

System action: The statement is ignored and
processing continues.

Programmer response: Add the appropriate
continuation statement or set continuation column 72 to
blank if no continuation statement is required.

EDC4021W Invalid syntax specified on statement-type
control statement.

Explanation: A control statement with invalid syntax
was encountered during processing.

System action: If the statement was an INCLUDE
statement, the statement is processed up to the syntax
error and the remainder of the statement is ignored. If
the statement was not an INCLUDE statement, the
statement is ignored. In either case, processing
continues.

Programmer response: If the statement is required,
correct the syntax errors and repeat the step. If the
statement is not required, the warning message can be
removed by deleting the invalid statement.

EDC4022W More than one statement-type statement
found in filename.

Explanation: More than one control statement of
statement-type was encountered during the processing of
filename.

System action: The statement is ignored and
processing continues.

Programmer response: No recovery is necessary
unless the incorrect statement was chosen or incorrect
processing was performed. In this case, remove the
incorrect statement and repeat the step.

EDC4023W Continuation statements not allowed for
statement-type statement. Statement
ignored.

Explanation: A control statement of type statement-type
was found to be expecting a continuation statement.
Information for a statement of this type must be
specified on one statement.

System action: The statement is ignored and
processing continues.

Programmer response: Correct the statement if
necessary, set continuation column 72 to blank, and
repeat the step.

EDC4014E • EDC4023W

Chapter 9. C Utility Messages 213

EDC4024W RENAME statement cannot be used for
short name name.

Explanation: A RENAME statement was encountered
that attempted to rename a short name to another
name. RENAME statements are valid only for long
names for which there is no corresponding short name.

System action: The statement is ignored and
processing continues.

Programmer response: The warning message can be
removed by deleting the invalid RENAME statement.

EDC4025W Multiple RENAME statements found for
name. First valid one taken.

Explanation: More than one RENAME statement was
encountered for name.

System action: The first RENAME statement with a
valid output name is chosen.

Programmer response: The prelinker map shows
which output name was chosen. If this was not the
intended name, remove the duplicate RENAME
statement(s) and repeat the step.

EDC4026W May not RENAME long name from-name
to another long name to-name.

Explanation: A RENAME statement had been
encountered that attempted to rename a long name to
another long name.

System action: The statement is ignored and
processing continues.

Programmer response: The prelinker map shows
which output name was chosen. If this was not the
intended name, replace the invalid RENAME statement
with a valid output name and repeat the step. To
remove the warning message, delete the invalid
RENAME statement.

EDC4027W May not RENAME defined long name
from-name to defined name to-name.

Explanation: A RENAME statement had been
encountered that attempted to rename the defined long
name from-name to another defined name to-name

System action: The statement is ignored and
processing continues.

Programmer response: The prelinker map shows
which output name was chosen. If this was not the
intended name, replace the invalid RENAME statement
with a valid output name and repeat the step. To
remove the warning message, delete the invalid
RENAME statement.

EDC4028W RENAME statement of from-name to
to-name ignored since to-name is target of
another RENAME.

Explanation: Multiple RENAME statements had been
encountered attempting to rename two different names
the same name to-name.

System action: The first valid RENAME statement for
to-name is chosen.

Programmer response: The prelinker map shows
which name was renamed to to-name. If the output
name was not the intended name, change the name
and repeat the step. To remove the warning message,
delete the extra RENAME statement(s).

EDC4029W from-name-1 and from-name-2 mapped to
same name (to-name due to UPCASE
option.

Explanation: A name (from-name-1) that was made
uppercase because of the UPCASE option collided with
the output name (to-name) of another name
(from-name-2).

System action: Both names (from-name-1 and
from-name-2) are mapped to to-name

Programmer response: If both names (from-name-1 and
from-name-2) correspond to the same object the warning
can be ignored. If the names do not correspond to the
same object or if the warning is to be removed, do one
of the following:

v Use a RENAME statement to rename one of the
names to something other than to-name.

v Change one of the names in the source routine.

v Use #pragma map in the source routine on one of the
names.

v Do not run the step with the UPCASE option.

EDC4031W File filename not found.

Explanation: The specified file could not be located to
perform the command.

System action: If possible, processing continues
ignoring the particular file.

Programmer response: Try the command again,
specifying the appropriate file.

EDC4036E Invalid command operands: operands.

Explanation: Invalid operands was specified on the
invocation of this command.

System action: Processing terminates.

Programmer response: Specify the correct operands
and repeat the step.

EDC4024W • EDC4036E

214 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

EDC4037E File filename had invalid format.

Explanation: The specified file, filename, did not have
the proper format. The file should be fixed-format with
a record length of 80.

System action: The file is ignored and processing
continues.

Programmer response: Correct the file or file
specification and repeat the step.

EDC4039E Library library-name had invalid format.

Explanation: The specified library, library-name, did
not have the proper format. The library must contain
object modules as members and be fixed-format with a
record length of 80.

System action: Processing terminates.

Programmer response: Correct the library or library
specification and repeat the step.

EDC4040E message-text.

Explanation: General error message.

EDC4041I Internal error.

Explanation: An error had occurred while prelinking.
See IBM C for VSE/ESA Diagnosis Guide for a
description of what to do. Contact your IBM service
representative.

EDC4042S Virtual storage exceeded.

Explanation: The utility ran out of memory. This
sometimes happens with large files or routines with
large functions. Very large routines limit the
optimization that can be done.

System action: Processing terminates.

Programmer response: Divide the file into several
smaller sections or shorten the function.

EDC4053S WRONG MESSAGE FILE

Explanation: (This message is displayed in uppercase
only.) The file opened is not a valid LE/VSE Version 1
Release 4 prelinker message file.

System action: Processing terminates.

Programmer response: Check that the message file in
the sublibrary chain is in the correct format.

EDC4054W INCLUDE statement format is not
supported.

Explanation: An INCLUDE statement of the format
INCLUDE module-name,(name-list) was encountered.
This format is not supported by the prelinker.

System action: The statement is ignored by the
prelinker and left in SYSLNK for processing by the
linkage editor.

Programmer response: Correct the statement if
necessary.

EDC4057E Truncated duplicate #pragma mapped
objects are detected.

Explanation: The prelinker has detected duplicate
names which were longer than 8 characters in length,
but have been #pragma mapped and truncated.
Therefore, these names cannot be renamed by the
prelinker. The duplicate names might also have been
mapped for other reasons (such as a CSECT compiler
option, or a #pragma csect statement).

System action: The duplicate objects are not renamed
and prelinker processing continues. To ensure that
correct execution occurs, you must define the objects
consistently.

Programmer response: To avoid the conflict, modify
the duplicate names listed in the message.

EDC4058E Truncated duplicate #pragma mapped
objects are detected.

Explanation: The prelinker has detected duplicate
names which were longer than 8 characters in length,
but have been #pragma mapped and truncated.
Therefore, these names cannot be renamed by the
prelinker. The duplicate names might also have been
mapped for other reasons (such as a CSECT compiler
option, or a #pragma csect statement).

System action: The duplicate objects are not renamed
and prelinker processing continues. To ensure that
correct execution occurs, you must define the objects
consistently.

Programmer response: Ensure the MAP option is in
effect. The truncated #pragma mapped duplicates will
be listed in the prelinker MAP if the MAP option is in
effect. Once the truncated #pragma mapped duplicates
have been identified, modify the duplicate names to
avoid the conflict.

localedef Utility Messages
This section describes return codes and messages from the localedef utility.

EDC4037E • EDC4058E

Chapter 9. C Utility Messages 215

Return Codes Issued by the localedef Utility
The localedef utility can issue the following return codes:

Table 41. Return Codes from the localedef Utility

Return Code Meaning

0 No errors were detected and the locale(s) were generated successfully .
4 Warning messages were issued and the locale(s) were generated successfully,

or error messages were issued but the BLDERR option was specified.
>4 Warning or errors were detected and the locale was not generated.

Messages Issued by the localedef Utility
The message numbers in this section are followed by numbers indicating message
severity:

10 Warning message

30 Error message

40 Severe error

Warning messages will be issued when the FLAG(E) option is not specified. The
default FLAG(W), will produce warnings. When warning messages (severity of 10)
are issued, the minimum return code from the localedef utility is 4.

When error messages (severity of 30) are issued, the locale is built only if the
BLDERR option is specified. The default is NOBLDERR. If BLDERR is specified,
the return code would be set to a minimum of 4. If error messages are issued and
NOBLDERR was specified (or by default), the return code will be set to a
minimum of 8.

When severe error messages (severity of 40) are issued, the locale is not built and
the return code from the localedef utility is 12.

The localedef utility can issue the following messages:

EDC4100 40 The symbolic name 'symbolic-name' was
not the correct type.

Explanation: This message is issued in the locale
definition file when using a symbolic name that was
not the expected type. The most common time this
error occurs is when the LC_CTYPE keywords are used
as character references in any locale definition file
category.

System action: The locale has not been created.

Programmer response: Use a symbolic name instead
of a character reference.

EDC4101 40 Could not open 'filename' for read.

Explanation: This message is issued if the open for
read failed for any file required by the localedef
utility. The file name passed to fopen() is included in
the message. The locale is not created.

System action: The locale has not been created.

Programmer response: Verify the file name is correct
and the file/data set exists.

EDC4102 40 Internal error in file filename on line
line-number.

Explanation: An internal error had occurred in the
localedef utility.

System action: The locale has not been created.

Programmer response: Examine the locale definition
and charmap files for possible errors. Report error to
IBM.

EDC4103 40 Syntax Error: expected number-expected
arguments and received number-received
arguments.

Explanation: This message is issued in the locale
definition file when a keyword was expecting a fixed

EDC4100 40 • EDC4103 40

216 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

number of arguments and not enough arguments were
supplied.

System action: The locale has not been created.

Programmer response: Add the missing arguments to
the keyword in the locale definition file.

EDC4104 40 Illegal limit in range specification.

Explanation: An error had occurred in a range in the
LC_CTYPE category of the locale definition file. The
locale was not created.

System action: The locale has not been created.

Programmer response: Examine the locale definition
file for possible errors.

EDC4105 40 Memory allocation failure on line
line-number in module module-name.

Explanation: The localedef utility was unable to
allocate memory.

System action: The locale has not been created.

Programmer response: Ensure that the localedef
utility has sufficient storage to run. Also, ensure that
the correct libraries or sublibraries are specified on the
LIBDEF PHASE,SEARCH or LIBDEF *,SEARCH JCL
statement. Rerun the localedef utility.

EDC4106 40 Could not open file 'filename' for write.

Explanation: This message is issued if the open for
write failed when the localedef utility attempted to
generate the C program. The file name passed to
fopen() is included in the message.

System action: The locale has not been created.

Programmer response: Look in the __amrc structure
for further details regarding the error. See LE/VSE C
Run-Time Programming Guide for more information on
the __amrc structure. Or, check the SYSLOG for an
error message.

EDC4107 40 The 'symbol-name' symbol was longer
than <mb_cur_max>.

Explanation: The length of value assigned to the
specified symbol in the charmap file must not be as big
as the value assigned to <mb_cur_max>.
<mb_cur_max> defaults to 1 and can only have the
values 1 or 4. If multibyte characters are required then
the value of <mb_cur_max> must also include the
shift_in and shift_out characters even though the
shift_in and shift_out characters are not entered into
the charmap file as part of a character definition.

System action: The locale has not been created.

Programmer response: Increase the size of
<mb_cur_max> or remove the extra byte in multibyte

sequence assigned to the symbol specified.

EDC4108 10 The 'symbolic-name' symbolic name was
undefined and has been ignored

Explanation: The specified symbolic name used in the
locale definition file was not defined in the charmap
file. When a symbolic name that is not defined is used
in the LC_CTYPE or LC_COLLATE categories, the
warning is issued.

System action: The character has been ignored and
the locale has been created.

Programmer response: Define the specified symbol
name in the charmap file.

EDC4109 40 The 'symbolic-name' symbolic name was
undefined.

Explanation: The specified symbolic name used in the
locale definition file was not defined in the charmap
file. When a symbolic name that is not defined is used
in categories other than LC_CTYPE or LC_COLLATE,
an error message is issued.

System action: The locale has not been created.

Programmer response: Define the specified symbol
name in the charmap file.

EDC4110 40 The start of the range, 'start-codepoint',
must be numerically less than the end
of the range, 'end-codepoint'.

Explanation: In the collation section of the locale
definition file, the start range codepoint specified must
be less than the end range codepoint specified. These
codepoints were assigned values in the charmap file
where the codepoints can be assigned in any order.

System action: The locale has not been created.

Programmer response: Change the collation range
codepoints in the locale definition file so that the start
of the range is less than the end of the range.

EDC4111 40 The symbol range containing
symbolic-name-1 and symbolic-name-2 was
incorrectly formatted.

Explanation: The symbolic names used in the
charmap file should consist of zero or more
nonnumeric characters, followed by an integer formed
by one or more decimal digits. The characters
preceding the integer should be identical in the two
symbolic names, and the integer formed by the digits
in the second name should be equal to or greater than
the integer formed by the digits in the first name. This
is interpreted as a series of symbolic names formed
from the common part and each of the integers
between the first and second integer, inclusive.

In the following example, the first line is valid as both

EDC4104 40 • EDC4111 40

Chapter 9. C Utility Messages 217

names have the same prefix, followed by four digits,
whereas the second example has a different prefix for
the first and second name, and is invalid.

<ab0101>...<ab0120> \x42\xc1
<abc0101>...<ab0120> \x42\xc1

System action: The locale has not been created.

Programmer response: Check the specified symbolic
names to ensure compliance to the above rules.

EDC4112 40 Illegal character reference or escape
sequence in 'string'.

Explanation: A character reference or escape sequence
had been defined that was not legal.

System action: The locale has not been created.

Programmer response: Make the character reference
or escape sequence legal.

EDC4113 30 The symbolic name 'symbolic-name', had
already been specified.

Explanation: The specified symbolic name in the
charmap file had already been specified. A symbolic
name should only be defined once.

System action: The locale has not been created.

Programmer response: Remove the duplicate symbolic
name from the charmap file.

EDC4114 10 There are characters in the codeset
which were unspecified in the collation
order.

Explanation: There were characters defined in the
charmap file that were not used in the collation
category of the locale definition file. The locale was still
created. The characters were added at the end of the
collation sequence

System action: The locale has been created and the
characters were added at the end of the collation
sequence.

Programmer response: If required, add the missing
characters from the charmap file to the collation
category of the locale definition file.

EDC4115 30 Illegal decimal constant 'decimal-value'.

Explanation: The decimal constant of type '\dnnn'
specified in the charmap file was greater than decimal
255.

System action: The locale has not been created.

Programmer response: Change the decimal constant
in the charmap file to a value less than or equal to 255.

EDC4116 30 Illegal octal constant 'octal-value'.

Explanation: The octal constant of type '\nnn'
specified in the charmap file was greater than octal 377.

System action: The locale has not been created.

Programmer response: Change the octal constant in
the charmap file to a value less than or equal to octal
377.

EDC4117 30 Illegal hexadecimal constant 'hex-value'.

Explanation: The hexadecimal constant of type '\xnn'
specified in the charmap file was greater than
hexadecimal FF.

System action: The locale has not been created.

Programmer response: Change the hexadecimal
constant in the charmap file to a value less than or
equal to hexadecimal FF.

EDC4118 30 Missing closing quote in string 'string'.

Explanation: The string specified had a opening
double quote but no closing double quote. The closing
quote will be added.

System action: The locale has not been created. If
BLDERR option is specified, the characters between the
opening double quote and the end of line character will
be used.

Programmer response: Add the closing double quote
after the string.

EDC4119 30 Illegal character, 'character', in input file.

Explanation: An illegal character had been found in
the charmap or locale definition file.

System action: The locale has not been created. If
BLDERR option is specified, the character is ignored.

Programmer response: Remove the character.

EDC4120 30 The character for 'statement' statement is
missing.

Explanation: When defining the escape character or
comment character in the charmap or locale definition
file, a character was not supplied.

System action: The statement was ignored and the
escape character or comment character was not
changed. The locale has not been created. If BLDERR
option is specified, the default comment or escape
character is used.

Programmer response: Insert a character to be defined
as the escape character or comment character in the
charmap or locale definition file.

EDC4112 40 • EDC4120 30

218 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

EDC4121 30 'character' is not a POSIX Portable
Character.

Explanation: When defining escape_char or
comment_char in the charmap or locale definition file,
the character was less than space.

System action: The statement was ignored and the
escape character or comment character was not
changed. The locale has not been created. If BLDERR
option is specified, the default comment or escape
character is used.

Programmer response: Define the escape_char or
comment_char in the charmap or locale definition file
with a character greater than space.

EDC4122 30 The character symbol 'character' is
missing the closing '>'.

Explanation: The character symbol specified had a less
than sign at the beginning of the symbol but no closing
greater than sign. The symbol was accepted.

System action: The locale has not been created. If
BLDERR option is specified, the characters between the
open '<' and the end of line character is used.

Programmer response: Add the greater than sign after
the symbol.

EDC4123 30 Unrecognized keyword, 'string'.

Explanation: When a dot is not used in a string or as
part as of an ellipses ('...'), the keyword is
unrecognized, the statement is ignored.

System action: The locale has not been created.

Programmer response: Remove the dot which is part
of the unrecognized keyword or add the missing dots
to make up ellipses ('...').

EDC4124 40 The encoding specified for the 'multibyte
character' character is unsupported.

Explanation: The multibyte character was not valid,
contains a shift out without a corresponding shift in or
a shift in character without a corresponding shift out.
The locale was not created.

System action: The locale has not been created.

Programmer response: If the string contains
unmatched shift in or shift out characters, remove
them.

EDC4125 30 The character, 'character', had already
been assigned a weight.

Explanation: The specified character or symbolic name
in the collation category of the locale definition file,
had already been defined.

System action: The locale has not been created. If

BLDERR option is specified, the second definition is
ignored.

Programmer response: Remove the duplicate
character or symbolic name for the collation category.

EDC4126 30 A character in range
'low-character...high-character' already had
a collation weight.

Explanation: A character or symbolic name in the
specified range in the collation category of the locale
definition file, had already been defined in the collation
category.

System action: The locale has not been created. If
BLDERR option is specified, the second definition is
ignored.

Programmer response: Remove the duplicate
character or adjust the range so as not to cover
duplicate characters.

EDC4127 10 No toupper section defined for this
locale source file.

Explanation: The toupper keyword in the LC_CTYPE
category in the locale definition file was not specified.
The lowercase character 'a' to 'z' are mapped to the
characters 'A' to 'Z'.

System action: The locale has been created.

Programmer response: Add the lowercase characters
'a' to 'z' and 'A' to 'Z' to the toupper section of the
LC_CTYPE category in the locale definition file.

EDC4128 10 The use of the '...' keyword assumed
that the codeset was contiguous between
the two range endpoints specified.

Explanation: This warning is always produced when
ellipses ('...') are used in defining collation sequences in
the locale definition file because the locale may not be
portable whenever ellipses is used.

System action: The locale is still created.

Programmer response: Instead of using ellipses, insert
all the symbol names between the two range endpoints.

EDC4129 30 The symbolic name, 'symbolic-name',
referenced had not yet been specified in
the collation order.

Explanation: Collation weights in the locale definition
file must use symbolic names that have already been
specified in the collation order.

System action: The locale has not been created. If
BLDERR option is specified, the unspecified reference
to the symbolic name is ignored.

Programmer response: Remove the reference to the
symbolic name from the collation weights that have not

EDC4121 30 • EDC4129 30

Chapter 9. C Utility Messages 219

yet been specified in the collation order.

EDC4130 30 Error in file filename, on line line-number,
at character character-position.

Explanation: An error had occurred in the charmap or
locale definition file on the line number supplied and
at the character position supplied. The line number and
character position in the message indicates the position
within the file when the error was detected. This may
be after the line containing the error.

Programmer response: See the message following for
more information.

EDC4131 10 Warning in file filename, on line
line-number, at character character-position.

Explanation: A warning message had been produced
for the line number supplied, at the character position
supplied in the charmap or locale definition file name
supplied. The line number and character position in the
message indicates the position within the file when the
error was detected. This may be after the line
containing the error.

Programmer response: See the message following for
more information.

EDC4132 30 Syntax error in file filename, on line
line-number, at character character-position.

Explanation: A syntax error had been found in the
charmap or local definition file name supplied, on the
line number supplied and at the character position
supplied. The line number and character position in the
message indicates the position within the file when the
error was detected. This may be after the line
containing the error.

Programmer response: Change the line in the
charmap or locale definition file to conform to the
POSIX standard format.

EDC4133 40 Specific collation weight assignment
was not valid when no sort keywords
have been specified.

Explanation: The number of sort rules, such as
forward, backward, no-substitute or position, specified
after the order_start keyword must be greater than or
equal to the number of weights assigned to any one
character in the collation category of the locale
definition file. When no sort rules are specified, one
forward sort rule is assumed.

System action: The locale has not been created.

Programmer response: Add additional sort rules to
the order_start keyword.

EDC4134 10 The <mb_cur_min> keyword must be
defined as 1, you had defined it as
number.

Explanation: The <mb_cur_min> keyword in the
charmap file can only be set to 1.

System action: The value was ignored and the locale
has been created.

Programmer response: Change the value of the
<mb_cur_min> keyword in the charmap file to 1.

EDC4135 30 The <code_set_name> must contain only
characters from the POSIX portable
character set, 'character' is not valid.

Explanation: The <code_set_name> in the charmap
file must only use graph characters. It must contain
only characters from the portable character set. The
character is not valid.

System action: The locale has not been created. If
BLDERR option is specified, the <code_set_name> is
used anyway.

Programmer response: Remove the character from the
<code_set_name> in the charmap file that is not in the
portable character set.

EDC4136 30 The sort rules forward and backward
are mutually exclusive.

Explanation: Each sort rules of the order_start
keyword of the collation category in the locale
definition file can consist of one or more sort rules
separated by commas. The sort rules forward and
backward, cannot be used at the same time.

System action: The locale has not been created.

Programmer response: Specify only forward or
backward but not both.

EDC4137 30 Received too many arguments, expected
number-of-arguments.

Explanation: This message is issued in the locale
definition file when a keyword is expecting a fixed
number of arguments and too many arguments are
supplied.

System action: The locale has not been created. If
BLDERR option is specified, the extra arguments are
ignored.

Programmer response: Remove the unnecessary
argument in the locale definition file.

EDC4130 30 • EDC4137 30

220 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

EDC4138 30 The category-name category had already
been defined.

Explanation: The specified category in the locale
definition file should only be defined once.

System action: The locale has not been created. If
BLDERR option is specified, the second definition of
the duplicate category is ignored.

Programmer response: Remove the specified duplicate
category.

EDC4139 10 The category-name category was empty.

Explanation: The specified category in the locale
definition file did not contain any keywords.

System action: The locale has been created.

Programmer response: Remove the empty category or
add keywords to the specified category.

EDC4140 30 Unrecognized category category-name was
not processed by localedef.

Explanation: User defined categories in the locale
definition file were not supported. That is, categories
that are not LC_CTYPE, LC_COLLATE,
LC_MONETARY, LC_NUMERIC, LC_TIME,
LC_MESSAGES, LC_SYNTAX or LC_TOD were not
processed by the localedef utility.

System action: The locale has not been created. If
BLDERR option is specified, the unsupported
categories are ignored.

Programmer response: Remove the unrecognized
category from the locale definition file.

EDC4141 10 The POSIX defined categories must
appear before any unrecognized
categories.

Explanation: User defined categories in the locale
definition file must appear after the POSIX defined
categories LC_CTYPE, LC_COLLATE, LC_MONETARY,
LC_NUMERIC, LC_TIME, LC_MESSAGES,
LC_SYNTAX and LC_TOD.

System action: The locale has been created.

Programmer response: Move the unrecognized
category to the end of locale definition file.

EDC4142 30 The file code for the digit high-digit was
not one greater than the file code for
low-digit.

Explanation: The values assigned to the digit symbolic
names <zero> to <nine> in the charmap file must be in
sequence and be contiguous.

System action: The locale has not been created.

Programmer response: Change the value assigned to
the specified digit symbolic name in the charmap file
so that it is one greater than the value assigned to the
preceding digit symbolic name.

EDC4143 30 The process code for the digit high-digit
is not one greater than the process code
for low-digit.

Explanation: The wide character values assigned to
the digit symbolic names <zero> to <nine> in the
charmap file must be in sequence and be contiguous.

System action: The locale has not been created. If
BLDERR option is specified, the values are forced to be
used.

Programmer response: Change the wide character
value assigned to the specified digit symbolic name in
the charmap file so that it is one greater than the wide
character value assigned to the preceding digit
symbolic name.

EDC4144 30 The symbol symbol has already been
defined.

Explanation: The collation symbol must be a symbolic
name, enclosed between angle brackets ('<' and '>'),
and should not duplicate any symbolic name in the
charmap file or any other name defined in the collation
definition.

System action: The locale has not been created. If
BLDERR option is specified, the definition as a
collating-symbol is ignored.

Programmer response: Use another symbolic name for
the collating symbol.

EDC4145 10 Locale did not conform to POSIX
specifications for the LC_CTYPE
'keyword' keyword.

Explanation: The specified keyword in the LC_CTYPE
category in the locale definition contained characters
that conflict with the POSIX definition of the category.
This may be caused by the following:

v The upper keyword contained characters from the
cntrl, digit, punct or space keywords.

v The lower keyword contained characters from the
cntrl, digit, punct or space keywords.

v The alpha keyword contained characters from the
cntrl, digit, punct or space keywords.

v The space keyword contained characters from the
digit, upper, lower, alpha or xdigit keywords.

v The cntrl keyword contained characters from the
digit, upper, lower, alpha, graph, punct, print or
xdigit keywords.

v The punct keyword contained characters from the
digit, upper, lower, alpha, cntrl, space or xdigit
keywords.

EDC4138 30 • EDC4145 10

Chapter 9. C Utility Messages 221

v The graph keyword contained characters from the
cntrl keyword.

v The print keyword contained characters from the
cntrl keyword.

System action: The locale has been created.

Programmer response: Remove the character from the
specified keyword that conflicts with characters from
one of the other keywords.

EDC4146 10 Locale did not specify the minimum
required for the LC_CTYPE 'keyword'
keyword. Setting to POSIX defined
defaults.

Explanation: The specified keyword in the LC_CTYPE
category in the locale definition file did not contain
minimum characters required the keyword. The
minimum requirements for the keywords are as
follows:

v The upper keyword does not contain the required
characters 'A' to 'Z'.

v The lower keyword does not contain the required
characters 'a' to 'z'.

v The digit keyword does not contain the required
digits 0 through 9.

v The xdigit keyword does not contain the required
digits 0 through 9, the uppercase letters 'A' through
'F' and the lowercase letters 'a' through 'f'.

v The space keyword does not contain the required
characters space, form feed, newline, carriage return,
horizontal tab and vertical tab.

v The blank keyword does not contain the required
characters space and tab.

System action: The locale has been created.

Programmer response: Specify the minimum
requirements for the specified keyword.

EDC4147 10 Locale did not specify only '0', '1', - '2',
'3', '4', '5', '6', '7', '8', and '9' for
LC_CTYPE digit keyword.

Explanation: The digit keyword in the LC_CTYPE
category in the locale definition file can only contain
the characters required, '0' to '9'.

System action: The locale is still be created.

Programmer response: Remove the character outside
the '0' to '9' range in the digit keyword.

EDC4148 10 Locale did not specify only '0', '1', '2', '3',
'4', '5', '6', '7', '8', '9', 'a' through 'f', and
'A' through 'F' for LC_CTYPE xdigit
keyword.

Explanation: The xdigit keyword in the LC_CTYPE
category in the locale definition file can only contain
the characters required, '0' to '9' and 'A' to 'F' or 'a' to

'f'. The locale will still be created.

System action: The locale is still be created.

Programmer response: Remove the character outside
the range '0' to '9' and 'A' to 'F' or 'a' to 'f' to the xdigit
keyword.

EDC4149 30 The number of operands to
LC_COLLATE order exceeded
COLL_WEIGHTS_MAX.

Explanation: The number of sort rules, such as
forward, backward, no-substitute or position, specified
after the order_start keyword must not exceed
COLL_WEIGHTS_MAX in the collation category of the
locale definition file.

System action: The locale has not been created. If
BLDERR option is specified, the extra operands are
ignored.

Programmer response: Reduce the number of sort
rules to the order_start keyword.

EDC4150 30 Both 'symbol-1' and 'symbol-2' symbols
must be characters and not collation
symbols or elements.

Explanation: When defining ranges using ellipses ('...')
in the collation category of the locale definition file, the
endpoints of the range must be characters or symbolic
names defined in the charmap file. They should not be
collating-symbol operands or collating-element
operands.

System action: The locale has not been created. If
BLDERR option is specified, the defined ranges will not
be used.

Programmer response: Use different characters for the
range endpoints.

EDC4151 10 Option option is not valid and was
ignored.

Explanation: The option specified in the message is
not a valid localedef utility option, or a valid option
has been specified with an invalid value.

System action: The specified option was ignored and
the locale has been created.

Programmer response: Rerun the localedef utility
with the correct option.

EDC4152 10 No matching right parenthesis for option
option.

Explanation: The option specified for the localedef
utility had a suboption beginning with a left
parenthesis, but no right parenthesis was present.

System action: The option and suboption has been
accepted and the locale was still produced.

EDC4146 10 • EDC4152 10

222 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Programmer response: Add the right parenthesis after
the suboption.

EDC4153 10 Symbol name symbol-name is undefined
and was required in the charmap file.

Explanation: The symbolic name specified is not
defined in the charmap file and must be specified.

System action: The locale has been produced.

Programmer response: Define the missing symbol
name in the charmap file.

EDC4154 30 Keyword 'copy' cannot be nested.

Explanation: A locale category specifies the copy
keyword, and the locale from which the category is
being copied from also includes copy keyword for the
same category.

System action: The locale has not been created. If
BLDERR option is specified, the default is used for the
category.

Programmer response: Change the name of the
existing locale to be copied to the name specified in
existing locale copy keyword.

EDC4155 30 'copy' keyword category 'category-name'
not found.

Explanation: The specified category cannot be found
in the locale definition file that was included using the
copy keyword. The category is not copied.

System action: The category is not copied and the
locale has not been created.

Programmer response: Change the name of the
existing locale to be copied or add the specified
category to the locale definition file.

EDC4156 30 LC_SYNTAX 'character' character can
only be a punctuation character.

Explanation: The specified character defined in the
LC_SYNTAX category of the locale definition file, must
be a punctuation character. The character was ignored.

System action: The locale has not been created.

Programmer response: Only use punctuation
characters as LC_SYNTAX characters.

EDC4157 10 LC_SYNTAX 'character' character can
only have a length of 1. Ignoring
additional characters.

Explanation: The specified character defined in the
LC_SYNTAX category of the locale definition file
contained more than one character, or specified a
multibyte character. The LC_SYNTAX characters must
only be single-byte characters.

System action: The locale is created ignoring
additional characters.

Programmer response: Only use single-byte characters
as LC_SYNTAX characters.

EDC4158 10 LC_SYNTAX 'symbolic-name' character
could not be found in the charmap file.
Assigned code page IBM-1047 symbol
'codepoint'.

Explanation: The LC_SYNTAX category was omitted,
or the character was omitted from the LC_SYNTAX
category, and the localedef utility attempted to assign
the default value. The specified symbolic name was not
found in the charmap file, and the character has been
assigned the code point value from the IBM-1047 code
page.

System action: The local is still created.

Programmer response: Specify the character in the
LC_SYNTAX category that exists in charmap file, or
change the charmap file to include the specified
symbolic name.

EDC4159 30 Duplicate characters for 'character-1' and
'character-2' found in LC_SYNTAX.

Explanation: The specified characters from the
LC_SYNTAX category have the same code points
assigned.

System action: The locale has not been created.

Programmer response: Change the characters to
specify different code points for each of the
LC_SYNTAX characters.

EDC4160 10 The 'keyword' keyword is not supported
and was ignored.

Explanation: The specified keyword is not defined in
the POSIX standard.

System action: The undefined keyword is ignored and
locale has been created.

Programmer response: Remove the specified keyword.

EDC4161 10 The <mb_cur_max> keyword must be
defined as 1 or 4, you have defined it as
number. Value is ignored.

Explanation: The <mb_cur_max> keyword can have
the value of 1 for single-byte characters only, or 4 to
support DBCS characters. Values of other than 1 or 4
are ignored.

System action: The value is ignored and locale has
been created. If BLDERR option is specified, the value
of 1 is used.

Programmer response: Specify <mb_cur_max> as
either 1 or 4.

EDC4153 10 • EDC4161 10

Chapter 9. C Utility Messages 223

EDC4162 30 Both <shift_in> and <shift_out> must
be specified or neither specified.

Explanation: Either the <shift_in> keyword or the
<shift_out> keyword have been specified, but not both.

System action: The locale has not been created.

Programmer response: Specify either both or neither
<shift_in> and <shift_out>.

EDC4163 30 You have exceeded the maximum
number of alternate strings for
alt_digits.

Explanation: Up to 100 alternate string can be
specified for the alt_digits keyword for the values from
zero to 99.

System action: The locale has not been created. If
BLDERR option is specified, the extra strings are
ignored.

Programmer response: Remove the extra alternate
strings.

EDC4164 30 The grouping string 'string' is invalid.

Explanation: The string specified for the
LC_NUMERIC grouping keyword or LC_MONETARY
mon_grouping keyword is not in the correct format.
The string should consist of numbers in the range -1
and 254 separated by semicolons.

System action: The locale has not been created.

Programmer response: Correct the grouping or
mon_grouping string to be in the correct format.

EDC4165 10 The grouping string 'string' is invalid
and had been truncated to
'truncated-string'.

Explanation: The string specified for the
LC_NUMERIC grouping keyword or LC_MONETARY
mon_grouping keyword is not in the correct format.
The string should consist of numbers in the range -1
and 254 separated by semicolons, with no other
numbers or semicolons following the -1.

System action: The character following the -1 were
ignored and the locale has been created.

Programmer response: Remove the characters from
the grouping or mon_grouping string following the -1.

EDC4166 30 The value 'number' for 'keyword' is
invalid.

Explanation: The number specified is not a valid value
for the specified keyword. For example, the day is not
valid for the specified month, or the month is not in
the range from 1 to 12.

System action: The locale has not been created. If

BLDERR option is specified, localdef assigns 0 to value
number.

Programmer response: Correct the value for the
specified keyword to be within the correct range for
that keyword.

EDC4167 30 'keyword-1' specified with no 'keyword-2'.

Explanation: The keyword specified can only be
specified if the other keyword is also specified. Either
both or neither should be specified.

System action: The locale has not been created.

Programmer response: Either remove the first
keyword specified, or add the other required keyword.

EDC4168 10 'daylight_name' must be specified if
Daylight Saving Time information is to
be used by the mktime and localtime
functions.

Explanation: Keywords had been specified in the
LC_TOD category, but the 'daylight_time' keyword had
not been specified. The other keywords will be ignored.

System action: The locale has been created.

Programmer response: Remove the other keywords
from the LC_TOD category, or add the 'daylight_time'
keyword.

EDC4169 30 One-to-many mappings cannot be
specified against a collating-symbol,
collating-element or the UNDEFINED
symbol.

Explanation: A one-to-many mapping has been
specified in the LC_COLLATE category against a
collating-symbol, collating-element or the UNDEFINED
symbol. For example, all of the following would cause
this error message:

collating-symbol <HIGH>
collating-element <ch> from "<c><h>"
<HIGH> "<A>"
<ch> ""
UNDEFINED "<C>"

System action: The locale has not been created.

Programmer response: Remove the one-to-many
mapping from the collating-symbol, collating-element
or the UNDEFINED symbol.

EDC4170 40 Write failed while writing to file
filename.

Explanation: The write failed to the specified file.

System action: The locale has not been created.

Programmer response: Look for a basic problem, such
as insufficient disk space or lack of access to the file. If
you are still unable to determine the cause of the write

EDC4162 30 • EDC4170 40

224 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

failure, contact your system programmer.

EDC4171 30 The process code of the first character of
the collating-element was greater than
the maximum process code.

Explanation: The wchar_t value for the first character
in a collating-element was greater than the largest
character specified in the charmap file. This may occur
if the charmap file specifies <mb_cur_max> of 4, but
did not specify the DBCS characters, and the
collating-element begins with a DBCS character.

System action: The locale has not been created.

Programmer response: Either use a charmap file that
specifies <mb_cur_max> of 1, or change the
collating-element to not start with a DBCS character.

EDC4172 30 Unable to fetch messages file
EDCGMnnn.

Explanation: The localedef utility could not fetch the
message file EDCGMnnn.

nnn NATLANG (National Language)

UEN Uppercase U.S. English

ENU Mixed-case U.S. English

JPN Japanese

System action: The locale has not been created.

Programmer response: Ensure that the localedef
utility has sufficient storage to run. Also, ensure that
the correct libraries or sublibraries are specified on the
LIBDEF PHASE,SEARCH or LIBDEF *,SEARCH JCL
statement.

iconv Utility Messages
This section describes return codes and messages from the iconv utility.

Return Codes Issued by the iconv Utility
The iconv utility can issue the following return codes:

Table 42. Return Codes from the iconv Utility

Return Code Meaning

0 No errors were detected and the file was successfully converted from the
input codeset to the output codeset.

4 The specified conversions are not supported, the given input file cannot be
read, or there is a usage-syntax error.

8 An unusable character was encountered in the input file.
>8 A severe error occurred.

Messages Issued by the iconv Utility
The message numbers in this section are followed by numbers indicating message
severity:

10 Warning message

30 Error message

The iconv utility can issue the following messages:

EDC4151 10 Option option is not valid and was
ignored.

Explanation: The option specified in the message is
not a valid iconv utility message, or a valid option had
been specified with an invalid value.

System action: The specified option has been ignored.

Programmer response: Rerun the iconv utility,

specifying the correct option.

EDC4152 10 No matching right parenthesis for option
option.

Explanation: The option specified for the iconv utility
had a suboption beginning with a left parenthesis, but
no right parenthesis was present.

EDC4171 30 • EDC4152 10

Chapter 9. C Utility Messages 225

System action: The option has been accepted as
entered.

Programmer response: Add the right parenthesis.

EDC4180 30 FROMCODE option had not been
specified.

Explanation: The FROMCODE option is required, but
had not been specified.

System action: The file has not been converted.

Programmer response: Rerun the iconv utility,
specifying the FROMCODE option.

EDC4181 30 TOCODE option has not been specified.

Explanation: The TOCODE option is required, but has
not been specified.

System action: The file has not been converted.

Programmer response: Rerun the iconv utility,
specifying the TOCODE option.

EDC4182 30 Cannot open converter from from-codeset
to to-codeset.

Explanation: The iconv utility could not locate the
conversion from from-codeset to to-codeset.

System action: The file has not been converted.

Programmer response: Check the from-codeset and
to-codeset specified to ensure they are correct.

EDC4183 30 Cannot open input file.

Explanation: The iconv utility could not open the
input file.

System action: The file has not been converted.

Programmer response: Verify that the correct file
name has been specified and rerun the iconv utility.

EDC4184 30 Cannot open output file.

Explanation: The iconv utility could not open the
output file.

System action: The file has not been converted.

Programmer response: Correct the cause of the error
and rerun the iconv utility.

EDC4185 30 Invalid character found.

Explanation: An invalid character was detected in the
input file and could not be converted.

System action: The file is converted up to the record
in error.

Programmer response: Correct the invalid character in
the input file, or specify a different FROMCODE and
TOCODE.

EDC4186 30 Truncated character found.

Explanation: The end of the file has been reached, and
a truncated multibyte character was detected.

System action: The last character has not been
converted.

Programmer response: Correct the invalid character in
the input file, or specify a different FROMCODE and
TOCODE.

EDC4187 30 Unable to allocate enough memory.

Explanation: The iconv utility could not allocate
buffers for use when converting the file.

System action: The file has not been converted.

Programmer response: Rerun the iconv utility with
more memory.

EDC4188 30 I/O error on file filename.

Explanation: An input or output error was detected
with the filename.

This message is issued if the record format of the
output file was fixed and the output records did not
have the same length as the output file, or if the record
format of the output file was variable and the output
records were longer than the maximum record length.

System action: The file is converted up to the record
in error.

Programmer response: Correct the cause of the
input/output error and rerun the iconv utility.

EDC4189 30 Unable to fetch messages file
EDCIMnnn

Explanation: The iconv utility could not fetch the
message file EDCInnn.

nnn NATLANG (National Language)

UEN Uppercase U.S. English

ENU Mixed-case U.S. English

JPN Japanese

System action: The file has not been converted.

Programmer response: Ensure that the iconv utility
has sufficient storage to run. Also, ensure that the
correct libraries or sublibraries are specified on the
LIBDEF PHASE,SEARCH or LIBDEF *,SEARCH JCL
statement.

EDC4180 30 • EDC4189 30

226 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

genxlt Utility Messages
The message numbers in this section are followed by numbers indicating message
severity:

10 Warning message

30 Error message

The genxlt utility can issue the following messages:

EDC4151 10 Option option is not valid and was
ignored.

Explanation: The option specified in the message is
not a valid genxlt utility message, or a valid option
had been specified with an invalid value.

System action: The specified option is ignored.

Programmer response: Rerun the genxlt utility,
specifying the correct option.

EDC4152 10 No matching right parenthesis for
option option.

Explanation: The option specified for the genxlt
utility had a suboption beginning with a left
parenthesis, but no right parenthesis was present.

System action: The option has been accepted as
entered.

Programmer response: Add the right parenthesis.

EDC4190 30 Unable to open data file.

Explanation: The genxlt utility could not open the
input file.

System action: The conversion table has not been
built.

Programmer response: Check that the correct file
name has been specified and rerun the genxlt utility.

EDC4191 30 Unable to open target file.

Explanation: The genxlt utility could not open the
output file.

System action: The conversion table has not been
built.

Programmer response: Correct the cause of the error,
and rerun the genxlt utility.

EDC4192 30 There was no assignment for index
index.

Explanation: The character index had not been
assigned a character to which it must be converted.

System action: The conversion table has not been
built.

Programmer response: Update the input file to specify
a conversion value for the character specified.

EDC4193 30 Unable to write for target file.

Explanation: An output error was detected with the
output file.

Programmer response: Correct the cause of the output
error and rerun the genxlt utility.

EDC4194 30 Invalid format at line line-number.

Explanation: The line line-number is not valid. The
conversion table has not been built.

System action: The conversion table has not been
built.

Programmer response: Correct the line in error and
rerun the genxlt utility.

EDC4195 30 Unable to fetch messages file
EDCGMnnn.

Explanation: The genxlt utility could not fetch the
message file EDCGMnnn.

nnn NATLANG (National Language)

UEN Uppercase U.S. English

ENU Mixed-case U.S. English

JPN Japanese

System action: The file has not been converted.

Programmer response: Ensure that the genxlt utility
has sufficient storage to run. Also, ensure that the
correct libraries or sublibraries are specified on the
LIBDEF PHASE,SEARCH or LIBDEF *,SEARCH JCL
statement.

EDC4151 10 • EDC4195 30

Chapter 9. C Utility Messages 227

uconvdef() Utility Messages
This section contains messages that are used with the LE/VSE C language
uconvdef() utility. These messages are in the range EDC4201 to EDC4237, and are
followed by numbers indicating the message severity:

00 Informational message

10 Warning message

30 Error message

The uconvdef() utility can issue the following messages:

EDC4201 00 Start processing the source file filename.

Explanation: Processing of the specified input file has
started.

System action: Processing continues.

Programmer response: None.

EDC4202 00 Filename created.

Explanation: uconvdef completed processing, and the
output is in the file specified.

System action: None.

Programmer response: None.

EDC4203 30 Output file filename was not created.

Explanation: Output for uconvdef was not created. An
accompanying message provides further information
about why processing did not complete.

System action: uconvdef terminates with no output.

Programmer response: Use the information provided
by the accompanying message to determine and fix the
source of the error, or contact your system programmer.

EDC4204 30 Not enough space for allocation.

Explanation: The uconvdef() function issued a system
call to obtain working storage in which to build output.
The call failed and storage was not obtained.

System action: uconvdef() terminates with no output.

Programmer response: Ensure that the uconvdef()
utility has sufficient storage to run.

EDC4205 30 Cannot open input file filename:
error-message.

Explanation: The fopen() function for the named file
failed. The associated error message is included if the
VERBOSE option has been specified.

System action: uconvdef() terminates with no output.

Programmer response: Verify that the file name is
correct and that the file/library member exists.

EDC4206 30 Cannot open temporary file:
error-message.

Explanation: The fopen() function for a memory work
file failed. The associated error message is included if
the VERBOSE option has been specified.

System action: uconvdef() terminates with no output.

Programmer response: Ensure that the uconvdef()
utility has sufficient storage to run.

EDC4207 30 Cannot close input file filename:
error-message.

Explanation: The fclose() function for the named file
failed. The associated error message is included if the
VERBOSE option has been specified.

System action: uconvdef() terminates with no output.

Programmer response: Use the error message to
determine the cause of the failure.

EDC4208 30 Cannot close temporary file:
error-message.

Explanation: The fclose() function for a memory work
file failed. The associated error message is included if
the VERBOSE option has been specified.

System action: uconvdef() terminates with no output.

Programmer response: Use the error message to
determine the cause of the failure.

EDC4210 30 Error while reading input file filename:
error-message.

Explanation: The fgets() function for the named file
failed. The associated error message is included if the
VERBOSE option has been specified.

System action: uconvdef() terminates with no output.

Programmer response: Make sure that the file has the
proper attributes (that is, RECFM, BLKSIZE, and
LRECL). If the file has been corrupted, recreate it.

EDC4211 30 Error while writing temporary file:
error-message.

EDC4201 00 • EDC4211 30

228 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Explanation: The fwrite() function for a memory work
file failed. The associated error message is included if
the VERBOSE option has been specified.

System action: uconvdef() terminates with no output.

Programmer response: Ensure that the uconvdef()
utility has sufficient storage to run.

EDC4212 30 MB_CUR_MIN is greater than
MB_CUR_MAX default.

Explanation: The value of MB_CUR_MIN cannot
exceed the value of MB_CUR_MAX. MB_CUR_MAX
was not specified. The default value of MB_CUR_MAX
is 1.

System action: uconvdef() terminates with no output.

Programmer response: Specify a value of
MB_CUR_MIN that is less than MB_CUR_MAX in the
input file and run uconvdef() again with the changed
input.

EDC4213 30 Line line-number: space at the beginning
of a line is not allowed.

Explanation: No line in the input file may begin with
a space. The message identifies the number of the line
that begins with a space.

System action: uconvdef() terminates with no output.

Programmer response: Remove the space in the input
file and run uconvdef() again with the changed input.

EDC4214 30 Line line-number: invalid line format.

Explanation: The number of the line with the invalid
format is identified in the message.

System action: uconvdef() terminates with no output.

Programmer response: Correct the line format in the
input file and run uconvdef() again with the changed
input.

EDC4215 30 Line line-number: invalid token.

Explanation: The number of the line with the invalid
token is identified in the message.

System action: uconvdef() terminates with no output.

Programmer response: Correct the line in the input
file and run uconvdef() again with the changed input.

EDC4216 30 Line line-number: invalid value for token
string.

Explanation: The number of the line with the invalid
token value is identified in the message.

System action: uconvdef() terminates with no output.

Programmer response: Correct the line in the input

file and run uconvdef() again with the changed input.

EDC4217 30 Line line-number: token string must have
a value.

Explanation: A token must be assigned a value. The
message identifies the number of the line and token
without a value.

System action: uconvdef() terminates with no output.

Programmer response: Correct the line in the input
file and run uconvdef() again with the changed input.

EDC4218 30 Line line-number: code set name can be
defined only once.

Explanation: A code set name can be defined only
once. The message identifies the number of the line
that specifies the name of the code set being redefined.

System action: uconvdef() terminates with no output.

Programmer response: Correct the line in the input
file and run uconvdef() again with the changed input.

EDC4219 30 Line line-number: UCONV_CLASS can
be defined only once.

Explanation: UCONV_CLASS can be defined only
once. The message identifies the number of the line
that attempts to define UCONV_CLASS again.

System action: uconvdef() terminates with no output.

Programmer response: Correct the line in the input
file and run uconvdef() again with the changed input.

EDC4220 30 Line line-number: CHARMAP section is
already started.

Explanation: An input file can contain only one
CHARMAP section. The message identifies the number
of the line that attempts to begin a second section.

System action: uconvdef() terminates with no output.

Programmer response: Correct the line in the input
file and run uconvdef() again with the changed input.

EDC4221 30 Line line-number: no token found.

Explanation: A token could not be found on the input
line identified in the message.

System action: uconvdef() terminates with no output.

Programmer response: Correct the line in the input
file and run uconvdef() again with the changed input.

EDC4212 30 • EDC4221 30

Chapter 9. C Utility Messages 229

EDC4222 30 Line line-number: conflict with
UCONV_CLASS.

Explanation: There is a conflict with the specified
UCONV_CLASS. The length of the code point on the
line identified in the message is greater or smaller than
the length allowed by the UCONV_CLASS.

System action: uconvdef() terminates with no output.

Programmer response: Correct the line in the input
file and run uconvdef() again with the changed input.

EDC4223 30 Line line-number: conflict with
MB_CUR_MIN or MB_CUR_MAX.

Explanation: The length of a code point cannot be less
than MB_CUR_MIN or greater than MB_CUR_MAX.
The error was detected in the line identified in the
message.

System action: uconvdef() terminates with no output.

Programmer response: Correct the line in the input
file and run uconvdef() again with the changed input.

EDC4224 30 Line line-number: conflicting code length.

Explanation: An invalid code point length was
detected while processing a multibyte character set. The
error was detected in the line identified in the message.

System action: uconvdef() terminates with no output.

Programmer response: Correct the line in the input
file and run uconvdef() again with the changed input.

EDC4225 30 Line line-number: range exceeds limit of
one byte.

Explanation: The range on the line identified in the
message exceeds the allowable limit of one byte.

System action: uconvdef() terminates with no output.

Programmer response: Correct the line in the input
file and run uconvdef() again with the changed input.

EDC4226 30 Line line-number: invalid code point.

Explanation: The value of the code point on the line
identified in the message is greater than allowed.

System action: uconvdef() terminates with no output.

Programmer response: Correct the line in the input
file and run uconvdef() again with the changed input.

EDC4227 30 Line line-number: escape and comment
characters must be distinct.

Explanation: The escape and comment characters
must be distinct. The error was detected in the line
identified in the message.

System action: uconvdef() terminates with no output.

Programmer response: Correct the line in the input
file and run uconvdef() again with the changed input.

EDC4228 30 No code set name is defined.

Explanation: The input file must contain a statement
that identifies the code set.

System action: uconvdef() terminates with no output.

Programmer response: Add a code set name
statement to the input file and run uconvdef() again
with the changed input.

EDC4229 30 No UCONV_CLASS is defined.

Explanation: The input file must contain a statement
that identifies the UCONV_CLASS.

System action: uconvdef() terminates with no output.

Programmer response: Add a UCONV_CLASS
statement to the input file and run uconvdef() again
with the changed input.

EDC4230 30 CHARMAP section must start with
CHARMAP.

Explanation: The CHARMAP section of the input file
must start with a CHARMAP statement.

System action: uconvdef() terminates with no output.

Programmer response: Add a CHARMAP statement
to the input file and run uconvdef() again with the
changed input.

EDC4231 30 CHARMAP section has no END
CHARMAP.

Explanation: The input file must contain an END
CHARMAP statement.

System action: uconvdef() terminates with no output.

Programmer response: Add an END CHARMAP
statement to the input file and run uconvdef() again
with the changed input.

EDC4232 30 Cannot open output file filename:
error-message.

Explanation: The fopen() function for the named file
failed. The associated error message is included if the
VERBOSE option has been specified.

System action: uconvdef() terminates with no output.

Programmer response: Use the error message to
determine the cause of the failure.

EDC4222 30 • EDC4232 30

230 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

EDC4233 30 Cannot close output file filename:
error-message.

Explanation: The fclose() function for the named file
failed. The associated error message is included if the
VERBOSE option has been specified.

System action: uconvdef() terminates with incomplete
output.

Programmer response: Use the error message to
determine the cause of the failure.

EDC4234 30 Cannot reopen temporary file:
error-message.

Explanation: The freopen() function for a memory
work file failed. The associated error message is
included if the VERBOSE option has been specified.

System action: uconvdef() terminates with no output.

Programmer response: Use the error message to
determine the cause of the failure.

EDC4236 30 Error while writing output file filename:
error-message.

Explanation: The fwrite() function for the named file
failed. The associated error message is included if the
VERBOSE option has been specified.

System action: uconvdef() terminates with incomplete
output.

Programmer response: Use the error message to
determine the cause of the failure.

EDC4237 30 Unable to fetch message file
EDCUMnnn.

Explanation: The uconvdef() utility could not fetch
the message file EDCUMnnn, where nnn is either UEN
(uppercase U.S. English) or ENU (mixed case U.S.
English), depending on the setting of NATLANG run-time
option.

System action: uconvdef() terminates with no output.

Programmer response: Ensure that the uconvdef()
utility has sufficient storage to run and that the correct
libraries or sub-libraries are specified on the LIBDEF
PHASE,SEARCH or LIBDEF *,SEARCH JCL statement.

DSECT Utility Messages
This section describes return codes and messages from the DSECT utility.

Return Codes Issued by the DSECT Utility
The DSECT utility can issue the following return codes:

Table 43. Return Codes from the DSECT utility

Return Code Meaning

0 Successful completion.
4 Successful completion, warnings issued.
8 DSECT utility failed, error messages issued.
12 DSECT utility failed, severe error messages issued.
16 DSECT utility failed, insufficient storage to continue processing.

Messages Issued by the DSECT Utility
The message numbers in this section are followed by numbers indicating message
severity:

00 Informational message

10 Warning message

30 Error message

40 Severe error

The DSECT utility can issue the following messages:

EDC5500 10 Option option is not valid and is
ignored.

Explanation: The option specified in the message is
not valid DSECT utility option or a valid option has

EDC4233 30 • EDC5500 10

Chapter 9. C Utility Messages 231

been specified with an invalid value. The specified
option is ignored.

User response: Rerun the DSECT utility with the
correct option.

EDC5501 30 No DSECT or CSECT names were
found in the SYSADATA file.

Explanation: The SECT option was not specified or
SECT(ALL) was specified. The SYSADATA was
searched for all DSECTs and CSECTs but no DSECTs or
CSECTs were found.

User response: Rerun the DSECT utility with a
SYSADATA file that contains the required DSECT or
CSECT definition.

EDC5502 30 Sub option sub-option for option option is
too long

Explanation: The sub option specified for the option
was too long and is ignored.

EDC5503 30 Section name section was not found in
SYSADATA File.

Explanation: The section name specified with the
SECT option was not found in the External Symbol
records in the SYSADATA file. The C structure is not
produced.

User response: Rerun the DSECT utility with a
SYSADATA file that contains the required DSECT or
CSECT definition.

EDC5504 30 Section name section is not a DSECT or
CSECT.

Explanation: The section name specified with the
SECT option is not a DSECT or CSECT. Only a DSECT
or CSECT names may be specified. The C structure is
not produced.

EDC5505 00 No fields were found for section section,
structure is not produced.

Explanation: No field records were found in the
SYSADATA file that matched the ESDID of the
specified section name. The C structure is not
produced.

EDC5506 30 Record length for file "filename" is too
small for the SEQUENCE option, option
ignored

Explanation: The record length for the output file
specified is too small to enable the SEQUENCE option
to generate the sequence number in columns 73 to 80.
The available record length must be greater than or
equal to 80 characters. The SEQUENCE option is
ignored.

EDC5507 40 Insufficient storage to continue
processing.

Explanation: No further storage was available to
continue processing.

User response: Rerun the DSECT utility with a larger
partition GETVIS size.

EDC5508 30 Open failed for file "filename":
error-message

Explanation: This message is issued if the open fails
for any file required by the DSECT utility. The file
name passed to fopen() and the error message
returned by strerror(errno) is included in the
message.

User response: The message text indicates the cause of
the error. If the file name was specified incorrectly on
the OUTPUT option, rerun the DSECT utility with the
correct file name.

EDC5509 40 function-name failed for file "filename":
error-message

Explanation: This message is issued if any error
occurs reading, writing or positioning on any file by
the DSECT utility. The name of the function that failed
(Read, Write, fgetpos, fsetpos), file name and text from
strerror(errno) is included in the message.

User response: This message may be issued if an error
occurs reading or writing to a file. This may be caused
by an error within the file, such as an I/O error or
insufficient disk space. Correct the error and rerun the
DSECT utility.

EDC5510 40 Internal Logic error in function
function-name

Explanation: The DSECT utility has detected that an
error has occurred while generating the C structure.
Processing is terminated and the C structure is not
produced.

User response: This may be caused by an error in the
DSECT utility or by incorrect input in the SYSADATA
file. Contact your systems administrator.

EDC5511 10 No matching right parenthesis for option
option.

Explanation: The option specified had a sub option
beginning with a left parenthesis but no right
parenthesis was present.

User response: Rerun the DSECT utility with the
parenthesis for the option correctly paired.

EDC5501 30 • EDC5511 10

232 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

EDC5512 10 No matching quote for option option.

Explanation: The OUTPUT option has a sub option
beginning with a single quote but no matching quote
was found.

User response: Rerun the DSECT utility with the
quotes for the option correctly paired.

EDC5513 10 Record length too small for file
"filename".

Explanation: The record length for the Output file
specified is less than 10 characters in length. The
minimum available record length must be at least 10
characters.

User response: Rerun the DSECT utility with an
output file with a available record length of at least 10
characters.

EDC5514 30 Too many sub options were specified
for option option.

Explanation: More than the maximum number of sub
options were specified for the particular option. The
extra sub options are ignored.

EDC5515 00 HDRSKIP option value greater than
length for section section, structure is not
produced.

Explanation: The value specified for the HDRSKIP
option was greater than the length of the section. A
structure was not produced for the specified section.

User response: Rerun the DSECT utility with a
smaller value for the HDRSKIP option.

EDC5516 10 SECT and OPTFILE options are
mutually exclusive, OPTFILE option is
ignored

Explanation: Both the SECT and OPTFILE options
were specified, but the options are mutually exclusive.

User response: Rerun the DSECT utility with either
the SECT or OPTFILE option.

EDC5517 10 Line line-number from "filename" does not
begin with SECT option

Explanation: The line from the file specified on the
OPTFILE option did not begin with the SECT option.
The line was ignored.

User response: Rerun the DSECT utility without
OPTFILE option, or correct the line in the input file.

EDC5518 10 setlocale() failed for locale name
"locale-name".

Explanation: The setlocale() function failed with the
locale name specified on the LOCALE option. The
LOCALE option was ignored.

User response: Rerun the DSECT utility without
LOCALE option, or correct the locale name specified
with the LOCALE option.

EDC5519 10 Long names were detected and
truncated. Check output.

Explanation: The DSECT utility detected at least one
name whose length exceeds the maximum allowed. It
has therefore truncated the name, and appended “...” to
the end of the name to signify the condition. If the
input name is within limits and the UNIQUE option is
specified, the mapping of national characters in the
input name might have extended the name length
beyond the maximum allowed.

User response: Check the DSECT utility output. Long
names are truncated, which is indicated by “...” at the
end of the name. If applicable, modify the UNIQUE
option field. Or, modify the input name so that it does
not exceed the maximum length when expanded.

EDC5520 40 Architecture Level i of SYSADATA is
not supported. The latest supported
level is d.

Explanation: The SYSADATA file has probably been
produced by a recent HLASM release which is not yet
supported by the DSECT utility.

User response: Contact your IBM representative.

EDC5521 40 Architecture Level i of SYSADATA is no
longer supported. The earliest supported
level is d.

Explanation: The SYSADATA file has probably been
produced by an obsolete HLASM release.

User response: Use a supported HLASM release to
produce the SYSADATA file.

EDC5522 10 Edition d of record X'04x' is not
supported. Edition d is assumed.

Explanation: The likely reason is that HLASM
maintenance has introduced an updated layout of this
SYSADATA record type. This should not cause a
problem unless the offsets of fixed fields processed by
the DSECT utility have changed. The message can be
ignored unless the produced output is incorrect.

User response: If the DSECT utility is producing
incorrect output, then please contact your IBM
representative.

EDC5512 10 • EDC5522 10

Chapter 9. C Utility Messages 233

EDC5599 30 Unable to fetch messages file
EDDNnnn.

Explanation: The DSECT utility could not fetch the
message file EDDNnnn.

nnn NATLANG (National Language)

UEN Uppercase U.S. English

ENU Mixed-case U.S. English

JPN Japanese

System action: The conversion table has not been
built.

User response: Ensure that the DSECT utility has
sufficient storage to run. Also, ensure that the correct
libraries or sublibraries are specified on the LIBDEF
PHASE,SEARCH or LIBDEF *,SEARCH JCL statement.

EDC5599 30

234 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Chapter 10. C Run-Time Messages

The following run-time messages pertain to C. Each message is followed by an
explanation describing the condition that caused the message, a programmer
response suggesting how you might prevent the message from occurring again,
and a system action indicating how the system responds to the condition that
caused the message.

The messages also contain a symbolic feedback code, which represents the first 8
bytes of a 12-byte condition token. You can think of the symbolic feedback code as
the nickname for a condition. As such, the symbolic feedback code can be used in
user-written condition handlers to screen for a given condition, even if it occurs at
different locations in an application.

The message numbers in this section contain a suffix indicating the message
severity:

I Informational message

W Warning message

E Error message

S Severe error message

C Critical error message

EDC5000I No error occurred.

Explanation: The value of errno is zero.

System action: None.

Programmer response: None.

Symbolic Feedback Code: EDC4S8

EDC5001I A domain error occurred.

Explanation: This error occurred because an input
argument to one of the math functions was outside the
domain over which the mathematical function is
defined.

System action: The math function fails.

Programmer response: See LE/VSE C Run-Time Library
Reference for the math functions that produced this
error.

Symbolic Feedback Code: EDC4S9

EDC5002I A range error occurred.

Explanation: This error occurred because the result of
the math function could not be represented as a double
value.

System action: The math function fails.

Programmer response: See LE/VSE C Run-Time Library

Reference for the math function that produced this error.

Symbolic Feedback Code: EDC4SA

EDC5003I Truncation of a record occurred during
an I/O operation.

Explanation: Truncation occurred because either (1)
the specified record length on the write operation was
larger than the record buffer size or (2) the record read
in was larger than the record buffer size.

System action: The return value depends on the
operation attempted. In all cases, the buffer is
read/written up to the point where truncation
occurred.

Programmer response: For a text stream, place the
newline character earlier in the record to shorten the
record size. For a file opened for record I/O, specify a
smaller number of bytes for fread(), fwrite(), or
fupdate().

Symbolic Feedback Code: EDC4SB

EDC5004I The size of the specified record was not
large enough.

Explanation: The record length was too small because:
the specified record size for an fwrite() or fupdate()
function was smaller that the minimum record length
allowed for the file.

© Copyright IBM Corp. 1991, 2014 235

System action: In all cases, the write or update
operation fails.

Programmer response: Increase the size or count
parameter on the fwrite() or fupdate() function.

Symbolic Feedback Code: EDC4SC

EDC5005I A write operation cannot immediately
follow a read operation.

Explanation: If the last operation on a non-VSAM file
opened for record I/O was read, a write operation
cannot directly follow.

System action: The write operation fails.

Programmer response: Invoke fflush(), rewind(),
fseek(), or fsetpos() between the read and write
operations on the file stream.

Symbolic Feedback Code: EDC4SD

EDC5006I A read operation cannot immediately
follow a write operation.

Explanation: If the last operation on a file was a write,
a read operation cannot directly follow.

System action: The read operation fails.

Programmer response: Invoke fflush(), rewind(),
fseek(), or fsetpos() between the write and read
operations on the file stream.

Symbolic Feedback Code: EDC4SE

EDC5007I The I/O buffer could not be allocated.

Explanation: Memory was not available for the
allocation of various buffers when invoking any of the
I/O functions.

System action: The I/O function returns NULL or
EOF.

Programmer response: Run the program with a larger
partition GETVIS size.

Symbolic Feedback Code: EDC4SF

EDC5008I The LRECL or BLKSIZE exceeded the
maximum allowable value.

Explanation: The specified LRECL or BLKSIZE was
greater than 32760.

System action: The fopen()/freopen() function fails.

Programmer response: Change the open attributes
specified to be within the valid limits.

Symbolic Feedback Code: EDC4SG

EDC5009I An I/O operation was attempted using
an invalid FILE pointer.

Explanation: The FILE pointer that was input to the
I/O function was not an active FILE pointer created by
fopen()/freopen().

System action: The specified I/O operation fails.

Programmer response: Ensure that the FILE pointer
was created by fopen()/freopen() and that no I/O
operation is attempted after fclose().

Symbolic Feedback Code: EDC4SH

EDC5010I A read operation was attempted on a
file that was not opened for reading.

Explanation: When a read operation (e.g. fgetc(),
fread()) is invoked, the file specified must be opened
in a mode that supports reading.

System action: The read operation fails.

Programmer response: Open the file with a mode that
supports reading. The following modes do NOT
support reading: 'w', 'wb', 'a', or 'ab'.

Symbolic Feedback Code: EDC4SI

EDC5011I The number of ungetc() push-back
characters has exceeded the maximum
allowed.

Explanation: An ungetc() was attempted but could
not be honored due to the fact that were already
pushed back characters waiting to be read and the
number of pushed back characters already equalled the
maximum allowed.

System action: The ungetc() function returns EOF.

Programmer response: Either read a pushed back
character or reposition the file before attempting to
push back another character.

Symbolic Feedback Code: EDC4SJ

EDC5012I File positioning is not allowed for this
data set.

Explanation: An attempt was made to either acquire
the file position or reposition the file using an I/O
function that is not supported by the file.

System action: The function fails.

Programmer response: For non-VSAM files, do not
open the file with the NOSEEK option. For VSAM
PATH data sets, position the FILE pointer to the
beginning of the data set or do not issue the ftell() or
fseek() functions. If the data set resides on a device
that does not support repositioning, then either move
the data set or do not use the positioning functions.

Symbolic Feedback Code: EDC4SK

EDC5005I • EDC5012I

236 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

EDC5014I An attempt was made to acquire a
position that is prior to the start of the
file.

Explanation: The ftell() and fgetpos() functions
cannot return a file position when characters are
pushed back using ungetc() at the start of the file. This
is because the resultant position ends up being prior to
the start of the file and this is not a valid position.

System action: ftell() or fgetpos() fail.

Programmer response: Do not call ftell() or
fgetpos() if you push back characters prior to the start
of the file, unless you either read them or discard them
via a reposition first.

Symbolic Feedback Code: EDC4SM

EDC5015I The file position value was beyond the
limits that ftell() can represent in a long
integer value.

Explanation: The current position lies outside the
bounds that can be represented by the ftell()
encoding scheme. For fixed format binary streams, this
is a file position beyond relative byte number
2147483647. For other files, the limit is based on the
relative block or record number. The maximum
depends on the blksize. Smaller blksizes allows more
records to be encoded. The maximum will be at least
131072 records.

System action: The ftell() function fails (return -1).

Programmer response: The fgetpos() function can be
used to report file positions that ftell() cannot. The
fsetpos() function must then be used to perform the
repositioning at a later time.

Symbolic Feedback Code: EDC4SN

EDC5016I Byte I/O was attempted on a file that
was opened for record I/O.

Explanation: One of the byte I/O functions was
invoked with a file that was opened using
'type=record'.

System action: The requested function fails.

Programmer response: The fread(), fwrite(), and
fupdate() functions are the only functions that can be
used to read, write, or update a file opened for record
I/O.

Symbolic Feedback Code: EDC4SO

EDC5017I A write operation was attempted on a
file that was not opened for writing.

Explanation: When a write operation (for example,
fputc(), fwrite()) is invoked, the file specified must
have been opened for writing.

System action: The write operation fails.

Programmer response: Open the file with a mode that
supports writing. The following modes do NOT
support writing: 'r', 'rb'.

Symbolic Feedback Code: EDC4SP

EDC5018I An ungetc() function call cannot
immediately follow a write operation.

Explanation: A reposition function or flush must occur
between a write operation and ungetc().

System action: The ungetc() function returns EOF.

Programmer response: Invoke either fflush(),
rewind(), fseek(), or fsetpos() before calling
ungetc().

Symbolic Feedback Code: EDC4SQ

EDC5019I An irrecoverable error has marked the
file permanently in error.

Explanation: A previous I/O operation has failed such
that the current file pointer is no longer valid. Only the
fclose() and freopen() functions are permitted.

System action: The operation fails.

Programmer response: Check the return codes of
previous I/O operations, or set up a SIGIOERR handler
to determine the source of the error. Once you have
determined which C function has generated the error,
issue perror() to get the original error message.

Symbolic Feedback Code: EDC4SR

EDC5020I An attempt to allocate memory in the
language environment has failed.

Explanation: LE/VSE's attempt at obtaining memory
in order to satisfy the current library request has failed.

System action: No storage is allocated. The value of
the address parameter is undefined.

System action: The requested function fails.

Programmer response: Ensure that the partition
GETVIS size is sufficient to run the application. Ensure
that the size parameter in the get storage request is not
an unusually large number. Verify that the storage sizes
specified in the HEAP and STACK run-time options are
reasonable, given the partition GETVIS size allocated to
the application.

Symbolic Feedback Code: EDC4SS

EDC5021I The file attributes for open create an
invalid combination.

Explanation: An invalid combination was caused by
merging the characteristics specified on the

EDC5014I • EDC5021I

Chapter 10. C Run-Time Messages 237

fopen()/freopen() call, the DLBL declaration, or the
existing file attributes.

System action: The fopen()/freopen() function fails.

Programmer response: Adjust the LRECL and
BLKSIZE parameters on the fopen()/freopen() call or
adjust the attributes specified with the DLBL so a valid
combination is created. See LE/VSE C Run-Time
Programming Guide for details on attribute merging and
valid combinations.

Symbolic Feedback Code: EDC4ST

EDC5022I An error occurred while generating a
temporary name.

Explanation: The tmpnam() function was called in
order to generate a temporary file name. However, a
name could not be generated, which did not already
exist, within the maximum number of attempts.

System action: The tmpnam() function fails and returns
NULL.

Programmer response: Verify that the time() and
clock() functions are working correctly on your
system. If so, try erasing all unused files which were
created via the tmpnam() function, and retry function.
Contact your IBM Support Center if error still occurs.

Symbolic Feedback Code: EDC4SU

EDC5023I An attempt to back up position has
failed.

Explanation: One or more ungetc() calls are
outstanding when an fgetpos() or ftell() is called
such that the file position is really in the previous
physical block. An attempt by the language
environment to back up the file to acquire the position
has failed.

System action: The ftell()/fgetpos() function fails.

Programmer response: Check the __amrc structure for
more information. See LE/VSE C Run-Time Programming
Guide for more information on the __amrc structure.

Symbolic Feedback Code: EDC4SV

EDC5025I An I/O function was invoked when a
read was pending for a file that had
been intercepted.

Explanation: A file that was intercepted under the
debugging tool was expecting input when an I/O
function for that file was invoked from the debugging
session.

System action: The I/O function fails.

Programmer response: Do not recursively invoke
library I/O functions when a read is pending. Supply
the expected data and then invoke the I/O function.

Symbolic Feedback Code: EDC4T1

EDC5027I The position specified to fseek() was
invalid.

Explanation: One of the following occurred: (1) a
whence value other than SEEK_SET, SEEK_CUR, or
SEEK_END was specified; (2) the specified position
was previous to the start of the stream; or (3) the
specified position lay beyond the end of the stream and
the stream was not a binary file.

System action: The fseek() function fails.

Programmer response: Correct the offset/whence
parameters on the fseek() function to be a valid
position or, the file should be opened in binary mode if
the user wishes file positions beyond EOF to result in
null extension to the file.

Symbolic Feedback Code: EDC4T3

EDC5028I A previous I/O error has marked the
stream invalid for further I/O
processing.

Explanation: A serious error has occurred in a
previous I/O operation such that further I/O cannot be
continued. The routine that caused the original error
had set errno previously, but it will have changed due
to this errno value. The clearerr() function will not
clear this type of error.

System action: The current I/O operation fails.

Programmer response: Check the return code values
of previous I/O operations to detect which operation
originated the system I/O failure and get the errno
value. Use this list to find a prescribed action or
attempt a rewind() or fsetpos() to clear the internal
error marker and reestablish the file position.

Symbolic Feedback Code: EDC4T4

EDC5029I An unrecognized signal value was
passed to the signal() or raise() function.

Explanation: The signal value passed into the
signal() or raise() function was not one of the valid
signals as defined in signal.h.

System action: The signal() or raise() function
returns SIG_ERR.

Programmer response: Pass either SIGIOERR, SIGFPE,
SIGSEGV, SIGILL, SIGABRT, SIGTERM, SIGINT,
SIGTERM, SIGUSR1, SIGUSR2, or SIGABND to the
signal() or raise() function.

Symbolic Feedback Code: EDC4T5

EDC5022I • EDC5029I

238 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

EDC5030I An invalid argument was passed.

Explanation: The setenv() function has been called
with a '=' sign in the environment variable name. This
is an invalid argument.

System action: The setenv() function fails.

Programmer response: Remove the '=' sign from the
environment variable name.

Symbolic Feedback Code: EDC4T6

EDC5031I An attempt was made to close a stream
not belonging to the current main
program.

Explanation: User has passed a file pointer across a
system call boundary and has attempted to close or
reopen the file in the child program.

System action: The fclose()/freopen() function fails.

Programmer response: The program is invalid and
must be changed. The suggested change is to close the
file in the parent program prior to the system() call.
The file can then be reopened in the child program, if
required. Upon returning to the parent program, the
file can again be reopened.

Symbolic Feedback Code: EDC4T7

EDC5032I An error was detected in the input
string passed to the system() function.

Explanation: When invoking the system() function
and 'PGM=' was specified for an MVS-style parameter
list, either the 'PARM=' string was not specified or
invalid characters were found on the 'PARM=' string.

System action: The system() function fails.

Programmer response: Correct the parameter string
passed to the system() function or use a VM-style
parameter list.

Symbolic Feedback Code: EDC4T8

EDC5033I An attempt was made to extend a
non-extendable file.

Explanation: While updating a partitioned data set
member or a concatenated data set, an attempt was
made to extend the file.

System action: The I/O write operation fails.

Programmer response: If extension is required to a
member, open the old member in read mode and copy
the contents to a new member which is opened for
write. Since the new member is opened in write mode,
it can be extended. Close both the old and new
members and then delete the old member with the
remove() function. Rename the new member using the
rename() function so it appears to be the old member,

now extended. For a concatenated data set, you cannot
extend the concatenation.

Symbolic Feedback Code: EDC4T9

EDC5034I An unsupported buffering mode was
specified for the setvbuf() function.

Explanation: The buffer type specified as a parameter
for the setvbuf() function was unsupported.

System action: The setvbuf() function fails.

Programmer response: Specify one of the following
supported buffer types: _IOFBF (full buffering) or
_IOLBF (line buffering).

Symbolic Feedback Code: EDC4TA

EDC5035I An attempt was made to change the
buffering mode after an operation on a
file.

Explanation: A call to the setvbuf() function was
made after the file had been read or written.

System action: The setvbuf() function returns EOF.

Programmer response: Use the setvbuf() function to
set the buffering mode before any read or write I/O
operations are done.

Symbolic Feedback Code: EDC4TB

EDC5036I The specification of a member is
invalid.

Explanation: On a remove() or rename() function call,
a member has been specified for a file that does not
have members or a member has been specified for one
name of a rename() function call, but not for the second
name.

System action: The remove()/rename() function fails.

Programmer response: If the file does not have
members, remove the member specification. If this is a
rename() call and only one name specifies a member,
either remove the member specification or add a
member specification to the second name.

Symbolic Feedback Code: EDC4TC

EDC5038I An error occurred when flushing
console output, before the system
retrieves console input.

Explanation: When a console read cannot get any data
from the buffer and must perform a system console
read, all console output data not yet flushed to the
system must be output. While writing out the
unflushed console output data, an error occurred.

System action: The console input operation fails.

Programmer response: Change the code so that all

EDC5030I • EDC5038I

Chapter 10. C Run-Time Messages 239

console output is completed and flushed to the console
before the console input operation. Check all return
codes to find out if any output operation gets an error
and then check the errno value for further information
regarding any error encountered.

Symbolic Feedback Code: EDC4TE

EDC5041I An error was detected at the system
level when opening a file.

Explanation: A system level error was detected.

System action: The fopen()/freopen() function fails.

Programmer response: Look in the __amrc structure
for further details regarding the error. See LE/VSE C
Run-Time Programming Guide for more information on
the __amrc structure. Or, check the SYSLOG for an
error message.

Symbolic Feedback Code: EDC4TH

EDC5042I A special internally-generated memory
file name was specified for open, but a
memory file with this name does not
exist.

Explanation: A name was specified of the form: '((x))'
where 'x' is a decimal number and the name did not
match an existing memory file. A name of this format is
not allowed to be used to create a memory file. The
name is generated internally by C when a user opens a
memory file with a name of '*' for output. C generates
the name so that the user can acquire it using the
fldata() function and then can read, update, append,
or remove the memory file.

System action: The fopen()/freopen() function fails.

Programmer response: If using memory files created
with a name of '*', issue fldata() to acquire the correct
name. If the name was properly acquired via fldata(),
make sure it has not been closed and removed prior to
the open using the generated name.

Symbolic Feedback Code: EDC4TI

EDC5043I An attempt was made to open a
non-memory file, as a memory file.

Explanation: An open for read has specified
'type=memory', but the file is not a memory file.

System action: The fopen()/freopen() function fails.

Programmer response: Remove the 'type=memory'
specification on the fopen()/freopen().

Symbolic Feedback Code: EDC4TJ

EDC5045I The operation attempted could not be
performed because the file was open.

Explanation: An attempt was made to remove or
rename a file that was still open or an attempt was
made to open a file for output or append, but the file
was already open.

System action: The remove(), rename(), fopen(), or
freopen() function fails.

Programmer response: The remove() function can
only be invoked with files that have been closed. The
fopen() function cannot open a memory or disk file for
write/update/append if the file is already opened. A
memory file opened with a member specified prevents
the name from being used without a member and
vice-versa. For example, it is not possible to have
memory files: 'a.b' and 'a.b(c)' opened at the same time.
In either case, the original open file must be closed.

Symbolic Feedback Code: EDC4TL

EDC5046I The file could not be deleted.

Explanation: The remove() function could not remove
the file specified.

System action: The remove() function fails.

Programmer response: Verify that the file name
specified to the remove() function is erasable.

Symbolic Feedback Code: EDC4TM

EDC5047I An invalid file name was specified as a
function parameter.

Explanation: The name specified to the remove(),
rename(), fopen(), or freopen() functions was invalid.
The name is either not valid for the system, or is not a
valid memory file name.

System action: The invoked function fails.

Programmer response: Specify a valid file name
according to the system or the memory file name rules
to the remove(), rename(), fopen(), and freopen()
functions.

Symbolic Feedback Code: EDC4TN

EDC5048I A Language Environment internal
routine has unexpectedly failed.

Explanation: An internal call to an LE/VSE internal
routine has failed but the failure is not anticipated and
cannot be recovered from.

System action: Current library function using an
internal routine fails.

Programmer response: Contact your IBM Support
Center.

Symbolic Feedback Code: EDC4TO

EDC5041I • EDC5048I

240 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

EDC5049I The file name specified could not be
located.

Explanation: When the rename() function was
invoked, the old file name could not be found or the
new file name could not allocated or, when the
fopen()/freopen() function was invoked, the specified
file name opened for read could not be found.

System action: The fopen(), freopen(), or rename()
functions fails.

Programmer response: Verify that the file name
specified exists.

Symbolic Feedback Code: EDC4TP

EDC5051I An error occurred when renaming a file.

Explanation: A rename error have occurred.

System action: The rename() function fails.

Programmer response: For disk files, ensure that the
old file name exists. For memory files ensure that
different names are specified to the rename() function.
Check the __amrc for further details.

Symbolic Feedback Code: EDC4TR

EDC5052I The application is running AMODE=24
while the run-time library was installed
above the line.

Explanation: The application which is accessing the
run-time library is running AMODE=24. But, the
run-time library was installed above the 16M line
which the application cannot address.

System action: Application is terminated with 3000
abend.

Programmer response: Ensure the amode of the
application matches that of the run-time library. If you
must run AMODE=24, then the run-time library must
be installed below the line. Otherwise, relink your
application to be AMODE=31.

Symbolic Feedback Code: EDC4TS

EDC5053I The language environment run-time
library phase EDCZ24 could not be
loaded.

Explanation: An error has occurred when LE/VSE
tried to load the run-time library phase EDCZ24.

System action: The program terminates and a
traceback or dump is issued, depending upon the
TERMTHDACT run-time option. A return code of 3000
is returned.

Programmer response: Ensure that the partition
GETVIS size is sufficient to run the application. Check
the files in the LIBDEF PHASE search chain for the job
to ensure EDCZ24 is available (for example, check

PRD2.SCEEBASE, the default installation sublibrary).

Symbolic Feedback Code: EDC4TT

EDC5054I An attempt to override the disposition
was ignored. The file may still be
removed.

Explanation: The remove() function attempted to
delete the data set by using a disposition of DELETE.
The data set would not allow an override of the
disposition.

System action: The remove() function will return
failure, but the data set may have been removed if the
original allocation specified DELETE as the normal
disposition.

Programmer response: Change the disposition on the
original allocation or remove the data set outside of
your C program.

Symbolic Feedback Code: EDC4TU

EDC5055I An error occurred trying to remove the
file before its expiration date.

Explanation: When the remove() function attempted
to erase the file, an error was returned indicating that
the expiration date had not yet occurred.

System action: The remove() function fails.

Programmer response: Change the expiration date of
the data set.

Symbolic Feedback Code: EDC4TV

EDC5057I The open mode string was invalid.

Explanation: The mode string passed to the
fopen()/freopen() function was found to have invalid
keywords, combinations or characters.

System action: The fopen()/freopen() function fails.

Programmer response: Correct the mode string and
reissue the fopen()/freopen().

Symbolic Feedback Code: EDC4U1

EDC5059I An attempt to reposition a VSAM file
failed.

Explanation: When the flocate() function was
invoked, the reposition was not successful, or rewind()
could not position to the beginning of the file.

System action: The flocate() function fails. The
rewind() function will not reposition to the start of the
data set.

Programmer response: For flocate(), verify that the
attributes of the VSAM file match the type of
repositioning being attempted. For a rewind() error,
check the __amrc structure. See LE/VSE C Run-Time

EDC5049I • EDC5059I

Chapter 10. C Run-Time Messages 241

Programming Guide for more information on the __amrc
structure.

Symbolic Feedback Code: EDC4U3

EDC5060I An invalid file position was passed to
the fsetpos() function.

Explanation: When invoking fsetpos(), the fpos_t
structure passed did not represent a valid position in
the current file.

System action: The fsetpos() function fails.

Programmer response: Verify that the fpos_t structure
set by fgetpos() is a valid file position before calling
fsetpos(). Also verify that the file has not changed
between the time of the fgetpos() and fsetpos().

Symbolic Feedback Code: EDC4U4

EDC5061I An error occurred when attempting to
define a file to the system.

Explanation: The fopen()/freopen() function or the
remove() function could not successfully allocate or
FILEDEF the specified file.

System action: The fopen(), freopen(), or remove()
function fails.

Programmer response: Check the __amrc structure for
more information. See LE/VSE C Run-Time Programming
Guide for more information on the __amrc structure.

Symbolic Feedback Code: EDC4U5

EDC5063I An error was detected in an internal
control block.

Explanation: One of the internal I/O control blocks
was corrupted and is causing unexpected behavior.

System action: The I/O operation fails and the stream
is marked as invalid for further I/O.

Programmer response: Ensure that the application
program is not overwriting storage. If the error cannot
be located, contact the IBM Support Center.

Symbolic Feedback Code: EDC4U7

EDC5065I A write system error was detected.

Explanation: A system level write error has occurred
for VSE, VSAM, etc.

System action: The write operation fails.

Programmer response: Check the __amrc structure for
more information. See LE/VSE C Run-Time Programming
Guide for information on the __amrc structure.

Symbolic Feedback Code: EDC4U9

EDC5066I A read system error was detected.

Explanation: A system level read error has occurred
for VSE, VSAM, etc.

System action: The read operation fails.

Programmer response: Check the __amrc structure for
more information. See LE/VSE C Run-Time Programming
Guide for more information on the __amrc structure.

Symbolic Feedback Code: EDC4UA

EDC5067I An attempt was made to open a
nonexistent file for read.

Explanation: The fopen()/freopen() function was
invoked for read, but the file specified did not exist.

System action: The fopen()/freopen() function fails.

Programmer response: Ensure that the file to be
opened for read exists.

Symbolic Feedback Code: EDC4UB

EDC5072I An attempt was made to open a KSDS
or Path VSAM data set without
specifying record I/O.

Explanation: Key Sequenced VSAM Data Sets and
Path VSAM data sets may not be opened as streams for
writing. Only Entry Sequenced VSAM data sets and
Relative Record VSAM Data Sets may be opened this
way.

System action: The fopen()/freopen() function fails.

Programmer response: Change the type string
parameter on the fopen() function to include
'type=record'.

Symbolic Feedback Code: EDC4UG

EDC5073I The maximum number of attempts to
obtain temporary names was exceeded.

Explanation: The tmpnam() function was invoked more
than the maximum number of times allowed.

System action: The tmpnam() function returns NULL
and does not generate any more unique names.

Programmer response: The programmer should alter
the application to minimize the number of calls to
tmpnam(). Only TMP_MAX calls are guaranteed to
work.

Symbolic Feedback Code: EDC4UH

EDC5074I The open parameters were missing the
'type=record' specifier.

Explanation: The open type keyword parameter 'acc='
is not valid unless 'type=record' is also specified.

System action: The fopen()/freopen() function fails.

EDC5060I • EDC5074I

242 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Programmer response: Specifiy 'type=record' on the
fopen()/freopen() statement.

Symbolic Feedback Code: EDC4UI

EDC5076I An fread() was not performed prior to
calling the fdelrec() or fupdate()
functions.

Explanation: The fdelrec() and fupdate() functions
cannot be invoked without previously calling the
fread() function.

System action: The fdelrec() and fupdate()
functions fail.

Programmer response: Invoke the fread() function
directly before these functions.

Symbolic Feedback Code: EDC4UK

EDC5077I An error occurred trying to erase a
VSAM record.

Explanation: The fdelrec() function was not able to
successfully erase the last record read from the
specified VSAM file.

System action: The fdelrec() function fails.

Programmer response: Examine the values of
__amrc.__code.__feedback.__rc and
__amrc.__code.__feedback.__fdbk immediately after
receiving this errno. Look up the __rc and __fdbk
values in a VSAM Macro Reference manual, such as
VSE/VSAM Commands. __rc corresponds to the register
15 value, __fdbk corresponds to the Reason Code. See
LE/VSE C Run-Time Programming Guide for more
information on the __amrc structure.

Symbolic Feedback Code: EDC4UL

EDC5078I The requested operation is only valid
for VSAM data sets.

Explanation: The fdelrec(), flocate() and fupdate()
functions can only be invoked with VSAM data sets.

System action: The fdelrec(), flocate() and
fupdate() functions fails.

Programmer response: Use the the fseek()/ftell()
or fgetpos()/fsetpos() functions for positioning
within a non-VSAM file. For updating, use
fread()/fwrite() or the byte I/O functions instead of
fupdate().

Symbolic Feedback Code: EDC4UM

EDC5079I The file was not opened with a
'type=record' specification.

Explanation: The fdelrec() and fupdate() functions
are not valid for VSAM data sets opened as streams.

System action: The fdelrec() and fupdate()
functions fail.

Programmer response: Change the fopen() type
parameter string to include 'type=record'.

Symbolic Feedback Code: EDC4UN

EDC5080I An invalid option was passed to the
flocate() function.

Explanation: The parameter that specifies the position
options to the flocate() function contained an invalid
value.

System action: The flocate() function fails.

Programmer response: Use one of the following as the
options parameter: __KEY_FIRST, __KEY_LAST,
__KEY_EQ, __KEY_EQ_BWD, __KEY_GE, __RBA_EQ
or __RBA_EQ_BWD, as defined in stdio.h.

Symbolic Feedback Code: EDC4UO

EDC5083I An error occurred attempting to load a
phase into storage.

Explanation: The library has attempted to dynamically
load a phase and a failure resulted. This is usually as a
result of a system() call.

System action: The called library function fails.

Programmer response: Verify that the specified
program/command has been made accessible for
loading. You may also need to adjust your partition
size. Check the job log for messages which will help to
pinpoint the name of the phase.

Symbolic Feedback Code: EDC4UR

EDC5084I The program was not run because of
redirection errors on the command line.

Explanation: An error was detected when the input
string to main() was being parsed. One of the following
may have occurred: 1) the file name specified with the
redirection symbols could not be opened (for read,
write or append); 2) the file name specified with the
write redirection symbol was already opened; or 3) the
same redirection symbol was specified more than once
in the command string.

System action: This errno is used internally to
generate the redirection error message. The program is
terminated or the system() call returns the failure and
does not invoke the second program.

Programmer response: Correct the input string passed
to main and if the system() call is being used to invoke
another C main() program, the files that are still open
in the first program will be considered open when the
redirection statements are being verified.

Symbolic Feedback Code: EDC4US

EDC5076I • EDC5084I

Chapter 10. C Run-Time Messages 243

EDC5087I The file characteristics specified did not
match those of the existing file.

Explanation: The fopen()/freopen() was attempting
to perform an open that used an existing data set, but
found that the specified attributes did not match the
existing file attributes, specifically, LRECL, BLKSIZE or
record format.

System action: The fopen()/freopen() function fails.

Programmer response: Verify that the attributes of the
physical file are as expected by the application
program.

Symbolic Feedback Code: EDC4UV

EDC5088I An invalid open mode was specified for
the current device.

Explanation: The following open modes and device
types are invalid combinations: (1) reading a display or
printer; (2) writing to a character reader; (3) updating a
magnetic tape device; (4) opening SYSIPT or SYSLST
for 'append' or 'update'; (5) opening SYSIPT for
anything besides 'read'; or (6) opening SYSLST 'read'.

System action: The fopen()/freopen() function fails.

Programmer response: Correct the open mode on the
fopen()/freopen() call and/or verify the that the
current device type is what is expected.

Symbolic Feedback Code: EDC4V0

EDC5089I Open mode is invalid for a re-directed
SYSLST or SYSPCH file.

Explanation: A variable or undefined record format
was specified.

System action: The fopen()/freopen() function fails.

Programmer response: Correct the open mode on the
fopen()/freopen() call.

Symbolic Feedback Code: EDC4V1

EDC5091I The requested function could not be
performed because a system utility
failed.

Explanation: A system level utility used by the library
unexpectedly returned a failure code.

System action: The requested function fails.

Programmer response: Check the __amrc structure
and see the LE/VSE C Run-Time Programming Guide for
further details.

Symbolic Feedback Code: EDC4V3

EDC5092I An I/O abend was trapped.

Explanation: An I/O abend has occurred during an
I/O operation (open,read,write, position, or close) and
has been trapped. Recovery was attempted.

System action: The I/O operation fails. The stream is
marked in error and all further I/O operations on this
stream will fail.

Programmer response: Check the __amrc structure
(defined in LE/VSE C Run-Time Programming Guide) for
an explanation of the fields.

Symbolic Feedback Code: EDC4V4

EDC5094I An attempt was made to push back the
EOF character using ungetc().

Explanation: The ungetc() function can not be
invoked with the EOF character.

System action: The ungetc() function fails.

Programmer response: Do not call ungetc() with EOF.

Symbolic Feedback Code: EDC4V6

EDC5099I The function specified is not supported
under CICS.

Explanation: The function specified is not supported
under CICS.

System action: The specified function fails.

Programmer response: See LE/VSE C Run-Time
Programming Guide for more information on running
under C under CICS.

Symbolic Feedback Code: EDC4VB

EDC5100I An attempt was made to perform disk
file I/O under CICS.

Explanation: Under CICS, the fopen(), freopen(),
rename() and remove() functions only support memory
files. The standard streams must be memory files or
use the specified queues.

System action: The fopen(), freopen(), rename(), and
remove() functions fail, and the first write (and all
subsequent writes) to stdout/stderr will fail.

Programmer response: Only invoke fopen(),
freopen(), rename() or remove() with memory files
when running under CICS.

Symbolic Feedback Code: EDC4VC

EDC5101I The transient data queue was not
enabled for the standard streams.

Explanation: When running under CICS and an
attempt has been made to write to stdout or stderr, the
requested transient data queue was not enabled.

EDC5087I • EDC5101I

244 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

System action: The write I/O operation fails.

Programmer response: Ensure that the DFHDCT
macro has been assembled and defined correctly in the
start-up CICS JCL. The systems programmer will know
the name, type of queue and associated ddnames at
your installation.

Symbolic Feedback Code: EDC4VD

EDC5102I The transient data queue was not
opened for the standard streams.

Explanation: When the first I/O operation was
requested for stdout or stderr when running under
CICS, the Transient Data Queue inquiry indicated that
the requested TD queue was not opened.

System action: The write I/O operation fails.

Programmer response: Verify that the start-up CICS
JCL opened the specified TD queues correctly.

Symbolic Feedback Code: EDC4VE

EDC5103I An attempt was made to map remote
queues to the standard streams under
CICS.

Explanation: When the first I/O operation was
requested for stdout or stderr when running under
CICS, the Transient Data Queue inquiry indicated that
the requested queue was a REMOTE queue.

System action: The write I/O operation fails.

Programmer response: Correct the start-up JCL to
specify (via the DFHDCT macro) the standard stream
queues to be EXTRAPARTITION, INTRAPARTITION,
or INDIRECT.

Symbolic Feedback Code: EDC4VF

EDC5113I Bad file descriptor.

Explanation: The file descriptor used referred to a file
which was not open, or was out of range, or a read
request was made to a file that was only open for
writing, or a write request was made to a file that was
open only for reading.

System action: The request has failed. Application
execution continues.

Programmer response: See LE/VSE C Run-Time
Programming Guide for the function being attempted, for
the specific reason for failure.

Symbolic Feedback Code: EDC4VP

EDC5117I File exists.

Explanation: An existing file was specified in an
inappropriate manner.

System action: The request has failed. Application
execution continues.

Programmer response: See LE/VSE C Run-Time Library
Reference for the function being attempted, for the
specific reason for failure.

Symbolic Feedback Code: EDC4VT

EDC5118I Bad address.

Explanation: The system detected an invalid address
in attempting to use an argument of a call. Note that
not all functions will detect this error.

System action: The request has failed. Application
execution continues.

Programmer response: See LE/VSE C Run-Time Library
Reference for the function being attempted, for the
specific reason for failure. This failure is usually caused
by an invalid argument address.

Symbolic Feedback Code: EDC4VU

EDC5119I File too large.

Explanation: The size of a file would exceed the
maximum allowed for the access method used.

System action: The request has failed. Application
execution continues.

Programmer response: Ensure that enough space is
available in the file. For VSAM ensure that the file size
or definition does not exceed the maximum supported
limit.

Symbolic Feedback Code: EDC4VV

EDC5121I Invalid argument.

Explanation: An argument supplied was invalid.

System action: The request has failed. Application
execution continues.

Programmer response: See LE/VSE C Run-Time Library
Reference for the function being attempted, for the
specific reason for failure.

Symbolic Feedback Code: EDC501

EDC5122I Input/output error.

Explanation: An input or output error occurred.

System action: The request has failed. Application
execution continues.

Programmer response: See LE/VSE C Run-Time Library
Reference for the function being attempted, for the
specific reason for failure.

Symbolic Feedback Code: EDC502

EDC5102I • EDC5122I

Chapter 10. C Run-Time Messages 245

EDC5127I Too many open files in system.

Explanation: The system reached its predefined limit
for simultaneously open files.

System action: The request has failed. Application
execution continues.

Programmer response: The request may succeed at a
later time if fewer files are in use.

Symbolic Feedback Code: EDC507

EDC5128I No such device.

Explanation: The function being attempted is not
allowed by the specified device. For instance, the
program attempted to read from a write-only device.

System action: The request has failed. Application
execution continues.

Programmer response: See LE/VSE C Run-Time Library
Reference for the function being attempted, for the
specific reason for failure.

Symbolic Feedback Code: EDC508

EDC5131I No locks available.

Explanation: No file and/or record locks are available,
the system limit has been reached.

System action: The request has failed. Application
execution continues.

Programmer response: See LE/VSE C Run-Time Library
Reference for the function being attempted, for the
specific reason for failure.

Symbolic Feedback Code: EDC50B

EDC5132I Not enough memory.

Explanation: There is not enough memory space
available to create the new object.

System action: The request has failed. Application
execution continues.

Programmer response: See LE/VSE C Run-Time Library
Reference for the function being attempted, for the
specific reason for failure.

Symbolic Feedback Code: EDC50C

EDC5134I Function not implemented.

Explanation: The function to be executed has not been
implemented.

System action: The request has failed. Application
execution continues.

Programmer response: The function cannot be used
by the application program.

Symbolic Feedback Code: EDC50E

EDC5137I Inappropriate I/O control operation.

Explanation: A control function was attempted for a
file or a special file for which the operation was
inappropriate.

System action: The request has failed. Application
execution continues.

Programmer response: See LE/VSE C Run-Time Library
Reference for the function being attempted, for the
specific reason for failure.

Symbolic Feedback Code: EDC50H

EDC5138I No such device or address.

Explanation: Input or output on a special file referred
to a device that did not exist, or made a request
beyond the limits of the device. For instance, when a
tape drive is not online.

System action: The request has failed. Application
execution continues.

Programmer response: Refer to the LE/VSE C
Run-Time Library Reference for the function being
attempted, for the specific reason for failure.

Symbolic Feedback Code: EDC50I

EDC5145I Output buffer too small to contain all
converted characters.

Explanation: The outbut buffer specified for the
function is too small to contain all of the converted
characters produced. Refer to the LE/VSE C Run-Time
Library Reference for the function being attempted, for
the specific reason for failure.

System action: The request has failed. Application
execution continues.

Symbolic Feedback Code: EDC50P

EDC5147I Illegal byte sequence.

Explanation: The string contains an illegal sequence of
bytes. For example, an unmatched shift out / shift in
condition exists.

System action: The request has failed. Application
execution continues.

Programmer response: See LE/VSE C Run-Time Library
Reference for the function being attempted, for the
specific reason for failure.

Symbolic Feedback Code: EDC50R

EDC5160I Bad character in environment variable
name.

Explanation: An invalid character was found in the
'name' or 'value' string specified on a getenv() or
setenv() function.

EDC5127I • EDC5160I

246 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

System action: The request has failed. Application
execution continues.

Programmer response: See LE/VSE C Run-Time Library
Reference for the function being attempted, for the
specific reason for failure.

Symbolic Feedback Code: EDC518

EDC5165I System TOD clock not set.

Explanation: The system time of day (TOD) clock is in
error, stopped, or in a nonoperational state.

System action: The request has failed. Application
execution continues.

Programmer response: Report this problem to your
system programmer.

Symbolic Feedback Code: EDC51D

EDC5168I Password has expired.

Explanation: The verification request has failed
because the password has expired.

System action: The request has failed. Application
execution continues.

Programmer response: Change the password.

Symbolic Feedback Code: EDC51G

EDC5169I Password is invalid.

Explanation: The verification or change password
request has failed because the supplied password is
invalid.

System action: The request has failed. Application
execution continues.

Programmer response: Correct the supplied password,
and retry the request.

Symbolic Feedback Code: EDC51H

EDC5180E Permanent I/O error on file filename.

Explanation: May be caused by a program attempting
to process a file for which the program was not
designed.

System action: The current I/O operation fails.

Programmer response: Check the system log at the
time of error for messages. Ensure the file being used
matches the program specifications.

Symbolic Feedback Code: EDC51S

EDC5181E Wrong length record on file filename.

Explanation: Specified record length does not match
actual record length.

System action: The current I/O operation fails.

Programmer response: Ensure the file being used
matches the program specifications.

Symbolic Feedback Code: EDC51T

EDC5182E No more matching/available extents for
file filename.

Explanation: Possible explanations:

v There may not be sufficient VSAM data space for a
VSAM-managed SAM output file.

v The EXTENT information for a SAM file may not
have sufficient space for the program data being
written.

v The program may be in a loop outputting data to a
file.

System action: The I/O write operation fails.

Programmer response: Check the EXTENT option of
the file's DLBL statement.

For VSAM-managed SAM files, use the LISTCAT
command to check VSAM data space availability. For
information on using LISTCAT, see VSE/VSAM
Commands.

Symbolic Feedback Code: EDC51U

EDC5183E Function not supported under VSE.

Explanation: A C function has been called that is not
supported by the LE/VSE C run-time.

System action: The function call fails.

Programmer response: Check the program for
function calls that are not listed in LE/VSE C Run-Time
Library Reference

Symbolic Feedback Code: EDC51V

EDC5184E Specified DLBL name not found.

Explanation: No matching DLBL can be found for the
file-ID, DLBL name, or logical unit specified in the
filename parameter of the fopen() or freopen()
function. If the program is attempting to open SYSLNK,
there might not be a DLBL for IJSYSLN.

System action: The fopen()/freopen() function fails.

Programmer response: Check that the item specified
by the filename parameter has a matching DLBL. For
details on specifying fopen() and freopen()
parameters, see LE/VSE C Run-Time Programming Guide.

Symbolic Feedback Code: EDC520

EDC5165I • EDC5184E

Chapter 10. C Run-Time Messages 247

EDC5185E Specified System Logical Unit not
assigned.

Explanation: Possible explanations:

v The remove() function may be attempting to remove
a SAM file where the DLBL/EXTENT data does not
supply a validly assigned logical unit.

v The fopen() function may be attempting to open a
file using the format:

– DD:SYSxxx where the logical unit is not validly
assigned.

– DD:DLBL for a SAM file where the DLBL/EXTENT
data does not supply a validly-assigned logical
unit.

– file-ID where the file-ID has been matched to a
SAM DLBL/EXTENT which does not supply a
validly-assigned logical unit.

– file-ID where the file-ID has been matched to a
TLBL JCL statement, however labeled tape files
may only be opened using the
DD:SYSxxx-TLBLname format.

System action: The fopen()/freopen() or remove()
function fails.

Programmer response: Check that the item specified
by the filename parameter has a matching DLBL. Check
the logical unit or file-ID specified by the DLBL or
TLBL statement. For details on specifying fopen(),
freopen(), and remove() parameters, see LE/VSE C
Run-Time Programming Guide.

Symbolic Feedback Code: EDC521

EDC5186E Specified System Logical Unit is
assigned to an unsupported device.

Explanation: The assigned device type is not
supported for C run-time files.

System action: The fopen()/freopen() function fails.

Programmer response: Check that the logical unit
specified by fopen() or freopen() is assigned to a
supported device type. For a list of supported device
types, see LE/VSE C Run-Time Programming Guide.

Symbolic Feedback Code: EDC522

EDC5187E The System Logical Unit associated with
the DLBL/TLBL for the file is not
assigned to a disk/tape device.

Explanation: Attempting to open a file using
DLBL/EXTENT where the logical unit is not assigned
to a disk, or using a TLBL where the logical unit is not
assigned to a tape device.

System action: The fopen()/freopen() function fails.

Programmer response: Check the logical unit specified
by fopen() or freopen(). Check the ASSIGN statement
for the logical unit.

Symbolic Feedback Code: EDC523

EDC5188E Error trying to allocate a Define The File
(DTF).

Explanation: An error occurred when attempting to
allocate a DTF to open a file. The console log should
contain an associated message further defining the
problem.

System action: The fopen()/freopen() function fails.

Programmer response: Check the LE/VSE message
file (default is SYSLOG) for a related message.

Symbolic Feedback Code: EDC524

EDC5191E No blksize determined for DISK file
filename.

Explanation: A disk file has not been opened because
there was no BLKSIZE= provided or no RECFM= provided.
If this information cannot be obtained from a VSAM
catalog, it must be provided in the fopen() mode
paramaters.

System action: The fopen()/freopen() function fails.

Programmer response: Check the fopen() or
freopen() BLKSIZE and RECFM mode parameters for
this VSAM-managed SAM file.

Symbolic Feedback Code: EDC527

EDC5223S too many characters

Explanation: The application called the form()
function with a format specifier string that caused
form() to write past the end of the format buffer.
form() is an obsolete interface provided in stream.h for
compatibility with old code.

System action: Execution is aborted.

Programmer response: Split the call to form() into
two or more calls.

Symbolic Feedback Code: EDC537

EDC5224S singularity: log((0,0))

Explanation: The application is attempting to take the
log of (0.0, 0.0).

System action: Execution is aborted.

Programmer response: Correct the value passed to
log() and resubmit.

Symbolic Feedback Code: EDC538

EDC5185E • EDC5224S

248 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

EDC5500 - EDC5599

Explanation: These messages are produced by the
DSECT utility. For details, see “DSECT Utility
Messages” on page 231.

EDC6000E The raise() function was issued for the
signal SIGFPE.

Explanation: The program has invoked the raise()
function with the SIGFPE signal specified and the
default action specified.

System action: The program terminates and a
traceback or dump is issued, depending on the
TERMTHDACT run-time option. A return code of 3000
is returned.

Programmer response: None.

Symbolic Feedback Code: EDC5RG

EDC6001E The raise() function was issued for the
signal SIGILL.

Explanation: The program has invoked the raise()
function with the SIGILL signal specified and the
default action specified.

System action: The program terminates and a
traceback or dump is issued, depending on the
TERMTHDACT run-time option. A return code of 3000
is returned.

Programmer response: None.

Symbolic Feedback Code: EDC5RH

EDC6002E The raise() function was issued for the
signal SIGSEGV.

Explanation: The program has invoked the raise()
function with the SIGSEGV signal specified and the
default action specified.

System action: The program terminates and a
traceback or dump is issued depending on the
TERMTHDACT run-time option. A return code of 3000
is returned.

Programmer response: None.

Symbolic Feedback Code: EDC5RI

EDC6003E The raise() function was issued for the
signal SIGABND.

Explanation: The program has invoked the raise()
function with the SIGABND signal specified and the
default action specified.

System action: The program terminates and a
traceback or dump is issued depending on the
TERMTHDACT run-time option. A return code of 3000
is returned.

Programmer response: None.

Symbolic Feedback Code: EDC5RJ

EDC6004E The raise() function was issued for the
signal SIGTERM.

Explanation: The program has invoked the raise()
function with the SIGTERM signal specified and the
default action specified.

System action: The program terminates and a
traceback or dump is issued depending on the
TERMTHDACT run-time option. A return code of 3000
is returned.

Programmer response: None.

Symbolic Feedback Code: EDC5RK

EDC6005E The raise() function was issued for the
signal SIGINT.

Explanation: The program has invoked the raise()
function with the SIGINT signal specified and the
default action specified.

System action: The program terminates and a
traceback or dump is issued depending on the
TERMTHDACT run-time option. A return code of 3000
is returned.

Programmer response: None.

Symbolic Feedback Code: EDC5RL

EDC6006E The raise() function was issued for the
signal SIGABRT.

Explanation: The program has invoked the raise()
function with the SIGABRT signal specified and the
default action specified.

System action: The program terminates and a
traceback or dump is issued, depending on the
TERMTHDACT run-time option. A return code of 2000
is returned.

Programmer response: None.

Symbolic Feedback Code: EDC5RM

EDC6007E The raise() function was issued for the
signal SIGUSR1.

Explanation: The program has invoked the raise()
function with the SIGUSR1 signal specified and the
default action specified.

System action: The program terminates and a
traceback or dump is issued, depending on the
TERMTHDACT run-time option. A return code of 3000
is returned.

Programmer response: None.

Symbolic Feedback Code: EDC5RN

EDC5500 - EDC5599 • EDC6007E

Chapter 10. C Run-Time Messages 249

EDC6008E The raise() function was issued for the
signal SIGUSR2.

Explanation: The program has invoked the raise()
function with the SIGUSR2 signal specified and the
default action specified.

System action: The program terminates and a
traceback or dump is issued, depending on the
TERMTHDACT run-time option. A return code of 3000
is returned.

Programmer response: None.

Symbolic Feedback Code: EDC5RO

EDC6009E The raise() function was issued for the
signal SIGIOERR.

Explanation: The program has invoked the raise()
function with the SIGIOERR signal specified and the
default action specified.

System action: The program terminates and a
traceback or dump is issued, depending on the
TERMTHDACT run-time option. A return code of 3000
is returned.

Programmer response: None.

Symbolic Feedback Code: EDC5RP

TCP/IP-Related Messages
To locate the TCP/IP callable functions, the C Run-Time event handler loads either
the:
v LE/VSE C TCP/IP Socket API Multiplexer (phase $EDCTCPM).
v Vendor-provided TCP/IP interface (phase $EDCTCPV).

If the phase cannot be loaded or the called TCP/IP function cannot be located, an
error message will be issued to stderr and the application abends with CEE3322C
U4039.

In case the IBM provided dummy TCP/IP function body is active, a message is
written to stderr. This may be an additional indicator if the application does not
react to the return code or does not check for errno respective h_errno.

EDCT001S Unable to load phase $EDCTCPV or
phase $EDCTCPM.

Explanation: The TCP/IP Socket API Multiplexer, IBM
provided dummy phase, or TCP/IP-provided vendor
phase holding the TCP/IP function bodies could not be
loaded.

System action: The application will be terminated.

Programmer response: Check if phase is available in a
library contained in current LIBDEF chain, and check if
sufficient space is available.

EDCT002S xxxxxxxxx implementation not found.

Explanation: TCP/IP interface does not contain the
body of TCP/IP function xxxxxxxxx. If the phase was
loaded successfully, this indicates a build error of the
TCP/IP provider.

System action: The application will be terminated.

Programmer response: Check with your TCP/IP
provider. The phase was not properly built.

EDCT003S Unsupported C Run-Time function
called.

Explanation: An application program that has NOT
been compiled and linked under VSE is running under
LE/VSE. The application contains calls to C Run-Time

functions that are not supported in the VSE
environment.

System action: The application will be terminated.

Programmer response: The application must be
changed so that the unsupported C Run-Time functions
are no longer called. If you recompile the application
using the C for VSE/ESA compiler and check the
compiler error messages, you might be able to
determine the function(s) that are not supported.

EDCT010S Invalid SYSID value.

Explanation: The value of the SYSID environment
variable or the value of the // OPTION SYSPARM
statement has an invalid value. Valid are numeric
values from '00' to '99'.

Operator response: None.

Programmer response: Check the specification of the
SYSID environment variable and the specification of the
// OPTION SYSPARM statement. Valid are numeric
values from '00' to '99'.

EDCT011S Failed to load TCP/IP interface
'nnnnnnnn'.

Explanation: The TCP/IP-provided vendor phase
'nnnnnnnn' containing the TCP/IP function bodies
could not be loaded.

EDC6008E • EDCT011S

250 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

System action: Processing continues but further error
messages may be issued.

Operator response: None.

Programmer response: Check if phase is available in a
library contained in current LIBDEF chain. Also check
if sufficient space is available.

EDCV001I TCP/IP function xxxxxxxxx not
implemented.

Explanation: Application has called a TCP/IP
function, that is not implemented by the
vendor-provided programming interface. The
IBM-provided dummy function is still active, which
just issues this message and returns to the caller.
Application is getting an appropriate return code
and/or global error variable errno respective h_errno is
set.

Operator response: None.

Programmer response:

1. Check that your LIBDEF statement refers to the
vendor-provided version of the TCP/IP interface
(for example, phase $EDCTCPV).

2. Avoid using this function with the TCP/IP version
supplied by this vendor.

EDCV002I Unexpected TCP/IP error code nnnn.

Explanation: The TCP/IP product has returned the
unexpected error code nnnn. The global error variable
is set to EOPNOTSUPP.

Operator response: None.

Programmer response: Please contact your service
representative.

EDCV020W <This is a warning message sent from
TCP/IP interface>.

Explanation: One of various socket-related warning
messages has been issued from the TCP/IP interface
(for example, when reusing a socket).

Operator response: None.

Programmer response: Read the message text and
check your programs for related problems (for example,
if a socket has not been closed).

EDCV099I Unable to issue EDCV001I to STDERR.

Explanation: The TCP/IP interface (for example,
phase $EDCTCPV) tried to write message EDCV001 to
stderr. This is not successful, therefore message
EDCV099I is written to SYSLOG. Application is getting
an appropriate return code and/or global error variable
errno respective h_errno is set.

Operator response: None.

Programmer response: Check the standard stream
stderr assignment. In case of further problems, check
for the active TCP/IP interface, and contact the
provider.

EDCV001I • EDCV099I

Chapter 10. C Run-Time Messages 251

252 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Chapter 11. PL/I Run-Time Messages

The following messages pertain to PL/I. Each message is followed by an
explanation describing the condition that caused the message, a programmer
response suggesting how you might prevent the message from occurring again,
and a system action indicating how the system responds to the condition that
caused the message.

The messages also contain a symbolic feedback code, which represents the first 8
bytes of a 12-byte condition token. You can think of the symbolic feedback code as
the nickname for a condition. As such, the symbolic feedback code can be used in
user-written condition handlers to screen for a given condition, even if it occurs at
different locations in an application.

For a description of the format of PL/I run-time messages, see “Interpreting
Run-Time Messages” on page 23.

IBM0004S The program terminated with user
code= user-code

Explanation: The program terminated with a user
code.

System action: The application is terminated.

Programmer response: Check your program
documentation or the program source to determine the
reason the code was issued.

Symbolic Feedback Code: IBM004

IBM0005S The number of files, CONTROLLED
variables, or fetched procedures
exceeded the limit.

Explanation: The total length of the pseudoregister
vector for the program was more than 4096 bytes. Four
bytes are used for each file constant, controlled
variable, and fetched procedure.

System action: The application is terminated.

Programmer response: Modify the program so the
pseudoregister vector does not exceed 4096 bytes by
reducing the number of files or controlled variables
used or by restructuring the program into several
external procedures.

Symbolic Feedback Code: IBM005

IBM0006S The program could not be executed
because it did not have a main
procedure.

Explanation: There are two possible causes for this
error:

v An attempt was made to run a program which
contained one or more external PL/I procedures.

None of the procedures had the MAIN or
FETCHABLE option in the PROCEDURE statement.

v An attempt was made to FETCH a phase with entry
PLISTART or CEESTART which contained one or
more external PL/I procedures. None of the
procedures had the MAIN or FETCHABLE option in
the PROCEDURE statement.

System action: The application is terminated.

Programmer response: Ensure that the first external
PL/I procedure to be invoked has the MAIN or
FETCHABLE option in the PROCEDURE statement.
When fetching a phase, follow the instructions on
link-editing fetchable phases in LE/VSE Programming
Guide.

Symbolic Feedback Code: IBM006

IBM0018S Error during implicit close of file
file-name.

Explanation: An error occurred attempting to
implicitly close a record I/O file during program
termination. The file may be corrupted or unusable.
The possible error conditions are:

v TRANSMIT (if last operation was a LOCATE, or if
the file has the attributes REGIONAL, SEQUENTIAL,
and OUTPUT).

v I/O Sequence error.

v KEY condition for VSAM.

v Out of Space error (there was insufficient space
remaining in the data set for CLOSE to either flush
unwritten data or write an EOF marker).

System action: Program termination will continue.

Programmer response: Explicitly close the file (by
coding a CLOSE statement) to obtain normal condition
handling and run the program again. If an error still

© Copyright IBM Corp. 1991, 2014 253

occurs during explicit close, take the recommended
action for that error.

Symbolic Feedback Code: IBM00I

IBM0020S ONCODE=600 The CONVERSION
condition was raised by a SIGNAL
statement.

Explanation: The program contained a SIGNAL
statement to raise the CONVERSION condition for
which there was no associated ON-unit.

System action: The application is terminated.

Programmer response: Either remove the SIGNAL
statement or include an ON-unit for the CONVERSION
condition in the program.

Symbolic Feedback Code: IBM00K

IBM0021S ONCODE= oncode-value The
CONVERSION condition was raised
because of unknown source attributes
on input.

Explanation: The CONVERSION condition was raised
within a GET LIST or GET DATA statement with the
FILE option. The attributes of the source data could not
be determined.

Example:

DCL (A,B) CHAR(14);
GET LIST(A,B);

where the input stream contained 'PIG'C, 'DOG'. The
condition will be raised when the first item is
encountered. The value for ONSOURCE would be:
“'PIG'C”, and value of ONCHAR would be: “C”. The
ONCODE associated with this message is 601.

System action: The application is terminated.

Programmer response: Include a suitable ON-unit in
the program to monitor errors in the input data
revealed by the CONVERSION condition. Use the
ONSOURCE and ONCHAR built-in functions to
identify the error and the ONSOURCE and ONCHAR
pseudovariables to assign a valid value so the program
can continue processing. Also, check the input data for
correctness before rerunning the program.

Symbolic Feedback Code: IBM00L

IBM0022S ONCODE= oncode-value The
CONVERSION condition was raised
because of unknown source attributes
on input after the TRANSMIT condition
was detected.

Explanation: The CONVERSION condition was raised
after an error caused the TRANSMIT condition to be
raised. For an example of the conversion error, refer to
the explanation given for message IBM0021. The

ONCODE associated with this message is 602.

System action: The application is terminated.

Programmer response: Correct the transmit error. If
the conversion error recurs after correcting the transmit
error, refer to the steps for conversion errors in message
IBM0021.

Symbolic Feedback Code: IBM00M

IBM0023S ONCODE= oncode-value The
CONVERSION condition was raised
because of unknown source attributes.

Explanation: The CONVERSION condition was raised
within a GET LIST STRING or GET DATA STRING
statement. For an example of the conversion error, refer
to the explanation for message IBM0021.

System action: The application is terminated.

Programmer response: Follow the steps given for
conversion errors in message IBM0021.

Symbolic Feedback Code: IBM00N

IBM0024S ONCODE= oncode-value The
CONVERSION condition was raised
because a conversion error occurred
using F-format on input.

Explanation: An invalid character was detected in an
F-format input field. The ONCODEs associated with
this message are:

v 603—GET STRING statement

v 604—GET FILE statement

System action: The application is terminated.

Programmer response: Include a suitable ON-unit in
the program to monitor errors in the input data that are
revealed by the CONVERSION condition. Use the
ONSOURCE and ONCHAR built-in functions to
identify the error and the ONSOURCE and ONCHAR
pseudovariables to assign a valid numeric value so the
program can continue processing. Also, ensure all input
is in the correct format before running the program.

Symbolic Feedback Code: IBM00O

IBM0025S ONCODE= oncode-value The
CONVERSION condition was raised
because a conversion error occurred
using F-format on input after the
TRANSMIT condition was detected.

Explanation: An invalid character was detected in an
F-format input field. A transmission error also occurred
and may be the cause of the conversion error. The
ONCODE associated with this message is 605.

System action: The application is terminated.

Programmer response: Correct the transmit error. If

IBM0020S • IBM0025S

254 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

the conversion error recurs after correcting the transmit
error, refer to the steps given for message IBM0024.

Symbolic Feedback Code: IBM00P

IBM0027S ONCODE= oncode-value The
CONVERSION condition was raised
because a conversion error occurred
using E-format on input.

Explanation: An invalid character was detected in an
E-format input field. The ONCODEs associated with
this message are:

v 606—GET STRING statement

v 607—GET FILE statement

System action: The application is terminated.

Programmer response: Refer to the steps for
conversion errors in message IBM0024. Use the
ONSOURCE and ONCHAR built-in functions to
identify the error, and the ONSOURCE and ONCHAR
pseudovariables to assign a valid value so the program
can continue processing.

Symbolic Feedback Code: IBM00R

IBM0028S ONCODE= oncode-value The
CONVERSION condition was raised
because a conversion error occurred
using E-format on input after the
TRANSMIT condition was detected.

Explanation: An invalid character was detected in an
E-format input field. A transmission error also occurred
and may be the cause of the conversion error. The
ONCODE associated with this message is 608.

System action: The application is terminated.

Programmer response: Correct the transmission error.
If the conversion error recurs after correcting the
transmission error, refer to the steps for message
IBM0024.

Symbolic Feedback Code: IBM00S

IBM0029S ONCODE= oncode-value The
CONVERSION condition was raised
because a conversion error occurred
using B-format on input.

Explanation: An invalid character was detected in a
B-format input field. The ONCODEs associated with
this message are:

v 609—GET STRING statement

v 610—GET FILE statement

System action: The application is terminated.

Programmer response: Include a suitable ON-unit in
the program to monitor errors in the input data that are
revealed by the CONVERSION condition. Use the
ONSOURCE and ONCHAR built-in functions to

identify the error and the ONSOURCE and ONCHAR
pseudovariables to assign a valid bit character so the
program can continue processing. Also, ensure all input
is in the correct format before running the program.

Symbolic Feedback Code: IBM00T

IBM0031S ONCODE= oncode-value The
CONVERSION condition was raised
because a conversion error occurred
using B-format on input after the
TRANSMIT condition was detected.

Explanation: An invalid character was detected in a
B-format input field. A transmission error also occurred
and may be the cause of the conversion error. The
ONCODE associated with this message is 611.

System action: The application is terminated.

Programmer response: Correct the transmission error.
If the conversion error recurs after correcting the
transmission error, refer to the steps for message
IBM0029.

Symbolic Feedback Code: IBM00V

IBM0032S ONCODE= oncode-value The
CONVERSION condition was raised
because a conversion error occurred
when converting a character string to an
arithmetic value.

Explanation: An invalid character was detected in a
character string that was being converted to an
arithmetic data type. The ONCODE associated with this
message is 612.

System action: The application is terminated.

Programmer response: If the error is in the conversion
of a PL/I source program constant or in the conversion
of a character string created while the program is
running, correct the source program. Recompile and
rerun the program. Use the ONSOURCE and ONCHAR
built-in functions to identify the error, and the
ONSOURCE and ONCHAR pseudovariables to assign
a valid value so the program can continue processing.

Symbolic Feedback Code: IBM010

IBM0033S ONCODE= oncode-value The
CONVERSION condition was raised
because a conversion error occurred
when converting character to arithmetic
on input or output.

Explanation: A character which is invalid for
conversion to an arithmetic form was detected in one
of the following:

v An arithmetic constant in a list-directed or
data-directed item

IBM0027S • IBM0033S

Chapter 11. PL/I Run-Time Messages 255

v A character constant being converted to an arithmetic
form in a list-directed or data-directed item

v An A-format input field being converted to an
arithmetic form

The ONCODE associated with this message is 613.

System action: The application is terminated.

Programmer response: Refer to the steps for message
IBM0024.

Symbolic Feedback Code: IBM011

IBM0034S ONCODE= oncode-value The
CONVERSION condition was raised
because a conversion error occurred
when converting from character on
input after the TRANSMIT condition
was detected.

Explanation: A character that is invalid for conversion
to an arithmetic form was detected in one of the
following:

v An arithmetic constant in a list-directed or
data-directed input item

v A character constant being converted to an arithmetic
form in a list-directed or data directed input item

v An A-format input field being converted to an
arithmetic form

A transmission error also occurred and may be the
cause of the conversion error. The ONCODE associated
with this message is 614.

System action: The application is terminated.

Programmer response: Correct the transmission error.
If the conversion error recurs after correcting the
transmission error, refer to the steps for message
IBM0024.

Symbolic Feedback Code: IBM012

IBM0035S ONCODE= oncode-value The
CONVERSION condition was raised
because a conversion error occurred
when converting from character to bit.

Explanation: An invalid character was detected in a
character string that was being converted to a bit
string. The ONCODE associated with this message is
615.

System action: The application is terminated.

Programmer response: If the error is in the conversion
of a program constant or in the conversion of a
character string created while the program is running,
correct the source program. Recompile and rerun the
program. Use the ONSOURCE and ONCHAR built-in
functions to identify the error, and the ONSOURCE
and ONCHAR pseudovariables to assign a valid value

so the program can continue processing.

Symbolic Feedback Code: IBM013

IBM0036S ONCODE= oncode-value The
CONVERSION condition was raised
because a conversion error occurred
when converting character to bit on
input or output.

Explanation: A character other than 0 or 1 appeared in
one of the following:

v A bit constant in a list-directed or data-directed item

v A character constant being converted to bit form in a
list-directed or data-directed item

v An A-format input field being converted to bit form

v A B-format input field (excluding any leading or
trailing blanks)

The ONCODE associated with this message is 616.

System action: The application is terminated.

Programmer response: Refer to the steps for message
IBM0035.

Symbolic Feedback Code: IBM014

IBM0037S ONCODE= oncode-value The
CONVERSION condition was raised
because a conversion error occurred
when converting character to bit on
input after the TRANSMIT condition
was detected.

Explanation: A character other than 0 or 1 appeared in
one of the following:

v A bit constant in a list-directed or data-directed input
item

v A character constant being converted to bit form in a
list-directed or data-directed input item

v An A-format input field being converted to bit form

v A B-format input field (excluding any leading or
trailing blanks)

A transmission error also occurred and may have
caused the conversion error. The ONCODE associated
with this message is 617.

System action: The application is terminated.

Programmer response: Correct the transmission error.
If the conversion error recurs after correcting the
transmission error, refer to the steps for message
IBM0024.

Symbolic Feedback Code: IBM015

IBM0034S • IBM0037S

256 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

IBM0038S ONCODE= oncode-value The
CONVERSION condition was raised
because a conversion error occurred
when converting to a PICTURE
character string.

Explanation: A character that did not match the
picture specification was detected in a conversion to a
PICTURE character string. The ONCODE associated
with this message is 618.

System action: The application is terminated.

Programmer response: Ensure the character string to
be converted to a PICTURE character string matches
the picture string specification. If necessary, use the
ONSOURCE and ONCHAR built-in functions to
identify the error and the ONSOURCE and ONCHAR
pseudovariables to replace an erroneous character with
a valid conversion character.

Symbolic Feedback Code: IBM016

IBM0039S ONCODE= oncode-value The
CONVERSION condition was raised
because a conversion error occurred
when converting to a PICTURE
character string on input or output.

Explanation: A character that did not match the
picture specification was detected in a
STREAM-oriented item that required conversion to a
PICTURE character string. The ONCODE associated
with this message is 619.

System action: The application is terminated.

Programmer response: Either ensure all input data to
the program is in the correct format or refer to the
steps for message IBM0038. These steps ensure the
program has adequate error recovery facilities to
process any invalid data found in its input and
continue processing.

Symbolic Feedback Code: IBM017

IBM0040S ONCODE= oncode-value The
CONVERSION condition was raised
because a conversion error occurred
when converting to a PICTURE
character string on input after the
TRANSMIT condition was detected.

Explanation: A character that did not match the
picture specification was detected in a
STREAM-oriented input item that required conversion
to a PICTURE character string. A transmission error
also occurred and may be the source of the conversion
error. The ONCODE associated with this message is
620.

System action: The application is terminated.

Programmer response: Correct the transmission error.
If the conversion error recurs after correcting the

transmission error, refer to the steps for message
IBM0039.

Symbolic Feedback Code: IBM018

IBM0042S ONCODE= oncode-value The
CONVERSION condition was raised
because a conversion error occurred
when converting from PICTURE format
on input.

Explanation: An edit-directed PICTURE format input
item contained a character that did not match the
picture specification. The ONCODEs associated with
this message are:

v 621—GET STRING statement

v 622—GET FILE statement

System action: The application is terminated.

Programmer response: Either ensure all input data to
the program is in the correct format before running the
program or use the program to check the data. If
necessary, use the ONSOURCE and ONCHAR built-in
functions to identify the error and the ONSOURCE and
ONCHAR pseudovariables to replace an erroneous
character with a character valid for conversion.

Symbolic Feedback Code: IBM01A

IBM0043S ONCODE= oncode-value The
CONVERSION condition was raised
because a conversion error occurred
when converting from a PICTURE
format on input after the TRANSMIT
condition was detected.

Explanation: An invalid character was detected in a
PICTURE format input field. A transmission error also
occurred and may be the cause of conversion error. The
ONCODE associated with this message is 623.

System action: The application is terminated.

Programmer response: Correct the transmission error.

Programmer response: If the conversion error recurs
after correcting the transmission error, refer to the steps
for message IBM0042.

Symbolic Feedback Code: IBM01B

IBM0045S ONCODE= oncode-value The
CONVERSION condition was raised
because a conversion error occurred
when converting from PICTURE format
on input.

Explanation: An invalid character was detected in a
PICTURE format input item. The ONCODE associated
with this message is 625.

System action: The application is terminated.

Programmer response: Either ensure all input data to

IBM0038S • IBM0045S

Chapter 11. PL/I Run-Time Messages 257

the program is in the correct format before running the
program or use the program to check the data. If
necessary, use the ONSOURCE and ONCHAR built-in
functions to identify the error and the ONSOURCE and
ONCHAR pseudovariables to replace an erroneous
character with a valid conversion character.

Symbolic Feedback Code: IBM01D

IBM0046S ONCODE= oncode-value The
CONVERSION condition was raised
because a conversion error occurred
when converting from PICTURE format
on input after the TRANSMIT condition
was detected.

Explanation: An invalid character was detected in a
PICTURE format input item. A transmission error also
occurred and may be the cause of the conversion error.
The ONCODE associated with this message is 626.

System action: The application is terminated.

Programmer response: Correct the transmission error.
If the conversion error recurs after correcting the
transmission error, refer to the steps for message
IBM0045.

Symbolic Feedback Code: IBM01E

IBM0047S ONCODE= oncode-value The
CONVERSION condition was raised
because a graphic or mixed character
string was encountered in a non-graphic
environment.

Explanation: A graphic ('G') or mixed ('M') string was
used as a data value in the expression for the STRING
option of a GET statement. The ONCODE associated
with this message is 627.

System action: The application is terminated.

Programmer response: Remove the graphic or mixed
string from the expression.

Symbolic Feedback Code: IBM01F

IBM0048S ONCODE= oncode-value The
CONVERSION condition was raised
because a graphic or mixed character
string was encountered in a non-graphic
environment on input.

Explanation: A graphic ('G') or mixed ('M') string was
detected in an input file that was not declared with the
GRAPHIC option in the ENVIRONMENT attribute.
The ONCODE associated with this message is 628.

System action: The application is terminated.

Programmer response: Specify the GRAPHIC option
for a file that contains graphic or mixed character
strings.

Symbolic Feedback Code: IBM01G

IBM0049S ONCODE= oncode-value The
CONVERSION condition was raised
because a graphic or mixed character
string was encountered in a non-graphic
environment on input after the
TRANSMIT condition was detected.

Explanation: The CONVERSION condition was raised
after an error caused the TRANSMIT condition to be
raised. For an example of the conversion error, refer to
the explanation for message IBM0048. The ONCODE
associated with this message is 629.

System action: The application is terminated.

Programmer response: Correct the transmission error.
If the conversion error recurs after correcting the
transmission error, refer to the steps for message
IBM0048.

Symbolic Feedback Code: IBM01H

IBM0053S ONCODE=633 The CONVERSION
condition was raised because an invalid
character was detected in an X, BX, or
GX string constant.

Explanation: A character other than a hexadecimal
character was detected. Only hexadecimal characters
(0–9, a–f, A–F) are allowed in X, BX, and GX string
constants. The ONCODE associated with this message
is 633.

System action: The application is terminated.

Programmer response: Include a suitable ON-unit in
the program to monitor errors in the input data that are
revealed by the CONVERSION condition. Use the
ONSOURCE and ONCHAR built-in functions to
identify the error and the ONSOURCE and ONCHAR
pseudovariables to assign a valid hexadecimal character
so the program can continue processing. Also ensure all
input is in the correct format before executing the
program.

Symbolic Feedback Code: IBM01L

IBM0054S ONCODE=634 The CONVERSION
condition was raised because an invalid
character was detected in an X, BX, or
GX string constant on input.

Explanation: A character other than a hexadecimal
character was detected. Only hexadecimal characters
(0–9, a–f, A–F) are allowed in X, BX, and GX string
constants. The ONCODE associated with this message
is 634.

System action: The application is terminated.

Programmer response: Include a suitable ON-unit in
the program to monitor errors in the input data that are

IBM0046S • IBM0054S

258 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

revealed by the CONVERSION condition. Use the
ONSOURCE and ONCHAR built-in functions to
identify the error and the ONSOURCE and ONCHAR
pseudovariables to assign a valid hexadecimal character
so the program can continue processing. Also, ensure
all input is in the correct format before executing the
program.

Symbolic Feedback Code: IBM01M

IBM0055S ONCODE=635 The CONVERSION
condition was raised because an invalid
character was detected in an X, BX, or
GX string constant on input after the
TRANSMIT condition was detected.

Explanation: A character other than a hexadecimal
character was detected. Only hexadecimal characters
(0–9, a–f, A–F) are allowed in X, BX, and GX string
constants. A transmission error also occurred and may
be the source of the conversion error.

System action: The application is terminated.

Programmer response: Correct the transmission error.
If the conversion error recurs after correcting the
transmission error, refer to the steps for message
IBM0054.

Symbolic Feedback Code: IBM01N

IBM0056S ONCODE=0636 The CONVERSION
condition was raised because a graphic
string contained an invalid character.

Explanation: This condition was raised by the
GRAPHIC built-in function. The source was a graphic
(DBCS) string and a shift character was detected in it.

System action: The application is terminated.

Programmer response: Remove the shift characters
from the graphic (DBCS) string. ONSOURCE and
ONCHAR pseudovariables cannot be used to assign a
new value to the string. ERROR is raised if retry is
attempted.

Symbolic Feedback Code: IBM01O

IBM0059S ONCODE=639 The CONVERSION
condition was raised because a mixed
character string contained an invalid
character.

Explanation: This condition was raised by the
GRAPHIC built-in function. One of the following rules
for mixed constants was broken:

v SBCS portions of the constant cannot contain a
shift-in.

v Neither byte of a DBCS character can contain a shift
code.

Note: In mixed character strings, a shift-in following a
DBCS character or following a shift-out causes a
transition to single-byte mode. It is impossible for the
first byte of a DBCS character in a mixed character
string to contain a shift-in.

System action: The application is terminated.

Programmer response: Ensure mixed character strings
contain balanced, unnested shift-out/shift-in pairs. The
MPSTR built-in function can be used to check
shift-out/shift-in pairs. ONSOURCE and ONCHAR
pseudovariables cannot be used to assign a new value
to the string. ERROR is raised if retry is attempted.

Symbolic Feedback Code: IBM01R

IBM0100W ONCODE= oncode-value The NAME
condition was raised by a SIGNAL
statement (FILE= or ONFILE= file-name).

Explanation: The program contained a SIGNAL
statement to raise the NAME condition for which there
was no associated ON-unit. The ONCODE associated
with this message is 10.

System action: Execution continues with the next
sequential statement.

Programmer response: Either remove the SIGNAL
statement or include an ON-unit for the NAME
condition in the program.

Symbolic Feedback Code: IBM034

IBM0101W ONCODE= oncode-value The NAME
condition was raised because an invalid
element-variable in a STREAM item
was encountered during a GET FILE
DATA statement (FILE= or ONFILE=
file-name).

Explanation: One of the following conditions was
detected:

v An identifier in the input stream had no counterpart
in the data list of the GET statement, or the GET
statement had no data list and an unknown identifier
was encountered in the stream.

v Invalid blank characters were found within an
identifier in the input stream.

v The name field or part of a qualified name was
omitted.

v There were more than 256 characters in a fully
qualified name.

v Blanks were found within an array subscript other
than between the optional sign and the decimal
digits.

v An array subscript was missing or indicated too
many dimensions.

v A value in a subscript was not a decimal digit.

IBM0055S • IBM0101W

Chapter 11. PL/I Run-Time Messages 259

v The subscript was beyond the declared range of
subscripts for a particular array.

v The left parenthesis was missing after the name of an
array.

v A character other than ‘=’ or a blank was found after
a right parenthesis that delimits an array subscript in
the input stream.

v The end-of-file or a nonblank delimiter was found
before ‘=’ in an item in the input stream.

System action: The incorrect data field is ignored and
execution of the GET statement continues.

Programmer response: Use the DATAFIELD built-in
function in a NAME ON-unit to obtain the invalid data
item.

Symbolic Feedback Code: IBM035

IBM0120S ONCODE= oncode-value The RECORD
condition was raised by a SIGNAL
statement. (FILE= or ONFILE= file-name).

Explanation: The program contained a SIGNAL
statement to raise the RECORD condition for which
there was no associated ON-unit.

System action: The application is terminated.

Programmer response: Supply an ON-unit for the
RECORD condition or remove the SIGNAL statement.

Symbolic Feedback Code: IBM03O

IBM0121S ONCODE= oncode-value The RECORD
condition was raised because the length
of the record variable was less than the
record length (FILE= or ONFILE=
file-name).

Explanation: This message was produced for records
that were longer than the associated PL/I variable.

1. For a READ statement, the record was truncated to
the length of the variable in the INTO option.

2. For a LOCATE statement (F-format records only), a
buffer was not allocated.

3. For a WRITE statement (F-format records only), the
record was transmitted with the appropriate
number of padding bytes added to equal the length
of the record on the data set. The contents of the
padding bytes were undefined.

4. For a REWRITE statement, the record was replaced
by the shorter record with the appropriate number
of padding bytes added to equal the length of the
record on the data set. The contents of the padding
bytes were undefined.

System action: The application is terminated.

Programmer response: Either supply an ON-unit for
the RECORD condition so the program can continue
running, or modify the program to make the length of
the record variable the same as the length of the

records on the data set. Refer to the language reference
manual for this compiler for details of how such
records are handled when the RECORD condition is
raised.

Symbolic Feedback Code: IBM03P

IBM0122S ONCODE= oncode-value The RECORD
condition was raised because the length
of the record variable was greater than
the record length (FILE= or ONFILE=
file-name).

Explanation: This message was produced for records
that were shorter than the associated PL/I variable.

1. For the READ statement using F-format records and
a fixed-length variable in the INTO option, the
excess bytes in the variable were undefined.

2. For a LOCATE statement, where the maximum
length of the records was less than the length of the
PL/I variable, the buffer was not allocated.

3. For a WRITE statement, the variable in the FROM
option was longer than the maximum length of the
records, and was truncated to the maximum record
length.

4. For a REWRITE statement, the variable in the
FROM option was longer than the record it was to
replace, and was truncated to the length of this
record.

System action: The application is terminated.

Programmer response: Either supply an ON-unit for
the RECORD condition so the program can continue
running, or modify the program to make the length of
the record variable the same as the length of the
records on the data set. Refer to the language reference
manual for this compiler for details of how such
records are handled when the RECORD condition is
raised.

Symbolic Feedback Code: IBM03Q

IBM0123S ONCODE= oncode-value The RECORD
condition was raised because the
WRITE or LOCATE variable had a zero
length (FILE= or ONFILE= file-name).

Explanation: A WRITE or REWRITE statement
attempted to transmit a record variable of zero length,
or a LOCATE statement attempted to obtain buffer
space for a zero-length record variable.

System action: The application is terminated.

Programmer response: Ensure the varying-length
string used as a record variable is not a null string
when the WRITE, REWRITE or LOCATE statement is
run.

Symbolic Feedback Code: IBM03R

IBM0120S • IBM0123S

260 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

IBM0124S ONCODE= oncode-value The RECORD
condition was raised because a zero
length record was read from a regional
data set (FILE= or ONFILE= file-name).

Explanation: A record of zero length was read from a
regional data set associated with a DIRECT file. A
zero-length record on a direct-access device indicates
the end of the data set. However, this message is
generated only if the data set was created incorrectly.
The ONCODE associated with this message is 24.

System action: The application is terminated.

Programmer response: Ensure the data set is created
correctly as a regional data set. If necessary, recreate the
data set and ensure the record is accessed with a valid
key.

Symbolic Feedback Code: IBM03S

IBM0125S ONCODE= oncode-value The RECORD
condition was raised because a WRITE
or LOCATE area was too short to
contain the embedded string (FILE= or
ONFILE= file-name).

Explanation: A record variable was too short to
contain the data set embedded key. Either a WRITE or
REWRITE statement attempted to transmit the record
variable or a LOCATE statement attempted to allocate
buffer space for the record variable. For a WRITE or
REWRITE statement, no transmission takes place. For a
LOCATE statement, a buffer is not allocated.

System action: The application is terminated.

Programmer response: Ensure the record variable is
long enough to contain the data set embedded key and
the key is valid.

Symbolic Feedback Code: IBM03T

IBM0140S ONCODE= oncode-value The TRANSMIT
condition was raised by a SIGNAL
statement (FILE= or ONFILE= file-name).

Explanation: The program contained a SIGNAL
statement to raise the TRANSMIT condition for which
there was no associated ON-unit. The ONCODE
associated with this message is 40.

System action: The application is terminated.

Programmer response: Either remove the SIGNAL
statement or include an ON-unit for the TRANSMIT
condition in the program.

Symbolic Feedback Code: IBM04C

IBM0141S ONCODE= oncode-value The TRANSMIT
condition was raised because of an
uncorrectable error in output (FILE= or
ONFILE= file-name).

Explanation: Data management routines detected an
uncorrectable error while transmitting output data
between main storage and an external storage device.
The condition was raised on the completion of a
WRITE, REWRITE, PUT, or LOCATE statement. For
BUFFERED files, this condition can be raised only after
executing several I/O statements following the
processing of an OUTPUT file. Processing of an
UPDATE file can continue. The ONCODE associated
with this message 41.

System action: The application is terminated.

Programmer response: If the error recurs, obtain a
dump of the output buffer areas by using PLIDUMP in
a TRANSMIT ON-unit. See IBM PL/I for VSE/ESA
Programming Guide for details of PLIDUMP. The
resultant output, together with all relevant listings and
data sets, should be preserved for later study by IBM.

Symbolic Feedback Code: IBM04D

IBM0142S ONCODE= oncode-value The TRANSMIT
condition was raised because of an
uncorrectable error in input (FILE= or
ONFILE= file-name).

Explanation: Data management routines detected an
uncorrectable error while transmitting input data
between main storage and an external storage device. If
the block contains VS-format records, the error is raised
once only for the block. Otherwise, the condition is
raised on the completion of a READ or REWRITE
statement for each record in the block that contains the
error and for every item transmitted by GET statements
from a block that contains the error. The contents of the
record or data item are undefined. However, processing
of subsequent records in the input file can be
continued. The ONCODE associated with this message
is 42.

System action: The application is terminated.

Programmer response: If the error recurs, obtain a
dump of the input/output buffers by using PLIDUMP
in a TRANSMIT ON-unit. See IBM PL/I for VSE/ESA
Programming Guide for details of PLIDUMP. Save the
PLIDUMP output and all relevant listings and data sets
for later study by IBM.

Symbolic Feedback Code: IBM04E

IBM0144S ONCODE= oncode-value The TRANSMIT
condition was raised because of a write
error in the index set (FILE= or ONFILE=
file-name).

Explanation: Data management detected a physical
error while attempting to write on the index set of a

IBM0124S • IBM0144S

Chapter 11. PL/I Run-Time Messages 261

VSAM KSDS. The condition is raised on the completion
of a WRITE, REWRITE, LOCATE or DELETE statement.
No further processing of an OUTPUT file can occur.
Processing of an UPDATE file can continue. The
ONCODE associated with this message is 43.

System action: The application is terminated.

Programmer response: Check the DASD on which the
data set is being written for errors.

Symbolic Feedback Code: IBM04G

IBM0145S ONCODE= oncode-value The TRANSMIT
condition was raised because of a read
error in the index set (FILE= or ONFILE=
file-name).

Explanation: Data management detected a physical
error while attempting to read from the index set of a
VSAM KSDS. The condition is raised on the completion
of a READ, WRITE, REWRITE, LOCATE or DELETE
statement. No further processing of an OUTPUT file
can occur. Processing of an UPDATE file can continue.
If the error occurs on a READ statement, no data is
transferred to the record variable. For sequential access,
data set positioning can be lost, causing a subsequent
READ without KEY to raise ERROR. Refer to message
IBM0831 for information on sequential access errors.
The ONCODE associated with this message is 44.

System action: The application is terminated.

Programmer response: Check the DASD on which the
data set resides for errors. If more research is required,
consult with the system programmer.

Symbolic Feedback Code: IBM04H

IBM0146S ONCODE= oncode-value The TRANSMIT
condition was raised because of a write
error in the sequence set (FILE= or
ONFILE= file-name).

Explanation: Data management detected a physical
error while attempting to write on the sequence set of a
VSAM KSDS. The condition is raised on the completion
of a WRITE, REWRITE, LOCATE or DELETE statement.
No further processing of an OUTPUT file can occur.
Processing of an UPDATE file can continue. The
ONCODE associated with this message is 45.

System action: The application is terminated.

Programmer response: Check the DASD on which the
data set is being written for error. Also, consult with
the system programmer.

Symbolic Feedback Code: IBM04I

IBM0147S ONCODE= oncode-value The TRANSMIT
condition was raised because of a read
error in the sequence set (FILE= or
ONFILE= file-name).

Explanation: Data management detected a physical
error while attempting to read from the sequence set of
a VSAM KSDS. The condition is raised on the
completion of a READ, WRITE, REWRITE, LOCATE or
DELETE statement. No further processing of an
OUTPUT file can occur. Processing of an UPDATE file
can continue. If the error occurs on a READ statement,
no data is transferred to the record variable. For
sequential access, data set positioning can be lost,
causing a subsequent READ without KEY to raise
ERROR. Refer to message IBM0831 for sequential
access errors. The ONCODE associated with this
message is 46.

System action: The application is terminated.

Programmer response: Check the DASD on which the
data set resides for errors. Also, consult with the
system programmer.

Symbolic Feedback Code: IBM04J

IBM0148S ONCODE= oncode-value The TRANSMIT
condition was raised because a
wrong-length record error occurred
during input (FILE= or ONFILE=
file-name).

Explanation: Data management routines have detected
that the length of the transmitted block was not the
same as the specified block size for the file. If the
length of the block was greater than the specified block
size, the data read into the file buffer will have been
truncated. Note that the wrong-length record condition
will not be raised in the following circumstances:

v For undefined format records (except for long blocks
read from tape)

v For variable format records where a short block was
read

v For blocked fixed format records where a short block
was read and the length is a multiple of the record
size.

The ONCODE associated with this message is 42.

System action: The application is terminated.

Programmer response: Ensure that the blocksize and
record size specified are correct for the data set. For
variable format files the blocksize must be at least as
large as the largest block in the data set (including
record and block descriptor words). If the program is
not in error then examine the data set for unexpected
blocks of the wrong length. This may be the case, for
example, if the data set was created with a file format
different from that with which it is being read.

Symbolic Feedback Code: IBM04K

IBM0145S • IBM0148S

262 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

IBM0149S ONCODE= oncode-value The TRANSMIT
condition was raised because of an error
assembling record segments during
input (FILE= or ONFILE= file-name).

Explanation: PL/I routines have detected an error
while assembling the segments of a spanned data
record. One of the following errors was detected:

v An unexpected segment sequence was encountered.
The segments in a spanned record file must follow a
logical sequence based on the segment type. For
example, a “begin” segment can only be followed by
a “middle” segment or an “end” segment, and never
by a “complete” segment or another “begin”
segment. For all sequence errors PL/I will skip
segments until a “complete” segment or a “begin”
segment is found (which may be the segment at
which the sequence error was detected). The skipped
segments are discarded.

v The block descriptor word length did not match the
length of the physical block. PL/I completed
processing for the error record by using the physical
block length in place of the block descriptor word
block length. If the program handles the error and
attempts to continue processing further errors may
occur if segments within the block are not internally
consistent.

v The length indicated in a segment descriptor word
extended past the end of the current block. PL/I
continues processing the error record by truncating
the segment at the end of the physical block.

v The length indicated in a block or segment descriptor
word was too small (less than four for a SDW or less
than eight for a BDW). If the program handles the
error and attempts to continue, processing will
recommence at the start of the next block. In this
case the data in the record variable is unchanged.

The ONCODE associated with this message is 42.

System action: The application is terminated.

Programmer response: Examine the data set for
incorrect spanned record data. It is possible to read the
data set by coding a TRANSMIT on-unit to handle the
error and continuing to read the data set. However,
data included in invalid blocks or segments may not be
available to the program.

Symbolic Feedback Code: IBM04L

IBM0160S ONCODE= oncode-value The KEY
condition was raised by a SIGNAL
statement (FILE= or ONFILE= file-name).

Explanation: The program contained a SIGNAL
statement to raise the KEY condition for which there
was no associated ON-unit. The ONCODE associated
with this message is 50.

System action: The application is terminated.

Programmer response: Either remove the SIGNAL
statement or include an ON-unit for the KEY condition
in the program.

Symbolic Feedback Code: IBM050

IBM0161S ONCODE= oncode-value The KEY
condition was raised because the
specified key could not be found (FILE=
or ONFILE= file-name).

Explanation: A READ, REWRITE or DELETE
statement specified a recorded key which could not be
found on the data set. In the case of an INDEXED data
set, the key in error was either higher than the highest
level index or the record was not in the prime area or
the overflow areas of the data set. In the case of a
DIRECT file associated with a data set with
REGIONAL organization, the key in error was not in
the specified region. The ONCODE associated with this
message is 51.

System action: The application is terminated.

Programmer response: Determine why the key was
incorrect and modify the program or the data set to
correct the error. Use of the ONKEY built-in function in
a KEY ON-unit will aid in determining the value of the
erroneous key.

Symbolic Feedback Code: IBM051

IBM0162S ONCODE= oncode-value The KEY
condition was raised because the
specified key was already in use in data
set (FILE= or ONFILE= file-name).

Explanation: In the case of data set with INDEXED
organization, an attempt was made to transmit a keyed
record to a data set that already held a record with the
same key. In the case of a data set with REGIONAL(1)
or REGIONAL(2) organization that was being created
sequentially, an attempt was made to transmit a record
to a region that already contains a record. The
ONCODE associated with this message is 52.

System action: The application is terminated.

Programmer response: Either check the validity of the
data that is being processed before running the
program or use the program to check the data. Use of
the ONKEY built-in function in a KEY ON-unit can aid
in identifying an erroneous key, correcting it, and
allowing processing to continue normally.

Symbolic Feedback Code: IBM052

IBM0163S ONCODE= oncode-value The KEY
condition was raised because the
specified key was less than the value of
the previous key (FILE= or ONFILE=
file-name).

Explanation: A key with a value that was less than

IBM0149S • IBM0163S

Chapter 11. PL/I Run-Time Messages 263

the value of the preceding key was detected during the
creation or extension of an INDEXED or REGIONAL
SEQUENTIAL data set. The ONCODE associated with
this message is 53.

System action: The application is terminated.

Programmer response: Ensure the records written
onto an INDEXED or REGIONAL data set that is being
created or extended are in the correct ascending key
sequence order. Also, use a KEY ON-unit to comment
on the error and, where possible, allow processing to
continue normally.

Symbolic Feedback Code: IBM053

IBM0164S ONCODE= oncode-value The KEY
condition was raised because the
specified key could not be converted to
valid data (FILE= or ONFILE= file-name).

Explanation: A WRITE, READ, REWRITE, DELETE or
LOCATE statement for a REGIONAL data set specified
a key with a invalid character-string value. Invalid
values consist entirely of blanks, contain characters
other than 0-9, or a have blank as part of the region
number. The ONCODE associated with this message is
54.

System action: The application is terminated.

Programmer response: Ensure the key is in the correct
format. If necessary, use the ONKEY built-in function in
a KEY ON-unit to identify the erroneous key. The
ON-unit can be used to report any such errors and
allow processing to continue. Records associated with
the erroneous keys can be transmitted in a subsequent
run if the keys have been corrected.

Symbolic Feedback Code: IBM054

IBM0165S ONCODE= oncode-value The KEY
condition was raised because the
specified key was invalid (FILE= or
ONFILE= file-name).

Explanation: For an INDEXED data set, either the
KEY or the KEYFROM expression was a null string or
an attempt was made to rewrite a record with the
embedded key of the replacement record not equal to
the record to be overwritten. For a REGIONAL data
set, the key specified was a null string or a string
commencing with '11111111'B. The ONCODE associated
with this message is 55.

System action: The application is terminated.

Programmer response: Refer to the steps for message
IBM0165.

Symbolic Feedback Code: IBM055

IBM0166S ONCODE= oncode-value The KEY
condition was raised because the key
specifies a position outside the Regional
data set (FILE= or ONFILE= file-name).

Explanation: A WRITE, READ, REWRITE or DELETE
statement specified a key whose relative record or track
value exceeded the number of records or tracks
respectively for the REGIONAL data set. The ONCODE
associated with this message is 56.

System action: The application is terminated.

Programmer response: Refer to the steps for message
IBM0164.

Symbolic Feedback Code: IBM056

IBM0167S ONCODE= oncode-value The KEY
condition was raised because space was
not available to add a keyed record
(FILE= or ONFILE= file-name).

Explanation: For a SEQUENTIAL file associated with
an INDEXED data set, an attempt was made to write or
locate a record during the creation or extension of such
a data set when the space allocated to the data set was
full. For a DIRECT file associated with an INDEXED
data set, space in overflow areas was unable to accept
the overflow record. This was caused by the insertion
of a new record by a WRITE statement. For a DIRECT
file associated with a REGIONAL data set, space was
unavailable to add the record in the specified region.
Note that the data set is not necessarily full. The
ONCODE associated with this message is 57.

System action: The application is terminated.

Programmer response: Use the ONKEY built-in
function to identify the key value that caused the error.
If the key is in error, correct it and continue the job
from the point reached when the error occurred. If the
key is correct, organize the data set so the rejected
record can be accessed.

Symbolic Feedback Code: IBM057

IBM0168S ONCODE= oncode-value The KEY
condition was raised because the
KEYFROM value was outside the
KEYRANGE(s) defined for the data set
(FILE= or ONFILE= file-name).

Explanation: A WRITE or LOCATE statement
specified a key with a value outside the key ranges
defined for the data set (VSAM KSDS). The ONCODE
associated with this message is 58.

System action: The application is terminated.

Programmer response: Use the ONKEY built-in
function to identify the key value that caused the error
and correct the program.

Symbolic Feedback Code: IBM058

IBM0164S • IBM0168S

264 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

IBM0180S ONCODE= oncode-value The ENDFILE
condition was raised by a SIGNAL
statement (FILE= or ONFILE= file-name).

Explanation: The program contained a SIGNAL
statement to raise the ENDFILE condition for which
there was no associated ON-unit. The ONCODE
associated with this message is 70.

System action: The application is terminated.

Programmer response: Either remove the SIGNAL
statement or include an ON-unit for the ENDFILE
condition in the program.

Symbolic Feedback Code: IBM05K

IBM0181S ONCODE= oncode-value The ENDFILE
condition was raised (FILE= or ONFILE=
file-name).

Explanation: The end of an input file was detected.
The ONCODE associated with this message is 70.

System action: The application is terminated.

Programmer response: Include an ON-unit for the
ENDFILE condition for each input file in the program
to handle the end-of-file processing.

Symbolic Feedback Code: IBM05L

IBM0182S ONCODE= oncode-value The ENDFILE
condition was raised because an
end-of-file was previously encountered
in STREAM input (FILE= or ONFILE=
file-name).

Explanation: The ENDFILE condition was raised
when the file mark was encountered but an attempt
was made to read beyond the end of the file. Either an
ENDFILE ON-unit was run and an attempt was made
to read the file or the end-of-file mark was encountered
between items in the data list of the current GET
statement. The ONCODE associated with this message
is 70.

System action: The application is terminated.

Programmer response: If the program contains an
ENDFILE ON-unit, ensure the program does not
attempt to read the file after the ENDFILE condition is
raised. If the error occurred while a GET statement
with two or more items in the data list is running,
ensure the GET statement can complete by providing
sufficient data items before the end-of-file mark is
encountered.

Symbolic Feedback Code: IBM05M

IBM0190W The ENDPAGE condition was raised by
a SIGNAL statement.

Explanation: The program contained a SIGNAL
statement to raise the ENDPAGE condition. The
message for this condition is never issued by PL/I.

System action: None.

Programmer response: None.

Symbolic Feedback Code: IBM05U

IBM0191W The ENDPAGE condition was raised.

Explanation: A PUT statement resulted in an attempt
to start a new line beyond the limit specified for the
current page. The message for this condition is never
issued by PL/I.

System action: None.

Programmer response: None.

Symbolic Feedback Code: IBM05V

IBM0195W The PENDING condition was raised by
a SIGNAL statement.

Explanation: The program contained a SIGNAL
statement to raise the PENDING condition. The
message for this condition is never issued by PL/I.

System action: None.

Programmer response: None.

Symbolic Feedback Code: IBM063

IBM0196W The PENDING condition was raised.

Explanation: An attempt was made to read a record
for a TRANSIENT INPUT file that was temporarily
unavailable. The message for this condition is never
issued by PL/I.

System action: None.

Programmer response: None.

Symbolic Feedback Code: IBM064

IBM0200S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
by a SIGNAL statement (FILE= or
ONFILE= file-name).

Explanation: The program contained a SIGNAL
statement to raise the UNDEFINEDFILE condition for
which there was no associated ON-unit. The ONCODE
associated with this message is 80.

System action: The application is terminated.

Programmer response: Either remove the SIGNAL
statement or include an ON-unit for the
UNDEFINEDFILE condition in the program.

IBM0180S • IBM0200S

Chapter 11. PL/I Run-Time Messages 265

Symbolic Feedback Code: IBM068

IBM0201S ONCODE=81 The UNDEFINEDFILE
condition was raised because of
conflicting DECLARE and OPEN
attributes (FILE= or ONFILE= file-name).

Explanation: An attribute in an OPEN statement
conflicted with an attribute in a DECLARE statement.
The attributes may have been written explicitly or
implied by other attributes. For example, DIRECT
implies KEYED. Also, some RECORD input/output
statements imply file attributes in an implicit OPEN
statement. For example, LOCATE implies RECORD
OUTPUT BUFFERED SEQUENTIAL. Conflicting
attributes are:

BACKWARDS
STREAM, OUTPUT/UPDATE, DIRECT,
KEYED, EXCLUSIVE, PRINT, TRANSIENT

BUFFERED
STREAM, UNBUFFERED, PRINT

DIRECT
STREAM, SEQUENTIAL, BACKWARDS,
PRINT, TRANSIENT

EXCLUSIVE
STREAM, INPUT/OUTPUT, SEQUENTIAL,
BACKWARDS, PRINT, TRANSIENT

INPUT OUTPUT/UPDATE, EXCLUSIVE, PRINT

KEYED
STREAM, BACKWARDS, PRINT

OUTPUT
INPUT/UPDATE, EXCLUSIVE, BACKWARDS

PRINT RECORD, INPUT/UPDATE,
DIRECT/SEQUENTIAL, BUFFERED/
UNBUFFERED, KEYED, EXCLUSIVE,
BACKWARDS, TRANSIENT

RECORD
STREAM, PRINT

SEQUENTIAL
STREAM, DIRECT, EXCLUSIVE, PRINT,
TRANSIENT

STREAM
RECORD, UPDATE, DIRECT/SEQUENTIAL,
BUFFERED/UNBUFFERED, KEYED,
EXCLUSIVE, BACKWARDS, TRANSIENT

TRANSIENT
STREAM, UPDATE, DIRECT/SEQUENTIAL,
EXCLUSIVE, BACKWARDS, PRINT

UNBUFFERED
STREAM, BUFFERED, PRINT

UPDATE
STREAM, INPUT/OUTPUT, BACKWARDS,
PRINT, TRANSIENT

System action: The application is terminated.

Programmer response: Ensure the attributes specified
on the DECLARE statement are compatible with the
attributes specified on the OPEN statement.

Symbolic Feedback Code: IBM069

IBM0202S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because the device type conflicted with
file attributes (FILE= or ONFILE=
file-name).

Explanation: A conflict between the device type and
the file attributes was detected. For example, a file with
the UPDATE attribute cannot be associated with a
paper tape reader, a printer, or a magnetic-tape device.
The ONCODE associated with this message is 82.

System action: The application is terminated.

Programmer response: Ensure the device type and the
file attributes are compatible.

Symbolic Feedback Code: IBM06A

IBM0203S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because the BLOCKSIZE was not
specified (FILE= or ONFILE= file-name).

Explanation: The blocksize for an output file was not
specified. For an output file, the blocksize must be
specified in either the ENVIRONMENT attribute or in
the DLBL job control statement. The ONCODE
associated with this message is 83.

System action: The application is terminated.

Programmer response: For output files, ensure the
block size is specified. For input files, ensure the block
size is valid.

Symbolic Feedback Code: IBM06B

IBM0204S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because a DLBL statement was not used
for (FILE= or ONFILE= file-name).

Explanation: The job stream for a file did not contain
a DLBL statement. The job stream must contain a DLBL
statement. with a file ID that is either the name of the
file (if the TITLE option is not specified) or the name
provided by the TITLE option. The ONCODE
associated with this message is 84.

System action: The application is terminated.

Programmer response: Specify a DLBL statement to
associate the file with a physical data set.

Symbolic Feedback Code: IBM06C

IBM0201S • IBM0204S

266 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

IBM0205S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because of an I/O error—the Regional
data set could not be formatted (FILE=
or ONFILE= file-name).

Explanation: An I/O error prevented the data set
from being formatted correctly. When a REGIONAL
data set is opened for direct output, data management
routines format the data set into specified regions by
writing dummy or control records into the data set.

Example:

TF: PROC;
OPEN FILE(F) DIRECT OUTPUT;
END;

The ONCODE associated with this message is 85.

System action: The application is terminated.

Programmer response: If the problem recurs, have the
direct access device or storage medium checked by a
customer engineer.

Symbolic Feedback Code: IBM06D

IBM0206S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because a LINESIZE or PAGESIZE
argument was outside the defined limits
(FILE= or ONFILE= file-name).

Explanation: The implementation-defined maximum
or minimum for the LINESIZE option of the
ENVIRONMENT attribute was exceeded. For F-format
and U-format records, the maximum is 32,759. For
V-format records, the maximum is 32,751. The
minimum for V-and F-format records is 1. The
minimum for V-format PRINT files is 9. The minimum
for V-format non-PRINT files is 10. The ONCODE
associated with this message is 86.

System action: The application is terminated.

Programmer response: Ensure the argument to the
LINESIZE option is within the prescribed limits. If the
argument is a variable, verify it is a FIXED BINARY
(31,0) STATIC variable that was correctly initialized
before the file was opened.

Symbolic Feedback Code: IBM06E

IBM0207S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because the key length was not
specified (FILE= or ONFILE= file-name).

Explanation: A key length was not specified in the
ENVIRONMENT attribute.

System action: The application is terminated.

Programmer response: Specify the key length and
rerun the program.

Symbolic Feedback Code: IBM06F

IBM0208S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because the wrong BLOCKSIZE or
record length was specified (FILE= or
ONFILE= file-name).

Explanation: One of the following conditions was
detected:

1. Block size was less than record length.

2. For FB-format records, block size was not a multiple
of record length.

3. For VS-format and VBS-format consecutive files, the
file was opened for update with a specified logical
record size exceeding 32,756.

4. For VS-format REGIONAL(3) files, logical record
size was greater than block size minus four.

The ONCODE associated with this message is 87.

System action: The application is terminated.

Programmer response: The numbered responses
below apply to the correspondingly numbered
explanations above:

1. Check the block size and record length specified in
the BLKSIZE and RECSIZE options of the
ENVIRONMENT attribute. If LINESIZE was
specified, ensure it is compatible with BLKSIZE.

2. If the argument of either option is a variable, ensure
it is FIXED BINARY(31,0) STATIC and has been
initialized.

3. To correct this error:

a. Specify a record size in the ENVIRONMENT
attribute or correct its value.

b. Specify a record size less than 32,757.

4.

Specify a record size less than or equal to the block
size minus four.

Symbolic Feedback Code: IBM06G

IBM0209S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because of conflicting attributes and file
organization specifications (FILE= or
ONFILE= file-name).

Explanation: The file organization conflicted with one
or more explicit or implicit file attributes. The following
is a list of possible conflicts:

Organization
Attributes

CONSECUTIVE
DIRECT, EXCLUSIVE, KEYED, TRANSIENT

IBM0205S • IBM0209S

Chapter 11. PL/I Run-Time Messages 267

INDEXED
STREAM, TRANSIENT, DIRECT OUTPUT,
OUTPUT without KEYED

REGIONAL
STREAM, TRANSIENT, OUTPUT without
KEYED

VSAM STREAM, TRANSIENT, BACKWARDS,
DIRECT OUTPUT, OUTPUT without
KEYED(KSDS), KEYED(ESDS), DIRECT(ESDS),
REUSE for other than OUTPUT file, DIRECT
with NON-UNIQUE INDEXES

None KEYED, TRANSIENT

The ONCODE associated with this message is 82.

System action: The application is terminated.

Programmer response: Ensure the file attributes are
compatible with the file organization.

Symbolic Feedback Code: IBM06H

IBM0210S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because the record format was invalid
for this file organization (FILE= or
ONFILE= file-name).

Explanation: The following combinations of file
organization and record format are valid:

Organization
Record Format

CONSECUTIVE BUFFERED
All

CONSECUTIVE UNBUFFERED
F, FS, V, D, U

INDEXED
F, FB, V, VB

REGIONAL(1)
F

REGIONAL(2)
F

REGIONAL(3)
F, V, VS, U

The ONCODE associated with this message is 87.

System action: The application is terminated.

Programmer response: Change the file declaration so
the record format is compatible with the file
organization.

Symbolic Feedback Code: IBM06I

IBM0211S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because the record format was not
specified (FILE= or ONFILE= file-name).

Explanation: The record format was not specified. A
record format must be supplied for a file with the
RECORD attribute in either the ENVIRONMENT
attribute or in the data set label. The ONCODE
associated with this message is 83.

System action: The application is terminated.

Programmer response: Modify the program to include
the record format for the file.

Symbolic Feedback Code: IBM06J

IBM0212S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because the KEYLENGTH was negative
or greater than 255 (FILE= or ONFILE=
file-name).

Explanation: The KEYLENGTH option of the
ENVIRONMENT attribute for this file had an invalid
key length greater than 255 or less than zero.

System action: The application is terminated.

Programmer response: Check the argument of the
KEYLENGTH option to ensure it is either a constant or
a variable with the attributes FIXED BINARY (31,0)
STATIC and value between zero and 255 when the file
is opened. If the argument is a variable, ensure it is
correctly initialized.

Symbolic Feedback Code: IBM06K

IBM0213S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because an invalid KEYLOC value was
detected (FILE= or ONFILE= file-name).

Explanation: One of the following conditions was
detected:

1. The offset of the key within a record was invalid.
The sum of the KEYLOC value and the key length
was greater than the record length.

2. For blocked ISAM files, either KEYLOC was not
specified or KEYLOC(0) was specified. Both are
invalid.

System action: The application is terminated.

Programmer response: The two numbered responses
below apply to the numbered explanations above.

1. Check the value of the argument to the KEYLOC
option. If the argument is a variable, check that it is
FIXED BINARY (31,0) STATIC and that it has been
correctly initialized.

2. Specify a KEYLOC value that is greater than zero.

Symbolic Feedback Code: IBM06L

IBM0210S • IBM0213S

268 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

IBM0214S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because REGIONAL OUTPUT or
DIRECT files must be KEYED (FILE= or
ONFILE= file-name).

Explanation: A REGIONAL file opened for DIRECT or
OUTPUT processing must have the KEYED file
attribute specified. The ONCODE associated with this
message is 82.

System action: The application is terminated.

Programmer response: Check the file processing
requirements and add KEYED to the file declaration.

Symbolic Feedback Code: IBM06M

IBM0215S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because an invalid BUFOFF value was
detected (FILE= or ONFILE= file-name).
ASCII input data set are in the range 0
thru 99.

System action: The application is terminated.

Programmer response: Ensure the value specified in
the BUFOFF option is within the range of valid values.
If the argument is a variable, also ensure if is correctly
initialized.

Symbolic Feedback Code: IBM06N

IBM0221S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because the device type is unsupported (
FILE= or ONFILE= file-name).

Explanation: LE/VSE does not support the device
type of the system logical unit specified for the file. The
ONCODE associated with this message is 88.

System action: The application is terminated.

Programmer response: Ensure that the MEDIUM
specification and the JCL ASSGN statement for the file
are correct.

Symbolic Feedback Code: IBM06T

IBM0225S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because the value of the ENV option
conflicted with the actual data set value
(FILE= or ONFILE= file-name).

Explanation: For VSAM data sets, the values of
KEYLOC, KEYLENGTH and RECSIZE are specified
when the data set is defined. If values are specified on
any file declarations, they must match the defined
values. The ONCODE associated with this message is
91.

System action: The application is terminated.

Programmer response: Ensure the values of KEYLOC,
KEYLENGTH and RECSIZE specified in the program
match the defined values.

Symbolic Feedback Code: IBM071

IBM0227S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because the TOTAL option is invalid for
ESDS (FILE= or ONFILE= file-name).

Explanation: The specification of TOTAL can cause the
compiler to generate in-line code for I/O statements for
CONSECUTIVE files. If the data set to be accessed is a
VSAM Entry Sequenced Data set (ESDS) this code is
invalid. The ONCODE associated with this message is
91.

System action: The application is terminated.

Programmer response: Remove the TOTAL option
from the file declaration.

Symbolic Feedback Code: IBM073

IBM0228S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because the password was invalid or
was not specified (FILE= or ONFILE=
file-name).

Explanation: For VSAM data sets defined with a
password, ENV (PASSWORD) and the password must
be specified in the file declaration. If the password is
incorrect or is not specified, a number of attempts will
be given to specify the correct password. The number
of retries allowed is specified when the data set is
defined. If these attempts fail, UNDEFINEDFILE is
raised. The ONCODE associated with this message is
89.

System action: The application is terminated.

Programmer response: Modify the program to include
the ENV (PASSWORD) option and the correct
password in the file declaration.

Symbolic Feedback Code: IBM074

IBM0229S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because an entry was not in the VSAM
catalog for data set (FILE= or ONFILE=
file-name).

Explanation: The ENV(VSAM) was specified for a file,
but the data set was not converted from ISAM to
VSAM. Before using a VSAM data set, a catalog entry
must be created and space allocated for the data set
using the access method services DEFINE command.
The catalog containing the data set must be defined in
a DLBL statement (unless it is the master catalog). The
ONCODE associated with this message is 92.

IBM0214S • IBM0229S

Chapter 11. PL/I Run-Time Messages 269

System action: The application is terminated.

Programmer response: Ensure the data set is
catalogued and the right catalog is accessed. Also,
ensure the data set is a valid VSAM data set.

Symbolic Feedback Code: IBM075

IBM0230S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because of an I/O error reading the
catalog or the volume label (FILE= or
ONFILE= file-name).

Explanation: An I/O error prevented the reading of a
VSAM catalog or a volume label. The ONCODE
associated with this message is 92.

System action: The application is terminated.

Programmer response: Consult with the system
programmer.

Symbolic Feedback Code: IBM076

IBM0231S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because a timestamp mismatch was
detected (FILE= or ONFILE= file-name).

Explanation: For VSAM data sets, the index and data
can be updated separately and the time of the latest
update of each is recorded. If these times do not match,
the integrity of the data is uncertain and an OPEN
error will occur. Similarly, the timestamp in the data set
catalog record might not match the timestamp on the
volume containing the data set. This indicates the
extent information in the catalog record might not
agree with the extents indicated in the VTOC for the
volume. The ONCODE associated with this message is
92.

System action: The application is terminated.

Programmer response: Resubmit the job. If the error
recurs after resubmitting the job, use PLIDUMP to
obtain a storage dump and save all the relevant
documentation for study by IBM.

Symbolic Feedback Code: IBM077

IBM0232S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because the requested data set was not
available (FILE= or ONFILE= file-name).

Explanation: The data set to be accessed was already
being used by another program and could not be
shared.

System action: The application is terminated.

Programmer response: See IBM PL/I for VSE/ESA
Programming Guide for more information on sharing
data sets.

Symbolic Feedback Code: IBM078

IBM0233S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because the data set was not properly
closed (FILE= or ONFILE= file-name).

Explanation: The last time the data set was opened
the close operation failed, leaving the data set in an
unusable state. The ONCODE associated with this
message is 92.

System action: The application is terminated.

Programmer response: Use the access method services
VERIFY command to restore the data set to a usable
state. See VSE/VSAM Commands for details.

Symbolic Feedback Code: IBM079

IBM0234S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because the data set was never loaded
(FILE= or ONFILE= file-name).

Explanation: A file can not be opened for INPUT or
UPDATE to access a VSAM data set until one or more
records have been loaded into the data set using a
SEQUENTIAL OUTPUT file. Once records are loaded
into the data set, records can be added using a DIRECT
UPDATE file even after all records have been deleted
from the data set. The ONCODE associated with this
message is 82.

System action: The application is terminated.

Programmer response: Load the empty data set first.
Then proceed with further update/input/delete
activity.

Symbolic Feedback Code: IBM07A

IBM0235S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because of an unidentified error during
VSAM open (FILE= or ONFILE=
file-name).

Explanation: The VSAM routines detected an error
during the open process. The cause of the error could
not be determined explicitly. The ONCODE associated
with this message is 93.

System action: The application is terminated.

Programmer response: Resubmit the program. If the
error recurs after resubmitting the job, use PLIDUMP to
obtain a storage dump and retain all the relevant
documentation for study by IBM.

Symbolic Feedback Code: IBM07B

IBM0230S • IBM0235S

270 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

IBM0236S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because the operating system was
unable to OPEN the file (FILE= or
ONFILE= file-name).

Explanation: Possible reasons the file could not be
opened are:

1. The DLBL statement was in error.

2. A difference existed between the parameters of the
DLBL statement and the file's attributes.

3. There was no FORMAT-1 label in the VTOC with
the name given for an input file.

4. An EXTENT statement for an input file did not
match the FORMAT-1 label in the VTOC.

5. The logical unit specified on an EXTENT statement
for the file was assigned to a different volume.

6. Vendor Exit management received a return code
that was undefined.

System action: The application is terminated.

Programmer response: The numbered responses
below apply to the correspondingly numbered
explanations above.

1. Fix the DLBL statement.

2. Ensure the parameters specified on the DLBL
statement are compatible with the file's attributes.

3. Check the file ID on the DLBL statement for a
misspelling.

4. Check the start track and number of tracks specified
on the EXTENT statement.

5. Change the logical unit name or assign the logical
unit to the correct volume.

6. If a tape or disk management system is in use,
ensure that it is operating correctly.

Symbolic Feedback Code: IBM07C

IBM0237S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because a symbolic device name is not
assigned or is invalid (FILE= or
ONFILE= file-name).

Explanation: The address in the ASSGN statement for
the logical unit was UA or IGN or the logical unit was
invalid. The ONCODE associated with this message is
84.

System action: The application is terminated.

Programmer response: Correct the JCL.

Symbolic Feedback Code: IBM07D

IBM0238S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because an EXTENT statement is in
error (FILE= or ONFILE= file-name).

Explanation:

v The symbolic unit specified in the EXTENT
statement was invalid.

v The volume serial numbers in the EXTENT statement
do not match those in the catalog entry.

v More than 16 extents were specified.

The ONCODE associated with this message is 84.

System action: The application is terminated.

Programmer response: Correct the JCL.

Symbolic Feedback Code: IBM07E

IBM0240S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because the required volume could not
be mounted (FILE= or ONFILE=
file-name).

Explanation: Either an attempt was made to mount
two volumes on the same unit or the operator was
unable to mount the required volume. The ONCODE
associated with this message is 92.

System action: The application is terminated.

Programmer response: Correct the JCL.

Symbolic Feedback Code: IBM07G

IBM0241S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because the REUSE option was specified
for a non-reusable data set (FILE= or
ONFILE= file-name).

Explanation: The ENVIRONMENT option REUSE can
only be specified with VSAM data sets which have
been defined as reusable during their creation by access
method services. The ONCODE associated with this
message is 94.

System action: The application is terminated.

Programmer response: Remove the REUSE option.

Symbolic Feedback Code: IBM07H

IBM0242S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because the alternate index path was
empty (FILE= or ONFILE= file-name).

Explanation: An alternate index can be emptied by
having all of its pointers deleted. An empty alternate
index cannot be opened. The ONCODE associated with
this message is 95.

IBM0236S • IBM0242S

Chapter 11. PL/I Run-Time Messages 271

System action: The application is terminated.

Programmer response: Ensure the index is defined
before it is built and the right alternate index is used.

Symbolic Feedback Code: IBM07I

IBM0243S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because an attempt to position the file
at the last record failed (FILE= or
ONFILE= file-name).

Explanation: When the ENVIRONMENT option
BKWD is used on file opening, the file must be
positioned at the last record. If an attempt to position
the last record fails, the file is closed and the
UNDEFINEDFILE condition is raised with this
message.

System action: The application is terminated.

Programmer response: Check with the system
operator or the system programmer.

Symbolic Feedback Code: IBM07J

IBM0244S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because CONSECUTIVE files cannot be
DIRECT or KEYED (FILE= or ONFILE=
file-name).

Explanation: CONSECUTIVE files must be
SEQUENTIAL and records do not have a key. The
ONCODE associated with this message is 82.

System action: The application is terminated.

Programmer response: Change the file declaration or
the OPEN statement attributes.

Symbolic Feedback Code: IBM07K

IBM0245S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because DIRECT files cannot be
CONSECUTIVE or BUFFERED (FILE= or
ONFILE= file-name).

Explanation: DIRECT files must be VSAM or
REGIONAL and cannot be BUFFERED. The ONCODE
associated with this message is 82.

System action: The application is terminated.

Programmer response: Change the file declaration or
the OPEN statement attributes.

Symbolic Feedback Code: IBM07L

IBM0246S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because STREAM files must be
CONSECUTIVE (FILE= or ONFILE=
file-name).

Explanation: VSAM or REGIONAL files cannot be
accessed in STREAM mode. The ONCODE associated
with this message is 82.

System action: The application is terminated.

Programmer response: Change the file declaration or
the OPEN statement attributes.

Symbolic Feedback Code: IBM07M

IBM0247S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because STREAM files cannot be
spanned (FILE= or ONFILE= file-name).

Explanation: Spanned files cannot be accessed in
STREAM mode. The ONCODE associated with this
message is 82.

System action: The application is terminated.

Programmer response: Change the file declaration or
the OPEN statement attributes.

Symbolic Feedback Code: IBM07N

IBM0248S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because PRINT files must be STREAM
OUTPUT (FILE= or ONFILE= file-name).

Explanation: The PRINT attribute is only valid for a
STREAM OUTPUT file. The ONCODE associated with
this message is 82.

System action: The application is terminated.

Programmer response: Change the file declaration or
the OPEN statement attributes.

Symbolic Feedback Code: IBM07O

IBM0249S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because VSAM files cannot be
STREAM, BACKWARDS or PRINT
(FILE= or ONFILE= file-name).

Explanation: The STREAM, BACKWARDS and PRINT
attributes are invalid for VSAM files. The ONCODE
associated with this message is 82.

System action: The application is terminated.

Programmer response: Change the file declaration or
the OPEN statement attributes.

Symbolic Feedback Code: IBM07P

IBM0243S • IBM0249S

272 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

IBM0250S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because the REUSE option is valid only
with OUTPUT files (FILE= or ONFILE=
file-name).

Explanation: The REUSE option is used to erase and
rewrite a VSAM file. It is not permitted for INPUT or
UPDATE mode. The ONCODE associated with this
message is 82.

System action: The application is terminated.

Programmer response: Remove the REUSE option
from the ENVIRONMENT attribute.

Symbolic Feedback Code: IBM07Q

IBM0251S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because the BKWD option is valid only
with SEQUENTIAL INPUT/UPDATE
files (FILE= or ONFILE= file-name).

Explanation: The VSAM BKWD ENVIRONMENT
option cannot be used with OUTPUT or DIRECT files.
The ONCODE associated with this message is 82.

System action: The application is terminated.

Programmer response: Remove the BKWD option
from the ENVIRONMENT attribute.

Symbolic Feedback Code: IBM07R

IBM0252S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because a VSAM file was not declared
ENV(VSAM) (FILE= or ONFILE=
file-name).

Explanation: The file you are attempting to access is a
VSAM file, but the VSAM ENVIRONMENT option was
not specified in the file declaration. The ONCODE
associated with this message is 82.

System action: The application is terminated.

Programmer response: If you wish to use this file,
add the VSAM ENVIRONMENT option to the file
declaration.

Symbolic Feedback Code: IBM07S

IBM0253S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because ESDS and RRDS files cannot
have a KEYLEN, KEYLOC or GENKEY
option (FILE= or ONFILE= file-name).

Explanation: The ENVIRONMENT options KEYLEN,
KEYLOC and GENKEY are not meaningful for VSAM
ESDS or RRDS files. The ONCODE associated with this
message is 82.

System action: The application is terminated.

Programmer response: Remove the errant option from
the file declaration.

Symbolic Feedback Code: IBM07T

IBM0254S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because ESDS files must be
SEQUENTIAL and ENV(VSAM) or
ENV(CONSECUTIVE) (FILE= or
ONFILE= file-name).

Explanation: ESDS files should be declared
SEQUENTIAL ENV(VSAM). ENV(CONSECUTIVE) is
allowed for data portability between ESDS files and
SAM files. The ONCODE associated with this message
is 82.

System action: The application is terminated.

Programmer response: Change the file declaration.

Symbolic Feedback Code: IBM07U

IBM0255S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because an AIX PATH cannot be
SEQUENTIAL OUTPUT (FILE= or
ONFILE= file-name).

Explanation: Records can only be added sequentially
to a VSAM base cluster (ESDS or KSDS). New records
must be written to AIX® PATHs using DIRECT mode
only. The AIX must be unique. The ONCODE
associated with this message is 82.

System action: The application is terminated.

Programmer response: Change the file declaration to
DIRECT OUTPUT.

Symbolic Feedback Code: IBM07V

IBM0256S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because a non-unique AIX PATH cannot
be DIRECT (FILE= or ONFILE=
file-name).

Explanation: A non-unique AIX PATH can only be
read or updated sequentially. The ONCODE associated
with this message is 82.

System action: The application is terminated.

Programmer response: Change the file declaration to
SEQUENTIAL INPUT or UPDATE.

Symbolic Feedback Code: IBM080

IBM0250S • IBM0256S

Chapter 11. PL/I Run-Time Messages 273

IBM0257S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because a SEQUENTIAL OUTPUT
KSDS must be KEYED (FILE= or
ONFILE= file-name).

Explanation: You must specify the KEYED attribute to
open a KSDS for SEQUENTIAL OUTPUT. A key must
be specified for each record written, and the keys must
be in sequence. The ONCODE associated with this
message is 82.

System action: The application is terminated.

Programmer response: Add the KEYED attribute to
the file declaration.

Symbolic Feedback Code: IBM081

IBM0258S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because the RECSIZE option was not
specified (FILE= or ONFILE= file-name).

Explanation: PL/I cannot determine the record size
for the indicated file. The RECSIZE ENVIRONMENT
option is required. The ONCODE associated with this
message is 83.

System action: The application is terminated.

Programmer response: Add the RECSIZE
ENVIRONMENT option to the file declaration,
specifying the required record length.

Symbolic Feedback Code: IBM082

IBM0259S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because the record or block size is
invalid (FILE= or ONFILE= file-name).

Explanation: Negative values for the RECSIZE or
BLKSIZE ENVIRONMENT options are not permitted.
The ONCODE associated with this message is 86.

System action: The application is terminated.

Programmer response: Change the RECSIZE or
BLKSIZE value.

Symbolic Feedback Code: IBM083

IBM0260S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because REGIONAL(1) and (2) files
must be fixed format (FILE= or ONFILE=
file-name).

Explanation: The Variable and Undefined record
formats are not permitted for REGIONAL(1) and (2)
files. The ONCODE associated with this message is 87.

System action: The application is terminated.

Programmer response: Change the record format

specified by the ENVIRONMENT attribute.

Symbolic Feedback Code: IBM084

IBM0261S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because CONSECUTIVE UNBUFFERED
files cannot be blocked or spanned
(FILE= or ONFILE= file-name).

Explanation: CONSECUTIVE files must have the
BUFFERED attribute to access blocked or spanned
records. The ONCODE associated with this message is
87.

System action: The application is terminated.

Programmer response: Specify the BUFFERED
attribute or change the record format.

Symbolic Feedback Code: IBM085

IBM0262S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because REGIONAL or UNBUFFERED
files cannot be blocked (FILE= or
ONFILE= file-name).

Explanation: REGIONAL data sets do not use
blocking. Blocked records can only be processed via a
CONSECUTIVE BUFFERED file. The ONCODE
associated with this message is 87.

System action: The application is terminated.

Programmer response: Change the file declaration.

Symbolic Feedback Code: IBM086

IBM0263S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because REGIONAL SEQUENTIAL
UNBUFFERED files cannot be spanned
(FILE= or ONFILE= file-name).

Explanation: A REGIONAL(3) SEQUENTIAL
VS-format file must have the BUFFERED attribute. The
ONCODE associated with this message is 87.

System action: The application is terminated.

Programmer response: Change the file declaration to
specify BUFFERED.

Symbolic Feedback Code: IBM087

IBM0264S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because CONSECUTIVE UNBUFFERED
files can be tape or disk only (FILE= or
ONFILE= file-name).

Explanation: VSE restrictions limit CONSECUTIVE
UNBUFFERED files to tape and disk devices only. The
ONCODE associated with this message is 88.

IBM0257S • IBM0264S

274 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

System action: The application is terminated.

Programmer response: Use a BUFFERED file to access
other devices.

Symbolic Feedback Code: IBM088

IBM0265S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because REGIONAL is only permitted
for disk files (FILE= or ONFILE=
file-name).

Explanation: The REGIONAL option is permitted only
for Direct Access Storage Devices (disk devices). The
ONCODE associated with this message is 88.

System action: The application is terminated.

Programmer response: Change the JCL to use a disk
file or remove the REGIONAL option.

Symbolic Feedback Code: IBM089

IBM0266S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because BACKWARDS is only
permitted for tape F and U formats
(FILE= or ONFILE= file-name).

Explanation: Variable format tape files can be read
forwards only. The ONCODE associated with this
message is 88.

System action: The application is terminated.

Programmer response: Remove the BACKWARDS
attribute.

Symbolic Feedback Code: IBM08A

IBM0267S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because UPDATE is only permitted for
disk files (FILE= or ONFILE= file-name).

Explanation: The UPDATE attribute is invalid for
non-disk devices. The ONCODE associated with this
message is 88.

System action: The application is terminated.

Programmer response: Remove the UPDATE attribute.
The file may be updated by reading the data, changing
the data and writing the new data to another file.

Symbolic Feedback Code: IBM08B

IBM0268S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because card or printer devices cannot
be blocked or spanned (FILE= or
ONFILE= file-name).

Explanation: Only disk and tape files can blocked or

spanned. The ONCODE associated with this message is
88.

System action: The application is terminated.

Programmer response: Change the record format or
use a different device.

Symbolic Feedback Code: IBM08C

IBM0269S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because diskette files cannot be V, U or
blocked (FILE= or ONFILE= file-name).

Explanation: Diskette devices use fixed length
unblocked records. The ONCODE associated with this
message is 88.

System action: The application is terminated.

Programmer response: Change the record format.

Symbolic Feedback Code: IBM08D

IBM0270S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because printer devices must be
OUTPUT (FILE= or ONFILE= file-name).

Explanation: The INPUT or UPDATE attribute is not
meaningful for printer devices. The ONCODE
associated with this message is 88.

System action: The application is terminated.

Programmer response: Specify the OUTPUT attribute
or use a different device.

Symbolic Feedback Code: IBM08E

IBM0271S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because tape devices must be
CONSECUTIVE (FILE= or ONFILE=
file-name).

Explanation: The REGIONAL or VSAM option was
specified for a tape device. The ONCODE associated
with this message is 88.

System action: The application is terminated.

Programmer response: Change the file declaration to
specify CONSECUTIVE.

Symbolic Feedback Code: IBM08F

IBM0272S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because tape devices cannot be UPDATE
or DIRECT (FILE= or ONFILE= file-name).

Explanation: The UPDATE or DIRECT attribute is
invalid for tape devices. The ONCODE associated with
this message is 88.

IBM0265S • IBM0272S

Chapter 11. PL/I Run-Time Messages 275

System action: The application is terminated.

Programmer response: Specify SEQUENTIAL INPUT
or OUTPUT in the file declaration.

Symbolic Feedback Code: IBM08G

IBM0273S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because the RECSIZE, KEYLENGTH or
KEYLOC ENVIRONMENT option
conflicts with the data set (FILE= or
ONFILE= file-name).

Explanation: The RECSIZE, KEYLENGTH or KEYLOC
ENVIRONMENT option does not match the actual data
set value. The ONCODE associated with this message
is 91.

System action: The application is terminated.

Programmer response: Change the file declaration to
specify the correct values.

Symbolic Feedback Code: IBM08H

IBM0274S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because the LE/VSE DTF builder
encountered an error (FILE= or ONFILE=
file-name).

Explanation: An unknown error occurred attempting
to generate the DTF for this file. The ONCODE
associated with this message is 93.

System action: The application is terminated.

Programmer response: Contact your IBM
representative. Try changing the file declaration as an
interim solution.

Symbolic Feedback Code: IBM08I

IBM0275S ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because there was insufficient GETVIS
storage (FILE= or ONFILE= file-name).

Explanation: Insufficient Partition GETVIS storage was
available to allocate the necessary buffers and control
blocks for this file. The ONCODE associated with this
message is 93.

System action:

Programmer response: Change the JCL to decrease the
value on the EXEC statement SIZE parameter, or
increase the size of the partition.

Symbolic Feedback Code: IBM08J

IBM0276W Additional CLOSE attempt ignored for
file file-name.

Explanation: The request to close the file is ignored
because a previous attempt to close the file has failed.
The previous close attempt encountered a condition
and could not complete for one of the following
reasons:

v The condition was unhandled and promoted to the
ERROR condition.

v The ON-UNIT for the condition performed a GOTO
out of ON-UNIT.

System action: The CLOSE statement is ignored.

Programmer response: Fix the original error causing
the first close attempt to fail.

Symbolic Feedback Code: IBM08K

IBM0277W Implicit CLOSE detected a previous
CLOSE failure for file file-name.

Explanation: A previous close failure was detected by
implicit CLOSE during program termination. The
integrity of the file may be compromised. See message
IBM0276 for more information.

System action: The close is ignored and termination
continues.

Programmer response: Fix the original error causing
the close attempt to fail.

Symbolic Feedback Code: IBM08L

IBM0280S The ERROR condition was raised by a
SIGNAL statement.

Explanation: The program contained a SIGNAL
statement to raise the ERROR condition.

System action: The application is terminated.

Programmer response: Either remove the SIGNAL
statement or include an ON-unit for the ERROR
condition in the program that transfers control out of
the ON-unit with a GOTO statement.

Symbolic Feedback Code: IBM08O

IBM0281S A prior condition was promoted to the
ERROR condition.

Explanation: This condition was raised by PL/I
because the implicit action occurred for a PL/I
condition that includes raising the ERROR condition as
part of its implicit action.

The message for this condition is never issued, but it
can appear in a dump. Note that the message for the
prior condition was issued.

System action: The application is terminated.

Programmer response: Investigate the prior condition

IBM0273S • IBM0281S

276 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

that led to the ERROR condition. Remove the cause of
that condition, or include an ON-unit for that condition
or an ON-unit for the ERROR condition.

Symbolic Feedback Code: IBM08P

IBM0300S ONCODE=320 The ZERODIVIDE
condition was raised by a SIGNAL
statement.

Explanation: The program contained a SIGNAL
statement to raise the ZERODIVIDE condition for
which there was no associated ON-unit.

System action: The application is terminated.

Programmer response: Either remove the SIGNAL
statement or include an ON-unit for the ZERODIVIDE
condition in the program.

Symbolic Feedback Code: IBM09C

IBM0301S ONCODE= oncode-value The
ZERODIVIDE condition was raised.

Explanation: The program attempted to execute a
statement in which a value of zero was used as the
divisor in a division operation. Alternatively, an
overflow occurred during a convert to binary
operation.

System action: The application is terminated.

Programmer response: Either check the data that
could produce a zero divisor (or overflow, if doing a
convert to binary operation) before running the
program or include an ON-unit for the ZERODIVIDE
condition in the program.

Symbolic Feedback Code: IBM09D

IBM0320W ONCODE= oncode-value The
UNDERFLOW condition was raised by
a SIGNAL statement.

Explanation: The program contained a SIGNAL
statement to raise the UNDERFLOW condition for
which there was no associated ON-unit. The ONCODE
associated with this message is 330.

System action: Execution continues with the next
sequential statement.

Programmer response: Either remove the SIGNAL
statement or include an ON-unit for the UNDERFLOW
condition in the program.

Symbolic Feedback Code: IBM0A0

IBM0321W ONCODE= oncode-value The
UNDERFLOW condition was raised.

Explanation: The magnitude of a floating-point
number was smaller than the allowed minimum.

System action: Execution continues from the point at

which the condition was raised.

Programmer response: Either modify the program so
that the magnitude of the floating-point number is
higher than the minimum allowed, or include an
ON-unit for the UNDERFLOW condition in the
program.

Symbolic Feedback Code: IBM0A1

IBM0330W The ATTENTION condition was raised
by a SIGNAL statement.

Explanation: The program contained a SIGNAL
statement to raise the ATTENTION condition. The
message for this condition is never issued by PL/I.

System action: None.

Programmer response: None.

Symbolic Feedback Code: IBM0AA

IBM0340S ONCODE= oncode-value The SIZE
condition was raised by a SIGNAL
statement.

Explanation: The program contained a SIGNAL
statement to raise the SIZE condition for which there
was no associated ON-unit. The ONCODE associated
with this message is 340.

System action: The application is terminated.

Programmer response: Either remove the SIGNAL
statement or include an ON-unit for the SIZE condition
in the program.

Symbolic Feedback Code: IBM0AK

IBM0341S ONCODE= oncode-value The SIZE
condition was raised in an I/O
statement.

Explanation: The high-order (leftmost) significant
binary or decimal digits were lost in an input/output
operation where the size of the value being transmitted
exceeded the declared (or default) size of the data item.
The ONCODE associated with this message is 341.

System action: The application is terminated.

Programmer response: Either modify the program so
that the data item is large enough for the value being
transmitted or include an ON-unit for the SIZE
condition in the program.

Symbolic Feedback Code: IBM0AL

IBM0342S ONCODE= oncode-value The SIZE
condition was raised.

Explanation: The high-order (leftmost) significant
binary or decimal digits were lost in an assignment to a
variable or temporary variable where the size of the
value being assigned exceeded the declared (or default)

IBM0300S • IBM0342S

Chapter 11. PL/I Run-Time Messages 277

size of the data item. The ONCODE associated with
this message is 340.

System action: The application is terminated.

Programmer response: Either modify the program so
that the data item is large enough for the value being
assigned to it or include an ON-unit for the SIZE
condition to allow processing to continue when the
SIZE condition is raised.

Symbolic Feedback Code: IBM0AM

IBM0360W ONCODE= oncode-value The
STRINGRANGE condition was raised
by a SIGNAL statement.

Explanation: The program contained a SIGNAL
statement to raise the STRINGRANGE condition for
which there was no associated ON-unit. The ONCODE
associated with this message is 350.

System action: Execution continues with the next
sequential statement.

Programmer response: Either remove the SIGNAL
statement or include an ON-unit for the
STRINGRANGE condition in the program.

Symbolic Feedback Code: IBM0B8

IBM0361W ONCODE= oncode-value The
STRINGRANGE condition was raised.

Explanation: In the expression SUBSTR(S,I,J), the
substring represented by starting position I for a length
of J does not lie wholly within the string S.

System action: Execution continues with a revised
SUBSTR reference. Refer to the Language Reference
Manual for details regarding the value of the revised
SUBSTR reference.

Programmer response: Ensure that the values used for
I and J are neither less than nor greater than the length
of S.

Symbolic Feedback Code: IBM0B9

IBM0365W The FINISH condition was raised by a
SIGNAL statement.

Explanation: The program contained a SIGNAL
statement to raise the FINISH condition. The message
for this condition is never issued by PL/I.

System action: None.

Programmer response: None.

Symbolic Feedback Code: IBM0BD

IBM0368W The FINISH condition was raised due to
a RETURN or END statement in the
main procedure.

Explanation: The program completed normally, and as
a result the FINISH condition was raised. The message
for this condition is never issued by PL/I.

System action: None.

Programmer response: None.

Symbolic Feedback Code: IBM0BG

IBM0380S ONCODE= oncode-value The AREA
condition was raised by a SIGNAL
statement.

Explanation: The program contained a SIGNAL
statement to raise the AREA condition for which there
was no associated ON-unit. The ONCODE associated
with this message is 362.

System action: The application is terminated.

Programmer response: Either remove the SIGNAL
statement or include an ON-unit for the AREA
condition in the program.

Symbolic Feedback Code: IBM0BS

IBM0381S ONCODE= oncode-value The AREA
condition was raised because the target
area was too small for the AREA
assignment.

Explanation: In an assignment of an area variable, the
current extent of the area on the right-hand side of the
assignment statement was greater than the size of the
area to which it was to be assigned. The ONCODE
associated with this message is 361.

System action: The application is terminated.

Programmer response: Modify the program to ensure
that the target area is large enough to contain the
source area.

Symbolic Feedback Code: IBM0BT

IBM0382S ONCODE= oncode-value The AREA
condition was raised because of
insufficient contiguous space in the area
for allocation.

Explanation: Insufficient space was available in the
specified area for the allocation. The ONCODE
associated with this message is 360.

System action: The application is terminated.

Programmer response: Provide an ON-unit to allow
the allocation to be tried again. If necessary, change the
value of the pointer qualifying the reference to the
inadequate area so that it points to another area in
which the allocation can be tried again.

IBM0360W • IBM0382S

278 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Symbolic Feedback Code: IBM0BU

IBM0400W ONCODE= oncode-value The
CONDITION condition was raised by a
SIGNAL statement and the condition
condition-name was signaled.

Explanation: The program contained a SIGNAL
statement to raise the CONDITION condition for which
there was no associated ON-unit. The ONCODE
associated with this message is 500.

System action: Execution continues with the next
sequential statement.

Programmer response: Either remove the SIGNAL
statement or include an ON-unit for the CONDITION
condition in the program.

Symbolic Feedback Code: IBM0CG

IBM0420S ONCODE= oncode-value The
SUBSCRIPTRANGE condition was
raised by a SIGNAL statement.

Explanation: The program contained a SIGNAL
statement to raise the SUBSCRIPTRANGE condition for
which there was no associated ON-unit. The ONCODE
associated with this message is 520.

System action: The application is terminated.

Programmer response: Either remove the SIGNAL
statement or include an ON-unit for the
SUBSCRIPTRANGE condition in the program.

Symbolic Feedback Code: IBM0D4

IBM0421S ONCODE= oncode-value The
SUBSCRIPTRANGE condition was
raised.

Explanation: An array subscript exceeded the declared
bound for the array.

System action: The application is terminated.

Programmer response: In order to ensure that the
program can continue processing after encountering a
subscript range error, include an ON-unit for this
condition which runs a GOTO statement to the
appropriate place in the program. Also recompile the
program. Normal return from a SUBSCRIPTRANGE
ON-unit will produce this message and raise the error
condition.

Symbolic Feedback Code: IBM0D5

IBM0440W ONCODE= oncode-value The
STRINGSIZE condition was raised by a
SIGNAL statement.

Explanation: The program contained a SIGNAL
statement to raise the STRINGSIZE condition for which
there was no associated ON-unit. The ONCODE

associated with this message is 150.

System action: Execution continues with the next
sequential statement.

Programmer response: Either remove the SIGNAL
statement or include an ON-unit for the STRINGSIZE
condition in the program.

Symbolic Feedback Code: IBM0DO

IBM0441W ONCODE= oncode-value The
STRINGSIZE condition was raised.

Explanation: A string was assigned to a shorter string,
causing right-hand characters or bits in the source
string to be truncated.

System action: Execution continues from the point at
which the condition was raised.

Programmer response: Determine whether or not
truncation of the right-hand characters or bits in the
source string is correct. Use an ON-unit to record the
relevant data or modify the program as required.

Symbolic Feedback Code: IBM0DP

IBM0442W ONCODE=151 The STRINGSIZE
condition was raised. The condition was
detected during a mixed character string
assignment.

Explanation: This condition was raised by one of the
CHAR, GRAPHIC, or MPSTR built-in functions. The
target was not long enough to contain the result. This
target can be the actual target or a temporary target
that is created by the program. This condition may
have occurred also due to a mixed character
assignment with STRINGSIZE enabled and
CHARGRAPHIC in effect for the procedure or block.
An MPSTR call is generated in this case.

System action: Execution continues from the point at
which the condition was raised.

Programmer response: Determine whether or not
truncation of right-hand characters in the result is
correct. Use an ON-unit to record the relevant data or
modify the program as required.

Symbolic Feedback Code: IBM0DQ

IBM0460S ONCODE= oncode-value The
OVERFLOW condition was raised by a
SIGNAL statement.

Explanation: The program contained a SIGNAL
statement to raise the OVERFLOW condition for which
there was no associated ON-unit. The ONCODE
associated with this message is 300.

System action: The application is terminated.

Programmer response: Either remove the SIGNAL

IBM0400W • IBM0460S

Chapter 11. PL/I Run-Time Messages 279

statement or include an ON-unit for the OVERFLOW
condition in the program.

Symbolic Feedback Code: IBM0EC

IBM0461S ONCODE= oncode-value The
OVERFLOW condition was raised.

Explanation: The magnitude of a floating-point
number exceeded the allowed maximum.

System action: The application is terminated.

Programmer response: Modify the program to ensure
that the condition does not recur or provide an
ON-unit to handle the condition.

Symbolic Feedback Code: IBM0ED

IBM0480S ONCODE= oncode-value The
FIXEDOVERFLOW condition was raised
by a SIGNAL statement.

Explanation: The program contained a SIGNAL
statement to raise the FIXEDOVERFLOW condition for
which there was no associated ON-unit. The ONCODE
associated with this message is 310.

System action: The application is terminated.

Programmer response: Either remove the SIGNAL
statement or include an ON-unit for the
FIXEDOVERFLOW condition in the program.

Symbolic Feedback Code: IBM0F0

IBM0482S ONCODE= oncode-value The
FIXEDOVERFLOW condition was
raised.

Explanation: The length of the result of a fixed-point
arithmetic operation exceeded the allowed maximum
(15 for decimal values and 31 for binary values).

System action: The application is terminated.

Programmer response: Modify the program to ensure
that the condition does not recur or provide an
ON-unit to handle the condition.

Symbolic Feedback Code: IBM0F2

IBM0504S ONCODE=oncode-value The value of Y
in SECSTODATE(X,Y), DAYS(X,Y),
DAYSTODATE(X,Y), or DATETIME(Y)
contained an invalid PICTURE string
specification.

Explanation: The character string representing the
desired format for the output datetime stamp contained
an invalid picture string. The ONCODE associated with
this message is 2104.

System action: The ERROR condition is raised.

Programmer response: Correct the format.

Symbolic Feedback Code: IBM0FO

IBM0505S ONCODE=oncode-value X in DAYS(X,(Y))
contained an invalid day value.

Explanation: The supplied value for the day
parameter was not within the valid range of 15 October
1582 to 31 December 9999. The ONCODE associated
with this message is 2105.

System action: The ERROR condition is raised.

Programmer response: Correct the value for the day
parameter to be within the supported range.

Symbolic Feedback Code: IBM0FP

IBM0506S ONCODE=oncode-value X in DAYS(X,(Y))
contained an invalid month value.

Explanation: The supplied value for the month
parameter was not within the valid range of October
1582 to December 9999. The ONCODE associated with
this message is 2106.

System action: The ERROR condition is raised.

Programmer response: Correct the value for the
month parameter to be within the supported range.

Symbolic Feedback Code: IBM0FQ

IBM0507S ONCODE=oncode-value X in DAYS(X,(Y))
contained an invalid year value.

Explanation: The supplied value for the year
parameter was not within the valid range of 1582 to
9999. The ONCODE associated with this message is
2107.

System action: The ERROR condition is raised.

Programmer response: Correct the value for the year
parameter to be within the supported range.

Symbolic Feedback Code: IBM0FR

IBM0508S ONCODE=oncode-value X in
DAYSTODATE(X,(Y)) was outside the
supported range.

Explanation: X represents the number of days since 15
October 1582. The valid range is from 1 to 3,074,324.
The ONCODE associated with this message is 2108.

System action: The ERROR condition is raised.

Programmer response: Correct the value for X to be
within the supported range.

Symbolic Feedback Code: IBM0FS

IBM0461S • IBM0508S

280 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

IBM0512S ONCODE=oncode-value X in SECS(X,Y)
or DAYS(X,Y) was outside the supported
range.

Explanation: The input date supplied was earlier than
15 October 1582 or later than 31 December 9999. The
ONCODE associated with this message is 2112.

System action: The ERROR condition is raised.

Programmer response: Correct the input date to be
within the supported range.

Symbolic Feedback Code: IBM0G0

IBM0516S ONCODE=oncode-value X in DAYS(X,Y)
did not match the picture specification.

Explanation: The value of X did not match the format
described by the picture specification. For example,
non-numeric characters appear where only numeric
characters are expected. The ONCODE associated with
this message is 2116.

System action: The ERROR condition is raised.

Programmer response: Verify the format of the input
data matches the picture string specification.

Symbolic Feedback Code: IBM0G4

IBM0518S ONCODE=oncode-value The date string
returned by DAYSTODATE(X,Y) was
truncated.

Explanation: The output string was not large enough
to contain the formatted date value. The ONCODE
associated with this message is 2118.

System action: The ERROR condition is raised.

Programmer response: Ensure the output string is
large enough to contain the entire formatted date.

Symbolic Feedback Code: IBM0G6

IBM0519S ONCODE=oncode-value The timestamp
string returned by DATETIME(X) or
SECSTODATE(X,Y) was truncated.

Explanation: The output string was not large enough
to contain the formatted date value. The ONCODE
associated with this message is 2119.

System action: The ERROR condition is raised.

Programmer response: Ensure the output string is
large enough to contain the entire formatted date.

Symbolic Feedback Code: IBM0G7

IBM0531S ONCODE= oncode-value Operation
exception

Explanation: A programmer-related hardware error
was detected. The ONCODE associated with this
message is 8091.

System action: The application is terminated.

Programmer response: It is possible that an error in
the program has caused part of the instructions that
can be run to be overwritten by data. Other possible
causes of an operation exception might be an attempt
to invoke an external procedure or other routine that
was not incorporated into the running program by the
linkage editor, or running a branch instruction that is
incorrect because a control block had previously been
overwritten. Consequently, it is advisable to check the
linkage editor diagnostics to ensure that all requested
external procedures and subroutines have in fact been
incorporated into the running program, and that any
overlay phases do not overwrite any phases that are
still active.

Symbolic Feedback Code: IBM0GJ

IBM0532S ONCODE= oncode-value Privileged
operation exception

Explanation: A programmer-related hardware error
was detected. The ONCODE associated with this
message is 8092.

System action: The application is terminated.

Programmer response: If the error is not in a
non-PL/I routine included in the running program, the
PL/I program should be checked for an error that
could cause the instructions that run to be overwritten
by data that matches a privileged operation.

Symbolic Feedback Code: IBM0GK

IBM0533S ONCODE= oncode-value EXECUTE
exception

Explanation: A programmer-related hardware error
was detected. The ONCODE associated with this
message is 8093.

System action: The application is terminated.

Programmer response: If the error is not in a
non-PL/I routine included in the running program, the
PL/I program should be checked for an error that
could cause the running instruction to be overwritten
by data that matches the operation code for the
EXECUTE instruction on.

Symbolic Feedback Code: IBM0GL

IBM0512S • IBM0533S

Chapter 11. PL/I Run-Time Messages 281

IBM0534S ONCODE= oncode-value Protection
exception

Explanation: A programmer-related hardware error
was detected. The ONCODE associated with this
message is 8094.

System action: The application is terminated.

Programmer response: If the error is not in a
non-PL/I routine included in the running program, the
PL/I program should be checked for an error that
could cause the address used by the store instruction to
be corrupted.

Symbolic Feedback Code: IBM0GM

IBM0535S ONCODE= oncode-value Addressing
exception

Explanation: A programmer-related hardware error
was detected. The ONCODE associated with this
message is 8095.

System action: The application is terminated.

Programmer response: If the error is not in a
non-PL/I routine included in the running program, the
PL/I program should be checked for an error that
could cause the address to be corrupted.

Symbolic Feedback Code: IBM0GN

IBM0536S ONCODE= oncode-value Specification
exception

Explanation: A programmer-related hardware error
was detected. The ONCODE associated with this
message is 8096.

System action: The application is terminated.

Programmer response: If the error is not in a
non-PL/I routine included in the running program, the
PL/I program should be checked for an error that
could cause the operand to be corrupted by
overwriting control blocks or sections of running code.

Symbolic Feedback Code: IBM0GO

IBM0537S ONCODE= oncode-value Data exception

Explanation: A programmer-related hardware error
was detected. The ONCODE associated with this
message is 8097.

System action: The application is terminated.

Programmer response: The PL/I program should be
checked for an error such as an operation on a FIXED
DECIMAL data item before it has been initialized, or
an error which could cause the data item to be
overwritten.

Symbolic Feedback Code: IBM0GP

IBM0560S ONCODE= oncode-value The EVENT
variable, as argument to the
COMPLETION pseudovariable, was
already in use with file file-name .

Explanation: The event variable used in this statement
was already active and associated with an
input/output operation on the named file. The
ONCODE associated with this message is 3904.

System action: The application is terminated.

Programmer response: Modify the program so that
the COMPLETION pseudovariable refers to the event
variable when it is inactive.

Symbolic Feedback Code: IBM0HG

IBM0562S ONCODE= oncode-value The EVENT
variable, as argument to the
COMPLETION pseudovariable, was
already in use with a DISPLAY
statement.

Explanation: The event variable used in this statement
was already active and associated with a DISPLAY
statement.

System action: The application is terminated.

Programmer response: Modify the program so that
the COMPLETION pseudovariable refers to the event
variable when it is inactive.

Symbolic Feedback Code: IBM0HI

IBM0563S ONCODE= oncode-value The EVENT
variable was already in use with file
file-name .

Explanation: The event variable used in this statement
was already active and associated with another
input/output operation on the named file. The
ONCODE associated with this message is 3907.

System action: The application is terminated.

Programmer response: Modify the program so that
the input/output operation refers to another event
variable, or include a WAIT statement to prevent the
statement from running until the active event is
complete.

Symbolic Feedback Code: IBM0HJ

IBM0564S ONCODE= oncode-value The EVENT
variable being assigned was already in
use with file file-name .

Explanation: An attempt was made to assign a value
to an event variable while it was still associated with
an input/output operation.

Example:

IBM0534S • IBM0564S

282 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

DCL X FILE RECORD INPUT UNBUFFERED
ENV(BLKSIZE(80) RECSIZE(80) F);
DCL Y CHAR(80);
DCL (Z,Z1) EVENT;
READ FILE(X) INTO(Y) EVENT(Z);
Z = Z1;

The ONCODE associated with this message is 3906.

System action: The application is terminated.

Programmer response: Modify the program so that
the event variable used as the target in the assignment,
or as the argument of the COMPLETION
pseudovariable, is not the same event variable
associated with an input/output operation.
Alternatively, include a WAIT statement to prevent this
statement from running until the active event is
complete.

Symbolic Feedback Code: IBM0HK

IBM0565S ONCODE= oncode-value There were
insufficient resources available to attach
a new task.

Explanation: The maximum number of subtasks
allowed in the system might already be reached. Or,
there is insufficient storage available to complete the
ATTACH request.

The ONCODE associated with this message is 3920.

System action: The attaching task and any
subordinate tasks are terminated.

Programmer response: Review the number of active
tasks in the system, the available system GETVIS, and
the partition GETVIS.

Symbolic Feedback Code: IBM0HL

IBM0566S ONCODE= oncode-value The task was
not created since the number of active
tasks would exceed the VSE partition
limit.

Explanation: The VSE partition limit of available
subtasks has been reached.

The ONCODE associated with this message is 3910.

System action: The attaching task and any
subordinate tasks are terminated.

Programmer response: Reduce the number of tasks
being attached for the PL/1 application.

Symbolic Feedback Code: IBM0HM

IBM0567S ONCODE= oncode-value A WAIT
occurred in the ON-unit for the I/O
event required for the current task.

Explanation: A WAIT statement specified an event
variable. The completion of the event caused entry to

an ON-unit for an I/O condition which contained
another WAIT statement for the same event variable as
in the original WAIT statement.

Example:

DCL F FILE RECORD OUTPUT UNBUFFERED
ENV(BLKSIZE(80) RECSIZE(80) F);
ON RECORD(F) BEGIN;
WAIT(E);
END;
WRITE FILE(F) FROM (X) EVENT(E);
WAIT(E); (this statement raises the
record condition)

The ONCODE associated with this message is 3911.

System action: The application is terminated.

Programmer response: Remove the WAIT statement
from the ON-unit for the input/output condition.

Symbolic Feedback Code: IBM0HN

IBM0568S ONCODE= oncode-value The assigned
EVENT variable was already in use with
a DISPLAY statement.

Explanation: The event variable specified as the
argument of the COMPLETION built-in function, or
used as the target in an assignment, was still associated
with a DISPLAY statement.

Example:

DCL A CHAR, COMPLETION BUILTIN;
DISPLAY(’MESSAGE TO OPERATOR’)
REPLY(A) EVENT(E);
COMPLETION(E)=’1’B;

ONCODEs associated with this message are:

v 3904 event variable as argument to the
COMPLETION bif

v 3907 event variable is active

System action: The application is terminated.

Programmer response: Modify the program so that
the event variable used as the target in the assignment
or as the argument of the COMPLETION
pseudovariable is not the same event variable
associated with the DISPLAY statement. Or include a
WAIT statement to prevent this statement from running
until the active event is complete.

Symbolic Feedback Code: IBM0HO

IBM0569S ONCODE= oncode-value The assigned
EVENT variable was already active and
was used with entry entry-name .

Explanation: An active event variable was specified as
the target of an event variable assignment.

Example:

IBM0565S • IBM0569S

Chapter 11. PL/I Run-Time Messages 283

DCL (E,E1) EVENT;
CALL P EVENT(E);
E=E1;
P: PROC;
END;

ONCODEs associated with this message are:

3906 event assignment
3907 event variable is active

System action: The application is terminated.

Programmer response: Either use another inactive
event variable, or include a WAIT statement to ensure
that this statement is not run until the active event is
complete.

Symbolic Feedback Code: IBM0HP

IBM0570S ONCODE= oncode-value The EVENT
variable was active and was used with
entry entry-name .

Explanation: An active event variable was specified in
the EVENT option of an input/output statement.

System action: The application is terminated.

Programmer response: Either insert a WAIT statement
to ensure the event in question is inactive when this
statement is run, or if the statement can be run
correctly before the currently active event is complete,
use another inactive event variable.

Symbolic Feedback Code: IBM0HQ

IBM0571S ONCODE= oncode-value The EVENT
variable was already used with a
DISPLAY statement.

Explanation: The event variable specified in the
statement was already associated with a DISPLAY
statement. The ONCODE associated with this message
is 3907.

System action: The application is terminated.

Programmer response: Either use a different event
variable or insert a WAIT statement so that the
DISPLAY statement is complete before this statement is
run.

Symbolic Feedback Code: IBM0HR

IBM0573S ONCODE= oncode-value The EVENT
variable, as argument to the
COMPLETION pseudovariable, was
already used with entry entry-name .

Explanation: An active event variable was used as the
argument to the COMPLETION pseudovariable. Event
variables used as arguments to the COMPLETION
pseudovariable must be inactive.

System action: The application is terminated.

Programmer response: Either use a different event
variable for the COMPLETION pseudovariable, or
modify the program so that the COMPLETION
pseudovariable refers to the event variable when it is
inactive.

Symbolic Feedback Code: IBM0HT

IBM0576S ONCODE= oncode-value An attempt to
use a CALL statement with the TASK,
EVENT, or PRIORITY option was found
in a non-tasking environment.

Explanation: The specified option requires a
multitasking environment, but this is not supported by
the current release of LE/VSE. The ONCODE
associated with this message is 3915.

System action: The application is terminated.

Programmer response: Remove the TASK, EVENT, or
PRIORITY option from the CALL statement.

Symbolic Feedback Code: IBM0I0

IBM0590S ONCODE= oncode-value The fetchable
procedure with entry entry-name could
not be found.

Explanation: The libraries available when the program
was run did not contain a member with a name
matching that used in the FETCH statement. The
ONCODE associated with this message is 9250.

System action: The application is terminated.

Programmer response: Ensure that the phase that is to
be fetched is accessible at run-time, and that it is stored
with the same name as that used in the FETCH
statement.

Symbolic Feedback Code: IBM0IE

IBM0591S ONCODE= oncode-value There was a
permanent I/O error while fetching
procedure with entry entry-name .

Explanation: A permanent I/O error occurred while
trying to load the phase named in the FETCH
statement. The ONCODE associated with this message
is 9251.

System action: The application is terminated.

Programmer response: Ensure that the required phase
has been cataloged into the appropriate sublibrary with
proper member type, and then rerun the job. If the
problem recurs, inform your installation system
programmer, who will take the appropriate action.

Symbolic Feedback Code: IBM0IF

IBM0570S • IBM0591S

284 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

IBM0593W ONCODE= oncode-value The CALL
PLITEST statement failed because the
NOTEST compiler option was in effect.

Explanation: An attempt was made to execute a
CALL PLITEST statement in a program that was
compiled with the NOTEST option. The debugger can
not be invoked when the NOTEST compiler option is
in effect.

System action: Processing continues with the next
sequential statement. A debugging tool is not invoked.

Programmer response: Re-compile the program with
the TEST option, or remove the CALL PLITEST
statement(s) from the program.

Symbolic Feedback Code: IBM0IH

IBM0594S ONCODE= oncode-value Under CICS, an
attempt was made to FETCH a main
procedure from a PL/I routine.

Explanation: Under CICS, using FETCH to
dynamically load a PL/I main procedure from a PL/I
routine is not supported. The ONCODE associated with
this message is 9254.

System action: The application is terminated.

Programmer response: Remove the FETCH statement
and use the EXEC CICS LINK command to create a
nested enclave.

Symbolic Feedback Code: IBM0II

IBM0595S ONCODE=9255 An attempt was made to
release a phase containing non-PL/I
high level language programs.

Explanation: A phase containing non-PL/I high level
language programs, such as C or COBOL, could not be
released by a PL/I RELEASE statement. The phase will
be released automatically during the enclave
termination. A phase containing PL/I programs and/or
Assembler programs only can be released by a PL/I
RELEASE statement. The associated ONCODE is 9255.

System action: The application is terminated.

Programmer response: Remove the RELEASE
statement from the program as the phase will be
released automatically during the enclave termination.

Symbolic Feedback Code: IBM0IJ

IBM0596S A back level PL/I module has been
link-edited to a main phase.

Explanation: The main phase has been linked with an
object compiled by DOS PL/I V1R6 (or earlier). The job
is canceled.

System action: The application is terminated.

Programmer response: Recompile any DOS PL/I
programs with PL/I.

Symbolic Feedback Code: IBM0IK

IBM0598S ONCODE= oncode-value PL/I module
module-name cannot be fetched because it
was not compiled by PL/I VSE.

Explanation: An attempt was made to FETCH a phase
compiled with DOS PL/I V1R6 (or earlier). The only
PL/I phases that may be fetched are those compiled
with PL/I VSE. The ONCODE associated with this
message is 9258.

System action: The application is terminated.

Programmer response: Recompile the offending phase
with PL/I VSE.

Symbolic Feedback Code: IBM0IM

IBM0600S ONCODE= oncode-value An E-format
specification contained incorrect values
in fields W, D, and S.

Explanation: An edit-directed input/output operation
for an E-format item was specified incorrectly. The
ONCODE associated with this message is 3000.

System action: The application is terminated.

Programmer response: Correct the E-format item
according to the language rules.

Symbolic Feedback Code: IBM0IO

IBM0601S ONCODE= oncode-value The value of a
W field in an F-format specification was
too small.

Explanation: An edit-directed input/output operation
for an F-format item was specified with a
W-specification that was too small to allow room for
the decimal-point when the number of fractional digits
was specified as zero. The ONCODE associated with
this message is 3001.

System action: The application is terminated.

Programmer response: Correct the F-format item
according to the language rules.

Symbolic Feedback Code: IBM0IP

IBM0604S ONCODE= oncode-value An invalid
assignment was made to a pictured
character string.

Explanation: An attempt was made to assign an
invalid data item to a pictured string. A data item
which is not a character string cannot be assigned to a
pictured character string because it does not match the
declared characteristics of the pictured target variable.
The ONCODE associated with this message is 3006.

IBM0593W • IBM0604S

Chapter 11. PL/I Run-Time Messages 285

System action: The application is terminated.

Programmer response: Alter the characteristics either
of the source variable or of the target variable so the
data item assignment is possible.

Symbolic Feedback Code: IBM0IS

IBM0630S ONCODE=3009 A mixed character string
ended incorrectly.

Explanation: A mixed character string contained a
shift-out character but did not contain a matching
shift-in character.

System action: The application is terminated.

Programmer response: Ensure that mixed character
strings contain unnested pairs of shift-out/shift-in
characters.

Symbolic Feedback Code: IBM0JM

IBM0631S ONCODE=3010 A mixed character string
contained an invalid character.

Explanation: One of the following rules for mixed
constants was broken:

v SBCS portions of the constant cannot contain a
shift-in.

v DBCS portions of the constant cannot contain a
shift-out. (Either byte of a DBCS character cannot
contain a shift-out.)

v The second byte of a DBCS character cannot contain
a shift-in.

System action: The application is terminated.

Programmer response: Ensure the mixed character
string contains balanced, unnested pairs of
shift-out/shift-in characters.

Symbolic Feedback Code: IBM0JN

IBM0632S ONCODE=3011 An invalid function
string was specified for the MPSTR
built-in function.

Explanation: For the MPSTR built-in function, a
function string is invalid if it is null, contains only
blanks, or contains characters other than 'V', 'v', 'S', 's',
or a blank.

System action: The application is terminated.

Programmer response: Ensure the function string is
valid.

Symbolic Feedback Code: IBM0JO

IBM0633S ONCODE=3012 A retry was attempted
after a graphic conversion error.

Explanation: The use of the ONSOURCE or ONCHAR
pseudovariable to attempt a conversion retry for a
graphic (DBCS) conversion error is not allowed.

System action: The application is terminated.

Programmer response: Remove the retry attempt from
your program.

Symbolic Feedback Code: IBM0JP

IBM0634S ONCODE=3013 An invalid graphic
variable assignment was attempted.

Explanation: A graphic (DBCS) target of length greater
than 16,383 was encountered. This target could have
been an actual target or a temporary target created by
the program. This condition was raised by the
GRAPHIC built-in function. The maximum length of a
graphic (DBCS) string is 16,383 characters (32,766
bytes).

System action: The application is terminated.

Programmer response: Ensure that graphic (DBCS)
strings are less than the maximum allowed length of
16,383.

Symbolic Feedback Code: IBM0JQ

IBM0635S ONCODE=3014 An invalid use of a
shift code occurred.

Explanation: There are two possible errors:

v The STREAM input record could not be scanned due
to an unmatched or nested shift code.

v A graphic (DBCS) constant in STREAM input
contained a shift code or used shift codes improperly.

System action: The application is terminated.

Programmer response: Verify that shift code pairs are
matched and unnested, continuation rules are followed,
and graphic (DBCS) constants are in one of the
allowable forms.

Symbolic Feedback Code: IBM0JR

IBM0636S ONCODE=3015 An invalid number of
digits was used in a X or GX constant.

Explanation: X constants must be specified in pairs.
GX constants must be specified in groups of four.

System action: The application is terminated.

Programmer response: Change the STREAM input
data so that all X constants are specified in pairs and
all GX constants are specified in groups of four.

Symbolic Feedback Code: IBM0JS

IBM0630S • IBM0636S

286 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

IBM0637S ONCODE=3016 A double-byte character
was used incorrectly.

Explanation: A non-EBCDIC double-byte character
was used incorrectly. These characters are only valid in
DBCS names, graphic (DBCS) constants, and mixed
character constants.

System action: The application is terminated.

Programmer response: Verify that a bit, character or
hexadecimal constant does not contain a non-EBCDIC
double-byte character, or that such a character is not
present outside a constant unless it is part of a name
for a GET DATA statement.

Symbolic Feedback Code: IBM0JT

IBM0638S ONCODE= oncode-value A STREAM
output record could not be written
correctly.

Explanation: A record could not be written out
because there was not enough room for a valid DBCS
continuation sequence. As a consequence, the record
cannot be read correctly as STREAM input. The
ONCODE associated with this message is 3017.

System action: The application is terminated.

Programmer response: Define the STREAM I/O data
set to contain V- or U-type record formats.

Symbolic Feedback Code: IBM0JU

IBM0648S ONCODE=3797 The assignment of a
graphic character string caused an error.

Explanation: STREAM I/O issued this message
because LIST, DATA, or EDIT input/output was
attempted for a graphic (DBCS) string and the
corresponding source or target string or file did not
have the necessary graphic attribute. This error could
also be issued when a null graphic constant appears as
an element in the data list of a PUT for LIST or EDIT.
Null graphic constants are restricted as elements in the
data list of a PUT for LIST or EDIT.

System action: The application is terminated.

Programmer response: Ensure that the source or
target string in the data list is a valid graphic (DBCS)
string and that it has been declared with the GRAPHIC
attribute. If a null graphic constant caused the error,
remove the null graphic constant from the data list of
the PUT statement.

Symbolic Feedback Code: IBM0K8

IBM0650S ONCODE=3799 The source was not
modified in the CONVERSION
ON-unit. Retry was not attempted.

Explanation: The CONVERSION condition was raised
by the presence of an invalid character in the string to

be converted. The character was not corrected in an
ON-unit using the ONCHAR or ONSOURCE
pseudovariable.

System action: The application is terminated.

Programmer response: Use either the ONCHAR or
the ONSOURCE pseudovariable in the CONVERSION
ON-unit to assign a valid character to replace the
invalid character in the source string.

Symbolic Feedback Code: IBM0KA

IBM0670S ONCODE= oncode-value X was less than
0 in SQRT(X).

Explanation: The built-in function SQRT was invoked
with an argument that is less than zero. ONCODEs
associated with this message are:

v 1500 Short floating-point argument

v 1501 Long floating-point argument

v 1502 Extended floating-point argument

System action: The application is terminated.

Programmer response: Modify the program so that
the argument of the SQRT built-in function is never less
than zero.

Symbolic Feedback Code: IBM0KU

IBM0671S ONCODE= oncode-value X was less than
or equal to 0 in LOG(X), LOG2(X) or
LOG10(X).

Explanation: One of the built-in functions LOG,
LOG2, or LOG10 was invoked with an argument less
than or equal to zero. The invocation may have been
direct or as part of the evaluation of an exponentiation
calculation. ONCODEs associated with this message
are:

v 1503 Extended floating-point argument

v 1504 Short floating-point argument

v 1505 Long floating-point argument

System action: The application is terminated.

Programmer response: If the invocation is direct,
modify the program so that the argument of the LOG,
LOG2, or LOG10 built-in function is greater than zero.
If the invocation is part of an exponentiation
calculation, ensure that the argument is greater than
zero.

Symbolic Feedback Code: IBM0KV

IBM0672S ONCODE= oncode-value ABS(X) was too
large in SIN(X), COS(X), SIND(X),
COSD(X), TAN(X) or TAND(X).

Explanation: The error occurred during one of the
following:

IBM0637S • IBM0672S

Chapter 11. PL/I Run-Time Messages 287

v The evaluation of SIN, SIND, COS, COSD, TAN, or
TAND when invoked implicitly

v The evaluation of TAN, when invoked during the
evaluation of TAN or TANH with a complex
argument

v The evaluation of SIN or COS, when invoked during
the evaluation of EXP, SIN, SINH, COS, COSH, TAN,
or TANH with a complex argument

v The evaluation of a general exponentiation function
with complex arguments

The argument passed to TAN, TAND, SIN, SIND, COS,
or COSD exceeded the limit specified below:

Table 44. Limits for Floating-Point Precision
Floating-Point
Precision

Limit

Binary p≤21
Decimal p≤6

x<(2**18)*K where K = pi
for x in radians
(SIN, COS, or
TAN)

Binary 21<p≤53
Decimal 6<p≤16

x<(2**50)*K where K = 180
for x in degrees
(SIND, COSD,
or TAND)

Binary 53<p≤109
Decimal 16<p≤33

x<(2**100)*K/pi

ONCODEs associated with this message are:

v 1506 Short floating-point argument involving SIN,
COS, SIND or COSD

v 1507 Long floating-point argument involving SIN,
COS, SIND or COSD

v 1508 Short floating-point argument involving TAN or
TAND

v 1509 Long floating-point argument involving TAN or
TAND

v 1517 Extended floating-point argument involving
SIN, COS, SIND or COSD

v 1522 Extended floating-point argument involving
TAN or TAND

System action: The application is terminated.

Programmer response: Ensure that X does not violate
the limits as described above. If X is an expression,
simplify X for easier problem diagnosis.

Symbolic Feedback Code: IBM0L0

IBM0674S ONCODE= oncode-value Both X and Y
were 0 in ATAN(Y,X) or ATAND(Y,X).

Explanation: Two arguments, both of value zero, were
given for the ATAN or ATAND built-in function. ATAN
or ATAND was invoked either directly with a real
argument or indirectly in the evaluation of the LOG
built-in function with a complex argument. ONCODEs
associated with this message are:

v 1510 Short floating-point arguments

v 1511 Long floating-point arguments

v 1521 Extended floating-point arguments

System action: The application is terminated.

Programmer response: Change the arguments of
ATAN or ATAND to nonzero values.

Symbolic Feedback Code: IBM0L2

IBM0675S ONCODE= oncode-value ABS(X) was
greater than or equal to 1 in ATANH(X).

Explanation: The ATANH built-in function had a
floating-point argument with an absolute value that
equaled or exceeded 1. ONCODEs associated with this
message are:

v 1514 Short floating-point argument

v 1515 Long floating-point argument

v 1516 Extended floating-point argument

System action: The application is terminated.

Programmer response: Modify the ATANH built-in
function so that the absolute value of a floating-point
assignment does not equal or exceed 1.

Symbolic Feedback Code: IBM0L3

IBM0676S ONCODE= oncode-value ABS(X) was
greater than 1 in ASIN(X) or ACOS(X).

Explanation: The absolute value of the floating-point
argument of the ASIN or ACOS built-in function
exceeded 1. ONCODEs associated with this message
are:

v 1518 Short floating-point argument

v 1519 Long floating-point argument

v 1520 Extended floating-point argument

System action: The application is terminated.

Programmer response: Modify the program so that
the ASIN or ACOS built-in function is never invoked
with a floating-point argument whose absolute value
exceeds 1.

Symbolic Feedback Code: IBM0L4

IBM0700S ONCODE= oncode-value An attempt to
assign data to an unallocated
CONTROLLED variable occurred
during GET DATA for file file-name .

Explanation: A CONTROLLED variable in the stream
was accessed by a GET FILE DATA statement, but there
was no current allocation for the variable.

Example:

IBM0674S • IBM0700S

288 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

DCL X CONTROLLED FIXED BIN;
GET DATA(X);

(Input stream contains
X=5,.....)

The ONCODE associated with this message is 4001.

System action: The application is terminated.

Programmer response: Either remove the data item
from the input stream or insert an ALLOCATE
statement for the variable before the GET FILE DATA
statement.

Symbolic Feedback Code: IBM0LS

IBM0701S ONCODE= oncode-value An attempt to
assign data to an unallocated
CONTROLLED variable occurred on a
GET DATA statement.

Explanation: A CONTROLLED variable in the stream
was accessed by a GET FILE DATA statement, but there
was no current allocation for the variable.

Example:

DCL STR CHAR(4) INIT(’X=5’),
X CONTROLLED FIXED BIN;
GET STRING(STR) DATA(X);

The ONCODE associated with this message is 4001.

System action: The application is terminated.

Programmer response: Either remove the data item
from the string or insert an ALLOCATE statement for
the variable before the GET STRING DATA statement.

Symbolic Feedback Code: IBM0LT

IBM0722S ONCODE= oncode-value X was assigned
a value of 0 and Y was not assigned the
value of a positive real number in X**Y.

Explanation: In an exponentiation operation the
floating-point base was zero and the exponent was not
a positive real number. ONCODEs associated with this
message are:

v 1550 Real short floating-point base with an integer
exponent

v 1551 Real long floating-point base with an integer
exponent

v 1552 Real short floating-point base with a
floating-point or non-integer exponent

v 1553 Real long floating-point base with a
floating-point or non-integer exponent

v 1554 Complex short floating-point base with an
integer exponent

v 1555 Complex long floating-point base with an
integer exponent

v 1556 Complex short floating-point base with a
floating-point or non-integer exponent

v 1557 Complex long floating-point base with a
floating-point or non-integer exponent

v 1560 Real extended floating-point base with an
integer exponent

v 1561 Real extended floating-point base with a
floating-point or non-integer exponent

v 1562 Complex extended floating-point base with an
integer exponent

v 1563 Complex extended floating-point base with a
floating-point or non-integer exponent

System action: The application is terminated.

Programmer response: Modify the program so that
the exponentiation operation involves a nonzero
floating-point base or a positive real exponent.

Symbolic Feedback Code: IBM0MI

IBM0724S ONCODE= oncode-value Z=+1i or Z=-1i
in ATAN(Z) or Z=+1 or Z=-1 in
ATANH(Z).

Explanation: Either the complex floating-point
argument of the ATAN built-in function had the value
of +1i or -1i, or the complex floating-point argument of
the ATANH built-in function has the value +1 or -1.
ONCODEs associated with this message are:

v 1558 Complex short floating-point argument

v 1559 Complex long floating-point argument

v 1564 Complex extended floating-point argument

System action: The application is terminated.

Programmer response: Modify the program so the
complex floating-point argument of ATAN never has
the value of +1i or -1i, or the complex floating-point
argument of the ATANH built-in function never has the
value +1 or -1.

Symbolic Feedback Code: IBM0MK

IBM0750S ONCODE= oncode-value A GOTO to an
invalid block was attempted.

Explanation: A GOTO statement that transfers control
to a label variable was invalid. The possible causes are:

v The generation of the block that was active when the
label variable was assigned was no longer active
when the GOTO statement was run.

v The label variable was uninitialized.

v The element of the label array, to which control is to
be transferred, does not exist in the program.

v An attempt has been made to transfer control to a
block that is not within the scope of this task.

Example:

IBM0701S • IBM0750S

Chapter 11. PL/I Run-Time Messages 289

DCL L LABEL;
BEGIN;
A: L = A;
END;
GOTO L;

The ONCODE associated with this message is 9002.

System action: The application is terminated.

Programmer response: Modify the program so that
the GOTO statement transfers control to a label in an
active block.

Symbolic Feedback Code: IBM0NE

IBM0780S ONCODE= oncode-value No WHEN
clauses were satisfied and no
OTHERWISE clause was available.

Explanation: No WHEN clauses of a SELECT
statement were selected and no OTHERWISE clause
was present. The ONCODE associated with this
message is 3.

System action: The application is terminated.

Programmer response: Add an OTHERWISE clause to
the SELECT group.

Symbolic Feedback Code: IBM0OC

IBM0802S ONCODE= oncode-value The GET/PUT
STRING exceeded the source string size.

Explanation: For input, a GET statement attempted to
access data that exceeded the length of the source
string. For output, a PUT statement attempted to assign
data that exceeded the target string. The ONCODE
associated with this message is 1002.

System action: The application is terminated.

Programmer response: For input, either extend the
length attribute of the source string, or correct the data
so that the length does not exceed the declared length
of the source string. For output, either extend the
length attribute of the target string, or correct the data
so that the length does not exceed the declared length
of the target string.

Symbolic Feedback Code: IBM0P2

IBM0803S ONCODE= oncode-value A prior
condition on file file-name prevented
further output.

Explanation: A PL/I WRITE, LOCATE, or PUT
statement was issued for a file to which a previous
attempt to transmit a record caused the TRANSMIT
condition to be raised immediately. If the EVENT
option was specified to be stacked until the event was
waited on, the data set was not a unit-record device
and no further processing of the file was possible. The
ONCODE associated with this message is 1003.

System action: The application is terminated.

Programmer response: Correct the error that caused
the TRANSMIT condition to be raised and rerun the
program.

Symbolic Feedback Code: IBM0P3

IBM0804S ONCODE= oncode-value The PRINT
option/format item was used with
non-PRINT file file-name .

Explanation: An attempt was made to use one of the
options PAGE or LINE for a file that was not a print
file. The ONCODE associated with this message is
1004.

System action: The application is terminated.

Programmer response: Either remove the PRINT
option/format item from the non-print file, or specify
the PRINT option for the print file.

Symbolic Feedback Code: IBM0P4

IBM0805S ONCODE= oncode-value A DISPLAY
with REPLY option had a zero-length
string.

Explanation: The current length of the character string
to be displayed, or the maximum length of the
character string to which the reply was assigned, was
zero. The ONCODE associated with this message is
1005.

System action: The application is terminated.

Programmer response: Change length of the character
string to be displayed, or to which the reply is to be
assigned, to greater than zero.

Symbolic Feedback Code: IBM0P5

IBM0807S ONCODE= oncode-value The REWRITE
or DELETE on file file-name occurred
without a preceding READ SET or
READ INTO statement.

Explanation: A REWRITE or DELETE statement
without the KEY option was run. The last input/output
operation on the file was not a READ statement with
the SET or INTO option or was a READ statement with
the IGNORE option. The ONCODE associated with this
message is 1007.

System action: The application is terminated.

Programmer response: Modify the program so that
the REWRITE or DELETE statement is either preceded
by a READ statement or, in the case of a REWRITE
statement, replaced by a WRITE statement, according to
the requirements of the program. A preceding READ
statement with the IGNORE option will also cause the
message to be issued.

Symbolic Feedback Code: IBM0P7

IBM0780S • IBM0807S

290 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

IBM0808S ONCODE= oncode-value An invalid
element was present in the string for a
GET STRING DATA statement.

Explanation: The identifier in the string named in the
STRING option of a GET STRING DATA statement did
not match the identifier in the data specification. Note
that the DATAFIELD built-in function does not return a
value in this case. The ONCODE associated with this
message is 1008.

System action: The application is terminated.

Programmer response: Modify the program so that
the string contains the identifier in the data
specification.

Symbolic Feedback Code: IBM0P8

IBM0809S ONCODE= oncode-value An invalid file
operation was attempted on file file-name
.

Explanation: An attempt was made to perform an
invalid operation on a file. For example, it is not
possible to run a REWRITE statement on a STREAM
file, read an output file, or write an input file. Other
possible conflicts include:

Statement and Option
Conflicting File Attribute or Organization

Any record I/O statement
STREAM

Any stream I/O statement
RECORD

READ OUTPUT

READ SET
UNBUFFERED

READ EVENT
BUFFERED

READ KEY
REGIONAL SEQUENTIAL or CONSECUTIVE

READ IGNORE
DIRECT

READ NOLOCK
SEQUENTIAL or INPUT

WRITE INPUT SEQUENTIAL UPDATE

INDEXED DIRECT NOWRITE

REGIONAL (not KEYED)

WRITE EVENT
BUFFERED

REWRITE
INPUT or OUTPUT

REWRITE (without FROM)
UNBUFFERED or DIRECT

REWRITE KEY
SEQUENTIAL

REWRITE EVENT
BUFFERED

LOCATE
INPUT or UPDATE

UNBUFFERED

DIRECT

LOCATE KEYFROM
INDEXED or REGIONAL (without KEYED)

DELETE
INPUT or OUTPUT

CONSECUTIVE

REGIONAL SEQUENTIAL

RKP=0 (blocked records)

OPTCD=L not specified

DELETE KEY
SEQUENTIAL

UNLOCK
INPUT or OUTPUT

SEQUENTIAL

GET OUTPUT

PUT INPUT

The ONCODE associated with this message is 1009.

System action: The application is terminated.

Programmer response: Ensure the file declaration and
the input/output statements for the named file are
compatible.

Symbolic Feedback Code: IBM0P9

IBM0810S ONCODE= oncode-value A spanned
record has been read that was larger
than the specified record size,
compromising program integrity (FILE=
or ONFILE= file-name).

Explanation: While reading a file that was opened for
update, data management has returned a spanned
record to PL/I that is larger than the record size
specified for the file. As PL/I can only detect this
condition after the record has been read, it is possible
that program storage will have been corrupted by the
oversized record. The ONCODE associated with this
message is 1011.

System action: The application is terminated.

Programmer response: Examine the data set to
determine the size of the largest spanned record
expected. Because this problem is unique to update
mode, program integrity may be ensured by opening

IBM0808S • IBM0810S

Chapter 11. PL/I Run-Time Messages 291

the file for input. Otherwise examine the program that
created the data set to determine the size of the largest
spanned record that it should have created. Note that
although the size of a spanned record is theoretically
unlimited, processing in update mode is limited to a
maximum record size of 32756.

Important! If this error is handled and the program
allowed to continue the integrity of the program cannot
be guaranteed.

Symbolic Feedback Code: IBM0PA

IBM0811S ONCODE= oncode-value An I/O error
occurred. The cause could not be
determined due to insufficient data.

Explanation: The data management routines detected
an error during an input/output operation. The cause
of the error could not be determined. The ONCODE
associated with this message is 1011.

System action: The application is terminated.

Programmer response: If the error recurs after
resubmitting the job, use PLIDUMP (or CEE5DMP) to
obtain a storage dump and retain all the relevant
documentation for study by IBM.

Symbolic Feedback Code: IBM0PB

IBM0812S ONCODE= oncode-value A READ SET or
READ INTO statement did not precede
a REWRITE request.

Explanation: A REWRITE statement with the INTO or
SET option ran without a preceding READ statement.
The ONCODE associated with this message is 1012.

System action: The application is terminated.

Programmer response: Modify the program so that
the REWRITE statement is either preceded by a READ
statement or replaced by a WRITE statement.

Symbolic Feedback Code: IBM0PC

IBM0813S ONCODE= oncode-value The last READ
statement before the last REWRITE or
DELETE was incomplete.

Explanation: An attempt was made to run a
REWRITE or DELETE statement before a preceding
READ statement (with the EVENT option) for a file
that had completed. The ONCODE associated with this
message is 1013.

System action: The application is terminated.

Programmer response: Insert a WAIT statement for
the given event variable into the flow of control
between the REWRITE or DELETE and READ
statements. The REWRITE or DELETE statement should
run after completion of the READ statement.

Symbolic Feedback Code: IBM0PD

IBM0814S ONCODE= oncode-value Excessive
incomplete I/O operations occurred for
file file-name.

Explanation: An attempt was made to initiate an
input/output operation beyond the limit allowed by
the operating system. For VSE, this limit is one. The
ONCODE associated with this message is 1014.

System action: The application is terminated.

Programmer response: Modify the program so that
the input/output operation is not initiated until an
incomplete input/output operation completes.

Symbolic Feedback Code: IBM0PE

IBM0816S ONCODE= oncode-value The implicit
OPEN was unsuccessful for file file-name
.

Explanation: An error occurred during the implicit
opening of a file. The UNDEFINEDFILE condition was
raised and a normal return was made from the
associated ON-unit, but the file was still unopened. The
ONCODE associated with this message is 1016.

System action: The application is terminated.

Programmer response: Ensure that the file has been
completely and correctly declared, and that the
input/output statement that implicitly opens the file is
not in conflict with the file declaration.

Symbolic Feedback Code: IBM0PG

IBM0818S ONCODE= oncode-value An unexpected
end of file/string was detected in the
STREAM input.

Explanation: The end of the file was detected before
the completion of a GET FILE statement. The ONCODE
associated with this message is 1018.

System action: The application is terminated.

Programmer response: For edit-directed input, ensure
that the last item of data in the stream has the same
number of characters as specified in the associated
format item. If the error occurs while an X-format is
running, ensure that the same number of characters to
be skipped are present before the last data item in the
stream. For list-directed and data-directed input, ensure
the last item of data in the data set that precedes the
end-of-file character is terminated by a quote character
for a string or a 'B' character for a bit-string.

Symbolic Feedback Code: IBM0PI

IBM0820S ONCODE= oncode-value An attempt was
made to access a locked record.

Explanation: In an exclusive environment, an attempt
was made to read, rewrite, or delete a record when
either the record or the data set was locked by another

IBM0811S • IBM0820S

292 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

file in this task. The ONCODE associated with this
message is 1021.

System action: The application is terminated.

Programmer response: Ensure that all files accessing
the data set have the EXCLUSIVE attribute. If a READ
statement is involved, specify the NOLOCK option to
suppress the locking mechanism.

Symbolic Feedback Code: IBM0PK

IBM0821S ONCODE= oncode-value An I/O
statement occurred before a WAIT
statement completed a previous READ.

Explanation: While an indexed sequential file was
open for direct updating, an input/output statement
was attempted before the completion of a previous
READ statement with the EVENT option. The
ONCODE associated with this message is 1020.

System action: The application is terminated.

Programmer response: Include a WAIT statement so
that the erroneous input/output statement cannot be
run until the completion of the previous READ
statement with the EVENT option.

Symbolic Feedback Code: IBM0PL

IBM0822S ONCODE= oncode-value Insufficient
space was available for a record in the
sequential output data set.

Explanation: The space allocated for the sequential
output data set was full. The ONCODE associated with
this message is 1040.

System action: The application is terminated.

Programmer response: Increase the size of the data
set, or check the logic of the application for possible
looping.

Symbolic Feedback Code: IBM0PM

IBM0823S ONCODE= oncode-value An invalid
control format item was detected during
a GET/PUT STRING.

Explanation: An invalid control format item (PAGE,
LINE, SKIP, or COL) was detected in a remote format
list for a GET or PUT STRING statement.

Example:

DCL(A,B) CHAR(10),
C CHAR(80);
F: FORMAT(A(10), SKIP,A(10));
A=’FRED’; B=’HARRY’;
PUT STRING(C) EDIT(A,B) (R(F));

The ONCODE associated with this message is 1004.

System action: The application is terminated.

Programmer response: Modify the source program so
that GET or PUT STRING statements do not use the
control format items PAGE, LINE, SKIP or COL.

Symbolic Feedback Code: IBM0PN

IBM0825S ONCODE= oncode-value The EVENT
variable was already in use with file
file-name.

Explanation: An input/output statement with an
EVENT option was attempted while a previous
input/output statement with an EVENT option that
used the same event variable was still incomplete. The
ONCODE associated with this message is 1015.

System action: The application is terminated.

Programmer response: Either change the event
variable used in the second EVENT option or insert a
WAIT statement for the event variable between the two
input/output statements.

Symbolic Feedback Code: IBM0PP

IBM0826S ONCODE= oncode-value The EVENT
variable was already used with a
DISPLAY statement.

Explanation: An input/output statement with an
EVENT option was attempted while a previous
DISPLAY statement with an EVENT option that used
the same event variable was still incomplete.

System action: The application is terminated.

Programmer response: Either change the event
variable used in the second EVENT option or insert a
WAIT statement for the event variable between the
DISPLAY statement and the input/output statement.

Symbolic Feedback Code: IBM0PQ

IBM0827S ONCODE= oncode-value The EVENT
variable was already active and was
used with entry entry-name .

Explanation: An event variable that was already used
in the EVENT option in a CALL statement was still
active when used again in the EVENT option of an
input/output statement.

System action: The application is terminated.

Programmer response: Either use a different event
variable or insert a WAIT statement so that the
input/output statement is not run until the event
variable becomes inactive.

Symbolic Feedback Code: IBM0PR

IBM0821S • IBM0827S

Chapter 11. PL/I Run-Time Messages 293

IBM0829S ONCODE= oncode-value Insufficient
virtual storage was available to VSAM.

Explanation: During an OPEN/CLOSE or any other
operation on a VSAM data set, insufficient storage was
available for workspace and control blocks. The
ONCODE associated with this message is 1025.

System action: The application is terminated.

Programmer response: Increase the partition size for
the VSAM application.

Symbolic Feedback Code: IBM0PT

IBM0830S ONCODE= oncode-value An I/O error
occurred during a CLOSE operation.

Explanation: An I/O error occurred while a VSAM
close routine was either reading or writing a catalog
record, or completing an outstanding I/O request.

System action: The application is terminated.

Programmer response: If the problem is related to an
insufficient amount of virtual storage available to
VSAM, try running the job with a larger partition
GETVIS size. The access method services VERIFY
command can be used to obtain more information
pertaining to the error. See VSE/VSAM Commands for
details.

Symbolic Feedback Code: IBM0PU

IBM0831S ONCODE= oncode-value A position was
not established for a sequential READ
statement.

Explanation: A READ statement without the KEY
option was attempted on a VSAM data set. This
occurred after sequential positioning was lost as the
result of a previous error during sequential processing
(for example, read error on index set or failure to
position to next highest key after a “key not found”
condition). The ONCODE associated with this message
is 1026.

System action: The application is terminated.

Programmer response: Use the KEYTO option of the
READ statement to obtain the keys of records read. Use
this information to reposition a file for subsequent
retrieval when positioning is lost.

Symbolic Feedback Code: IBM0PV

IBM0832S ONCODE= oncode-value Insufficient
space was available for VSAM file
file-name .

Explanation: VSAM was unable to allocate additional
DASD space for the data set (ESDS or KSDS). This
condition was raised during an attempt to write or
locate a record during the sequential creation or
extension of a data set and the space allocated to the

data set was full. For a KSDS, the condition may have
occurred when the associated PL/I file was opened for
update and an attempt was made to write new records
to the file or to increase the size of existing records
using the WRITE and REWRITE statements
respectively. The ONCODE associated with this
message is 1022.

System action: The application is terminated.

Programmer response: Use the access method services
ALTER command to extend a data set provided
secondary allocation was specified during data set
definition. See VSE/VSAM Commands for details.

Symbolic Feedback Code: IBM0Q0

IBM0833S ONCODE= oncode-value A requested
record was held in exclusive control.

Explanation: The VSAM data set control interval
containing the requested record was in the process of
being updated by another file which used the same
DLBL statement. The ONCODE associated with this
message is 1027.

System action: The application is terminated.

Programmer response: Retry the update after
completion of the other file's data transmission, or
avoid having two files associated with the same data
set at one time.

Symbolic Feedback Code: IBM0Q1

IBM0834S ONCODE= oncode-value The requested
record was stored on a non-mounted
volume.

Explanation: The requested record was stored on a
non-mounted volume of a VSAM data set spanning
several volumes. The ONCODE associated with this
message is 1028.

System action: The application is terminated.

Programmer response: Ensure that all volumes on
which a VSAM data set resides are accessible at the
time the application is run.

Symbolic Feedback Code: IBM0Q2

IBM0835S ONCODE= oncode-value An attempt to
position the file for a sequential READ
failed.

Explanation: An attempt to reposition the next highest
key for subsequent sequential retrieval on a VSAM
KSDS, after the 'key not found' condition, failed. If file
processing continued, the next I/O statement should
have a positioning KEY option. (See message IBM0831).
The ONCODE associated with this message is 1029.

System action: The application is terminated.

Programmer response: Use the KEYTO option of the

IBM0829S • IBM0835S

294 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

READ statement to obtain the keys of the records read.
Use this information to reposition the file for a
subsequent retrieval.

Symbolic Feedback Code: IBM0Q3

IBM0836S ONCODE= oncode-value The number of
concurrent operations on a data set
exceeded STRNO.

Explanation: Several files accessed a VSAM data set
by means of the same DLBL statement (that is, using
the same title). The STRNO value that specifies the
total number of operations on all files that can be active
at the same time was less than the number of
concurrent operations. The ONCODE associated with
this message is 1014.

System action: The application is terminated.

Programmer response: Ensure the concurrent
operations are valid. Or, modify the DSN
ENVIRONMENT option (STRNO) to reflect the correct
number of allowed concurrent operations. A
read-rewrite pair of operations on a sequential file
counts as one operation. For example, if three
sequential files are to update the same data set at the
same time, 'DSN(3)' should be specified in the
ENVIRONMENT attribute.

Symbolic Feedback Code: IBM0Q4

IBM0837S ONCODE= oncode-value An error
occurred during an index upgrade.

Explanation: A change to a base cluster could not be
reflected in one of the indexes of the cluster's upgrade
set. The ONCODE associated with this message is 1030.

System action: The application is terminated.

Programmer response: Run the job with a larger
partition GETVIS size. The problem might be related to
an insufficient amount of virtual storage available to
VSAM.

Symbolic Feedback Code: IBM0Q5

IBM0838S ONCODE= oncode-value The maximum
number of alternate index pointers was
exceeded.

Explanation: The maximum number of alternate index
pointers exceeded 32767. The maximum number of
pointers allowed in an alternate index for any given
key is 32767. This message will also be issued when the
RECORDSIZE specified for a VSAM alternate index,
defined with NONUNIQUEKEY, is not large enough to
hold all the base cluster key pointers for a given
non-unique alternate key.

System action: The application is terminated.

Programmer response: For alternate indices with
non-unique keys, ensure the RECORDSIZE specified

during the creation of the alternate index is large
enough. For non-unique alternate indices, each
alternate index record contains pointers to all the
records that have the associated alternate index key. As
a result, the index record can be quite large. If the
number of alternate index pointers exceed the allowed
maximum, then a different alternate key would need to
be used. Refer to the appropriate VSAM manual for
more information regarding the use of alternate index
paths.

Symbolic Feedback Code: IBM0Q6

IBM0839S ONCODE= oncode-value An invalid
alternate index pointer was used.

Explanation: A pointer in the alternate index was
invalid. This may have been caused by incorrect use of
the alternate index as a Key Sequenced Data Set
(KSDS).

System action: The application is terminated.

Programmer response: See IBM PL/I for VSE/ESA
Programming Guide regarding a general description on
the use of alternate index. For more information, refer
to the appropriate VSAM manual.

Symbolic Feedback Code: IBM0Q7

IBM0840S ONCODE= oncode-value An invalid
sequential WRITE was attempted.

Explanation: A WRITE statement on a file associated
with a Relative Record Data Set (RRDS) did not specify
a relative record number. This resulted in an attempt to
write in a slot already containing a record. The
ONCODE associated with this message is 1031.

System action: The application is terminated.

Programmer response: Modify the WRITE statement
to include a relative record number (or key) by
specifying the KEYFROM option. If a relative record
number is used, ensure the record number is valid. For
error diagnosis, the KEYTO option can be used to
obtain the number of the key for each record written if
previous sequential WRITE statements did not have the
KEYFROM option specified.

Symbolic Feedback Code: IBM0Q8

IBM0841S ONCODE= oncode-value Data set open
for output has used all available space
(FILE= or ONFILE= file-name).

Explanation: All extents of the data set have been
filled during sequential output. The ONCODE
associated with this message is 1040.

System action: The application is terminated.

Programmer response: Allocate more extents for the
file or modify the program to write less data to the file.

IBM0836S • IBM0841S

Chapter 11. PL/I Run-Time Messages 295

Symbolic Feedback Code: IBM0Q9

IBM0850S ONCODE= oncode-value The aggregate
length exceeded the limit of 2**24 bytes.

Explanation: The length of the structure or array to be
mapped was greater than 224, thus exceeding the limits
of addressability. The program was compiled with
CMPAT(V1). The ONCODE associated with this
message is 3800.

System action: The application is terminated.

Programmer response: Reduce the size of the array or
structure to a size that can be accommodated within
the main storage available. If a variable is used to
specify the dimension or length, check that it has been
correctly initialized before the storage is allocated to the
aggregate. Or, compile the program with the
CMPAT(V2) option.

Symbolic Feedback Code: IBM0QI

IBM0851S ONCODE= oncode-value The array
structure element could not be mapped.

Explanation: The program was compiled with
CMPAT(V1). Either the program contained a structure
with:

v An adjustable element and an array element with
extents that cause the relative virtual origin to exceed
232-1.

v A structure with an adjustable element and an array
with a lower bound greater than the upper bound.

Example:

DCL 1 A CTL,
2 B CHAR(N),
2 C (15000:15001, 15000:15001,
15000:15001) CHAR(32700);
N=2;
ALLOCATE A;

The ONCODE associated with this message is 3801.

System action: The application is terminated.

Programmer response: If possible, compile the
program with the CMPAT(V2) option. If recompiling is
not possible:

v Ensure aggregates with array elements remain within
the limit of addressability (232-1), or

v Ensure the lower bound is not greater than the upper
bound.

Symbolic Feedback Code: IBM0QJ

IBM0852S ONCODE= oncode-value The mapping of
an aggregate to a COBOL form failed.

Explanation: An attempt was made to pass to or
obtain from a COBOL routine a structure with more

than three dimensions. The ONCODE associated with
this message is 3808.

System action: The application is terminated.

Programmer response: Ensure PL/I aggregates that
are passed to or from COBOL routines are within the
limits described above.

Symbolic Feedback Code: IBM0QK

IBM0854S ONCODE= oncode-value The maximum
depth of iteration exceeded the limits
during an array initialization.

Explanation: The depth of iteration within the initial
attribute on an AUTOMATIC array exceeded 12.

System action: The application is terminated.

Programmer response: Change the depth of iteration
to less than 12.

Symbolic Feedback Code: IBM0QM

IBM0855S ONCODE=3809 The length of a data
aggregate exceeded the maximum limit.

Explanation: The length of the structure to be mapped
was greater than the allowable limit. Structures that do
not contain any unaligned bit elements have a
maximum size of 2**31-1 bytes. Structures with one or
more unaligned bit elements have a maximum size of
2**28-1 bytes.

System action: The application is terminated.

Programmer response: Reduce the size of the
structure to less than the maximum allowed. If a
variable is used to specify the dimension or length of
an element, ensure the variable is correctly initialized
before the storage is allocated to the aggregate.

Symbolic Feedback Code: IBM0QN

IBM0856S ONCODE=3810 An extent of an array
exceeded the maximum limit.

Explanation: During structure mapping, an array with
an extent greater than the allowed maximum was
encountered. The largest allowable extent (upper bound
minus lower bound) of any dimension in an array is
2**31-1.

System action: The application is terminated.

Programmer response: Reduce the extent of the array
to less than the maximum allowed. If a variable is used
to specify a bound, ensure the variable is correctly
initialized.

Symbolic Feedback Code: IBM0QO

IBM0850S • IBM0856S

296 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

IBM0870S ONCODE= oncode-value The DOS/VS
COBOL program is not supported for
interlanguage communication in IBM
Language Environment for z/VSE.

Explanation: The DOS/VS COBOL program is not
supported for interlanguage communication in IBM
Language Environment for z/VSE.

System action: The application is terminated.

Programmer response: Compile the DOS/VS COBOL
program with IBM COBOL for VSE/ESA or don't run
the application with IBM Language Environment for
z/VSE.

Symbolic Feedback Code: IBM0R6

IBM0880S ONCODE= oncode-value A program
check occurred in the SORT/MERGE
program.

Explanation: An error occurred while the
SORT/MERGE program was running after it was
invoked from a PL/I program by use of the PL/I SORT
interface facilities. As a result, the SORT program was
unable to continue and control was passed to the PL/I
error-handler. The ONCODE associated with this
message is 9200.

System action: The application is terminated.

Programmer response: Because the problem occurred
while the SORT/MERGE program was running, refer to
the appropriate SORT/MERGE program manual for an
explanation of any SORT program messages and any
other information that might be necessary to correct the
error.

Symbolic Feedback Code: IBM0RG

IBM0900S ONCODE= oncode-value The WAIT
statement would cause a permanent
wait. The program has been terminated.

Explanation: A WAIT statement that could never have
been completed was encountered.

Example:

COMPLETION (E1) = ’0’B;
WAIT(E1);

The event E1 is inactive and incomplete.

System action: The application is terminated.

Programmer response: Modify the program so that
the WAIT statement can never wait for an inactive or
incomplete event. The ONCODE associated with this
message is 2050.

Symbolic Feedback Code: IBM0S4

IBM0924W Closing a file in the ON-unit caused
errors in this statement.

Explanation: An ON-unit for an I/O condition was
entered and the file associated with the ON-unit was
closed in the ON-unit. A GOTO statement should have
been used to exit from the ON-unit. The result of a
normal return from an ON-unit is undefined.

System action: No system action is performed.

Programmer response: Use a GOTO statement to exit
from the ON-unit, or close the file outside of the
ON-unit.

Symbolic Feedback Code: IBM0SS

IBM0925W The PLIRETC value was reduced to 999.

Explanation: The value passed to the PLIRETC
built-in procedure was greater than 999. 999 is the
maximum allowed user value.

System action: Processing continues with the next
sequential statement.

Programmer response: Ensure all PLIRETC values are
below 999.

Symbolic Feedback Code: IBM0ST

IBM0926S ONCODE= oncode-value The
CHECKPOINT/RESTART facility is not
supported in a dynamic partition.

Explanation: An attempt was made to call the
CHECKPOINT/RESTART facility from PL/I.
CHECKPOINT/RESTART is not supported in a
dynamic partition. The ONCODE associated with this
message is 9300.

System action: The application is terminated.

Programmer response: Remove the call to the
CHECKPOINT/RESTART facility. If this facility needs
to be used, run the application in a static partition
which is below the 16-megabyte line.

Symbolic Feedback Code: IBM0SU

IBM0927S ONCODE= oncode-value The
CHECKPOINT/RESTART facility is not
supported in a partition that extends
above the 16-megabyte line.

Explanation: An attempt was made to call the
CHECKPOINT/RESTART facility from PL/I.
CHECKPOINT/RESTART is not supported in a
partition that extends above the 16-megabyte line. The
ONCODE associated with this message is 9301.

System action: The application is terminated.

Programmer response: Remove the call to the
CHECKPOINT/RESTART facility. If this facility needs
to be used, run the application in a static partition that

IBM0870S • IBM0927S

Chapter 11. PL/I Run-Time Messages 297

does not extend beyond the 16-megabyte line.

Symbolic Feedback Code: IBM0SV

IBM0928S The PLICANC facility is not supported
by PL/I VSE.

Explanation: An attempt was made to call the built-in
subroutine PLICANC. This facility is not available
under VSE.

System action: Processing continues with the next
PL/I statement.

Programmer response: Remove the call to PLICANC.

Symbolic Feedback Code: IBM0T0

IBM0929S The job has been canceled by PLIREST.

Explanation: Automatic restart is not available under
VSE. The job is canceled to allow manual restart.

System action: The application is terminated.

Programmer response: Restart the job manually if
necessary.

Symbolic Feedback Code: IBM0T1

IBM0930S ONCODE= oncode-value An attempt was
made to call a Checkout-compiled
program in the LE/VSE environment.

Explanation: Checkout-compiled programs are not
supported in the LE/VSE environment.

System action: The application is terminated.

Programmer response: Remove the call to the
Checkout-compiled program.

Symbolic Feedback Code: IBM0T2

IBM0931S ONCODE=9259 PL/1 Module
module-name has reached recursive call
limit of 255.

Explanation: The run-time has detected a recursive
call loop to a PL/1 program from which there has been
no return to the calling module. To avoid a
never-ending call loop, this sequence will be tolerated
up to a maximum of 255 iterations.

System action: The ERROR condition is raised and,
unless handled, the default action is to terminate the
enclave.

Programmer response: Modify the program to either
limit the number of recursive calls to the same
program(s), or avoid calling the same program
recursively.

Symbolic Feedback Code: IBM0T3

IBM0928S • IBM0931S

298 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Chapter 12. COBOL Run-Time Messages

Each message is followed by an explanation describing the condition that caused
the message, a programmer response suggesting how you might prevent the
message from occurring again, and a system action indicating how the system
responds to the condition that caused the message.

The messages also contain a symbolic feedback code, which represents the first 8
bytes of a 12-byte condition token. You can think of the symbolic feedback code as
the nickname for a condition. As such, the symbolic feedback code can be used in
user-written condition handlers to screen for a given condition, even if it occurs at
different locations in an application.

For a description of the format of COBOL run-time messages, see “Interpreting
Run-Time Messages” on page 23.

IGZ0002S debugging-information

Explanation: A permanent I/O error has occurred on
a SAM file. The format of the information in
debugging-information is:

Permanent I/O error file name = filename
CCB = X’ccb’

where:

filename is the name associated with the file.

ccb is the hexadecimal-format CCB associated with
the file. The CCB contains codes describing the
error that occurred.

System action: The application was terminated.

Programmer response: For more information
regarding the format of the CCB, see z/VSE System
Macros Reference.

Symbolic Feedback Code: IGZ002

IGZ0003W A logic error occurred for file file-name
in program program-name at relative
location relative-location .

Explanation: This error is usually caused by an I/O
operation request that is not valid for the file—for
example, a WRITE into a file opened for INPUT, or a
START to a VSAM ESDS.

A file status clause was specified or an error declarative
statement was active for the file.

System action: No system action was taken.

Programmer response: Check the operation request
and modify the program.

Symbolic Feedback Code: IGZ003

IGZ0004S There was an attempt to cancel program
program-name that was statically linked
with a non-COBOL high level language
program.

Explanation: A COBOL program that is linked with
programs of other high level languages cannot be
canceled.

System action: The application was terminated.

Programmer response: Remove the failing CANCEL
statement.

Symbolic Feedback Code: IGZ004

IGZ0005S DOS/VS COBOL programs in the
application were found in multiple
enclaves.

Explanation: DOS/VS COBOL programs are restricted
to one enclave within an application.

System action: The application was terminated.

Programmer response: Modify the application so that
the DOS/VS COBOL programs appear in one enclave
only.

Symbolic Feedback Code: IGZ005

IGZ0006S The reference to table table-name by verb
number verb-number on line line-number
addressed an area outside the region of
the table.

Explanation: When the SSRANGE option is in effect,
this message is issued to indicate that a fixed-length
table has been subscripted in a way that exceeds the
defined size of the table, or, for variable-length tables,
the maximum size of the table.

The range check was performed on the composite of

© Copyright IBM Corp. 1991, 2014 299

the subscripts and resulted in an address outside the
region of the table. For variable-length tables, the
address is outside the region of the table defined when
all OCCURS DEPENDING ON objects are at their
maximum values; the ODO object's current value is not
considered. The check was not performed on individual
subscripts.

System action: The application was terminated.

Programmer response: Ensure that the value of literal
subscripts and/or the value of variable subscripts as
evaluated at run-time do not exceed the subscripted
dimensions for subscripted data in the failing
statement.

Symbolic Feedback Code: IGZ006

IGZ0007S The size of the variable length group
group-name exceeded the maximum
defined length of the group at the time
of reference by verb-number on line
line-number

Explanation: When the SSRANGE option is in effect,
this message is issued to indicate that a variable-length
group generated by OCCURS DEPENDING ON has a
length that is less than zero, or is greater than the limits
defined in the OCCURS DEPENDING ON clauses.

The range check was performed on the composite
length of the group, and not on the individual
OCCURS DEPENDING ON objects.

System action: The application was terminated.

Programmer response: Ensure that OCCURS
DEPENDING ON objects as evaluated at run-time do
not exceed the maximum number of occurrences of the
dimension for tables within the referenced group item.

Symbolic Feedback Code: IGZ007

IGZ0009C A delete of phase phase-name was
unsuccessful.

Explanation: An attempt to delete a phase failed.

System action: The application was terminated.

Programmer response: See your IBM service
representative.

Symbolic Feedback Code: IGZ009

IGZ0011C module-name was not a proper module
for this system environment.

Explanation: A library subroutine that is system
sensitive is inappropriate for the current system
environment. For example, an OS environment specific
module has been loaded under CICS. The likely causes
are:

v Improper concatenation sequence of sublibraries that
contain the subroutine library, either during run-time
or during link-edit of the COBPAC.

v An attempt to use a function unsupported on the
current system (for example, ACCEPT on CICS).

System action: The application was terminated.

Programmer response: Check for the conditions stated
above, and modify the environment or the application
as needed.

Symbolic Feedback Code: IGZ00B

IGZ0012S There was an invalid attempt to end a
sort or merge.

Explanation: A sort or merge initiated by a COBOL
program was in progress and one of the following was
attempted:

1. A STOP RUN was issued.

2. A GOBACK or an EXIT PROGRAM was issued
within the input procedure or the output procedure
of the COBOL program that initiated the sort or
merge. Note that the GOBACK and EXIT
PROGRAM statements are allowed in a program
called by an input procedure or an output
procedure.

3. A user handler associated with the program that
initiated the sort or merge moved the condition
handler resume cursor and resumed the application.

System action: The application was terminated.

Programmer response: Change the application so that
it does not use one of the above methods to end the
sort or merge.

Symbolic Feedback Code: IGZ00C

IGZ0013S An error return code return-code came
from a CICS command CICS-command
issued by library subroutine
library-subroutine .

Explanation: An error was encountered when a
run-time routine issued a CICS command. The error
return code is from the field EIBRESP in the CICS EIB.
For more information about the values for the field
EIBRESP, see CICS Transaction Server for VSE/ESA
Application Programming Reference

System action: The application was terminated.

Programmer response: Modify your application as
required.

Symbolic Feedback Code: IGZ00D

IGZ0007S • IGZ0013S

300 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

IGZ0014W module-name is no longer supported. Its
content was ignored.

Explanation: This message is issued when the
run-time detects that IGZETUN or IGZEOPT is linked
with the application. IGZETUN and IGZEOPT are
ignored when running with LE/VSE. CEEUOPT may
be used in place of IGZETUN and IGZEOPT.

System action: No system action was taken.

Programmer response: Remove the explicit INCLUDE
of IGZEOPT or IGZETUN during the link-edit step.

Symbolic Feedback Code: IGZ00E

IGZ0015S A recursive call was attempted to a
program that was already active. The
program name is program-name .

Explanation: COBOL does not allow recursive entries
to programs which have started, but have not yet
terminated. For example, if program A calls program B,
program B cannot call program A.

System action: The application was terminated.

Programmer response: Remove the recursive call to
program-name.

Symbolic Feedback Code: IGZ00F

IGZ0016W Program program-name could not be
deactivated by non-return exit of a
routine. Subsequent reentry is not
supported.

Explanation: A COBOL program cannot normally be
recursively entered. When non-return style procedure
collapse processing is being performed for a COBOL
program, an attempt is made to reset the program to a
state where it can be recursively entered. This is not
supported for certain combinations of function used
within the program. After this message is issued, any
attempt to reenter the program will result in message
IGZ0015S and termination of the enclave.

System action: No system action was taken.

Programmer response: Do not reenter the program or
modify the program to allow it to be successfully reset.

Symbolic Feedback Code: IGZ00G

IGZ0017S The open of DISPLAY or ACCEPT file
with environment name
environment-name was unsuccessful.

Explanation: An error occurred while opening the
DISPLAY/ACCEPT file.

System action: The application was terminated.

Programmer response: Make sure the system logical
unit associated with the file is assigned to a valid
device.

Symbolic Feedback Code: IGZ00H

IGZ0018S On CICS, an attempt was made to run a
COBOL program which is not reentrant.
The program name is program-name .

Explanation: COBOL programs running on CICS must
be reentrant.

System action: The application was terminated.

Programmer response: In order to make a COBOL
program reentrant, compile the COBOL program with
the RENT compile-time option.

Symbolic Feedback Code: IGZ00I

IGZ0019W A FUNCTION result used as a
DELIMITED BY operand is larger than
the UNSTRING object in program
program-name at displacement
displacement . The DELIMITED BY
phrase is ignored.

Explanation: A FUNCTION used as a DELIMITED BY
operand was larger than the UNSTRING object.

System action: No system action was taken.

Programmer response: Check the FUNCTION
arguments to ensure that they are not larger than the
UNSTRING object.

Symbolic Feedback Code: IGZ00J

IGZ0020S A logic error occurred. Neither FILE
STATUS nor a declarative was specified
for file file-name in program
program-name at relative location
relative-location . The status code was
status-code .

Explanation: This error is an I/O error, usually caused
by an operation request that is not valid for the file, for
example, a WRITE into a file opened for INPUT, or a
START to a VSAM ESDS.

No file status clause was specified, and no error
declarative was in effect.

System action: The application was terminated.

Programmer response: Check operation request for
the file.

Symbolic Feedback Code: IGZ00K

IGZ0021C macro-name was unsuccessful for file
file-name .

Explanation: The execution of an ENDREQ, GENCB,
MODCB, SHOWCB, TESTCB, SHOWCAT, or LABEL
macro failed. This is the result of system or VSAM
problems.

System action: The application was terminated.

IGZ0014W • IGZ0021C

Chapter 12. COBOL Run-Time Messages 301

Programmer response: See your IBM service
representative.

Symbolic Feedback Code: IGZ00L

IGZ0022W File file-name in program program-name
will return the maximum record length
when read.

Explanation: A VSAM RRDS with a varying record
length has been opened for input. The maximum
record length will be returned.

System action: No system action was taken.

Programmer response: None.

Symbolic Feedback Code: IGZ00M

IGZ0024S An invalid separate sign character was
detected in program-name at displacement
displacement .

Explanation: An operation was attempted on data
defined with a separate sign. The value in the sign
position was not a plus (+) or a minus (-).

System action: The application was terminated.

Programmer response: This error might have occurred
because of a REDEFINES clause involving the sign
position or a group move involving the sign position,
or the position was never initialized. Check for these
cases.

Symbolic Feedback Code: IGZ00O

IGZ0026W The SORT-RETURN special register was
never referenced, but the current content
indicated the sort or merge operation in
program program-name on line number
line-number was unsuccessful.

Explanation: The COBOL source does not contain any
references to the sort-return register. The compiler
generates a test after each sort or merge verb. A
nonzero return code has been passed back to the
program by the sort/merge operation.

System action: No system action was taken.

Programmer response: Determine why the sort/merge
operation was unsuccessful and fix the problem.
Possible reasons why the sort/merge operation was
unsuccessful include:

v There was an error detected by the Sort/Merge
program being used. See the Sort/Merge program
messages for the reason for the error.

v The SORT-RETURN special register was set to a
non-zero value by the application program while in
an input procedure or an output procedure.

Symbolic Feedback Code: IGZ00Q

IGZ0027W The sort control file could not be
opened.

Explanation: An attempt to open the sort control file
has failed. Possible reasons for the open failure include:

v The name of the sort control file specified in the
SORT-CONTROL special register was SYSIPT, but
SYSIPT was not assigned to a valid device.

v The name of the sort control file specified in the
SORT-CONTROL special register was the name of a
VSE Librarian member, but the member was not
found in any of the sublibraries defined in the
LIBDEF search chain.

When the sort control file cannot be opened,
user-supplied sort control cards will not be passed to
the Sort/Merge program being used.

System action: No system action was taken.

Programmer response: If you want to pass in sort
control cards from the sort control file, verify that the
name is specified and the file or VSE Librarian member
is available.

Symbolic Feedback Code: IGZ00R

IGZ0028S An I/O error occurred in sort control file
file-name .

Explanation: An I/O error was encountered while
trying to read the sort control file. Some or all of the
user-supplied sort control cards will not be passed to
the Sort/Merge program being used.

System action: The application was terminated.

Programmer response: For more information, look at
any previous system messages you received relating to
this I/O error.

Symbolic Feedback Code: IGZ00S

IGZ0029S Argument-1 for function function-name in
program program-name at line line-number
was less than zero.

Explanation: An illegal value for argument-1 was
used.

System action: The application was terminated.

Programmer response: Ensure that argument-1 is
greater than or equal to zero.

Symbolic Feedback Code: IGZ00T

IGZ0030S Argument-2 for function function-name in
program program at line line-number was
not a positive integer.

Explanation: An illegal value for argument-1 was
used.

System action: The application was terminated.

IGZ0022W • IGZ0030S

302 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Programmer response: Ensure that argument-2 is a
positive integer.

Symbolic Feedback Code: IGZ00U

IGZ0031S A restart was not possible since the
checkpoint record record-name was taken
while a sort or merge was in progress.

Explanation: An attempt was made to use the restart
facility of checkpoint/restart to resume execution of a
job from a checkpoint taken by a COBOL program
because of a rerun clause during a Sort/Merge
operation. Only checkpoints taken by the sort product
can be used to restart from a point within the
Sort/Merge operation.

The checkpoint record cannot be used for restart.

System action: The application was terminated.

Programmer response: Use a different checkpoint
record. If no other checkpoint records exist, the job
cannot be restarted.

Symbolic Feedback Code: IGZ00V

IGZ0032S A CANCEL was attempted on active
program program-name .

Explanation: An attempt was made to cancel an active
program. For example, program A called program B;
program B is trying to cancel program A.

System action: The application was terminated.

Programmer response: Remove the failing CANCEL
statement.

Symbolic Feedback Code: IGZ010

IGZ0033S An attempt was made to pass a
parameter address above 16 megabytes
to AMODE(24) program program-name .

Explanation: An attempt was made to pass a
parameter located above the 16-megabyte storage line
to a program in AMODE(24). The called program will
not be able to address the parameter.

System action: The application was terminated.

Programmer response: If the calling program is
compiled with the RENT option, the DATA(24) option
may be used in the calling program to make sure that
its data is located in storage accessible to an
AMODE(24) program. If the calling program is
compiled with the NORENT option, the RMODE(24)
option may be used in the calling program to make
sure that its data is located in storage accessible to an
AMODE(24) program.

Symbolic Feedback Code: IGZ011

IGZ0034W The file with system-name system-name
could not be extended. Secondary
extents were not specified or were not
available. The last WRITE was at offset
offset in program program-name .

Explanation: There is insufficient space available for
an output file. There is no invalid key clause, file
status, or user error declarative.

System action: No system action was taken.

Programmer response: Check the file extents and, if
necessary, reallocate the file.

Symbolic Feedback Code: IGZ012

IGZ0035S There was an unsuccessful OPEN or
CLOSE of file file-name in program
program-name at relative location location .
Neither FILE STATUS nor an ERROR
declarative were specified. The status
code was status-code .

Explanation: An error has occurred while opening or
closing the named file. No file status or user error
declarative was specified.

System action: The application was terminated.

Programmer response: Check to make sure the
indicated file is correctly defined in your JCL. For a
description of the file status code, see IBM COBOL for
VSE/ESA Language Reference

Symbolic Feedback Code: IGZ013

IGZ0036W Truncation of high order digit positions
occurred in program program-name on
line number line-number .

Explanation: The generated code has truncated an
intermediate result (that is, temporary storage used
during an arithmetic calculation) to 30 digits; some of
the truncated digits were not 0.

System action: No system action was taken.

Programmer response: See IBM COBOL for VSE/ESA
Programming Guide for a description of intermediate
results.

Symbolic Feedback Code: IGZ014

IGZ0037S The flow of control in program
program-name proceeded beyond the last
line of the program.

Explanation: The program did not have a terminator
(STOP, GOBACK, or EXIT), and control fell through the
last instruction.

System action: The application was terminated.

Programmer response: Check the logic of the

IGZ0031S • IGZ0037S

Chapter 12. COBOL Run-Time Messages 303

program. Sometimes this error occurs because of one of
the following logic errors:

v The last paragraph in the program was only
supposed to receive control as the result of a
PERFORM statement, but due to a logic error it was
branched to by a GO TO statement.

v The last paragraph in the program was executed as
the result of a “fall-through” path, and there was no
statement at the end of the paragraph to end the
program.

Symbolic Feedback Code: IGZ015

IGZ0039S An invalid overpunched sign was
detected in program program-name on
line line-number .

Explanation: An operation was attempted on data
defined with an overpunched sign. The value in the
sign was not valid.

System action: The application was terminated.

Programmer response: This error might have occurred
because of a REDEFINES clause involving the sign
position or a group move involving the sign position,
or the position was never initialized. Check for the
above cases.

Symbolic Feedback Code: IGZ017

IGZ0040S An invalid separate sign was detected in
program program-name on line
line-number .

Explanation: An operation was attempted on data
defined with a separate sign. The value in the sign
position was not a plus (+) or a minus (-).

System action: The application was terminated.

Programmer response: This error might have occurred
because of a REDEFINES clause involving the sign
position or a group move involving the sign position,
or the position was never initialized. Check for the
above cases.

Symbolic Feedback Code: IGZ018

IGZ0041W The warning message limit was
exceeded. Further warning messages
were suppressed.

Explanation: The limit on warning messages is 256.
This constraint on the number of warning messages
prevents a looping program from flooding the system
buffers.

System action: No system action was taken.

Programmer response: Correct the situations causing
the warning messages or correct the looping problem.

Symbolic Feedback Code: IGZ019

IGZ0042C There was an attempt to use the
IGZBRDGE macro, but the calling
program was not COBOL.

Explanation: A non-COBOL program attempted to call
a COBOL program using the IGZBRDGE interface.
COBOL/VSE could not find a COBOL environment.

System action: The application was terminated.

Programmer response: Do not call an entry point
specified via the IGZBRDGE macro from a non-COBOL
program.

Symbolic Feedback Code: IGZ01A

IGZ0044S There was an attempt to call the COBOL
main program program-name that was not
in initial state.

Explanation: You will receive this message if you
attempt to enter a NONREENTRANT COBOL/VSE or
VS COBOL II main program more than once. This is a
nonstandard entry attempt.

System action: The application was terminated.

Programmer response: Modify the application so that
the non-reentrant COBOL main program won't be called
more than once.

Symbolic Feedback Code: IGZ01C

IGZ0046W The value specified in the program for
the special-register special register was
overridden by the corresponding value
in the sort control file.

Explanation: A nondefault value for the SORT special
register specified in the message was used in a
program, but a value in the SORT control file which
corresponds to that SORT special register was found.
The value in the SORT control file was used, and the
value in the SORT special register was ignored.

System action: No system action was taken.

Programmer response: See IBM COBOL for VSE/ESA
Programming Guide for a description of SORT special
registers and the SORT control file.

Symbolic Feedback Code: IGZ01E

IGZ0048W A negative base was raised to a
fractional power in an exponentiation
expression in program program-name at
displacement displacement . The absolute
value of the base was used.

Explanation: A negative number raised to a fractional
power occurred in a library routine.

The value of a negative number raised to a fractional
power is undefined in COBOL. If a SIZE ERROR clause
had appeared on the statement in question, the SIZE

IGZ0039S • IGZ0048W

304 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

ERROR imperative would have been used. However,
no SIZE ERROR clause was present, so the absolute
value of the base was used in the exponentiation.

System action: No system action was taken.

Programmer response: Ensure that the program
variables in the failing statement have been set
correctly.

Symbolic Feedback Code: IGZ01G

IGZ0049W A zero base was raised to a zero power
in an exponentiation expression in
program program-name at displacement
displacement . The result was set to one.

Explanation: The value of zero raised to the power
zero occurred in a library routine.

The value of zero raised to the power zero is undefined
in COBOL. If a SIZE ERROR clause had appeared on
the statement in question, the SIZE ERROR imperative
would have been used. However, no SIZE ERROR
clause was present, so the value returned was one.

System action: No system action was taken.

Programmer response: Ensure that the program
variables in the failing statement have been set
correctly.

Symbolic Feedback Code: IGZ01H

IGZ0050S A zero base was raised to a negative
power in an exponentiation expression
in program program-name at
displacement displacement .

Explanation: The value of zero raised to a negative
power occurred in a library routine.

The value of zero raised to a negative number is not
defined. If a SIZE ERROR clause had appeared on the
statement in question, the SIZE ERROR imperative
would have been used. However, no SIZE ERROR
clause was present.

System action: The application was terminated.

Programmer response: Ensure that the program
variables in the failing statement have been set
correctly.

Symbolic Feedback Code: IGZ01I

IGZ0051S An invalid EBCDIC digit string was
detected on conversion to floating point
in program-name at displacement
displacement .

Explanation: The input to the conversion routine
contained invalid EBCDIC data.

System action: The application was terminated.

Programmer response: Ensure that the program

variables in the failing statement have been set
correctly.

Symbolic Feedback Code: IGZ01J

IGZ0052C An internal error or invalid parameters
were detected in the floating point
conversion routine called from
program-name at displacement
displacement .

Explanation: None.

System action: The application was terminated.

Programmer response: See your IBM service
representative.

Symbolic Feedback Code: IGZ01K

IGZ0053S An overflow occurred on conversion to
floating point in program-name at
displacement displacement .

Explanation: A number was generated in the program
that is too large to be represented in floating point.

System action: The application was terminated.

Programmer response: You need to modify the
program appropriately to avoid an overflow.

Symbolic Feedback Code: IGZ01L

IGZ0054W An overflow occurred on conversion
from floating point to fixed point in
program-name at displacement
displacement . The result was truncated.

Explanation: The result of a conversion to fixed point
from floating point contains more digits than will fit in
the fixed point receiver. The high order digits were
truncated.

System action: No system action was taken.

Programmer response: No action is necessary,
although you may want to modify the program to
avoid an overflow.

Symbolic Feedback Code: IGZ01M

IGZ0055W An underflow occurred on conversion to
floating point in program-name at
displacement displacement . The result
was set to zero.

Explanation: On conversion to floating point, the
negative exponent exceeded the limit of the hardware.
The floating point value was set to zero.

System action: No system action was taken.

Programmer response: No action is necessary,
although you may want to modify the program to
avoid an underflow.

IGZ0049W • IGZ0055W

Chapter 12. COBOL Run-Time Messages 305

Symbolic Feedback Code: IGZ01N

IGZ0056W One or more files were not closed by
program program-name prior to program
termination.

Explanation: The specified program has finished but
has not closed all of the files it opened. COBOL
attempts to clean up storage and closes any open files.

System action: No system action was taken.

Programmer response: Check that all files are closed
before the program terminates.

Symbolic Feedback Code: IGZ01O

IGZ0057S There was an attempt to initialize a
reusable environment through
ILBDSET0, but either the enclave was
not the first enclave or COBOL was not
the main program of the already
established enclave.

Explanation: A request to establish a reusable
environment through ILBDSET0 can occur only at the
beginning of the application. For example, this error
can occur when:

v PL/I program calls ASSEMBLE program which calls
ILBDSET0

v LE/VSE-enabled ASSEMBLE program calls
ILBDSET0

System action: The application was terminated.

Programmer response: Only invoke ILBDSET0 prior
to calling any program within the application that
brings up LE/VSE.

Symbolic Feedback Code: IGZ01P

IGZ0058S Exponent overflow occurred in program
program-name at displacement
displacement .

Explanation: Floating point exponent overflow
occurred in a library routine.

System action: The application was terminated.

Programmer response: Ensure that the program
variables in the failing statement have been set
correctly.

Symbolic Feedback Code: IGZ01Q

IGZ0059W An exponent with more than nine digits
was truncated in program program-name
at displacement displacement .

Explanation: Exponents in fixed point exponentiations
may not contain more than nine digits. The exponent
was truncated back to nine digits; some of the
truncated digits were not 0.

System action: No system action was taken.

Programmer response: No action is necessary,
although you may want to adjust the exponent in the
failing statement.

Symbolic Feedback Code: IGZ01R

IGZ0060W Truncation of high order digit positions
occurred in program program-name at
displacement displacement .

Explanation: Code in a library routine has truncated
an intermediate result (that is, temporary storage used
during an arithmetic calculation) back to 30 digits;
some of the truncated digits were not 0.

System action: No system action was taken.

Programmer response: See IBM COBOL for VSE/ESA
Programming Guide for a description of intermediate
results.

Symbolic Feedback Code: IGZ01S

IGZ0061S Division by zero occurred in program
program-name at displacement
displacement .

Explanation: Division by zero occurred in a library
routine. Division by zero is not defined. If a SIZE
ERROR clause had appeared on the statement in
question, the SIZE ERROR imperative would have been
used. However, no SIZE ERROR clause was present.

System action: The application was terminated.

Programmer response: Ensure that the program
variables in the failing statement have been set
correctly.

Symbolic Feedback Code: IGZ01T

IGZ0063S An invalid sign was detected in a
numeric edited sending field in
program-name on line number line-number
.

Explanation: An attempt has been made to move a
signed numeric edited field to a signed numeric or
numeric edited receiving field in a MOVE statement.
However, the sign position in the sending field
contained a character that was not a valid sign
character for the corresponding PICTURE.

System action: The application was terminated.

Programmer response: Ensure that the program
variables in the failing statement have been set
correctly.

Symbolic Feedback Code: IGZ01V

IGZ0056W • IGZ0063S

306 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

IGZ0064S A recursive call to active program
program-name in compilation unit
compilation-unit was attempted.

Explanation: COBOL does not allow reinvocation of
an internal program which has begun execution, but
has not yet terminated. For example, if internal
programs A and B are siblings of a containing program,
and A calls B and B calls A, this message will be
issued.

System action: The application was terminated.

Programmer response: Examine your program to
eliminate calls to active internal programs.

Symbolic Feedback Code: IGZ020

IGZ0065S A CANCEL of active program
program-name in compilation unit
compilation-unit was attempted.

Explanation: An attempt was made to cancel an active
internal program. For example, if internal programs A
and B are siblings in a containing program and A calls
B and B cancels A, this message will be issued.

System action: The application was terminated.

Programmer response: Examine your program to
eliminate cancelation of active internal programs.

Symbolic Feedback Code: IGZ021

IGZ0066S The length of external data record
data-record in program program-name did
not match the existing length of the
record.

Explanation: While processing External data records
during program initialization, it was determined that
an External data record was previously defined in
another program in the run-unit, and the length of the
record as specified in the current program was not the
same as the previously defined length.

System action: The application was terminated.

Programmer response: Examine the current file and
ensure the External data records are specified correctly.

Symbolic Feedback Code: IGZ022

IGZ0067S The NOEQUALS keyword in the sort
control file file-name conflicted with the
specifications of the DUPLICATES
phrase on the SORT statement.

Explanation: A sort control file with an OPTION card
specifying the NOEQUALS keyword was used for a
SORT which had the DUPLICATES IN ORDER phrase
specified. The NOEQUALS keyword and the
DUPLICATES phrase conflict.

System action: The application was terminated.

Programmer response: Either remove the NOEQUALS
keyword from the sort control file or remove the
DUPLICATES IN ORDER phrase from the SORT
statement.

Symbolic Feedback Code: IGZ023

IGZ0068W Duplicate characters were ignored in an
INSPECT CONVERTING statement in
program program-name at displacement
displacement .

Explanation: The same character appeared more than
once in the identifier that contained the characters to be
converted in an INSPECT CONVERTING statement.
The first occurrence of the character, and the
corresponding character in the replacement field, are
used, and subsequent occurrences are not used.

System action: No system action was taken.

Programmer response: Duplicate characters in the
indicated INSPECT statement may be deleted;
programmer action is not required.

Symbolic Feedback Code: IGZ024

IGZ0071S ALL subscripted table reference to table
table-name by verb number verb-number
on line line-number had an ALL subscript
specified for an OCCURS DEPENDING
ON dimension, and the object was less
than or equal to 0.

Explanation: When the SSRANGE option is in effect,
this message is issued to indicate that there are 0
occurrences of dimension subscripted by ALL.

The check is performed against the current value of the
OCCURS DEPENDING ON OBJECT.

System action: The application was terminated.

Programmer response: Ensure that ODO object(s) of
ALL-subscripted dimensions of any subscripted items
in the indicated statement are positive.

Symbolic Feedback Code: IGZ027

IGZ0072S A reference modification start position
value of reference-modification-value on
line line-number referenced an area
outside the region of data item data-item
.

Explanation: The value of the starting position in a
reference modification specification was less than 1, or
was greater than the current length of the data item
that was being reference modified. The starting position
value must be a positive integer less than or equal to
the number of characters in the reference modified data
item.

System action: The application was terminated.

IGZ0064S • IGZ0072S

Chapter 12. COBOL Run-Time Messages 307

Programmer response: Check the value of the starting
position in the reference modification specification.

Symbolic Feedback Code: IGZ028

IGZ0073S A non-positive reference modification
length value of reference-modification-value
on line line-number was found in a
reference to data item data-item .

Explanation: The length value in a reference
modification specification was less than or equal to 0.
The length value must be a positive integer.

System action: The application was terminated.

Programmer response: Check the indicated line
number in the program to ensure that any reference
modified length values are (or will resolve to) positive
integers.

Symbolic Feedback Code: IGZ029

IGZ0074S A reference modification start position
value of reference-modification-value and
length value of length on line line-number
caused reference to be made beyond the
rightmost character of data item data-item
.

Explanation: The starting position and length value in
a reference modification specification combine to
address an area beyond the end of the reference
modified data item. The sum of the starting position
and length value minus one must be less than or equal
to the number of characters in the reference modified
data item.

System action: The application was terminated.

Programmer response: Check the indicated line
number in the program to ensure that any reference
modified start and length values are set such that a
reference is not made beyond the rightmost character of
the data item.

Symbolic Feedback Code: IGZ02A

IGZ0075S Inconsistencies were found in
EXTERNAL file file-name in program
program-name . The following file
attributes did not match those of the
established external file: attribute-1
attribute-2 attribute-3 attribute-4 attribute-5
attribute-6 attribute-7

Explanation: One or more attributes of an external file
did not match between two programs that defined it.

System action: The application was terminated.

Programmer response: Correct the external file. For a
summary of file attributes which must match between
definitions of the same external file, see IBM COBOL for
VSE/ESA Language Reference

Symbolic Feedback Code: IGZ02B

IGZ0076W The number of characters in the
INSPECT REPLACING CHARACTERS
BY data-name in program program-name
at displacement displacement was not
equal to one. The first character was
used.

Explanation: A data item which appears in a
CHARACTERS phrase within a REPLACING phrase in
an INSPECT statement must be defined as being one
character in length. Because of a reference modification
specification for this data item, the resultant length
value was not equal to one. The length value is
assumed to be one.

System action: No system action was taken.

Programmer response: You may correct the reference
modification specifications in the failing INSPECT
statement to ensure that the reference modification
length is (or will resolve to) 1; programmer action is
not required.

Symbolic Feedback Code: IGZ02C

IGZ0077W The lengths of the data-item items in
program program-name at displacement
displacement were not equal. The shorter
length was used.

Explanation: The two data items which appear in a
REPLACING or CONVERTING phrase in an INSPECT
statement must have equal lengths, except when the
second such item is a figurative constant. Because of
the reference modification for one or both of these data
items, the resultant length values were not equal. The
shorter length value is applied to both items, and
execution proceeds.

System action: No system action was taken.

Programmer response: You may adjust the operands
of unequal length in the failing INSPECT statement;
programmer action is not required.

Symbolic Feedback Code: IGZ02D

IGZ0078S ALL subscripted table reference to table
table-name by verb number verb-number
on line line-number will exceed the upper
bound of the table.

Explanation: When the SSRANGE option is in effect,
this message is issued to indicate that a
multi-dimension table with ALL specified as one or
more of the subscripts will result in a reference beyond
the upper limit of the table.

The range check was performed on the composite of
the subscripts and the maximum occurrences for the
ALL subscripted dimensions. For variable-length tables
the address is outside the region of the table defined

IGZ0073S • IGZ0078S

308 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

when all OCCURS DEPENDING ON objects are at
their maximum values; the ODO object's current value
is not considered. The check was not performed on
individual subscripts.

System action: The application was terminated.

Programmer response: Ensure that OCCURS
DEPENDING ON objects as evaluated at run-time do
not exceed the maximum number of occurrences of the
dimension for table items referenced in the failing
statement.

Symbolic Feedback Code: IGZ02E

IGZ0079S On CICS, program-lang program
program-name attempted to call DOS/VS
COBOL program program-name .

Explanation: On CICS, a COBOL/VSE or a VS
COBOL II program attempted to call an DOS/VS
COBOL program with the CALL statement. Using the
CALL statement to perform calls between the following
are not supported on CICS:

v COBOL/VSE programs and DOS/VS COBOL
programs

v VS COBOL II programs and DOS/VS COBOL
programs

System action: The application was terminated.

Programmer response: If you need to invoke a
DOS/VS COBOL program from a COBOL/VSE or VS
COBOL II program, use EXEC CICS LINK.

Symbolic Feedback Code: IGZ02F

IGZ0080I End of file or end of volume on filename.
Reply "EOF" or "EOV".

Explanation: The program has read to the end of an
unlabeled input tape. If the tape is a labeled tape, this
message might occur if a TLBL JCL statement has not
been provided, or it has been specified with a different
filename than filename specified in assignment-name-1
of the ASSIGN clause for the file.

System action: The system waits for a response to the
message.

Programmer response: Reply "EOF" if this is the last
or only input volume. Reply "EOV" if there are
additional input volumes for the file being processed.

Symbolic Feedback Code: IGZ02G

IGZ0081W The CHECKPOINT file filename was not
available. Checkpointing will be
by-passed.

Explanation: The file filename specified on the RERUN
clause was not available. The checkpointing specified
by the RERUN clause was by-passed.

System action: No system action was taken.

Programmer response: Check your job control to
make sure that the checkpoint file is defined correctly.

Symbolic Feedback Code: IGZ02H

IGZ0082W The open of file with system-name
system-name was unsuccessful. The
system logical unit number was invalid
or could not be determined.

Explanation: COBOL attempted to OPEN the file
system-name, but was unable to determine a valid
system logical unit number for the file.

If the file resides on a direct access device, and is not a
SAM ESDS file, one of the following may have
occurred:

v There was a DLBL job control statement for the file,
but the system logical unit number was not specified
in either an EXTENT statement associated with the
DLBL, or in the COBOL ASSIGN clause.

v There was a DLBL job control statement and an
EXTENT job control statement for the file, but the
system logical unit number specified in the EXTENT
statement was not a programmer logical unit number

If the file resides on a device other than a direct access
device, the system logical unit number was not
specified in the COBOL ASSIGN clause, or the system
logical unit number specified in the ASSIGN clause was
not a programmer logical unit in the range SYS000 -
SYS254.

System action: If a file status was specified, no system
action is performed. If a file status field was not
specified, the program is terminated and message
IGZ0035S is generated.

Programmer response: Check your job control to
make sure that the specified file is defined correctly.

Symbolic Feedback Code: IGZ02I

IGZ0083W The open of file with system-name
system-name (on SYSnnn) was
unsuccessful. The system logical unit
was assigned to an unsupported device.

Explanation: The system logical unit number was
assigned to a device that is not supported by COBOL,
or the logical unit number was assigned to UA, and
COBOL attempted to create the file.

System action: If a file status was specified, no system
action is performed. If a file status field was not
specified, the program is terminated and message
IGZ0035S is generated.

Programmer response: Check your job control to
make sure that the specified file is defined correctly.

Symbolic Feedback Code: IGZ02J

IGZ0079S • IGZ0083W

Chapter 12. COBOL Run-Time Messages 309

IGZ0084W The open of file with system-name
system-name (on SYSnnn) was
unsuccessful. The multi-function device
codes were invalid for the assigned
device.

Explanation: The device-mode code supplied in the
ASSIGN clause is not valid or the device mode is not
supported by the device assigned to the system logical
unit. A card device is assigned to the system logical
unit, but the device does not support the
optical-mark-read (OMR) or read-column-eliminate
(RCE) mode specified.

System action: If a file status was specified, no system
action is performed. If a file status field was not
specified, the program is terminated and message
IGZ0035S is generated.

Programmer response: Check the device-mode code to
ensure that it is valid for the type of device being used.
Make sure that SYSnnn is assigned to a supported
device.

Symbolic Feedback Code: IGZ084K

IGZ0087I The open of file with system-name
system-name (on SYSnnn) was
unsuccessful. The record length
specified was zero.

Explanation: RECORD CONTAINS 0 CHARACTERS
was specified for a file, but it was not possible to
determine the record length for the input file. RECORD
CONTAINS 0 CHARACTERS is not supported for
output files.

System action: If a file status was specified, no system
action is performed. If a file status field was not
specified, the program is terminated and message
IGZ0035S is generated.

Programmer response: Modify your program to
specify the record length.

Symbolic Feedback Code: IGZ02N

IGZ0088I The open of file with system-name
system-name (on SYSnnn) was
unsuccessful. The block length supplied
was zero.

Explanation: BLOCK CONTAINS 0 CHARACTERS
was specified for a file but, it was not possible to
determine the block length for the input or output file.

System action: If a file status was specified, no system
action is performed. If a file status field was not
specified, the program is terminated and message
IGZ0035S is generated.

Programmer response: Modify your program to
specify the block length.

Symbolic Feedback Code: IGZ02O

IGZ0089I The open of file with system-name
system-name (on SYSnnn) was
unsuccessful. An abend occurred in VSE
LIOCS during open processing.

Explanation: An abend occurred during VSE LIOCS
open processing that was trapped by COBOL.

System action: If a file status was specified, no system
action is performed. If a file status field was not
specified, the program is terminated and message
IGZ0035S is generated.

Programmer response: Check the message issued by
VSE to determine the cause of the error.

Symbolic Feedback Code: IGZ02P

IGZ0090S Get storage request was unsuccessful.

Explanation: A request for GETVIS storage was
issued, but failed. This message is usually issued when
there is insufficient partition GETVIS storage available
to satisfy the get storage request.

System action: The application was terminated.

Programmer response: Increase the amount of
GETVIS storage in the partition by decreasing the value
specified in the SIZE parameter of the EXEC JCL
statement, or increase the partition size.

Symbolic Feedback Code: IGZ02Q

IGZ0091S Free storage request was unsuccessful.

Explanation: A request to free GETVIS storage was
issued, but failed.

System action: The application was terminated.

Programmer response: This is an internal error.
Contact your system representative.

Symbolic Feedback Code: IGZ02R

IGZ0092W The close of file with system-name
system-name (on SYSnnn) was
unsuccessful. An abend occurred in VSE
LIOCS during close processing.

Explanation: An abend occurred during VSE LIOCS
close processing that was trapped by COBOL.

System action: If a file status was specified, no system
action is performed. If a file status field was not
specified, the program is terminated and message
IGZ0035S is generated.

Programmer response: Check the message issued by
VSE to determine the cause of the error.

Symbolic Feedback Code: IGZ02S

IGZ0084W • IGZ0092W

310 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

IGZ0093W The open of file with system-name
system-name (on SYSnnn) was
unsuccessful. The logical unit was
assigned to a device different than that
indicated by the JCL labels in effect.

Explanation: The DLBL or TLBL statement does not
match the corresponding logical unit. This will occur if
a TLBL statement exists for system-name, but SYSnnn is
not assigned to tape, or if a DLBL statement exists for
system-name, but the EXTENT statement does not
specify a logical unit that is assigned to disk.

System action: If a file status was specified, no system
action is performed. If a file status field was not
specified, the program is terminated and message
IGZ0035S is generated.

Programmer response: Correct your job control.

Symbolic Feedback Code: IGZ02T

IGZ0094W The open of file with system-name
system-name (on SYSnnn) was
unsuccessful. The label information for
the file indicated VSAM, and errors
occurred when processing the catalog
information.

Explanation: The DLBL statement for system-name is
for a VSAM managed SAM file. The catalog entry for
the File-id on the DLBL statement indicates it is not a
cluster name or a VSAM managed SAM file.

System action: If a file status was specified, no system
action is performed. If a file status field was not
specified, the program is terminated and message
IGZ0035S is generated.

Programmer response: Correct your job control.

Symbolic Feedback Code: IGZ02U

IGZ0096C A load of phase phase-name was
unsuccessful.

Explanation: An attempt to load a phase failed. The
phase was not available or a system load failure
occurred.

System action: The application was terminated.

Programmer response: See your systems programmer
for assistance.

Symbolic Feedback Code: IGZ030

IGZ0097S Argument-1 for function function-name in
program program-name at displacement
displacement contained no digits.

Explanation: Argument-1 for the indicated function
must contain at least 1 digit.

System action: The application was terminated.

Programmer response: Adjust the number of digits in
Argument-1 in the failing statement.

Symbolic Feedback Code: IGZ031

IGZ0098C The message text for message
message-number was inaccessible to
IGZCWTO.

Explanation: The message text module used by
IGZCWTO did not contain message text for the
indicated message number.

System action: The application was terminated.

Programmer response: See your IBM service
representative.

Symbolic Feedback Code: IGZ032

IGZ0099C Internal error error-number was detected
in module module-name .

Explanation: An unrecoverable error was detected in
run-time module module-name.

System action: The application was terminated.

Programmer response: See your IBM service
representative.

Symbolic Feedback Code: IGZ033

IGZ0100S Argument-1 for function function in
program program at displacement
displacement was less than or equal to -1.

Explanation: An illegal value was used for
Argument-1.

System action: The application was terminated.

Programmer response: Ensure that argument-1 is
greater than -1.

Symbolic Feedback Code: IGZ034

IGZ0151S Argument-1 for function function-name in
program program-name at displacement
displacement contained more than 18
digits.

Explanation: The total number of digits in argument-1
of the indicated function exceeded 18 digits.

System action: The application was terminated.

Programmer response: Adjust the number of digits in
argument-1 in the failing statement.

Symbolic Feedback Code: IGZ04N

IGZ0093W • IGZ0151S

Chapter 12. COBOL Run-Time Messages 311

IGZ0152S Invalid character character was found in
column column-number in argument-1 for
function function-name in program
program-name at displacement
program-displacement .

Explanation: A non-digit character other than a
decimal point, comma, space or sign (+,-,CR,DB) was
found in argument-1 for NUMVAL/NUMVAL-C
function.

System action: The application was terminated.

Programmer response: Correct argument-1 for
NUMVAL or NUMVAL-C in the indicated statement.

Symbolic Feedback Code: IGZ04O

IGZ0154S A procedure pointer was set to nested
program nested-program-name in program
program-name at displacement
displacement .

Explanation: Procedure pointers can not be set to a
nested program.

System action: The application was terminated.

Programmer response: Make sure that the procedure
program is set to an external program.

Symbolic Feedback Code: IGZ04Q

IGZ0155S Invalid character character was found in
column column-number in argument-2 for
function function-name in program
program-name at displacement
program-displacement .

Explanation: Illegal character was found in
argument-2 for NUMVAL-C function.

System action: The application was terminated.

Programmer response: Check that the function
argument does follow the syntax rules.

Symbolic Feedback Code: IGZ04R

IGZ0156S Argument-1 for function function-name in
program program-name at line line-number
was less than zero or greater than 28.

Explanation: Input argument to function FACTORIAL
is greater than 28 or less than 0.

System action: The application was terminated.

Programmer response: Check that the function
argument is only one byte long.

Symbolic Feedback Code: IGZ04S

IGZ0157S The length of Argument-1 for function
function-name in program program-name at
line line-number was not equal to 1.

Explanation: The length of input argument to ORD
function is not 1.

System action: The application was terminated.

Programmer response: Check that the function
argument is only one byte long.

Symbolic Feedback Code: IGZ04T

IGZ0158S The length of Argument-1 for function
function-name in program program-name at
displacement displacement was zero.

Explanation: The length of the argument of the
REVERSE, the UPPER-CASE or the LOWER-CASE
function is zero.

System action: The application was terminated.

Programmer response: Make sure that the length of
the argument is greater than zero.

Symbolic Feedback Code: IGZ04U

IGZ0159S Argument-1 for function function-name in
program program-name at line line-number
was less than 1 or greater than 3067671.

Explanation: The input argument to
DATE-OF-INTEGER or DAY-OF-INTEGER function is
less than 1 or greater than 3067671.

System action: The application was terminated.

Programmer response: Check that the function
argument is in the valid range.

Symbolic Feedback Code: IGZ04V

IGZ0160S Argument-1 for function function-name in
program program-name at line line-number
was less than 16010101 or greater than
99991231.

Explanation: The input argument to function
INTEGER-OF-DATE is less than 16010101 or greater
than 99991231.

System action: The application was terminated.

Programmer response: Check that the function
argument is in the valid range.

Symbolic Feedback Code: IGZ050

IGZ0161S Argument-1 for function function-name in
program program-name at line line-number
was less than 1601001 or greater than
9999365.

Explanation: The input argument to function

IGZ0152S • IGZ0161S

312 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

INTEGER-OF-DAY is less than 1601001 or greater than
9999365.

System action: The application was terminated.

Programmer response: Check that the function
argument is in the valid range.

Symbolic Feedback Code: IGZ051

IGZ0162S Argument-1 for function function-name in
program program-name at line line-number
was less than 1 or greater than the
number of positions in the program
collating sequence.

Explanation: The input argument to function CHAR is
less than 1 or greater than the highest ordinal position
in the program collating sequence.

System action: The application was terminated.

Programmer response: Check that the function
argument is in the valid range.

Symbolic Feedback Code: IGZ052

IGZ0163S Argument-1 for function function-name in
program program-name at line line-number
was less than zero.

Explanation: The input argument to function
RANDOM is less than 0.

System action: The application was terminated.

Programmer response: Correct the argument for
function RANDOM in the failing statement.

Symbolic Feedback Code: IGZ053

IGZ0164C module-name was unable to get HEAP
storage.

Explanation: The request made to obtain heap storage
failed.

System action: The application was terminated.

Programmer response: See your IBM service
representative.

Symbolic Feedback Code: IGZ054

IGZ0165S A reference modification start position
value of start-position-value on line line
referenced an area outside the region of
the function result of function-result .

Explanation: The value of the starting position in a
reference modification specification was less than 1, or
was greater than the current length of the function
result that was being reference modified. The starting
position value must be a positive integer less than or
equal to the number of characters in the reference
modified function result.

System action: The application was terminated.

Programmer response: Check the value of the starting
position in the reference modification specification and
the length of the actual function result.

Symbolic Feedback Code: IGZ055

IGZ0166S A non-positive reference modification
length value of length on line line-number
was found in a reference to the function
result of function-result .

Explanation: The length value in a reference
modification specification for a function result was less
than or equal to 0. The length value must be a positive
integer.

System action: The application was terminated.

Programmer response: Check the length value and
make appropriate correction.

Symbolic Feedback Code: IGZ056

IGZ0167S A reference modification start position
value of start-position and length value of
length on line line-number caused
reference to be made beyond the
rightmost character of the function
result of function-result .

Explanation: The starting position and length value in
a reference modification specification combine to
address an area beyond the end of the reference
modified function result. The sum of the starting
position and length value minus one must be less than
or equal to the number of characters in the reference
modified function result.

System action: The application was terminated.

Programmer response: Check the length of the
reference modification specification against the actual
length of the function result and make appropriate
corrections.

Symbolic Feedback Code: IGZ057

IGZ0168S The creation of a second enclave within
a reusable environment was attempted.
The first program of the second enclave
was program-name.

Explanation: Reusable environment support is limited
to a single enclave. The enclave must be the first
enclave.

System action: The application was terminated.

Programmer response: Modify the application so that
it can run within a single enclave with the COBOL
reusable environment. If the program-name is “????????”
then the first program of the second enclave is not
COBOL.

IGZ0162S • IGZ0168S

Chapter 12. COBOL Run-Time Messages 313

Symbolic Feedback Code: IGZ058

IGZ0169W External data data-record was allocated
within the 31-bit address range. The
called program program-name contained a
definition for this external data, and it
was compiled with the DATA(24)
option.

Explanation: External data was allocated ANYWHERE
within the 31-bit addressing range by a program. But a
subsequently called program containing a definition for
that same external data was compiled with the
DATA(24) option. This was discovered while processing
external data records during program initialization.

System action: No system action was taken.

Programmer response: Re-compile program with the
DATA(31) option if appropriate. If the external data
needs to be allocated below 16M, then the FIRST
program in the run unit that contains a definition of
the external data must be compiled with the DATA(24)
option.

Symbolic Feedback Code: IGZ059

IGZ0170S One or more files were not closed by
NORENT program program-name and the
program cannot be found in storage.

Explanation: The specified NORENT program has not
closed all of the files it opened and the program cannot
be found in storage. COBOL is unable to close the files
because the required control blocks which reside in the
program are no longer available. Unpredictable results
will occur when the system attempts to close the files.
This error can occur if the application has an assembler
program that loads and deletes the specified NORENT
program.

System action: The application was terminated.

Programmer response: Ensure that all files are closed
by the NORENT program.

Symbolic Feedback Code: IGZ05A

IGZ0171S An attempt was made to run a
COBOL/VSE program which was
compiled with the compiler options
NORENT and RMODE(ANY). The
program name is program-name.

Explanation: LE/VSE does not support COBOL/VSE
programs compiled with the compiler options
NORENT and RMODE(ANY).

System action: The application was terminated.

Programmer response: Compile the program with the
RMODE(AUTO) compiler option.

Symbolic Feedback Code: IGZ05B

IGZ0172W RTEREUS was specified, but ignored. A
reusable run-time environment was not
established because the first program in
the application was not COBOL.

Explanation: A reusable environment can be
established only when the main program of the first
enclave is COBOL.

System action: No system action is taken.

Programmer response: Ensure that RTEREUS is off.
The performance benefits of using RTEREUS are
available without the run-time option when the
application is running under LE/VSE.

Symbolic Feedback Code: IGZ05D

IGZ0198S Corrupt External Data File Found While
Running Program program-name.

Explanation: While adding-to or checking the external
file definition chain, LE/COBOL detected a corrupt
external file definition in the chain.

System action: The application is terminated.

Programmer response: Check that all external file
definitions are consistent between caller and called
programs. Ensure that all calls to other programs with
parameter fields are consistant with the called
program's PROCEDURE division. Set the LE/VSE
run-time option HEAPCHK(ON,1,0), to check all HEAP
storage for the duration of the application's
execution.The most common cause of this error
message is when a storage overlay destroys the header
information on an LE/COBOL external file definition
table.

Symbolic Feedback Code: IGZ064

IGZ0199S An attempt was made to run a COBOL
program that was compiled with the
SEPARATE suboption of the TEST
compiler option. This is not supported
with this level of Language
Environment or this level of Debug
Tool. The program name is
program-name.

Explanation: COBOL programs running with
TEST(,,SEPARATE) must run on levels of Language
Environment and Debug Tool that support it. This error
can occur with any of the following:
v Running with a level of Language Environment that

does not support the SEPARATE suboption.
v Running with a level of Language Environment that

could support the SEPARATE suboption but does not
have current maintenance applied.

v Running with a level of Debug Tool that does not
support the SEPARATE suboption.

v Running with a level of Debug Tool that could
support the SEPARATE suboption but does not have
current maintenance applied.

IGZ0169W • IGZ0199S

314 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

System action: The application was terminated.

Programmer response: Either:
v Run the program under levels of Language

Environment and Debug Tool that support programs
compiled with TEST(,,SEPARATE).

v Recompile the COBOL program without the
SEPARATE suboption of the TEST compiler option.

Symbolic Feedback Code: IGZ067

IGZ0200W A file attribute mismatch was detected.
File file-name in program program-name
was defined as a physical sequential file
and the file specified in the ASSIGN
clause was a VSAM file.

Explanation: The program file description specified
that the file was a physical sequential file and the file
associated with the ASSIGN clause was found to be a
VSAM file. The OPEN statement failed.

System action: If a file status was specified, no system
action is performed. If a file status field was not
specified, the program is terminated and message
IGZ0035S is generated.

Programmer response: Check that the file description
and the DLBL statement associated with the ASSIGN
clause are for the correct file.

Symbolic Feedback Code: IGZ068

IGZ0201W A file attribute mismatch was detected.
File file-name in program program-name
had a record length of record-length-1 and
the file specified in the ASSIGN clause
had a record length of record-length-2 .

Explanation: The program file description specified a
record length that did not match the record length of
the file associated with the ASSIGN clause. The OPEN
statement failed.

System action: If a file status was specified, no system
action is performed. If a file status field was not
specified, the program is terminated and message
IGZ0035S is generated.

Programmer response: For Format-V and Format-S
files the maximum record length specified in your
program must be exactly 4 bytes smaller than the
length attribute of the file. For Format-F files, the
record length specified in your program must exactly
match the length attribute of the file. For Format-U
files, the maximum record length specified in your
program must exactly match the length attribute of the
file. If your file is a printer file, the compiler may add
one byte to the file description for carriage control
character, depending on the ADV compiler option and
the COBOL statements used in your program. In which
case, the added byte must be included in the file length
attribute.

Symbolic Feedback Code: IGZ069

IGZ0202W A file attribute mismatch was detected.
File file-name in program program-name
specified ASCII data and the file
specified in the ASSIGN clause did not
contain the ASCII data attribute.

Explanation: The CODE-SET clause was specified in
the program file description and the file associated
with the ASSIGN clause did not contain ASCII data.
The OPEN statement failed.

System action: If a file status was specified, no system
action is performed. If a file status field was not
specified, the program is terminated and message
IGZ0035S is generated.

Programmer response: Check that the file associated
with the ASSIGN clause is the correct one, and if it is,
check the file for the ASCII attribute.

Symbolic Feedback Code: IGZ06A

IGZ0203W A file attribute mismatch was detected.
File file-name in program program-name
specified non-ASCII data and the file
specified in the ASSIGN clause
contained the ASCII data attribute.

Explanation: The file associated with the ASSIGN
clause contained ASCII type data and the file
description in the program did not contain ASCII data.
The OPEN statement failed.

System action: If a file status was specified, no system
action is performed. If a file status field was not
specified, the program is terminated and message
IGZ0035S is generated.

Programmer response: Check that the file associated
with the ASSIGN clause is the correct one, and if it is,
check the file for the ASCII attribute.

Symbolic Feedback Code: IGZ06B

IGZ0204W A file attribute mismatch was detected.
File file-name in program program-name
was defined as RECORDING MODE
recording-mode and the file specified in
the ASSIGN clause did not contain the
same attribute.

Explanation: The RECORDING MODE specified in
the program file description did not match the data
control block fields of the file associated with the
ASSIGN clause. The OPEN statement failed.

System action: If a file status was specified, no system
action is performed. If a file status field was not
specified, the program is terminated and message
IGZ0035S is generated.

Programmer response: Check the data control block
fields of the actual file to verify that the RECORDING
MODE matches. The most common cause of this error

IGZ0200W • IGZ0204W

Chapter 12. COBOL Run-Time Messages 315

is conflicting fixed and variable record length file
attributes.

Symbolic Feedback Code: IGZ06C

IGZ0205W A file attribute conflict was detected.
File file-name in program program-name
specified a block size of block-size that is
not valid for the device assigned.

Explanation: The block size specified in the file
description for the file is not valid for the device
associated with the ASSIGN clause. The OPEN
statement failed. This may be caused by one of the
following:

v The RECORDING MODE is F and the block size is
not a multiple of the record size.

v The block size is less than the minimum for a tape
device. The minimum block size is 12 bytes for an
input file, and 18 for an output file.

v A diskette device is assigned, and the block size is
not a multiple of 1, 2, 13, or 26 of the record length.

System action: If a file status was specified, no system
action is performed. If a file status field was not
specified, the program is terminated and message
IGZ0035S is generated.

Symbolic Feedback Code: IGZ06D

IGZ0206W A file attribute conflict was detected.
File file-name in program program-name
specified a record length of record-length
that is not valid for the device assigned.

Explanation: The record length specified in the file
description for the file is not valid for the device
associated with the ASSIGN clause. The OPEN
statement failed. This may be caused by one of the
following:

v A card device is assigned and the record length is
greater than the maximum for the device type
assigned.

v A printer device is assigned and the record length is
greater than the maximum for the device.

v A diskette device is assigned, and the record length
is greater than the maximum for the device.

System action: If a file status was specified, no system
action is performed. If a file status field was not
specified, the program is terminated and message
IGZ0035S is generated.

Symbolic Feedback Code: IGZ06E

IGZ0207W A file attribute conflict was detected.
File file-name in program program-name
specified RECORDING MODE
recording-mode that is not valid for the
device assigned.

Explanation: The RECORDING MODE specified in
the file description for the file is not valid for the
device associated with the ASSIGN clause. The OPEN
statement failed. This may be caused by one of the
following:

v A card device is assigned and the RECORDING
MODE is S.

v A card device is assigned for a file open for INPUT
and the RECORDING is not F.

v The DLBL specifies a SAM ESDS file and the
RECORDING MODE is S.

v A diskette device is assigned and the RECORDING
is not F.

v A printer device is assigned and the RECORDING
MODE is S.

v A tape device is assigned and the RECORDING
MODE is S and CODESET was specified.

System action: If a file status was specified, no system
action is performed. If a file status field was not
specified, the program is terminated and message
IGZ0035S is generated.

IGZ0215S argument-1 for function function in
program program at line line-number was
less than 0 or greater than 99.

Explanation: An illegal value was used for
Argument-1.

System action: The application was terminated.

Programmer response: Ensure that argument-1 is
greater than or equal to 0 and less than 100.

IGZ0216S argument-1 for function function in
program program at line line-number was
less than 0 or greater than 99366.

Explanation: An illegal value was used for
Argument-1.

System action: The application was terminated.

Programmer response: Ensure that argument-1 is
greater than or equal to 0 and less than 99367.

IGZ0217S argument-1 for function function in
program program at line line-number was
less than 0 or greater than 991231.

Explanation: An illegal value was used for
Argument-1.

System action: The application was terminated.

Programmer response: Ensure that argument-1 is
greater than or equal to 0 and less than 991231.

IGZ0205W • IGZ0217S

316 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

IGZ0218S The sum of the year at the time of
execution and the value of argument-2
was less than 1700 or greater than 10000
for function function in program program
at line line-number.

Explanation: An illegal value was used for
Argument-2.

System action: The application was terminated.

Programmer response: Ensure that the sum of the
year at the time of execution and the value of
argument-2 is less than 1700 or greater than 10000.

IGZ0219S The base year for program program-name
was outside the valid range of 1900
through 1999. The sliding window value
window-value resulted in a base year of
base-year.

Explanation: When the 100-year window was
computed using the current year and the sliding
window value specified with the YEARWINDOW
compiler option, the base year of the 100-year window
was outside the valid range of 1900 through 1999. For
example, if a COBOL program was compiled with
YEARWINDOW(-99) and the COBOL program was run
in the year 1998 this message would occur because the
base year of the 100-year window would be 1899 (1998
- 99).

System action: The application was terminated.

Programmer response: Examine the application design
to determine if it will support a change to the
YEARWINDOW option value. If the application can
run with a change to the YEARWINDOW option value,
then compile the program with an appropriate
YEARWINDOW option value. If the application cannot
run with a change to the YEARWINDOW option value,
then convert all date fields to expanded dates and
compile the program with NODATEPROC.

IGZ0220S The current year was outside the
100-year window, year-start through
year-end, for program program-name.

Explanation: The current year was outside the
100-year fixed window specified by the
YEARWINDOW compiler option value. For example, if
a COBOL program is compiled with
YEARWINDOW(1920), the 100-year window for the
program is 1920 through 2019. When the program is
run in the year 2020, this error message would occur
since the current year is not within the 100-year
window.

System action: The application was terminated.

Programmer response: Examine the application design
to determine if it will support a change to the
YEARWINDOW option value. If the application can
run with a change to the YEARWINDOW option value,

then compile the program with an appropriate
YEARWINDOW option value. If the application cannot
run with a change to the YEARWINDOW option value,
then convert all date fields to expanded dates and
compile the program with NODATEPROC.

IGZ0221W The Y2PAST= y2past-value SORT option
(from the YEARWINDOW compiler
option) was overridden by the Y2PAST
value in the sort control file.

Explanation: A windowed date field was specified as
a KEY in a SORT or MERGE, which resulted in the
YEARWINDOW compiler option being converted into
a SORT option Y2PAST value, but Y2PAST was also
specified in the sort control file. The value in the sort
control file was used, and the Y2PAST value from the
program was ignored.

System action: No system action was taken.

Programmer response: See the COBOL for MVS™ &
VM Programming Guide for a description of using
windowed date fields with SORT and MERGE.

IGZ0235W The side file side_file for program
program-name was not available. A
formatted variable dump cannot be
produced. Librarian error occurred
during librarian libr-command command.
Librarian return code is: libr-retcode.
Librarian reason code is: libr-rsncode.

Explanation: If error and reason codes indicate “file
not found”, this is because the side file was not found
in the “library.sublibrary” that was specified at the time
of compilation. This side file was also not found in the
currently-active temporary and permanent libdef
PHASE search chain. By default, the member type of
the side file is “SYSDEBUG”. For other error and
reason codes refer to the z/VSE System Macros Reference
for an explanation of return and reason codes for the
above LIBRM libr-command.

System action: None.

Programmer response: If error indicates “file not
found”, ensure that the side file exists in either the
v library.sublibrary that was specified at the time of

compilation.
v Active temporary or permanent libdef PHASE search

chains.

The side file can be recreated by re-compiling the
affected program with the SD compiler option.

For all other error and reason codes:
v Respond to the error as explained in the z/VSE

System Macros Reference.
v See your IBM representative.

If there is a side-file-name exit being used (IGZIUXB
for BATCH and IGZIUXC for CICS), the exit program

IGZ0218S • IGZ0235W

Chapter 12. COBOL Run-Time Messages 317

might have been produced or altered the side file
dataset name that is displayed.

Symbolic Feedback Code: IGZ07A

IGZ0236I Unable to process the side file side_file
for program program-name. A formatted
variable dump cannot be produced.
Librarian error occurred during librarian
libr-command command. Librarian return
code is: libr-retcode. Librarian reason
code is: libr-rsncode.

System action: None.

Programmer response: For an explanation of the
return and reason codes for the above LIBRM
libr-command, refer to the z/VSE System Macros Reference.

Symbolic Feedback Code: IGZ07B

IGZ0237I Unable to process the side file side_file
for program program-name. A formatted
variable dump cannot be produced.
Verification error occurred.

Explanation: This message indicates either:
v A side file with an invalid format was encountered.
v An internal logic error.

System action: None.

Programmer response: See your IBM representative.

Symbolic Feedback Code: IGZ07C

IGZ0238I Unable to process the side file side_file
for program program-name. A formatted
variable dump cannot be produced. The
following error occurred: error-details

Explanation: The reported error occurred while
processing a side file.

System action: None.

Programmer response: See your IBM representative.

Symbolic Feedback Code: IGZ07D

IGZ0239I The side file side_file for program
program-name was not found.

Explanation: The side file was not found in either the:
v Specified “library.sublibrary”.
v Currently-active temporary or permanent libdef

PHASE search chains.

By default, the member type of the side file is
“SYSDEBUG”.

System action: None.

Programmer response: Ensure that the side file exists
in the specified library, or recompile the program.

Ensure that the side file exists in either the:

v “library.sublibrary” that was specified at the time of
compilation.

v Currently-active temporary or permanent libdef
PHASE search chains.

Symbolic Feedback Code: IGZ07E

IGZ0236I • IGZ0239I

318 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Chapter 13. LE/VSE Abend Codes

This chapter lists the LE/VSE abend codes with descriptions and programmer
responses. The hexadecimal equivalent of the abend code is shown in parentheses.
Reason codes are shown in decimal with the hexadecimal equivalent in
parentheses.

The abend codes described in this appendix are referred to by LE/VSE
CEE-prefixed messages (for example CEE3322C). To obtain a listing on your VSE
console of all these abend codes, type CEEABENDC on the command line and then
press PF9.

Abend codes not listed here: Application programmers can use the CEE5ABD
LE/VSE callable service to generate user-defined abend codes that do not appear
in this chapter. For information about abend codes not listed here, see your
application's documentation.

U1xxx

Explanation: An abend code in the form U1xxx might
mean the enclave terminated with a COBOL-specific
condition. If the abend is caused by a COBOL-specific
condition, the abend is accompanied by a COBOL
run-time message with a message number in the form
IGZ0xxx, where xxx corresponds to the last three digits
of the abend code. For example, if you receive a user
abend code 1009, the corresponding COBOL run-time
message is IGZ0009.

System action: Task terminated.

Programmer response: Check the corresponding
COBOL run-time message in Chapter 12, “COBOL
Run-Time Messages,” on page 299 for the
recommended action.

Uxxxx (≤ 4000)

Explanation: The assembler user exit could have
forced an abend for an unhandled condition. These are
user-specified abend codes.

System action: Task terminated.

Programmer response: Check the LE/VSE message
file for message output.

U4000 (X'FA0')

Explanation: LE/VSE dump services encountered an
error.

Reason codes:

256 (X'100')
An invalid request was passed to the Dump
File Manager.

257 (X'101')
There was an attempt to generate a dump
with more than the maximum number of
nested sections (5).

258 (X'102')
The Dump File Manager received a request to
end a dump section when a dump section was
not active.

System action: Enclave terminated.

Programmer response: Ensure the parameters passed
to the dump service routines are correct.

U4034 (X'FC2')

Explanation: LE/VSE condition handling was
bypassed. This could result from an error condition
being raised while LE/VSE was dormant.

System action: Task terminated.

Programmer response: Follow appropriate problem
determination procedures.

U4036 (X'FC4')

Explanation: A program check or abend occurred and
LE/VSE determined that it could not turn the program
check or abend into a condition.

Reason codes:

2 (X'02')
An abend was detected and the LE/VSE
run-time option for the enclave is TRAP(OFF)
or TRAP(ON,MIN). See previous abend
message for a description of the detected
abend.

© Copyright IBM Corp. 1991, 2014 319

3 (X'03')
A program check was detected and the
LE/VSE run-time option for the enclave is
TRAP(OFF). The address of the STXIT save
area is loaded into register 10 prior to the
abend being issued.

System action: Task terminated.

Programmer response: Follow appropriate problem
determination procedures.

U4038 (X'FC6')

Explanation: The enclave ended with an unhandled
LE/VSE condition of severity 2 or greater, and the
run-time option ABTERMENC(ABEND) was specified.

Reason codes:

1 (X'01')
The unhandled condition was a
software-raised or user-raised condition. See
output on SYSLST for more information.

2 (X'02')
The unhandled condition was an error when
attempting to load a phase at the enclave
level.

System action: Enclave terminated.

Programmer response: Check the LE/VSE message
file for message output.

U4039 (X'FC8')

Explanation: LE/VSE is requesting a system abend
dump due to an unhandled severity 2, 3, or 4
condition, or in response to the run-time option
TERMTHDACT(UADUMP) being set. This does not
necessarily indicate an error condition.

System action: LE/VSE continues with termination.

Programmer response: Refer to the original
unhandled condition.

U4040 (X'FC8')

Explanation: An unrecoverable error occurred while
processing run-time options for a compiler.

Reason codes:

1 (X'01')
The fixed-sized stack overflowed.

System action: Enclave terminated.

Programmer response: Reduce the number of
run-time options provided to the compiler.

U4041 (X'FC9')

Explanation: LE/VSE message services encountered
an error.

Reason codes:

8 (X'08')
The chain of message destination control
blocks was corrupted.

System action: Enclave terminated.

Programmer response: Follow appropriate problem
determination procedures.

U4042 (X'FCA')

Explanation: The application heap data has been
corrupted.

Reason codes:

0 (X'00')
The LE/VSE heap checker has detected that
heap storage has been corrupted.

1 (X'01')
An unrecoverable error occurred while the
heap checker was attempting to check for, or
report on, heap damage.

System action: Enclave terminated with a dump.

Programmer response: Follow appropriate problem
determination procedures. The message file should
contain messages indicating the address and contents of
the damaged storage area.

U4045 (X'FCD')

Explanation: An error was encountered during
LE/VSE abend processing.

Reason codes:

1 (X'01')
There was insufficient GETVIS storage
available to process the original condition. The
original abend and reason code could not be
issued.

2 (X'02')
There was insufficient 24-bit GETVIS or HEAP
storage available to process the original
condition. The original abend and reason code
could not be issued.

System action: Enclave terminated.

Programmer response: Increase the amount of
available BELOWHEAP, HEAP, or 24-bit GETVIS
storage.

U4038 (X'FC6') • U4045 (X'FCD')

320 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

U4082 (X'FF2')

Explanation: A second malfunction occurred while
handling a condition.

Reason codes:

1 (X'01')
A second malfunction occurred while trying to
initialize a second math save area.

2 (X'02')
A condition was raised prior to the point
where a second condition could be recorded.

3 (X'03')
A condition was raised while LE/VSE was
processing a current condition under CICS.

4 (X'04')
A program check occurred during handling of
an earlier program check condition.

5 (X'05')
A program check occurred during handling of
an earlier condition.

System action: Enclave terminated.

Programmer response: Correct the original condition
to prevent the subsequent condition, or use a condition
handler to correctly process the original condition.

U4083 (X'FF3')

Explanation: The back chain was found in error. The
reason code issued with this abend indicates what is
invalid about the save-area that caused the abend.

Reason codes:

1 (X'01')
A save area loop exists. The save area points
to itself or another save area incorrectly points
to a higher save area.

2 (X'02')
Traversal of the back chain resulted in a
program check.

3 (X'03')
Under normal conditions, all save area chains
should end with a save area pointed to by
CEECAADDSA. In this case, the save area
chain terminated with a back chain pointer of
0.

4 (X'04')
Under normal conditions, all save areas are
presumed to be word aligned. In this case, a
save area was improperly aligned.

5 (X'05')
A condition was raised prior to the allocation
of the main stack frame, or after the main
routine terminated.

7 (X'07')
The save area chain cannot be addressed, does
not exist, or the pointer referencing the back
chain is set to 0 (R13). A 4083 abend traceback
report will not be attempted.

8 (X'08')
A second or subsequent save area on the chain
points to itself. A 4083 abend traceback report
will not be produced.

15 (X'0F')
The save area chain is not intact.

System action: When possible, LE/VSE produces a
traceback of all valid DSAs prior to the detected invalid
save-area, and a dump of an active Condition
Information Block (CIB). In this situation, +X'CC' (204)
in the CIB (CIB_SV1) will contain the address of the
invalid save-area that was detected. Status flag 5
(CIB_FLG5) indicates the original failure that caused
the save-area chain to be scanned (for example, a
program-check or an abend).

When available, following the CIB will be included a
dump of the machine status information
(CIB_MACHINE) for each CIB present. This
information contains the contents of the general
purpose register and PSW information, instruction
length, interrupt codes, and BEAR-contents, that were
all captured at the time of the original failure. The
BEAR information is the address of the instruction that
generated the last successful branch before the interrupt
occurred. The contents are only relevant on z9-109 and
later processors.

All of the above information should help you to
determine the cause of the abend. For further
information on how to use the CIB to determine the
cause of an abend, see the section “Debugging with the
Condition Information Block” in the manual LE/VSE
Debugging Guide and Run-Time Messages.

Save-areas in the active chain should conform to the
layout and description provided in the section
“Debugging with the Stack Frame” in the manual
LE/VSE Debugging Guide and Run-Time Messages, and
should be resident on the active LE/VSE Stack. The
reason code issued with this abend will indicate what
is invalid about the save-area that caused the abend.

The enclave is then terminated.

Programmer response: For applications involving
assembler routines that generate their own save areas,
ensure the save areas are correctly back-chained
together and conform to LE/VSE. For other
applications, either:
v A storage overlay problem might have occurred.
v An unhandled condition might have occurred which

caused an invalid save-area to be found on the active
STACK save-area chain.

U4082 (X'FF2') • U4083 (X'FF3')

Chapter 13. LE/VSE Abend Codes 321

U4085 (X'FF5')

Explanation: The GOTO routine encountered an error.

Reason code:

1 (X'01')
GOTO is already active.

2 (X'02')
The address of the stack frame could not be
found on the save area chain, and no feedback
code was provided.

System action: Enclave terminated.

Programmer response: Ensure the save areas are
active.

U4086 (X'FF6')

Explanation: A library routine could not be loaded.

Reason codes:

1 (X'01')
Not enough storage to load phase.

2 (X'02')
Phase not found.

3 (X'03')
Phase not loaded.

System action: Process terminated.

Programmer response: For reason code 1, increase the
amount of GETVIS storage in the partition by
decreasing the value specified in the SIZE parameter of
the EXEC JCL statement, or increase the partition size.
For reason codes 2 and 3, make sure the requested
phase is in the sublibrary search chain, or in the SVA.

U4087 (X'FF7')

Explanation: A recursive error was detected. A
condition was raised, causing the number of nested
conditions to exceed the limit set by the
DEPTHCONDLMT option. The reason code indicates
which subcomponent or process was active when the
exception was detected.

Reason codes:

0 (X'00')
LE/VSE condition manager was in control at
the time of the condition.

2 (X'02')
A user handler routine (CEEHDLR) was
processing a condition when a subsequent
condition was raised.

3 (X'03')
A language-specific condition handler was
processing a condition when a subsequent
condition was raised.

4 (X'04')
During the LE/VSE condition manager’s
processing of the stack frame that precedes the
stack frame for the first routine, a subsequent
condition was raised.

5 (X'05')
While a language-specific event handling was
being processed, a subsequent condition was
raised.

6 (X'06')
A malfunction occurred while Debug Tool for
VSE/ESA was in control.

7 (X'07')
While LE/VSE was trying to output a
message, a subsequent condition was raised.

8 (X'08')
While attempting to output a dump, a
subsequent condition was raised.

10 (X'0A')
An abnormal termination exit was in control
and LE/VSE detected one of the following:

v A program check

v An abend

v A call to CEESGL to signal a condition

System action: Enclave terminated.

Programmer response: In the case of CEEHDLR
routine, recursion can occur when you use the
DEPTHCONDLMT run-time option.

For reason code 10, determine the error in the
abnormal termination exit.

U4088 (X'FF8')

Explanation: A storage condition occurred during the
processing of a storage condition. The reason code
indicates the request type.

Reason codes:

91 (X'5B')
Stack pointer corrupted at location 1.

92 (X'5C')
Stack pointer corrupted at location 2.

93 (X'5D')
Stack pointer corrupted at location 3.

94 (X'5E')
Stack pointer corrupted at location 4.

99 (X'63')
Stack segment owning the next-available-byte
(NAB) could not be found, or a zero backchain
pointer was encountered.

1xx (xx = 01–16) (X'65'–X'74')
First free storage request terminated with
return code xx.

U4085 (X'FF5') • U4088 (X'FF8')

322 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

2xx (xx = 01–16) (X'C9'–X'D8')
Second free storage request terminated with
return code xx.

10xx (xx = 01–16) (X'3E9'–X'3F8')
First get storage terminated with return code
xx, and reserve stack segment already in use.
This indicates a storage condition was raised
while handling the storage condition.

nnn Critical condition nnn was signaled, but
CEESGL returned control to the signaller. The
signaller does not support a retry of the
operation, so the module terminated.

System action: Enclave terminated.

Programmer response: For reason codes 91–20x,
probable internal malfunction or storage corruption.
For code 1001 or 1004, increase partition GETVIS size
or check for infinite recursion. Using the STORAGE
run-time option to increase the size of the reserve stack
segment can also help. For all other reason codes, see
your system programmer.

U4091 (X'FFB')

Explanation: An unexpected condition occurred
during the running of LE/VSE condition management.

Reason codes:

1 (X'01')
A GOTO was made by an enablement routine.

2 (X'02')
Invalid return code from a language-specific
event handler was received during enablement
processing.

3 (X'03')
LE/VSE condition management detected an
implicit movement of the resume cursor. Either
a GOTO or move resume cursor should have
been used for resumption in a different stack
frame.

4 (X'04')
Invalid return code from a language-specific
event handler was received.

5 (X'05')
A program check was detected while LE/VSE
condition manager was in control.

6 (X'06')
A request to resume the application was not
accepted. The LE/VSE condition manager does
not accept resumption requests with
conditions, such as abends.

7 (X'07')
Invalid return code from a language-specific
event handler was received during stack frame
processing.

8 (X'08')
CEESGL callable service was attempting to
signal a new condition. A control information
block could not be allocated for that condition.

9 (X'09')
The CEEHDLR routine returned with an
invalid feedback code.

10 (X'0A')
The LE/VSE library was unable to find a free
control information block for a new condition.
This is a critical error.

11 (X'0B')
The error count specified in the ERRCOUNT
run-time option has been exceeded.

12 (X'0C')
LE/VSE signaled a condition that could not be
resumed. After a resume took place, LE/VSE
again attempted to terminate by signalling an
imminent termination. Another resume was
attempted and caused an abend.

13 (X'0D')
An invalid return code was received from
Debug Tool for VSE/ESA.

14 (X'0E')
An invalid attempt to populate an ISI with
qualifying data was detected.

15 (X'0F')
A condition token other than CEE000 was
returned from a member event handler. The
feedback token resulted from a new condition
being raised.

16 (X'10')
A request to extend stack storage could not be
honored. A fixed-size stack might currently be
in use.

17 (X'11')
A request for library stack storage could not
be completed.

18 (X'12')
Stack storage was requested when storage
management services were not available.

19 (X'13')
A request to extend stack storage could not be
honored.

20 (X'14')
After being informed of a new condition, the
condition handler indicated an unrecoverable
error.

21 (X'15')
The maximum depth of condition nesting
specified in the DEPTHCONDLMT run-time
option was exceeded.

U4091 (X'FFB')

Chapter 13. LE/VSE Abend Codes 323

39 (X'27')
Condition management services could not find
an LE/VSE STXIT exit to be established,
although the application was running with
TRAP(ON).

System action: Enclave terminated.

Programmer response: If this abend was caused by a
user-written condition handler, check the return codes
provided to LE/VSE condition manager.

Another source of this problem can be the use of
CEEMRCR with a type_of_move ’1’ done for a
condition handler that is invoked for another condition
handler.

U4092 (X'FFC')

Explanation: STXIT AB or PC issued this abend
because an unrecoverable error was detected. LE/VSE
condition manager could not proceed.

Reason codes:

0 (X'00')
STXIT PC routine was detected.

1 (X'01')
STXIT AB routine was detected.

2 (X'02')
A CICS interface routine was detected.

System action: Enclave terminated.

Programmer response: Follow appropriate problem
determination procedures.

U4093 (X'FFD')

Explanation: Abend issued during initialization when
errors were detected.

Reason codes:

4 (X'04')
Storage management could not properly
allocate the initial storage area.

8 (X'08')
LE/VSE control blocks could not be set up
properly.

12 (X'0C')
System not supported.

16 (X'10')
The application's parameter list could not be
processed correctly. The parameter list might
be invalid.

20 (X'14')
Hardware not supported.

24 (X'18')
An error occurred when attempting to process
the options specified in the application.

28 (X'1C')
Stack management could not allocate stack
and/or heap storage.

32 (X'20')
Program management could not find a phase
that was to be loaded.

36 (X'24')
When trying to load a phase, program
management encountered a storage condition.

40 (X'28')
Program management could not be initialized
properly.

42 (X'2A')
During initialization, a load request for
CEEDOPT failed. Also see section
“Programmer Response”.

44 (X'2C')
The LE/VSE math library could not be
initialized properly.

48 (X'30')
Condition management could not be
initialized properly.

52 (X'34')
A language-specific event handler returned to
initialization with a feedback code, causing
immediate termination.

54 (X'36')
During initialization, a load request for the
abnormal termination exit table failed. If the
abend occurs on a CICS system, the PHASE
name is CEECXTAN. If the abend occurs in a
BATCH program, the PHASE name is
CEEBXTAN. Also see section “Programmer
Response”.

56 (X'38')
Unable to load LE/VSE initialization phase,
CEEBINIT. Also see section “Programmer
Response”.

60 (X'3C')
The initial fixed-size stack overflowed.

64 (X'40')
Process level ran out of storage.

68 (X'44')
Enclave level ran out of storage.

72 (X'48')
Thread level ran out of storage.

76 (X'4C')
CAA pointer became corrupted.

80 (X'50')
PCB pointer became corrupted.

82 (X'52')
EDB or EICB pointer has become corrupted or

U4092 (X'FFC') • U4093 (X'FFD')

324 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

has been overlaid causing the pointer to
become unusable or invalid. Also see section
“Programmer Response”.

84 (X'54')
Assembler user exit malfunctioned.

88 (X'58')
Get heap malfunctioned during initialization.

92 (X'5C')
Anchor setup malfunctioned.

96 (X'60')
The PLIST run-time option conflicts with the
operating system type.

100 (X'64')
The LE/VSE anchor support was unavailable.

108 (X'6C')
The routine was compiled with an
unsupported version of a compiler.

112 (X'70')
A phase did not contain a main
procedure/function.

116 (X'74')
The primary entry point routine of the root
phase was found with LE/VSE CEESTART,
but the rest of the routines in the phase were
not linked with LE/VSE library.

124 (X'7C')
An unsupported parameter style was detected.

128 (X'80')
Too many files, fetched procedures, controlled
variables in a PL/I routine, or assembler use
of external dummy sections caused the total
length of the PRV to exceed the maximum
limit of 4096 bytes.

132 (X'84')
Library routines required for CICS support are
not defined in the CICS CSD. See LE/VSE
Customization Guide, SC33-6682 for the library
routines required for CICS support.

136 (X'88')
Reinitialization feature is not supported in
PL/I-defined pre-initialization service.

138 (X'8A')
A module was compiled with DOS PL/I V1R6
(or earlier) has been link-edited to the main
phase.

156 (X'9C')
An error occurred during initialization of the
COBOL run-time environment. Also see
section “Programmer Response”.

160 (X'A0')
An attempt has been made to implicitly create
another enclave while outside a dormant or
inactive environment.

200 (X'C8')
During initialisation processing, LE/VSE was
unable to establish any STXITs that are
required for condition handling purposes. Also
see section “Programmer Response”.

208 (X'D0')
During initialisation processing, LE/VSE was
unable to establish the required STXIT PC exit
for the level of condition handling requested
via the TRAP run-time option. A STXIT PC
exit was already in progress.

212 (X'D4')
During initialisation processing, LE/VSE was
unable to establish the required STXIT AB exit
for the level of condition handling requested
via the TRAP run-time option. An
OPTION=EARLY STXIT AB had already been
established.

216 (X'D8')
During initialisation processing, LE/VSE was
unable to establish the required STXIT AB exit
for the level of condition handling requested
via the TRAP run-time option. An 'EXIT AB'
was already in progress for the Enclave.

1000 (X'3E8') and higher
Unable to load the event handler for a
high-level language. The reason for the load
failure is found in the second digit
from-the-left in the decimal reason code
together with the language identifier in the
right-most two digits. For example, decimal
reason code 1805 (X'70D') means the load for
language identifier 05 failed with a return
code 8. These are the possible load failure
return codes:
8 Load module cannot be found.
6 A “move-mode” phase was requested.
2 Storage problems were encountered

while attempting to load module.

The name of the event handler phase that
could not be loaded is CEEEV0nn where nn is
the last two digits of the reason code.

These are the High-Level Language identifiers:

identifier
high-level language

003 C/VSE
005 COBOL
010 PL/I

System action: Enclave terminated.

Programmer response: For reason codes 4, 28, 40, and
56, increase the amount of GETVIS storage in the
partition by decreasing the value specified in the SIZE
parameter of the EXEC JCL statement, or increase the
partition size.

For reason code 42, ensure that you have created the

U4093 (X'FFD')

Chapter 13. LE/VSE Abend Codes 325

LE/VSE installation wide default options module
CEEDOPT and it exists in an available sub-library.

For reason code 54, ensure you have at least the supplied
CEEBXTAN or CEECXTAN PHASEs in a sub-library
available to the user application. Further information
on the creation of CEEDOPT, CEEBXTAN and
CEECXTAN is available in the LE/VSE Customization
Guide, SC33-6682.

For reason code 56, also ensure that the LE/VSE
sublibrary is available in the LIBDEF search chain at
run-time.

For reason code 82, check for any CICS storage violations
or application programs modifying storage outside of
their allocated area(s) such as CICS commareas or table
arrays. Compile COBOL programs with SSRANGE and
set LE/VSE run-time option CHECK(ON) to validate
all allocated table arrays for any boundary violations.
For PL/1 VSE programs you can use the
SUBSCRIPTRANGE procedure setting. In both the
PL/1 and COBOL cases, the use of TEST(NONE,SYM)
as a compile time option is recommended to ensure
maximum debugging information is available at abend
time.

For reason code 156, see the accompanying COBOL
run-time message for a description of the error.

For reason code 160, ensure the application is not trying
to create another enclave while using preinitialization
services such as IGZERRE, ILDBSET0 or CEEPIPI.
Ensure that any child enclaves are created within an
active environment using provided services such as the
LE/VSE C run-time function system(), the callable
service CEE5CRE, or (if under CICS) use the
EXEC CICS LINK or XCTL API calls.

For reason code 2xx, ensure that there are no other
STXITs active, or entered, when LE/VSE is being
initialized (first call to an Language
Environment-enabled HLL program). Check for any
Assembler programs or software that may be
establishing STXIT exits prior to the LE/VSE
environment being initialised. If the failure persists,
report the problem to your systems programmer or
IBM Technical Support Centre.

For other reason codes, see your system programmer.

U4094 (X'FFE')

Explanation: An abend was issued during
termination, when errors were detected.

Reason codes:

4 (X'04')
An invalid parameter to termination services
was discovered.

8 (X'08')
A language-specific event handler returned an
invalid return code.

12 (X'0C')
A language-specific event handler returned to
termination with a return code, causing
immediate termination. This might be due to
writing beyond storage.

16 (X'10')
Condition management could not properly
terminate.

20 (X'14')
Program management could not properly
terminate.

24 (X'18')
Storage management could not properly free
stack and/or heap storage.

28 (X'1C')
Storage management could not properly free
the initial storage allocation.

32 (X'20')
The user stack was unable to be collapsed
using GOTO.

36 (X'24')
The fixed-size termination stack overflowed.

44 (X'2C')
Termination requested during termination.

80 (X'50')
An error occurred during termination of the
COBOL run-time environment.

System action: Enclave terminated.

Programmer response: For reason code 80, see the
accompanying COBOL run-time message for a
description of the error.

For other reason codes, see your system programmer.

U4095 (X'FFF')

Explanation: An abend was issued as a response to
the fatal return code of an LE/VSE-conforming
language.

Reason codes:

<300 (<X'12C')
The reason code is set to the
LE/VSE-conforming language ID.

301 (X'12D')
The condition was provoked from a user
handler routine.

System action: Enclave terminated.

Programmer response: See your system programmer.

U4094 (X'FFE') • U4095 (X'FFF')

326 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Chapter 14. Return Codes to CICS

When LE/VSE detects an error and LE/VSE is not fully initialized or unable to
generate a message, the component of LE/VSE in charge generates a return code.
The return code passes from the LE/VSE component to CICS. CICS returns the
return code to the system console. The COBOL component also sends a message
that precedes the return code to the system console.

LE/VSE Return Codes to CICS

10000 - 10255

Explanation: There is no CEEEVnnn module. nnn is
the member language ID for the modules, and is found
by subtracting 10000 from the return code.

System action: CICS continues system initialization
with LE/VSE inactive.

Programmer response: Ensure the CSD definitions are
correct for LE/VSE. Especially ensure that for every
CEECInnn defined module there is a corresponding
CEEEVnnn defined module.

11000

Explanation: Invalid parameters passed from CICS to
LE/VSE for the partition initialization call.

System action: CICS continues system initialization
with LE/VSE inactive.

Programmer response: This is most likely an internal
error in CICS or LE/VSE.

11010

Explanation: Storage could not be acquired by
LE/VSE to initialize in the CICS partition.

System action: CICS continues system initialization
with LE/VSE inactive.

Programmer response: Increase the size of the CICS
dynamic storage area (DSA) by increasing the value on
the SIZE parameter of the EXEC DFHSIP JCL
statement.

11020

Explanation: Unable to load LE/VSE modules in
order to initialize LE/VSE for the CICS partition.

System action: CICS continues system initialization
with LE/VSE inactive.

Programmer response: Make sure the CSD definitions
(as supplied in the member CEECCSD.Z) are correct for
LE/VSE. Also, make sure that the CICS partition size is

large enough to run LE/VSE.

11030

Explanation: LE/VSE partition initialization did not
succeed in a language support module.

System action: CICS continues system initialization
with LE/VSE inactive.

Programmer response: LE/VSE can write other
messages to the operator's console explaining the cause
of the malfunction. If there are none, this is more than
likely an internal error in LE/VSE.

11040

Explanation: An internal abend has occurred during
LE/VSE initialization for the CICS partition.

System action: CICS continues system initialization
with LE/VSE inactive.

Programmer response: There should be a CEE1000S
message written to the operators console describing the
abend code and reason code for the abend. See
Chapter 13, “LE/VSE Abend Codes,” on page 319 for
more information.

11060

Explanation: During initialization, LE/VSE requested
that CICS load module CEECOPT. CICS returned a
'load failed' response.

System action: CICS continues system initialization
with LE/VSE inactive.

Programmer response: Ensure you have a valid
CEECOPT.PHASE in a sub-library available to the CICS
system. Also ensure you have CEECOPT defined in the
active GRPLIST, if using RDO, or defined in the active
CICS PPT. This is supplied in the CEECCCSD.Z
member which is resident in the LE/VSE Installation
sub-library (PRD2.SCEEBASE).

© Copyright IBM Corp. 1991, 2014 327

11100

Explanation: Invalid parameters passed from CICS to
LE/VSE for the partition termination call.

System action: CICS continues system termination.

Programmer response: This is most likely an internal
error in CICS or LE/VSE.

11110

Explanation: Unable to release LE/VSE modules
during partition termination.

System action: CICS continues system termination.

Programmer response: This is most likely an internal
error in LE/VSE.

11120

Explanation: Unable to free storage acquired at
partition initialization during partition termination.

System action: CICS continues system termination.

Programmer response: This is most likely an internal
error in LE/VSE.

11130

Explanation: Partition termination did not succeed in
a language support module.

System action: CICS continues system termination.

Programmer response: This is most likely an internal
error in LE/VSE.

11150

Explanation: An internal abend occurred during
LE/VSE termination for the CICS partition.

System action: CICS continues system termination.

Programmer response: There should be a CEE1000S
message in the operators console describing the abend
code and reason code for the abend. See Chapter 13,
“LE/VSE Abend Codes,” on page 319 for more
information.

12000

Explanation: Invalid parameters passed from CICS to
LE/VSE for the thread initialization call.

System action: CICS abnormally terminates the
transaction with abend code AEC7.

Programmer response: This is most likely an internal
error in CICS or LE/VSE.

12020

Explanation: Preallocated storage was expected by
LE/VSE from CICS for the thread work area, but was
not supplied.

System action: CICS abnormally terminates the
transaction with abend code AEC7.

Programmer response: This is most likely an internal
error in CICS or LE/VSE.

12030

Explanation: Thread initialization did not succeed in a
language support module.

System action: CICS abnormally terminates the
transaction with abend code AEC7.

Programmer response: This is most likely an internal
error in LE/VSE.

12100

Explanation: Invalid parameters passed from CICS to
LE/VSE for the thread termination call.

System action: CICS continues with termination of the
transaction.

Programmer response: This is most likely an internal
error in CICS or LE/VSE.

12110

Explanation: Thread termination was called before all
run units in the thread were terminated by calls to run
unit termination.

System action: CICS continues with termination of the
transaction.

Programmer response: This is most likely an internal
error in CICS or LE/VSE.

12120

Explanation: An error occurred while trying to free
storage for language thread work areas during thread
termination.

System action: CICS continues with termination of the
transaction.

Programmer response: This is most likely an internal
error in LE/VSE.

12130

Explanation: Thread termination did not succeed in a
language support module.

System action: CICS continues with termination of the
transaction.

11100 • 12130

328 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Programmer response: This is most likely an internal
error in LE/VSE.

13000

Explanation: Invalid parameters passed from CICS to
LE/VSE for the run unit initialization call.

System action: CICS abnormally terminates the
transaction with abend code AEC8.

Programmer response: This is most likely an internal
error in CICS or LE/VSE.

13010

Explanation: There was not enough preallocated
storage by CICS to LE/VSE to complete initialization
for all languages in the application routine.

System action: CICS abnormally terminates the
transaction with abend code AEC8.

Programmer response: This is most likely an internal
error in LE/VSE.

13020

Explanation: The mix of languages in the application
phase is not supported by this release of LE/VSE.

System action: CICS abnormally terminates the
transaction with abend code AEC8.

Programmer response: See LE/VSE Writing
Interlanguage Communication Applications for information
on supported languages and ILC.

13030

Explanation: Run unit initialization did not succeed in
a language support module.

System action: CICS abnormally terminates the
transaction with abend code AEC8.

Programmer response: This is most likely an internal
error in LE/VSE.

13040

Explanation: An invalid application routine argument
list passed by CICS to LE/VSE during run unit
initialization.

System action: CICS abnormally terminates the
transaction with abend code AEC8.

Programmer response: This is most likely an internal
error in CICS or LE/VSE.

13050

Explanation: A member language support module is
not available for a language in the application.
Initialization cannot be performed.

System action: CICS abnormally terminates the
transaction with abend code AEC8.

Programmer response: Make sure the CEEEVnnn
language support modules of LE/VSE are defined in
the CSD for all languages in the application programs.

13060

Explanation: Allocation of storage for a language
thread work area did not succeed.

System action: CICS abnormally terminates the
transaction with abend code AEC8.

Programmer response: Increase the size of the CICS
dynamic storage area (DSA) by increasing the value on
the SIZE parameter of the EXEC DFHSIP JCL
statement.

13070

Explanation: The application PHASE does not contain
LE-conforming entry code or does not have an
addressable main routine.

System action: CICS abnormally terminates the
transaction, with an appropriate abend.

Programmer response: Carefully review the linkedit
map output for the application module in question, and
ensure the correct entry point has been established.
Where appropriate, also ensure the correct translator
options have been used. Ensure an LE-conforming
compiler has been used and the correct LE library
routines included.

13100

Explanation: Invalid parameters passed from CICS to
LE/VSE for the run unit termination call.

System action: CICS continues with termination of the
application.

Programmer response: This is most likely an internal
error in CICS or LE/VSE.

13110

Explanation: The thread token passed by CICS to
LE/VSE for run unit termination is invalid.

System action: CICS continues with termination of the
application.

Programmer response: This is most likely an internal
error in CICS or LE/VSE.

13000 • 13110

Chapter 14. Return Codes to CICS 329

13130

Explanation: Run unit termination did not succeed in
a language support module.

System action: CICS continues with termination of the
application.

Programmer response: This is most likely an internal
error in LE/VSE.

13140

Explanation: Unable to free storage for LE/VSE
control blocks.

System action: CICS continues with termination of the
application.

Programmer response: This is most likely an internal
error in LE/VSE.

13200

Explanation: Invalid parameters passed from CICS to
LE/VSE for the run unit invocation call.

System action: CICS abnormally terminates the
transaction with abend code AEC9.

Programmer response: This is most likely an internal
error in CICS or LE/VSE.

13210

Explanation: Preallocated storage was expected by
LE/VSE from CICS for the run unit work area, but was
not supplied.

System action: CICS abnormally terminates the
transaction with abend code AEC9.

Programmer response: This is most likely an internal
error in CICS or LE/VSE.

13220

Explanation: Spool files for standard in, standard out,
and standard error could not be opened.

System action: CICS abnormally terminates the
transaction with abend code AEC9.

Programmer response: This is most likely an internal
error in LE/VSE.

13230

Explanation: Run unit invocation did not succeed in a
language support module.

System action: CICS abnormally terminates the
transaction with abend code AEC9.

Programmer response: This is most likely an internal
error in LE/VSE.

13240

Explanation: An invalid application routine argument
list passed by CICS during run unit invocation.

System action: CICS abnormally terminates the
transaction with abend code AEC9.

Programmer response: This is most likely an internal
error in CICS or LE/VSE.

13250

Explanation: A language support module was not
available in order to invoke the application.

System action: CICS abnormally terminates the
transaction with abend code AEC9.

Programmer response: Make sure the CEEEVnnn
language support modules of LE/VSE are defined in
the CSD for all languages in the application routines.

13300

Explanation: Invalid parameters passed from CICS to
LE/VSE for the run unit end invocation call.

System action: CICS continues with termination of the
application.

Programmer response: This is most likely an internal
error in CICS or LE/VSE.

13310

Explanation: CICS passed an invalid thread token
during run unit end invocation.

System action: CICS continues with termination of the
application.

Programmer response: This is most likely an internal
error in CICS or LE/VSE.

13320

Explanation: CICS passed an invalid routine
termination block during run unit end invocation.

System action: CICS continues with termination of the
application.

Programmer response: This is most likely an internal
error in CICS or LE/VSE.

13330

Explanation: Unable to close spool files for standard
in, standard out, and standard error.

System action: CICS continues with termination of the
application.

Programmer response: This is most likely an internal
error in LE/VSE.

13130 • 13330

330 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

15000

Explanation: Invalid parameters passed from CICS to
LE/VSE for the establish ownership call.

System action: CICS abnormally terminates the
transaction with abend code APCS.

Programmer response: This is most likely an internal
error in CICS or LE/VSE.

15010

Explanation: Initialization could not be performed for
a routine because the language-specific initialization
routines of LE/VSE were not available for the
language.

System action: CICS abnormally terminates the
transaction with abend code APCS.

Programmer response: Make sure the CEEEVnnn
language support modules of LE/VSE are defined in
the CSD for all languages in the application routines.

15020

Explanation: The language of the main routine could
not be determined. Initialization could not be
performed for the routine.

System action: CICS abnormally terminates the
transaction with abend code APCS.

Programmer response: The routine is probably
link-edited incorrectly.

15030

Explanation: LE/VSE establish ownership did not
succeed in a language support module.

System action: CICS abnormally terminates the
transaction with abend code APCS.

Programmer response: This is most likely an internal
error in CICS or LE/VSE.

15040

Explanation: The application phase does not contain a
main routine.

System action: CICS abnormally terminates the
transaction with abend code APCS.

Programmer response: Make sure there is a main
routine in the application phase.

15050

Explanation: The AMODE of the routine is 24, but the
routine contains C routines that must run with
AMODE(31).

System action: CICS abnormally terminates the

transaction with the abend code APCS.

Programmer response: Relink-edit the routine
AMODE(31).

16000

Explanation: Invalid parameters passed from CICS to
LE/VSE for the determine working storage call.

System action: CICS continues running the transaction
under Execution Diagnostic Facility (EDF).

Programmer response: This is most likely an internal
error in CICS or LE/VSE.

16030

Explanation: Determine working storage call did not
succeed in a language support module.

System action: CICS continues running the transaction
under Execution Diagnostic Facility (EDF).

Programmer response: This is most likely an internal
error in LE/VSE.

16040

Explanation: LE/VSE could not determine the
working storage address and length for a routine.

System action: CICS continues running the transaction
under Execution Diagnostic Facility (EDF).

Programmer response: This is most likely an internal
error in LE/VSE.

17000

Explanation: Invalid parameters passed from CICS to
LE/VSE for the perform goto call.

System action: CICS abnormally terminates the
transaction with abend code APC2.

Programmer response: This is most likely an internal
error in CICS or LE/VSE.

17030

Explanation: Perform goto cannot be completed
because a goto-out-of-block is not supported for the
language.

The application routine is a mix of languages. One
routine is performing an EXEC CICS HANDLE with
the LABEL option and calling another routine that is
written in a language that does not support EXEC CICS
HANDLE with LABEL. A condition occurred that
caused CICS to try to branch to the handle label in the
caller.

System action: CICS abnormally terminates the
transaction with abend code APC2.

15000 • 17030

Chapter 14. Return Codes to CICS 331

Programmer response: Change the logic of the
routine. Try using EXEC CICS HANDLE with the
PROGRAM option instead of EXEC CICS HANDLE
with the LABEL option.

17040

Explanation: Errors occurred while trying to perform
the goto-out-of-block on behalf of the perform goto call
by CICS.

System action: CICS abnormally terminates the
transaction with abend code APC2.

Programmer response: This is most likely an internal
error in LE/VSE.

17060

Explanation: An invalid stack frame chain was
detected while trying to perform a goto-out-of-block on
behalf of the perform goto call by CICS.

System action: CICS abnormally terminates the
transaction with abend code APC2.

Programmer response: This is most likely an internal
error in LE/VSE.

C Return Codes to CICS

31923

Explanation: Run units terminated out of sequence.

System action: CICS abnormally terminates the
transaction.

Programmer response: If this problem persists, it is
most likely an internal error. Contact IBM service
personnel.

32112

Explanation: All run units have not been terminated
before process termination.

System action: CICS abnormally terminates the
transaction.

Programmer response: If this problem persists, it is
most likely an internal error. Contact IBM service
personnel.

32820

Explanation: Mixed-language module unsupported for
non-LE/VSE-conforming C applications.

System action: CICS abnormally terminates the
transaction.

Programmer response: Recompile using
LE/VSE-conforming C compiler.

32821

Explanation: C not present in language signature.

System action: CICS abnormally terminates the
transaction.

Programmer response: Recompile using IBM C
compiler.

32822

Explanation: CEECI005 called INPL when application
routine is LE/VSE-conforming.

System action: CICS abnormally terminates the
transaction.

Programmer response: If this problem persists, it is
most likely an internal error. Contact IBM service
personnel.

COBOL Return Codes to CICS

51001

Explanation: A COBOL library subroutine that is
system sensitive (a program that is part of the
environment specific library) is inappropriate for the
CICS system environment. This is likely an improper
concatenation sequence of sublibraries that contain the
subroutine library, either during the execution or the
link-edit of the COBPACK. The message number
IGZ0011C is written to the system console.

System action: CICS continues system initialization
with LE/VSE inactive.

Programmer response: Check the order of the
concatenation of the sublibraries in the LIBDEF

statement in the CICS startup job.

51002

Explanation: An attempt to load a run-time routine
for COBOL support failed. The module was not
available or a system load failure occurred. The
message number IGZ0096C is written to the system
console.

System action: CICS continues system initialization
with LE/VSE inactive.

Programmer response: Verify that the COBOL-specific
run-time routines are defined in the PPT. Also verify
that the sublibraries containing the COBOL-specific

17040 • 51002

332 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

run-time routines are defined in the LIBDEF statement
in the CICS startup job.

51003

Explanation: CICS GETMAIN command failed. This is
an internal error. The message number IGZ0099C is
written to the system console.

System action: CICS continues system initialization
with LE/VSE inactive.

Programmer response: Contact IBM service personnel.

51101

Explanation: CICS RELEASE command failed. This is
an internal error. The message number IGZ0099C is
written to the system console.

System action: CICS continues system termination.

Programmer response: Contact IBM service personnel.

51102

Explanation: CICS FREEMAIN command failed. This
is an internal error. The message number IGZ0099C is
written to the system console.

System action: CICS continues system termination.

Programmer response: Contact IBM service personnel.

52001

Explanation: CICS GETMAIN command failed. This is
an internal error. The message number IGZ0099C is
written to the system console.

System action: CICS abnormally terminates the
transaction with abend code AEC7.

Programmer response: Contact IBM service personnel.

52101

Explanation: CICS FREEMAIN command failed. This
is an internal error. The message number IGZ0099C is
written to the system console.

System action: CICS continues with termination of the
transaction.

Programmer response: Contact IBM service personnel.

53101

Explanation: Control returned from the application to
the COBOL interface routine.

System action: CICS continues with termination of the
application.

Programmer response: Contact IBM service personnel.

PL/I Return Codes to CICS

101010

Explanation: CICS GETMAIN command did not
succeed during PL/I partition initialization.

System action: CICS continues system initialization
with LE/VSE PL/I inactive.

Programmer response: Contact IBM service personnel.

101020

Explanation: CICS LOAD for IBMRSAP did not
succeed during PL/I partition initialization.

System action: CICS continues system initialization
with LE/VSE PL/I inactive.

Programmer response: Make sure the module
IBMRSAP is defined in CSD. Make sure the module
IBMRSAP is located in DFHRPL.

101110

Explanation: CICS FREEMAIN command did not
succeed during PL/I partition termination.

System action: CICS continues system termination.

Programmer response: Contact IBM service personnel.

101120

Explanation: CICS RELEASE for IBMRSAP did not
succeed during PL/I partition termination.

System action: CICS continues system termination.

Programmer response: This is most likely an internal
error in CICS or LE/VSE. Contact IBM service
personnel.

105210

Explanation: Total length of PRV exceeded the
specified maximum 4096 bytes.

System action: CICS abnormally terminates the
transaction with abend code APCS.

Programmer response: Too many files, fetched
procedures, CONTROLLED variables, or assembler use
of PRV caused the total length of PRV to exceed the
maximum limit of 4096 bytes. Try to reduce PRV usage.

51003 • 105210

Chapter 14. Return Codes to CICS 333

334 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Part 4. Appendixes

© Copyright IBM Corp. 1991, 2014 335

336 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Appendix. Diagnosing Problems with LE/VSE

This appendix provides information for diagnosing problems in the LE/VSE
product. It helps you determine if a correction for a product failure similar to
yours has been previously documented. If the problem has not been previously
reported, it tells you how to open a Problem Management Record (PMR) to report
the problem to IBM, and if the problem is with an IBM product, what
documentation you need for an Authorized Program Analysis Report (APAR).

Diagnosis Checklist
Step through each of the items in the diagnosis checklist below to see if they apply
to your problem. The checklist is designed to either solve your problem or help
you gather the diagnostic information required for determining the source of the
error. It can also help you confirm that the suspected failure is not a user error;
that is, it was not caused by incorrect usage of the LE/VSE product or by an error
in the logic of the routine.
1. If your failing application contains programs that were changed since they last

ran successfully, review the output of the compile or assembly (listings) for
any unresolved errors.

2. If there have not been any changes in your applications, check the output (job
or console logs, CICS transient (CESE) queues) for any messages from the
failing run.

3. Check the message prefix to identify the system or subsystem that issued the
message. This can help you determine the cause of the problem. Following are
some of the prefixes and their respective origins.

EDC The prefix for C, C utility, and prelinker messages. EDC5000-6999 are
from the C run-time component of LE/VSE (except for EDC5500-5599,
which are from the DSECT utility). EDC4000-4999 are from the
prelinker and C utilities.

IGZ The prefix for messages from the COBOL run-time component of
LE/VSE.

IBM The prefix for messages from the PL/I run-time component of
LE/VSE.

CEE The prefix for messages from the common run-time component of
LE/VSE.

4. For any messages received, check for recommendations in the “Programmer
Response” sections of the messages in this manual.

5. Verify that abends are caused by product failures and not by program errors.
See the appropriate chapters in this manual for a list of LE/VSE-related abend
codes.

6. Your installation may have received an IBM Program Temporary Fix (PTF) for
the problem. Verify that you have received all issued PTFs and have installed
them, so that your installation is at the most current maintenance level.

7. The preventive service planning (PSP) bucket, an online database available to
IBM customers through IBM service channels, gives information about
product installation problems and other problems. Check to see whether it
contains information related to your problem.

© Copyright IBM Corp. 1991, 2014 337

8. Narrow the source of the error. If an LE/VSE dump is available, check the
traceback in the LE/VSE dump for the source of the problem. Refer to
Chapter 3, “Using LE/VSE Debugging Facilities,” on page 27 for information
on how to generate and use an LE/VSE dump or a system dump to isolate
the cause of the error.
If a system dump is taken, follow the save area chain to find out the name of
the failing module and whether IBM owns it. See “Locating the Name of the
Failing Routine in a System Dump” for information on finding the routine
name.

9. After you identify the failure, consider writing a small test case that re-creates
the problem. The test case could help you determine whether the error is in a
user routine or in the LE/VSE product. Do not make the test case larger than
75 lines of code. The test case is not required, but it could expedite the process
of finding the problem.
If the error is not an LE/VSE failure, refer to the diagnosis procedures for the
product that failed.

10. Record the conditions and options in effect at the time the problem occurred.
Compile your program with the appropriate options to obtain an assembler
listing and data map. If possible, obtain the linkage editor output listing. Note
any changes from the previous successful compilation or run. For an
explanation of compile-time options, refer to the compiler-specific
programming guide.

11. If you are experiencing a no-response problem, try to force a dump: CANCEL
the program with the dump option.

12. Record the sequence of events that led to the error condition and any related
programs or files. It is also helpful to record the service level of the compiler
associated with the failing program.

Locating the Name of the Failing Routine in a System Dump
If a system dump is taken, follow the save area chain to find out the name of the
failing routine and whether IBM owns it. Following are the procedures for locating
the name of the failing routine, which is the primary entry point name.
1. Find the entry point associated with the current save area. The entry point

address (EPA), located in the previous save area at offset 16 (X'00000010'),
points to it.

2. Determine the entry point type, of which there are three:

Entry point type is... If...

LE/VSE conforming The entry point plus 4 is X'00C3C5C5'.

C The entry point plus 5 is X'000000CE'.

Nonconforming The entry point is neither of the above. Nonconforming entry points
are for routines that follow the linking convention in which the name
is at the beginning of the routine. X'47F0Fxxx' is the instruction to
branch around the routine name.

For routines with LE/VSE-conforming and C entry points, LE/VSE provides
program prolog areas (PPAs). PPA1 contains the entry point name and the
address of the PPA2; PPA2 contains pointers to the timestamp, where release
level keyword information is found, and to the PPA1 associated with the
primary entry point of the routine.
If the entry point type of the failing routine is LE/VSE-conforming, go to step 3
on page 339.

338 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

If the entry point type is C, go to step 5 on page 340.
If the entry point type is nonconforming, go to step 6 on page 340.

3. If the entry point type is LE/VSE-conforming, find the entry point name for the
LE/VSE or COBOL program.
a. Use an offset of X'0000000C' from the entry point to locate the offset of the

PPA1 relative from the entry-point address.
b. In the PPA1, locate the offset to the length of the name.
c. Add this offset to the PPA1 address to find the halfword containing the

length of the name, followed by the entry point name.
The entry point name appears in EBCDIC, with the translated version in the
right-hand margin of the system dump.

4.

Find the LE/VSE or COBOL program name.
a. Find the address of the PPA2 at X'00000004' from the start o the PPA1.
b. Find the address of the compilation unit’s primary entry point at

X'00000010' in the PPA2.
c. Find the entry point name associated with the primary entry point as

described above. The primary entry point name is the routine name.
Figure 97 illustrates the LE/VSE-conforming PPA1.

Figure 98 on page 340 illustrates the LE/VSE PPA2.

Figure 97. LE/VSE PPA1

Appendix. Diagnosing Problems with LE/VSE 339

5. If the entry point type is C, find the C routine name.
a. Use the entry point plus 4 to locate the offset to the entry point name in the

PPA1.
b. Use this offset to find the length-of-name byte followed by the routine

name.
The routine name appears in EBCDIC, with the translated version in the
right-hand margin.

Figure 99 illustrates the C PPA1.

6. If the entry point type is nonconforming, find the PL/I routine name.
a. Find the one byte length immediately preceding the entry point. This is the

length of the routine name.
b. Go back the number of bytes specified in the name length. This is the

beginning of the routine name.
7. If the entry point type is nonconforming, find the name of the routine other

than PL/I.
a. Use the entry point plus 4 as the location of the entry point name.

Figure 98. Compile Unit Block

Figure 99. C PPA1

340 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

b. Use the next byte as the length of the name. The name directly follows the
length of name byte. The entry point name appears in EBCDIC with the
translated version in the right-hand margin.

Figure 100 illustrates the dump output of this type of DSA. In this example,
LISTIT is the name of the module associated with this save area.
Nonconforming entry points that can appear do not necessarily follow this
linking convention. The location of data in these save areas can be
unpredictable.

Searching the IBM Software Support Database
Failures in the LE/VSE product can be described through the use of keywords. A
keyword is a descriptive word or abbreviation assigned to describe one aspect of a
product failure. A set of keywords, called a keyword string, describes the failure in
detail. You can use a keyword or keyword string as a search argument against an
IBM software support database, such as the Service Information Search (SIS). The
database contains keyword and text information describing all current problems
reported through APARs and associated PTFs. IBM Support Center personnel have
access to the software support database and are responsible for storing and
retrieving the information. Using keywords or a keyword string, they will search
the database to retrieve records that describe similar known problems.

If you have IBMLink or some other connection to the IBM databases, you can do
your own search for previously recorded product failures before calling the IBM
Support Center.

If your keyword or keyword string matches an entry in the software support
database, the search may yield a more complete description of the problem and
possibly identify a correction or circumvention. Such a search may yield several
matches to previously reported problems. Review each error description carefully
to determine if the problem description in the database matches the failure.

If a match is not found, go to “Preparing Documentation for an Authorized
Program Analysis Report (APAR).”

Preparing Documentation for an Authorized Program Analysis Report
(APAR)

Prepare documentation for an APAR only after you have done the following:
v Eliminated user errors as a possible cause of the problem.
v Followed the diagnostic procedures.
v You or your local IBM Support Center has been unsuccessful with the keyword

search.

020000 = 47F0F00C 06D3C9E2 E3C9E300 90ECD00C E0B |.00..LISTIT.....|
020010 = 18CF41B0 C29850BD 000850DB 000418DB |....Bq&...&.....|
020020 = 4510C052 E3E8D7D3 C9D54040 01020034 |....TYPLIN|
020030 = C200001E C5D5E3C5 D940D5E4 D4C2C5D9 |B...ENTER NUMBER|
020040 = 40D6C640 D9C5C3D6 D9C4E240 D6D940C1 | OF RECORDS OR A|
020050 = D3D30ACA 00020058 4510C06C E6C1C9E3 |LL.........%WAIT|
020060 = D9C44040 010202F0 E4000000 0ACA0002 |RD ...0U.......|

Figure 100. Nonconforming Save Area with Sample Dump

Appendix. Diagnosing Problems with LE/VSE 341

Having met these criteria, follow the instructions below.
1. Report the problem to IBM.

If you have not already done so, report the problem to IBM by opening a
Program Management Record (PMR).
If you have IBMLink or some other connection to IBM databases, you can open
a PMR yourself. Or, the IBM Software Support Center can open the PMR after
consulting with you on the phone. The PMR is used to document your problem
and to record the work that the Support Center does on the problem. Be
prepared to supply the following information:
v Customer number
v PMR number
v Operating system
v Operating system release level
v Your current LE/VSE maintenance level (PTF list and list of APAR fixes

applied)
v Keyword strings you used to search the IBM software support database
v Processor number (model and serial)
v A description of how reproducible the error is:

Can it be reproduced each time?
Can it be reproduced only sometimes?
Have you been unable to reproduce it?
Supply source files, test cases, macros, subroutines, and input files
required to re-create the problem. Test cases are not required, but are
helpful.

If the IBM Support Center concludes that the problem described in the PMR is
a problem with the LE/VSE product, they will work with you to open an
APAR, so the problem can be fixed.

2.

Provide APAR documentation. When you submit an APAR, you will need to
supply information that describes the failure. Table 45 describes how to produce
documentation required for submission with the APAR.

Table 45. Problem Resolution Documentation Requirements

Item Materials Required How to Obtain Materials

1 Machine-readable source program,
including macros, subroutines, input
files, and any other data that might help
to reproduce the problem.

IBM-supplied system utility program

2 Compiler listings:

Source listing

Object listing

Storage map

Traceback

Cross-reference listing

JCL listing and linkage editor listing

Assembler-language expansion

Use appropriate compile-time options.

342 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Table 45. Problem Resolution Documentation Requirements (continued)

Item Materials Required How to Obtain Materials

3 Dumps

LE/VSE dump

System dump

See instructions in Chapter 3, “Using
LE/VSE Debugging Facilities,” on page
27 (as directed by IBM Support
personnel).

4 Partition/region size/virtual storage size

5 List of applied PTFs System programmer

6 Operating instructions or console log Application programmer

7 JCL statements used to invoke and run
the routine, including all run-time
options, in machine-readable form

Application programmer

8 System output associated with the
MSGFILE run-time option.

Specify MSGFILE(SYSLST)

9 Contents of the applicable catalog

10 A hardcopy log of the events leading up
to the failure.

Print the LISTLOG.

3. Submit the APAR documentation.
When submitting material for an APAR to IBM, carefully pack and clearly
identify any media containing source programs, job stream data, interactive
environment information, data sets, or libraries.
All magnetic media submitted must have the following information attached
and visible:
v The APAR number assigned by IBM.
v A list of data sets on the tape (such as source program, JCL, data).
v A description of how the tape was made, including:

– The exact JCL listing or the list of commands used to produce the
machine-readable source. Include the block size, LRECL, and format of
each file.

– Labeling information used for the volume and its data sets.
– The recording mode and density.
– The name of the utility program that created each data set.
– The record format and block size used for each data set

Any printed materials must show the corresponding APAR number.
The IBM service personnel will inform you of the mailing address of the service
center nearest you.
If an electronic link with IBM Service is available, use this link to send
diagnostic information to IBM Service.

After the APAR is opened and the fix is produced, the description of the problem
and the fix will be in the software support database in SIS, accessible through
ServiceLink.

Appendix. Diagnosing Problems with LE/VSE 343

344 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Language Environment Glossary

abend Abnormal end of application.

active routine
The currently executing routine.

additional heap
An LE/VSE heap created and controlled
by a call to CEECRHP. See also below heap,
anywhere heap, and initial heap.

addressing mode
An attribute that refers to the address
length that a routine is prepared to
handle upon entry. Addresses may be 24
or 31 bits long.

AMODE
Addressing mode.

anywhere heap
The LE/VSE heap controlled by the
ANYHEAP run-time option. It contains
library data, such as LE/VSE control
blocks and data structures not normally
accessible from user code. The anywhere
heap may reside above 16MB. See also
below heap, additional heap, and initial heap.

Application writer interface
Synonym for callable service.

argument
An expression used at the point of a call
to specify a data item or aggregate to be
passed to the called routine.

array An aggregate that consists of data objects,
each of which may be uniquely referenced
by subscripting.

assembler user exit
A routine to tailor the characteristics of an
enclave prior to its establishment.

AWI Application writer interface. Synonym for
callable service.

below heap
The LE/VSE heap controlled by the
BELOWHEAP run-time option, which
contains library data, such as LE/VSE
control block and data structures not
normally accessible from user code. Below

heap always resides below 16MB. See also
anywhere heap, initial heap, and additional
heap.

byte The basic unit of storage addressability,
usually with a length of 8 bits.

C language
A high-level language used to develop
software applications in compact, efficient
code that can be run on different types of
computers with minimal change.

CAA Common anchor area.

callable services
A set of services that can be invoked by
an LE/VSE-conforming high level
language using the conventional
LE/VSE-defined call interface, and usable
by all programs sharing the LE/VSE
conventions.

Use of these services helps to decrease an
application’s dependence on the specific
form and content of the services delivered
by any single operating system.

call chain
A trace of all active routines and
subroutines that can be constructed by the
user from information included in a
system dump, such as the locations of
save areas and the names of routines.

caller A routine that calls another routine.

CIB Condition information block.

CICS Customer Information Control System.

CLLE COBOL load list entry.

COBCOM
Control block containing information
about a COBOL/VSE partition.

COBOL
COmmon Business-Oriented Language. A
high level language, based on English,
that is primarily used for business
applications.

COBOL load list entry (CLLE)
Entry in the load list containing the name
of the program and the load address.

© Copyright IBM Corp. 1991, 2014 345

COBVEC
COBOL vector table containing the
address of the library routines.

common anchor area (CAA)
Dynamically acquired storage that
represents an LE/VSE thread.
Thread-related storage/resources are
anchored off the CAA. This area acts as a
central communications area for the
program, holding addresses of various
storage and error-handling routines, and
control blocks. The CAA is anchored by
an address in register 12.

compilation unit
An independently compilable sequence of
HLL statements. Each HLL product has
different rules for what makes up a
compilation unit. Synonym for program
unit.

Compiler writer interfaces
A set of low-level interfaces used by
LE/VSE-conforming HLL compilers to
invoke LE/VSE services.

condition
An exception that has been enabled, or
recognized, by LE/VSE and thus is
eligible to activate user and language
condition handlers. Any alteration to the
normal programmed flow of an
application. Conditions can be detected
by the hardware/operating system and
result in an interrupt. They can also be
detected by language-specific generated
code or language library code.

condition handler
A user-written condition handler or
language-specific condition handler (such
as a PL/I ON-unit) invoked by the
LE/VSE condition manager to respond to
conditions.

condition handling
In LE/VSE, the diagnosis, reporting,
and/or tolerating of errors that occur in
the run-time environment.

condition manager
Manages conditions in the common
execution environment by invoking
various user-written and language-specific
condition handlers.

condition information block (CIB)
The platform-specific data block used by
the LE/VSE condition manager as a

repository for data about conditions
raised in the LE/VSE run-time
environment.

condition token
In LE/VSE, a data type consisting of 96
bits (12 bytes). The condition token
contains structured fields that indicate
various aspects of a condition including
the severity, the associated message
number, and information that is specific
to a given instance of the condition.

Customer Information Control System (CICS)
CICS is an OnLine Transaction Processing
(OLTP) system that provides specialized
interfaces to databases, files and terminals
in support of business and commercial
applications.

CWI Compiler writer interface.

data aggregate
A logical collection of data elements that
can be referred to either collectively or
individually; in PL/I, an array or a
structure.

data division
In COBOL, the part of a routine that
describes the files to be used in the
program and the records contained within
the files. It also describes any internal
working storage records that are needed.

data type
The properties and internal representation
that characterize data.

DCLCB
Declare control block.

DCT Destination control table.

declare control block (DCLCB)
Control block containing file information.

default
A value that is used when no alternative
is specified.

descriptor
PL/I control block that holds information
about a variable, such as area size, array
bounds, or string length.

Destination Control Table (DCT)
A CICS table that contains an entry for
each extrapartition, intrapartition, and
indirect destination. Extrapartition entries

346 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

address data sets external to the CICS
partition. Intrapartition destination entries
contain the information required to locate
the queue in the intrapartition data set.
Indirect destination entries contain the
information required to locate the queue
in the intrapartition data set.

DSA Dynamic storage area.

dynamic call
A call that results in the resolution of the
called routine at run time. Contrast with
static call.

dynamic storage
Storage acquired as needed at run time.
Contrast with static storage.

dynamic storage area (DSA)
An area of storage obtained during the
running of an application that consists of
a register save area and an area for
automatic data, such as program
variables. DSAs are generally allocated
within LE/VSE-managed stack segments.
DSAs are added to the stack when a
routine is entered and removed upon exit
in a last in, first out (LIFO) manner. In
LE/VSE, a DSA is known as a stack frame.

EBCDIC
Extended binary-coded decimal
interchange code.

enclave
In LE/VSE, an independent collection of
routines, one of which is designated as
the main routine. An enclave is roughly
analogous to a program or run unit.

entry point
In assembler language, the address or
label of the first instruction that is
executed when a routine is entered for
execution.

environment
A set of services and data available to a
program during execution. In LE/VSE,
environment is normally a reference to
the run-time environment of HLLs at the
enclave level.

exception
The original event such as a hardware
signal, software detected event, or
user-signaled event which is a potential
condition. This action may or may not

include an alteration in a program's
normal flow. See also condition.

execution time
Synonym for run time.

execution environment
Synonym for run-time environment.

external data
Data that persists over the lifetime of an
enclave and maintains last-used values
whenever a routine within the enclave is
reentered. Within an enclave consisting of
a single phase, it is equivalent to COBOL
external data.

facility ID
A string of three characters identifying an
LE/VSE-conforming component. The
facility IDs assigned by IBM are:

CEE LE/VSE common library

EDC C language-specific library

IGZ COBOL language-specific library

IBM PL/I language-specific library

FCB File control block.

feedback code (fc)
A condition token value. If you specify fc
in a call to a callable service, a condition
token indicating whether the service
completed successfully is returned to the
calling routine.

FIB File information block.

file A named collection of related data records
that is stored and retrieved by an
assigned name.

file control block (FCB)
Block containing the addresses of I/O
routines, information about how they
were opened and closed, and a pointer to
the file information block.

file information block (FIB)
A read-only block describing the
characteristics of an I/O file.

filename
A 1- to 7-character name used within an
application and in JCL to identify a file.
The filename provides the means for the
logical file to be connected to the physical
file.

Language Environment Glossary 347

function
A routine that is invoked by coding its
name in an expression. The routine passes
a result back to the invoker through the
routine name.

handled condition
A condition that has proceeded. Either the
user condition handler or the HLL
condition handler has dealt with the
condition and deemed the routine to
continue.

heap An area of storage used for allocation of
storage whose lifetime is not related to
the execution of the current routine. The
heap consists of the initial heap segment
and zero or more increments. See also
additional heap, anywhere heap, below heap,
heap element, and initial heap.

heap element
A contiguous area of storage allocated by
a call to the CEEGTST service. Heap
elements are always allocated within a
single heap segment.

heap increment
See increment.

heap segment
A contiguous area of storage obtained
directly from the operating system. The
LE/VSE storage management scheme
subdivides heap segments into individual
heap elements. If the initial heap segment
becomes full, LE/VSE obtains a second
segment, or increment, from the operating
system.

heap storage
See heap.

high level language (HLL)
A programming language above the level
of assembler language and below that of
program generators and query languages.

HLL High level language.

hook The location in a compiled program
where the compiler inserts an instruction
that allows the user to later interrupt the
program (by setting breakpoints) for
debugging purposes.

ILC Interlanguage communication.

increment
The second and subsequent segments of
storage allocated to the stack or heap.

initial heap
The LE/VSE heap controlled by the
HEAP run-time option and designated by
a heap_id of 0. The initial heap contains
dynamically allocated user data. See also
additional heap.

instance specific information (ISI)
Located within the LE/VSE condition
token, the ISI contains information used
by the condition manager to identify and
react to a specific occurrence of a
condition.

interlanguage communication (ILC)
The ability of routines written in different
programming languages to communicate.
ILC support allows the application writer
to readily build applications from
component routines written in a variety
of languages.

interrupt
A suspension of a process, such as the
execution of a computer program, caused
by an event external to that process, and
performed in such a way that the process
can be resumed.

ISI Instance specific information.

JCL Job control language.

job control language (JCL)
A sequence of commands used to identify
a job to an operating system and to
describe a job’s requirements.

Language Environment
A set of architectural constructs and
interfaces that provides a common
run-time environment and run-time
services to applications compiled by
Language Environment-conforming
compilers.

Language Environment for z/VSE
An IBM software product that is the
implementation of Language Environment
on the VSE platform.

LE/VSE
Short form of Language Environment for
z/VSE.

348 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

library
A collection of functions, subroutines, or
other data.

library vector table (LIBVEC)
A vector table used to support access to
library routines (LE/VSE and HLLs) from
compiler-generated code, user-written
assembly language code, and other
subroutines.

LIBVEC
Library vector table

linkage editor
A program that resolves cross-references
between separately assembled object
modules and then assigns final addresses
to create a single relocatable phase. The
linkage editor then stores the phase in a
program library in main storage.

locator
PL/I control block that holds the address
of data such as structures or arrays and
the address of the descriptor.

LWS Library workspace.

module
A language construct that consists of
procedures or data declarations and can
interact with other such constructs. In
PL/I, an external procedure.

multithreading
Mode of operation that provides for the
concurrent, or interleaved, execution of
two or more tasks, or threads.

NAB Next available byte.

next available byte (NAB)
The address of the next available byte of
storage on a doubleword boundary. This
address is a segment of stack storage.

non-reentrant
A type of program that cannot be shared
by multiple users.

object code
Output from a compiler or assembler
which is itself executable machine code or
is suitable for processing to produce
executable machine code.

offset The number of measuring units from an
arbitrary starting point in a record, area,
or control block, to some other point.

operating system
Software that controls the running of
programs; in addition, an operating
system may provide services such as
resource allocation, scheduling,
input/output control, and data
management.

parameter
Data items that are received by a routine.

partition
A fixed-size division of storage.

percolate
The action taken by the condition
manager when the returned value from a
condition handler indicates that the
handler could not handle the condition,
and the condition will be transferred to
the next handler.

picture string
Character strings used to specify date and
time formats.

PPA1 entry point block
Program Prolog Area. This block contains
information about the compiled module.

PPA2 entry point block
An extension of the PPA1 entry point block.

PPT Processing Program Table

process
The highest level of the LE/VSE program
management model. A process is a
collection of resources, both program code
and data, and consists of at least one
enclave.

Processing Program Table (PPT)
A CICS table that contains information
about CICS phases (whether the phase is
in storage or not, its language, use count
and entry point address, etc.) needed to
complete a transaction.

program mask
A structure that describes the manner in
which S/370 hardware-detected
conditions are to be handled.

program status word (PSW)
An area in storage used to indicate the

Language Environment Glossary 349

order in which instructions are executed
and to hold and indicate the status of the
operating system. The program mask (bits
20 to 23) of the PSW can be manipulated
to enable or disable the detection of some
hardware conditions under LE/VSE.

program unit
Synonym for compilation unit.

PSW Program status word.

reason code
A value returned to the invoker of an
enclave that indicates how the enclave
terminated. The value reflects whether the
enclave terminated successfully, or
unsuccessfully, to an unhandled
condition. Under CICS, synonymous with
return code.

reentrant
The attribute of a routine or application
that allows more than one user to share a
single copy of a phase.

register
To specify formally. In LE/VSE, to register
a condition handler means to add a
user-written condition handler onto a
routine's stack frame.

register save area (RSA)
Area of main storage in which contents of
registers are saved.

return code
A code produced by a routine to indicate
its success. It may be used to influence
the execution of succeeding instructions.

routine
In LE/VSE, refers to a procedure,
function, or subroutine.

RMODE
Residence mode. The attribute of a phase
that specifies whether the phase, when
loaded, must reside below the 16MB
virtual storage line or may reside
anywhere in virtual storage.

RSA Register save area.

RUNCOM
COBOL block containing the ID and
address of the main program.

run time
Any instant at which a program is being
executed. Synonym for execution time.

run-time environment
A set of resources that are used to
support the execution of a program.
Synonym for execution environment.

run unit
One or more object programs that are
executed together. In LE/VSE, a run unit
is the equivalent of an enclave.

save area
Area of main storage in which contents of
registers are saved.

scope terminator
Variable at the end of a statement.

severity code
A part of run-time messages that indicates
the severity of the error condition (1, 2, 3,
or 4).

stack An area of storage used for suballocation
of stack frames. Such suballocations are
allocated and freed on a LIFO (last in,
first out) basis. A stack is a collection of
one or more stack segments consisting of
an initial stack segment and zero or more
increments.

stack frame
The physical representation of the
activation of a routine. The stack frame is
allocated on a LIFO stack and contains
various pieces of information including a
save area, condition handling routines,
fields to assist the acquisition of a stack
frame from the stack, and the local,
automatic variables for the routine. In
LE/VSE, a stack frame is synonymous
with DSA.

static call
A call that results in the resolution of the
called program statically at link-edit time.
Contrast with dynamic call.

static storage
Storage that persists and retains its value
across calls. Contrast with dynamic storage.

suboption
An option that can be used with
compile-time and run-time options to
further specify the action of the option.

350 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

symbolic feedback code
The symbolic representation of the
12-byte condition token returned by
LE/VSE callable services. Symbolic
feedback codes are provided so that you
do not have to code the entire 12-byte
condition token in a condition handling
routine.

subsystem
A secondary or subordinate system, or
programming support, usually capable of
operating independently of or
asynchronously with a controlling system.
Example: CICS.

system abend
An abend caused by the operating
system’s inability to process a routine;
may be caused by errors in the logic of
the source routine.

task global table (TGT)
Table with information about addresses
and length of working storage and the
program start address.

TGT Task global table

THDCOM
Control block with COBOL/VSE thread
information.

thread The basic run-time path within the
LE/VSE program management model. It
is dispatched by the system with its own
instruction counter and registers. The
thread is where actual code resides.

token See condition token.

trace (1). A record of the execution of a
computer program. It exhibits the
sequence in which the instructions were
executed. (2). To record a series of events
as they occur.

traceback
A section of the dump that provides
information about the stack frame (DSA),
the program unit address, the entry point
of the routine, the statement number, and
status of the routines on the call-chain at
the time the traceback was produced.

transient data queue
A file to which run-time messages are
written under CICS. Under LE/VSE, the
name of this file is CESE.

unhandled condition
A condition that is percolated beyond the
first routine's stack frame. Compare with
handled condition.

user abend
A request made by user code to the
operating system to abnormally terminate
a routine. Contrast with system abend.

user-written condition handler
A routine established by the CEEHDLR
callable service to handle a condition or
conditions when they occur in the
common run-time environment. A queue
of user-written condition handlers
established by CEEHDLR may be
associated with each stack frame in which
they are established.

user exit
A routine that takes control at a specific
point in an application. Two assembler
user exits and one HLL user exit are
provided by LE/VSE. They are invoked
to perform initialization functions and
both normal and abnormal termination
functions.

virtual origin
The address of an element in an array
whose subscripts are all zero.

VO Virtual origin.

VSE (Virtual Storage Extended)
A system that consists of a basic
operating system (VSE/Advanced
Functions) and IBM-supplied programs
required to meet the data processing
needs of a user.

word A contiguous series of 32 bits (4 bytes) in
storage, addressable as a unit. The
address of the first byte of a word is
evenly divisible by four.

Language Environment Glossary 351

352 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Index

Special characters
__abend 61
__alloc 61
__amrc 61
__code 61
__error 61
__feedback 61
__last_op 61
__msg 61

Numerics
10000 - 10255 327
101010 333
101020 333
101110 333
101120 333
105210 333
11000 327
11010 327
11020 327
11030 327
11040 327
11060 327
11100 328
11110 328
11120 328
11130 328
11150 328
12000 328
12020 328
12030 328
12100 328
12110 328
12120 328
12130 328
13000 329
13010 329
13020 329
13030 329
13040 329
13050 329
13060 329
13070 329
13100 329
13110 329
13130 330
13140 330
13200 330
13210 330
13220 330
13230 330
13240 330
13250 330
13300 330
13310 330
13320 330
13330 330
15000 331
15010 331

15020 331
15030 331
15040 331
15050 331
16000 331
16030 331
16040 331
17000 331
17030 331
17040 332
17060 332
31923 332
32112 332
32820 332
32821 332
32822 332
51001 332
51002 332
51003 333
51101 333
51102 333
52001 333
52101 333
53101 333

A
abend codes

>= 4000 21
< 4000 21
exempting from LE/VSE condition

handling 15
LE/VSE, list of 319
system, example of 24
user-specified, example of 24
user, example of 24
using 24

abends
internal, table of output 150
LE/VSE 24, 147
requested by assembler user exit 15
system 25
under CICS 147
user 24

ABPERC run-time option
function 6
generating a system dump and 53
modifying condition handling

behavior and 13
ABTERMENC run-time option 6, 16

using 16
accessibility xi
ADATA compile-time option 4
AGGREGATE compile-time option 3, 5
anywhere heap

statistics 11
APAR (Authorized Program Analysis

Report) 341
AR commands 27
AR commands, run-time messages 205

argument
in dump 40

arguments, registers, and variables for
active routines 37

assembler language
user exit 15, 16

for CICS 150
generating a system dump

with 53
modifying condition handling

behavior and 15
using 15, 16

atexit
information in dump 83

attention routine commands, run-time
messages 205

attention routine interface commands
D CEE,? | HELP 27
D CEE,CEECOPT 27
D CEE,CEEDOPT 27
D CEE,CEEEXIT 27
D CEE,CEESTAT 27
D CEE,OPTS 27
S CEE,CLEAR 27
S CEE,OPTS='run-time option

over-rides string' 27
Authorized Program Analysis Report

(APAR) 341
automatic variables, locating in

dump 67, 134

B
base locator

for working storage 106
in dump 106

BEAR (breaking event address register)
feature 95, 133

below heap statistics 11
BLOCKS option of CEE5DMP callable

service 31

C
C

__amrc
example of structure 61
information in dump 86

__msg 61
atexit

information in dump 83
C-specific common anchor area

(C-CAA) 82
cdump() function 75
compile-time options 3
compiler listings 66
debugging examples 87, 91
dump

automatic variables, locating
in 67

© Copyright IBM Corp. 1991, 2014 353

C (continued)
dump (continued)

external variables, locating in 70
fetch information in 84
parameter in 72
signal information in 82
structure variables, locating in 72
system, structures in 72

file
control block information 84
status and attributes in dump 84

functions
calling dump, example 75
cdump() 34, 75
csnap() 34, 75, 76
ctrace() 34, 75
fetch() 61
perror() 61
printf() 61
to produce dump output 34

memory file control block 86
messages, run-time 235
perror() function 65
return codes 332
static

variables, locating in dump 68
writable map 68

stdio.h 61
timestamp 74

C return codes to CICS 332
C utility messages

DSECT 231
genxlt 227
iconv 225
localedef 215
prelinker 211
uconvdef() 228

CAA (common anchor area) 42
call chain 40
case 1 condition token 18
case 2 condition token 18
cdump() 75
CEE prefix 21, 23
CEE0102S 155
CEE0198S 155
CEE0199W 155
CEE0201I 155
CEE0250S 156
CEE0252W 156
CEE0253W 156
CEE0254W 156
CEE0255S 156
CEE0256W 156
CEE0257S 156
CEE0259S 156
CEE0260S 157
CEE0264S 157
CEE0277W 157
CEE0355C 157
CEE0356C 157
CEE0374C 157
CEE0398W 158
CEE0399W 158
CEE0400E 158
CEE0401S 158
CEE0402S 158
CEE0403S 158

CEE0404W 158
CEE0450S 158
CEE0451S 158
CEE0452S 159
CEE0454S 159
CEE0455W 159
CEE0457S 159
CEE0458S 159
CEE0459S 159
CEE0460W 159
CEE0461S 159
CEE0462S 160
CEE0463S 160
CEE0464S 160
CEE0553S 160
CEE0554W 160
CEE0802C 160
CEE0803S 160
CEE0804S 161
CEE0805S 161
CEE0806S 161
CEE0808S 161
CEE0809S 161
CEE0810S 161
CEE0812S 161
CEE0813S 161
CEE0814S 162
CEE1000S 162
CEE1001E 162
CEE2001E 162
CEE2002E 162
CEE2003E 163
CEE2004E 163
CEE2005E 163
CEE2006E 163
CEE2007E 163
CEE2008E 163
CEE2009E 164
CEE2010E 164
CEE2011E 164
CEE2012E 164
CEE2013E 164
CEE2014E 164
CEE2015E 165
CEE2016E 165
CEE2017E 165
CEE2018E 165
CEE2019E 165
CEE2020E 165
CEE2021E 166
CEE2022E 166
CEE2025W 166
CEE2028E 166
CEE2502S 166
CEE2503S 166
CEE2505S 166
CEE2506S 167
CEE2507S 167
CEE2508S 167
CEE2509S 167
CEE2510S 167
CEE2511S 167
CEE2512S 168
CEE2513S 168
CEE2514S 168
CEE2515S 168
CEE2516S 168

CEE2517S 168
CEE2518S 168
CEE2519S 169
CEE2520S 169
CEE2521S 169
CEE2522S 169
CEE2523W 169
CEE2524S 169
CEE2525S 169
CEE2526E 170
CEE2527E 170
CEE2529S 170
CEE2530S 170
CEE2531S 170
CEE2533S 170
CEE2534W 170
CEE2537W 171
CEE2701S 171
CEE2702S 171
CEE2999C 171
CEE3098S 171
CEE3102E 171
CEE3103S 171
CEE3104S 171
CEE3105S 172
CEE3106S 172
CEE3107E 172
CEE3108E 172
CEE3186E 172
CEE3191E 172
CEE3192C 172
CEE3193I 173
CEE3194W 173
CEE3195W 173
CEE3196W 173
CEE3197W 173
CEE3198S 173
CEE3199S 173
CEE3200S 173
CEE3201S 173
CEE3202S 174
CEE3203S 174
CEE3204S 174
CEE3205S 174
CEE3206S 174
CEE3207S 175
CEE3208S 175
CEE3209S 175
CEE3210S 175
CEE3211S 175
CEE3212S 175
CEE3213S 175
CEE3214S 175
CEE3215S 176
CEE3216S 176
CEE3217S 176
CEE3218S 176
CEE3219S 176
CEE3220S 176
CEE3228S 176
CEE3229S 176
CEE3250C 177
CEE3252C 177
CEE3253C 177
CEE3254C 177
CEE3255C 177
CEE3260W 177

354 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

CEE3261W 177
CEE3262W 177
CEE3263C 177
CEE3292W 178
CEE3293C 178
CEE3294E 178
CEE3295E 178
CEE3296E 178
CEE3297E 178
CEE3298E 178
CEE3299E 178
CEE3300C 178
CEE3301E 179
CEE3320C 179
CEE3321C 179
CEE3322C 179
CEE3323S 179
CEE3324W 179
CEE3325W 180
CEE3326W 180
CEE3329S 180
CEE3330S 180
CEE3331S 180
CEE3332S 180
CEE3333W 180
CEE3350S 180
CEE3351S 181
CEE3352E 181
CEE3353S 181
CEE3354S 181
CEE3355S 181
CEE3356S 181
CEE3358E 181
CEE3360S 181
CEE3361W 182
CEE3362S 182
CEE3363S 182
CEE3364W 182
CEE3365S 182
CEE3370W 182
CEE3380W 182
CEE3400W 182
CEE3401W 182
CEE3402E 183
CEE3420W 183
CEE3421W 183
CEE3422W 183
CEE3423S 183
CEE3424S 183
CEE3425S 183
CEE3426S 183
CEE3427S 184
CEE3428S 184
CEE3429S 184
CEE3449S 184
CEE3450E 184
CEE3451S 184
CEE3452S 185
CEE3454S 185
CEE3455E 185
CEE3456S 185
CEE3457S 185
CEE3458E 185
CEE3459S 185
CEE3460E 185
CEE3461E 186
CEE3462E 186

CEE3463E 186
CEE3464E 186
CEE3465E 186
CEE3466E 186
CEE3467E 186
CEE3468E 187
CEE3469E 187
CEE3470E 187
CEE3471E 187
CEE3472S 187
CEE3473S 187
CEE3475S 187
CEE3476S 187
CEE3480S 187
CEE3481S 188
CEE3482S 188
CEE3485S 188
CEE3486S 188
CEE3487S 188
CEE3488S 188
CEE3489S 188
CEE3490S 188
CEE3491S 188
CEE3492S 189
CEE3493W 189
CEE3494S 189
CEE3495S 189
CEE3496I 189
CEE3497E 189
CEE3498I 189
CEE3499E 189
CEE3500S 190
CEE3501S 190
CEE3502S 190
CEE3503S 190
CEE3504S 190
CEE3505S 190
CEE3506S 190
CEE3507S 190
CEE3508S 191
CEE3509S 191
CEE3510S 191
CEE3511S 191
CEE3513S 191
CEE3514C 191
CEE3515I 191
CEE3519S 191
CEE3520C 192
CEE3550I 192
CEE3551I 192
CEE3552I 192
CEE3553I 192
CEE3554I 192
CEE3555E 192
CEE3556W 193
CEE3557W 193
CEE3558I 193
CEE3559W 193
CEE3601I 193
CEE3602I 193
CEE3603I 193
CEE3604I 194
CEE3605I 194
CEE3606I 194
CEE3607I 194
CEE3608I 194
CEE3609I 194

CEE3610I 194
CEE3611I 194
CEE3612I 194
CEE3613I 195
CEE3614I 195
CEE3615I 195
CEE3616I 195
CEE3617I 195
CEE3618I 195
CEE3619I 195
CEE3620I 195
CEE3621I 195
CEE3622I 196
CEE3623I 196
CEE3624I 196
CEE3625I 196
CEE3626I 196
CEE3627I 196
CEE3628I 196
CEE3629I 196
CEE3630I 196
CEE3631I 197
CEE3632I 197
CEE3633W 197
CEE3634I 197
CEE3637I 197
CEE3638I 197
CEE3639I 197
CEE3649W 197
CEE3700I 198
CEE3701W 198
CEE3702S 198
CEE3703I 198
CEE3704I 198
CEE3705I 198
CEE3706I 198
CEE3707I 198
CEE3708I 198
CEE3709I 199
CEE3710I 199
CEE3711I 199
CEE3750S 199
CEE3751S 199
CEE3756S 199
CEE3757S 199
CEE3758S 199
CEE3775W 200
CEE3781I 200
CEE3782E 200
CEE3800S 200
CEE3817E 200
CEE3818E 200
CEE3900S 200
CEE3901S 200
CEE3902W 200
CEE3903W 201
CEE3907I 201
CEE3908I 201
CEE3909I 201
CEE3931W 201
CEE4001S 201
CEE4015S 201
CEE4086S 201
CEE5176S 202
CEE5177S 202
CEE5178S 202
CEE5179S 202

Index 355

CEE5180I 202
CEE5ABD—terminate enclave with an

abend 13, 24
generating a dump and 53
handling user abends and 13, 24
modifying condition handling

behavior and 13
CEE5DMP—generate dump 31, 40

generating an LE/VSE dump
with 31

options 31
relationship to PLIDUMP 130
syntax 31

CEEBXITA assembler user exit 15
CEEDCOD—decompose a condition

token 18
CEEHDLR—register user condition

handler 15
CEEL000S 202
CEEL001S 203
CEEL002S 203
CEEL003S 203
CEEL004S 203
CEEL005I 203
CEEL009S 203
CEEL010E 203
CEEL011S 204
CEEMGET—get a message 18
CEEMOUT—dispatch a message 17
CEEMRCR—move resume cursor relative

to handle cursor 13
CEEMSG—get, format, and dispatch a

message 18
CEESGL—signal a condition 18
CEESTART 61
CEL2001I 204
CEL2002E 204
CEL2003E 204
CEL2004E 204
CEL2005E 204
CEL2006I 204
CEL2007E 204
CEL2008E 205
CEL4000I 205
CEL4001I 205
CEL4002I 205
CEL4003E 205
CEL4004E 205
CEL4005E 205
CEL4006W 205
CEL4007I 205
CEL4008S 206
CEL4009S 206
CEL4010I 206
CEL4011I 206
CEL4012I 206
CEL4013I 206
CEL4014I 207
CEL4015I 207
CEL4016E 207
CEL4017E 207
CEL4018I 207
CEL4019I 207
CEL4020I 207
CEL4026W 207
CEL4028I 207
CEL4032S 208

CEL4033I 208
CEL4034E 208
CEL4036E 208
CEL4037E 208
CEL4039E 208
CEL4040I 208
CEL4041E 208
CEL4043E 209
CEL4045W 209
CEL4067I 209
CEL4070I 209
CEL4080E 209
CEL4090I 209
CEL4101E 209
CHECK run-time option

function 6
modifying condition handling

behavior and 13
CHECKOUT compile-time option 3
CICS

abends 147
application, from an EXEC CICS

command 151
debugging for 145
debugging information, table of

locations 145
destination control table (DCT) 145
example traceback in CESE transient

data queue 146
examples of output 146
nonzero reason code returned, table of

output 150
reason codes 147
register and program status word

contents 147
return codes

C 332
COBOL 332
LE/VSE 148
PL/I 327

run-time messages 146
run-unit work-area storage

tracing 148
transaction

dump 146
rollback 150

CICS CLER transaction, run-time
messages 209

class test 98
classifying errors table 21
CLER CICS transaction, run-time

messages 209
CLLE (COBOL load list entry) 105
COBCOM control block 107
COBOL

base locator for working storage 106
compile-time options 4
debugging examples 108, 113
dump

external data in 106
file information in 106
linkage section in 106
local variables in 101
routine information in 101
run unit storage in 106
stack frames for active routines

in 101

COBOL (continued)
dump (continued)

working storage in 106
errors 97
listings 101
memory file control block 82
messages, run-time 299
program class storage 106
return codes to CICS 148, 332
routine

calling LE/VSE dump service 101
COBVEC control block 107
COMMAREA (Communication

Area) 147
compile-time options

C 3
COBOL 4
PL/I 5

condition
information

for active routines 37
in dump 37

unhandled 18
condition handling

behavior, modifying 12
user-written condition handler 12, 15

condition information block 40, 47
condition manager 18
CONDITION option of CEE5DMP

callable service 31, 40
condition token 18

case 1 18
case 2 18
example of 18

conditions, nested 18
control block for active routines 37
CRUT 148, 149

controlling transaction 149
csnap() 76
ctrace() 75

D
D CEE,? | HELP 27
D CEE,CEECOPT 27
D CEE,CEEDOPT 27
D CEE,CEEEXIT 27
D CEE,CEESTAT 27
D CEE,OPTS 27
data

map listing 101
values 40

DCT (destination control table) 145
DEBUG run-time option 6
debugging

C, examples 87, 91
COBOL, examples 108, 113
for CICS 145
PL/I, examples 136, 139
tool 27

DEPTHCONDLMT run-time option
function 6
loop/wait errors and 21
modifying condition handling

behavior and 13
diagnosis checklist 337
disability xi

356 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

DISPLAY statement 17, 97
DSA (dynamic storage area) 41
DSECT utility messages 231
dummy DSA 41
dump

date in 37
dynamically allocated storage in 37

DUMP suboption of TERMTHDACT
run-time option 33

E
ECB (enclave control block) 37
EDB (enclave data block) 37
EDC prefix 21, 23
EDC4000S 211
EDC4001S 212
EDC4002S 212
EDC4004W 212
EDC4005E 212
EDC4006S 212
EDC4007S 212
EDC4008S 212
EDC4009S 212
EDC4010W 212
EDC4011E 212
EDC4012E 212
EDC4013I 212
EDC4014E 213
EDC4015W 213
EDC4016W 213
EDC4017W 213
EDC4019S 213
EDC4020W 213
EDC4021W 213
EDC4022W 213
EDC4023W 213
EDC4024W 214
EDC4025W 214
EDC4026W 214
EDC4027W 214
EDC4028W 214
EDC4029W 214
EDC4031W 214
EDC4036E 214
EDC4037E 215
EDC4039E 215
EDC4040E 215
EDC4041I 215
EDC4042S 215
EDC4053S 215
EDC4054W 215
EDC4057E 215
EDC4058E 215
EDC4100 40 216
EDC4101 40 216
EDC4102 40 216
EDC4103 40 216
EDC4104 40 217
EDC4105 40 217
EDC4106 40 217
EDC4107 40 217
EDC4108 10 217
EDC4109 40 217
EDC4110 40 217
EDC4111 40 217
EDC4112 40 218

EDC4113 30 218
EDC4114 10 218
EDC4115 30 218
EDC4116 30 218
EDC4117 30 218
EDC4118 30 218
EDC4119 30 218
EDC4120 30 218
EDC4121 30 219
EDC4122 30 219
EDC4123 30 219
EDC4124 40 219
EDC4125 30 219
EDC4126 30 219
EDC4127 10 219
EDC4128 10 219
EDC4129 30 219
EDC4130 30 220
EDC4131 10 220
EDC4132 30 220
EDC4133 40 220
EDC4134 10 220
EDC4135 30 220
EDC4136 30 220
EDC4137 30 220
EDC4138 30 221
EDC4139 10 221
EDC4140 30 221
EDC4141 10 221
EDC4142 30 221
EDC4143 30 221
EDC4144 30 221
EDC4145 10 221
EDC4146 10 222
EDC4147 10 222
EDC4148 10 222
EDC4149 30 222
EDC4150 30 222
EDC4151 10 222, 225, 227
EDC4152 10 222, 225, 227
EDC4153 10 223
EDC4154 30 223
EDC4155 30 223
EDC4156 30 223
EDC4157 10 223
EDC4158 10 223
EDC4159 30 223
EDC4160 10 223
EDC4161 10 223
EDC4162 30 224
EDC4163 30 224
EDC4164 30 224
EDC4165 10 224
EDC4166 30 224
EDC4167 30 224
EDC4168 10 224
EDC4169 30 224
EDC4170 40 224
EDC4171 30 225
EDC4172 30 225
EDC4180 30 226
EDC4181 30 226
EDC4182 30 226
EDC4183 30 226
EDC4184 30 226
EDC4185 30 226
EDC4186 30 226

EDC4187 30 226
EDC4188 30 226
EDC4189 30 226
EDC4190 30 227
EDC4191 30 227
EDC4192 30 227
EDC4193 30 227
EDC4194 30 227
EDC4195 30 227
EDC4201 00 228
EDC4202 00 228
EDC4203 30 228
EDC4204 30 228
EDC4205 30 228
EDC4206 30 228
EDC4207 30 228
EDC4208 30 228
EDC4210 30 228
EDC4211 30 228
EDC4212 30 229
EDC4213 30 229
EDC4214 30 229
EDC4215 30 229
EDC4216 30 229
EDC4217 30 229
EDC4218 30 229
EDC4219 30 229
EDC4220 30 229
EDC4221 30 229
EDC4222 30 230
EDC4223 30 230
EDC4224 30 230
EDC4225 30 230
EDC4226 30 230
EDC4227 30 230
EDC4228 30 230
EDC4229 30 230
EDC4230 30 230
EDC4231 30 230
EDC4232 30 230
EDC4233 30 231
EDC4234 30 231
EDC4236 30 231
EDC4237 30 231
EDC5000I 235
EDC5001I 235
EDC5002I 235
EDC5003I 235
EDC5004I 235
EDC5005I 236
EDC5006I 236
EDC5007I 236
EDC5008I 236
EDC5009I 236
EDC5010I 236
EDC5011I 236
EDC5012I 236
EDC5014I 237
EDC5015I 237
EDC5016I 237
EDC5017I 237
EDC5018I 237
EDC5019I 237
EDC5020I 237
EDC5021I 237
EDC5022I 238
EDC5023I 238

Index 357

EDC5025I 238
EDC5027I 238
EDC5028I 238
EDC5029I 238
EDC5030I 239
EDC5031I 239
EDC5032I 239
EDC5033I 239
EDC5034I 239
EDC5035I 239
EDC5036I 239
EDC5038I 239
EDC5041I 240
EDC5042I 240
EDC5043I 240
EDC5045I 240
EDC5046I 240
EDC5047I 240
EDC5048I 240
EDC5049I 241
EDC5051I 241
EDC5052I 241
EDC5053I 241
EDC5054I 241
EDC5055I 241
EDC5057I 241
EDC5059I 241
EDC5060I 242
EDC5061I 242
EDC5063I 242
EDC5065I 242
EDC5066I 242
EDC5067I 242
EDC5072I 242
EDC5073I 242
EDC5074I 242
EDC5076I 243
EDC5077I 243
EDC5078I 243
EDC5079I 243
EDC5080I 243
EDC5083I 243
EDC5084I 243
EDC5087I 244
EDC5088I 244
EDC5089I 244
EDC5091I 244
EDC5092I 244
EDC5094I 244
EDC5099I 244
EDC5100I 244
EDC5101I 244
EDC5102I 245
EDC5103I 245
EDC5113I 245
EDC5117I 245
EDC5118I 245
EDC5119I 245
EDC5121I 245
EDC5122I 245
EDC5127I 246
EDC5128I 246
EDC5131I 246
EDC5132I 246
EDC5134I 246
EDC5137I 246
EDC5138I 246

EDC5145I 246
EDC5147I 246
EDC5160I 246
EDC5165I 247
EDC5168I 247
EDC5169I 247
EDC5180E 247
EDC5181E 247
EDC5182E 247
EDC5183E 247
EDC5184E 247
EDC5185E 248
EDC5186E 248
EDC5187E 248
EDC5188E 248
EDC5191E 248
EDC5223S 248
EDC5224S 248
EDC5500 - EDC5599 249
EDC5500 10 231
EDC5501 30 232
EDC5502 30 232
EDC5503 30 232
EDC5504 30 232
EDC5505 00 232
EDC5506 30 232
EDC5507 40 232
EDC5508 30 232
EDC5509 40 232
EDC5510 40 232
EDC5511 10 232
EDC5512 10 233
EDC5513 10 233
EDC5514 30 233
EDC5515 00 233
EDC5516 10 233
EDC5517 10 233
EDC5518 10 233
EDC5519 10 233
EDC5520 40 233
EDC5521 40 233
EDC5522 10 233
EDC5599 30 234
EDC6000E 249
EDC6001E 249
EDC6002E 249
EDC6003E 249
EDC6004E 249
EDC6005E 249
EDC6006E 249
EDC6007E 249
EDC6008E 250
EDC6009E 250
EDCT001S 250
EDCT002S 250
EDCT003S 250
EDCT010S 250
EDCT011S 250
EDCV001I 251
EDCV002I 251
EDCV020W 251
EDCV099I 251
EIB (exec interface block) 147
enclave

identifier in dump 37
member list 37
storage 37

enclave (continued)
termination

behavior, establishing 16
entry information 37
ENTRY option of CEE5DMP callable

service 31
entry point

name of active routines in dump 37
ERRCOUNT run-time option

function 6
modifying condition handling

behavior and 13
wait/loop error and 21

errno 82
error

determining source of 337
message while LE/VSE was handling

another error 18
unanticipated 21

ESD compile-time option 5
examples

C routines 87, 91
calling a nonexistent subroutine 91,

110, 139
COBOL routines 108, 113
divide-by-zero error 87, 113, 141
output under CICS 146
PL/I routines 136, 139
subscript range error 108, 136

EXEC CICS command
application abends from 151

EXEC CICS DUMP statements 147
external data

for COBOL routines in dump 106

F
fetch information in dump 84
fetch() 61
fetchable phase 61
file

for COBOL, in dump 106
status key 98

file control block (FCB) 84
FILES option of CEE5DMP callable

service 31
FLAG compile-time option 3
floating point registers, in dump 37
FNAME option of CEE5DMP callable

service 31

G
general purpose registers 37
genxlt utility messages 227
glossary 345
GMAREA 105
GONUMBER compile-time option 3, 5
GOSTMT compile-time option 5

H
HANDLE ABEND EXEC CICS

command 145
header files, C

ctest.h 75

358 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

header files, C (continued)
errno.h 87
stdio.h 61
stdlib.h 87

heap storage
created by CEECRHP callable

service 11
storage in dump 37
user 11

homepage, VSE xvii

I
I/O conventions

C 61
IBM prefix 21, 23
IBM0004S 253
IBM0005S 253
IBM0006S 253
IBM0018S 253
IBM0020S 254
IBM0021S 254
IBM0022S 254
IBM0023S 254
IBM0024S 254
IBM0025S 254
IBM0027S 255
IBM0028S 255
IBM0029S 255
IBM0031S 255
IBM0032S 255
IBM0033S 255
IBM0034S 256
IBM0035S 256
IBM0036S 256
IBM0037S 256
IBM0038S 257
IBM0039S 257
IBM0040S 257
IBM0042S 257
IBM0043S 257
IBM0045S 257
IBM0046S 258
IBM0047S 258
IBM0048S 258
IBM0049S 258
IBM0053S 258
IBM0054S 258
IBM0055S 259
IBM0056S 259
IBM0059S 259
IBM0100W 259
IBM0101W 259
IBM0120S 260
IBM0121S 260
IBM0122S 260
IBM0123S 260
IBM0124S 261
IBM0125S 261
IBM0140S 261
IBM0141S 261
IBM0142S 261
IBM0144S 261
IBM0145S 262
IBM0146S 262
IBM0147S 262
IBM0148S 262

IBM0149S 263
IBM0160S 263
IBM0161S 263
IBM0162S 263
IBM0163S 263
IBM0164S 264
IBM0165S 264
IBM0166S 264
IBM0167S 264
IBM0168S 264
IBM0180S 265
IBM0181S 265
IBM0182S 265
IBM0190W 265
IBM0191W 265
IBM0195W 265
IBM0196W 265
IBM0200S 265
IBM0201S 266
IBM0202S 266
IBM0203S 266
IBM0204S 266
IBM0205S 267
IBM0206S 267
IBM0207S 267
IBM0208S 267
IBM0209S 267
IBM0210S 268
IBM0211S 268
IBM0212S 268
IBM0213S 268
IBM0214S 269
IBM0215S 269
IBM0221S 269
IBM0225S 269
IBM0227S 269
IBM0228S 269
IBM0229S 269
IBM0230S 270
IBM0231S 270
IBM0232S 270
IBM0233S 270
IBM0234S 270
IBM0235S 270
IBM0236S 271
IBM0237S 271
IBM0238S 271
IBM0240S 271
IBM0241S 271
IBM0242S 271
IBM0243S 272
IBM0244S 272
IBM0245S 272
IBM0246S 272
IBM0247S 272
IBM0248S 272
IBM0249S 272
IBM0250S 273
IBM0251S 273
IBM0252S 273
IBM0253S 273
IBM0254S 273
IBM0255S 273
IBM0256S 273
IBM0257S 274
IBM0258S 274
IBM0259S 274

IBM0260S 274
IBM0261S 274
IBM0262S 274
IBM0263S 274
IBM0264S 274
IBM0265S 275
IBM0266S 275
IBM0267S 275
IBM0268S 275
IBM0269S 275
IBM0270S 275
IBM0271S 275
IBM0272S 275
IBM0273S 276
IBM0274S 276
IBM0275S 276
IBM0276W 276
IBM0277W 276
IBM0280S 276
IBM0281S 276
IBM0300S 277
IBM0301S 277
IBM0320W 277
IBM0321W 277
IBM0330W 277
IBM0340S 277
IBM0341S 277
IBM0342S 277
IBM0360W 278
IBM0361W 278
IBM0365W 278
IBM0368W 278
IBM0380S 278
IBM0381S 278
IBM0382S 278
IBM0400W 279
IBM0420S 279
IBM0421S 279
IBM0440W 279
IBM0441W 279
IBM0442W 279
IBM0460S 279
IBM0461S 280
IBM0480S 280
IBM0482S 280
IBM0504S 280
IBM0505S 280
IBM0506S 280
IBM0507S 280
IBM0508S 280
IBM0512S 281
IBM0516S 281
IBM0518S 281
IBM0519S 281
IBM0531S 281
IBM0532S 281
IBM0533S 281
IBM0534S 282
IBM0535S 282
IBM0536S 282
IBM0537S 282
IBM0560S 282
IBM0562S 282
IBM0563S 282
IBM0564S 282
IBM0565S 283
IBM0566S 283

Index 359

IBM0567S 283
IBM0568S 283
IBM0569S 283
IBM0570S 284
IBM0571S 284
IBM0573S 284
IBM0576S 284
IBM0590S 284
IBM0591S 284
IBM0593W 285
IBM0594S 285
IBM0595S 285
IBM0596S 285
IBM0598S 285
IBM0600S 285
IBM0601S 285
IBM0604S 285
IBM0630S 286
IBM0631S 286
IBM0632S 286
IBM0633S 286
IBM0634S 286
IBM0635S 286
IBM0636S 286
IBM0637S 287
IBM0638S 287
IBM0648S 287
IBM0650S 287
IBM0670S 287
IBM0671S 287
IBM0672S 287
IBM0674S 288
IBM0675S 288
IBM0676S 288
IBM0700S 288
IBM0701S 289
IBM0722S 289
IBM0724S 289
IBM0750S 289
IBM0780S 290
IBM0802S 290
IBM0803S 290
IBM0804S 290
IBM0805S 290
IBM0807S 290
IBM0808S 291
IBM0809S 291
IBM0810S 291
IBM0811S 292
IBM0812S 292
IBM0813S 292
IBM0814S 292
IBM0816S 292
IBM0818S 292
IBM0820S 292
IBM0821S 293
IBM0822S 293
IBM0823S 293
IBM0825S 293
IBM0826S 293
IBM0827S 293
IBM0829S 294
IBM0830S 294
IBM0831S 294
IBM0832S 294
IBM0833S 294
IBM0834S 294

IBM0835S 294
IBM0836S 295
IBM0837S 295
IBM0838S 295
IBM0839S 295
IBM0840S 295
IBM0841S 295
IBM0850S 296
IBM0851S 296
IBM0852S 296
IBM0854S 296
IBM0855S 296
IBM0856S 296
IBM0870S 297
IBM0880S 297
IBM0900S 297
IBM0924W 297
IBM0925W 297
IBM0926S 297
IBM0927S 297
IBM0928S 298
IBM0929S 298
IBM0930S 298
IBM0931S 298
iconv utility messages 225
IGZ prefix 21, 23
IGZ0002S 299
IGZ0003W 299
IGZ0004S 299
IGZ0005S 299
IGZ0006S 299
IGZ0007S 300
IGZ0009C 300
IGZ0011C 300
IGZ0012S 300
IGZ0013S 300
IGZ0014W 301
IGZ0015S 301
IGZ0016W 301
IGZ0017S 301
IGZ0018S 301
IGZ0019W 301
IGZ0020S 301
IGZ0021C 301
IGZ0022W 302
IGZ0024S 302
IGZ0026W 302
IGZ0027W 302
IGZ0028S 302
IGZ0029S 302
IGZ0030S 302
IGZ0031S 303
IGZ0032S 303
IGZ0033S 303
IGZ0034W 303
IGZ0035S 303
IGZ0036W 303
IGZ0037S 303
IGZ0039S 304
IGZ0040S 304
IGZ0041W 304
IGZ0042C 304
IGZ0044S 304
IGZ0046W 304
IGZ0048W 304
IGZ0049W 305
IGZ0050S 305

IGZ0051S 305
IGZ0052C 305
IGZ0053S 305
IGZ0054W 305
IGZ0055W 305
IGZ0056W 306
IGZ0057S 306
IGZ0058S 306
IGZ0059W 306
IGZ0060W 306
IGZ0061S 306
IGZ0063S 306
IGZ0064S 307
IGZ0065S 307
IGZ0066S 307
IGZ0067S 307
IGZ0068W 307
IGZ0071S 307
IGZ0072S 307
IGZ0073S 308
IGZ0074S 308
IGZ0075S 308
IGZ0076W 308
IGZ0077W 308
IGZ0078S 308
IGZ0079S 309
IGZ0080I 309
IGZ0081W 309
IGZ0082W 309
IGZ0083W 309
IGZ0084W 310
IGZ0087I 310
IGZ0088I 310
IGZ0089I 310
IGZ0090S 310
IGZ0091S 310
IGZ0092W 310
IGZ0093W 311
IGZ0094W 311
IGZ0096C 311
IGZ0097S 311
IGZ0098C 311
IGZ0099C 311
IGZ0100S 311
IGZ0151S 311
IGZ0152S 312
IGZ0154S 312
IGZ0155S 312
IGZ0156S 312
IGZ0157S 312
IGZ0158S 312
IGZ0159S 312
IGZ0160S 312
IGZ0161S 312
IGZ0162S 313
IGZ0163S 313
IGZ0164C 313
IGZ0165S 313
IGZ0166S 313
IGZ0167S 313
IGZ0168S 313
IGZ0169W 314
IGZ0170S 314
IGZ0171S 314
IGZ0172W 314
IGZ0198S 314
IGZ0199S 314

360 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

IGZ0200W 315
IGZ0201W 315
IGZ0202W 315
IGZ0203W 315
IGZ0204W 315
IGZ0205W 316
IGZ0206W 316
IGZ0207W 316
IGZ0215S 316
IGZ0216S 316
IGZ0217S 316
IGZ0218S 317
IGZ0219S 317
IGZ0220S 317
IGZ0221W 317
IGZ0235W 317
IGZ0236I 318
IGZ0237I 318
IGZ0238I 318
IGZ0239I 318
INITIALIZE statement 98
inline

report 66
instruction length counter in dump 37
Internet address, VSE homepage xvii
interruption code in dump 37
ITBLK in dump 107

L
language constructs 97
LE/VSE

return codes to CICS 148, 327
run-time messages 155

attention routine commands 205
CICS CLER transaction 209
CLER CICS transaction 209
VSE/POWER LSTQ support 202

run-unit messages
work-area trace function

messages 204
symbolic feedback code 18

LE/VSE dump
C information in 81
COBOL information in 105
default options 31
example traceback in 37
introduction 35
multiple enclaves and 51
options

BLOCKS 31
CONDITION 31, 40
ENCLAVE 31
ENTRY 31
FILES 31
FNAME 31
NOBLOCKS 31
NOCONDITION 31
NOENTRY 31
NOFILES 31
NOSTORAGE 31
NOTRACEBACK 31
NOVARIABLES 31
PAGESIZE(n) 31
STACKFRAME 31
STORAGE 31
THREAD 31

LE/VSE dump (continued)
options (continued)

TRACEBACK 31, 40
VARIABLES 31, 40

output
for C routines 77
for COBOL routines 101
for PL/I routines 130

PL/I information in 132
section descriptions 37
TERMTHDACT suboptions 33
title 37
traceback with condition information

COBOL routine 101
LE for OS/390 & VM routine 77
LE/VSE routine 37
PL/I routine 130

using CEE5DMP callable service 31,
37

using PLIDUMP subroutine 34, 130
using TERMTHDACT run-time

option 33
library stack statistics 11
linkage editor

module map 66
linkage section, for COBOL routines in

dump 106
LIST compile-time option 3, 4, 5
listings generated by compiler

C 66
COBOL 101
PL/I 124

LMESSAGE compile-time option 5
local variables 37
localedef utility messages 215, 216
LSTQ support run-time messages 202

M
machine state information, in dump 37
MAP compile-time option 4, 5
memory file control block (MFCB) 82,

86
messages

classifying errors and 21
DSECT utility 231
genxlt utility 227
iconv utility 225
localedef utility 215, 216
prelinker 211
run-time, C 235
run-time, CICS 146
run-time, COBOL 299
run-time, LE/VSE 155
run-time, PL/I 253
TCP/IP-related 250
user-created 17
using in your routine 17

module name prefixes, LE/VSE 21
MSG suboption of TERMTHDACT 33
MSGFILE run-time option

function 6
run-time messages and 23

MSGQ run-time option 6

N
nested condition 18
no response (wait/loop) 21
NOBLOCKS option of CEE5DMP callable

service 31
NOCONDITION option of CEE5DMP

callable service 31
NOENTRY option of CEE5DMP callable

service 31
NOFILES option of CEE5DMP callable

service 31
NOSTORAGE option of CEE5DMP

callable service 31
NOTRACEBACK option of CEE5DMP

callable service 31
NOVARIABLES option of CEE5DMP

callable service 31

O
OFFSET compile-time option 3, 4, 5
optimizing

C 3
COBOL 4
PL/I 5

options
C compile-time 3
COBOL compile-time 4
defaults for dump 33
determining run-time in effect 7
LE/VSE run-time 6
PL/I compile-time 5

OUTDD compile-time option 4
output

incorrect 21
missing 21

P
page number, in dump 37
PAGESIZE(n) option of CEE5DMP

callable service 31
parameter

checking value of 15
variable 72

perror() function 65
phase, fetchable 61
PL/I

address of interrupt, finding in
dump 133

CAA address, finding in dump 136
common anchor area (CAA) 136
compile-time options

generating listings with 124
list of 5

compiler listings
object code listing 128
static storage map 127
variable storage map 128

CSECT 127
debugging examples 136, 139
dump

error type, finding in 133
parameter list, finding contents

in 135

Index 361

PL/I (continued)
dump (continued)

PL/I information, finding in 132,
135

PLIDUMP subroutine and 130
statement number, finding in 133
timestamp, finding in 135
variables, finding in 134

ERROR ON-unit 122, 133
errors 121, 123
floating-point register 122
object code listing 128
ON statement control block 127
static storage listing 127
SUBSCRIPTRANGE condition 122,

123, 136
PLIDUMP subroutine 130
PMR (Problem Management

Record) 341
pointer variables 61
prelinker messages 211
prelinker utility messages 211
preventive service planning (PSP)

bucket 337
printf() function 61
Problem Management Record

(PMR) 341
procedure division listings 101
process

control block 37
member list 37

process control block (PCB) 37
program class storage 106
program status word (PSW) 37
pseudo-assembler listing 66
PSP (preventive service planning)

bucket 337

Q
QUIET suboption of TERMTHDACT

run-time option 33

R
reason code

for LE/VSE abends 319
nonzero returned to CICS 150
under CICS 147

registers 0–15, in dump 37
REGSTOR option of CEE5DMP callable

service 31
release number, in dump 37
return code

bad or nonzero 21
C to CICS 332
COBOL to CICS 332
LE/VSE to CICS 327

RPTOPTS run-time option 7
RPTSTG run-time option 9
run unit

COBOL 106
level control block 106
storage in dump 37, 106

run-time messages
C 235

run-time messages (continued)
COBOL 299
LE/VSE 155
PL/I 253
under CICS 146

run-time options
ABPERC 6
ABTERMENC 6
CHECK 6
DEBUG 6
DEPTHCONDLMT 6
determining those in effect 7
ERRCOUNT 6
MSGFILE 6
MSGQ 6
specifying 15
STORAGE 6
TERMTHDACT 6
TEST 6
TRACE 6
TRAP 6
useful in debugging 6, 13
USRHDLR 6
XUFLOW 6

run-unit work-area storage tracing 148,
149

S
S CEE,CLEAR 27
S CEE,OPTS='run-time option over-rides

string' 27
scope terminator 97
SET statement 98
signal information in dump 82
Socket API Multiplexer 250
sorted cross-reference listing 101
SOURCE compile-time option 3, 4, 5
source listing 66
stack frame 41
STACKFRAME option of CEE5DMP

callable service 31
statement numbers, in dump 40
static

variables, in dump 134
writable map 68, 70, 72

status of routines in dump 37
stderr 17
stdio.h 61
stdout 17
storage

evaluating use of 9
for active routines 37
offset listing 66
report 9
statistics 11

STORAGE compile-time option 5
STORAGE option of CEE5DMP callable

service 31
STORAGE run-time option 6
structure

map 66, 72
variable example code 72

symbolic feedback code 18
system abend

with TRAP(OFF) 21
with TRAP(ON) 21

system dump, generating 53

T
task global table (TGT) 105
TCP/IP-related messages 250
TERMTHDACT run-time option

function 6, 33
generating a dump and 13
modifying condition handling

behavior and 6
suboptions 33

TEST compile-time option 3, 4, 5
TEST run-time option 6
THDCOM in dump 107
THREAD option of CEE5DMP callable

service 31
time, in dump 37
title, in dump 37
TRACE run-time option

function 6
TRACE suboption of TERMTHDACT

run-time option 33
TRACEBACK option of CEE5DMP

callable service 31, 40
transaction

dump 147
rollback 150
rollback effects of assembler user exit

on 150
work area 147

TRAP run-time option
function 6
LE/VSE condition handling and 13,

53
user abends and 24

U
U1xxx 319
U4000 (X'FA0') 319
U4034 (X'FC2') 319
U4036 (X'FC4') 319
U4038 (X'FC6') 320
U4039 (X'FC8') 320
U4040 (X'FC8') 320
U4041 (X'FC9') 320
U4042 (X'FCA') 320
U4045 (X'FCD') 320
U4082 (X'FF2') 321
U4083 (X'FF3') 321
U4085 (X'FF5') 322
U4086 (X'FF6') 322
U4087 (X'FF7') 322
U4088 (X'FF8') 322
U4091 (X'FFB') 323
U4092 (X'FFC') 324
U4093 (X'FFD') 324
U4094 (X'FFE') 326
U4095 (X'FFF') 326
UADUMP 33
uconvdef() utility messages 228
unhandled conditions 16, 18

establishing enclave termination
behavior for 16

362 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

USE EXCEPTION/ERROR
declaratives 98

USE FOR DEBUGGING declarative 99
user

abend 24
code 21
codes, list of 319

exit 15, 16
heap, statistics 11
stack, statistics 11

user-specified abends 24
USRHDLR run-time option 6
Uxxxx (≤ 4000) 319

V
variables

in LE/VSE dump 40
structure example code 72

VARIABLES option of CEE5DMP callable
service 31, 40

VBREF compile-time option 4
verb cross-reference 101
version number, in dump 37
VSE/POWER LSTQ support run-time

messages 202

W
working storage, in dump 37, 106

X
XREF compile-time option 3, 4, 5
XUFLOW run-time option

function 6
modifying condition handling

behavior and 13

Index 363

364 LE/VSE V1R4.9 Debugging Guide and Run-Time Messages

Readers’ Comments — We'd Like to Hear from You

IBM Language Environment for z/VSE
Debugging Guide and Run-Time Messages
Version 1 Release 4 Modification Level 9

Publication No. SC33-6681-11

We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,
organization, subject matter, or completeness of this book. The comments you send should pertain to only the
information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your
IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use
the personal information that you supply to contact you about the issues that you state on this form.

Comments:

Thank you for your support.

Submit your comments using one of these channels:
v Send your comments to the address on the reverse side of this form.
v Send a fax to the following number: +49-7031-163456
v Send your comments via email to: s390id@de.ibm.com
v Send a note from the web page: http://www.ibm.com/systems/z/os/zvse/

If you would like a response from IBM, please fill in the following information:

Name Address

Company or Organization

Phone No. Email address

Readers’ Comments — We'd Like to Hear from You
SC33-6681-11

SC33-6681-11

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Deutschland Research & Development GmbH
Department 3282
Schoenaicher Strasse 220
71032 Boeblingen
Germany

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Product Number: 5686-CF9

Printed in USA

SC33-6681-11

	Contents
	Figures
	Tables
	Notices
	Trademarks

	Accessibility
	Using Assistive Technologies

	About this Publication
	What Is LE/VSE?
	LE/VSE-Conforming Languages
	LE/VSE Compatibility with Previous Versions of COBOL

	Terms Used in This Publication
	Where to Find More Information
	Softcopy Publications

	Summary Of Changes
	Changes Introduced with Twelfth Edition
	Changes Introduced with Eleventh Edition
	Changes Introduced with Tenth Edition
	Changes Introduced with Ninth Edition
	Changes Introduced with Eighth Edition

	Part 1. Introduction to Debugging in LE/VSE
	Chapter 1. Preparing Your Routine for Debugging
	Setting Compile-Time Options
	C Compile-Time Options
	COBOL Compile-Time Options
	PL/I Compile-Time Options

	Using LE/VSE Run-Time Options
	Determining Run-Time Options in Effect
	Using the CLER CICS Transaction to Display and Set Run-Time Options
	Activating Changed CICS-Wide Run-Time Options
	Printing CICS-Wide Run-Time Options to the Console

	Controlling Storage Allocation
	Controlling Storage Allocation

	Modifying Condition Handling Behavior
	LE/VSE Callable Services
	LE/VSE Run-Time Options
	User-Written Condition Handlers

	Using the Assembler User Exit
	Establishing Enclave Termination Behavior for Unhandled Conditions
	The Assembler User Exit
	Using the ABTERMENC Run-Time Option

	Using Messages in Your Routine
	Using Condition Information
	Using the Feedback Code
	Using the Symbolic Feedback Code

	Chapter 2. Classifying Errors
	Identifying Problems in Routines
	LE/VSE Module Names
	Common Errors in Routines

	Interpreting Run-Time Messages
	Understanding Abend Codes and VSE Cancel Codes
	User Abends
	VSE Cancel Codes and VSE System Abends

	Chapter 3. Using LE/VSE Debugging Facilities
	Using the Debug Tool for VSE/ESA
	Using Attention Routine Interface Commands
	Using the LE/VSE Dump Service
	Generating a Dump with CEE5DMP
	Generating a Dump with TERMTHDACT
	Generating a Dump with Language-Specific Functions
	Understanding an LE/VSE Dump
	Debugging with Tracebacks, Condition Information, and Data Values
	Debugging with the Stack Frame
	Debugging with the Common Anchor Area
	Debugging with the Condition Information Block

	Multiple Enclave Dumps
	Generating a System Dump
	Requesting an LE/VSE Trace for Debugging
	Locating the Trace Dump
	Understanding the Trace Table Entry (TTE)
	Sample Dump for the Trace Table Entry

	Diagnosing Storage Leak Problems

	Part 2. Debugging Language-Specific Routines
	Chapter 4. Debugging C Routines
	Debugging C Input/Output Programs
	Using the __amrc and __amrc2 Structures
	__last_op Values
	Displaying an Error Message with the perror() Function

	Using C Compiler Listings
	Generating C Listings and Maps
	Finding Variables

	Generating an LE/VSE Dump of a C Routine
	cdump()
	ctrace()
	csnap()
	Sample C Routine that Calls cdump()
	Sample LE/VSE Dump with C-Specific Information

	Finding C Information in an LE/VSE Dump
	Storage for Active Routines
	Control Blocks Associated with the Active Thread
	atexit() Information
	fetch Information
	File Control Block Information
	Memory File Control Block
	Information for __amrc

	C Contents of the LE/VSE Trace Table
	Debugging Example of C Routines
	Divide-by-Zero Error
	Calling a Nonexistent Function
	Debugging With Bad Branch Information

	Chapter 5. Debugging COBOL Routines
	Determining the Source of Error
	Tracing Routine Logic
	Finding Input/Output Errors
	Handling Input/Output Errors
	Validating Data (Class Test)
	Assessing Switch Problems
	Generating Information about Procedures

	Using COBOL Listings
	Generating an LE/VSE Dump of a COBOL Routine
	Finding COBOL Information in a Dump

	Debugging Example COBOL Routines
	Subscript Range Error
	Calling a Nonexistent Subroutine
	Divide-by-Zero Error

	Chapter 6. Debugging PL/I Routines
	Determining Errors in PL/I Routines
	Errors in Logic in the Source Routine
	Invalid Use of PL/I
	Unforeseen Errors
	Invalid Input Data
	Compiler or Run-Time Routine Malfunction
	System Malfunction
	Unidentified Routine Malfunction
	Storage Overlay Problems

	Using PL/I Compiler Listings
	Generating PL/I Listings
	Finding Information in PL/I Listings

	Generating an LE/VSE Dump of a PL/I Routine
	PLIDUMP Syntax and Options
	PLIDUMP Usage Notes

	Finding PL/I Information in a Dump
	Traceback
	Control Blocks for Active Routines
	Control Blocks Associated with the Thread

	Debugging Example PL/I Routines
	Subscript Range Error
	Calling a Nonexistent Subroutine
	Divide-by-Zero Error

	Chapter 7. Debugging under CICS
	Accessing Debugging Information
	Locating LE/VSE Run-Time Messages
	Locating the LE/VSE Traceback
	Locating the LE/VSE Dump
	Using CICS Transaction Dump
	Using CICS Register and Program Status Word Contents
	Using LE/VSE Abend and Reason Codes
	Using LE/VSE Return Codes to CICS
	CICS Run-Unit Work-Area Storage Tracing

	Ensuring Transaction Rollback
	Finding Data When LE/VSE Returns a Nonzero Reason Code
	Finding Data When LE/VSE Abends Internally
	Finding Data When LE/VSE Abends from an EXEC CICS Command

	Part 3. Run-Time Messages and Codes
	Chapter 8. LE/VSE Run-Time Messages
	VSE/POWER LSTQ Support Run-Time Messages
	LE/VSE Run-Unit Work-Area Trace Function Messages
	Attention Routine Support Run-Time Messages
	CLER CICS Transaction Support Message

	Chapter 9. C Utility Messages
	Prelinker Messages
	Return Codes Issued by the Prelinker
	Messages Issued by the Prelinker

	localedef Utility Messages
	Return Codes Issued by the localedef Utility
	Messages Issued by the localedef Utility

	iconv Utility Messages
	Return Codes Issued by the iconv Utility
	Messages Issued by the iconv Utility

	genxlt Utility Messages
	uconvdef() Utility Messages
	DSECT Utility Messages
	Return Codes Issued by the DSECT Utility
	Messages Issued by the DSECT Utility

	Chapter 10. C Run-Time Messages
	TCP/IP-Related Messages

	Chapter 11. PL/I Run-Time Messages
	Chapter 12. COBOL Run-Time Messages
	Chapter 13. LE/VSE Abend Codes
	Chapter 14. Return Codes to CICS
	LE/VSE Return Codes to CICS
	C Return Codes to CICS
	COBOL Return Codes to CICS
	PL/I Return Codes to CICS

	Part 4. Appendixes
	Appendix. Diagnosing Problems with LE/VSE
	Diagnosis Checklist
	Locating the Name of the Failing Routine in a System Dump
	Searching the IBM Software Support Database
	Preparing Documentation for an Authorized Program Analysis Report (APAR)

	Language Environment Glossary
	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	Readers’ Comments — We'd Like to Hear from You

