
IBM z/VSE

Extended Addressability
Version 5 Release 1

SC34-2630-01

���

IBM z/VSE

Extended Addressability
Version 5 Release 1

SC34-2630-01

���

Note: Before using this information and the product it supports, be sure to read the general information under “Notices”
on page xi.

This edition applies to Version 5 Release 1 of IBM z/Virtual Storage Extended (z/VSE), Program Number 5609-ZV5,
and to all subsequent releases and modifications until otherwise indicated in new editions.

This edition replaces SC34–2630–00.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the addresses given below.

A form for readers' comments is provided at the back of this publication. If the form has been removed, address
your comments to:
IBM Deutschland Research & Development GmbH
Department 3248
Schoenaicher Strasse 220
D-71032 Boeblingen
Federal Republic of Germany

You may also send your comments by FAX or via the Internet:
Internet: s390id@de.ibm.com
FAX (Germany): 07031-16-3456
FAX (other countries): (+49)+7031-16-3456

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 1993, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures vii

Tables ix

Notices xi
Trademarks xi

Accessibility xiii
Using Assistive Technologies xiii
Documentation Format xiii

About This Book xv
Who Should Use This Book xv
How to Use This Book xv
Where to Find More Information xv

Summary of Changes xvii

Part 1. 31-Bit Addressing Support . . 1

Chapter 1. Introducing 24-Bit / 31-Bit
AMODE and RMODE 3
General Considerations for AMODE and RMODE . . 3

AMODE (Addressing Mode) 3
RMODE (Residency Mode) 4
Specifying AMODE and RMODE 4
AMODE and RMODE Combinations at
Program-Run Time 4

Programming Aspects 4
AMODE 4
RMODE 5
Programs that Must Reside Below 16 MB 5
Rules and Conventions for 31-Bit Addressing . . 5
Changing the AMODE 6
Mode Sensitive Instructions 6
AMODE Processing Capabilities 7
z/VSE System Services and 31-Bit Addressing . . 8

Chapter 2. Planning for 31-Bit Programs 9
Converting Existing Programs 9

Converting a Program to Use 31-Bit Addresses 10
Moving a Program above 16 MB 10

Writing New Programs that Use 31-Bit Addresses . 12
New Programs below 16 MB 13
New Programs above 16 MB. 13
Writing 31-Bit Programs for a Mixed z/VSE
Environment 13

Chapter 3. Using AMODE and RMODE
to Specify 24-Bit / 31-Bit Addressing
Modes 17
AMODE and RMODE Combinations 17

AMODE and RMODE Combinations at Execution
Time. 18

Determining the AMODE and RMODE of a
Phase 18

High Level Assembler Support of AMODE and
RMODE 18

AMODE and RMODE in the Object Module . . 18
AMODE and RMODE Assembler Instructions . . 19

Linkage Editor Support of AMODE and RMODE. . 20
Linkage Editor RMODE Processing 22

How to Change the AMODE 22

Chapter 4. Establishing Linkage in a
31-Bit Addressing Environment 25
Using the BASSM and BSM Instructions 27

Calling and Returning with BASSM and BSM . . 28
Using Pointer-Defined Linkage 29

Using an ADCON to Obtain a Pointer-Defined
Value 30
Using the CDLOAD/LOAD Macro to Obtain a
Pointer-Defined Value 31

Linkage Assist Routines 31
Example of Using a Linkage Assist Routine. . . 31

Using Capping - Linkage Using a Prologue and
Epilogue 35

Chapter 5. I/O Processing in a 31-Bit
Environment 37
Performing I/O in 31-Bit Mode. 37

Using the EXCP Macro for I/O to Virtual Storage
Above 16 MB. 37
Example of Performing I/O While Residing
Above 16 MB. 37

Chapter 6. Real Storage Considerations
for User Programs (31-Bit Addressing) . 39

Part 2. 64-Bit Addressing Support 41

Chapter 7. Using the 64-Bit Address
Space 43
What is the 64-Bit Address Space? 44
Why Would You use Virtual Storage Above the Bar? 45
Virtual Storage Management Above the Bar . . . 45
Prerequisites for Using Memory Objects 46
IARV64 Macro Services and Program Rules. . . . 46
Using Private Memory Objects 47

Creating Private Memory Objects 48
Relationship Between a Private Memory Object
and Its Owner 49
Fixing and Unfixing the Pages of a Private
Memory Object 49
Freeing a Private Memory Object 50

© Copyright IBM Corp. 1993, 2013 iii

Example of Creating, Using, and Freeing a
Private Memory Object 51

Using Shared Memory Objects 52
Creating/Obtaining Access to Shared Memory
Objects 52
Relationship Between a Shared Memory Object
and Its Owner 54
Freeing a Shared Memory Object 54

User Tokens and Detach Processing 56
Protecting Storage Above the Bar 56
Dumping Memory Objects 56
Using the Storage in a Memory Object 56
Listing Information About Virtual Storage Above the
Bar 57
Using a 64-Bit Application in z/VSE 57
Using 64-Bit Applications and 64-Bit Operations . . 58
Using 64-Bit Virtual I/O Operations on Memory
Objects 58
Using Assembler 64-bit Binary Operations 59

z/Architecture Instructions That Use the 64-Bit
GPR 59

Using the Assembler 64-bit Addressing Mode . . . 60
Non-Modal Instructions 61
Modal Instructions 61
Setting and Checking the Addressing Mode . . 62
Linkage Conventions 63
Pitfalls to Avoid 63

Part 3. Data Spaces and Virtual
Disks 65

Chapter 8. Introducing Data Spaces . . 67
Basic Concepts 68

The ASC Modes 68
AR Mode and Data Spaces 69

Chapter 9. Using Access Registers . . 71
Using Access Registers for Data Reference 71

A Comparison of Data Reference in Primary and
AR Mode 74
Coding Instructions in AR Mode 75

Using z/Architecture Instructions to Manipulate the
Contents of Access Registers. 76

Example of Loading an ALET into an AR . . . 77
The ALESERV Macro 80
Setting Up Addressability to a Data Space 81

Adding an Entry to an Access List. 81
Example of Adding an Access List Entry for a
Data Space 82
Obtaining and Passing ALETs and STOKENs . . 83
Examples of Establishing Addressability to Data
Spaces 83

Deleting an Entry from an Access List 88
Example of Deleting a Data Space Entry from an
Access List 88
ALET Reuse by the System 89

Chapter 10. Creating and Using Data
Spaces. 91
Referencing Data in a Data Space 91
Relationship Between the Data Space and Its Owner 92

SCOPE=SINGLE, SCOPE=ALL, and
SCOPE=COMMON Data Spaces 92

Rules for Creating, Deleting, and Using Data Spaces 93
Example of the Rules for Accessing Data Spaces 93

Summary of Rules for Creating, Deleting, and Using
Data Spaces 96
Creating a Data Space 97

Choosing the Name of a Data Space 97
Specifying the Size of the Data Space 97
Identifying the Origin of the Data Space 99
Example of Creating a Data Space 99
Establishing Addressability to a Data Space . . 100
Managing Data Space Storage 100
Limiting Data Space Use 100
Serializing Use of Data Space Storage 101
Protecting Data Space Storage 101

Examples of Moving Data Into and Out of a Data
Space 102

Programming Notes for Example 2 104
Extending the Current Size of a Data Space . . . 104
Deleting a Data Space 105

Example of Deleting a Data Space 105
Example of Creating, Using, and Deleting a Data
Space 105
Creating and Using SCOPE=COMMON Data
Spaces 107

Programming Considerations 108
Attaching a Subtask and Sharing Data Spaces with
It 109

Example of Attaching a Task and Passing a
DU-AL 110

Releasing Data Space Storage 110
Using Data Spaces Efficiently 110
Dumping and Displaying Data Space Storage. . . 111

Chapter 11. Creating and Using Virtual
Disks 113
Planning for Virtual Disks 113
Creating Virtual Disks 113

ADD Command 114
SYSDEF Command 114
VDISK Command 114
Defining a Virtual Disk via the Interactive
Interface 115

Getting Information about Virtual Disks 115
VOLUME Command 115
QUERY DSPACE Command 116

Deleting or Redefining Virtual Disks. 116
Programming Notes 116

Supported CCW Codes for Virtual Disks . . . 116
GETVCE Macro 117

Part 4. Programming
Enhancements 119

iv z/VSE V5R1 Extended Addressability

Chapter 12. Linkage Stack Functions 121
Introduction 121
Linkage Stack Characteristics 121
Instructions for Adding or Removing a Linkage
Stack Entry 122

The Stacking PC (Program Call) Instruction . . 122
The BAKR (Branch and Stack) Instruction . . . 122
The PR (Program Return) Instruction 122

Instructions to Work with Linkage Stack Entries
and their Contents. 123
Using the STXIT and EXIT Macro in Connection
with Linkage Stack 123

Chapter 13. Callable Cell Pool
Services 125
Characteristics of a Cell Pool 125
Storage Considerations 126
Link-Editing Programs Using Callable Cell Pool
Services 127
Using Callable Cell Pool Services 127

The CALL Macro 127
Available Cell Pool Services 128
Creating a Cell Pool 128
Adding an Extent and Connecting it to the Cell
Storage 128
Contracting a Cell Pool, Deactivating its Extents,
and Disconnect its Storage 128
Reusing a Deactivated and Disconnected Extent 129
Allocating Cells and Deallocate Previously
Allocated Cells 129
Obtaining Status Information About a Cell Pool 129
Invocation Requirements 130
Register Usage 130
Return Codes 130

Cell Pool Services Coding Example 130

Part 5. Appendixes 133

Appendix A. Linkage Editor and
Librarian Support 135
Linkage Editor Support for 31-Bit Addressing . . 135

Maximum Size of a Phase 135
Assigning the AMODE 135
Assigning the RMODE 136
AMODE/RMODE Hierarchy 137
Handling of Invalid AMODE/RMODE
Combinations 139

Further Information 139
Librarian Support for 31-Bit Addressing 140

Punching a Phase 140
LISTDIR Output 141
SET SDL Processing 141

Appendix B. Macro and Command
Support 143
z/VSE Macros and Their Mode Dependencies . . 143
Macro Support for 31-Bit Addressing 147

AMODESW Macro 147
Storage Management Macros 148
Page Management Macros 149
Program Load and Retrieval Macros. 149
Task Communication Macros 150
I/O Processing Support for 31-Bit Addressing 152
Other Macros 153

Macro Support for 64-bit Addressing 155
Macro and Command Support for Data Spaces . . 155

ALESERV Macro 156
ATTACH ALCOPY Macro 157
DSPSERV Macro 157

Appendix C. Channel Program
Support for Virtual Disks 161
Channel Commands 161

DEFINE EXTENT (X'63'). 162
LOCATE (X'43') 164
READ (X'42') 165
WRITE (X'41') 166
NO-OPERATION (X'03') 166
SENSE (X'04') 166
TRANSFER IN CHANNEL 167
SENSE ID (X'E4') 167
READ DEVICE CHARACTERISTICS (X'64') . . 167

Flags 168
Sense Information 169

Information Returned to a Sense Command . . 169
Fault Symptom Code (Bytes 22-23) of Sense
Information 169

Glossary 173

Index 181

Contents v

vi z/VSE V5R1 Extended Addressability

Figures

1. Maintaining Correct Interfaces to Programs 10
2. Example of How to Use the SPLEVEL Macro 15
3. Possible AMODE and RMODE Combinations 17
4. AMODE and RMODE Processing by the

Linkage Editor 21
5. Mode Switching to Retrieve Data from Above

16 MB 23
6. Linkage Between Modules with Different

AMODEs and RMODEs 26
7. BRANCH and SAVE and Set Mode (BASSM)

Description 27
8. Branch and Set Mode (BSM) Description 28
9. Using BASSM and BSM 29

10. Example of Pointer-Defined Linkage 30
11. Example of a Linkage Assist Routine 32
12. Cap for an AMODE 24 Program 35
13. Performing I/O While Residing Above 16 MB 38
14. Using Memory Objects in the 64-Bit Address

Space 46
15. Example of an AR/GPR 72
16. Using an ALET to Identify an Address/Data

Space 73
17. The MVC Instruction in Primary Mode 74
18. The MVC Instruction in AR Mode 75
19. Comparison of Addressability through a

PASN-AL and a DU-AL 79

20. Example 1: Adding an Entry to a DU-AL 84
21. Example 1: Sharing a Data Space through

DU-ALs. 85
22. Example 2: Adding an Entry to a PASN-AL 86
23. Example 2: Sharing a Data Space through the

PASN-AL 87
24. Example 3: Sharing Data Spaces Between two

Partitions 88
25. Example of Rules for Accessing Data Spaces 95
26. Example of Specifying the Size of a Data Space 99
27. Protecting Storage in a Data Space 102
28. Example of Extending the Current Size of a

Data Space 105
29. Example of Using a SCOPE=COMMON Data

Space 108
30. Two Programs Sharing a SCOPE=SINGLE

Data Space 109
31. Response Example to a VOLUME Command 116
32. Cell Pool Storage 126
33. Format-0 CCW 152
34. Format-1 CCW 152
35. Performing I/O While Residing Above 2 GB

Bar 155

© Copyright IBM Corp. 1993, 2013 vii

viii z/VSE V5R1 Extended Addressability

Tables

1. Establishing Correct Interfaces to Programs
that Move Above 16 MB 11

2. IARV64 Services and Rules for What Programs
Do with Memory Objects 47

3. Base and Index Register Addressing in AR
Mode 75

4. Functions of the ALESERV Macro 80
5. Creating, Deleting, and Using Data Spaces 96
6. Implied AMODE or RMODE 140
7. z/VSE macros and their mode dependencies 144

8. ATTACH Macro and Its AMODE/RMODE
Characteristics 150

9. POST Macro and Its AMODE/RMODE
Characteristics 151

10. Supported CCW Command Flags 168
11. General Fault Symptom Codes 169
12. Fault Symptom Codes for DEFINE EXTENT 169
13. Fault Symptom Codes for LOCATE 170
14. Fault Symptom Codes for READ 170
15. Fault Symptom Codes for WRITE. 171

© Copyright IBM Corp. 1993, 2013 ix

x z/VSE V5R1 Extended Addressability

Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any of
the intellectual property rights of IBM may be used instead of the IBM product,
program, or service. The evaluation and verification of operation in conjunction
with other products, except those expressly designated by IBM, are the
responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785, U.S.A.

Any pointers in this publication to non-IBM websites are provided for convenience
only and do not in any manner serve as an endorsement. IBM accepts no
responsibility for the content or use of non-IBM websites specifically mentioned in
this publication or accessed through an IBM website that is mentioned in this
publication.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:
IBM Deutschland GmbH
Dept. M358
IBM-Allee 1
71139 Ehningen
Germany

Such information may be available, subject to appropriate terms and conditions,
including in some cases payment of a fee.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at "Copyright and
trademark information" at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

© Copyright IBM Corp. 1993, 2013 xi

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

IPv6/VSE is a registered trademark of Barnard Software, Inc.

xii z/VSE V5R1 Extended Addressability

Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/VSE enable users to:
v Use assistive technologies such as screen readers and screen magnifier software
v Operate specific or equivalent features using only the keyboard
v Customize display attributes such as color, contrast, and font size

Using Assistive Technologies
Assistive technology products, such as screen readers, function with the user
interfaces found in z/VSE. Consult the assistive technology documentation for
specific information when using such products to access z/VSE interfaces.

Documentation Format
The publications for this product are in Adobe Portable Document Format (PDF)
and should be compliant with accessibility standards. If you experience difficulties
when you use the PDF files and want to request a web-based format for a
publication, you can either write an email to s390id@de.ibm.com, or use the Reader
Comment Form in the back of this publication or direct your mail to the following
address:
IBM Deutschland Research & Development GmbH
Department 3282
Schoenaicher Strasse 220
D-71032 Boeblingen
Federal Republic of Germany

In the request, be sure to include the publication number and title.

When you send information to IBM, you grant IBM a nonexclusive right to use or
distribute the information in any way it believes appropriate without incurring any
obligation to you.

© Copyright IBM Corp. 1993, 2013 xiii

xiv z/VSE V5R1 Extended Addressability

About This Book

This manual describes the support summarized as extended addressability and
which is available with Version 5 Release 1 of IBM® z/VSE. z/VSE belongs to the
z/Architecture® operating systems designed for the z/Architecture environment.

Who Should Use This Book
The manual is intended mainly for those who plan and write programs and
applications for a z/VSE customer environment. A knowledge of z/VSE and
assembler programming is required.

How to Use This Book
The information in this manual is divided into five parts:

Part 1. 31-Bit Addressing Support
Part 2. 64-Bit Addressing Support
Part 3. Data Spaces and Virtual Disks
Part 4. Programming Enhancements
Part 5. Appendixes

Part 4 provides additional usage information for the topics discussed in Part 1 and
Part 2.

Where to Find More Information
Related manuals are cited in the text where appropriate. In general, the
information provided in this manual is closely related to the information provided
in the following z/Architecture Principles of Operation IBM manual.

z/VSE Home Page

z/VSE has a home page on the World Wide Web, which offers up-to-date
information about VSE-related products and services, new z/VSE functions, and
other items of interest to VSE users.

You can find the z/VSE home page at

http://www.ibm.com/systems/z/os/zvse/

You can also find VSE User Examples (in zipped format) at

http://www.ibm.com/systems/z/os/zvse/downloads/samples.html

© Copyright IBM Corp. 1993, 2013 xv

http://www.ibm.com/systems/z/os/zvse/
http://www.ibm.com/systems/z/os/zvse/downloads/samples.html

xvi z/VSE V5R1 Extended Addressability

Summary of Changes

These are the enhancements that have been made available via the June 2013
Service Upgrade of z/VSE 5.1:
v The support for I/O operations on memory objects is new. See “Using 64-Bit

Virtual I/O Operations on Memory Objects” on page 58.

These are the new items and changes that were delivered at General Availability of
z/VSE V5R1:

v A chapter has been introduced that describes how you can use the 64-bit address
space via memory objects to obtain additional virtual storage. See Chapter 7,
“Using the 64-Bit Address Space,” on page 43.

v The table contained in “z/VSE Macros and Their Mode Dependencies” on page
143 now includes AMODE64 information related to the use of the 64-bit address
space and memory objects.

v Other minor changes and improvements have been included in this manual.

© Copyright IBM Corp. 1993, 2013 xvii

xviii z/VSE V5R1 Extended Addressability

Part 1. 31-Bit Addressing Support

Chapter 1. Introducing 24-Bit / 31-Bit AMODE and
RMODE 3
General Considerations for AMODE and RMODE . . 3

AMODE (Addressing Mode) 3
RMODE (Residency Mode) 4
Specifying AMODE and RMODE 4
AMODE and RMODE Combinations at
Program-Run Time 4

Programming Aspects 4
AMODE 4
RMODE 5
Programs that Must Reside Below 16 MB 5
Rules and Conventions for 31-Bit Addressing . . 5
Changing the AMODE 6
Mode Sensitive Instructions 6

BAL and BALR 6
LA. 7
LRA 7

AMODE Processing Capabilities 7
BASSM and BSM 7
BAS and BASR 7
SAM24 and SAM31 7
AMODESW Macro 8
Note on the CALL macro: 8

z/VSE System Services and 31-Bit Addressing . . 8

Chapter 2. Planning for 31-Bit Programs 9
Converting Existing Programs 9

Converting a Program to Use 31-Bit Addresses 10
Moving a Program above 16 MB 10

Writing New Programs that Use 31-Bit Addresses . 12
New Programs below 16 MB 13
New Programs above 16 MB. 13
Writing 31-Bit Programs for a Mixed z/VSE
Environment 13

Dual Programs 14
Using the SPLEVEL Macro 14

Chapter 3. Using AMODE and RMODE to Specify
24-Bit / 31-Bit Addressing Modes 17

AMODE and RMODE Combinations 17
AMODE and RMODE Combinations at Execution
Time. 18

Determining the AMODE and RMODE of a
Phase 18

High Level Assembler Support of AMODE and
RMODE 18

AMODE and RMODE in the Object Module . . 18
AMODE and RMODE Assembler Instructions . . 19

Linkage Editor Support of AMODE and RMODE. . 20
Linkage Editor RMODE Processing 22

How to Change the AMODE 22

Chapter 4. Establishing Linkage in a 31-Bit
Addressing Environment 25
Using the BASSM and BSM Instructions 27

Calling and Returning with BASSM and BSM . . 28
Using Pointer-Defined Linkage 29

Using an ADCON to Obtain a Pointer-Defined
Value 30
Using the CDLOAD/LOAD Macro to Obtain a
Pointer-Defined Value 31

Linkage Assist Routines 31
Example of Using a Linkage Assist Routine. . . 31

Using Capping - Linkage Using a Prologue and
Epilogue 35

Chapter 5. I/O Processing in a 31-Bit
Environment 37
Performing I/O in 31-Bit Mode. 37

Using the EXCP Macro for I/O to Virtual Storage
Above 16 MB. 37
Example of Performing I/O While Residing
Above 16 MB. 37

Chapter 6. Real Storage Considerations for User
Programs (31-Bit Addressing) 39

1. The information and examples provided for 31-bit addressing in this manual are based on functions of the
High Level Assembler.

2. High Level Assembler refers to High Level Assembler Version 1.6 for z/OS, z/VM, and z/VSE, which is a base
program of Version 5 Release 1 of IBM z/VSE.

© Copyright IBM Corp. 1993, 2013 1

2 z/VSE V5R1 Extended Addressability

Chapter 1. Introducing 24-Bit / 31-Bit AMODE and RMODE

This chapter provides an introduction to 24-bit and 31-bit program addressing
modes.

A program can have one of the following addressing modes:
v 24-bit addressing mode (a 24-bit program). Specified using the AMODE 24 and

RMODE 24 program attributes.
v 31-bit addressing mode (a 31-bit program). Specified using the AMODE 31 and

RMODE ANY program attributes.

The use of AMODE and RMODE to specify 24-bit and 31-bit addressing modes are
discussed in the remainder of this chapter.

Note: z/VSE does not support AMODE and RMODE attributes for 64-bit
addressing. For details of the 64-bit addressing mode, see Chapter 7, “Using the
64-Bit Address Space,” on page 43.

General Considerations for AMODE and RMODE
To determine whether a program is to run below 16 MB or above 16 MB, z/VSE
analyses the program attributes AMODE and RMODE assigned to a program.
AMODE and RMODE are the programmer's specification of the addressing mode
in which a program is expected to get control and where a program is expected to
reside in virtual storage.

AMODE (Addressing Mode)
AMODE is a program attribute that can be specified or is assigned as default for
each CSECT or phase. It refers to the address length a program is prepared to
handle when it gets control. For AMODE, you can specify one of the following
values:

AMODE 24
The program is designed to receive control in 24-bit addressing mode. In
this mode, the processor treats all virtual addresses as 24-bit values.

AMODE 31
The program is designed to receive control in 31-bit addressing mode. In
this mode, the processor treats all virtual addresses as 31-bit values.

AMODE ANY
The program is designed to receive control in either 24-bit or 31-bit
addressing mode. The final decision about 24-bit or 31-bit addressing mode
is open until the program receives control.

© Copyright IBM Corp. 1993, 2013 3

RMODE (Residency Mode)
RMODE is a program attribute that can be specified (or is assigned as default) for
each CSECT or phase. RMODE states the virtual storage location (either below
16 MB or anywhere in virtual storage) where the program is expected to reside. For
RMODE, you can specify one of the following values:

RMODE 24
The program is designed to reside below 16 MB in virtual storage.

RMODE ANY
The program is designed to reside at any virtual storage location, either
above or below 16 MB but always below the 2 GB bar.

Specifying AMODE and RMODE
Programmers can specify AMODE and RMODE for new programs but also for old
programs through:
1. Reassembly or recompilation.

Addressing mode and residency mode can be specified in the High Level
Assembler or VS COBOL II.

2. Using the linkage editor MODE control statement or PARM values in the EXEC
LNKEDT statement.

z/VSE assigns default attributes to any program that does not have AMODE and
RMODE specified.

AMODE and RMODE Combinations at Program-Run Time
When the program gets control at execution time, there are only three valid
AMODE/RMODE combinations:
1. AMODE 24, RMODE 24, which is the default.
2. AMODE 31, RMODE 24
3. AMODE 31, RMODE ANY

Programming Aspects

AMODE
A program's AMODE attribute determines whether the program is to receive
control in 24-bit or 31-bit addressing mode. Once a program gets control, the
program can change the AMODE if necessary.

In 24-bit addressing mode, the processor treats all virtual addresses as 24-bit
values. This makes it impossible for a program in 24-bit addressing mode to
address virtual storage with an address greater than 16,777,215 (16 MB) because
that is the largest number a 24-bit binary field can hold. In 31-bit addressing mode,
the processor treats all virtual addresses as 31-bit values.

The ability of a processor to permit the execution of programs in 24-bit addressing
mode as well as programs in 31-bit addressing mode is referred to as bimodal
operation.

Processors which support bimodal operation ensure that both, new programs and
most old programs, can execute correctly. Bimodal operation is necessary because
certain coding practices in existing programs depend on 24-bit addresses. For
example:

24-Bit / 31-Bit AMODE and RMODE (Introduction)

4 z/VSE V5R1 Extended Addressability

v Some programs use a 4-byte field for a 24-bit address and place flags in the
high-order byte.

v Some programs use the LA instruction to clear the high-order byte of a register.
(In 24-bit addressing mode, LA clears the high-order byte; in 31-bit addressing
mode, it clears only the high-order bit).

v Some programs depend on BAL and BALR to return the ILC (instruction length
code), the CC (condition code), and the program mask. BAL and BALR return
this information in 24-bit addressing mode. In 31-bit addressing mode they do
not.

Each phase has an AMODE attribute. A CSECT can have only one AMODE, which
applies to all its entry points. Different CSECTs of a phase can have different
AMODEs.

RMODE
Each phase has an RMODE attribute. RMODE specifies where a program is
expected to reside in virtual storage:
v RMODE 24 indicates that a program is coded to reside in virtual storage below

16 MB.
v RMODE ANY indicates that a program is coded to reside anywhere in virtual

storage - either above or below 16 MB but always below the 2 GB bar.

Programs that Must Reside Below 16 MB
The following types of programs must reside below 16 MB (addressable by 24-bit
callers):
v Programs that have the AMODE 24 attribute
v Programs that have the AMODE ANY attribute
v Programs that use system services that require their callers to be AMODE 24
v Programs that use system services that require their callers to be RMODE 24
v Programs that must be addressable by callers with AMODE 24.
v Programs that use 2-byte or 3-byte relocatable address constants.

Programs without these characteristics can reside anywhere in virtual storage.

Rules and Conventions for 31-Bit Addressing
It is important to distinguish the rules from the conventions when describing 31-bit
addressing. There are only two rules, and they are associated with the hardware
(processor):
1. The length of address fields is controlled by the A-mode bit (bit 32) in the PSW

(program status word). When bit 32=1, addresses are treated as 31-bit values.
When bit 32=0, addresses are treated as 24-bit values.
Any data passed from a 31-bit addressing mode program to a 24-bit addressing
mode program must reside in virtual storage below 16 MB (A 24-bit addressing
mode program cannot reference data above 16 MB without changing
addressing mode).

2. The A-mode bit affects the way some instructions work.

The conventions, on the other hand, are more extensive. Programs using system
services must follow these conventions.
v A program must return control in the same addressing mode in which it

received control.

24-Bit / 31-Bit AMODE and RMODE (Introduction)

Chapter 1. Introducing 24-Bit / 31-Bit AMODE and RMODE 5

v A program expects 24-bit addresses from 24-bit addressing mode programs and
31-bit addresses from 31-bit addressing mode programs.

v A program should validate the high-order byte of any address passed by a 24-bit
addressing mode program before using it as an address in 31-bit addressing
mode.

Changing the AMODE
To change addressing mode it is necessary to change the value of the PSW A-mode
bit. This can be done in one of the following ways:
v By using the mode setting instructions BASSM and BSM.
v By using the z/VSE AMODESW macro (there is no AMODE 64 support).
v By using the addressing mode setting instructions SAM24, SAM31 and SAM64.

Refer also to “How to Change the AMODE” on page 22.

Mode Sensitive Instructions
The processor is sensitive to the addressing mode that is in effect (the setting of the
PSW AMODE bit). The current PSW controls instruction sequencing. The
instruction address field in the current PSW contains either a 24-bit address, 31-bit
address, or 64-bit address depending on the current setting of the PSW AMODE
bits (bits 31 and 32). For those instructions that develop or use addresses, the
addressing mode in effect in the current PSW determines whether the addresses
are 24, 31, or 64 bits long.

The z/Architecture Principles of Operation manual provide a complete description of
the instructions available. The following topics provide an overview of mode
sensitive and branching instructions regarding the 24-bit and 31-bit addressing
modes. The 64-bit addressing mode is described in Chapter 7, “Using the 64-Bit
Address Space,” on page 43.

BAL and BALR
BAL and BALR are addressing-mode sensitive. In 24-bit addressing mode, BAL
and BALR put link information into the high-order byte of the first operand
register and put the return address into the remaining three bytes before
branching.

In 31-bit addressing mode, BAL and BALR put the return address into bits 1
through 31 of the first operand register and save the current addressing mode in
the high-order bit. Because the addressing mode is 31-bit, the high-order bit is
always a 1.

24-Bit / 31-Bit AMODE and RMODE (Introduction)

6 z/VSE V5R1 Extended Addressability

When executing in 31-bit addressing mode, BAL and BALR do not save the
instruction length code, the condition code, or the program mask.

LA
The LA (load address) instruction, when executed in 31-bit addressing mode, loads
a 31-bit value and clears the high-order bit. When executed in 24-bit addressing
mode, it loads a 24-bit value and clears the high-order byte.

LRA
When executed in the 24-bit or 31-bit addressing mode, the LRA (load real
address) instruction always results in a 31-bit real address. The virtual address
specified is based on the value of the PSW A-mode bits (bits 31 and 32) at the time
the LRA instruction is executed.

AMODE Processing Capabilities

BASSM and BSM
BASSM (branch and save and set mode) and BSM (branch and set mode) are
branching instructions that manipulate the PSW A-mode bits (bits 31 and 32).
Programs can use BASSM when branching to modules that might have different
addressing modes. Programs invoked through a BASSM instruction can use a BSM
instruction to return in the caller's addressing mode. BASSM and BSM are
described in more detail in Chapter 4, “Establishing Linkage in a 31-Bit Addressing
Environment,” on page 25.

BAS and BASR
BAS and BASR (branch and save) are branching instructions which
v Save the return address and the current addressing mode in the first operand.
v Replace the PSW instruction address with the branch address.

The high-order bit of the return address indicates the addressing mode. BAS and
BASR perform the same function that BAL and BALR perform in 31-bit addressing
mode. In 24-bit mode, BAS and BASR put zeroes into the high-order byte of the
return address register.

SAM24 and SAM31
The SAM24 and SAM31 (Set Addressing Mode) instructions only set AMODE 24
and AMODE 31. A previous AMODE setting is not saved.

24-Bit / 31-Bit AMODE and RMODE (Introduction)

Chapter 1. Introducing 24-Bit / 31-Bit AMODE and RMODE 7

AMODESW Macro
With the AMODESW macro, a program can switch addressing modes.

For a summary of the macro's functions refer to “AMODESW Macro” on page 147.

Note on the CALL macro:
The CALL macro does not change the AMODE; that is, the AMODE of the caller is
passed to the called program.

z/VSE System Services and 31-Bit Addressing
In addition to providing support for the use of 31-bit addresses by user programs,
z/VSE includes many system services that allow 31-bit addresses.

Some system services are independent of the AMODE of their callers. These
services accept callers in either AMODE 24 or AMODE 31 and use 31-bit parameter
address fields. They assume 24-bit addresses from AMODE 24 callers and 31-bit
addresses from AMODE 31 callers. Many supervisor macros are in this category.

Other services have restrictions with respect to address parameter values and
might require one or more parameter addresses to be below 16 MB. Some of these
services accept callers to be in AMODE 24 or AMODE 31, whereas others require
callers to be in AMODE 24.

Some services do not support 31-bit addressing. Refer to “z/VSE Macros and Their
Mode Dependencies” on page 143 for details.

24-Bit / 31-Bit AMODE and RMODE (Introduction)

8 z/VSE V5R1 Extended Addressability

Chapter 2. Planning for 31-Bit Programs

This chapter describes how you can convert your programs from 24-bit addressing
mode to 31-bit addressing mode.

A program can have one of the following addressing modes:
v 24-bit addressing mode (a 24-bit program), specified using the AMODE 24 and

RMODE 24 program attributes.
v 31-bit addressing mode (a 31-bit program), specified using the AMODE 31 and

RMODE ANY program attributes.
v 64-bit addressing mode (a 64-bit program), specified explicitly using the IARV64

macro. Such programs can create or maintain memory objects in the 64-bit
addressing area (above the 2 GB bar).

The 64-bit addressing mode is described in Chapter 7, “Using the 64-Bit Address
Space,” on page 43.

Most user programs that are running on earlier VSE/SP and VSE/ESA systems
will also run unchanged in AMODE 24 on z/VSE. It is recommended that the
partition in which such a program is running does not cross the 16 MB line.

Some programs need to be modified to execute in AMODE 31 and provide the
same functions. Still other programs need to be modified to run in AMODE 24.

The following sections helps you determine what changes to make to a program
you want to convert to AMODE 31 and what is to consider when writing new
31-bit code.

Some reasons for converting to AMODE 31 are:
v The program can use more virtual storage for tables, arrays, or additional logic.
v The program needs to reference control blocks that have been moved above

16 MB.
v The program is invoked by other AMODE 31 programs.
v The program must run in AMODE 31 because it is a user exit routine that the

system invokes in 31-bit mode.
v The program needs to invoke services that expect to get control in AMODE 31.

Converting Existing Programs
Keeping in mind that AMODE 31 programs can reside either below or above
16 MB (or cross the 16 MB line), you can convert existing programs as described
below.

© Copyright IBM Corp. 1993, 2013 9

Converting a Program to Use 31-Bit Addresses
This requires a change in AMODE only:
v You can change the entire module to use 31-bit addressing.
v You can change only that portion that requires 31-bit addressing mode

execution.

Be sure to consider whether or not the code has any dependencies on 24-bit
addresses. Such code does not produce the same results in 31-bit mode as it did in
24-bit mode. See “Mode Sensitive Instructions” on page 6 for an overview of
instructions that function differently depending on the AMODE.

At best, converting a program into 31-bit mode means just another linkage editor
run.

Figure 1 summarizes the actions required to maintain the proper interface with a
program you plan to change to AMODE 31.

Moving a Program above 16 MB
This requires a change in both AMODE and RMODE.

In general, you move an existing program above 16 MB because there is not
enough space below 16 MB. For example:
v An existing program or application is growing so large that it no longer fits

below 16 MB.
v An existing application that now runs as a series of separate programs, or that

executes in an overlay structure, would be easier to manage as one large
program.

v Code is in the SVA (24-Bit) and moving it to the SVA (31-Bit) would provide
more space for the private area below 16 MB.

Calling Program Invoked Program

Parameters are passed

AMODE 24 (intends to switch to AMODE 31)
RMODE 24

Requires indicated changes:

AMODE 24
RMODE 24

AMODE 31
RMODE 24

Minor recoding at the source
level to switch addressing
modes and to zero bits 1-7 of
the high-order bytes of
addresses used by AMODE 31
module that point to locations
below 16MB.

AMODE 24
RMODE 24

Minor recoding at the source
level to zero bits 1-7 of the
high-order bytes of addresses
used by AMODE 31 module
that point to locations below
16MB.

BASSM or

AMODESW CALL

BALR to another CSECT

BASSM or AMODESW CALL

Figure 1. Maintaining Correct Interfaces to Programs

Planning for 31-Bit Programs

10 z/VSE V5R1 Extended Addressability

The techniques used to establish proper interfaces to modules that move above
16 MB depend on the number of callers and the ways they invoke the program.
Table 1 summarizes the techniques for passing control. The programs involved
must ensure that any addresses passed as parameters are treated correctly
(high-order bytes of addresses to be used by a AMODE 31 program must be
validated or zeroed).

Table 1. Establishing Correct Interfaces to Programs that Move Above 16 MB

Means of Entry to Moved Module
(AMODE 31,RMODE ANY)

Few AMODE 24,RMODE 24
Callers

Many AMODE 24,RMODE 24
Callers

v BALR
or

v Macro LOAD and BASSM
instruction

or

v Macro CDLOAD and BASSM
instruction

v Have caller use macros
LOAD/CDLOAD and BASSM
instruction (invoked program
returns via BSM instruction)

or

v Change caller to AMODE 31,
RMODE 24 before performing call.

Create a linkage assist routine
(described in Chapter 4, “Establishing
Linkage in a 31-Bit Addressing
Environment,” on page 25). Give the
linkage assist routine the name of the
moved program.

BALR using an address in a common
control block

v Have caller switch to AMODE 31
via BSM instruction

or

v Change the address in the control
block to a pointer-defined value
(described in Chapter 4,
“Establishing Linkage in a 31-Bit
Addressing Environment,” on page
25) and use BASSM instruction.
The moved program uses
instruction BSM to return.

Create a linkage assist routine
(described in Chapter 4, “Establishing
Linkage in a 31-Bit Addressing
Environment,” on page 25).

Note: BASSM and BSM instructions can be replaced by the AMODESW macro. For
an example, refer to “How to Change the AMODE” on page 22.

In deciding whether or not to modify a program to execute in AMODE 31 either
below or above 16 MB, there are several considerations:
1. How and by what is the program entered?
2. What system and user services does the module use that do not support

AMODE 31 callers or parameters?
3. What kinds of coding practices does the program use that do not produce the

same results in AMODE 31 as in AMODE 24.
4. How are parameters passed? Can they reside above 16 MB?

Among the specific practices to check for are:
1. Does the module depend on the instruction length code, condition code, or

program mask placed in the high order byte of the return address register by a
24-bit mode BAL or BALR instruction? One way to determine some of the
dependencies is by checking all uses of the SPM (set program mask)
instruction. SPM might indicate places where BAL or BALR were used to save
the old program mask, which SPM might then have reset. The IPM (insert
program mask) instruction can be used to save the condition code and the
program mask.

2. Does the module use an LA instruction to clear the high-order byte of a
register? This practice will not clear the high-order byte in AMODE 31.

Planning for 31-Bit Programs

Chapter 2. Planning for 31-Bit Programs 11

3. Are any address fields that are less than 4 bytes still appropriate? Make sure
that a load instruction does not pick up a 4-byte field containing a 3-byte
address with extraneous data in the high-order byte. Make sure that bits 1-7 are
zero.

4. Does the program use the ICM (insert characters under mask) instruction? The
use of this instruction is sometimes a problem because it can put data into the
high-order byte of a register containing an address, or it can put a 3-byte
address into a register without first zeroing the register. If the register is then
used as a base, index, or branch address register in AMODE 31, it might not
contain the proper address.

5. Does the program invoke AMODE 24 programs? If so, shared data must be
below 16 MB.

6. Is the program invoked by AMODE 24 or 31 programs? Is the data in an area
addressable by the programs that need to use it? The data must be below
16 MB if used by an AMODE 24 program.

Writing New Programs that Use 31-Bit Addresses
You can write programs that execute in either AMODE 24 or AMODE 31.
However, to maintain an interface with existing programs and with some system
services, your AMODE 31 programs need subroutines or portions of code that
execute in AMODE 24. If your program resides below 16 MB, it can change to
AMODE 24 when necessary.

If your program resides above 16 MB, it needs a separate phase to perform the
linkage to an unchanged AMODE 24 program or service. Such phases are called
linkage assist routines and are described under Chapter 4, “Establishing Linkage in
a 31-Bit Addressing Environment,” on page 25.

When writing new programs, there are some things you can do to simplify the
passing of parameters between programs that might be in different addressing
modes. In addition, there are functions that you should consider and that you
might need to accomplish your program's objectives. Following is a list of
suggestions for coding programs to run on z/VSE:
v Use fullword fields for addresses even if the addresses are only 24 bits in length.
v When obtaining addresses from 3-byte fields in existing areas, use SR (subtract

register) to zero the register followed by ICM (insert characters under mask) in
place of the load instruction to clear the high-order byte. For example:

Rather than: L 1,A

use: SR 1,1
ICM 1,7,A+1

The 7 specifies a 4-bit mask of 0111. The ICM instruction shown inserts bytes
beginning at location A+1 into register 1 under control of the mask. The bytes to
be filled correspond to the 1 bits in the mask. Because the high-order byte in
register 1 corresponds to the 0 bit in the mask, it is not filled.

v If the program needs storage above 16 MB, obtain the storage by using the
GETVIS macro with LOC=ANY. This is the only form that allows you to obtain
storage above 16 MB. Do not use storage areas above 16 MB for system save
areas (subtask save areas, for example) and, possibly, parameters that need to be
passed to other programs.

v To make debugging easier, switch addressing modes only when necessary.
v Identify the intended AMODE and RMODE for the program in a prologue.

Planning for 31-Bit Programs

12 z/VSE V5R1 Extended Addressability

v User-written STXIT routines need to be aware of the restricted support of the BC
mode PSW fields in the new exit routine save area. Refer to “STXIT Macro” on
page 154 for details.

v The CALL macro cannot be used to switch the AMODE.

When writing new programs, you need to decide whether to use AMODE 24 or
AMODE 31.

For AMODE 24 you must write, for example, service routines that use system
services requiring entry in AMODE 24 or that must accept control directly from
AMODE 24 programs.

When you use AMODE 31, you must decide whether the new program should
reside above or below 16 MB (unless it is so large that it will not fit below). Your
decision depends on what programs and system services the new program invokes
and what kind of programs invoke it.

New Programs below 16 MB
The main reason for writing new AMODE 31 programs which reside below 16 MB
is to be able to address areas above 16 MB or to invoke AMODE 31 programs
while, at the same time, simplifying communication with existing AMODE 24
programs or system services.

Even though your program resides below 16 MB, you must be concerned about
dealing with programs that require entry in AMODE 24 or that require parameters
to be below 16 MB. Figure 6 on page 26 in Chapter 4, “Establishing Linkage in a
31-Bit Addressing Environment,” on page 25 contains more information about
parameter requirements.

New Programs above 16 MB
When you write new programs that reside above 16 MB, your main concerns are:
v Dealing with programs that require entry in AMODE 24 or that require

parameters to be below 16 MB. Note that these are concerns of any AMODE 31
program no matter where it resides.

v How programs that remain below 16 MB invoke the new program.

Writing 31-Bit Programs for a Mixed z/VSE Environment
Up to VSE/ESA 1.2, VSE/ESA supported 24-bit programs only. Starting with
VSE/ESA 1.3, VSE/ESA and later z/VSE support 31-bit addressing. This means
that for a mixed environment special considerations are necessary as outlined
below.

Programs designed to execute on systems with either 24 or 31-bit addressing mode
must use fullword addresses where possible and use no new functions. Programs
must also be aware of downward incompatible macros. Some of these can be
made downward compatible by using the SPLEVEL macro. Refer to “SPLEVEL
Macro” on page 153. If this is not possible, the old (downward level) macro library
must be used for compile or assembly.

Planning for 31-Bit Programs

Chapter 2. Planning for 31-Bit Programs 13

Dual Programs
Sometimes two programs may be required, one for each system. In this case, use
one of the following approaches:
v Keep each in a separate library/sublibrary.
v Keep both in the same library/sublibrary but under different names.

Using the SPLEVEL Macro
There exist macros where the level of the macro expansion generated during an
assembly depends on the value of an assembler language global SET symbol. If the
SET symbol value is 1, the system generates VSE/ESA 1.1/1.2 expansions; if it is 2
or 3, the system generates VSE/ESA 1.3 expansions; and if it is 4, the system
generates expansions suitable for VSE/ESA 2.1 and later.

The SPLEVEL macro allows programmers to change the value of the SET symbol.
The SPLEVEL macro shipped with VSE/ESA 2.1 sets a default value of 4 for the
SET symbol. Therefore, unless a program or installation specifically changes the
default value, the macros generated are VSE/ESA 2.1 macro expansions.

The SPLEVEL macro sets the SET symbol value for that program's assembly only
and affects only the expansions within the program being assembled. A single
program can include multiple SPLEVEL macros to generate different macro
expansions. The example in Figure 2 on page 15 shows how to obtain different
macro expansions within the same program and make a test at execution time to
determine which expansion to execute.

Planning for 31-Bit Programs

14 z/VSE V5R1 Extended Addressability

Certain macros produce a “map” of control blocks or parameter lists. These
mapping macros do not support the SPLEVEL macro. Mapping macros for
different levels of VSE systems are available only in the macro libraries for each
system. When programs use mapping macros, a different version of the program
may be needed for each system.

* DETERMINE WHICH SYSTEM IS EXECUTING
.
.

* PREPARE INPUT REGISTER
SUBSID INQUIRY,NAME=SUP,AREA=(2),LEN=(3)

* CHECK WHETHER PROGRAM IS RUNNING ON VSE/ESA 1.1/1.2,
* VSE/ESA 1.3, or VSE/ESA 2.1

USING XYZ,2
CLI IJBSVERS,X’06’
BNL SP4
CLI IJBSVERS,X’05’
BL SP5
CLI IJBSREL,X’02’
BNL SP3
DROP 2

* INVOKE THE VSE/ESA 1.1/1.2 VERSION OF THE PFIX MACRO
SP1 SPLEVEL SET=1

PFIX
B CONTINUE

SP3 EQU *
* INVOKE THE VSE/ESA 1.3 VERSION OF THE PFIX MACRO

SPLEVEL SET=3
PFIX
B CONTINUE

SP4 EQU *
* INVOKE THE VSE/ESA 2.1 VERSION OF THE PFIX MACRO

SPLEVEL SET=4
PFIX
B CONTINUE

SP5 VSE/SP NOT CONSIDERED
CONTINUE EQU *

.

.
SUP DC C’SUP ’

.

.
XYZ MAPSSID

Figure 2. Example of How to Use the SPLEVEL Macro

Planning for 31-Bit Programs

Chapter 2. Planning for 31-Bit Programs 15

16 z/VSE V5R1 Extended Addressability

Chapter 3. Using AMODE and RMODE to Specify 24-Bit /
31-Bit Addressing Modes

This chapter describes how you can use AMODE and RMODE to specify 24-bit
and 31-bit addressing modes.

A program can have one of the following addressing modes:
v 24-bit addressing mode (a 24-bit program), specified using the AMODE 24 and

RMODE 24 program attributes.
v 31-bit addressing mode (a 31-bit program), specified using the AMODE 31 and

RMODE ANY program attributes.

For an overview of how AMODE and RMODE are used, refer to Chapter 1,
“Introducing 24-Bit / 31-Bit AMODE and RMODE,” on page 3.

Note: z/VSE does not support AMODE and RMODE attributes for 64-bit
addressing. For details of the 64-bit addressing mode, see Chapter 7, “Using the
64-Bit Address Space,” on page 43.

AMODE and RMODE Combinations
Figure 3 shows all possible AMODE and RMODE combinations and indicates
which are valid.

Note:

1. This combination is invalid because an AMODE 24 module cannot reside above
16 MB.

2. This is a valid combination in that the assembler and linkage editor accept it
from all sources. However, the combination is not used at execution time.
Specifying ANY is a way of deferring a decision about the actual AMODE until
the last possible moment before execution. At execution time, the module must
execute in either AMODE 24 or AMODE 31.

3. The attributes AMODE ANY/RMODE ANY take on a special meaning when
used together (this meaning might seem to disagree with the meaning of either
taken alone). A program with the AMODE ANY/RMODE ANY attributes will
execute on either a z/VSE system that does support 31-bit addresses or on a
z/VSE system that does not support 31-bit addresses if the program is
designed to:
v Use no facilities that are unique to 31-bit addressing.

Figure 3. Possible AMODE and RMODE Combinations

© Copyright IBM Corp. 1993, 2013 17

v Execute entirely in AMODE 31 on a system that supports 31-bit addresses
and returns control to its caller in AMODE 31 (the AMODE could be
different from invocation to invocation).

v Execute entirely in 24-bit addressing mode on a system without 31-bit
addressing.

The linkage editor accepts this combination from the object module but not
from the PARM field of the linkage editor EXEC statement or the linkage editor
MODE control statement. Refer also to “AMODE/RMODE Combinations from
the ESD” on page 138.

AMODE and RMODE Combinations at Execution Time
At execution time, there are only three valid AMODE/RMODE combinations:
1. AMODE 24, RMODE 24, which is the default
2. AMODE 31, RMODE 24
3. AMODE 31, RMODE ANY

Determining the AMODE and RMODE of a Phase
There are various ways to find out the AMODE and RMODE assigned to a phase:
v You can look at the source code (AMODE/RMODE statement of the High Level

Assembler) to determine the AMODE and RMODE intended for the program.
However, the linkage editor can override these specifications.

v You can look at the linkage editor map which lists the AMODE and RMODE of
the phase and of each CSECT included in the phase. Refer to z/VSE Diagnosis
Tools for a description of the linkage editor map.

v You can create a librarian LISTDIR printout or display which shows the AMODE
and RMODE of the phases stored in a sublibrary.

v You can use the CDLOAD and LOAD macros as described in the manual z/VSE
System Macros Reference.

High Level Assembler Support of AMODE and RMODE
The High Level Assembler supports AMODE and RMODE assembler instructions.
By using such instructions, you can specify an AMODE and an RMODE to be
associated with a control section, an unnamed control section, or a named common
control section.

AMODE and RMODE in the Object Module
The assembler also checks for the following error conditions:
v Multiple AMODE/RMODE statements for a single control section
v An AMODE/RMODE statement with an incorrect or missing value
v An AMODE/RMODE statement whose name field is not that of a valid control

section in the assembly.

24-Bit / 31-Bit AMODE and RMODE

18 z/VSE V5R1 Extended Addressability

AMODE and RMODE Assembler Instructions
The AMODE instruction specifies the addressing mode to be associated with a
CSECT in an object module. The format of the AMODE instruction is:

The name field associates the addressing mode with a control section. If there is a
symbol in the name field of an AMODE statement, that symbol must also appear
in the name field of a START, CSECT, or COM statement in the assembly. If the
name field is blank, there must be an unnamed control section in the assembly.

Similarly, the name field associates the residency mode with a control section. The
RMODE statement specifies the residency mode to be associated with a control
section. The format of the RMODE instruction is:

Both the RMODE and AMODE instructions can appear anywhere in the assembly.
Their appearance does not initiate an unnamed CSECT. There can be more than
one RMODE (or AMODE) instruction per assembly, but they must have different
name fields.

The High Level Assembler selects the following defaults when AMODE, RMODE,
or both are not specified:

Specified
Defaulted

Neither
AMODE 24 RMODE 24

AMODE 24
RMODE 24

AMODE 31
RMODE 24

AMODE ANY
RMODE 24

RMODE 24
AMODE 24

RMODE ANY
AMODE 31

24-Bit / 31-Bit AMODE and RMODE

Chapter 3. Using AMODE and RMODE to Specify 24-Bit / 31-Bit Addressing Modes 19

Linkage Editor Support of AMODE and RMODE

Note: Under Appendix A, “Linkage Editor and Librarian Support,” on page 135
you find additional background information about the 31-bit support provided by
the linkage editor.

The linkage editor accepts AMODE and RMODE specifications from any or all of
the following:
v ESD (external symbol dictionary) entries in object modules.
v PARM field of the linkage editor EXEC statement. For example:

// EXEC LNKEDT,PARM=’AMODE=31,RMODE=ANY,.....’

PARM field input overrides object module input.
v Linkage editor MODE control statements. For example:

MODE AMODE(31),RMODE(24)

MODE control statement input overrides object module and PARM field input.

Linkage editor processing results in AMODE and RMODE indicators located in the
library directory entry for the phase linked.

The linkage editor creates AMODE/RMODE indicators in the library directory
entry based not only on input from the object module but also on the PARM field
of the linkage editor EXEC statement and the MODE control statements. The last
two sources of input override indicators from the object module. Figure 4 on page
21 shows linkage editor processing of AMODE and RMODE.

24-Bit / 31-Bit AMODE and RMODE

20 z/VSE V5R1 Extended Addressability

Note: The linkage editor uses default values of AMODE 24/RMODE 24 whenever
an assembler or compiler does not support AMODE/RMODE or if they are not
specified.

The linkage editor recognizes as valid the following combinations of AMODE and
RMODE:

AMODE 24 RMODE 24

AMODE 31 RMODE 24

AMODE 31 RMODE ANY

AMODE ANY RMODE 24

Assemble Input Linkage Editor Input

Linkage Editor Processing

For each CSECT,
AMODE/RMODE
specified by
assembler
statements or
defaulted to 24/24

Object module -
contains AMODE/
RMODE.

System obtains AMODE and RMODE
from library directory entry.

IBM High Level
Assembler Version 1

Processes AMODE/RMODE
values from object module.
Puts AMODE/RMODE into
library directory entry
of phase created.

Processes optional PARM
values and/or MODE control
statements that override
object module values.
Puts AMODE/RMODE into
library directory entry.

Optional AMODE/
RMODE PARM
values from JCL
EXEC LNKEDT
statement and/or
MODE control
statement.

Figure 4. AMODE and RMODE Processing by the Linkage Editor

24-Bit / 31-Bit AMODE and RMODE

Chapter 3. Using AMODE and RMODE to Specify 24-Bit / 31-Bit Addressing Modes 21

AMODE ANY RMODE ANY

The linkage editor accepts the ANY/ANY combination from the object module but
does not accept ANY/ANY from the PARM value or the MODE control statement.

The assignment of the AMODE/RMODE combination ANY/ANY to a CSECT may
be useful when the CSECT is a common routine which may run in both addressing
modes and may be located anywhere in storage. Refer also to page 139 for details
about assigning AMODE/RMODE to the entry point of a phase marked with
AMODE ANY/RMODE ANY.

Any AMODE value specified alone in the PARM field or MODE control statement
implies an RMODE of 24. Likewise, an RMODE of ANY specified alone implies an
AMODE of 31. However, for RMODE 24 specified alone, the linkage editor does
not assume an AMODE value. Instead, it uses the AMODE value specified for the
CSECT containing the entry point for the phase.

Linkage Editor RMODE Processing
In constructing a phase, the linkage editor is frequently requested to combine
multiple CSECTs.

The linkage editor determines the RMODE of each CSECT. If the RMODEs are all
the same, the linkage editor assigns that RMODE to the phase. If the RMODEs are
not the same (ignoring the RMODE specification on common sections), the more
restrictive value, RMODE 24, is chosen as RMODE for the phase.

The RMODE chosen can be overridden by the RMODE specified in the PARM field
of the linkage editor EXEC statement. Likewise, the PARM field RMODE can be
overridden by the RMODE value specified on the linkage editor MODE control
statement.

z/VSE treats programs in overlay structure as RMODE 24 programs. To build
overlay programs, you can use PHASE statements where the origin in the
statement is defined as "ROOT", as a "symbol", or as "*", but not if it is the first
phase of a link-editing run. All phases of an link-editing job step containing such
PHASE statements are assigned an RMODE of 24, regardless of the ESD data, the
PARM field parameter, or the MODE control statement operand.

How to Change the AMODE
To change the addressing mode you must change the value of the PSW AMODE
bit.

The High Level Assembler example in Figure 5 on page 23 illustrates how to make
a 24-bit addressing mode program to retrieve data from an area, which might
reside above 16 MB. The example works correctly whether or not the area is
actually above 16 MB.

The example shows three ways of switching the AMODE:
v By using the BSM instruction,
v By using the AMODESW macro,
v By using the SAM24 and SAM31 instructions.

24-Bit / 31-Bit AMODE and RMODE

22 z/VSE V5R1 Extended Addressability

In the example, the L 2,4(,15) instruction must be executed in AMODE 31l, if
register 15 points to an area above 16 MB. The LA 12,0(,12) instruction clears the
high-order byte of the base register to ensure that its contents are correct in
AMODE 31.

The example in Figure 5 shows what is to be changed for switching an address
mode.

USER CSECT
USER RMODE 24
USER AMODE 24

BALR 12,0 LOAD BASE REGISTER
USING *,12 ESTABLISH ADDRESSABILITY
LA 12,0(,12) CLEAR HIGH-ORDER BYTE

*
* Variant 1 - change the addressing mode using the BSM command

L 1,LABEL1 SET HIGH-ORDER BIT OF REGISTER 1 TO 1
AND PUT ADDRESS INTO BITS 1-31

BSM 0,1 SET AMODE 31 (DOES NOT PRESERVE AMODE)
LABEL1 DC A(LABEL2 + X’80000000’)
LABEL2 DS 0H

L 2,4(,15) OBTAIN DATA FROM ABOVE 16MB
LA 1,LABEL3 SET HIGH-ORDER BIT OF REGISTER 1 TO 0

AND PUT ADDRESS INTO BITS 1-31
BSM 0,1 SET AMODE 24 (DOES NOT PRESERVE AMODE)

LABEL3 DS 0H
*
* Variant 2 - change the addressing mode using the AMODESW macro

AMODESW SET,AMODE=31 SET AMODE 31 (DOES NOT PRESERVE AMODE)
L 2,4(,15) OBTAIN DATA FROM ABOVE 16MB
AMODESW SET,AMODE=24 SET AMODE 24 (DOES NOT PRESERVE AMODE)

*
* Variant 3 - change the addressing mode using the SAM24 and SAM31
* commands

SAM31 SET AMODE 31 (DOES NOT PRESERVE AMODE)
L 2,4(,15) OBTAIN DATA FROM ABOVE 16MB
SAM24 SET AMODE 24 (DOES NOT PRESERVE AMODE)

Figure 5. Mode Switching to Retrieve Data from Above 16 MB

24-Bit / 31-Bit AMODE and RMODE

Chapter 3. Using AMODE and RMODE to Specify 24-Bit / 31-Bit Addressing Modes 23

24 z/VSE V5R1 Extended Addressability

Chapter 4. Establishing Linkage in a 31-Bit Addressing
Environment

This section describes the mechanics of correct linkage in an 31-bit addressing
environment. Keep in mind that there are considerations other than linkage, such
as locations of areas that both the calling module and the invoked module need to
address.

As shown in Figure 6 on page 26, it is the linkage between modules whose
addressing modes are different that is an area of concern. The areas of concern that
appear in Figure 6 on page 26 fall into two basic categories:
v Addresses passed as parameters from one routine to another must be addresses

that both routines can use.
– High-order bytes of addresses must contain zeroes or data that the receiving

routine is programmed to expect.
– Addresses must be less than 16 MB if they could be passed to a AMODE 24

program.
v On transfers of control between programs with different AMODEs, the receiving

routine must get control in the AMODE it needs and return control to the calling
routine in the AMODE the calling routine needs.

© Copyright IBM Corp. 1993, 2013 25

There are a number of ways of dealing with the areas of concern that appear in
Figure 6:
v Use the instructions BASSM and BSM
v Use the macro AMODESW
v Use pointer-defined linkage

AMODE 31

AMODE 31 AMODE 31

AMODE 31

AMODE 31 AMODE 31

AMODE 24

AMODE 24 AMODE 24

AMODE 24

OK

OK

OK

OK

4

3

4

Definite

of

Possible

of

Possible

of1 2

Area

Concern

Area

Concern

Area

Concern

16MB

1. When an AMODE 31 program that resides above 16MB invokes an AMODE 24 program, the concerns are:

The AMODE 24 program needs to receive control in 24-bit mode.

The location of shared data (including control blocks, register save areas, and parameters);
Can the AMODE 24 program address that data?

The AMODE 24 program cannot return control unless an AMODE change occurs.

2. An AMODE 24 program cannot invoke an AMODE 31 program that resides above 16MB unless the AMODE 24
program changes its addressing mode.

3. When both programs are below 16MB the concerns are:

Which programs cleans out bits 1-7 of the high-order bytes of 24-bit values used as addresses?

Can both programs address shared data?

4. While there are no restrictions on the mechanics of linkage between two AMODE 31 programs,
there might be restrictions on the parameter values.

Figure 6. Linkage Between Modules with Different AMODEs and RMODEs

Establishing Linkage (31-Bit Addressing)

26 z/VSE V5R1 Extended Addressability

v Use linkage assist routines
v Use “capping.”

Using the BASSM and BSM Instructions
The BASSM (branch and save and set mode) and the BSM (branch and set mode)
instructions are branching instructions that set the addressing mode. They are
designed to complement each other. BASSM is used to call (AMODESW CALL)
and BSM is used to return (AMODESW RETURN) but they are not limited to such
use. The description of BASSM appears in Figure 7.

Refer to Figure 8 on page 28 for a description of the BSM instruction.

1 2
BASSM

’0C’ R R1 2

0 8 12 15

R ,R RR

Bits 32-63 of the current PSW, including the updated instruction address, are saved as link
information in the general register designated by R1. Subsequently, the addressing mode and
instruction address in the current PSW are replaced from the second operand. The action
associated with the second operand is not performed if the R2 field is zero.

The contents of the general register designated by the R2 field specify the new addressing
mode and branch address; however when the R2 field is zero, the operation is performed
without branching and without setting the addressing mode.

When the contents of the general register designated by the R2 field are used, bit 0 of the
register specifies the new addressing mode and replaces bit 32 of the current PSW, and the
branch address is generated from the contents of the register under the control of the new
addressing mode. The new value for the PSW is computed before the register designated by
R1 is changed.

Condition Code: The code remains unchanged.

Program Exceptions: Trace (R2 field is not zero).

Figure 7. BRANCH and SAVE and Set Mode (BASSM) Description

Establishing Linkage (31-Bit Addressing)

Chapter 4. Establishing Linkage in a 31-Bit Addressing Environment 27

Calling and Returning with BASSM and BSM
In the following example, a module named BELOW has the attributes AMODE 24,
RMODE 24. BELOW uses a CDLOAD macro to load phase ABOVE above 16 MB
and obtain the address of phase ABOVE. The CDLOAD macro returns the address
in register 1 with the AMODE in bit 0 (a pointer-defined value). BELOW stores this
address in location EPABOVE. When BELOW is ready to branch to ABOVE,
BELOW loads ABOVE's entry point address from EPABOVE into register 15 and
branches using BASSM 14,15. BASSM places the address of the next instruction
into register 14 and sets bit 0 in register 14 to 0 to correspond to BELOW's
addressing mode. BASSM replaces the PSW A-mode bit with bit 0 of register 15 (a
1 in this example) and replaces the PSW instruction address with the branch
address (bits 1-31 of register 15) causing the branch.

ABOVE uses a BSM 0,14 to return. BSM 0,14 does not save ABOVE's addressing
mode because 0 is specified as the first operand register. It replaces the PSW
A-mode bit with bit 0 of register 14 (BELOW's addressing mode set by BASSM)
and branches.

1 2

R R1 2

0 8 12 15

BSM

’0B’

R ,R RR

Bit 32 of the current PSW, the addressing mode, is inserted into the first operand.
Subsequently the addressing mode and instruction address in the current PSW are replaced
from the second operand. The action associated with an operand is not performed if the
associated R field is zero.

The value of bit 32 of the PSW is placed in bit position 0 of the general register designated
by R1, and bits 1-31 of the register remain unchanged; however, when the R1 field is zero,
the bit is not inserted, and the contents of general register 0 are not changed.

The contents of the general register designated by the R2 field specify the new addressing
mode and branch address; however, when the R2 field is zero, the operation is performed
without branching and without setting the addressing mode.

When the contents of the general register designated by the R2 field are used, bit 0 of the
register specifies the new addressing mode and replaces bit 32 of the current PSW, and the
branch address is generated from the contents of the register under the control of the new
addressing mode. The new value for the PSW is computed before the register designated by
R1 is changed.

Condition Code: The code remains unchanged.

Program Exceptions: None.
Figure 8. Branch and Set Mode (BSM) Description

Establishing Linkage (31-Bit Addressing)

28 z/VSE V5R1 Extended Addressability

Using Pointer-Defined Linkage
Pointer-defined linkage is a convention whereby programs can transfer control
back and forth without having to know each other's AMODEs. Pointer-defined
linkage is simple and efficient. You should use it in new or modified phases where
there might be mode switching between phases.

Pointer-defined linkage uses a pointer-defined value, which is a 4-byte area that
contains both an AMODE indicator and an address. The high-order bit contains the
AMODE; the remainder of the word contains the address. To use pointer-defined
linkage, you must:
v Use a pointer-defined value to indicate the entry point address and the entry

point's AMODE. Both, the CDLOAD and LOAD macro provide a
pointer-defined value.

v Use the BASSM instruction specifying a register that contains the pointer-defined
value. BASSM saves the caller's AMODE and next the address of the next
sequential instruction, sets the AMODE of the target routine, and branches to the
specified location.

v Have the target routine save the full contents of the return register and use it in
the BSM instruction to return to the caller.

16MB

ABOVE CSECT
ABOVE AMODE 31
ABOVE RMODE ANY
.

.

.

.

.
BSM 0,14

BELOW CSECT
BELOW AMODE 24
BELOW RMODE 24
.

.
CDLOAD
ST
.

.
L
BASSM

ABOVE
1,EPABOVE

15,EPABOVE
14,15

Figure 9. Using BASSM and BSM

Establishing Linkage (31-Bit Addressing)

Chapter 4. Establishing Linkage in a 31-Bit Addressing Environment 29

Using an ADCON to Obtain a Pointer-Defined Value
The following method is useful when you need to construct pointer-defined values
to use in pointer-defined linkages between control sections or phases that will be
link edited into a single phase.

The method requires the use of an externally-defined address constant in the
routine to be invoked that identifies its entry mode and address. The address
constant must contain a pointer-defined value. The calling program loads the
pointer-defined value and uses it in a BASSM instruction. The invoked routine
returns using a BSM instruction.

In Figure 10, RTN1 obtains pointer-defined values from RTN2 and RTN3. RTN1,
the invoking routine does not have to know the addressing modes of RTN2 and
RTN3. Later, RTN2 or RTN3 could be changed to use different addressing modes,
and at that time their address constants would be changed to correspond to their
new addressing mode. RTN1, however, would not have to change the sequence of
code it uses to invoke RTN2 and RTN3.

You can use the techniques that the previous example illustrates to handle routines
that have multiple entry points (possibly with different AMODE attributes). You
need to construct a table of address constants, one for each entry point to be
handled.

As with all forms of linkage, there are considerations over and above the linkage
mechanism. These include:
v Both routines must have addressability to any parameters passed.
v Both routines must agree which of them will clean up any 24-bit addresses that

might have extraneous information in bits 1-7 of the high-order byte. This is a
consideration for AMODE 31 programs only.

RTN1 CSECT
EXTRN RTN2AD
EXTRN RTN3AD
.
.
L 15,=A(RTN2AD) LOAD ADDRESS OF POINTER-DEFINED VALUE
L 15,0(,15) LOAD POINTER-DEFINED VALUE
BASSM 14,15 GO TO RTN2 VIA BASSM
.
.
L 15,=A(RTN3AD) LOAD ADDRESS OF POINTER-DEFINED VALUE
L 15,0(,15) LOAD POINTER DEFINED-VALUE
BASSM 14,15 GO TO RTN3 VIA BASSM
.

RTN2 CSECT
RTN2 AMODE 24

ENTRY RTN2AD
.
BSM 0,14 RETURN TO CALLER IN CALLER’S MODE

RTN2AD DC A(RTN2) WHEN USED AS A POINTER-DEFINED VALUE,
INDICATES AMODE 24 BECAUSE BIT 0 IS 0

RTN3 CSECT
RTN3 AMODE 31

ENTRY RTN3AD
.
BSM 0,14 RETURN TO CALLER IN CALLER’S MODE

RTN3AD DC A(X’80000000’+RTN3) WHEN USED AS A POINTER-DEFINED VALUE
INDICATES AMODE 31 BECAUSE BIT 0 IS 1

Figure 10. Example of Pointer-Defined Linkage

Establishing Linkage (31-Bit Addressing)

30 z/VSE V5R1 Extended Addressability

When an AMODE 24 program invokes a phase that is to execute in AMODE 31,
the calling program must ensure that register 13 contains a valid 31-bit address of
the register save area with no extraneous data in bits 1-7 of the high-order byte
(3-byte address). In addition, when any program invokes an AMODE 24 program,
register 13 must point to a register save area located below 16 MB.

Using the CDLOAD/LOAD Macro to Obtain a Pointer-Defined
Value

CDLOAD/LOAD returns a pointer-defined value in register 1. You can preserve
this pointer-defined value and use it with a BASSM instruction to pass control
without having to know the target routine's AMODE.

Linkage Assist Routines
A linkage assist routine, sometimes called an addressing mode interface routine, is
a program that performs linkage for programs executing in different AMODEs or
RMODEs. Using a linkage assist routine, an AMODE 24 program can invoke an
AMODE 31 program without having to make any changes. The invocation results
in an entry to a linkage assist routine that resides below 16 MB and invokes the
AMODE 31 program in the specified addressing mode.

Conversely, an AMODE 31 program, such as a new user program, can use a
linkage assist routine to communicate with other user programs that execute in
AMODE 24. The caller appears to be making a direct branch to the target program,
but branches instead to a linkage assist routine that changes modes and performs
the branch to the target program.

The main advantage of using a linkage assist routine is to insulate a program from
AMODE changes that are occurring around it.

The main disadvantage of using a linkage assist routine is that it adds overhead to
the interface. In addition, it takes time to develop and test the linkage assist
routine. Some alternatives to using linkage assist routines are:
v Changing the programs to use pointer-defined linkage (described in “Using

Pointer-Defined Linkage” on page 29).
v Adding a prologue and epilogue to a program to handle entry and exit mode

switching, as described later in this chapter under “Capping.”

Example of Using a Linkage Assist Routine
Figure 11 on page 32 shows a “before” and “after” situation involving programs
USER1 and USER2. USER1 invokes USER2 by using a CDLOAD and BALR
sequence. The “before” part of the figure shows USER1 and USER2 residing below
16 megabytes and lists the changes necessary if USER2 moves above 16 megabytes.
USER1 does not change.

The “after” part of the figure shows how things look after USER2 moves above
16 MB. Note that USER2 is now called USER3 and the newly created linkage assist
routine has taken the name USER2.

The figure continues with a coding example that shows all three routines after the
move.

Establishing Linkage (31-Bit Addressing)

Chapter 4. Establishing Linkage in a 31-Bit Addressing Environment 31

Figure 11. Example of a Linkage Assist Routine

Establishing Linkage (31-Bit Addressing)

32 z/VSE V5R1 Extended Addressability

USER1 (This module will not change)
* USER MODULE USER1 CALLS MODULE USER2 00000100
USER1 CSECT 00000200
BEGIN SAVE (14,12) (SAVE REGISTER CONTENT, ETC.) 00000300
* ESTABLISH BASE REGISTER(S) AND NEW SAVE AREA (NORMAL 00000400
* ENTRY CODING) 00000500

.

.
* ISSUE CDLOAD FOR MODULE USER2 00000700

CDLOAD USER2 ISSUE CDLOAD FOR MODULE USER2 00000800
* The CDLOAD macro returns a
* pointer-defined value. However, because module USER1
* has not been changed and executes in AMODE 24,
* the pointer-defined value has no effect on the BALR
* instruction used to branch to module USER2.

ST 1,EPUSER2 PRESERVE ENTRY POINT 00000900
.

* MAIN PROCESS BEGINS 00001000
PROCESS DS 0H 00001100

.

.

.

.

.

.
* PREPARE TO GO TO MODULE USER2 00002000

L 15,EPUSER2 LOAD ENTRY POINT 00002100
BALR 14,15 00002200
.
.
.
.

TM TEST FOR END 00003000
BC PROCESS CONTINUE IN LOOP 00003100
.

L 13,4(,13)
RETURN (14,12),RC=0 MODULE USER1 COMPLETED 00005000

EPUSER2 DC F’0’ ADDRESS OF ENTRY POINT TO USER2 00007000
END BEGIN 00007100

USER2 (Original application module)
* USER MODULE USER2 (INVOKED FREQUENTLY FROM USER1) 00000100
USER2 CSECT 00000200

SAVE (14,12) SAVE REGISTER CONTENT, ETC. 00000300
* ESTABLISH BASE REGISTER(S) AND NEW SAVE AREA (NORMAL 00000400
* ENTRY CODING)

.

.

.

.

.
L 13,4(,13)
RETURN (14,12),RC=0 MODULE USER2 COMPLETED 00008100
END 00008200

USER2 (New linkage assist routine)
* THIS IS A NEW LINKAGE ASSIST ROUTINE 0000100
* (IT WAS NAMED USER2 SO THAT MODULE USER1 WOULD NOT 0000200
* HAVE TO BE CHANGED) 0000300
USER2 CSECT 0000400
USER2 AMODE 24 0000500
USER2 RMODE 24 0000600

SAVE (14,12) (SAVE REGISTER CONTENT, ETC.) 0000700
* ESTABLISH BASE REGISTER(S) AND NEW SAVE AREA (NORMAL 0000800
* ENTRY CODING)
* CLEAR HIGH-ORDER BYTE OF BASE REGISTER(S) (PREPARE BASE
* REGISTER(S) FOR 31-BIT ADDRESSING)
* FIRST TIME LOGIC, PERFORMED ON INITIAL ENTRY ONLY, 0002000
* (AFTER INITIAL ENTRY, BRANCH TO PROCESS (SHOWN BELOW)) 0002100

Establishing Linkage (31-Bit Addressing)

Chapter 4. Establishing Linkage in a 31-Bit Addressing Environment 33

.
CDLOAD USER3 0004000

* USER2 LOADS USER3 BUT DOES NOT DELETE IT. USER2 CANNOT
* DELETE USER3 BECAUSE USER2 DOES NOT KNOW WHICH OF ITS USES
* OF USER3 IS THE LAST ONE.

ST 1,EPUSER3 PRESERVE POINTER DEFINED VALUE 0004100
.

* PROCESS (PREPARE FOR ENTRY TO PROCESSING MODULE) 0005000
.

(FOR EXAMPLE, VALIDITY CHECK REGISTER CONTENTS)
.
.

* PRESERVE AMODE FOR USE DURING RETURN SEQUENCE 0007000
LA 1,XRETURN SET RETURN ADDRESS 0008000
BSM 1,0 PRESERVE CURRENT AMODE 0008100
ST 1,XSAVE PRESERVE ADDRESS 0008200
L 15,EPUSER3 LOAD POINTER DEFINED VALUE 0009000

* GO TO MODULE USER3 0009100
BASSM 14,15 TO PROCESSING MODULE 0009200

* RESTORE AMODE THAT WAS IN EFFECT 0009300
L 1,XSAVE LOAD POINTER DEFINED VALUE 0009400
BSM 0,1 SET ADDRESSING MODE 0009500

XRETURN DS 0H 0009600
L 13,4(,13)
.
.

v Statements 8000 through 8200: These instructions prepare base registers for 31-bit
addressing and preserve the AMODE in effect at the time of entry into module
USER2.

v Statement 9200: This use of the BASSM instruction:
– Causes the USER3 module to be entered in the specified AMODE (AMODE

31 in this example). This occurs because the CDLOAD macro returns a
pointer-defined value that contains the entry point of the loaded routine, and
the specified AMODE of the module.

– Puts a pointer-defined value for use as the return address into Register 14.
v Statement 9400: Module USER3 returns to this point.
v Statement 9500: Module USER2 re-establishes the AMODE that was in effect at

the time the BASSM instruction was issued (Statement 9200).
.
.

RETURN (14,12),RC=0 MODULE USER2 HAS COMPLETED 0010000
EPUSER3 DC F’0’ POINTER DEFINED VALUE 0010100
XSAVE DC F’0’ ORIGINAL AMODE AT ENTRY 0010200

END 0010500

USER3 (New Application Module)
* MODULE USER3 (PERFORMS FUNCTIONS OF OLD MODULE USER2) 00000100
USER3 CSECT 00000200
USER3 AMODE 31 00000300
USER3 RMODE ANY 00000400

SAVE (14,12) (SAVE REGISTER CONTENT, ETC.) 00000500
* ESTABLISH BASE REGISTER(S) AND NEW SAVE AREA 00000600

.

.

.

.

.

.
* RESTORE REGISTERS AND RETURN 00008000

.
L 13,4(,13)
RETURN (14,12),RC=0 MODULE USER3 HAS COMPLETED 00008100
END 00008200

Establishing Linkage (31-Bit Addressing)

34 z/VSE V5R1 Extended Addressability

v Statements 300 and 400 establish the AMODE and RMODE values for this
phase. Unless they are overridden by linkage editor PARM values or MODE
control statements, these are the values that will be placed in the library
directory entry for this phase.

v Statement 8100 returns to the invoking phase.

Using Capping - Linkage Using a Prologue and Epilogue
An alternative to linkage assist routines is a technique called capping. You can add
a “cap” (prologue and epilogue) to a program to handle entry and exit AMODE
switching. The cap accepts control in either AMODE 24 or 31, saves the caller's
registers, and switches to the AMODE in which the program is designed to run.
After the program has completed its function, the epilogue portion of the cap
restores the caller's registers and AMODE before returning control.

For example, when capping is used, a program in AMODE 24 can be invoked by
programs whose AMODE is either 24 or 31; it can perform its function in AMODE
24 and can return to its caller in the caller's AMODE. Capped programs must be
able to accept callers in either AMODE. Programs that reside above 16 MB cannot
be invoked in AMODE 24. Capping, therefore, can be done only for programs that
reside below 16 MB.

Figure 12 shows a cap for an AMODE 24 program. The caller must ensure that
register 15 contains a 31-bit address.

Figure 12. Cap for an AMODE 24 Program

Establishing Linkage (31-Bit Addressing)

Chapter 4. Establishing Linkage in a 31-Bit Addressing Environment 35

36 z/VSE V5R1 Extended Addressability

Chapter 5. I/O Processing in a 31-Bit Environment

Performing I/O in 31-Bit Mode
An AMODE 31 program can perform an I/O operation by:
v Using VSE/VSAM services which accept callers in either AMODE 24 or 31.
v Using the EXCP (execute channel program) macro. All parameter lists, control

blocks, CCWs, and EXCP appendage routines must reside in virtual storage
below 2 GB.

v Invoking a routine that executes in AMODE 24 as an interface to access methods
such as SAM or DAM which only accept callers executing in AMODE 24. See
Chapter 4, “Establishing Linkage in a 31-Bit Addressing Environment,” on page
25 for more information about this method.

v Using the method shown in Figure 13 on page 38.

Notes:

1. To perform I/O operations to buffers located above 16 MB, a program must
use either:
v The VSE/VSAM access method.
v The EXCP macro with format 1 CCWs.

2. For all other access methods, the data buffers must be located below 16 MB.

Using the EXCP Macro for I/O to Virtual Storage Above 16 MB
EXCP macro users can perform I/O to virtual storage areas above 16 MB. By using
format 1 CCWs in the EXCP channel program, users can point to 31-bit virtual
addresses of an I/O buffer.

Although the I/O buffer can be in virtual storage above 16 MB, the format 1 CCW
that contains the pointer to the I/O buffer and all the other areas related to the
I/O operation (such as CCBs and appendages) must reside in virtual storage below
16 MB. Refer to “I/O Processing Support for 31-Bit Addressing” on page 152 for
further details about the restrictions which apply and to the manual z/VSE System
Macros Reference for a detailed description of the EXCP macro.

Example of Performing I/O While Residing Above 16 MB
Figure 13 on page 38 shows a “before” and “after” situation that involves two
functions, USER1 and USER2. In the BEFORE part of the example, USER1 contains
both functions and resides below 16 MB. In the AFTER part of the example USER1
has moved above 16 MB. The portion of USER1 that requests data management
services has been removed and remains below 16 MB.

Note: For details of how to perform I/O on memory objects residing above 2 GB,
see “Using 64-Bit Virtual I/O Operations on Memory Objects” on page 58.

© Copyright IBM Corp. 1993, 2013 37

BEFORE

AFTER

USER1

USER2 CSECT
USER2 AMODE 24
USER2 RMODE 24

USER1 CSECT
USER1 AMODE 31
USER1 RMODE ANY

Data Management
Services

Data Management Services

(AMODE 24, RMODE 24
by default)

USER1 is an application program that occasionally requests data management services to perform data base
input/output operations. USER1 and data management services reside below 16MB.

USER1 moves above 16MB and moves its interface to data management into a new module, USER2. USER2
remains below 16MB because data management services must be invoked in AMODE 24 (except for VSE/VSAM).
The following coding example shows USER1 and USER2 after USER1 has been moved.

16MB

Figure 13. Performing I/O While Residing Above 16 MB

38 z/VSE V5R1 Extended Addressability

Chapter 6. Real Storage Considerations for User Programs
(31-Bit Addressing)

In a system with more than 16 MB real storage, it is possible to obtain PFIXed
storage above 16 MB (using the PFIX macro with RLOC=ANY or the GETVIS
macro with LOC=ANY and PFIX=YES).

Programs using the REALAD macro have to be aware that this macro always
returns a valid 31-bit real address.

The manual z/VSE System Macros Reference describes the GETVIS, PFIX, and
REALAD macros in detail.

© Copyright IBM Corp. 1993, 2013 39

40 z/VSE V5R1 Extended Addressability

Part 2. 64-Bit Addressing Support

Chapter 7. Using the 64-Bit Address Space . . . 43
What is the 64-Bit Address Space? 44
Why Would You use Virtual Storage Above the Bar? 45
Virtual Storage Management Above the Bar . . . 45
Prerequisites for Using Memory Objects 46
IARV64 Macro Services and Program Rules. . . . 46
Using Private Memory Objects 47

Creating Private Memory Objects 48
GETSTOR Request 48
Example of Creating a Private Memory Object 49

Relationship Between a Private Memory Object
and Its Owner 49
Fixing and Unfixing the Pages of a Private
Memory Object 49

Example of Fixing Pages of a Private Memory
Object 50

Freeing a Private Memory Object 50
Example of Freeing a Private Memory Object 51

Example of Creating, Using, and Freeing a
Private Memory Object 51

Using Shared Memory Objects 52
Creating/Obtaining Access to Shared Memory
Objects 52

GETSHARED Request 52
SHAREMEMOBJ Request. 53
Example of Creating and Using a Shared
Memory Object – GETSHARED 53
Example of Accessing a Shared Memory
Object – SHAREMEMOBJ 54

Relationship Between a Shared Memory Object
and Its Owner 54
Freeing a Shared Memory Object 54

AFFINITY=LOCAL 55
AFFINITY=SYSTEM 55
Proper Serialization of Shared Memory
Objects 55

User Tokens and Detach Processing 56
Protecting Storage Above the Bar 56
Dumping Memory Objects 56
Using the Storage in a Memory Object 56
Listing Information About Virtual Storage Above the
Bar 57
Using a 64-Bit Application in z/VSE 57
Using 64-Bit Applications and 64-Bit Operations . . 58
Using 64-Bit Virtual I/O Operations on Memory
Objects 58
Using Assembler 64-bit Binary Operations 59

z/Architecture Instructions That Use the 64-Bit
GPR 59

Using the Assembler 64-bit Addressing Mode . . . 60
Non-Modal Instructions 61
Modal Instructions 61
Setting and Checking the Addressing Mode . . 62
Linkage Conventions 63
Pitfalls to Avoid 63

1. The information and examples provided for 64-bit addressing in this manual are based on functions of the
High Level Assembler.

2. High Level Assembler refers to High Level Assembler Version 1.6 for z/OS, z/VM, and z/VSE, which is a base
program of Version 5 Release 1 of IBM z/VSE.

© Copyright IBM Corp. 1993, 2013 41

42 z/VSE V5R1 Extended Addressability

Chapter 7. Using the 64-Bit Address Space

This chapter describes how you can (a) create and maintain (64-bit) memory objects,
and (b) execute 64-bit applications.

Note: The address space structure below the 2 GB bar is not affected by using
memory objects in the 64-bit address space. All programs in AMODE 24 and
AMODE 31 continue to run unchanged.

This chapter contains these main topics:
v “What is the 64-Bit Address Space?” on page 44
v “Why Would You use Virtual Storage Above the Bar?” on page 45
v “Virtual Storage Management Above the Bar” on page 45
v “Prerequisites for Using Memory Objects” on page 46
v “IARV64 Macro Services and Program Rules” on page 46
v “Using Private Memory Objects” on page 47
v “Using Shared Memory Objects” on page 52
v “User Tokens and Detach Processing” on page 56
v “Protecting Storage Above the Bar” on page 56
v “Dumping Memory Objects” on page 56
v “Using the Storage in a Memory Object” on page 56
v “Listing Information About Virtual Storage Above the Bar” on page 57
v “Using a 64-Bit Application in z/VSE” on page 57
v “Using 64-Bit Applications and 64-Bit Operations” on page 58
v “Using 64-Bit Virtual I/O Operations on Memory Objects” on page 58
v “Using Assembler 64-bit Binary Operations” on page 59
v “Using the Assembler 64-bit Addressing Mode” on page 60

Related Topics:

For details of how to: Refer to:

v use the IARV64 macro to create and manage
memory objects

v use the SDUMPX macro for problem solving
when memory objects are used,

v use the STXIT macro with parameter ANY64
to define user exits in a 64-bit environment,

“Macro Descriptions” in the z/VSE
System Macros Reference.

code the assembler instructions that are used for
64-bit operations

z/Architecture Principles of Operation,
SA22-7832.

© Copyright IBM Corp. 1993, 2013 43

For details of how to: Refer to:

v use the QUERY MEMOBJ command to
display the:
– Details and totals of allocated private

memory objects (PMOs),
– Size of the allocated Extended Shared Area,
– Limits and high watermarks,

v use the MAP, MAP REAL, and
MAP <SYSLOG-ID> commands to obtain
information about the current use of memory
objects.

v use the STDOPT statement with option
SADUMP to specify if a standalone dump
should include memory objects

“Job Control and Attention Routines” in
the z/VSE System Control Statements.

What is the 64-Bit Address Space?
The 64-bit address space is supported from z/VSE 5.1 onwards. Before z/VSE 5.1,
z/VSE only supported the 24-bit and 31-bit address spaces:
v A 24-bit address space is an address space that is supported by 24-bit addresses.

It begins at address 0 and ends at address 16 MB.
v A 31-bit address space is an address space that is supported by 31-bit addresses.

It begins at address 0 and ends at address 2 GB.

A 64-bit address space is an address space that is supported by 64-bit addresses. It
begins at address 0 and ends at address 16 E (16 Exabytes, which is an
incomprehensibly large number). z/VSE does not support this full range of a 64-bit
address space. The size of a 64-bit address space is limited by the value of VSIZE,
which is currently 90 GB.

To maintain program compatibility, z/VSE provides three addressing modes
(AMODEs):
v Programs that run in AMODE 24 can only use the first 16 MB of the address

space.
v Programs that run in AMODE 31 can only use the first 2 GB of the address

space.
v Programs that run in AMODE 64 can use the complete 64-bit address space by

explicitly switching to AMODE 64.

In the 31-bit address space, a “virtual line” marks the 16 MB address.

The 64-bit address space includes a second “virtual line” called “the bar” that
marks the 2 GB address.

The bar separates storage below the 2 GB address, called “below the bar”, from
storage above the 2 GB address, called “above the bar”:
v The area above the bar can only be used for data. Programs continue to run

below the bar.
v There is no area above the bar that is common to all address spaces.
v IBM reserves an area of storage above the bar for special uses to be developed in

the future.

64-bit Address Spaces

44 z/VSE V5R1 Extended Addressability

Why Would You use Virtual Storage Above the Bar?
The reason why someone designing an application would want to use the area
above the bar is simple: the program needs more virtual storage than is provided
by the first 2 GB of address space:
v Before z/VSE 5.1, a program's need for additional virtual storage was sometimes

met by creating one or more data spaces. Programs might also have used complex
algorithms to manage storage, reallocate and reuse areas, and check storage
availability.

v Using the 64-bit address space, these types of programming complexity are no
longer required. A program can now potentially have as much virtual storage as
it needs, while containing the data within the program's primary address space.

Virtual Storage Management Above the Bar
Virtual storage above the bar is organized as memory objects that are created by
programs using the IARV64 macro. A memory object is a contiguous range of
virtual addresses. Each memory object begins on a 1 MB boundary and is multiple
of 1 MB in size.

Note: Programs continue to run and execute in the first 2 GB of the address space.

There are two types of memory objects:
v Private memory objects (PMOs) that are created within the Extended Private Area

(EPA) and can only be accessed from the address space in which they were
created. Private memory objects are described in “Creating Private Memory
Objects” on page 48.

v Shared memory objects (SMOs) that are created within the Extended Shared Area
(ESA) and can be accessed from any address space that requests access to the
shared memory objects. Shared memory objects are describe in
“Creating/Obtaining Access to Shared Memory Objects” on page 52.

Before you can use the IARV64 macro, you must use the SYSDEF MEMOBJ
statement to define the limits for memory objects:
v MEMLIMIT defines the total amount of virtual storage that can be allocated to

memory objects within the system. MEMLIMIT also limits the use of PMOs
within a single address space.

v SHRLIMIT defines the total amount of virtual storage that can be allocated to
SMOs within the system. It is included in MEMLIMIT.

v LFAREA defines the total amount of real storage that can be used to fix PMOs.
v LF64ONLY specifies that PMOs will only be fixed in the 64-bit area.

For further information about how to set MEMLIMIT, SHRLIMIT, LFAREA, and
LF64ONLY, refer to the z/VSE System Control Statements.

The size of the:
v EPA is equal to MEMLIMIT minus SHRLIMIT.
v ESA is equal to SHRLIMIT.

Figure 14 on page 46 shows how memory objects are used in the 64-bit address
space.

64-bit Address Spaces

Chapter 7. Using the 64-Bit Address Space 45

Prerequisites for Using Memory Objects
To use (64-bit) memory objects in the 64-bit address space, you require:
v z/VSE Version 5 Release 1 or later.
v Values for VSIZE, MEMLIMIT, SHRLIMIT, LFAREA, and LF64ONLY that meet

your system requirements.
v User applications that have been adapted to use 64-bit memory objects.

IARV64 Macro Services and Program Rules
The IARV64 macro (which has been ported from z/OS) provides the services for
using memory objects. This topic describes the use of IARV64 services in z/VSE.
Programs that use the IARV64 macro with the functionality supported by z/VSE
are compatible with z/OS.

Table 2 on page 47 provides an overview of the IARV64 macro services that are
supported by z/VSE. There are two types of service:
v Authorized services, which require that the caller has either supervisor state or

PSW key with value zero.

2GB Bar

0

Shared Virtual Area (24-Bit)

SUPERVISOR

BG F1 Z1

90GB max.

Shared Virtual Area (31-Bit)

16MB Line

. . .

BG F1 Z1. . .

BG Private
Memory
Object 1

Shared
Memory
Object 1

Shared
Memory
Object 1

F1 Private
Memory
Object 1 Z1 Private

Memory
Object 1

F2

F2

F2 Private
Memory
Object 1

F2 Private
Memory
Object 2

F2 Private
Memory
Object 3

BG Private
Memory
Object 2

Extended
Private Area
(MEMLIMIT
minus
SHRLIMIT)

~~

~~

~~

~~

4GB

Extended
Shared Area
(SHRLIMIT)

Figure 14. Using Memory Objects in the 64-Bit Address Space

64-bit Address Spaces

46 z/VSE V5R1 Extended Addressability

v Unauthorized services, that are available to a caller with problem state, and a
PSW key equal to the partition key.

Table 2. IARV64 Services and Rules for What Programs Do with Memory Objects

IARV64 Request A problem state, partition
key program (unauthorized
program)

A supervisor state or key 0
program (authorized
program)

GETSTOR—create a PMO
Can create a PMO in the
primary address space.

The storage key of the
memory object will be the
same as the PSW key of the
caller.

Can create a PMO in the
primary address space.

Can define the storage key of
the PMO.

Can specify whether the
PMO can be freed by an
authorized program only,
and whether it can be
PAGEFIX'd and
PAGEUNFIX'd.

DETACH—free one or more
PMOs Can free a PMO it owns. Can free a PMO it owns.

Can free an SMO.

Can remove a shared
interest.

PAGEFIX—fix pages in one
or more PMO.

Cannot fix pages. Can fix pages in one or more
PMOs.

UNPAGEFIX—undo a
pagefix operation

Cannot unfix pages. Can unfix pages in one or
more PMOs.

LIST—list the memory
objects.

Cannot list memory objects. Can list memory objects in
the primary address space.

GETSHARED — create an
SMO.

Cannot use this service. Can create SMOs.

SHAREMEMOBJ — requests
that the specified address
space be given access to one
or more SMOs.

Cannot use this service. Can use this service in the
primary address space to
establish addressability to the
SMOs.

Note: The topics that follow describe how to use the IARV64 services. They do not
describe environmental or programming requirements, register usage, or syntax
rules. For this “reference” type of information, refer to the descriptions of the
IARV64 macro in the z/VSE System Macros Reference.

Using Private Memory Objects

64-bit Address Spaces

Chapter 7. Using the 64-Bit Address Space 47

Creating Private Memory Objects
IARV64 GETSTOR is used to create a private memory object (PMO). PMOs are
allocated in the Extended Private Area (EPA) of an address space. The size of the
EPA is equal to the value of MEMLIMIT minus SHRLIMIT. The EPA only exists
when there is at least one PMO allocated in the address space.

Once a program has created a PMO, all programs within the address space can
access the PMO providing they have a matching key.

Note: Virtual storage within the EPA is only assigned to allocated PMOs (which is
different from partition storage that has virtual storage that is permanently
assigned). This means, there might be insufficient virtual storage available to meet
the GETSTOR request (see description of COND parameter in “GETSTOR
Request”). This might be true even when the size of the allocated PMOs in the
address space is less than the size of the EPA.

The z/VSE resources required to use the EPA of an address space (for example,
control blocks) are freed when the last PMO within the EPA of the address space
has been freed.

GETSTOR Request
To create a private memory object (PMO), use the IARV64 GETSTOR request.

Parameters for GETSTOR include:
v SEGMENTS=segments specifies the size, in megabytes, of the PMO you are

creating. The system returns the address of the PMO in the ORIGIN parameter.
v FPROT=YES (the default) gives the PMO fetch protection.
v KEY=key specifies the PMO's storage key (authorized programs only).
v USERTKN=user token is an 8-byte token that can be associated with a PMO and

relates two or more PMOs to each other. The user token can be specified on a
DETACH request to free all PMOs that are associated with this token.
For an unauthorized program, the high-order half (bits 0-31) of the user token
must be binary zeros.
For an authorized program, the high-order half (bits 0-31) of the user token must
be non-zero.

v CONTROL=AUTH is required in order to PAGEFIX or PAGEUNFIX a PMO.
When specified, a PMO can only be freed by an authorized program.

v DETACHFIXED=YES allows a PMO to be detached even if some or all pages are
fixed (authorized programs only).

v COND=YES can be used to avoid a program abend occurring when insufficient
resources are available to meet a GETSTOR request. For example, MEMLIMIT or
virtual storage might be exceeded. When COND=YES is specified and sufficient
resources are not available, the system rejects the request but the program
continues to run. The IARV64 service returns to the caller with a non-zero return
code.

Before issuing IARV64, issue SYSSTATE ARCHLVL=2 so that the macro generates
the correct parameter addresses.

Private Memory Objects

48 z/VSE V5R1 Extended Addressability

Example of Creating a Private Memory Object
The following example creates a 1 MB memory object. It specifies a constant with
value of one as a user token.
IARV64 REQUEST=GETSTOR,

SEGMENTS=ONE_SEG,
USERTLM=USER_TOKEN,
ORIGIN=VIRT64_ADDR,
COND=YES

ONE_SEG DC ADL8(1)
USER_TOKEN DC ADL8(1)
VIRT64_ADDR DS AD

Relationship Between a Private Memory Object and Its Owner
When a program creates a private memory object (PMO), the PMO is owned by
the (z/VSE) task under which the program executes.

Once a program has created a PMO, any program within the address space can
access the PMO providing the program's PSW key matches the PMO's storage key.

A PMO is freed either:
v Explicitly, when the owning task frees the PMO via a DETACH request.
v Implicitly by the system, when the owning task terminates.

Fixing and Unfixing the Pages of a Private Memory Object
Authorized programs can use the IARV64 PAGEFIX request to fix (4K) pages
within one or more PMOs and therefore prevent these pages from being paged
out. For example, this is required when pages are referenced disabled.

Authorized programs can use the IARV64 PAGEUNFIX request to unfix pages that
were previously fixed via a IARV64 PAGEFIX request. A page remains fixed until
the number of PAGEUNFIX operations for that page equals the number of
PAGEFIX operations.

IARV64 PAGEFIX or PAGEUNFIX can only be used for PMOs that were created
using the CONTROL=AUTH parameter of the GETSTOR request.

On the RANGLIST parameter, the program provides a list of virtual storage areas
that are to be fixed (PAGEFIX request) or unfixed (PAGEUNFIX request). Each
virtual storage area must be within one PMO.

The format of the list is:

Performance Recommendation! - You are recommended to fix contiguous areas using
one PAGEFIX request (one RANGLIST entry) and not to specify one RANGLIST entry
for each 4 KB page.

Virtual address Number of pages

Virtual address Number of pages

0 8 15

Range list format - 1 to 16 pairs

Private Memory Objects

Chapter 7. Using the 64-Bit Address Space 49

Example of Fixing Pages of a Private Memory Object
Using the memory object created earlier, the following example in an AMODE 31
program, fixes 5 pages of the memory object, then unfixes them:

SYSSTATE ARCHLVL=2
.
.
.
XC R_LIST(100),R_LIST Clear the range list
LG 12,VIRT64_ADDR Get starting address to pagefix
STG 12,R_START Save it in range list
LGHI 4,5 Load number of pages to fix
STG 4,R_PAGES Save it in range list
SLR 12,12 Generate primary-space alet
ST 12,R_ALET Save it in range list
LA 4,R_LIST Get address of rangelist
LLGTR 4,4 Make it a 64-bit pointer
STG 4,RLISTPTR Save it

* Now pagefix the 5 pages
IARV64 REQUEST=PAGEFIX, +

RANGLIST=RLISTPTR
* Using the same rangelist, unfix the pages

LA 12,R_LIST Get address of range list
LLGTR 12,12 Make it a 64-bit pointer
STG 12,RLISTPTR Save it
IARV64 REQUEST=PAGEUNFIX, +

RANGLIST=RLISTPTR
*
* Declares for example
R_LIST DS CL100

ORG R_LIST
R_START DS ADL8
R_PAGES DS ADL8
R_ALET DS AL4
RLISTPTR DS AD
VIRT64_ADDR DS AD

Freeing a Private Memory Object
You use the IARV64 DETACH request to free one or more private memory objects
(PMOs). You can only free a PMO providing the task (under which your program
executes) owns the PMO.

With an IARV64 DETACH request, you can either:
v use MATCH=SINGLE,MEMOBJSTART to free a single PMO, as identified by its

origin address.
v use MATCH=USERTKN,usertkn to free all PMOs that were created with usertkn

on the GETSTOR request and are owned by the task under which your program
executes.

Four conditions to avoid when you try to free a PMO are:
v Freeing a PMO that does not exist.
v Freeing a PMO that has PAGEFIXED pages and was created using

DETACHFIXED=NO.
v Freeing a PMO that is not owned by the currently-active task.
v Freeing a PMO that has I/O in progress.

If either of the above conditions occurs and you have specified:
v COND=NO, then your program will abend.
v COND=YES, then the system will reject the DETACH request but the program

continues to run. IARV64 DETACH returns to the caller with a non-zero return

Private Memory Objects

50 z/VSE V5R1 Extended Addressability

code. COND=YES also prevents a program abend from occurring if sufficient
resources (for example, virtual storage) are not available to handle the request.

As part of normal task termination, the system frees all PMOs owned by the
terminating task. If a PMO has PAGEFIXED pages, the system will (internally)
unfix the pages.

Example of Freeing a Private Memory Object
The program frees all memory objects that have the user token specified in
“USER_TOKEN”:
IARV64 REQUEST=DETACH,

MATCH=USERTOKEN,
USERTKN=USER_TOKEN

USER_TOKEN DC ADL8(1)

Example of Creating, Using, and Freeing a Private Memory
Object

The following program creates a 1 MB private memory object (PMO) and writes
the character string "Hi Mom" into each 4k page of the memory object. The
program then frees the memory object.

TITLE ’TEST CASE DUNAJOB’
ACONTROL FLAG(NOALIGN)

DUNAJOB CSECT
DUNAJOB AMODE 31
DUNAJOB RMODE 31

SYSSTATE ARCHLVL=2
* Begin entry linkage

BAKR 14,0
CNOP 0,4
BRAS 12,@PDATA
DC A(@DATA)

@PDATA LLGF 12,0(12)
USING @DATA,12
LHI 0,DYNAREAL
STORAGE OBTAIN,LENGTH=(0),SP=0,CALLRKY=YES
LLGTR 13,1
USING @DYNAREA,13
MVC 4(4,13),=C’F6SA’

* End entry linkage
*

SAM64 Change to amode64
IARV64 REQUEST=GETSTOR, +

SEGMENTS=ONE_SEG, +
USERTKN=USER_TOKEN, +
ORIGIN=VIRT64_ADDR

LG 4,VIRT64_ADDR Get address of memory obj
LHI 2,256 Set loop counter

LOOP DS 0H
MVC 0(10,4),=C’HI_MOM!’ Store HI MOM!
AHI 4,4096
BRCT 2,LOOP

* Get rid of all memory objects created with this
* user token

IARV64 REQUEST=DETACH, +
MATCH=USERTOKEN, +
USERTKN=USER_TOKEN, +
COND=YES

*
* Begin exit linkage

LHI 0,DYNAREAL
LR 1,13
STORAGE RELEASE,LENGTH=(0),ADDR=(1),SP=0,CALLRKY=YES
PR

* End exit linkage
@DATA DS 0D

Private Memory Objects

Chapter 7. Using the 64-Bit Address Space 51

ONE_SEG DC FD’1’
USER_TOKEN DC FD’1’

LTORG
@DYNAREA DSECT
SAVEAREA DS 36F
VIRT64_ADDR DS AD
DYNAREAL EQU *-@DYNAREA

END DUNAJOB

Using Shared Memory Objects
This topic describes how you can create and use shared memory objects (SMOs).

SMOs are allocated in the Extended Shared Area (ESA). The size of the ESA is
determined through SHRLIMIT. An SMO can be shared across multiple address
spaces. SMO storage is similar to Shared Virtual Area (SVA) storage except there is
no automatic addressability/access to SMO storage:
v A GETSHARED request (described in “GETSHARED Request”) creates an SMO.
v A SHAREMEMOBJ request (described in “SHAREMEMOBJ Request” on page

53) allows an address space to access an SMO.

Figure 14 on page 46 provides an overview of how SMOs are used in z/VSE.

Note: Shared memory objects can be used by authorized programs only.

Creating/Obtaining Access to Shared Memory Objects
This section describes how to create and obtain access to shared memory objects
(SMOs).

GETSHARED Request
To create an SMO, use an IARV64 GETSHARED request.

Parameters for GETSHARED include:
v SEGMENTS=segments specifies the size, in megabytes, of the SMO you are

creating. The system returns the address of the SMO in the ORIGIN parameter.
v ORIGIN= origin is the name or address that will contain the address of the SMO.
v FPROT=YES (the default) gives the SMO fetch protection.
v KEY=key specifies the SMO's storage key.
v USERTKN=usertoken is a required 8-byte token that is associated with the SMO.

You can use a user token to relate two or more SMOs to each other. Later, you
can use the user token to free all SMOs that are associated with the specified
user token via one DETACH request.
The high-order half (bits 0-31) of the user token must be non-zero.

v COND=YES can be used to avoid a program abend occurring when insufficient
resources are available to meet a GETSHARED request. For example, SHRLIMIT
or virtual storage might be exceeded. When COND=YES is specified and
sufficient resources are not available, the system rejects the request but the
program continues to run. The IARV64 service returns to the caller with a
non-zero return code.

For an example of this request, see “Example of Creating and Using a Shared
Memory Object – GETSHARED” on page 53.

Private Memory Objects

52 z/VSE V5R1 Extended Addressability

SHAREMEMOBJ Request
To get access to a shared memory object (SMO), a program must use a
SHAREMEMOBJ request. A SHAREMEMOBJ request creates a shared interest in an
SMO. If an address space has a shared interest in an SMO, any program running in
this address space has access to the SMO.

An address space can issue more than one SHAREMEMOBJ request for the same
SMO by using different user tokens.

Parameters for SHAREMEMOBJ include:
v USERTKN=user token uniquely identifies the user token to be associated with the

SMO (specifically, with the shared interest in the SMO). For a single SMO, the
specified user token can be duplicated in different address spaces. However, the
specified user token cannot be duplicated within a single address space for the
same SMO.
The high-order half (bits 0-31) of the user token must be non-zero.

v RANGLIST=ranglistptr specifies an address pointing to a range-list of SMOs that
the program wants to access.

Note: If the system detects an invalid (“non-existent”) SMO in the range-list that
was specified, the system will unconditionally abend the request! None of the
specified SMOs in the range-list will be given access.

v NUMRANGE=numrange specifies the number of entries in the supplied
range-list pointed to by RANGLIST. You can specify up to 16 SMOs.

v COND=YES can be used to avoid a program abend occurring when insufficient
resources are available to meet a SHAREMEMOBJ request. When COND=YES is
specified and sufficient resources are not available, the system rejects the request
but the program continues to run. The IARV64 service returns to the caller with
a non-zero return code.

For an example a SHAREMEMOBJ request, see “Example of Accessing a Shared
Memory Object – SHAREMEMOBJ” on page 54.

For a complete listing of the IARV64 macro, refer to the manual z/VSE System
Macros Reference.

Example of Creating and Using a Shared Memory Object –
GETSHARED
The following example creates a 1 MB shared memory object (SMO). It specifies a
constant with value of one as a user token.
IARV64 REQUEST=GETSHARED,

SEGMENTS=ONE_SEG,
USERTKN=USERTKNA,
ORIGIN=VIRT64_ADDR,
COND=YES,
FPROT=NO,
KEY=MYKEY

ONE_SEG DC FD’1’
USERTKNA DC 0D’0’

DC F’15’ High Half must be non-zero
DC F’1’ UserToken of 1

VIRT64_ADDR DS D

Note: If you want the memory object to have key 9, the declaration for MYKEY is
as follows:
MYKEY DC X’90’

Shared Memory Objects

Chapter 7. Using the 64-Bit Address Space 53

Example of Accessing a Shared Memory Object –
SHAREMEMOBJ
The following example allows access to a shared memory object (SMO):
IARV64 REQUEST=SHAREMEMOBJ,

USERTKN=USERTKNS,
RANGLIST=RLISTPTR,
NUMRANGE=1,
COND=YES

USERTKNS DC 0D’0’
DC F’15’ High Half Must Be Non-Zero
DC F’2’ User Token of 2

RLISTPTR DS AD Pointer to the IARV64 Parmlist

Relationship Between a Shared Memory Object and Its Owner
When your program creates a shared memory object (SMO), you need to
understand the ownership of the SMO to prevent illegal operations:
v A program creates an SMO, but it does not own the SMO. An SMO is always

owned by the system. This is referred to as system affinity (or system interest).
System affinity for an SMO must be explicitly removed via a
DETACH AFFINITY=SYSTEM request, which can be done by any authorized
program in the system.

v A program gains access to an SMO by creating a shared interest in the SMO via a
SHAREMEMOBJ request. A shared interest is owned by the main task within an
address space. Shared interest for an SMO can be removed via a
DETACH AFFINITY=LOCAL request. This can be done by any authorized
program in the address space.

v When an address space has a shared interest in an SMO, any program running
in this address space has access to the SMO providing it has a matching key.

v An address space can issue more than one SHAREMEMOBJ request for the same
SMO by using different user tokens.

When the main task terminates, the system removes all shared interests owned by
the main task. This means:
v Programs in this address space can no longer access SMOs.
v If this address space was the only address space with a shared interest in an

SMO, and the system affinity has been removed from the SMO, the system will
free the SMO.

v The memory object is no longer available for use.

Freeing a Shared Memory Object
To free a shared memory object (SMO), two actions are required:
v All address spaces must remove shared interests from the SMO by issuing a

DETACH AFFINITY=LOCAL request. Shared interests from an address space are
implicitly removed when the main task terminates.

v The system interest must be removed from the SMO by issuing a DETACH
AFFINITY=SYSTEM request.

A DETACH request can either be used with:
v MATCH=SINGLE, in which case a single SMO will be detached.
v MATCH=USERTOKEN, in which case all SMOs associated with the specified

user token will be detached.

The above applies to both AFFINITY=LOCAL and AFFINITY=SYSTEM requests.

Shared Memory Objects

54 z/VSE V5R1 Extended Addressability

AFFINITY=LOCAL
Using the AFFINITY=LOCAL parameter, the system removes the shared interest
from a specified SMO within the address space. Next, one of the following can
happen:
v If this address space has no further shared interests in the SMO, the address

space will no longer have access to the SMO.
v If no other shared interests in the SMO exist (in either the current address space

or other address spaces) and a DETACH AFFINITY=SYSTEM has been done for
the SMO, the SMO is freed and is no longer available for use.

v If other shared interests in the SMO remain or DETACH AFFINITY=SYSTEM
has not been done for the SMO, the SMO is not freed.

The following example removes the shared interest of the address space in the
specified SMO:
IARV64 REQUEST=DETACH,

AFFINITY=LOCAL,
ALETVALUE=0,
COND=YES,
MATCH=SINGLE,
MEMOBJSTART=VIRT64_ADDR,
USERTKN=USERTOKEN

VIRT64_ADDR DS AD
USERTOKEN DC XL8’E2C8C1D9E3D6D2D5’ Value is SHARTOKN

AFFINITY=SYSTEM
Using the AFFINITY=SYSTEM parameter, the system affinity (or system interest) for
the specified SMO is removed. The SMO will be freed when there is no remaining
shared interest in the SMO.

Note: After the system affinity has been removed from an SMO, any further
SHAREMEMOBJ requests will abend your program!

The following example frees the system affinity (system interest) in the SMO:
IARV64 REQUEST=DETACH,

AFFINITY=SYSTEM,
COND=YES,
MATCH=SINGLE,
MEMOBJSTART=VIRT64_ADDR,
USERTKN=USERTOKEN

VIRT64_ADDR DS AD
USERTOKEN DC XL8’E2C8C1D9E3D6D2D5’ Value is SHARTOKN

Proper Serialization of Shared Memory Objects
It is important to serialize access to SMOs. Otherwise, the system might abend
your program.

Here is an example of strict serialization not being maintained:
v Tasks A obtains an SMO via a GETSHARED request.
v Tasks B and C share the SMO via SHAREMEMOBJ requests.
v Task C removes the shared interest via a DETACH AFFINITY=LOCAL request.
v Task A removes system affinity via a DETACH AFFINITY=SYSTEM request.

Since task B still holds a shared interest in the SMO, the SMO is not freed.
v If task C tries to share the SMO again (via a SHAREMEMOBJ request), the

system will issue an abend code DC2 with reason code xx0040xx. This is because
task C was not serialized against the DETACH AFFINITY=SYSTEM request
issued by task A.

Shared Memory Objects

Chapter 7. Using the 64-Bit Address Space 55

User Tokens and Detach Processing
A program can use the same user token for both private memory objects (PMOs)
and shared memory objects (SMOs). When a program issues the following request:
IARV64 DETACH AFFINITY=LOCAL MATCH=USERTOKEN

the processing depends on the program's authorization:
v For an unauthorized program, all PMOs associated with the specified user token

will be freed.
v For an authorized program, all PMOs will be freed, and all shared interests

associated with the specified user token will be removed.

Protecting Storage Above the Bar
To limit access to a memory object, the creating program can use the FPROT and
KEY parameters on IARV64.
v KEY assigns the storage key for the memory object.
v FPROT specifies whether the storage in the memory object is fetch-protected.

Storage protection and fetch protection attributes apply for the entire memory object.

A program can only reference storage in a fetch-protected memory object that runs
with the same PSW key as the storage key of the memory object or PSW key 0.

Dumping Memory Objects
SADUMP and SDUMPX can be used to dump memory objects:
v A specific SADUMP option can be used to include memory objects in a

stand-alone dump. For details, refer to the manual z/VSE System Control
Statements.

v SDUMPX can be used to provide a dump of memory objects. For details, refer to
the manual z/VSE System Macros Reference.

In addition, refer to the manual z/VSE Diagnosis Tools for details of how to dump
memory objects using OPTION MODUMP or STDOPT MODUMP=YES.

Using the Storage in a Memory Object
To use the storage in a memory object, the program must be in AMODE 64. See
“Setting and Checking the Addressing Mode” on page 62 for ways to get into
AMODE 64.

The IARV64 macro is the only macro that can be called in AMODE 64. All other
macros can only be called in AMODE 31 or AMODE 24. This restriction might
mean that the program must first issue SAM31 to return to AMODE 31. After a
program issues a macro that is not capable of being issued in AMODE 64, it can
return to AMODE 64 through SAM64. To learn whether a program is in AMODE
64, see “Setting and Checking the Addressing Mode” on page 62.

Managing the data, such as serializing the use of a memory object, is no different
from serializing the use of an area obtained through GETVIS.

User Tokens

56 z/VSE V5R1 Extended Addressability

Listing Information About Virtual Storage Above the Bar
Authorized programs can use the IARV64 LIST request to obtain information about
memory objects in the caller's address space. The system returns the information in
a work area you provide.
v The V64LISTPTR parameter defines the first address of this work area.
v The V64LISTLENGTH identifies the length of the area.
v The parameter list macro is mapped by IARV64WA.

The system returns the following information about usable areas (not guard areas)
of memory objects:
v Beginning address
v Ending address
v Storage key
v Shared or private indicator.

To request a list of SMOs defined for the system via a GETSHARED request,
specify V64SHARED=YES.

Using a 64-Bit Application in z/VSE
A 64-bit application is program that (partly or completely) executes in AMODE 64:
v The AMODE 64 attribute is not supported for these compilers:

– HLASM
– COBOL
– PL/1
– C
– RPG

v The AMODE 64 attribute is not supported for the linkage editor.
v The IARV64 macro is the only macro that can be called in AMODE 64.
v All other z/VSE system services (Supervisor, VSAM, BAM, DL/I, and so on)

must be called in AMODE 24 or AMODE 31.
v Space-switching program calls (ss-PCs) are not supported in AMODE 64.
v Data areas for system services must be allocated below the bar.
v 64-bit addressing is not supported in VSE/ICCF pseudo-partitions.
v z/VSE provides limited support only for CICS® partitions. CICS services do not

support 64-bit registers. Therefore, IBM recommends that you do not use 64-bit
registers in CICS transactions. However, if you do wish to use 64-bit registers in
a CICS transaction:
– The CICS transaction must initialize the 64-bit registers before they are used.
– The CICS transaction should not issue CICS services, except that the

high-order half of the 64-bit registers must be saved before the call of the
CICS service, and then restored after returning from the CICS service.

– The CICS transaction may clear 64-bit registers if they are no longer required.
– 64-bit registers may be used by sub-tasks that are attached in the CICS

partition.

Memory Objects

Chapter 7. Using the 64-Bit Address Space 57

Using 64-Bit Applications and 64-Bit Operations
This topic describes the considerations for register-saving when using 64-bit
applications and 64-bit operations.
v Register saving:

– If a user program is interrupted, z/VSE will store the extended 64-bit
registers.

– The low-order half of the registers will be stored in the problem program save
area that is located at start of the z/VSE partition.

– The high-order half of the registers will be stored (in the sequence R0 to RF)
in an extended task save area.

– The pointer to the extended task save area can be obtained via a GETFLD service.
For details, refer to the manual z/VSE Supervisor Calls and Internal Macros
which you can obtain at the z/VSE Home Page (whose URL is given in
“Where to Find More Information” on page xv).

v Exit routines:
– z/VSE exit routines and exit services belonging to the z/OS Family API

provide 64-bit register support.
– z/VSE does not store the high-order half of the registers for Vendor exits.

Using 64-Bit Virtual I/O Operations on Memory Objects
Programs can use the EXCP macro to perform I/O operations to/from virtual
storage above the 2 GB bar. To do so, your program must:
1. Create a private memory object (PMO) using an IARV64 REQUEST=GETSTOR

call (described in “Creating Private Memory Objects” on page 48). The storage
key of the PMO must be equal to the partition key.

2. Prepare CCWs (channel command words) that provide a 64-bit virtual address
by specifying (a) the IDA (Indirect Data Addressing)-bit and (b) a data address
that points to a single virtual Format-2 IDAW.

3. Create a CCB indicating Format-2 IDAW by using the CCB macro with the
parameter IDAW=Format2.

4. Issue an EXCP request using the EXCP macro in AMODE 24 or AMODE 31. All
parameter lists, control blocks, IDAWs, CCWs, and EXCP appendage routines
must remain 31-bit addressable.

When the I/O operation is complete, your program can then detach the memory
object using an IARV64 REQUEST=DETATCH call (described in “Freeing a Private
Memory Object” on page 50).

Restrictions When Performing Virtual I/O Operations on Memory Objects:
v Only the EXCP macro can be used which must be executed below the 2 GB bar.
v I/O operations can only be done on private memory objects (PMOs). I/O

operations on shared memory objects (SMOs) are not supported.
v DASD (ECKD) devices only are supported.
v FBA-SCSI devices are not supported.
v Tape devices are not supported.
v LIOCS (logical input output control system) is not supported.

For further details, see “Macro Support for 64-bit Addressing” on page 155.

64-Bit Applications

58 z/VSE V5R1 Extended Addressability

Using Assembler 64-bit Binary Operations
If you want to enhance old programs or design new ones to use the virtual storage
above the 2 GB bar, you will need to use 64-bit binary operations in 64-bit address
spaces

64-bit binary operations perform arithmetic and logical operations on 64-bit binary
values. 64-bit AMODE allows access to storage operands that reside anywhere in
the address space. In support of both, z/Architecture extends the GPRs to 64 bits.
There is a single set of 16 64-bit GPRs, and the bits in each are numbered from 0 to
63.

Throughout the discussion of GPRs, bits 0 through 31 of the 64-bit GPR are called
the high-order half, and bits 32 through 63 are called the low-order half.

The topic provides an overview of how you can use the 64-bit GPR and the 64-bit
instructions to save registers, perform arithmetic operations, access data. It explains
some of the concepts that provide the foundation you need. However, for detailed
information you should refer to the Principles of Operation:
1. Read the introduction to z/Architecture that appears in the first chapter.
2. Then refer to the specific instructions you need to write your program.

z/Architecture Instructions That Use the 64-Bit GPR
z/Architecture provides many new instructions that use two 64-bit binary integers
to produce a 64-bit binary integer. These instructions include a “G” in the
instruction mnemonic (AG and LG). Consider the example of an Add G
instruction: AG R3,NUM64. This instruction takes the value of a doubleword
binary integer at location NUM64 and adds it to the contents of GPR3, placing the
sum in GPR3:

The second example, LG R3,TWOWORDS, takes a doubleword at location
TWOWORDS and puts it into GPR3.

z/Architecture 64-bit GPR

0 63

0 6332

low-order halfhigh-order half
z/Architecture 64-bit GPR

0 63

NUM64

GPR3

binary integer

a doubleword

a doubleword
GPR3

TWOWORDS

0 63

Assembler 64-bit Binary Operations

Chapter 7. Using the 64-Bit Address Space 59

z/Architecture provides instructions that use a 64-bit binary integer and a 32-bit
binary integer. These instructions include a “GF” in the instruction mnemonic
(AGF and LGF). Consider AGF. In AGF R3,MYDATA, assume that MYDATA holds
a 32-bit positive binary integer, and GPR3 holds a 64-bit positive binary integer.
(The numbers could have been negative.) The AGF instruction adds the contents of
MYDATA to the contents of GPR3 and places the resulting signed binary integer in
GPR3; the sign extension, in this case, is zeros.

The AGFR instruction adds the contents of the low-order half of a 64-bit GPR to
bits 0 through 63 in another 64-bit GPR. Instructions that include “GF” are very
useful as you move to 64-bit addressing.

Using the Assembler 64-bit Addressing Mode
If you want to enhance existing programs or design new ones to use the virtual
storage above the 2 GB bar, you will need to use the 64-bit addressing mode in
64-bit address spaces.

When generating addresses, the processor performs the following address
arithmetic:
1. The processor adds these three components:

a. The contents of the 64-bit GPR.
b. The displacement (a 12-bit value).
c. (Optionally) the contents of the 64-bit index register.

2. The processor checks the addressing mode and truncates the answer
accordingly.
v For AMODE 24, the processor truncates bits 0 through 39.
v For AMODE 31, the processor truncates bits 0 through 32.
v For AMODE 64, no truncation (or truncation of 0 bits) occurs.

The addressing mode also determines where the storage operands can reside:
v The storage operands for programs running in AMODE 64 can be anywhere in

the address space.
v A program running in AMODE 24 can use only storage operands that reside in

the first 16 MB of the address space.

0 6332

MYDATA signed positive integer

signed positive integer
GPR3

Assembler 64-bit Binary Operations

60 z/VSE V5R1 Extended Addressability

Non-Modal Instructions
An instruction that behaves the same, regardless of the AMODE of the program, is
called a non-modal instruction. For a non-modal instruction, AMODE can only
determine where the storage operand is located.

Two good examples of non-modal instructions have already been described: the
Load and the Add instructions.

Non-modal z/Architecture instructions that are already described also include the
LG instruction and the AGF instruction. For example, programs of any AMODE
can issue AG R3,NUM64 (described earlier) which:
1. Adds the value of a doubleword binary integer at location NUM64 to the

contents of GPR3.
2. Places the sum in GPR3.

The LGF instruction is another example of a non-modal instruction. In LGF
R3,MYDATA, assume MYDATA is a signed negative binary integer. This
instruction places MYDATA into the low-order half of GPR3 and propagates the
sign (1s) to the high-order half, as follows:

If the current AMODE is 64, MYDATA can reside anywhere in the address space; if
the AMODE is 31, MYDATA must reside below 2 gigabytes; if the AMODE is 24,
MYDATA must reside below 16 MB.

Other 64-bit instructions that are non-modal are the register form of AGF, which is
AGFR, and the register form of LGF, which is LGFR. Others are LGR, AGR, ALGR,
and ALG.

Modal Instructions
Modal instructions are instructions where the addressing mode is a factor in the
output of the instruction. The AMODE determines the width of the output register
operands. A good example of a modal instruction is Load Address (LA). If you
specify LA R3,VIRT_PTR successively in the three AMODEs, what are the three
results?
v In AMODE 24, the address of VIRT_PTR is a 24-bit address that is loaded into

bits 40 through 63 of GPR3 (or bits 8 through 31 of the 32-bit register imbedded
in the 64-bit GPR). The processor places zeros into bits 32 through 39, and leaves
the first 31 bits unchanged, as follows:

0 6332

MYDATA signed negative binary

signed negative binary
GPR3

sign propagation

0 6332 40

24-bit address

24-bit address
GPR3

of VIRT_PTR

zeroesunchanged

Assembler 64-bit Addressing Mode

Chapter 7. Using the 64-Bit Address Space 61

v In AMODE 31, the address of VIRT_PTR is loaded into bits 33 through 63 of
GPR3. The processor places zero into bit 32 and leaves the first 32 bits
unchanged, as follows:

v In AMODE 64, the address of VIRT_PTR fill the entire 64-bit GPR3:

Other modal instructions are Move Long (MVCL), Branch and Link (BALR), and
Branch and Save (BASR).

Setting and Checking the Addressing Mode
z/Architecture provides three Set Addressing Mode (SAM) instructions that allow
you to change the addressing mode:
v SAM24, which changes the current AMODE to 24.
v SAM31, which changes the current AMODE to 31.
v SAM64, which changes the current AMODE to 64.

The AMODE bits in the PSW inform the processor as to which AMODE is
currently being used.
v You can obtain the current addressing mode of a program by using the Test

Addressing Mode (TAM) instruction.
v In reply, the TAM sets a condition code based upon the setting in the PSW:

– 0 indicates AMODE 24.
– 1 indicates AMODE 31.
– 3 indicates AMODE 64.

SAM64, BASSM, and BSM are the only ways you can set the AMODE to 64. z/VSE
does not support:
v The AMODE 64 assembler instruction.
v The linkage editor AMODE 64 statement.
v The setting up of a target routine to be given control in AMODE 64.

0 6332 33

31-bit address

31-bit address
GPR3

0unchanged

of VIRT_PTR

0 63

64-bit address

64-bit address
GPR3

of VIRT_PTR

Assembler 64-bit Addressing Mode

62 z/VSE V5R1 Extended Addressability

Linkage Conventions
In z/VSE, program entry is in AMODE 24 or AMODE 31; therefore linkage
conventions you have used apply. This means, passing 4-byte parameter lists and a
72-byte save area.

An older program changing from AMODE 31 to AMODE 64 to exploit
z/Architecture instructions should expect to receive 31-bit addresses and the
72-byte save area from its callers. If you are running in AMODE 64 and want to
use an address a caller has passed to you, the high-order half of the GPR will
probably not be cleared to zeros. As soon as you receive this address, use the Load
Logical G Thirty One Bits (LLGT or LLGTR) instruction to change this 31-bit
address into a 64-bit address that you can use.

Pitfalls to Avoid
As you begin to use the 64-bit instructions, consider the following:
1. Some instructions reference or change all 64 bits of a GPR regardless of the

AMODE.
2. Some instructions reference or change only the low-order half of a GPR

regardless of the AMODE.
3. Some instructions reference or change only the high-order half of a GPR

regardless of the AMODE.
4. When you are using signed integers in arithmetic operations, you can't mix

instructions that handle 64-bit integers with instructions that handle 31-bit
integers. The interpretation of a 32-bit-signed number differs from the
interpretation of a 64-bit-signed number. With the 32-bit-signed number, the
sign is extended in the low half of the doubleword. With the 64-bit-signed
number, the sign is extended to the left for the entire doubleword.

Consider the following example, where a 31-bit subtraction instruction has left a
31-bit negative integer in bits 32 through 63 of GPR3 and has left the high-order
half unchanged.

Next, the instruction AG R3,MYDOUBLEWORD (mentioned earlier):
1. Adds the doubleword at the location MYDOUBLEWORD to the contents of the

GPR3.
2. Places the sum at GPR3.

Because the high-order half of the GPR has uncertain contents, the result of the AG
instruction is incorrect. To change the value in the GPR3 so that the AG instruction
adds the correct integers, before you use the AG instruction, use the Load G
Fullword Register (LGFR) instruction to propagate the sign to the high-order half
of GPR3.

0 6332

uncertain contents negative binary integer
GPR3

Assembler 64-bit Addressing Mode

Chapter 7. Using the 64-Bit Address Space 63

64 z/VSE V5R1 Extended Addressability

Part 3. Data Spaces and Virtual Disks

Chapter 8. Introducing Data Spaces 67
Basic Concepts 68

The ASC Modes 68
AR Mode and Data Spaces 69

An Example of Using a Data Space 69

Chapter 9. Using Access Registers. 71
Using Access Registers for Data Reference 71

A Comparison of Data Reference in Primary and
AR Mode 74
Coding Instructions in AR Mode 75

Using z/Architecture Instructions to Manipulate the
Contents of Access Registers. 76

Example of Loading an ALET into an AR . . . 77
Access Lists 77

The ALESERV Macro 80
Setting Up Addressability to a Data Space 81

Adding an Entry to an Access List. 81
Example of Adding an Access List Entry for a
Data Space 82
Obtaining and Passing ALETs and STOKENs . . 83

Rules for Passing ALETs 83
Examples of Establishing Addressability to Data
Spaces 83

Deleting an Entry from an Access List 88
Example of Deleting a Data Space Entry from an
Access List 88
ALET Reuse by the System 89

Chapter 10. Creating and Using Data Spaces . . 91
Referencing Data in a Data Space 91
Relationship Between the Data Space and Its Owner 92

SCOPE=SINGLE, SCOPE=ALL, and
SCOPE=COMMON Data Spaces 92

Rules for Creating, Deleting, and Using Data Spaces 93
Example of the Rules for Accessing Data Spaces 93

Summary of Rules for Creating, Deleting, and Using
Data Spaces 96
Creating a Data Space 97

Choosing the Name of a Data Space 97
Specifying the Size of the Data Space 97
Identifying the Origin of the Data Space 99

Example of Creating a Data Space 99
Establishing Addressability to a Data Space . . 100

Example of Establishing Addressability to a
Data Space 100

Managing Data Space Storage 100
Limiting Data Space Use 100
Serializing Use of Data Space Storage 101
Protecting Data Space Storage 101

Examples of Moving Data Into and Out of a Data
Space 102

Programming Notes for Example 2 104
Extending the Current Size of a Data Space . . . 104
Deleting a Data Space 105

Example of Deleting a Data Space 105
Example of Creating, Using, and Deleting a Data
Space 105
Creating and Using SCOPE=COMMON Data
Spaces 107

Programming Considerations 108
Attaching a Subtask and Sharing Data Spaces with
It 109

Example of Attaching a Task and Passing a
DU-AL 110

Releasing Data Space Storage 110
Using Data Spaces Efficiently 110
Dumping and Displaying Data Space Storage. . . 111

Chapter 11. Creating and Using Virtual Disks 113
Planning for Virtual Disks 113
Creating Virtual Disks 113

ADD Command 114
SYSDEF Command 114
VDISK Command 114
Defining a Virtual Disk via the Interactive
Interface 115

Getting Information about Virtual Disks 115
VOLUME Command 115
QUERY DSPACE Command 116

Deleting or Redefining Virtual Disks. 116
Programming Notes 116

Supported CCW Codes for Virtual Disks . . . 116
GETVCE Macro 117

1. Before using these functions you should be familiar with the planning information provided in the chapter
“Using Data Spaces and Virtual Disks” in the manual z/VSE Planning.

2. The information and examples provided for data spaces in this manual are based on the use of the High Level
Assembler.

3. High Level Assembler refers to High Level Assembler Version 1.6 for z/OS, z/VM, and z/VSE, which is a base
program of Version 5 Release 1 of IBM z/VSE.

© Copyright IBM Corp. 1993, 2013 65

66 z/VSE V5R1 Extended Addressability

Chapter 8. Introducing Data Spaces

A data space is a range of up to 2GB of contiguous virtual storage addresses that a
program can directly manipulate through z/Architecture instructions. Unlike an
address space, a data space contains only data; it does not contain shared areas or
system data or programs. Program code does not execute in a data space, although
a program can reside in a data space as nonexecutable code.

Terminology Use: This manual uses the term "extended addressability" in a
general way to summarize the capabilities of 31-bit addressing, data spaces, and
virtual disks. In the following discussion, however, the term "extended
addressability" means basically the use of data spaces and implies in its wider
context also address spaces and certain functions they support such as the use of
access registers.

Whether your application is one that can use extended addressability depends on
many factors. One basic factor is the amount of processor (real) storage available at
your installation to back up virtual storage. Extended addressability frequently
requires additional amounts of virtual storage, which means that your processor
must have sufficient real storage available.

The goals for the design of a particular application are equally important in the
decision-making process. These goals might include:
v Performance.
v Efficient use of system resources, such as storage, and the use of disk devices.
v Ability to randomly access very large amounts of data.
v Data integrity and isolation.

Data in an address space is generally available to all tasks running in that
address space; access to data in a data space can be restricted. Code running in
an address space can accidentally overlay data; because of its isolation, data in a
data space is less likely to be overlaid.

v Independence from individual device characteristics, from record-oriented
processing, and from data management concerns in general. Extended
addressability can allow an application to focus on controlling data as
information in contrast to controlling data as records in data sets stored on disk
device volumes.

v Reduction in the size and complexity of the programming effort required to
develop a new application.

Achieving these goals depends to a very great extent on choosing a way to extend
addressability that meets your needs. You need to understand, at a very high level,
basic concepts related to each technique and how you might apply extended
addressability to specific programming situations.

At the detailed technical level, extended addressability can mean learning new
programming techniques, or new ways of applying existing techniques. At a higher
level, extended addressability can open completely different solutions to
programming problems. With extended addressability, virtual storage, can become,
conceptually, a high-performance medium for application data. It is also important
to note that you should think of extended addressability techniques as ones you
can use to modify existing applications as well as code new ones.

© Copyright IBM Corp. 1993, 2013 67

To use an example of how extended addressability can open up new solutions,
assume you need to write an application to sort 5000 records:
v If you can hold only 50 records in storage, you must use disk device storage for

intermediate work file processing.
v If you can hold 500 records in storage, the solution is still the same, though it

requires fewer I/O operations.
v If you can hold all 5000 records in storage, the original solution still works, but

it is now possible to devise a completely different solution, one, for example,
that does not depend on a work file on a disk device. This new solution could
both improve performance and reduce the effort required for program
development.

This admittedly trivial example illustrates how extended addressability can both
improve the performance of existing solutions and open the possibility of new
solutions. The large amounts of virtual and processor storage now available to an
application can allow totally new solutions and simplify the entire process of
application development.

Basic Concepts
No single technique for extended addressability meets all possible needs. Choosing
the right one for a particular application requires you to understand the
advantages and disadvantages of the technique and some of the key differences
between them. Many applications require a combination of various techniques.
Before you decide to incorporate one or more of the techniques in the design of a
new application, or decide to use a technique to modify an existing application,
consult the detailed technical description of each technique.

The ASC Modes
The ASC (address space control) mode determines how the processor resolves
address references for the executing program. In primary ASC mode, the processor
uses the contents of general purpose registers to resolve an address to a specific
location. However, for programs accessing data in storage it is the access register
(AR) ASC mode that is most important. In this mode, an access register identifies
the address or data space the processor is to use to resolve an address. In AR ASC
mode, a program can use the full set of z/Architecture instructions to manipulate
data in another address space or in a data space. The processor uses the contents
of an AR as well as the contents of general purpose registers to resolve an address
to a specific location.

Terminology Use: In the following chapters the short forms primary mode and
either access register mode or AR mode are used.

In AR mode, a program can move, compare, or perform operations on data in
other address spaces or in data spaces. It is important to understand, however, that
ARs do not enable a program to transfer control from one address space to
another. That is, you cannot use ARs to transfer control from a program in one
address space to a program in another address space.

Introducing Data Spaces

68 z/VSE V5R1 Extended Addressability

AR Mode and Data Spaces
Programs that access data in data spaces must run in AR mode. They use macros
to create, control, and delete data spaces. z/Architecture instructions of a program
executing in an address space can directly manipulate data that resides in a data
space.

An Example of Using a Data Space
Suppose an existing program updates several rate tables that reside on disk.
Updates are random throughout the tables. The tables are too large and too many
for your program to keep in contiguous storage in its address space. When the
program updates a table, it reads that part of the table into a buffer area in the
address space, updates the table, and writes the changes back to disk. Each time it
makes an update, it issues instructions that cause I/O operations.

Assume you want to change this application to improve its performance. If the
tables were to reside in data spaces, one table to each data space, the tables would
then be accessible to the program through z/Architecture instructions. The
program could move the tables to the data spaces (through buffers in the address
space) once at the beginning of the update operations and then move them back
(through buffers in the address space) at the end of the update operations.

Introducing Data Spaces

Chapter 8. Introducing Data Spaces 69

70 z/VSE V5R1 Extended Addressability

Chapter 9. Using Access Registers

You cannot use access registers to branch into another address space. Through
access registers, however, you can use the z/Architecture instruction set to
manipulate data in other address spaces and in data spaces.

In addition to this chapter, two sources of information can help you understand
how to use access registers:
v Chapter 10, “Creating and Using Data Spaces,” on page 91 contains examples of

using access registers to manipulate data in data spaces.
v The z/Architecture Principles of Operation manual contain descriptions of how to

use the instructions that manipulate the contents of access registers. Refer to
“Where to Find More Information” on page xv for the complete book titles.

Using Access Registers for Data Reference
Through access registers, your program, whether it is in supervisor state or
problem state, can use z/Architecture instructions to perform basic data
manipulation, such as:
v Comparing data in one address space with data in another
v Moving data into and out of a data space, and within a data space
v Accessing data in an address space that is not the primary address space
v Moving data from one address space to another
v Performing arithmetic operations with values that are located in different

address spaces or data spaces

What is an Access Register (AR)?

An AR is a hardware register that a program uses to identify an address space or a
data space. Each processor has 16 ARs, numbered 0 through 15, and they are
paired one-to-one with the 16 general purpose registers (GPRs).

Why would a Program Use ARs?

Generally, instructions and data reside in a single address space — the primary
address space (PASN). However, you might want your program to have more
virtual storage than a single address space offers, or you might want to separate
data from instructions for:
v Storage isolation and protection
v Data security
v Data sharing among multiple users

© Copyright IBM Corp. 1993, 2013 71

For these reasons and others, your program can have data in address spaces other
than the primary one or in data spaces. The instructions still reside in the primary
address space, but the data can reside in another address space or in a data space.

To access data in other address spaces, your program uses ARs and executes in the
address space control mode called access register mode (AR mode).

What is Address Space Control (ASC) Mode?

The ASC mode determines where the system looks for the data that the address in
the GPR indicates. The two ASC modes that are generally available for your
programs are primary mode and AR mode. The PSW (program status word)
determines the ASC mode. Both problem state and supervisor state programs can
use both modes, and a program can switch between the two modes.
v In primary mode, the data your program can access resides in the program's

primary address space. When it resolves the addresses in data-referencing
instructions, the system does not use the contents of the ARs.

v In AR mode, the data your program can access resides in the address/data
space that the ARs indicate. For data-referencing instructions, the system uses
the AR and the GPR together to locate an address in an address/data space.
Specifically, the AR contains a value, called access list entry token (ALET), that
identifies the address space or data space that contains the data, and the GPR
contains a base address that points to the data within the address/data space.
In this book the term address/data space refers to “address space or data space”.

The following chart summarizes where the system looks for the instructions and
the data when the program is in primary mode and AR mode.

ASC Mode Location of Instructions Location of Data

Primary mode Primary address space Primary address space

AR mode Primary address space Address/data space
identified by an AR

In this book, the AR and GPR pair that is used to resolve an address is called
AR/GPR. Figure 15 illustrates AR/GPR 4.

Do not confuse addressing mode (AMODE) with ASC mode. A program can be in
AR mode and also be in either 31-bit or 24-bit addressing mode. However,
programs in 24-bit addressing mode are restricted in their use of data spaces; for
example, a program in 24-bit addressing mode cannot create a data space, nor can
the program access data above 16 MB in that space.

Figure 15. Example of an AR/GPR

Using Access Registers

72 z/VSE V5R1 Extended Addressability

How does your Program Switch ASC Mode?

Use the SAC instruction to change the ASC mode:
v SAC 512 sets the ASC mode to AR mode
v SAC 0 sets the ASC mode to primary mode

What does the AR Contain?

The contents of an AR designate an address/data space. The AR contains a token
that specifies an entry in a table called an access list. Each entry in the access list
identifies an address/data space that programs can reference. The token that
indexes into the access list is called an ALET. When an ALET is in an AR and the
program is in AR mode, the ALET identifies the access list entry that points to an
address/data space. The corresponding GPR contains the address of the data
within the address/data space. IBM recommends that you use ARs only for ALETs
and not for other kinds of data.

The following figure shows an ALET in the AR and the access list entry that points
to the address/data space. It also shows a GPR that points to the data within the
address/data space.

By placing an entry on an access list and obtaining an ALET for that entry, a
program builds the connection between the program and the target address/data
space. (In describing the subject of authorization, the terms “target address space”
and “target data space” are used to mean an address space or data space in which
a program is trying to reference data.) The process of building this connection is
called establishing addressability to an address/data space.

For programs in AR mode, when the GPR is used as a base register, the
corresponding AR must contain an ALET. Conversely, when the GPR is not used
as a base register, the corresponding AR is ignored. For example, the system
ignores an AR when the associated GPR is used as an index register.

Figure 16. Using an ALET to Identify an Address/Data Space

Using Access Registers

Chapter 9. Using Access Registers 73

A Comparison of Data Reference in Primary and AR Mode
The best way to show how address resolution in primary mode compares with
address resolution in AR mode is through an example. Figure 17 and Figure 18 on
page 75 show two ways an MVC instruction works to move data at location B to
location A.

In Figure 17, the move instruction, MVC, is in code that is running in primary
mode. The MVC instruction uses GPRs 1 and 2. GPR 1 is used as a base register to
locate the destination of the MVC instruction. GPR 2 is used as a base register to
locate some data to be moved.

In Figure 18 on page 75, the MVC instruction, in code that is in AR mode, moves
the data at location B in Space X to location A in Space Y. GPR 1 is used as a base
register to locate the data to be moved, and AR 1 is used to identify Space X. GPR
2 is used to locate the destination of the data, and AR 2 identifies Space Y. In AR
mode, the MVC instruction is in code that is running in AR mode. The MVC
instruction moves data from one address/data space to another. Note that the
address space that contains the MVC instruction does not have to be either Space
X or Space Y.

Figure 17. The MVC Instruction in Primary Mode

Using Access Registers

74 z/VSE V5R1 Extended Addressability

Addresses that are qualified by an ALET are called ALET-qualified addresses.

Coding Instructions in AR Mode
As you write your AR mode programs, use the advice and warnings in this
section.
v Always remember that for an instruction that uses a GPR as a base register, the

system uses the contents of the associated AR to identify the address/data space
that contains the data that the GPR points to.

v Use ARs only for data reference; do not use them with branching instructions.
v Just as you do not use GPR 0 as a base register, do not use AR/GPR 0 for

addressing.

Since ARs that are associated with index registers are ignored when you code
z/Architecture instructions in AR mode, place the commas very carefully. In
those instructions that use both a base register and an index register, the comma
that separates the two values is very important.

Table 3 shows four examples of how a misplaced comma can change how the
assembler resolves addresses on the load instruction.

Table 3. Base and Index Register Addressing in AR Mode

Instruction Address Resolution

L 5,4(,3) or L 5,4(0,3) There is no index register. GPR 3 is the base register. AR 3
indicates the address/data space.

Figure 18. The MVC Instruction in AR Mode

Using Access Registers

Chapter 9. Using Access Registers 75

Table 3. Base and Index Register Addressing in AR Mode (continued)

Instruction Address Resolution

L 5,4(3) or L 5,4(3,) GPR 3 is the index register. Because there is no base
register, data is fetched from the primary address space.

L 5,4(6,8) GPR 6 is the index register. GPR 8 is the base register. AR 8
indicates the address/data space.

L 5,4(8,6) GPR 8 is the index register. GPR 6 is the base register. AR 6
indicates the address/data space.

For the first two entries in Table 3 on page 75:
In primary mode, the examples of the load instruction give the same result.
In AR mode, the data is fetched using different ARs. In the first entry, data is
fetched from the address/data space represented by the ALET in AR 3. In the
second entry, data is fetched from the primary address space (because AR/GPR
0 is not used as a base register).

For the last two entries in Table 3 on page 75:
In primary mode, the last two examples of the load instruction give the same
result.
In AR mode, the first results in a fetch from the address/data space represented
by AR 8, while the second results in a fetch from the address/data space
represented by AR 6.

Using z/Architecture Instructions to Manipulate the Contents of Access
Registers

Whether the ASC mode of a program is primary or AR, the program can use
assembler instructions to save, restore, and modify the contents of the 16 ARs. Both
problem state and supervisor state programs can use these instructions.

The set of instructions that manipulate ARs includes:
v CPYA — Copy the contents of one AR into another AR.
v EAR — Copy the contents of an AR into a GPR.
v LAE — Load a specified ALET/address into an AR/GPR pair.
v SAR — Place the contents of a GPR into an AR.
v LAM — Load the contents of one or more ARs from a specified location.
v STAM — Store contents of one or more ARs at a specified location.

For their syntax and help with how to use them, refer to z/Architecture Principles of
Operation manual.

Using Access Registers

76 z/VSE V5R1 Extended Addressability

Example of Loading an ALET into an AR
An action that is very important when a program is in AR mode, is the loading of
an ALET into an AR. The following example shows how you can use the LAM
instruction to load an ALET into an AR.

The following instruction loads an ALET (located at DSALET) into AR 2:

Access Lists
When the system dispatches a z/VSE task (main task or subtask), for the first time,
it assigns to that work unit a DU-AL (dispatchable unit access list). When the
system allocates a partition, that partition gets a PASN-AL (primary address space
number access list) assigned.

Note: Although it is called primary address space number access list, in z/VSE the
PASN-AL is associated with a partition (residing in a particular address space).

Programs add entries to the DU-AL and the PASN-AL. The entries represent the
address or data spaces that the programs want to access.

Before your program can use ARs to reference data in an address or data space, it
must establish a connection to the address or data space.

Note: Only z/VSE subsystems such as CICS/VSE*, VTAM* and VSE/POWER can
establish connections to address spaces.
The connection between the program that the z/VSE task represents and the
address spaces and data spaces is through an access list. The process of
establishing this connection is called establishing addressability.

Before you can set up the access list entries and obtain ALETs, you need to know
about:
v The two types of access lists, and the differences between them
v The two types of entries in access lists, and the differences between them
v The ALETs that are available to every program
v The ALESERV macro, which manages entries in access lists and gives

information about ALETs and STOKENs.

Note: The ALESERV macro is available only to control data space entries in the
access list.

The term STOKEN (for “space token”) identifies a data space. It is similar to a
partition identifier with two important differences: the system does not reuse the
STOKEN value within an IPL, and data spaces do not have space IDs. The
STOKEN is an eight-byte variable that the system generates when you create a
data space (note that the system never generates a STOKEN value of zero).

LAM 2,2,DSALET LOAD ALET OF DATA SPACE INTO AR2
.

DSALET DS F DATA SPACE ALET

Establishing addressability to an address or data space means your program must:

v Have authority to access data in the address or data space

v Have an access list entry that points to the address or data space

v Have the ALET that indexes to the entry

Using Access Registers

Chapter 9. Using Access Registers 77

Types of Access Lists: The access list can be one of two types:
v PASN-AL — the access list that is associated in z/VSE with a partition.
v DU-AL — the access list that is associated with a z/VSE task (main task or

subtask).

A program uses the DU-AL associated with its z/VSE task and the PASN-AL
associated with its partition.

The difference between a PASN-AL and a DU-AL is significant. If your program is
a part of a subsystem that provides services for many users and has its own
partition, it might reference data spaces through its PASN-AL. A program can
create a data space, add an entry for the data space to the PASN-AL, and obtain
the ALET that indexes the entry. By passing the ALET to other programs in the
partition, the program can share the data space with other programs running in
the same partition.

If your program is not part of a subsystem, it will probably place entries for data
spaces in its DU-AL.

Each z/VSE task has one DU-AL; all programs running under a z/VSE task can
use it. A DU-AL cannot be shared with another z/VSE task. A program can,
however, use the ALCOPY parameter on the ATTACH macro at the time of the
attach, to pass a copy of its DU-AL to the attached task. “Attaching a Subtask and
Sharing Data Spaces with It” on page 109 describes a program attaching a subtask
and passing a copy of its DU-AL. This action allows two programs, the issuer of
the ATTACH macro and programs running under the attached task, to have access
to the data spaces that were represented by the entries on the DU-AL at the time
of the attach.

Each partition has a PASN-AL. All programs running in the partition can use the
PASN-AL of that partition. They cannot use the PASN-AL of any other partition.

The following lists summarize the characteristics of DU-ALs and PASN-ALs.
v The DU-AL has the following characteristics:

– Each z/VSE task has its own unique DU-AL.
– All programs running under a z/VSE task can add and delete entries on the

z/VSE task's DU-AL.
– A program cannot pass its task's DU-AL to a program running under another

task. The one exception is that a program can pass a copy of its DU-AL to a
subtask to be attached.

– A DU-AL can have up to 253 entries.
v The PASN-AL has the following characteristics:

– Every partition has its own unique PASN-AL.
– Programs in PSW key 0 running in this partition can add and delete entries

on the PASN-AL. A PASN-AL is also updated if a SCOPE=COMMON entry
for a data space is added or deleted within the system.

– All programs running in this partition can access data spaces through the
PASN-AL.

– A PASN-AL can have up to 253 entries, some of which are reserved for
SCOPE=COMMON data spaces and virtual disks.

Because DU-ALs belong to z/VSE tasks, you must remember the relationship
between the program and the z/VSE task under which the program runs. For

Using Access Registers

78 z/VSE V5R1 Extended Addressability

simplicity, this section describes access lists as if they belong to programs. For
example, “your program's DU-AL” means “the DU-AL that belongs to the task
under which your program runs”.

A Comparison of a PASN-AL and a DU-AL: Figure 19 shows PGM1 that runs in
partition 1. The figure shows the PASN-AL of partition 1 and PGM1's DU-AL.
PGM1 shares the PASN-AL with other programs that execute in partition 1. It does
not share its DU-AL with any other programs. The PASN-AL contains entries to
data spaces that program(s) with PSW key 0 placed there. PGM1 has an entry for
space X in its DU-AL and an ALET for space X. PGM1 received an ALET for space
Y from a program running with PSW key 0. Assuming PGM1 has authority to
space X and space Y, it has addressability to space X through its DU-AL and space
Y through its PASN-AL; it can access data in both space X and space Y. Therefore,
with one MVC instruction, PGM1 can move data from a location in space X to a
location in space Y provided the PSW key matches the storage key of space Y or
the PSW key is 0.

Figure 19. Comparison of Addressability through a PASN-AL and a DU-AL

Using Access Registers

Chapter 9. Using Access Registers 79

Loading the Value of Zero into an AR: When the code you are writing is in AR
mode, you must be very conscious of the contents of the ARs. For instructions that
reference data, the ARs must always contain the ALET that identifies the data
space that contains the data. Therefore, even when the data is in the primary
address space, the AR that accompanies the GPR that has the address of the data
must contain the value “0”.

The following examples show several ways of placing the value “0” in an AR.

Example 1: Set AR 5 to value of zero, when GPR 5 can be changed.
SLR 5,5 SET GPR 5 TO ZERO
SAR 5,5 LOAD GPR 5 INTO AR 5

Example 2: Set AR 5 to value of zero, without changing value in GPR 5.
LAM 5,5,=F’0’ LOAD AR 5 WITH A VALUE OF ZERO

Another way of doing this is the following:
LAM 5,5,ZERO
.

ZERO DC F’0’

Example 3: Set AR 5 to value of zero, when AR 12 is already 0.
CPYA 5,12 COPY AR 12 INTO AR 5

Example 4: Set AR 12 to zero and set GPR 12 to the address contained in GPR 15.
This code is useful to establish a program's base register GPR and AR from an
entry point address contained in register 15. The example assumes that GPR 15
contains the entry point address of the program, PGMA.

LAE 12,0(15,0) ESTABLISH PROGRAM’S BASE REGISTER
USING PGMA,12

Another way to establish AR/GPR module addressability through register 12 is as
follows:

SLR 12,12
SAR 12,12
BASR 12,0
USING *,12

Example 5: Set AR 5 and GPR 5 to zero.
LAE 5,0(0,0) Set GPR and AR 5 to zero

The ALESERV Macro
Use the ALESERV macro to set up addressability to data spaces. Table 4 lists some
of the functions of the macro, the parameter that provides the function, and the
section where the function is described.

Table 4. Functions of the ALESERV Macro

To do the following:
Use this
parameter: Described in this section:

Add an entry to an access list ADD “Adding an Entry to an Access
List” on page 81.

Delete an entry from an access list. DELETE “Deleting an Entry from an Access
List” on page 88.

Using Access Registers

80 z/VSE V5R1 Extended Addressability

Table 4. Functions of the ALESERV Macro (continued)

To do the following:
Use this
parameter: Described in this section:

Obtain the STOKEN of a data
space, given the ALET.

EXTRACT “Obtaining and Passing ALETs and
STOKENs” on page 83.

Find an ALET on an access list,
given the STOKEN.

SEARCH “Adding an Entry to an Access
List.”

You can also find examples of the ALESERV macro in Chapter 10, “Creating and
Using Data Spaces,” on page 91.

Setting Up Addressability to a Data Space
Before your program can use ARs to reference data in a data space, it must
establish a connection to the data space. The important facts to remember about
setting up an environment in which your program can use ARs are in the
following box.

This section describes these actions and gives some examples. The first item in the
list, having authority to access data in the data space, depends on whether the
entry is for a data space. Authority to add an entry for a data space follows certain
rules that are summarized in Table 5 on page 96. This table tells what PSW key 0
programs or programs with a non-zero PSW key can do with data spaces.

Adding an Entry to an Access List
The ALESERV ADD macro adds an entry to the access list. Two parameters are
required: STOKEN, an input parameter, and ALET, an output parameter.
v STOKEN the eight-byte STOKEN of the data space represented by the entry. You

might have received the STOKEN from DSPSERV, or from another program.
v ALET — index to the entry that ALESERV added to the access list. The system

returns this value at the address you specify on the ALET parameter.

An optional parameter, AL, allows you to limit access to a data space:
v AL=WORKUNIT or PASN

AL specifies the access list, the DU-AL (WORKUNIT parameter) or the
PASN-AL (PASN parameter), to which the ALESERV service is to add the entry.
The default is WORKUNIT.
Use AL=WORKUNIT if you want to limit the sharing of the data space to
programs running under the owning z/VSE task. Use AL=PASN if you want
other programs running in the same partition to have access to the data space,
or if you are adding an entry for a SCOPE=COMMON data space.

The ALESERV ADD process described in this section applies to the data spaces
called SCOPE=SINGLE and SCOPE=ALL. For SCOPE=COMMON data spaces,
ALESERV ADD adds an entry to all PASN-ALs. “Creating and Using
SCOPE=COMMON Data Spaces” on page 107 describes the ALESERV ADD
process for these data spaces.

Establishing addressability to a data space means that your program must:

v Have authority to access data in the data space

v Have an access list entry that points to the data space

v Have the ALET that indexes to the entry

Using Access Registers

Chapter 9. Using Access Registers 81

ALESERV ADD is the only way to add an entry for a data space to an access list.

For examples of adding entries to the DU-AL and PASN-AL, see:
v “Example of Adding an Access List Entry for a Data Space.”
v “Examples of Establishing Addressability to Data Spaces” on page 83.

If you want to know whether a data space already has an entry on an access list,
use ALESERV SEARCH. As input to the macro, give the STOKEN of the space,
which access list is to be searched, and the location in the list where you want the
system to begin to search. If the entry is on the list, the system returns the ALET. If
the entry is not on the list, the system returns a code in register 15.

Example of Adding an Access List Entry for a Data Space
The following code uses DSPSERV to create a data space named TEMP. The system
returns the STOKEN of the data space in DSPCSTKN and the origin of the data
space in DSPCORG. The ALESERV ADD macro returns the ALET in DSPCALET.
The program then establishes addressability to the data space by loading the ALET
into AR 2 and the origin of the data space into GPR 2.

DSPSERV CREATE,NAME=DSPCNAME,STOKEN=DSPCSTKN, X
BLOCKS=DSPBLCKS,ORIGIN=DSPCORG

ALESERV ADD,STOKEN=DSPCSTKN,ALET=DSPCALET,AL=WORKUNIT
.
.

* ESTABLISH ADDRESSABILITY TO THE DATA SPACE
.
.
LAM 2,2,DSPCALET LOAD ALET OF SPACE INTO AR2
L 2,DSPCORG LOAD ORIGIN OF SPACE INTO GR2
USING DSPCMAP,2 INFORM ASSEMBLER
.
.

* SWITCH TO ACCESS REGISTER MODE
.
.
L 5,DSPWRD1 GET FIRST WORD FROM DATA SPACE

USES AR/GPR 2 TO MAKE THE REFERENCE
.
.

DSPCSTKN DS CL8 DATA SPACE STOKEN
DSPCALET DS F DATA SPACE ALET
DSPCORG DS F DATA SPACE ORIGIN RETURNED
DSPCNAME DC CL8’TEMP’ DATA SPACE NAME
DSPBLCKS DC F’1000’ DATA SPACE SIZE (IN 4K BLOCKS)
DSPCMAP DSECT DATA SPACE STORAGE MAPPING
DSPWRD1 DS F WORD 1
DSPWRD2 DS F WORD 2
DSPWRD3 DS F WORD 3

Using the DSECT that the program established, the program can easily manipulate
data in the data space.

A more complete example of manipulating data within this data space appears in
“Example of Creating, Using, and Deleting a Data Space” on page 105.

Using Access Registers

82 z/VSE V5R1 Extended Addressability

Obtaining and Passing ALETs and STOKENs
A program can obtain an ALET through the ALESERV macro with the ADD
parameter. Or, it can receive an ALET from another program.

A program can obtain a STOKEN through DSPSERV CREATE, ALESERV
EXTRACT. Or, it can receive a STOKEN from another program.

A program can pass an ALET or a STOKEN to another program in the same way it
passes other parameter data. z/VSE has certain rules for passing ALETs, as
described in “Rules for Passing ALETs.” It does not have rules for passing
STOKENs. However, the ALESERV service determines whether the receiving
program can add an entry for the data space that a STOKEN represents.

Rules for Passing ALETs
z/VSE allows your program to pass the following ALETs:
v An ALET of zero (primary address space).
v An ALET that indexes into an entry on a DU-AL, if the program that passes the

ALET and the program that receives the ALET run under the same z/VSE task
(that is, they have the same DU-AL).

v An ALET that indexes into the PASN-AL, if the program that passes the ALET
and the program that receives the ALET run in the same partition (that is, they
have the same PASN-AL).

v An ALET that indexes into the PASN-AL for a SCOPE=COMMON data space.

To provide addressability to a data space, a program might pass an ALET to
another program for which examples are provided below.

Examples of Establishing Addressability to Data Spaces

Note: Programs running in non-zero PSW key can access a data space for update
only if storage and PSW key match.

The best way to describe how to add an access list entry is through examples. This
section contains three examples:
v Example 1 sets up addressability to a data space, using the DU-AL. The example

continues with a program passing a STOKEN to another program so that both
programs can access the data space.

v Example 2 sets up addressability to a data space, using the PASN-AL. This
example continues with a program passing an ALET to another program so that
both programs can access the data space.

v Example 3 shows how to set up addressability so that two programs in different
partitions can access the same data space.

In these examples, programs share their data spaces with programs running under
z/VSE tasks other than their own.

Example 1: Getting Addressability through a DU-AL

Consider that a PSW key zero program named PGM1 created a data space and
received a STOKEN from DSPSERV. To add the entry to the DU-AL, PGM1 issues:

ALESERV ADD,STOKEN=STOKDS1,ALET=ALETDS1,AL=WORKUNIT
.

ALETDS1 DS F
STOKDS1 DS CL8

Using Access Registers

Chapter 9. Using Access Registers 83

ALESERV accepts the STOKEN, adds an entry to the DU-AL and returns an ALET
at location ALETDS1. Figure 20 shows PGM1 with the entry for data space DS1 on
its DU-AL. It shows the STOKEN and the ALET.

Consider that PGM2, with PSW key 0 and running under a task different from
PGM1's task, would also like to have access to data space DS1. PGM1 passes
PGM2 the STOKEN for DS1. PGM2 then uses the ALESERV ADD macro to obtain
the ALET and add the entry. Figure 21 on page 85 shows PGM2 with
addressability to DS1.

Figure 20. Example 1: Adding an Entry to a DU-AL

Using Access Registers

84 z/VSE V5R1 Extended Addressability

Note: A problem state program with PSW key unequal to zero cannot add entries
to its PASN-AL, nor can the program add an entry on its DU-AL for a data space
that was created by another task.

Example 2: Getting Addressability through a PASN-AL

In Figure 22 on page 86, consider that PROG1, with PSW key 0, adds an entry for a
data space to the PASN-AL. PROG1 issues the following macro:

ALESERV ADD,STOKEN=STOKDS2,ALET=ALETDS2,AL=PASN
.

ALETDS2 DS F
STOKDS2 DS CL8

ALESERV accepts the STOKEN, adds an entry to the PASN-AL, and returns an
ALET at location ALETDS2. Figure 22 on page 86 shows PROG1 with the
PASN-AL entry for data space DS2.

Figure 21. Example 1: Sharing a Data Space through DU-ALs

Using Access Registers

Chapter 9. Using Access Registers 85

Consider that PROG2 running under a task different from PROG1's would like to
have access to data space DS2. In this case, both PROG1 and PROG2, because they
run in the same partition, share the same PASN-AL. PROG2 does not have to add
an entry to its PASN-AL; the entry is already there. PROG1 passes the ALET to
PROG2. Figure 23 on page 87 shows that PROG2 has the ALET for DS2 and,
therefore, has addressability to DS2 through its PASN-AL.

Figure 22. Example 2: Adding an Entry to a PASN-AL

Using Access Registers

86 z/VSE V5R1 Extended Addressability

In a similar way, any supervisor state or problem state program that runs in the
same partition and has the ALET for DS2 can access DS2.

The SCOPE parameter on DSPSERV determines how the creating program can
share the data space. For more information on the SCOPE parameter, see
“SCOPE=SINGLE, SCOPE=ALL, and SCOPE=COMMON Data Spaces” on page 92.

Example 3: Passing ALETs across Partitions

Referring to Figure 23, consider that PROG1 wants to allow a program in another
partition (same or different address space) to access data in data space DS2.
Figure 24 on page 88 shows that PROG1 passes the STOKEN for DS2 to PROG2, a
PSW key 0 program in Partition 2. PROG2 uses the ALESERV macro to add the
entry to its DU-AL. PROG2 also could have added the entry to its PASN-AL.

Figure 23. Example 2: Sharing a Data Space through the PASN-AL

Using Access Registers

Chapter 9. Using Access Registers 87

Deleting an Entry from an Access List
Use ALESERV DELETE to delete an entry on an access list. The ALET parameter
identifies the specific entry.

Access lists have a limited size. Both, the DU-AL and the PASN-AL have 253
entries. Therefore, it is a good programming practice to delete entries from an
access list when the entries are no longer needed. The specific rules are:
v The system deletes a PASN-AL when a partition is de-allocated, a DU-AL when

a task is terminated.
v Once the entry is deleted, the system can immediately reuse the access list entry.

Programs that share data spaces with other programs have another action to take
when they delete an entry from an access list. They should notify the other
programs that the entry is no longer connecting the ALET to the data space.
Otherwise, those programs might continue to use an ALET for the deleted entry.
See “ALET Reuse by the System” on page 89 for more information.

Example of Deleting a Data Space Entry from an Access List
The following example deletes the entry for the ALET at location DSPCALET. The
example also includes the deletion of the data space with a STOKEN at location
DSPCSTKN.

ALESERV DELETE,ALET=DSPCALET REMOVE DS FROM AL
DSPSERV DELETE,STOKEN=DSPCSTKN DELETE THE DS
.

DSPCSTKN DS CL8 DATA SPACE STOKEN
DSPCALET DS F DATA SPACE ALET

If the program does not delete an entry, the entry remains on the access list until
the z/VSE task terminates. At that time, the system frees the access list entry.

Figure 24. Example 3: Sharing Data Spaces Between two Partitions

Using Access Registers

88 z/VSE V5R1 Extended Addressability

ALET Reuse by the System
ALETs are not unique; they index a specific entry on a PASN-AL or DU-AL,
connecting a program to an address space or data space. When ALESERV DELETE
removes an access list entry, the connection between the ALET and the data space
no longer exists. The access list entry and its corresponding ALET are available for
the system to be used again. The breaking of the connection and the reuse of the
ALET mean that a program using the old ALET:
v Does not gain access to the space
v Might gain access to another space

The system does not check and notify programs about the reuse of an ALET.
Therefore, when a program uses ALESERV DELETE to delete an access list entry,
the program must ensure that other programs do not use the old ALET.

Consider a program, PROGA, deleting the data space, DSA, and removing the
entry from the PASN-AL. The ALET for that entry, ALETA, ceases to have meaning
in relationship to DSA. The system, free now to reuse that ALET, assigns ALETA to
a new data space, DSB. Suppose that other programs in the address space were
also using ALETA to access DSA. For this reason, PROGA should tell those
programs about the removal of ALETA to ensure that no access errors occur.

This response to the system's removal of the entry and reuse of an ALET is similar
to the work a program does after it frees address space GETVIS storage that it
obtained and shared with other programs. When that area of storage is freed,
z/VSE reuses the area to satisfy a later request for storage. When an access list
entry is freed, z/VSE reuses that ALET to satisfy a later ALESERV ADD request.

Using Access Registers

Chapter 9. Using Access Registers 89

90 z/VSE V5R1 Extended Addressability

Chapter 10. Creating and Using Data Spaces

The support of data spaces is based on the following command and macros:
v SYSDEF command This JCL/AR command defines the size of the virtual storage

available for data spaces. This size also depends on the values defined in the IPL
VSIZE and DPD commands.

v ALESERV macro
v DSPSERV macro
v SYSSTATE macro
v SDUMPX macro

For overview information you may refer to “Macro and Command Support for
Data Spaces” on page 155.

The DSPSERV macro manages data spaces. Use this macro to:
v Create a data space
v Release an area in a data space
v Delete a data space
v Expand the amount of storage in a data space currently available to a program.

A program's ability to create, delete, and access data spaces depends on whether it
is a program with a non-zero PSW key or a PSW key 0 program. All programs can
create, access, and delete the data spaces they own and share their data spaces
with their subtasks. In addition, PSW key 0 programs can share their data spaces
with other programs.

Use this chapter to help you create, use, and delete data spaces. In addition, two
sources of information can help you understand how to use data spaces:
v Chapter 9, “Using Access Registers,” on page 71 contains many examples of

setting up addressability to data spaces.
v z/Architecture Principles of Operation contains descriptions of how to use the

instructions that manipulate access registers.

Referencing Data in a Data Space
To reference the data in a data space, the program must be in access register (AR)
mode. Assembler instructions (such as load, store, add, and move character) move
data in and out of a data space and manipulate data within it. Assembler
instructions can also perform arithmetic operations on the data.

When a program uses the DSPSERV macro to create a data space, the system
returns a STOKEN that uniquely identifies the data space (data spaces do not have
IDs like address spaces). The program then gains access to the data space: it uses
the ALESERV macro to add an entry to an access list and obtain an access list
entry token (ALET). The entry on the access list identifies the newly created data
space and the ALET indexes the entry.

© Copyright IBM Corp. 1993, 2013 91

The process of giving the STOKEN to ALESERV, adding an entry to an access list,
and receiving an ALET is called establishing addressability to the data space. The
access list can be one of two types:
v DU-AL : the access list that is associated with a z/VSE main task or subtask.
v PASN-AL : the access list that is associated with a z/VSE partition.

Relationship Between the Data Space and Its Owner
The owner of a data space is a z/VSE main task or subtask. When a task
terminates, the system deletes any data spaces that the task owns.

This section describes access lists and data spaces as if they belong to programs.
For example, “a program's DU-AL” means “the DU-AL that belongs to the task
under which a program is running”.

SCOPE=SINGLE, SCOPE=ALL, and SCOPE=COMMON Data
Spaces

Data spaces are either SCOPE=SINGLE, SCOPE=ALL, or SCOPE=COMMON,
named after the SCOPE parameter on the DSPSERV CREATE macro.
v SCOPE=SINGLE data spaces

A SCOPE=SINGLE data space with an entry on a PASN-AL can be used by
programs running in the owner's partition. A SCOPE=SINGLE data space with
an entry on a DU-AL can only be used by the creating task.

v SCOPE=ALL data spaces
A SCOPE=ALL data space can be used by programs running in the owner's
partition or other partitions. SCOPE=ALL data spaces provide a way to share
data selectively among programs running in different partitions.

v SCOPE=COMMON data spaces
A SCOPE=COMMON data space can be used by all programs in the system. It
provides a commonly addressable area similar to the shared virtual area (SVA).

Creating and Using Data Spaces

92 z/VSE V5R1 Extended Addressability

Rules for Creating, Deleting, and Using Data Spaces
To protect data spaces from unauthorized use, the system uses certain rules to
determine whether a program can create or delete a data space or whether it can
access data in a data space. The rules for programs with non-zero PSW key differ
from the rules for programs that are PSW key 0. The table on page Table 5 on page
96 summarizes these rules and the example on Figure 25 on page 95 illustrates
them.

A program with PSW key 0 can:
v Create a data space.
v Delete a data space if any task of the caller's partition owns the data space.
v Release storage in a data space if any task of the caller's partition owns the data

space.
v Extend the current size of any data space it owns if any task of the caller's

partition owns the data space.
v Establish addressability to a data space through the ALESERV macro (if the

program does not already have an entry on its DU-AL or a PASN-AL) and
obtain the ALET that indexes the entry. When it adds an entry, the program can
specify whether it wants the entry on its DU-AL or the PASN-AL. A program
can add entries:
– For a SCOPE=SINGLE data space to its DU-AL.
– For a SCOPE=SINGLE data space to its PASN-AL, if the PASN-AL belongs to

the owner's partition.
– For any SCOPE=ALL data space to its DU-AL and its PASN-AL.
– For any SCOPE=COMMON data space to its PASN-AL.
Note that programs with non-zero PSW key cannot add entries to their
PASN-ALs. PSW key 0 programs, however, can add entries on behalf of
programs with non-zero PSW key and pass copies of the ALETs that index the
entries to these programs.

v Access data in a data space.
Once an entry for the data space is on its DU-AL, a program having the ALET
for the entry can access the data space if it runs under the same task which
owns the DU-AL. Once an entry for the data space is on the PASN-AL, all
programs running with that PASN-AL and having the ALET can access the data
space. Note that data space storage is also subject to storage key and fetch
protection.
A program can attach a subtask and pass a copy of its DU-AL to the subtask.
This action allows the program and the subtask to share the data spaces that
have entries on the DU-AL at the time of the attach.

Example of the Rules for Accessing Data Spaces
Another way of describing the rules for accessing data spaces is through an
example. Figure 25 on page 95 shows two partitions (Partition 1, Partition 2) and
two data spaces (DS1, DS2). The entries in the PASN-AL and DU-AL are identified.

Two programs run in Partition 1, both of which own data spaces:
v A program with non-zero PSW key, PGM1, running under Task A that owns the

SCOPE=SINGLE data space DS1.
v A PSW key 0 program, PGM2, running under Task B that owns the SCOPE=ALL

data space DS2.

Creating and Using Data Spaces

Chapter 10. Creating and Using Data Spaces 93

Two programs run in Partition 2, neither of which owns data spaces:
v A program with non-zero PSW key, PGM3, running under Task C.
v A PSW key 0 program, PGM4, running under Task D.

PGM2 has passed a STOKEN for the SCOPE=ALL data space DS2 to PGM4 in
Partition 2. PGM4 used the STOKEN as input to ALESERV, which placed an entry
for DS2 on the DU-AL and returned the ALET. PGM4 could have added the entry
for DS2 to its PASN-AL.

Earlier in this section, it was stated that storage within a data space is available to
programs that run under the task that owns the data space. The exception to this
statement is when the owning task has the data space entry on the PASN-AL.

Creating and Using Data Spaces

94 z/VSE V5R1 Extended Addressability

Figure 25. Example of Rules for Accessing Data Spaces

Creating and Using Data Spaces

Chapter 10. Creating and Using Data Spaces 95

Summary of Rules for Creating, Deleting, and Using Data Spaces
Table 5 summarizes the rules for what programs can do with data spaces. The
third column describes what a program with non-zero PSW key can do. The fourth
column describes what a PSW key 0 can do.

Table 5. Creating, Deleting, and Using Data Spaces

Function Type of data space
A program with non-zero PSW
key: A program with PSW key 0:

CREATE SCOPE=SINGLE Can create a SCOPE=SINGLE data
space.

Can create the data space.

SCOPE=ALL
SCOPE=COMMON

Cannot create the data spaces. Can create the data space.

DELETE SCOPE=SINGLE Can delete the data spaces it owns
if its PSW key matches the storage
key of the data space.

Can delete the data space if any task
of the caller's partition owns the data
space.

SCOPE=ALL
SCOPE=COMMON

Cannot delete the data space. Can delete the data space if any task
of the caller's partition owns the data
space.

RELEASE SCOPE=SINGLE Can release storage in data spaces
it owns if its PSW key matches the
storage key of the data space.

Can release storage in a data space if
any task of the caller's partition owns
the data space.

SCOPE=ALL
SCOPE=COMMON

Cannot release the storage. Can release storage in a data space if
any task of the caller's partition owns
the data space.

EXTEND SCOPE=SINGLE Can extend storage in data spaces
it owns.

Can extend storage in a data space if
any task of the caller's partition owns
the data space.

SCOPE=ALL
SCOPE=COMMON

Cannot extend the current size. Can extend the current size if any
task of the caller's partition owns the
data space.

Add or delete
entries in the
DU-AL

SCOPE=SINGLE Can add or delete entries for the
data spaces it owns.

Can add or delete entries for the data
space if any task of the caller's
partition owns the data space.

SCOPE=ALL
SCOPE=COMMON

Cannot add or delete entries. Can add or delete entries for a
SCOPE=ALL (not the
SCOPE=COMMON) data space.

Add or delete
entries in the
PASN-AL

SCOPE=SINGLE Cannot add or delete entries. Can add or delete entries for a data
space if its PASN-AL is the same as
the PASN-AL of the owner's partition.

SCOPE=ALL
SCOPE=COMMON

Cannot add or delete entries. Can add or delete entries for a
SCOPE=ALL and a
SCOPE=COMMON data space.

Access a data
space through a
DU-AL or
PASN-AL

SCOPE=SINGLE
SCOPE=ALL
SCOPE=COMMON

Can access a data space through
an access list if the entry for the
data space exists and the program
has the ALET. Data space storage
is also subject to storage key and
fetch protection.

Can access a data space through an
access list if the entry for the data
space exists and the program has the
ALET.

Creating and Using Data Spaces

96 z/VSE V5R1 Extended Addressability

Creating a Data Space
To create a data space, issue the DSPSERV CREATE macro. z/VSE gives you
contiguous 31-bit virtual storage of the size you specify and initializes the storage
to hexadecimal zeroes. The entire data space has the storage key that you request,
or, by default, the storage key that matches your own PSW key.

On the DSPSERV macro, you are required to specify:
v The name of the data space (NAME parameter)

To ask DSPSERV to generate a data space name unique to the address space, use
the GENNAME parameter. DSPSERV will return the name it generates at the
location you specify on the OUTNAME parameter. See “Choosing the Name of a
Data Space.”

v A location where DSPSERV can return the STOKEN of the data space (STOKEN
parameter)
DSPSERV CREATE returns a STOKEN that you can use to identify the data
space to other DSPSERV services and to the ALESERV macro.

Other information you might specify on the DSPSERV macro is:
v A request for a SCOPE=ALL or SCOPE=COMMON data space. If you don't code

SCOPE, the system creates a SCOPE=SINGLE data space. See “SCOPE=SINGLE,
SCOPE=ALL, and SCOPE=COMMON Data Spaces” on page 92.

v The maximum size of the data space and its initial size (BLOCKS parameter). If
you do not code BLOCKS, the data space size is determined by defaults set by
your installation. In this case, use the NUMBLKS parameter to tell the system
where to return the size of the data space. See also “Specifying the Size of the
Data Space.”

Choosing the Name of a Data Space
The name you specify on the NAME parameter will identify the data space on
dump requests and AR/JCL commands.

Names of data spaces must be unique within a partition. You have a choice of
choosing the name yourself or asking the system to generate a unique name for
your data space. To keep you from choosing names that z/VSE uses, z/VSE has
some specific rules for you to follow. Refer to the manual z/VSE System Macros
Reference under “DSPSERV CREATE (Create Data Space) Macro” for details.

Specifying the Size of the Data Space
When you create a data space, you tell the system on the BLOCKS parameter how
large to make that space, the largest size being 524,288 blocks. (The product of
524,288 times 4KB is 2GB.) The addressing range for the data space depends on the
processor. Before you code BLOCKS, you should know two facts about how an
installation controls the use of virtual storage for data spaces.
v An installation can set limits on the amount of storage available for all data

spaces (through the SYSDEF command). If your request for a data space would
cause the installation limit to be exceeded, the system rejects the request with a
nonzero return code and a reason code.

v An installation sets a default size for data spaces (through the SYSDEF
command). If you do not use the BLOCKS parameter of the DSPSERV CREATE
macro or the BLOCKS parameter is zero, the system creates a data space with
the default size. To find out about data space sizes, use the QUERY DSPACE
command.

Creating and Using Data Spaces

Chapter 10. Creating and Using Data Spaces 97

For information on how to change IBM defaults, see “Limiting Data Space Use” on
page 100.

The BLOCKS parameter allows you to specify a maximum size and initial size
value.
v The maximum size identifies the largest amount of storage you will need in the

data space.
v An initial size identifies the amount of the storage you will immediately use.

Note: The storage taken from VSIZE is either the initial or extended data space
size rounded up to the next multiple of 8 BLOCKS.

As you need more space in the data space, you can use the DSPSERV EXTEND
macro to increase the size of the available storage, thus increasing the storage in
the data space that is available for the program. The amount of available storage is
called the current size. (At the creation of a data space, the initial size is the same
as the current size.) When it calculates the cumulative total of data space storage,
the system uses the current size of the data space.

If you know what data space size you need and are not concerned about exceeding
the installation limit, set the maximum size and the initial size the same.
BLOCKS=0, the default, establishes a data space with the maximum size and the
initial size both set to the default size.

If you do not know how large a data space you will eventually need or you are
concerned with exceeding the installation limit, set the maximum size to the largest
size you might possibly use and the initial size to a smaller amount, the amount
you currently need.

Use the NUMBLKS parameter to request that the system returns the maximum
size of the data space it creates for you. You would use NUMBLKS, for example, if
you did not specify BLOCKS and do not know the default size.

Figure 26 on page 99 shows an example of using the BLOCKS parameter to request
a data space with a maximum size of 100,000 bytes of space and a current size of
20,000 bytes.

DSPSERV CREATE,. . .BLOCKS=(DSPMAX,DSPINIT)
.
.

DSPMAX DC A((100000+4095)/4096) DATA SPACE MAXIMUM SIZE
DSPINIT DC A((20000+4095)/4096) DATA SPACE INITIAL SIZE

Creating and Using Data Spaces

98 z/VSE V5R1 Extended Addressability

As your program uses more of the data space storage, it can use DSPSERV
EXTEND to extend the current size. “Extending the Current Size of a Data Space”
on page 104 describes extending the current size and includes an example of how
to extend the current size of the data space in Figure 26.

Identifying the Origin of the Data Space
Some processors do not allow the data space to start at zero; these data spaces
start at address 4096 bytes. To learn the starting address, either (1) create a data
space of 1 block of storage more than you need and then assume that the data
space starts at 4096 or (2) use the ORIGIN parameter. If you use ORIGIN, the
system returns the start address of the data space at the location you specify.

Unless you specify a size of 2GB and the processor does not support an origin of
zero, the system gives you the size you request, regardless of the location of the
origin. An example of the problem you want to avoid in addressing data space
storage is described as follows:

Suppose a program creates a data space of 1MB and assumes the data space
starts at address zero when it really begins at the address 4096. Then, if the
program uses an address lower than 4096 in the data space, the system abends
the program.

Example of Creating a Data Space
In the following example, a program creates a data space named TEMP. The
system returns the origin of the data space (either 0 or 4096) at location DSPCORG.

DSPSERV CREATE,NAME=DSPCNAME,STOKEN=DSPCSTKN, X
BLOCKS=DSPBLCKS,ORIGIN=DSPCORG

.

.
DSPCNAME DC CL8’TEMP ’ DATA SPACE NAME
DSPCSTKN DS CL8 DATA SPACE STOKEN
DSPCORG DS F DATA SPACE ORIGIN RETURNED
DSPCSIZE EQU 10000000 10 MILLION BYTES OF SPACE
DSPBLCKS DC A((DSPCSIZE+4095)/4096) NUMBER OF BLOCKS NEEDED FOR
* A 10 MILLION BYTE DATA SPACE

The data space that the system creates has the same storage protection key as the
PSW key of the caller.

Figure 26. Example of Specifying the Size of a Data Space

Creating and Using Data Spaces

Chapter 10. Creating and Using Data Spaces 99

Establishing Addressability to a Data Space
Creating a data space does not give you addressability to that data space. Before
you can use the data space, you must issue the ALESERV macro, which adds an
entry to an access list and returns the ALET that indexes the entry. Examples of
this process appear in this section; section Chapter 9, “Using Access Registers,” on
page 71 contains additional examples.

When you use ALESERV, you can omit the ACCESS parameter, which specifies
whether an access list entry is public or private. Data space entries are always
public, the default for ACCESS.

Example of Establishing Addressability to a Data Space
In the following example, a program establishes addressability to a data space
named TEMP. Input to the ALESERV macro is the STOKEN that the DSPSERV
macro returned. ALESERV places an entry on the DU-AL and returns the ALET for
the data space.

ALESERV ADD,STOKEN=DSPCSTKN,ALET=DSPCALET,AL=WORKUNIT
.
.

DSPCSTKN DS CL8 DATA SPACE STOKEN
DSPCALET DS F DATA SPACE ALET

Managing Data Space Storage
Managing storage in data spaces differs from managing storage in address spaces.
Keep the following advisory notes in mind:
v When you create a data space, request a maximum size large enough to handle

your application's needs and, optionally, an initial size large enough to meet its
immediate needs. It is recommended to use multiples of 8 BLOCKs for these
values.

v If you do not use an area of a data space again, release that area to free the
resources occupied by the area.
Refer also to “Releasing Data Space Storage” on page 110 for additional details.

v When you are finished using a data space, remove its entry from the access list
and delete the data space.
Refer also to “Deleting a Data Space” on page 105 for additional details.

Limiting Data Space Use
The use of data spaces consumes system resources such as virtual storage (and real
storage). Programmers responsible for tuning and maintaining z/VSE can control
the use of these resources. Through the SYSDEF command you can specify the
maximum amount of virtual storage available for all data spaces.

You may also specify:
v The default size of a single data space.
v The number of data spaces that can be owned by a single partition.
v The maximum number of SCOPE=COMMON data spaces.

Creating and Using Data Spaces

100 z/VSE V5R1 Extended Addressability

Serializing Use of Data Space Storage
At many installations, users must share access to data in a data space. Users who
are updating data for common use by other programs need exclusive access to that
data during the updating operation. If several users tried to update the same data
at the same time, the result would be incorrect or damaged data. To protect the
integrity of the data, you might need to serialize access to the data in the data
space.

Serializing the use of the storage in a data space requires methods like those you
would use to serialize the use of virtual storage in an address space. Use the
LOCK and UNLOCK, the ENQ and DEQ macros, compare and swap operations,
or establish your own protocol for serializing data space use.

Protecting Data Space Storage
If the creating program wants the data space to have read-only access, it can use
the FPROT and KEY parameters on DSPSERV. KEY assigns the storage key for the
data space and FPROT specifies whether the storage in the data space is to be
fetch-protected. Storage protection and fetch protection rules apply for the entire
data space. For example, a program cannot reference storage in a fetch-protected
data space without holding the PSW key that matches the storage key of the data
space or PSW key 0.

Figure 27 on page 102 shows a SCOPE=ALL data space DSX with a storage key of
5, owned by a subsystem. PGM1 and PGM2 have entries for the data space on
their DU-ALs and have the ALETs for these entries. However, the PSW key of
PGM1 does not match the storage key of the data space. The ability of PGM1 to
access data in DSX depends on how the creating program coded the FPROT
parameter on the DSPSERV macro.
v If the creating program specified no fetch-protection (FPROT=NO), PGM1 can

fetch from but not store into the data space.
v If the creating program specified fetch-protection (FPROT=YES), PGM1 can

neither fetch from nor store into the data space.

Figure 27 on page 102 shows that only PGM2 has fetch and store capability for
data space DSX.

Creating and Using Data Spaces

Chapter 10. Creating and Using Data Spaces 101

Examples of Moving Data Into and Out of a Data Space
When using data spaces, you sometimes have large amounts of data to transfer
between the address space and the data space. This section contains examples of
two subroutines, both named COPYDATA, that show you how to use the Move
(MVC) or Move Long (MVCL) instruction to move a variable number of bytes into
and out of a data space. (You can also use the examples to help you move data
within an address space or within a data space.) The two examples perform exactly
the same function; both are included here to show you the relative coding effort
required to use each instruction.

The use of registers for the two examples is as follows:
Input: AR/GR 2 Target area location

AR/GR 3 Source area location
GR 4 Signed 32 bit length of area

(Note: A negative length is treated as zero.)
GR 14 Return address

Output: AR/GR 2-14 Restored
GR 15 Return code of zero

For establishing addressability, refer also to the coding example under “Example of
Creating, Using, and Deleting a Data Space” on page 105.

The routines can be called in either primary or AR mode; however, during the time
they manipulate data in a data space, they must be in AR mode. The source and
target locations are assumed to be the same length (that is, the target location is
not filled with a padding character).

Example 1: Using the MVC Instruction

The first COPYDATA example uses the MVC instruction to move the specified
data in groups of 256 bytes:

Figure 27. Protecting Storage in a Data Space

Creating and Using Data Spaces

102 z/VSE V5R1 Extended Addressability

COPYDATA DS 0D
.... SAVE CALLER’S STATUS
LAE 12,0(0,0) BASE REG AR
BASR 12,0 BASE REG GR
USING *,12 ADDRESSABILITY
.
LTR 4,4 IS LENGTH NEGATIVE OR ZERO?
BNP COPYDONE YES, RETURN TO CALLER
.
S 4,=F’256’ SUBTRACT 256 FROM LENGTH
BNP COPYLAST IF LENGTH NOW NEGATIVE OR ZERO

* THEN GO COPY LAST PART .
COPYLOOP DS 0H

MVC 0(256,2),0(3) COPY 256 BYTES
LA 2,256(,2) ADD 256 TO TARGET ADDRESS
LA 3,256(,3) ADD 256 TO SOURCE ADDRESS
S 4,=F’256’ SUBTRACT 256 FROM LENGTH
BP COPYLOOP IF LENGTH STILL GREATER THAN

* ZERO, THEN LOOP BACK
COPYLAST DS 0H

LA 4,255(,4) ADD 255 TO LENGTH
EX 4,COPYINST EXECUTE A MVC TO COPY THE

* LAST PART OF THE DATA
B COPYDONE BRANCH TO EXIT CODE

COPYINST MVC 0(0,2),0(3) EXECUTED INSTRUCTION
COPYDONE DS 0H

.
* EXIT CODE

LA 15,0 SET RETURN CODE OF 0
BR ... RETURN TO CALLER

Example 2: Using the MVCL Instruction

The second COPYDATA example uses the MVCL instruction to move the specified
data in groups of 1048576 bytes:
COPYDATA DS 0D

.... SAVE CALLER’S STATUS
LAE 12,0(0,0) BASE REG AR
BASR 12,0 BASE REG GR
USING *,12 ADDRESSABILITY
.
LA 6,0(,2) COPY TARGET ADDRESS
LA 7,0(,3) COPY SOURCE ADDRESS
LTR 8,4 COPY AND TEST LENGTH
BNP COPYDONE EXIT IF LENGTH NEGATIVE OR ZERO
.
LAE 4,0(0,3) COPY SOURCE AR/GR
L 9,COPYLEN GET LENGTH FOR MVCL
SR 8,9 SUBTRACT LENGTH OF COPY
BNP COPYLAST IF LENGTH NOW NEGATIVE OR ZERO

* THEN GO COPY LAST PART
.

COPYLOOP DS 0H
LR 3,9 GET TARGET LENGTH FOR MVCL
LR 5,9 GET SOURCE LENGTH FOR MVCL
MVCL 2,4 COPY DATA
ALR 6,9 ADD COPYLEN TO TARGET ADDRESS
ALR 7,9 ADD COPYLEN TO SOURCE ADDRESS
LR 2,6 COPY NEW TARGET ADDRESS
LR 4,7 COPY NEW SOURCE ADDRESS
SR 8,9 SUBTRACT COPYLEN FROM LENGTH
BP COPYLOOP IF LENGTH STILL GREATER THAN

* ZERO, THEN LOOP BACK
COPYLAST DS 0H

AR 8,9 ADD COPYLEN
LR 3,8 COPY TARGET LENGTH FOR MVCL
LR 5,8 COPY SOURCE LENGTH FOR MVCL

Creating and Using Data Spaces

Chapter 10. Creating and Using Data Spaces 103

MVCL 2,4 COPY LAST PART OF THE DATA
B COPYDONE BRANCH TO EXIT CODE

COPYLEN DC F’1048576’ AMOUNT TO MOVE ON EACH MVCL
COPYDONE DS 0H

.
* EXIT CODE

LA 15,0 SET RETURN CODE OF 0
BR RETURN TO CALLER

Programming Notes for Example 2
v The MVCL instruction uses GPRs 2, 3, 4, and 5.
v The maximum amount of data that one execution of the MVCL instruction can

move is 2²⁴-1 bytes (or 16,777,215 bytes).

Extending the Current Size of a Data Space
When you create a data space and specify an initial size smaller than the
maximum size, you can use DSPSERV EXTEND to increase the current size as
your program uses more storage in the data space. The BLOCKS parameter
specifies the amount of storage you want to add to the current size of the data
space.

The system increases the data space by the amount you specify, unless that amount
would cause the system to exceed one of the following:
v The data space maximum size, as specified by the BLOCKS parameter on

DSPSERV CREATE when the data space was created.
v The amount of virtual storage available for all data spaces. This limit is the

system default or is set by the AR/JCL SYSDEF command.

Note: The storage taken from VSIZE is either the initial or extended data space
size rounded up to the next multiple of 8 BLOCKS.

Consider the data space in Figure 26 on page 99, where the current (and initial)
size is 20,000 bytes and the maximum size is 100,000 bytes. To increase the current
size to 50,000 bytes, adding 30,000 bytes to the current size, the creating program
would code the following:

DSPSERV EXTEND,STOKEN=DSSTOK,BLOCKS=DSBLCKS
.

DSDELTA EQU 30000 30000 BYTES OF SPACE
DSBLCKS DC A((DSDELTA+4095)/4096) NUMBER OF BLOCKS ADDED TO DATA SPACE
DSSTOK DS CL8 STOKEN RETURNED FROM DSPSERV CREATE

The storage the program can use would then be 50,000 bytes, as shown in
Figure 28 on page 105:

Creating and Using Data Spaces

104 z/VSE V5R1 Extended Addressability

Deleting a Data Space

When a task does not need the data space any more, it can free the virtual storage
and remove the entry from the access list.

A program with a non-zero PSW key can delete only the data spaces it owns, and
must have the PSW key that matches the storage key of the data space.

Example of Deleting a Data Space
The following example shows how to delete a data space entry from an access list
and then delete the data space.

ALESERV DELETE,ALET=DSPCALET REMOVE DS FROM AL
DSPSERV DELETE,STOKEN=DSPCSTKN DELETE THE DS
.

DSPCALET DS F DATA SPACE ALET
DSPCSTKN DS CL8 DATA SPACE STOKEN

IBM recommends that you explicitly remove the entry for a data space from the
access list and delete the space before the owning task terminates. However, if you
do not, z/VSE automatically does it for you.

Example of Creating, Using, and Deleting a Data Space

This section contains a complete example of a how a problem program creates,
establishes addressability to, uses, and deletes the data space named TEMP. The
first lines of code create the data space and establish addressability to the data
space. To keep the example simple, the code does not include the checking of the
return code from the DSPSERV macro. However, you should always check the
return codes after issuing the macro.

The lines of code in the middle of the example (under the comment
“MANIPULATE DATA IN THE DATA SPACE”) illustrate how, with the code in

Figure 28. Example of Extending the Current Size of a Data Space

Creating and Using Data Spaces

Chapter 10. Creating and Using Data Spaces 105

AR mode, the familiar assembler instructions store, load, and move a simple
character string into the data space and move it within the data space. The
example ends with the program deleting the data space entry from the access list,
deleting the data space, and returning control to the caller.
DSPEXMPL CSECT

.... SAVE CALLER’S STATUS
SAC 512 SWITCH INTO AR MODE
SYSSTATE ASCENV=AR SET GLOBAL BIT FOR AR MODE
.

* SET UP AR/GPR 12 BEFORE STORING INTO IT
.
LAE 12,0 SET BASE REGISTER AR
BASR 12,0 SET BASE REGISTER GR
USING *,12

* CREATE THE DATA SPACE AND ADD THE ENTRY TO THE ACCESS LIST
.
DSPSERV CREATE,NAME=DSPCNAME,STOKEN=DSPCSTKN, X

BLOCKS=DSPBLCKS,ORIGIN=DSPCORG
ALESERV ADD,STOKEN=DSPCSTKN,ALET=DSPCALET,AL=WORKUNIT
.

.
* ESTABLISH ADDRESSABILITY TO THE DATA SPACE

.
LAM 2,2,DSPCALET LOAD ALET OF SPACE INTO AR2
L 2,DSPCORG LOAD ORIGIN OF SPACE INTO GR2
USING DSPCMAP,2 INFORM ASSEMBLER .

* MANIPULATE DATA IN THE DATA SPACE
.
L 3,DATAIN LOAD DATA FROM PRIMARY SPACE
ST 3,DSPWRD1 STORE INTO DATA SPACE WRD1
.
MVC DSPWRD2,DATAIN COPY DATA FROM PRIMARY SPACE

* INTO THE DATA SPACE
MVC DSPWRD3,DSPWRD2 COPY DATA FROM ONE LOCATION

* IN THE DATA SPACE TO ANOTHER
MVC DATAOUT,DSPWRD3 COPY DATA FROM DATA SPACE

* INTO THE PRIMARY SPACE
.

* DELETE THE ACCESS LIST ENTRY AND THE DATA SPACE
.
ALESERV DELETE,ALET=DSPCALET REMOVE DS FROM AL
DSPSERV DELETE,STOKEN=DSPCSTKN DELETE THE DS
.
SAC 0 ENSURE IN PRIMARY MODE
SYSSTATE ASCENV=P RESET GLOBAL BIT
BR ... RETURN TO CALLER
. DSPCNAME DC CL8’TEMP ’ DATA SPACE NAME

DSPCSTKN DS CL8 DATA SPACE STOKEN
DSPCALET DS F DATA SPACE ALET
DSPCORG DS F DATA SPACE ORIGIN RETURNED
DSPCSIZE EQU 10000000 10 MILLION BYTES OF SPACE
DSPBLCKS DC A((DSPCSIZE+4095)/4096) NUMBER OF BLOCKS NEEDED FOR
* A 10 MILLION BYTE DATA SPACE
DATAIN DC CL4’ABCD’
DATAOUT DS CL4
*
DSPCMAP DSECT DATA SPACE STORAGE MAPPING
DSPWRD1 DS F WORD 1
DSPWRD2 DS F WORD 2
DSPWRD3 DS F WORD 3

END

Note: You cannot code ACCESS=PRIVATE on the ALESERV macro when you
request an ALET for a data space; all data space entries are public.

Creating and Using Data Spaces

106 z/VSE V5R1 Extended Addressability

Creating and Using SCOPE=COMMON Data Spaces

The SCOPE=COMMON data space provides your programs with virtual storage
that is addressable from all address spaces and all programs. In many ways, it is
the same as the shared virtual area (SVA) of an address space. You might use a
SCOPE=COMMON data space instead of SVA because:
v A SCOPE=COMMON data space offers up to 2GB of commonly addressable

virtual storage for data (but not executable code). The SVA offers a much smaller
amount of storage.

v The SVA is a limited resource; because it is a part of all address spaces, the use
of this virtual storage area reduces the amount of private area available for
partitions (programs).

To create this space, use the SCOPE=COMMON parameter on DSPSERV CREATE.
You can use any of the parameters on that macro to establish the characteristics of
that space.

To gain addressability to the space, issue the ALESERV ADD macro with the
AL=PASN parameter. ALESERV ADD then adds an entry for the data space to the
caller's PASN-AL and returns the ALET for that entry. Additionally, ALESERV
ADD adds the same entry to every PASN-AL in the system. As new address spaces
come into the system, their PASN-ALs have this entry on them. All programs use
the same ALET to access the data space. In other words, with the entry on all
PASN-ALs, programs in other address spaces do not have to issue the ALESERV
ADD macro. However, the creating program must pass the ALET for the data
space to the other programs.

The use of the virtual storage in the SCOPE=COMMON data space is similar to
the use of the SVA. A program wanting to share SVA storage with another
program has to pass the address of that area to the other program; the creator of
the SCOPE=COMMON data space has to pass the ALET value to the other
program. (It might also have to tell the other program the origin of the data space.)

Figure 29 on page 108 shows an example of a SCOPE=COMMON data space
named COMDS that PROG1 created. PROG1 uses ALESERV ADD to add an entry
to its PASN-AL. Because COMDS is SCOPE=COMMON,that same entry appears
on all PASN-ALs in the system, plus all PASN-ALs that will exist from the time the
entry for the SCOPE=COMMON data space is added to the access list until the
data space is deleted. PROG1 has the ALET for the entry.

To allow programs in other partitions to access data space COMDS, PROG1 can
pass the ALET to these other programs.

Creating and Using Data Spaces

Chapter 10. Creating and Using Data Spaces 107

Programming Considerations
When you use SCOPE=COMMON data spaces, keep in mind the following advice:
v Use the SCOPE=COMMON data space when your program has large amounts

of data that it wants to share across multiple address spaces. For example, to
share more than 10MB of commonly addressable data, consider using a
SCOPE=COMMON data space. To use less than 10MB, consider using SVA
(31-Bit).

v The system can reuse the ALET associated with a SCOPE=COMMON data space
after the space terminates. Therefore, manage the termination and reuse of
ALETs for the SCOPE=COMMON data space. This action is described in “ALET
Reuse by the System” on page 89.

v To help solve system problems and error conditions, use the data space
dumping services to dump appropriate areas of the SCOPE=COMMON data
space. See “Dumping and Displaying Data Space Storage” on page 111 for
information about dumping data space areas.

Note: Your installation can set limits on the total number of SCOPE=COMMON
data spaces available to programs.
The maximum number is 253, minus the number of virtual disks specified. The
minimum number is 5, and the default is also 5. These numbers include the
SCOPE=COMMON data spaces that the system has for its own use.

Figure 29. Example of Using a SCOPE=COMMON Data Space

Creating and Using Data Spaces

108 z/VSE V5R1 Extended Addressability

When you set this limit, remember that the number it establishes affects the
number of PASN-AL entries that are available for data spaces other than
SCOPE=COMMON. The number of entries each PASN-AL has available for
SCOPE=SINGLE and SCOPE=ALL data spaces is 253 minus the number you set
for SCOPE=COMMON minus the number of virtual disks specified.

Attaching a Subtask and Sharing Data Spaces with It
A program can use the ALCOPY=YES parameter on the ATTACH macro to attach
a subtask and pass a copy of its DU-AL to this subtask. In this way, the program
can share data spaces with a program running under the subtask. The two
programs both have access to the data spaces that have DU-AL entries at the time
of the ATTACH macro invocation. Note that it is not possible to pass only a part of
the DU-AL.

The following example, represented by Figure 30, assumes that program PGM1
(running under Task A) has created a SCOPE=SINGLE data space (DS1) and
established addressability to it. Its DU-AL has several entries on it, including one
for DS1. PGM1 uses the ATTACH macro to attach Subtask B (Task B). PGM1 uses
the ALCOPY=YES parameter to pass a copy of its DU-AL to Task B. It can also
pass ALETs to PGM2. Upon return from ATTACH, PGM1 and PGM2 have access
to the same data spaces.

The figure shows the two programs, PGM1 and PGM2, sharing the same data
space, DS1.

Figure 30. Two Programs Sharing a SCOPE=SINGLE Data Space

Creating and Using Data Spaces

Chapter 10. Creating and Using Data Spaces 109

Example of Attaching a Task and Passing a DU-AL
The following example shows you how Task A attaches Subtask B and passes its
DU-AL:

DSPSERV CREATE,NAME=DSNAME,BLOCKS=DSSIZE,STOKEN=DSSTOK,ORIGIN=DSORG
ALESERV ADD,STOKEN=DSSTOK,ALET=DSALET
ATTACH PGM2,...,ALCOPY=YES
.

DSNAME DC CL8’MYDSPACE’ DATA SPACE NAME
DSSTOK DS CL8 DATA SPACE STOKEN
DSALET DS F DATA SPACE ALET
DSORG DS F ORIGIN RETURNED
DSSIZE DC F’2560’ DATA SPACE 10 MEGABYTES IN SIZE

The two DU-ALs do not necessarily stay identical; after the attach, PGM1 and
PGM2 are free to add and delete entries on their own DU-ALs.

If Task A terminates, the system deletes the data space that belonged to Task A.
PGM2 can no longer access DS1.

Releasing Data Space Storage

Your program can release storage when it used a data space for one purpose and
wants to reuse it for another purpose, or when your program is finished using the
area. To release (that is, initialize to hexadecimal zeroes and return the resources to
the system) the virtual storage of a data space, use the DSPSERV RELEASE macro.
Specify the STOKEN to identify the data space and the START and BLOCKS
parameters to identify the beginning and the length of the area you need to
release.

Releasing storage in a data space requires that a program's PSW key to be zero or
equal to the key of the data space storage the system is to release. Otherwise, the
system abends the caller.

Use DSPSERV RELEASE instead of the MVCL instruction to clear 4K byte blocks
of storage to zeroes because:
v DSPSERV RELEASE is faster than MVCL for very large areas.
v Pages released through DSPSERV RELEASE do not occupy space in processor or

auxiliary storage.

Using Data Spaces Efficiently
Although a task can own many data spaces, it is important that it references these
data spaces carefully. It is more efficient for the system to reference the same data
space ten times, than it is to reference each of ten data spaces one time. For
example, a CICS application might have many users, each one having a data space.
System performance is best if each program completes its work with one data
space before it starts work with another data space.

z/VSE limits the number of access list entries and the number of data spaces
available to each task. Therefore, IBM recommends that, given a choice, you use
one large data space rather than a number of small data spaces that add up to the
size of the one large data space.

Creating and Using Data Spaces

110 z/VSE V5R1 Extended Addressability

Dumping and Displaying Data Space Storage
z/VSE provides various ways to dump areas of data space storage. You can use
the SDUMPX macro or ask the operator to use the DUMP command. After the
system enters a wait state or hangs or enters a loop, the operator can request a
stand-alone dump.

Use the following to dump data space storage:
1. Use the SDUMPX macro to dump storage from any data space that the caller

has addressability to.
2. An operator can use the DSPACE parameter on the DUMP command to dump

all the storage of a data space.
The operator can use the QUERY command to determine the names of the data
spaces owned by a partition or the names of all data spaces of the system.

3. An operator can request a stand-alone dump as described in the manual z/VSE
Guide for Solving Problems under “Taking a Stand-Alone Dump”.

The following options support the dumping of data space storage:
v // OPTION statement

– Use DSPDUMP to specify that a data space dump is to be taken in case of an
abnormal program end.

– Use SADUMP to specify the data spaces to be included in a stand-alone
dump.

v For the standard options (STDOPT) you can specify DSPDUMP to specify that a
data space dump is to be taken in case of an abnormal program end.
In addition, it is possible to specify SADUMP to define the priority in which the
partitions and any owned data spaces should be included in a stand-alone
dump.

For further details about these options, refer to the manual z/VSE System Control
Statements.

Creating and Using Data Spaces

Chapter 10. Creating and Using Data Spaces 111

112 z/VSE V5R1 Extended Addressability

Chapter 11. Creating and Using Virtual Disks

On an z/Architecture processor, z/VSE supports data spaces of up to 2GB. Virtual
disks are based on this support. Such disks emulate real FBA disk devices and
allow data that normally would be stored on a real disk device to reside in
memory (virtual storage). Since such data can be accessed at memory speed,
response time and throughput in general may improve significantly.

Planning for Virtual Disks
Since virtual disks are not permanent, they should be used for files that easily can
be recovered in case of loss (because of an IPL, for instance). These include, for
example:
v Temporary work files or test files

v VSE/VSAM space and user catalogs

v VSE libraries

Before you can use virtual disks, you need to allocate virtual storage for data
spaces in your system layout. You do this by adjusting the IPL parameter VSIZE.
If no other data spaces are needed besides those for virtual disks, then add the size
of all virtual disks that might be used concurrently to the value of VSIZE.

Once you have determined the value for VSIZE, also use this value to adjust the
size of your page data set (defined through the IPL command DPD).

Creating Virtual Disks
You can easily create virtual disks by:
1. Updating your IPL procedure with an IPL ADD command for each virtual

disk.
2. Using the AR SYSDEF or JCL SYSDEF command from the BG partition to

specify the total amount of space used by all data spaces (including those for
virtual disks).

3. Issuing a JCL VDISK command from the BG partition for each virtual disk.

Note:

1. You may use the Tailor IPL Procedure dialog for adding ADD commands. The
dialog is described in the manual z/VSE Administration.

2. You may include the VDISK command in the JCL startup procedure for the BG
partition. The skeleton to be used for this modification is SKJCL0. The SYSDEF
command is included in the ALLOC startup procedure and can be modified
with one of the SKALLOCx skeletons. All skeletons are described in the z/VSE
Administration manual.

3. You can define up to 128 virtual disks.

Following is an overview of the commands mentioned above. For further
command details, refer to the IBM manual z/VSE System Control Statements.

© Copyright IBM Corp. 1993, 2013 113

ADD Command
As for real disks, you need to define your virtual disks by ADD commands at
system IPL. The ADD command has the following operands:

cuu Specifies the device address of the virtual disk. This can be any unused
cuu of your system.

FBAV Indicates that the device is a virtual disk with FBA characteristics.

SYSDEF Command
The SYSDEF command defines limits and defaults for data spaces. In particular, it
defines the amount of virtual storage which may be allocated to data spaces if
available and not used by partitions. It must be large enough to accommodate all
concurrently used virtual disks, plus any other data spaces. This virtual storage is
part of the virtual storage defined with the VSIZE parameter at IPL. The SYSDEF
command has the following operands:

DSPACE
Indicates a request for virtual storage used by data spaces.

DSIZE=nK|mM
Defines the total amount of virtual storage to be reserved for data spaces.

Note: 0K or 0M can be used to free up all data space allocations.

MAX=n
Defines the maximum number of data spaces which may be allocated.

PARTMAX=m
Defines the maximum number of data spaces which may be created by a
partition at any one time.

COMMAX=k
Defines the maximum number of data spaces with SCOPE=COMMON
which may exist at any one time.

DFSIZE=nK|mM
Defines the default size for the creation of a single data space.

VDISK Command
For every virtual disk needed, you must issue a VDISK command from the BG
partition. This command creates the data space used for the virtual disk and a
VTOC that indicates an empty disk.

After the command completes, the virtual disk is initialized and ready for use. You
do not have to initialize the disk using the ICKDSF (Device Support Facilities)
program. The VDISK command has the following operands:

UNIT=cuu
Indicates the device address of the virtual disk.

BLKS=nnnnnnn
Defines the size of the virtual disk in 512-byte blocks.

This value is always rounded to a multiple of 960, as described in z/VSE
System Control Statements.

Note: For information about redefining the space allocated for an existing
virtual disk, see “Deleting or Redefining Virtual Disks” on page 116.

Creating and Using Virtual Disks

114 z/VSE V5R1 Extended Addressability

VOLID=volser
Specifies the volume serial number (one to six characters) of the virtual
disk.

VTOC=v
Defines the number of blocks to be used for the VTOC. The VTOC is
located at the end of the virtual disk.

USAGE=DLA
Indicates that this virtual disk is to hold the label information area. The
z/VSE Planning manual explains how the label area is placed on a virtual
disk at IPL time.

Note: Once a virtual disk is defined and ready for use, you can work with it like a
real device. This includes using the following job control commands and
statements: ASSGN, CLOSE, DVCDN, DVCUP, OFFLINE, and ONLINE. ASSGN
and CLOSE now also allow a device-class specification of FBAV (or ANYFBA or
ANYDISK) for virtual disks.

Defining a Virtual Disk via the Interactive Interface
The Hardware Configuration dialog of the Interactive Interface supports the device
type FBAV for a virtual disk. The selection list for disk devices includes this device
type.

The Interactive Interface dialogs do not support the following functions for virtual
disks:
v Specify SWITCHED or SHARED.
v Create a stand-alone dump program.
v Define the lock file.
v Define the page data set.
v Define the recorder file.
v Define the VSE/VSAM master catalog.

Getting Information about Virtual Disks

VOLUME Command
At the system console, you can use the Attention Routine VOLUME command to
display information about existing virtual disks. In the following example of the
system's response to this command:
1. Parameter D0 in the VOLUME command is used to request information about

devices with cuu=D0x.
2. The virtual disk at address D01 is ready for use. It was added during IPL and a

subsequent VDISK command was used to define space for it. Thus the
information for this device shows:
a. FBA0-00 as device type.
b. VDID01 as a system-generated volume ID.
c. 4800 as the number of blocks specified in the VDISK command.

3. The virtual disks at addresses D02 through D05 only have been added at IPL.
A VDISK command has not yet been used to allocate space to them. Here the
DEVICE column shows FBAV as device type. DOWN (disk is turned off) is the
status of these virtual disks.

Creating and Using Virtual Disks

Chapter 11. Creating and Using Virtual Disks 115

For a description of the VOLUME command, refer to the manual z/VSE System
Control Statements.

QUERY DSPACE Command
To retrieve information about data spaces and related virtual disks, you can use the
QUERY DSPACE command. For a description of the QUERY SPACE command,
refer to the manual z/VSE System Control Statements.

Deleting or Redefining Virtual Disks
Every time you shut down your system, you “delete” all virtual disks and the data
they contain. As shown below, you also can effectively delete a disk by setting the
number of blocks assigned to it to 0. Later, you can reuse that virtual disk by
reallocating space to it.

The following example assumes a virtual disk with device address 256. The VDISK
command for that disk specified BLKS=960 (about 0.5MB). The first VDISK
command in the example “deletes” the virtual disk by deallocating the space used
for it. The second VDISK command redefines the disk with a larger allocation.
0 DVCDN 256 (Makes the virtual disk no longer available to

the system)
0 VDISK UNIT=256,BLKS=0 (Deallocates previously defined space)

0 VDISK UNIT=256,BLKS=1920 (Redefines the space for the virtual disk;
DVCUP done implicitly)

Note: The DVCDN command can be issued from any static partition. VDISK must
be used from the BG partition.

Programming Notes

Supported CCW Codes for Virtual Disks
The major CCW commands for accessing a real FBA disk device are also supported
for virtual disks. These include:
v X'63' DEFINE EXTENT
v X'43' LOCATE
v X'42' READ
v X'41' WRITE
v X'03' NO OPERATION
v X'04' SENSE
v X'08' TRANSFER IN CHANNEL
v X'64' READ DEVICE CHARACTERISTICS

VOLUME D0
AR 0015 CUU CODE DEV.-TYP VOLID USAGE SHARED STATUS CAPACITY
AR 0015 D01 90 FBA0-00 VDID01 UNUSED 4800 BLK
AR 0015 D02 90E5 FBAV *NONE* UNUSED DOWN N/A
AR 0015 D03 90E5 FBAV *NONE* UNUSED DOWN N/A
AR 0015 D04 90E5 FBAV *NONE* UNUSED DOWN N/A
AR 0015 D05 90E5 FBAV *NONE* UNUSED DOWN N/A
AR 0015 1I40I READY

Figure 31. Response Example to a VOLUME Command

Creating and Using Virtual Disks

116 z/VSE V5R1 Extended Addressability

v X'E4' SENSE ID

Other commands that are valid for a real FBA device (X'94' DEVICE RELEASE, for
example) are not supported for virtual disks. For further information about CCW
commands, see Appendix C, “Channel Program Support for Virtual Disks,” on
page 161.

GETVCE Macro
To retrieve the device characteristics of a virtual disk from an application, you can
use the GETVCE macro, together with macro AVRLIST. The external device type
code you receive for a virtual disk is FBA000 for a virtual disk defined with the
VDISK command. Otherwise, it is FBAV.

Creating and Using Virtual Disks

Chapter 11. Creating and Using Virtual Disks 117

118 z/VSE V5R1 Extended Addressability

Part 4. Programming Enhancements

Chapter 12. Linkage Stack Functions 121
Introduction 121
Linkage Stack Characteristics 121
Instructions for Adding or Removing a Linkage
Stack Entry 122

The Stacking PC (Program Call) Instruction . . 122
The BAKR (Branch and Stack) Instruction . . . 122
The PR (Program Return) Instruction 122

Instructions to Work with Linkage Stack Entries
and their Contents. 123
Using the STXIT and EXIT Macro in Connection
with Linkage Stack 123

Chapter 13. Callable Cell Pool Services 125
Characteristics of a Cell Pool 125
Storage Considerations 126
Link-Editing Programs Using Callable Cell Pool
Services 127
Using Callable Cell Pool Services 127

The CALL Macro 127
Available Cell Pool Services 128
Creating a Cell Pool 128
Adding an Extent and Connecting it to the Cell
Storage 128
Contracting a Cell Pool, Deactivating its Extents,
and Disconnect its Storage 128
Reusing a Deactivated and Disconnected Extent 129
Allocating Cells and Deallocate Previously
Allocated Cells 129
Obtaining Status Information About a Cell Pool 129
Invocation Requirements 130
Register Usage 130
Return Codes 130

Cell Pool Services Coding Example 130

© Copyright IBM Corp. 1993, 2013 119

120 z/VSE V5R1 Extended Addressability

Chapter 12. Linkage Stack Functions

Linkage stack functions are available with z/Architecture processors and are
documented in the following manual:

z/Architecture Principles of Operation

These manuals describe in detail the linkage stack instructions introduced in this
chapter.

Introduction
The linkage stack is an area of protected storage that the system gives to a
program to save status information in case of a branch or a program call.

Each VSE task has its own linkage stack, which is available for all programs
running under this task. The programs can run in primary ASC (address space
control) mode or in access register ASC mode. A program can be in problem or
supervisor state and be enabled or disabled.

The linkage stack consists of two stacks, the
v normal linkage stack, and the
v recovery linkage stack.

The normal linkage stack consists of a maximum of 96 entries for use by
programs that run under a single VSE task. When the system needs an entry and
finds that all entries in the normal stack are used, it abends the program with a
"stack full" interruption code.

The recovery linkage stack is available to the program's recovery routines after a
"stack full" interruption occurred. The recovery linkage stack has a maximum of 24
entries.

Linkage Stack Characteristics
A linkage stack has the following characteristics.
v Each VSE task has its own linkage stack.
v All associated linkage stack entries of a VSE task are freed when the task is

terminated.
v A program called by a // EXEC ... JCL statement will receive an empty linkage

stack.
v The following instructions can be used to add and remove linkage stack entries

and access their contents:
BAKR, EREG, ESTA, MSTA, PC, PR

These instructions can execute in both primary and access register ASC mode
and are further explained in the following paragraphs.

v A linkage stack entry contains the following saved program status information:
– Contents of the 16 (0-15) general purpose registers (GRPs).
– Contents of the 16 (0-15) access registers (ARs).
– Primary and secondary address space numbers (PASN and SASN).

© Copyright IBM Corp. 1993, 2013 121

– Extended authorization index (EAX).
– Entire current program status word (PSW).
– PSW key mask (PKM).
– PC (program call) number if a PC instruction caused the entry; or a return

address if a BAKR instruction caused the entry.
– An eight-byte area that can be changed with the MSTA (modify stacked state)

instruction.

Instructions for Adding or Removing a Linkage Stack Entry
There are three instructions for adding or removing entries in a linkage stack:
v The stacking program call (PC) instruction which adds an entry when it passes

control to another routine.
v The branch and stack (BAKR) instruction which adds an entry whether it

branches to another routine or not.
v The program return (PR) instruction which removes an entry when it returns

from a call or branch made with either a stacking PC or a BAKR instruction.

The Stacking PC (Program Call) Instruction
The stacking PC uses the linkage stack to save the user's environment. The
following restrictions apply:
v z/VSE supports the stacking PC for system provided program call (PC) routines

only (it does not support the basic PC).
v z/VSE does not support the stacking PC in supervisor appendages.

The BAKR (Branch and Stack) Instruction
The BAKR instruction performs a branch and link in a similar way as the BALR
instruction. The difference is that BAKR does not change the link register contents
(the register contents will be used for the return via the PR instruction).
Additionally, it adds an entry to the linkage stack. The entry includes the return
address of the calling program. A program return (PR) instruction returns control
to the calling program and removes the entry from the linkage stack. The BAKR
instruction does not change the current addressing mode.

z/VSE does not support the BAKR instruction in most supervisor appendages.

The PR (Program Return) Instruction
The PR instruction performs several actions on the current entry in the linkage
stack (the current entry is the entry created by the most recent BAKR or stacking
PC instruction):
v If the current entry was added by a stacking PC or a BAKR instruction, the PR

instruction returns control to the calling program.
v It restores the contents of the current entry, including the PSW and contents of

ARs and GPRs 2 through 14.
v It removes the current linkage stack entry.

Linkage Stack Functions

122 z/VSE V5R1 Extended Addressability

Instructions to Work with Linkage Stack Entries and their Contents
A program cannot change the order of the entries on the linkage stack, nor can it
change any part of an entry, except for the eight-byte modifiable area of the current
entry. Three instructions copy information from the current entry or copy
information to the modifiable area of the current entry:
v The EREG (extract stacked registers) instruction loads ARs and GPRs from the

current linkage stack entry.
v The ESTA (extract stacked state) instruction obtains non-register information

from the current linkage stack entry.
v The MSTA (modify stacked state) instruction copies the contents of an even/odd

GPR pair to the modifiable area of the current linkage stack entry.

Using the STXIT and EXIT Macro in Connection with Linkage Stack
A STXIT macro (AB, IT, OC, or PC exit) is allowed only if the linkage stack is
empty. If a STXIT macro is issued in a module called with a PC or BAKR
instruction (causing the linkage stack to be not empty), the calling task is canceled
with cancel code X'47'.

If an AB exit completes with macro EXIT AB, the program continues with an
empty linkage stack. For the other exits (IT, OC, or PC) the program continues
with the linkage stack contents at the time of exit initiation.

When an exit routine returns control, the contents of the linkage stack must be the
same as it was on entry of the exit routine, otherwise the exit routine is canceled
with cancel code X'47'. To ensure that the contents is the same, an exit routine must
use paired instructions (BAKR/PC - PR).

Linkage Stack Functions

Chapter 12. Linkage Stack Functions 123

124 z/VSE V5R1 Extended Addressability

Chapter 13. Callable Cell Pool Services

Callable cell pool services manage virtual storage located in either an address
space or a data space. The GETVIS macro or the DSPSERV macro can be used to
obtain the virtual storage to be managed by cell pool services. Applications that
use callable cell pool services must be compiled with the High Level Assembler.

Characteristics of a Cell Pool
Cell storage is an area of virtual storage that is subdivided into fixed-sized areas of
storage called cells, where the cells are of the size you specify. To manage cell
storage (shown in Figure 32 on page 126), cell pool services also require virtual
storage for anchor and extent areas. Thus, a cell pool contains:
v An anchor
v At least one extent
v Any number of cells (all having the same size).

The anchor is the starting point or foundation on which you build a cell pool. Each
cell pool has only one anchor. An extent contains information that helps callable
cell pool services manage cells and provides information you might request about
the cell pool. A cell pool can have up to 65,536 extents, each responsible for its
own cell storage. Your program determines the size of the cells and the cell
storage.

Note that the cell pool services manage a cell pool but do not access the cell
storage itself.

The virtual storage for the cell pool must reside in an address space or a data
space. The following requirements exist:
v The anchor and extents must reside within the same address space or data

space.
v The cells must reside within one address space or data space; that space can be

different from the one that contains the anchor and extents.

Figure 32 on page 126 illustrates the cell pool structure. In the example, the anchor
and extents reside in Address or Data Space A and the cell storage in Address or
Data Space B.

Before you can obtain the first cell from a cell pool, you must plan the location of
the anchor, the extents, and the cell storage. You must obtain the storage for the
following areas and pass the following addresses to the services:
v The anchor, which requires 64 bytes of storage.
v The extent, which requires 128 bytes plus one byte for every eight cells of cell

storage.
v The cell storage.

Through the callable cell pool services, you build the cell pool. You can then obtain
cells from the pool. When there are no more cells available in a pool, you can use
callable cell pool services to enlarge the pool.

© Copyright IBM Corp. 1993, 2013 125

Storage Considerations
When you plan the size of the cell storage, consider the total requirements of your
application for this storage and some performance factors. A single extent can
control any number of cells up to 2²⁴ (16,777,216) cells.

The size of a single extent can be up to 2²⁴ - 1 bytes. You can have multiple
extents for performance purposes.

Avoid having a large number of extents, where each extent is responsible for a
small number of cells. In general, a greater requirement for cells should mean a
proportionately smaller number of extents. The following two examples illustrate
this point.
v If you have 10,000 cells in the pool, a good extent size is 2,500 cells per extent.
v If you have 100,000 cells in the pool, a good extent size is 10,000 cells per extent.

“Cell Pool Services Coding Example” on page 130 contains an example of using
callable cell pool services with data spaces. It also describes some storage
considerations.

Figure 32. Cell Pool Storage

Cell Pool Services

126 z/VSE V5R1 Extended Addressability

Link-Editing Programs Using Callable Cell Pool Services
Any program that invokes cell pool services must be link-edited with an
IBM-provided linkage-assist routine. The linkage-assist routine provides the logic
needed to locate and invoke the callable services. The linkage-assist routine resides
in IJSYSRS.SYSLIB. The following example shows the job stream required for
link-editing a program with the linkage-assist routine.

The example assumes that the program you are link-editing is reentrant.

Using Callable Cell Pool Services
The following sections describe how you can use callable cell pool services to
control storage and request information about the cell pools. The discussion of
creating a cell pool and adding an extent assumes that you have already obtained
the storage for these areas.

The CALL Macro
Cell pool services are invoked through the CALL macro.

The CALL macro passes control to another program at a specified entry point. The
linkage established when control is passed is the same as when using the BAL
instruction: the issuing program expects control to be returned.

The CALL macro was modified with VSE/ESA 2.1 and is compatible with the
z/OS* macro of the same name.

Characteristics of the CALL Macro:

If a control section is not part of the object module which applies the CALL macro,
the linkage editor attempts to resolve this external reference by including the object
module which contains the control section (AUTOLINK feature). When the CALL
macro is executed, control is passed to the control section at the specified entry
point.

Further characteristics and restrictions:
v Programs in either the primary or the access register (AR) ASC mode can invoke

the CALL macro.
v An address parameter list can be constructed and a calling sequence identifier

can be provided.
v The CALL macro does not generate any return codes. A return code in GPR 15

or AR 15 originates from the called program.
v Control parameters must be in the caller's primary address space.
v The CALL macro cannot be used to pass control to a program in a different

addressing mode (24-bit or 31-bit) than the calling program is.

// JOB LNKJOB
// LIBDEF PHASE,CATALOG=libray.sublibrary
// OPTION CATAL

PHASE userprog,*
INCLUDE userprog
INCLUDE CSRCPOOL

/*
// EXEC LNKEDT
/&

Cell Pool Services

Chapter 13. Callable Cell Pool Services 127

Available Cell Pool Services
To use cell pool services, a program must issue the CALL macro specifying one of
the following services:

CSRPBLD: Create a cell pool and initialize an anchor.
CSRPEXP: Expand a cell pool by adding an extent.
CSRPCON: Connect cell storage to an extent.
CSRPACT: Activate previously connected storage.
CSRPDAC: Deactivate an extent.
CSRPDIS: Disconnect the cell storage for an extent.
CSRPGET or CSRPRGT: Allocate a cell from a cell pool.
CSRPFRE or CSRPRFR: Return a cell to the cell pool.
CSRPQPL: Query the cell pool.
CSRPQEX: Query a cell pool extent.
CSRPQCL: Query a cell.

Further Information: The syntax and parameter description of the CALL macro
and the cell pool services are provided in the manual z/VSE System Macros
Reference. A coding example is provided in this manual. Refer to “Cell Pool
Services Coding Example” on page 130.

Creating a Cell Pool
To create a cell pool, call the CSRPBLD service. This service initializes the anchor
for the cell pool, assigns the name of the pool, and establishes the size of the cells.

Adding an Extent and Connecting it to the Cell Storage
To add an extent and connect it to the cell storage, call the CSRPEXP service. You
need at least one extent in a cell pool. Each extent is responsible for one cell
storage area. You can add an extent to increase the numbers of cells; the maximum
number of extents in a cell pool is 65,536. The CSRPEXP service initializes an
extent for the cell pool, connects the cell storage area to the extent, and activates
the cell storage for the extent.

Having activated the cell storage for an extent, you can now process CSRPGET
requests from the cells that the extent represents.

Contracting a Cell Pool, Deactivating its Extents, and
Disconnect its Storage

To contract a cell pool, deactivate its extents, and disconnect its storage, use the
CSRPDAC and CSRPDIS services. CSRPDAC deactivates an extent and prevents
the processing of any further CSRPGET requests from the storage that the extent
represents. Cell FREE (CSRPFRE) requests are unaffected. You can use the
CSRPACT service to reactivate an inactive extent (which was deactivated with
CSRPDAC).

CSRPDIS disconnects the cell storage from an extent and makes cell storage
unavailable. After you disconnect an extent, you can free the cell storage associated
with the extent.

Cell Pool Services

128 z/VSE V5R1 Extended Addressability

Reusing a Deactivated and Disconnected Extent
To reuse a deactivated and disconnected extent, call the CSRPCON and CSRPACT
services, not CSRPEXP. This is generally the only time you will need to use these
two services. CSRPCON reconnects an extent to cell pool storage that you have not
explicitly freed or that connects the extent to cells in newly-obtained storage. If you
reconnect the extent to new cell storage, be sure that the extent is large enough to
support the size of the cell storage. (CSRPCON undoes the effects of using
CSRPDIS.) CSRPACT activates the cell storage for the extent. You can now issue
CSRPGET requests for the cells.

Allocating Cells and Deallocate Previously Allocated Cells
To allocate (that is, obtain) cells and deallocate (that is, free) previously allocated
cells, you can choose between two forms of the same services. One service form
supports the standard CALL interface. The other supports a register interface and
is appropriate for programs that cannot obtain storage for a parameter list. The
two service functions are identical; however, the calling interface is different.

The CSRPGET (standard CALL interface) and CSRPRGT (register interface)
services allocate a cell from the cell pool. You can allocate cells only from extents
that have not been deactivated. Such an extent is called an active extent. The
services return to the caller the address of the allocated cell.

The CSRPFRE (standard CALL interface) and CSRPRFR (register interface) services
return a previously allocated cell to a cell pool. They return a code to the caller if
they cannot find the cell associated with an extent. If you free the last allocated cell
in an inactive extent, you will receive a unique code. You may use this information
to initiate cell pool contraction.

Obtaining Status Information About a Cell Pool
To obtain status information about a cell pool, use one of three services. These
services do not prevent the cell pool from changing during a status query. They
return status as it is at the time you issue the CALL.

The CSRPQPL service returns information about the entire cell pool. It returns the
following:
v Pool name
v Cell size
v Total number of cells in active extents
v Total number of available cells associated with active extents
v Number of extents in the cell pool.

The CSRPQEX service returns information about a specific extent. It returns the
following:
v Address and length of the extent
v Address and length of the cell storage area
v Total number of cells associated with the extent
v Number of available cells associated with the extent.

The CSRPQCL service returns information about a cell. It returns the following:
v Number of the extent that represents the cell
v Cell allocation status.

Cell Pool Services

Chapter 13. Callable Cell Pool Services 129

Invocation Requirements
The requirements for the calling program are:

Authorization
Problem state or supervisor state.

AMODE
24-bit or 31-bit addressing mode. All input addresses must be valid 31-bit
addresses.

ASC mode
Primary or AR mode.

If the anchor and the extents are located in a data space, the caller must be
in AR mode.

If an AR mode program invokes the macro, it must first issue SYSSTATE
ASCENV=AR to ensure that the CALL macro generates the correct code
for AR mode.

Control parameters
All parameters must reside in a single address or data space, and must be
addressable by the caller. They must be in the primary address space or in
an address/data space that is addressable through a public entry on the
caller's dispatchable unit access list (DU-AL).

Register Usage
Some callers depend on register contents remaining the same before and after
requesting a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before requesting the service, and restore
them after the system returns control.

The exact register usage is shown for each cell pool service in the manual z/VSE
System Macros Reference.

Return Codes
Each time you call a cell pool service, you receive a return code. The return code
indicates whether the service completed successfully, encountered an unusual
condition, or was unable to complete successfully. When you receive a return code
that indicates a problem or an unusual condition, your program can either attempt
to correct the problem, or can terminate its processing.

The services pass return codes in both the parameter list and in register 15. Return
codes are described for each cell pool service in the manual z/VSE System Macros
Reference.

Cell Pool Services Coding Example
This example shows how to use cell pool services. The anchor, the one extent, and
the cell storage are all in the same data space. The caller obtains a cell from the cell
storage area and requests information about the pool, the extent, and the cell.

CSRCPASM INVOKE CELL POOL SERVICES ASSEMBLER DECLARES
SAC 512 SET AR ASC MODE
SYSSTATE ASCENV=AR

*
* Establish addressability to code. *
*

LAE AR12,0
BASR R12,0

Cell Pool Services

130 z/VSE V5R1 Extended Addressability

USING *,R12
*
* Get data space for the cell pool. *
*
GETDSP DSPSERV CREATE,NAME=DSPCNAME,STOKEN=DSPCSTKN, X

BLOCKS=DSPBLCKS,ORIGIN=DSPCORG
*
* Add the data space to caller’s access list. *
*
GETALET ALESERV ADD,STOKEN=DSPCSTKN,ALET=DSPCALET,AL=WORKUNIT

L 2,DSPCORG ORIGIN OF SPACE IN GR2
ST 2,DSPCMARK DSPCMARK IS MARK FOR DATA SPACE

*
* Copy ALET to ANCHALET for calls to cell pool services. *
*

MVC ANCHALET(4),DSPCALET
*
* Set address and size of the anchor
*

L R4,DSPCMARK
ST R4,ANCHADDR
A R4,ANCHSIZE
ST R4,DSPCMARK

*
* Call the build service. *
*

CALL CSRPBLD,(ANCHALET,ANCHADDR,USERNAME,CELLSIZE,RTNCODE)
*
* Set address and size of the extent and connect extent to cells *
*

L R4,DSPCMARK RESERVES
ST R4,XTNTADDR
A R4,XTNTSIZE SETS SIZE OF EXTENT
ST R4,CELLSTAD
A R4,CELLSTLN SETS SIZE OF CELL STORAGE
ST R4,DSPCMARK DATA
CALL CSRPEXP,(ANCHALET,ANCHADDR,XTNTADDR,XTNTSIZE, X

CELLSTAD,CELLSTLN,EXTENT,RTNCODE)
** Get a cell. CELLADDR receives the address of the cell. *
*

CALL CSRPGET,(ANCHALET,ANCHADDR,CELLADDR,RTNCODE)
*
* The program uses the cells.
*
* Query the pool, the extent, and the cell. *
*

CALL CSRPQPL,(ANCHALET,ANCHADDR,QNAME,QCELLSZ,QTOT_CELLS, X
QAVAIL_CELLS,QNUMEXT,QRTNCODE)

CALL CSRPQEX,(ANCHALET,ANCHADDR,EXTENT,QEXSTAT,QXTNT_ADDR, X
QXTNT_LEN,QCELL_ADDR,QCELL_LEN,QTOT_CELLS, X
QAVAIL_CELLS,QRTNCODE)

CALL CSRPQCL,(ANCHALET,ANCHADDR,CELLADDR,QCLAVL,QCLEXT, X
QRTNCODE)

*
* Free the cell. *
*

CALL CSRPFRE,(ANCHALET,ANCHADDR,CELLADDR,RTNCODE)
*
* Deactivate the extent. *
*

CALL CSRPDAC,(ANCHALET,ANCHADDR,EXTENT,RTNCODE)
*
* Disconnect the extent. *
*

CALL CSRPDIS,(ANCHALET,ANCHADDR,EXTENT,QCELL_ADDR,QCELL_LEN, X
QRTNCODE)

*
* Remove the data space from the access list. *
*

ALESERV DELETE,ALET=DSPCALET
*

Cell Pool Services

Chapter 13. Callable Cell Pool Services 131

* Delete the data space. *
*

DSPSERV DELETE,STOKEN=DSPCSTKN
*
* Return to caller.
*

SAC 0 ENSURE IN PRIMARY MODE
SYSSTATE ASCENV=P RESET GLOBAL BIT
BR ... RETURN TO CALLER

*

* Constants and data areas used by cell pool services *

*
CELLS_PER_EXTENT EQU 512
EXTENTS_PER_POOL EQU 10
CELLSIZE_EQU EQU 256
CELLS_PER_POOL EQU CELLS_PER_EXTENT*EXTENTS_PER_POOL
XTNTSIZE_EQU EQU 128+(((CELLS_PER_EXTENT+63)/64)*8)
STORSIZE_EQU EQU CELLS_PER_EXTENT*CELLSIZE_EQU
CELLS_IN_POOL DC A(CELLS_PER_POOL)ANCHALET DS F
ANCHADDR DS F
CELLSIZE DC A(CELLSIZE_EQU)
USERNAME DC CL8’MYCELLPL’
ANCHSIZE DC F’64’
XTNTSIZE DC A(XTNTSIZE_EQU)
XTNTADDR DS F
CELLSTAD DS F
CELLSTLN DC A(STORSIZE_EQU)
CELLADDR DS F
EXTENT DS F
STATUS DS F
RTNCODE DS F
*

* Constant data and areas for data space *

*

DS 0D
DSPCSTKN DS CL8 DATA SPACE STOKEN
DSPCORG DS F DATA SPACE ORIGIN RETURNED
DSPCSIZE EQU STORSIZE_EQU*EXTENTS_PER_POOL 1.28MB DATA SPACE
DSPBLCKS DC A((DSPCSIZE+4095)/4096) BLOCKS FOR 1.28MB DATA SPACE
DSPCALET DS F
DSPCMARK DS F HIGH WATER MARK FOR DATA SPACE
DSPCNAME DC CL8’DATASPC1’ DATA SPACE NAME
*

* Values returned by queries *

*
QNAME DS CL8
QCELLSZ DS F
QNUMEXT DS F
QEXTNUM DS F
QEXSTAT DS F
QXTNT_ADDR DS F
QXTNT_LEN DS F
QCELL_ADDR DS F
QCELL_LEN DS F
QTOT_CELLS DS F
QAVAIL_CELLS DS F
QRTNCODE DS F
RC DS F
QCLADDR DS F
QCLEXT DS F
QCLAVL DS F

Cell Pool Services

132 z/VSE V5R1 Extended Addressability

Part 5. Appendixes

© Copyright IBM Corp. 1993, 2013 133

134 z/VSE V5R1 Extended Addressability

Appendix A. Linkage Editor and Librarian Support

Linkage Editor Support for 31-Bit Addressing
The linkage editor assigns an AMODE (addressing mode) and a RMODE
(residency mode) value for a phase as defined in one of the following:
v The AMODE and RMODE flags in the ESD (external symbol dictionary) data

(set, for example, by the High Level Assembler).
v The AMODE and RMODE values provided as a parameter in the PARM field of

the EXEC LNKEDT statement.
v The AMODE and RMODE operands provided via the linkage editor MODE

control statement.

The linkage editor stores the AMODE and RMODE values assigned to a phase into
the directory entry of that phase.

To support portability among different systems, the z/VSE linkage editor
determines AMODE and RMODE values in a similar way as does the linkage
editor of z/OS.

Maximum Size of a Phase
The maximum size of a phase that can be link-edited is:
16MB minus "specified origin in the PHASE card"

For example, if "S" is specified as origin, the maximum size is 16 MB minus the
partition start address (of the partition in which the linkage editor is running).

Assigning the AMODE
The addressing mode (AMODE) is the attribute of the entry point of the loaded
phase. It specifies the addressing mode that will be in effect when the phase is
entered at that entry point at execution time.

The linkage editor will assign the addressing mode for the entry point according to
the following rules:
1. A default AMODE of 24 is assigned.
2. If the AMODE is specified in the ESD data for the entry point (set by the High

Level Assembler, for example), the linkage editor assigns that AMODE to the
phase.

3. If the AMODE is specified as a parameter in the PARM field of the EXEC
LNKEDT statement, the linkage editor assigns that AMODE to the phase. This
AMODE value overrides the AMODE value, if any, found in the ESD data.

4. If the AMODE is specified as an operand in the MODE control statement, the
linkage editor assigns that AMODE to the entry point of the phase. This
AMODE value overrides any AMODE value specified as an operand in the
PARM field of the EXEC LNKEDT statement or any AMODE values found in
the ESD data.

Additional Considerations:

© Copyright IBM Corp. 1993, 2013 135

The AMODE value provided in the ESD data of the object modules for the entry
point of the phase is retained in the directory entry of the phase. That is, when the
phase is punched with the VSE librarian the ESD card for the phase in the
punched deck contains the AMODE value assigned from the ESD data.

In addition, if the AMODE was assigned during link editing from the overriding
AMODE specifications (from the PARM field of the EXEC statement or the MODE
control statement), a MODE control statement is punched following the PHASE
card in the punched deck containing this overriding AMODE value.

Assigning the RMODE
The residency mode (RMODE) is the attribute of the phase that specifies where the
phase can reside in virtual storage.

The linkage editor determines the residency mode for a phase according to the
following rules:
1. A default RMODE of 24 is assigned.
2. If the RMODE is specified in the ESD data (set by the H Assembler, for

example) the linkage editor assigns the RMODE value from the control section
or private code that contributes to the phase.
As the control sections and private code that contribute to the phase are
processed, the RMODE value for the phase, based on the ESD data, is
accumulated on a "most restrictive" basis. This means:
v If any section in the phase has an RMODE of 24, the RMODE for the phase

is 24.
v If all sections in the phase have an RMODE of ANY, the RMODE for the

phase is ANY.
3. If the RMODE is specified as a parameter in the PARM field of the EXEC

LNKEDT statement the linkage editor assigns that RMODE to the phase. This
RMODE value overrides the RMODE value, if any, found in the ESD data.

4. If the RMODE is specified as an operand in the MODE control statement the
linkage editor assigns that RMODE to the phase. This RMODE value overrides
any RMODE value specified as an operand in the PARM field of the EXEC
LNKEDT statement or any RMODE values found in the ESD data.

Additional Considerations:
v If PHASE statements are encountered during link editing which are needed to

construct Overlay Programs (that is, where the origin in the PHASE statement is
ROOT or a symbol, or the origin is a * and it is not the first phase), all phases
linked in this link edit job step are assigned an RMODE of 24, regardless of the
ESD data, the PARM field parameter, or the MODE control statement operand.

v For non-relocatable phases, RMODE=ANY is not accepted.
v The RMODE value provided in the ESD data of the object modules for the entry

point of the phase is retained in the directory entry of the phase (except for the
case that PHASE statements are encountered during link editing which are
needed to construct Overlay Programs); that is, when the phase is punched with
the VSE librarian, the ESD card for the phase in the punched deck contains the
RMODE value assigned from the ESD data.
In addition, if the RMODE was assigned during link editing from the overriding
RMODE specifications (from the PARM field of the EXEC statement or the
MODE control statement), a MODE control statement is punched following the
PHASE card in the punched deck containing this overriding RMODE value.

Linkage Editor Support for 31-Bit Addressing

136 z/VSE V5R1 Extended Addressability

AMODE/RMODE Hierarchy
The following hierarchy is used to determine the addressing and residency modes
assigned to a phase:
1. AMODE/RMODE values of the linkage editor MODE statement. The

AMODE/RMODE values from the MODE statement override the
AMODE/RMODE values from the PARM field of the EXEC LNKEDT
statement and the ESD data.

2. AMODE/RMODE values of the PARM field of the EXEC LNKEDT statement.
The AMODE/RMODE values of the PARM field of the EXEC LNKEDT
statement override the AMODE/RMODE values from the ESD data.

3. AMODE/RMODE values of the ESD data produced by the AMODE or
RMODE assembler statement of the High Level Assembler.

4. A default value of 24.

Additional Considerations:
v The specification of the AMODE/RMODE values in the MODE control

statement applies only to the phase which includes the MODE control statement.
The specification of the AMODE/RMODE values in the PARM field of the EXEC
LNKEDT statement applies to all phases listed in the link-edit job step unless
they are overridden for a specific phase by a MODE control statement.

v A phase produced from multiple object modules results in an RMODE of 24, if
any one of the object modules has an RMODE of 24 (unless it is overridden by
the linkage editor MODE control statement or the PARM field of the EXEC
LNKEDT statement).

v The use of PHASE statements where the origin for the phase is specified as
ROOT or as symbol, or as * and it is not the first phase in the link-edit job step,
results in an RMODE of 24 for all phases linked in that link-edit job step.
On the other hand, you get an RMODE of ANY with PHASE statements where
the origin for the phase is specified as S or * and it is the first phase in the
link-edit job or a displacement must be used. This means, in principle an
RMODE of ANY is assigned only to a single linked phase or to re-linked phases
(which have been punched by the librarian, for example). The librarian inserts
an S as the origin into the punched PHASE statement for relocatable phases.

AMODE/RMODE Combinations in the MODE Control Statement
The linkage editor validates the combination of the AMODE value and the
RMODE value, as specified by the user in the MODE control statement, according
to the following table:

Linkage Editor Support for 31-Bit Addressing

Appendix A. Linkage Editor and Librarian Support 137

AMODE/RMODE Combinations in the PARM Field
The linkage editor validates the combination of the AMODE value and the
RMODE value, as specified by the user in the PARM field of the EXEC LNKEDT
statement, according to the following table:

AMODE/RMODE Combinations from the ESD
When AMODE and RMODE data have not been specified on either the linkage
editor MODE control statement or in the PARM field of the EXEC LNKEDT
statement, the linkage editor determines the AMODE for the entry point of the
phase and the RMODE for the phase based on the ESD data. The linkage editor
validates the AMODE/RMODE combinations from the ESD as follows:

Note: An AMODE/RMODE combination ANY/ANY from the ESD data is valid
(contrary to the MODE control statement and the PARM field). The reason is that
the final AMODE/RMODE combination for a phase can be determined from the
CSECTs of a phase as described below.

The entry point of a phase may be specified either by the external symbol of a
control section or an entry name. When an entry point is a control section name,
the linkage editor acquires the AMODE and RMODE directly from the control
section name ESD entry. When an entry point is an entry name external symbol,
the linkage editor acquires the AMODE and RMODE data from the associated
control section name ESD entry.

Based on the AMODE/RMODE data acquired from the ESD, the linkage editor
determines the RMODE of the phase, and assigns an AMODE to the entry point of
the phase as follows:
v If the external symbol of the entry point is marked with any of the allowed

AMODE values and an RMODE of 24, the entry point of the phase is assigned
the same AMODE attribute as its associated external symbol.

Linkage Editor Support for 31-Bit Addressing

138 z/VSE V5R1 Extended Addressability

v The AMODE 24/RMODE ANY combination is invalid as it could allow 24-bit
addressing above the 16 MB line. If the linkage editor does find this
combination, it issues a warning message on SYSLST, forces the RMODE of the
phase to 24, and assigns an AMODE of 24 to the entry point of the phase.

v If the external symbol of the entry point is marked with AMODE 31/RMODE
ANY, the entry point of the phase is assigned an AMODE 31 and the RMODE
will be that of the phase; (which is the RMODE accumulated on the "most
restrictive" basis as described under “Linkage Editor RMODE Processing” on
page 22).

v If the external symbol of the entry point is marked with AMODE ANY/RMODE
ANY, the entry point of the phase is assigned an AMODE and RMODE
according to the following hierarchy:
– If the phase contains one or more CSECTs marked AMODE 24, the linkage

editor assigns an AMODE of 24 to the entry point of the phase.
– If the phase has an RMODE of 24 and it contains no CSECTs marked AMODE

24, the linkage editor assigns an AMODE of ANY to the entry point of the
phase.

– If the RMODE of the phase is ANY, the linkage editor assigns an AMODE of
31 to the entry point of the phase.

Handling of Invalid AMODE/RMODE Combinations
If the linkage editor finds the invalid AMODE/RMODE combination
AMODE(24)/RMODE(ANY) in the input ESD card, it issues warning message
2174I on SYSLST and forces the RMODE of the CSECT to 24.

If the AMODE/RMODE combination resulting from the EXEC LNKEDT statement
is invalid, the linkage editor issues the warning message 2175I on SYSLST and
ignores the AMODE/RMODE values from the PARM field.

If the AMODE/RMODE combination resulting from the linkage editor MODE
control statement is invalid, the linkage editor issues the warning message 2176I on
SYSLST and ignores the AMODE/RMODE operands from the MODE control
statement.

Further Information
For a detailed description of linkage editor statements such as MODE and EXEC
LNKEDT and how to use them, refer to the manual For a description of the
QUERY SPACE command, refer to the manual z/VSE System Control Statements
under “Linkage Editor”.

Notes on the MODE Control Statement
To assign the addressing mode (AMODE) for the entry point of a phase and the
residency mode (RMODE) for a phase, the MODE control statement has been
introduced for the linkage editor.

The MODE control statement must follow the PHASE card of a phase. If more than
one MODE control statement is encountered during the link-editing of a phase, the
mode specification from the first valid MODE control statement is used.

AMODE and RMODE specifications are not handled independently, that is, if only
one value, either AMODE or RMODE, is specified in the MODE control statement,
the other value is implied according to the values shown in Table 6 on page 140.

Linkage Editor Support for 31-Bit Addressing

Appendix A. Linkage Editor and Librarian Support 139

Notes on the EXEC LNKEDT Statement
To assign the addressing mode for the entry point of a phase, the
AMODE/RMODE parameters have been introduced in the PARM field of the
EXEC LNKEDT statement.

The AMODE/RMODE values specified in the PARM field are valid for all phases
linked in a link-editing job except for those phases for which a MODE control
statement has been specified.

AMODE and RMODE are not handled independently, that is, if only one value,
either AMODE or RMODE, is specified in the PARM field, the other value is
implied according to the values shown in Table 6.

Table 6. Implied AMODE or RMODE

Value specified Value implied

AMODE = 24 RMODE = 24

AMODE = 31 RMODE = 24

AMODE = ANY RMODE = 24

RMODE = 24 (see Note below)

RMODE = ANY AMODE = 31

Note: If only an RMODE value of 24 is specified in the MODE control statement
or in the PARM field of the EXEC LNKEDT statements, no overriding AMODE
value is assigned. Instead, the AMODE value in the ESD data for the entry point is
used.

Librarian Support for 31-Bit Addressing
The new program attributes AMODE and RMODE are stored in the directory entry
of a phase and in the ESD card for punched OBJ members. To support AMODE
and RMODE, the following librarian functions have been extended:
1. Librarian PUNCH
2. Librarian LISTDIR
3. SET SDL Processing

Punching a Phase
The librarian PUNCH (punch member contents) command stores in the ESD card
of the punched object the AMODE and RMODE as originally specified in the ESD
data. In addition, if the AMODE or RMODE was assigned during link editing from
the overriding specifications (from the linkage editor PARM field or MODE control
statement) a MODE control statement is punched following the PHASE card.

Thus, you can get the original AMODE/RMODE specifications from the ESD data
of the program by relinking the phase without the generated MODE control
statement.

Linkage Editor Support for 31-Bit Addressing

140 z/VSE V5R1 Extended Addressability

LISTDIR Output
The layout of LISTDIR (list directory information) output has been changed. It now
shows the new attributes AMODE and RMODE for each phase stored in a
library/sublibrary. The manual z/VSE Guide to System Functions provides further
details about the librarian LISTDIR command under “List Library, Sublibrary, or
Member Information”.

SET SDL Processing
Starting with VSE/ESA 1.3, a second SVA (shared virtual area), here referred to as
SVA (31-Bit), has been introduced. This SVA resides at the high end of the address
space which is usually above 16 MB and SVA phases with RMODE ANY are
loaded into the VLA (virtual library area) of this area.

The new "high" VLA is an extension of the "old" VLA in the SVA (24-Bit) area. As
with previous releases, there is only one SDL (system directory list) located in the
SVA (24-Bit) but this SDL also addresses the phases in the high VLA.

The SET SDL function tries to load RMODE ANY phases to the high VLA first. If
the space is not sufficient, the VLA in the SVA (24-Bit) is selected.

Librarian Support for 31-Bit Addressing

Appendix A. Linkage Editor and Librarian Support 141

Librarian Support for 31-Bit Addressing

142 z/VSE V5R1 Extended Addressability

Appendix B. Macro and Command Support

z/VSE Macros and Their Mode Dependencies
Table 7 on page 144 lists the z/VSE macros and the modes allowed at execution
time. The list mainly applies to the 31-bit addressing support, except for the AR
MODE column which applies to the data space support, and the AMODE 64
column which applies to the 64-bit virtual support.
v AMODE indicates the addressing mode that is expected to be in effect when the

program is entered. AMODE can have one of the following values:

AMODE 24
Specifies 24-bit addressing mode.

AMODE 31
Specifies 31-bit addressing mode.

AMODE 64
Specifies 64-bit addressing mode.

An X in column AMODE 24, AMODE 31, or AMODE 64 indicates that the
macro can be invoked by a program executing in that mode. An X in both
AMODE 24 and AMODE 31 columns implies AMODE ANY which indicates that
the macro can be used and executed in 24-bit and 31-bit addressing mode.
AMODE ANY does not imply 64-bit addressing mode.

v RMODE indicates the residency mode, that is, the virtual storage location where
the program must reside. RMODE can have one of the following values:

RMODE 24
Indicates that the program must reside in virtual storage below 16 MB.

RMODE ANY
Indicates that the program can reside anywhere in virtual storage, either
above or below 16 MB, but always below the 2 GB bar. RMODE ANY
does not imply storage above the bar.

An X in column RMODE 24 or RMODE ANY indicates that the macro can be
invoked by a program executing in that mode.
The parameter list of a requested macro must have the same RMODE as the
macro itself. The most important exceptions are pointed out in the 'Comments'
column; for more details, see the corresponding macro description.

v AR MODE: Most macros listed in Table 7 on page 144 can only be called in
primary ASC (address space control) mode, except those that have an indication
for Access Register (AR) ASC mode in column AR MODE (for macros supporting
data spaces). An X in that column indicates that both primary and AR mode are
possible.

Most macro services based on branch and link interfaces do not check for
execution mode violations, that is, the program requesting the macro service is
responsible for the correct execution mode (AMODE and RMODE). An execution
mode violation may lead to unpredictable results.

© Copyright IBM Corp. 1993, 2013 143

Table 7. z/VSE macros and their mode dependencies

Macro Name AMODE RMODE
AR

MODE Comments

24 31 64 24 ANY

ALESERVxx x x x x x
AMODESWxx x x x x
ASPL x x
ASSIGN x x x x
ATTACH x x x x Subtask save area

RMODE=24
AVRLIST x
CALL x x x x x
CALL CSxx x x x x x Caller must be in AR mode

if anchor and extents are
located in a data space

CANCEL x x x x
CCB x x VSE/POWER supports

RMODE=24 only
CDDELETE x x x x
CDLOAD x x x x
CDMOD x x
CHAP x x x x
CHECK x x
CHKPT x x
CLOSE|CLOSER x x x DTF has to be allocated

below 16MB
CNTRL x x
COMRG x x x x
CPCLOSE x x
CSRCMPSC x x
CSRYCMPS x
DCTENTRY x
DEQ x x x x
DETACH x x x x Subtask save area

RMODE=24
DIMOD x x
DOM x x x
DSPSERVxx x x x x AR mode: SYSSTATE

required
DTFxx x
DTL x x x x
DUMODFx x x
DUMP x x x
ENDFL x x
ENQ x x x x
EOJ x x x x RMODE=ANY if RC is

omitted
ERET x x
ESETL x x

Further Information: The following table reflects the z/VSE macro support as
documented in the manual z/VSE System Macros Reference. For VSE/VSAM and
VSE/POWER macros and their mode dependencies, refer to the manuals VSE/VSAM
Commands and VSE/POWER Application Programming.

144 z/VSE V5R1 Extended Addressability

Table 7. z/VSE macros and their mode dependencies (continued)

Macro Name AMODE RMODE
AR

MODE Comments

24 31 64 24 ANY

EXCP x x x x Control blocks RMODE=24
EXIT x x x x
EXTRACT x x x x
FCEPGOUT x x SPLEVEL SET=1

x x x x SPLEVEL SET>1
FEOV x x
FEOVD x x
FETCH x x x
FREE x x
FREEVIS x x x x
GENDTL x x x
GENIORB x x
GENL x x x
GET x x
GETIME x x x x
GETSYMB x x x x
GETVCE x x x
GETVIS x x x x
IARV64 x x x x
IJBPUB N/A N/A N/A N/A N/A
IJJLBSER x x
IORB x
ISMOD x x
JDUMP x x x
JOBCOM x x
LBRET x x
LBSERV xx x x x
LFCB x x
LIBRDCB x x x
LIBRM xxx x x x
LOAD x x x x RMODE=24 when LIST, SYS,

DE, TXT, MFG, or RET
specified; RMODE=ANY not
allowed with parameter list

LOCK x x x
MAPDBY x x
MAPBDYVR x x
MAPDNTRY
MAPEXTR x x
MAPSAVAR x x
MAPSSID N/A N/A N/A N/A
MAPSYSP N/A N/A N/A N/A
MAPXPCCB N/A N/A N/A N/A
MODDTL x x x
MVCOM x x
NOTE x x
OPEN|OPENR x x x DTF has to be allocated

below 16MB
PAGEIN x x SPLEVEL SET=1

x x x x SPLEVEL SET>1
PDUMP x x x

Appendix B. Macro and Command Support 145

Table 7. z/VSE macros and their mode dependencies (continued)

Macro Name AMODE RMODE
AR

MODE Comments

24 31 64 24 ANY

PFIX x x SPLEVEL SET=1
x x x x SPLEVEL SET>1

PFREE x x SPLEVEL SET=1
x x x x SPLEVEL SET>1

POINTR x x
POINTS x x
POINTW x x
POST x x x x
PRMOD x x
PRTOV x x
PUT x x
PUTR x x
QSETPRT x x
RCB x x
READ x x
REALAD x x x x
RELEASE x x
RELPAG x x SPLEVEL SET=1

x x x x SPLEVEL SET>1
RELSE x x
RETURN x x x x Returns with mode of issuer
RUNMODE x x
SAVE x x x x
SDUMP|SDUMPX x x x x x AR mode: SYSSTATE

required
SECTVAL x x x x
SEOV x x
SETFL x x
SETIME x x x x
SETL x x
SETPFA x x
SETPRT x x
SPLEVEL N/A N/A N/A N/A
STXIT x x x x x
SUBSID x x x x
SYSSTATE x x x x x x
TECB x x
TPIN x x
TPOUT x x
TRUNC x x
TTIMER x x x x
UNLOCK x x x
VIRTAD x x x x BTAM: AMODE=24 only
WAIT x x x x
WAITF x x
WAITM x x x x
WRITE x x
WTO x x x x
WTOR x x x x
XECBTAB x x

146 z/VSE V5R1 Extended Addressability

Table 7. z/VSE macros and their mode dependencies (continued)

Macro Name AMODE RMODE
AR

MODE Comments

24 31 64 24 ANY

XPCC x x x x
XPCCB x x
XPOST x x
XWAIT x x
YEAR224 x x x

1. IPv6 not supported.
2. Supported, but with differences. For details refer to the IPv6/VSE

Programming Guide .

Macro Support for 31-Bit Addressing
This section introduces selected macros that are new or that have been enhanced
for the 31-bit addressing support. For the syntax and a detailed keyword and
parameter description refer to the manual z/VSE System Macros Reference.

AMODESW Macro
The AMODESW macro can be used to:
v Switch the AMODE and, optionally, save a program's current AMODE.
v Switch the AMODE as part of a subroutine call and return.

For calling a subroutine and returning from it, AMODESW generates code
reflecting the support provided by the instructions BASSM and BSM.

The AMODESW macro provides the following set of functions:
v AMODESW CALL - make a subroutine call with an appropriate mode switch.
v AMODESW RETURN - return from a subroutine.
v AMODESW QRY - determine the current addressing mode.
v AMODESW SET - switch addressing modes.

While the AMODESW macro allows a program to switch addressing modes, the
user must make sure that the programs follow 24-bit or 31-bit addressing
conventions.

Notes on Using the AMODESW Macro
1. Users must restore their program's addressability (set up the proper base

register) on return from the call. You can use the address VSE returns in the
return register to set up program addressability.

2. AMODESW CALL and AMODESW RETURN allow you to call and return from
subroutines. You can use them anywhere you can use a BALR and BR
sequence.

Appendix B. Macro and Command Support 147

http://www.ibm.com/systems/z/os/zvse/documentation/documents.html
http://www.ibm.com/systems/z/os/zvse/documentation/documents.html

AMODESW Example:
.
.
AMODESW CALL,ADDRESS=MYSUB,AMODE=31,WR=(1)
.
.
.

MYSUB EQU *
.
.
.
AMODESW RETURN
.
.

The sequence of instructions shown in the example does the following:
1. Calls via AMODESW the subroutine at label MYSUB by using a BASSM

instruction.
2. Switches to 31-bit addressing mode.
3. Saves the return address and the addressing mode in register 14 (default value).
4. Returns via AMODESW to the caller and restores the addressing mode saved in

register 14.

You can use the REGS and REG parameters on CALL and RETURN to override the
registers used for the BASSM linkage.

Notes on Using AMODESW SET
1. AMODESW SET switches a program's addressing mode without requiring a

branch to a subroutine. For example, to switch the current addressing mode to
31-bit addressing, a program might use:
AMODESW SET,AMODE=31

2. To switch to a new mode from an unknown addressing mode and save the
unknown mode, use the SAVE parameter. For example, the macro instruction
AMODESW SET,AMODE=31,SAVE=(2)

switches a program to 31-bit addressing mode and saves the current addressing
mode as bit 0 of register 2. Only bit 0 of the SAVE register is altered. You can
then use the value set by the SAVE parameter to restore the original addressing
mode:
AMODESW SET,AMODE=(2)

Storage Management Macros

GETVIS Macro
In order to access the partition GETVIS area above 16 MB or the system GETVIS
area (31-Bit), a new GETVIS parameter has been introduced: LOC. It specifies the
location of the virtual storage obtained by a GETVIS request. For LOC you can
specify BELOW, ANY, or RES where RES means that the virtual storage is to be
allocated depending on the callers location.

Macro Support for 31-Bit Addressing

148 z/VSE V5R1 Extended Addressability

FREEVIS Macro
The FREEVIS macro is used to release virtual storage that was obtained by the
GETVIS macro.

Page Management Macros
The macros FCEPGOUT, PAGEIN, PFIX, PFREE and RELPAG support 31-bit
addresses. The address of the provided parameter list and the addresses in this list
are treated as 3-byte addresses if the service is invoked in 24-bit mode and as
4-byte addresses if invoked in 31-bit mode. The end of the parameter list is
indicated in 24-bit mode by any non-zero value and in 31-bit mode by bit 0 on in
the byte following the last entry. Page management macros assembled by releases
prior to VSE/ESA 1.3.0 or with SPLEVEL=1 must be executed in AMODE=24 and
RMODE=24, otherwise the issuer is canceled.

By applying the SPLEVEL macro it is possible to generate downward compatible
macro expansions.

PFIX Macro
The macro PFIX has been extended with the parameter RLOC to support PFIX of
pages in real storage above 16 MB.

Program Load and Retrieval Macros

CDDELETE Macro
The CDDELETE macro deletes a phase previously loaded by a CDLOAD request
into the partition GETVIS area.

Delete means that the phase load count is decreased by one. If the load count is
zero the GETVIS storage occupied by the phase will be freed.

CDLOAD Macro
The CDLOAD Macro loads a phase into the partition GETVIS area. CDLOAD
places the phase in virtual storage either below 16 MB or anywhere as indicated by
the phase's RMODE. It gives control back to the caller. A loaded phase may cross
the 16 MB line.

Note: The CDLOAD macro is recommended for loading phases, especially for
loading phases above the 16 MB line. Together with the CDDELETE macro it
provides enhanced GETVIS storage management.

FETCH Macro
The macro loads and gives control to the phase specified in the first operand (not
back to the caller). FETCH can only be called below the 16 MB line (both expanded
code and parameter lists must be below 16 MB).

GENL Macro
The macro generates a local directory list within the partition. It is required that
both the local directory list and the macro expansion are located below 16 MB.

Macro Support for 31-Bit Addressing

Appendix B. Macro and Command Support 149

LOAD Macro
The LOAD macro loads a phase at the load point provided and returns control to
the calling program. In case no load-point is provided by the user, the load-point
specified at link-edit time (relocated) is used. Since the control is passed to the
caller, the addressing mode is not changed by the load processing.

Note: The LOAD macro can only be used below 16 MB.

Task Communication Macros

ATTACH Macro
A subtask can be initiated by any other task of the partition with the ATTACH
(attach a task) macro. ATTACH supports the 31-bit as well as the data space
environment. It can attach a subtask in 24-bit or 31-bit addressing mode (AMODE
ANY) physically resident above or below 16 MB (RMODE ANY).

ATTACH issued in AMODE 24:
The passed parameters are treated as 3-byte addresses.

ATTACH issued in AMODE 31:
The passed parameters are treated as 4-byte addresses.

Table 8. ATTACH Macro and Its AMODE/RMODE Characteristics

Macro Parameter AMODE RMODE Comment

ATTACH 31 ANY

entrypoint 31 ANY Entry point receives control in
AMODE 31

ABSAVE - ANY

ECB - ANY

MFG - ANY

NAME - ANY

SAVE - 24 The subtask save area has to be
allocated in RMODE 24

The attached task will get control in the same addressing mode the ATTACH
issuer has. For example, if a main task issues the ATTACH macro in AMODE 31,
the subtask will also receive control in AMODE 31.

The user supplied save area specified with the ABSAVE parameter of the ATTACH
macro may reside below or above the 16 MB line. The old exit save area layout can
only be used in a 24-bit environment. The new layout is extended by the saved
access registers and the actual PSW.

Macro Support for 31-Bit Addressing

150 z/VSE V5R1 Extended Addressability

DETACH Macro
The DETACH (detach task) macro terminates the execution of a task. A subtask is
normally terminated by issuing a DETACH macro in the main task or in the
subtask itself.

Note: The task's save area is always located below 16 MB (RMODE 24).

ENQ/DEQ Macro
A task protects or releases a resource by issuing an ENQ or DEQ macro. The ECB
address in the RCB is treated as a 31-bit address.

ENQ/DEQ issued in AMODE 24:
The RCB address is treated as a 24-bit address.

ENQ/DEQ issued in AMODE 31:
The RCB address is treated as a 31-bit address.

POST Macro
The POST (post event) macro provides communication between two tasks in the
same partition by posting an event control block (ECB). POST processing can post
an ECB in 24-bit or 31-bit addressing mode (AMODE ANY) physically resident
above or below 16 MB (RMODE ANY).

POST issued in AMODE 24:
The passed parameters are treated as 24-bit addresses. All addresses (ECB, save
area) are 24-bit addresses.

POST issued in AMODE 31:
The passed parameters are treated as 31-bit addresses. All addresses (ECB, save
area) are 31-bit addresses.

Table 9. POST Macro and Its AMODE/RMODE Characteristics

Macro Parameter AMODE RMODE Comment

POST 31 ANY

ECB - ANY

SAVE - 24 The task save area has to be
allocated in RMODE 24

WAIT Macro
With the WAIT (wait for event) macro, a task sets itself into the wait state until the
event control block (ECB) specified in the macro is posted.

WAIT processing can wait for an ECB in 24-bit or 31-bit addressing mode
(AMODE ANY) physically resident above or below 16 MB (RMODE ANY).

Macro Support for 31-Bit Addressing

Appendix B. Macro and Command Support 151

WAIT issued in AMODE 24:
The ECB address is treated as a 24-bit address.

WAIT issued in AMODE 31:
The ECB address is treated as a 31-bit address.

WAITM Macro
The WAITM macro works basically in the same way and has the same
requirements as the WAIT macro except that it can handle multiple events.

WAITM issued in AMODE 24:
The ECB addresses and the list address are treated as 24-bit addresses. The first
byte following the last address in the list must be non-zero to indicate the end of
the list.

WAITM issued in AMODE 31:
The ECB addresses and the list address are treated as 31-bit addresses. The first bit
of the last address in the list must be non-zero to indicate the end of the list.

I/O Processing Support for 31-Bit Addressing

CCB Macro
The CCB (channel control block definition) macro includes the keyword CCW to
allow requests for the format-1 CCW (channel command word) as well as for the
format-0 CCW.
v When I/O buffers are located above 16 MB, format-1 CCWs must be used to

address these areas.
v VSE/VSAM uses format-1 CCWs and can therefore access I/O areas above

16 MB.

The following figures show the layout of the two formats:

CCW Formats

Note: Use format-1 CCWs only if necessary. When running under VM, the
format-1 CCW translation affects the VM guest performance.

Figure 33. Format-0 CCW

Figure 34. Format-1 CCW

Macro Support for 31-Bit Addressing

152 z/VSE V5R1 Extended Addressability

Restrictions:

v CCBs and CCWs must be located below 16 MB.
v Appendage routines must be below the 16 MB line.
v LIOCS (logical input output control system) uses only format-0 CCWs and data

areas are located below the 16 MB line.
v VSE/POWER supports format-0 CCWs only.
v EXCP REAL is supported for format-0 CCWs only.
v A format-1 CCW console I/O is supported but if you use VSE/OCCF console

requests they are restricted to format-0 CCWs.

Other Macros

SPLEVEL Macro
The SPLEVEL (set and test macro level) macro sets or tests the global symbol that
indicates the level of a macro. The macro is activated at compile time and
important for users who want to run their programs on back-level releases.

Specific macros supplied in the macro library are identified as downward
incompatible (to VSE/ESA 1.1, 1.2, or 1.3). Unless you take specific action, these
macros generate downward incompatible statements.

It is possible to generate downward compatible expansions for some of these
macros by using the SPLEVEL macro. Downward incompatible macros interrogate
a global symbol (set by SPLEVEL with the SET parameter) during assembly to
determine the type of expansion to be generated. For example, the following
macros check the setting of the global symbol:
v FCEPGOUT
v PAGEIN
v PFIX
v PFREE
v RELPAG
v WTO
v WTOR

The High Level Assembler reference manuals give information about global set
symbols.

The following SET values apply:
v VSE/ESA 1.1 and 1.2 macro expansion if SET=1
v VSE/ESA 1.3 macro expansion if SET=2
v VSE/ESA 1.3 macro expansion if SET=3 (for MVS™ compatibility reasons)
v VSE/ESA 2.1 and later macro expansion if SET=4 (default value)

Refer to “Using the SPLEVEL Macro” on page 14 for an example of how to use the
SPLEVEL macro.

Macro Support for 31-Bit Addressing

Appendix B. Macro and Command Support 153

STXIT Macro
The STXIT (set exit) macro can enable an exit (AB, IT, OC, PC) and defines a save
area where the interrupt information will be stored before exit activation. The
STXIT macro supports two kinds of save areas, an old format and an extended
format. The old save area is 72 bytes in length. The first 8 bytes contain the
interrupt status in the form of a BC mode PSW and the remaining bytes include
general registers 0-15.

The BC mode PSW cannot be used in 31-bit addressing mode, because the first
byte of the instruction address is required for the instruction length and condition
code. Furthermore, user programs can operate in access register mode (AR mode).

The access registers (ARs) may also be of interest for the exit routine. Therefore the
exit save area is extended by a field that contains the EC mode PSW and 16
fullwords containing the ARs if the interrupted program operates in AR mode. The
extended save area is also required for STXIT OC with MSGDATA=YES and
MSGPARM=YES. When using the extended format the instruction address of the
BC mode PSW is cleared to zero.

The user-supplied save area specified in the STXIT macro may reside below or
above 16 MB. The new AMODE parameter specifies whether the old or extended
save area is to be used and where the save area is located.

Note:

1. The exit routine gets control in the mode specified in the AMODE parameter of
the STXIT macro; that is in AMODE 24 for STXIT ...,AMODE=24 and in
AMODE 31 for STXIT ...,AMODE=ANY.

2. The old save area layout can be used in 24-bit addressing mode only.

Macro Support for 31-Bit Addressing

154 z/VSE V5R1 Extended Addressability

Macro Support for 64-bit Addressing
To allow I/O buffers to reside above the 2 GB bar, your programs must use
Format-2 IDAWs . Therefore, the CCB macro provides the additional keyword
IDAW as shown in the syntax diagram below.

IDAW=FORMAT2
Indicates that a Format-2 IDAW is to be used.

Note: Format-1 IDAWs are not supported by z/VSE.

When Format-2 IDAW is indicated in the corresponding CCB and the IDA (Indirect
Data Addressing)-bit in the CCW is set, the CCW data address portion points to a
single Format-2 IDAW containing the 64-bit virtual address. This is shown in
Figure 35.

For a description of the other CCB macro parameters shown in the above syntax
diagram, refer to the topic “CCB (Command Control Block Definition) Macro” in
the z/VSE System Macros Reference.

Macro and Command Support for Data Spaces
This section introduces selected macros and commands that are new or that have
been enhanced for the support of data spaces. For the syntax and a detailed
keyword and parameter description, refer to the manual z/VSE System Macros
Reference for the macros and to the manual z/VSE System Control Statements for
the commands.

�� name CCB SYSnnn,command_list_name
,X'nnnn' ,senseaddress

�

�
,CCW=FORMAT0

,CCW=FORMAT1 ,IDAW=FORMAT2
��

IDAW

Virtual address of an

I/O buffer

CCW

Address of an IDAW

Figure 35. Performing I/O While Residing Above 2 GB Bar

Macro Support for 64-Bit Addressing

Appendix B. Macro and Command Support 155

ALESERV Macro
This macro supports a subset of the z/OS macro of the same name and is
described in detail in the manual z/VSE System Macros Reference under “ALESERV
Macro”.

The ALESERV macro controls the entries in the access list. An access list is a table
in which each entry identifies an address space or data space to which a program
(or programs) has access.

Note: The ALESERV macro cannot be used to control access list entries for address
spaces.
Access list entry tokens (ALETs) index the entries in the access list.

On the ALESERV macro, data spaces are identified through STOKENs, an identifier
similar to a partition ID. Use the ALESERV macro to:
v Add an entry to the DU-AL or PASN-AL for a SCOPE=SINGLE or a

SCOPE=ALL data space (ADD parameter).
v Add an entry to all PASN-ALs for a SCOPE=COMMON data space (ADD

parameter).
v Delete an entry from the DU-AL or PASN-AL (DELETE parameter).
v Delete an entry from all PASN-ALs for a SCOPE=COMMON data space

(DELETE parameter).
v Obtain a STOKEN for a specified ALET (EXTRACT parameter).
v Locate an ALET for a specified STOKEN (SEARCH parameter).

Restrictions when Using the ALESERV Macro
1. To compile the ALESERV macro, you need the High Level Assembler.
2. VSE/ICCF interactive partitions, system tasks and EXEC ...,REAL applications

are not allowed to call ALESERV services.

An access list entry (ALE) added to the PASN-AL stays in the access list until the
partition is deallocated.

Calling Requirements for ALESERV Macro
Authorization:

To request the following ALESERV services, the issuer must have PSW key
0:
v Make ADD and DELETE requests for PASN-AL
v Make ADD and DELETE requests for SCOPE=ALL and

SCOPE=COMMON data spaces

All other services can be requested with any PSW key.

Macro and Command Support for Data Spaces

156 z/VSE V5R1 Extended Addressability

ATTACH ALCOPY Macro
The ATTACH ALCOPY macro allows a program to pass a copy of the DU-AL, that
belongs to the attaching task, to the subtask to be attached. Refer to “Attaching a
Subtask and Sharing Data Spaces with It” on page 109 for an example.

DSPSERV Macro
This macro supports a subset of the z/OS macro of the same name and is
described in detail in the manual z/VSE System Macros Reference under “DSPSERV
Macro”.

The DSPSERV macro creates, deletes and controls data spaces. There are three
kinds of data spaces:

SCOPE=SINGLE
SCOPE=ALL
SCOPE=COMMON

A SCOPE=SINGLE data space is used in ways similar to the use of the partition
GETVIS area. A SCOPE=ALL or SCOPE=COMMON data space is used in ways
similar to the use of the shared virtual area (SVA) of an address space. A program
with a non-zero PSW key cannot create or delete a SCOPE=ALL or
SCOPE=COMMON data space. However, it can use these spaces, providing a
program with PSW key 0 created the data space and established addressability.

Use the DSPSERV macro to:
v Create a data space (CREATE parameter)
v Delete a data space (DELETE parameter)
v Release an area of a data space (RELEASE parameter)
v Increase the current size of a data space (EXTEND parameter)

On the DSPSERV macro, data spaces are identified through STOKENs. A STOKEN
is a unique identifier of data spaces.

Restrictions when Using the DSPSERV Macro
1. To compile the DSPSERV macro, you need the High Level Assembler.
2. VSE/ICCF interactive partitions, system tasks, and EXEC ...,REAL applications

are not allowed to call DSPSERV services.

The end of task process deletes all data spaces owned by the terminating task.

Calling Requirements for DSPSERV Macro
Authorization:

To request the following DSPSERV services, the issuer must have PSW key
0:
v Create and delete a SCOPE=ALL and SCOPE=COMMON data space
v Extend the current size of a data space it does not own

All other services can be requested with any PSW key.

Macro and Command Support for Data Spaces

Appendix B. Macro and Command Support 157

SDUMPX Macro
The SDUMPX macro dumps address ranges in any data spaces to which
addressability via an ALET or via an STOKEN exists. The dump is directed to a
dump library or to SYSLST.

SETPFA Macro
The SETPFA macro either sets up or removes linkage to a user-written page-fault
appendage routine. With the DSPACE parameter it is possible to specify whether
the appendage routine is to process page faults for both address and data spaces or
for address spaces only.

SYSSTATE Macro
The SYSSTATE macro is used to set and test a global symbol.

Certain macros that support callers in both access register (AR) and primary
address space control (ASC) mode need to know which ASC mode your program
is running in.
v The macros that support callers in AR mode generate the code and addresses

that are appropriate for AR mode; macros that support callers in primary mode
generate the code and addresses that are appropriate for callers in AR mode.

v These macros use the SYSSTATE TEST macro to test a global symbol that is set
through the SYSSTATE ASCENV macro.

v The name of the global symbol is &SYSASCE.

It is recommended to issue the SYSSTATE ASCENV=AR macro at the time your
program changes ASC mode to AR mode. Then, when your program returns to
primary mode, issue SYSSTATE ASCENV=P.

The following is a list of the macros that check the setting of the global symbol:
v ALESERV
v DSPSERV
v SDUMP/SDUMPX

Example for SYSSTATE Macro:
To change the ASC mode to AR mode and set the global symbol, issue:
SAC 512
SYSSTATE ASCENV=AR

SYSDEF Command
The AR/JCL command SYSDEF defines limits and defaults for data spaces such as:
v The total amount of virtual storage that can be allocated to data spaces (the

allocated storage is taken from the IPL VSIZE).
v The maximum number of data spaces that can be allocated within the system at

one time.
v The maximum number of data spaces that can be allocated per partition at one

time.
v The maximum number of data spaces with SCOPE=COMMON that can be

allocated at one time.
v The default size of a data space.

Macro and Command Support for Data Spaces

158 z/VSE V5R1 Extended Addressability

QUERY Command
The AR/JCL command QUERY can be used to display data space limits and
defaults and further details such as data space names and sizes.

MAP Command
The MAP command can be used to display the amount of virtual storage allocated
for data spaces.

Macro and Command Support for Data Spaces

Appendix B. Macro and Command Support 159

Macro and Command Support for Data Spaces

160 z/VSE V5R1 Extended Addressability

Appendix C. Channel Program Support for Virtual Disks

Note: This appendix is intended for such users only who write their own channel
programs for virtual disks and must, therefore, know the details provided on the
following pages.

In z/VSE, a virtual disk emulates a real FBA disk device. As with a real FBA
device, you can use the CCB macro and channel command words (CCWs) to write
a channel program for accessing a virtual disk. In general, such a channel program
accesses data by using a:
1. DEFINE EXTENT command to pass information about the extent of the area

(or space) on the virtual disk for which subsequent commands are valid.
2. LOCATE command to specify a specific address and the amount of data to be

transferred.
3. READ or WRITE command for data transfer.

Both Format-0 and Format-1 CCWs are valid in a channel program. You specify the
type used in the CCB macro. Note, however, that:
v The channel program must reside below the 16 MB line, whether you use

Format-0 or Format-1 CCWs.
v If the data area of your channel program is above 16 MB, then you must use

Format-1 CCWs.

“I/O Processing Support for 31-Bit Addressing” on page 152 provides details about
the two CCW formats.

Channel Commands
Channel commands that can be used with virtual disks are described in the
following paragraphs. All other channel commands are rejected with Unit Check
status and Command Reject indicated in the sense data. In particular, these valid
FBA commands are not supported for virtual disks.
v Read Initial Program Load (X'02')
v Read and Reset Buffered Log (X'A4')
v Diagnostic Control (X'F3')
v Diagnostic Sense/Read (X'C4')
v Device Reserve (X'B4')
v Device Release (X'94')
v Unconditional Reserve (X'14')

© Copyright IBM Corp. 1993, 2013 161

DEFINE EXTENT (X'63')
As shown in the table on page 163, the Define Extent command operates on 16
bytes of information which define an addressing range on a virtual disk.
Subsequent chained commands may operate only within that addressing range.
Also included is an operation inhibit mask (byte 0, bits 0-1).

If less than 16 bytes are specified, the command is rejected with Unit Check
(Command Reject), Channel End, and Device End. If the CCW count is greater
than 16 bytes, only 16 bytes of information are used.

If another Define Extent command was previously issued in the same chain, the
command is rejected with Unit Check (Command Reject), Channel End, and Device
End.

If parameters of the extent are incorrect, the command is terminated with Unit
Check (Command Reject), Channel End and Device End status.

If the addressable block size is incorrect, the command is terminated with Unit
Check (Block Size Exception), Channel End and Device End status.

If the parameters are valid and command chaining is not indicated, Channel End
and Device End status are presented.

If the parameters are correct and command chaining is indicated, the next CCW is
executed. This is normally a Locate command.

Before continuing, two terms must be defined. The first term is storage space.
Storage space is the usable storage contained in a virtual disk. Storage space is
addressed in blocks from 0 to N-1.

The second term is disk data space. This is not the same as a z/VSE data space,
which is used to create a virtual disk. Instead, disk data space refers to space on a
virtual disk that contains addressable blocks of user data. These blocks are numbered
from 0 to M-1. An Extent Locator specified in a Define Extent command references
a disk data space to its storage space. An example follows:

In this example, points A (bytes 8-11) and B (bytes 12-15) represent the limits of the
extent in the data space. EL is the Extent Locator (bytes 4-7). EL and Z represent
the limits of the extent in storage space. All points (A, B, EL, and Z) must be valid
block numbers.

For example, EL = 500, A = 150, B = 400.

The location in the storage space of A is 500 and of B it is 750.

The following 16 bytes are the parameters of the Define Extent command.

162 z/VSE V5R1 Extended Addressability

Bytes Bits Mask Byte Description

0 0-1 00 01 10 11 Non-formatting write permitted All write
operations inhibited Reserved - not
allowed All write operations permitted

2-7 Unused - must be zero

1 Reserved - must be zero

2-3 Addressable block size in bytes (512,or 0).
0 defaults to 512.

4-7 Extent Locator. This is a block number
which identifies the location on the storage
space of the first block of an extent.

8-11 Addressable block number of the first
block of this extent in the data space

12-15 Addressable block number of the last block
of this extent in the data space

The following describes the bytes used by the Define Extent command.

Byte 0: If any of byte 0 bits 2-7 is not zero or bits 0-1 are B'10', then Unit Check
(Command Reject), Channel End, and Device End are set.

Bytes 2-3: The addressable block size specification in bytes 2-3 must be 512 or 0. A
block size of 0 is interpreted as a default value of 512.

Bytes 4-7: Bytes 4-7 contain the extent locator. The extent locator is the block
number specifying the location on the virtual disk of the first block of an extent.

Bytes 8-11: Bytes 8-11 contain the addressable block number of the first block of
data for this extent.

Bytes 12-15: Bytes 12-15 contain the addressable block number of the last block of
data for this extent. This value must obey the following rules or the command is
rejected:
v A less than or equal to B, and
v D less than or equal to the maximum data block number that is valid for the

device.

Where:

A = Value in bytes 8-11 (number of first block of extent)
B = Value in bytes 12-15 (number of last block of extent)
C = Value in bytes 4-7 (extent locator)
D = C+(B-A).

Appendix C. Channel Program Support for Virtual Disks 163

LOCATE (X'43')
The Locate command specifies the addressable block number of the first block of
the data space to be processed and the number of sequential blocks to be
processed. The specification consists of eight bytes.

If the Locate command is not preceded by a Define Extent command in the same
chain, the command is rejected with Unit Check (Command Reject), Channel End,
and Device End status.

If less than 8 bytes are specified, the command is rejected with Unit Check
(Command Reject), Channel End, and Device End status.

If more than 8 bytes are specified, only 8 bytes are used.

If chaining is not indicated, Channel End and Device End status is presented after
a valid 8-byte parameter list is received. The following 8 bytes are the parameters
of the Locate command:

Bytes Bits Description

0 Operation byte

0-3 Reserved - must be zero

4-7 Operation Code:
v 0001 Write Data
v 0101 Write and Check Data
v 0010 Read Replicated Data
v 0110 Read Data

1 Replication count

2-3 Block count. This is the number of addressable
blocks to be processed.

4-7 Addressable block number of the first block to be
processed in the data space

The following describes the 8 bytes used by the Locate command.

Byte 0: Byte 0 predefines the operation to be performed. Bits 4-7 define the specific
operation code. Data transfer associated with an operation code does not occur
during the execution of the Locate command, but is initiated by the Read or Write
CCW that follows the Locate command. Operation codes or modifiers that are not
assigned are incorrect and cause the Locate command to be terminated with Unit
Check (Command Reject), Channel End, and Device End status.

The following is a description of the operation codes.
v Write Data: This operation code prepares to write one or more addressable

blocks of data. The number of blocks to be written is determined from the block
count (bytes 2-3). If the define extent mask inhibits all write operations, the
Locate command is rejected with Unit Check (Command Reject), Channel End,
and Device End status. A write data operation code establishes write state for
the virtual disk.
If the parameters are valid and command chaining is active, the next CCW is
executed.

v Write and Check Data: Same as Write Data. No checking is done on a virtual
disk.

164 z/VSE V5R1 Extended Addressability

v Read Replicate: This operation code prepares to read one or more addressable
blocks of data from a range of replicated data. The number of blocks to be read
is determined from the block count (bytes 2-3). Read Replicated Data establishes
read state for the virtual disk.
If the parameters are valid and command chaining is active, the next CCW is
executed.

v Read Data: This operation code prepares to read one or more addressable blocks
of data. The number of blocks to be read is determined from the block count
(bytes 2-3). The Read Data operation code establishes read state for the virtual
disk.
If the parameters are valid and command chaining is active, the next CCW is
executed.

Byte 1: Byte 1 is the replication count. Byte 1 must be zero if byte 0 specifies Read,
Write, or Write and Check Data. When byte 0 specifies Read Replication Data, byte
1 specifies a range of addressable blocks containing replicated data. The first block
of the range is specified by the relative block number in bytes 4-7.

The block count (bytes 2-3) specifies the number of addressable blocks in a unit of
replicated data. For example, if the block count is two and if this two-block unit is
replicated five times, then the replication count is ten.

If the replication count is less than the block count or if the replication count is not
an integral multiple of the block count, then the Locate command is terminated
with Unit Check (Command Reject), Channel End, and Device End status.

If the replication count is equal to the block count, read replicate is treated as a
normal read.

Bytes 2-3: Bytes 2 and 3 contain the block count parameter. This parameter
specifies the number of sequential addressable blocks to be processed by the
command immediately following the Locate command. A count of zero is rejected
with Unit Check (Command Rejected), Channel End, and Device End.

Bytes 4-7: Bytes 4 through 7 specify the data space addressable block of the first
block to be processed.

The addressable block numbers of the blocks to be processed are compared against
the extent limits established by the preceding Define Extent parameters.

All blocks to be processed must be within the valid extent range. If these
conditions are not satisfied, the Locate command is terminated with Unit Check
(File Protected), Channel End, and Device End status.

READ (X'42')
The Read command causes the actual data transfer from the virtual disk to main
storage. A prior Locate command determines the location from which data is to be
transferred.

The Read command must be command-chained from a Locate command. If not,
this command is rejected with Unit Check (Command Reject), Channel End, and
Device End status.

Appendix C. Channel Program Support for Virtual Disks 165

The Locate command from which the Read command is command-chained must
have established read orientation. If not, the Read command is rejected with Unit
Check (Command Reject), Channel End, and Device End status.

If command-chaining is not indicated, Channel End and Device End are both
presented after the data is successfully read.

For Read commands, a CCW count less than the byte count derived from the block
count of the Locate command terminates the data transfer when the CCW count
reaches zero. If the CCW count is larger than the block count in the Locate
command, the Locate block count terminates the data transfer when it reaches
zero.

WRITE (X'41')
The Write command causes data from main storage to be transferred to the virtual
disk. A prior Locate command determines the location to which this data is to be
written.

The Write command must be command-chained from a prior Locate command. If
not, this command is rejected with Unit Check (Command Reject), Channel End,
and Device End status.

The Locate command from which the Write command is chained must specify
write-orientation. If not, the Write command is rejected with Unit Check
(Command Reject), Channel End, and Device End status.

If the CCW count is less than the byte count derived from the block count of the
Locate command, data transfer is terminated when the CCW count reaches zero.
However, zeros are padded until the Locate block count reaches zero. If the CCW
count is greater than the block count, the block count terminates the operation.

If command chaining is not indicated, Channel End and Device End status are
both presented after the data is successfully written on the file.

If Write and Check Data was specified in the operation byte of the Locate
command, the same as for “Write Data” is performed.

NO-OPERATION (X'03')
The No-Operation command causes no action to be performed.

SENSE (X'04')
The Sense command causes up to 32 bytes of sense data to be transferred to main
storage. These bytes identify the specific nature of an error or unusual condition
that caused the last Unit Check status to be presented.

If command chaining is not indicated at the completion of the data transfer,
Channel End and Device End status are both presented and the sense data is reset
to zero.

Note:

1. “Sense Information” on page 169 has details about the information in the sense
bytes.

2. When a Unit check occurs, z/VSE normally issues a SENSE CCW automatically
to retrieve the sense information. You can specify an address in the CCB macro

166 z/VSE V5R1 Extended Addressability

where z/VSE should pass the sense information to your program. This is
recommended, because after a SENSE CCW or after execution of any CCW
command, the sense information for that virtual disk is cleared (reset to zero).

TRANSFER IN CHANNEL
CCW Format-0 = X'X8'. CCW Format-1 = X'08'.

The Transfer In Channel (TIC) command provides the main storage address of the
next CCW in the chain. The operation is terminated with Program Check status
when:
v The address of the next CCW is not located on a doubleword boundary.
v There are two consecutive TICs in a chain.

SENSE ID (X'E4')
The Sense ID command causes the transfer of a maximum of 7 bytes of I/O
identification data to main storage. If the CCW count specifies more than 7 bytes,
only 7 bytes are transferred to the system. If the CCW count is less than 7 bytes,
only the number of bytes specified is transferred to the system.

The bytes contain the information shown in the following tables.

Bytes Contents Description

0 X'FF'

1-2 X'FBA0' Control Unit Type

3 X'00' Control Unit Model

4-5 X'FBA0' Device Type

6 X'00' Device emulated

READ DEVICE CHARACTERISTICS (X'64')
The Read Device Characteristics command transfers up to 32 bytes of device
specific data to the system. If the CCW count specifies more than 32 bytes, only 32
bytes are transferred. If the CCW count is less than 32 bytes, only the number of
bytes specified is transferred.

The following parameters are passed to the requestor.

Byte 0 X'60' Operation modes

Byte 1 X'28' Features

Byte 2 X'21' Device Class

Byte 3 X'00' Unit type

Bytes 4-5 X'200' Physical record size in bytes

Bytes 6-9 X'40' Number of addressable
blocks per cyclical group

Bytes 10-13 X'3C0' Number of addressable
blocks per access position

Bytes 14-17 X'nn' Number of addressable
blocks

Bytes 18-23 X'00' Reserved, set to zero

Appendix C. Channel Program Support for Virtual Disks 167

Bytes 24-25 X'00' Number of addressable
blocks in CE area

Bytes 26-31 X'00' Reserved, set to zero

If command chaining is not indicated at the completion of the data transfer,
Channel End and Device End status are presented.

Note: Instead of writing a channel program to retrieve the device characteristics of
a virtual disk, you also can use the GETVCE macro, as described on page 117.

Flags
Table 10 shows which flags are supported, as described in the z/Architecture
Principles of Operation manual. In the table, the following meaning applies:

CC = Chain Command flag

CD = Chain Data flag

IDA = Indirect Data flag

SK = Skip flag

SLI = Suppress Length Indication flag

PCI = Program Controlled Interruption flag

S = Suspend flag

Table 10. Supported CCW Command Flags

CCW Command CC CD IDA SK SLI PCI S

Define Extent yes yes yes ignored yes ignored ignored

Locate yes yes yes ignored yes ignored ignored

Read yes yes yes yes yes ignored ignored

Write yes yes yes ignored yes ignored ignored

No-Operation yes ignored ignored ignored ignored ignored ignored

Sense yes yes yes yes yes ignored ignored

Transfer in Channel ignored ignored ignored ignored ignored ignored ignored

Sense ID yes yes yes yes yes ignored ignored

Read Device Char. yes yes yes yes yes ignored ignored

Note:

1. In z/VSE, the IDA flag is generally not supported for virtual channel programs.
If the data area of a channel program is above 16 MB, then Format-1 CCWs
have to be used. You can specify the IDA flag in any CCW only if you specify
the REAL parameter in your EXCP macro.

2. The PCI and S flags are not supported and thus ignored.

168 z/VSE V5R1 Extended Addressability

Sense Information
In case of Unit Check, a virtual disk might return sense information containing a
fault symptom code. This sense information can be retrieved by a program if sense
is specified in the CCB macro. Sense information also is displayed by some
messages on the z/VSE system console.

Information Returned to a Sense Command
A Unit Check is raised if the virtual disk detects an unusual situation. The
following information is returned to a Sense command:

Bytes Bit Definition
0 0 = Command Reject (CR)

1-2 = not set
3 = Equipment Check
4-7 = not set

1 0 = Permanent Error (PE)
1 = Block Size Exception (BE)
2-4 = not set
5 = File Protected (FP)
6-7 = not set

2-21 not set

22-23 Fault symptom code (in hexadecimal)

24-31 not set

Note: For any type of I/O error on a page data set where the data space used for
a virtual disk resides, "permanent error" and "equipment check" are set in sense
bytes 0 and 1.

Fault Symptom Code (Bytes 22-23) of Sense Information
One of the codes below might be passed if the appropriate situation occurs.

Table 11. General Fault Symptom Codes

Sense Bytes 22-23 Sense Bytes 0-1 Explanation

Decimal
0061

Hex.
X'003D'

CR (X'8000') CCW command code rejected (not supported for a virtual disk)

Table 12. Fault Symptom Codes for DEFINE EXTENT

Sense Bytes 22-23 Sense Bytes 0-1 Explanation

Decimal
0101

Hex.
X'0065'

CR (X'8000') DEFINE EXTENT was already issued in the CCW chain.

0102 X'0066' CR CCW byte count is less than 16.

0103 X'0067' BE (X'0040') Block size is neither 0 nor 512.

0104 X'0068' CR Parameter byte 0: bits 2, 3, 4, 5, 6, 7 are not all zero.

0105 X'0069' CR Parameter byte 0: bits 0-1 are B'10', which is not allowed.

0106 X'006A' CR Parameter byte 1: not zero.

Appendix C. Channel Program Support for Virtual Disks 169

Table 12. Fault Symptom Codes for DEFINE EXTENT (continued)

Sense Bytes 22-23 Sense Bytes 0-1 Explanation

0107 X'006B' CR Parameter bytes 4-7: first block of storage space is larger than last
block of storage space.

0108 X'006C' CR First block of data space (parameter bytes 8-11) is larger than last
block of data space (parameter bytes 12-15).

0109 X'006D' CR First block of storage space (parameter bytes 4-7) plus size of data
space (parameter bytes 12-15 minus bytes 8-11) is larger than last
block of storage space.

Table 13. Fault Symptom Codes for LOCATE

Sense Bytes 22-23 Sense Bytes 0-1 Explanation

Decimal
0151

Hex.
X'0097'

CR (X'8000') No DEFINE EXTENT was previously issued.

0152 X'0098' CR CCW byte count is less than 8.

0153 X'0099' CR Parameter byte 0: bits 0, 1, 2, 3 not all zero

0154 X'009A' CR Parameter byte 0: bits 4-7 are not B'0001', B'0010', B'0101', or
B'0110'.

0155 X'009B' CR Parameter byte 0: bits 4-7 do not specify either B'0010' (read
replicate data) or B'0110' (read). This causes LOCATE to be
write-oriented. However, parameter byte 0 (bits 0-1 of the previous
DEFINE EXTENT) are set to B'01', which means “inhibit all write
operations”.

0156 X'009C' CR Parameter bytes 2-3: (block count) are zero.

0157 X'009D' CR The read replicate function was not specified (parameter byte 0,
bits 4-7), but the replication count (parameter byte 1) is not zero.

0158 X'009E' CR The read replicate function was specified (parameter byte 0, bits
4-7), and the replication count (parameter byte 1) is less than the
block count (parameter bytes 2-3)

0159 X'009F' CR The replication count is not an integral multiple of the block count.

0160 X'00A0' FP (X'0004') The first block of the data space to be processed (parameter bytes
4-7) is less than the first block of the data space specified in the
DEFINE EXTENT parameter (bytes 8-11).

0161 X'00A1' FP The first block of the data space to be processed (parameter bytes
4-7) is larger than the last block of the data space specified in the
DEFINE EXTENT parameter (bytes 12-15).

0162 X'00A2' FP The last block of the data space to be processed (first block to be
processed plus block count) is larger than the last block of the data
space specified in the DEFINE EXTENT parameter (bytes 12-15).

Table 14. Fault Symptom Codes for READ

Sense Bytes 22-23 Sense Bytes 0-1 Explanation

Decimal
0201

Hex.
X'00C9'

CR (X'8000') Not chained from LOCATE.

0202 X'00CA' CR Previous LOCATE command was not read-oriented.

0685 X'02AD' PE (X'1080') Unrecoverable I/O error on page data set in data space.

0686 X'02AE' PE Unrecoverable I/O error on page data set in data space.

0687 X'02AF' PE Unrecoverable I/O error on page data set in data space.

170 z/VSE V5R1 Extended Addressability

Table 15. Fault Symptom Codes for WRITE

Sense Bytes 22-23 Sense Bytes 0-1 Explanation

Decimal
0221

Hex.
X'00DD'

CR (X'8000') Not chained from LOCATE.

0222 X'00DE' CR Previous LOCATE command was not write-oriented.

0665 X'0299' PE (X'1080') Unrecoverable I/O error on page data set in data space.

0666 X'029A' PE Unrecoverable I/O error on page data set in data space.

0667 X'029B' PE Unrecoverable I/O error on page data set in data space.

Appendix C. Channel Program Support for Virtual Disks 171

172 z/VSE V5R1 Extended Addressability

Glossary

If you do not find the term you are looking for,
refer to the index of this book or to the IBM
Dictionary of Computing New York: McGraw Hill,
1994.

The glossary includes definitions with:
v Symbol * where there is a one-to-one copy from

the IBM Dictionary of Computing.
v Symbol (A) from the American National

Dictionary for Information Processing Systems ,
copyright 1982 by the Computer and Business
Equipment Manufacturers Association
(CBEMA). Copies may be purchased from the
American National Standards Institute, 1430
Broadway, New York, New York 10018.
Definitions are identified by the symbol (A)
after the definition.

v Symbols (I) or (T) from the ISO Vocabulary -
Information Processing and the ISO Vocabulary -
Office Machines, developed by the International
Organization for Standardization, Technical
Committee 97, Subcommittee 1. Definitions of
published segments of the vocabularies are
identified by the symbol (I) after the definition;
definitions from draft international standards,
draft proposals, and working papers in
development by the ISO/TC97/SC1 vocabulary
subcommittee are identified by the symbol (T)
after the definition, indicating final agreement
has not yet been reached among participating
members.

The following cross-references are used:
v Contrast with. This refers to a term that has an

opposed or substantively different meaning.
v Synonym for. This indicates that the term has

the same meaning as a preferred term, which is
defined in its proper place in the dictionary.

v Synonymous with. This is a backward reference
from a defined term to all other terms that
have the same meaning.

v See. This refers the reader to multiple-word
terms that have the same last word.

v See also. This refers the reader to related terms
that have a related, but not synonymous,
meaning.

When an entry is an abbreviation, the explanation
consists of the spelled-out meaning of the
abbreviation, for example:

AFP. Advanced Function Printing.

The spelled-out form is provided as a separate
entry in the glossary. In that entry, the
abbreviation is shown in parentheses after the
spelled-out form. The definition that appears with
the spelled-out entry provides the full meaning of
both the abbreviation and the spelled-out form:

Advanced Function Printing (AFP). A group of...

access list
A table in which each entry specifies an
address space or data space that a
program can reference.

access method
A program, that is, a set of commands
(macros), to define files or addresses and
to move data to and from them; for
example VSE/VSAM or VTAM®.

access register (AR)
A hardware register that a program can
use to identify an address space or a data
space. Each processor has 16 ARs,
numbered 0 through 15, which are paired
one-to-one with the 16 general-purpose
registers (GPRs).

addressing mode (AMODE)
A program attribute that refers to the
address length that a program is prepared
to handle on entry. Addresses may be
either 24 bits or 31 bits in length. In 24-bit
addressing mode, the processor treats all
virtual addresses as 24-bit values; in
31-bit addressing mode, the processor
treats all virtual addresses as 31-bit
values. Programs with an addressing
mode of ANY can receive control in either
24-bit or 31-bit addressing mode.

address space
A range of up to two gigabytes of
contiguous virtual storage addresses that
the system creates for a user. Unlike a
data space, an address space contains user
data and programs, as well as system
data and programs, some of which are
common to all address spaces.

© Copyright IBM Corp. 1993, 2013 173

Instructions execute in an address space
(not a data space). Contrast with data
space.

address space control (ASC) mode
The mode (determined by the PSW) that
tells the system where to find referenced
data. It determines how the processor
resolves address references for the
executing programs. z/VSE supports two
types of ASC modes:
1. In primary ASC mode, the data that a

program can access resides in the
program's own (primary) address
space. In this mode, the system uses
the contents of general-purpose
registers to resolve an address in the
address space; it does not use the
contents of the access registers (ARs).

2. In access register (AR) ASC mode, the
data that a program can access may
reside in an address space other than
the primary or in a data space. In this
mode, the system uses both a
general-purpose register (GPR) and
the corresponding access register
together to resolve an address in
another address space or in a data
space. Specifically, the AR contains a
value, called an ALET, that identifies
the address space or data space that
contains the data, and the GPR
contains a base address that points to
the data within the address space or
data space.

ALET (access list entry token)
A token that points to an entry in an
access list. When a program is in AR
mode and the ALET is in an access
register (with the corresponding
general-purpose register being used as
base register), the ALET identifies the
address space or data space that the
system is to reference (while the GPR
indicates the offset within the space).

AR/GPR
Access register and general-purpose
register pair.

AR (access register) mode
If a program runs in AR mode, the
system uses the access
register/general-purpose register pair to
resolve an address in an address space or

data space. Contrast with primary mode.
See also address space control (ASC) mode.

ASC mode
Address space control mode.

* assembler
A computer program that converts
assembly language instructions into object
code.

assembler language
A programming language whose
instructions are usually in one-to-one
correspondence with machine instructions
and allows to write macros.

attention routine
A routine of the system that receives
control when the operator presses the
Attention key. The routine sets up the
console for the input of a command, reads
the command, and initiates the system
service requested by the command.

* auxiliary storage
All addressable storage, other than main
storage, that can be accessed by means of
an input/ouput channel; for example
storage on magnetic tape or direct access
devices. Synonymous with external storage.

block Usually, a block consists of several records
of a file that are transmitted as a unit. But
if records are very large, a block can also
be part of a record only. With FBA disk
devices, a block is a string of 512 bytes of
data.

* catalog
1. A directory of files and libraries, with
reference to their locations. A catalog may
contain other information such as the
types of devices in which the files are
stored, passwords, blocking factors. (I) (A)
2. To store a library member such as a
phase, module, or book in a sublibrary.

* cataloged procedure
A set of control statements placed in a
library and retrievable by name.

cell pool
An area of virtual storage obtained by an
application program and managed by the
callable cell pool services. A cell pool is
located in an address space or a data
space and contains an anchor, at least one
extent, and any number of cells of the
same size.

174 z/VSE V5R1 Extended Addressability

* chaining
A logical connection of sublibraries to be
searched by the system for members of
the same type; for example, phase or
object modules.

* channel command word (CCW)
A doubleword at the location in main
storage specified by the channel address
word. One or more CCWs make up the
channel program that directs data channel
operations.

* channel program
One or more channel command words
that control a sequence of data channel
operations. Execution of this sequence is
initiated by a single start I/O (SIO)
instruction.

* compile
To translate a source program into an
executable program (an object program).
See also assembler.

compiler
A program used to compile.

component
1. Hardware or software that is part of a
computer system. 2. A functional part of a
product, identified by a component
identifier. 3. In VSE/VSAM, a named,
cataloged group of stored records, such as
the data component or index component
of a key-sequenced file or alternate index.

* configuration
The devices and programs that make up a
system, subsystem, or network.

control block
An area within a program or a routine
defined for the purpose of storing and
maintaining control information.

* data management
A major function of the operating system.
It involves organizing, storing, locating,
and retrieving data.

data set
See file.

data space
A range of up to two gigabytes of
contiguous virtual storage addresses that
a program can directly manipulate
through z/Architecture instructions.
Unlike an address space, a data space can
hold only user data; it does not contain

shared areas, system data or programs.
Instructions do not execute in a data
space, although a program can reside in a
data space as non-executable code.
Contrast with address space.

default value
A value assumed by the program when
no value has been specified by the user.

* device address
1. The identification of an input/output
device by its channel and unit number. 2.
In data communication, the identification
of any device to which data can be sent
or from which data can be received.

* device class
The generic name for a group of device
types; for example, all display stations
belong to the same device class.

* device type code
The four- or five-digit code to be used for
defining an I/O device to a computer
system.

* dialog
1. In an interactive system, a series of
related inquiries and responses similar to
a conversation between two people. 2. For
z/VSE, a set of panels that can be used to
complete a specific task; for example,
defining a file.

directory
1. A table of identifiers and references to
the corresponding items of data. (I) (A) 2.
In VSE, specifically, the index for the
program libraries. See also library directory
and sublibrary directory.

DU-AL (dispatchable unit - access list)
The access list that is associated with a
z/VSE main task or subtask. A program
uses the DU-AL associated with its task
and the PASN-AL associated with its
partition. See also PASN-AL.

dynamic partition
A partition created and activated on an
'as needed' basis that does not use fixed
static allocations. After processing, the
occupied space is released. Contrast with
static partition.

emulation
The use of programming techniques and
special machine features that permit a
computer system to execute programs

Glossary 175

written for another system or for the use
of I/O devices different from those that
are available.

extended addressability
1. See 31-bit addressing. 2. The ability of a
program to use virtual storage that is
outside the address space in which the
program is running. Generally,
instructions and data reside in a single
address space - the primary address
space. However, a program can have data
in address spaces other than the primary
or in data spaces. (The instructions
remain in the primary address space,
whilst the data can reside in another
address space or in a data space.) To
access data in other address spaces, a
program must use access registers (ARs)
and execute in access register mode (AR
mode).

extent Continuous space on a disk or diskette
occupied by or reserved for a particular
file or VSAM data space.

external storage
Storage that is not part of the processor.

FBA disk device
Fixed-block architecture disk device. A
block contains 512 bytes of data.

* file A named set of records stored or
processed as a unit. (T) Synonymous with
data set.

* generate
To produce a computer program by
selecting subsets of skeletal code under
the control of parameters. (A)

High Level Assembler for VSE
A programming language providing
enhanced assembler programming
support. It is a base program of z/VSE.

* initial program load (IPL)
The process of loading system programs
and preparing the system to run jobs.

* input/output control system (IOCS)
A group of routines provided by IBM for
handling transfer of data between main
storage and auxiliary storage devices.

interactive
A characteristic of a program or system
that alternately accepts input and then
responds. An interactive system is

conversational, that is, a continuous
dialog exists between user and system.
Contrast with batch.

interface
A shared boundary between two
hardware or software units, defined by
common functional or physical
characteristics. It might be a hardware
component or a portion of storage or
registers accessed by several computer
programs.

job step
One of a group of related programs
complete with the JCL statements
necessary for a particular run. Every job
step is identified in the job stream by an
EXEC statement under one JOB statement
for the whole job.

* librarian
The set of programs that maintains,
services, and organizes the system and
private libraries.

library
See VSE library and VSE/ICCF library.

* library directory
The index that enables the system to
locate a certain sublibrary of the accessed
library.

* library member
The smallest unit of data that can be
stored in and retrieved from a sublibrary.

* linkage editor
A program used to create a phase
(executable code) from one or more
independently translated object modules,
from one or more existing phases, or from
both. In creating the phase, the linkage
editor resolves cross references among the
modules and phases available as input.
The program can catalog the newly built
phases.

linkage stack
An area of protected storage that the
system gives to a program to save status
information in case of a branch or a
program call.

link-edit
To create a loadable computer program by
having the linkage editor process
compiled (assembled) source programs.

176 z/VSE V5R1 Extended Addressability

* lock file
In a shared disk environment under VSE,
a system file on disk used by the sharing
systems to control their access to shared
data.

logical record
A user record, normally pertaining to a
single subject and processed by data
management as a unit. Contrast with
physical record which may be larger or
smaller.

* main task
The main program within a partition in a
multiprogramming environment.

* megabyte (MB)
1 024 KB or 1 048 576 bytes.

* member
The smallest unit of data that can be
stored in and retrieved from a sublibrary.
See also library member.

message
1. In VSE, a communication sent from a
program to the operator or user. It can
appear on a console, a display terminal or
on a printout. 2. In telecommunication, a
logical set of data being transmitted from
one node to another.

* module
A program unit that is discrete and
identifiable with respect to compiling,
combining with other units, and loading;
for example, the input to, or output from
an assembler, compiler, linkage editor, or
executive routine. (A)

MVS/ESA (Multiple Virtual Storage/Enterprise
Systems Architecture)

An IBM program providing operating
system support.

object module (program)
A program unit that is the output of an
assembler or compiler and is input to a
linkage editor.

page data set (PDS)
One or more extents of disk storage in
which pages are stored when they are not
needed in processor storage.

page frame
An area of processor storage that can
contain a page.

partition
A division of the virtual address area
available for running programs. See also
dynamic partition, static partition.

PASN-AL (primary address space number -
access list)

The access list that is associated with a
partition. A program uses the PASN-AL
associated with its partition and the
DU-AL associated with its task (work
unit). See also DU-AL.

Each partition has its own unique
PASN-AL. All programs running in this
partition can access data spaces through
the PASN-AL. Thus a program can create
a data space, add an entry for it in the
PASN-AL, and obtain the ALET that
indexes the entry. By passing the ALET to
other programs in the partition, the
program can share the data space with
other programs running in the same
partition.

* physical record
The amount of data transferred to or from
auxiliary storage. Synonymous with block.

primary address space
In z/VSE, the address space where a
partition is currently executed. A program
in primary mode fetches data from the
primary address space.

primary mode
If a program runs in primary mode, the
system resolves all addresses within the
current (primary) address space. Contrast
with AR (access register) mode. See also
address space control (ASC) mode.

priority
A rank assigned to a partition or a task
that determines its precedence in
receiving system resources.

private area
The part of an address space that is
available for the allocation of private
partitions. Its maximum size can be
defined during IPL. Contrast with shared
area.

procedure
See cataloged procedure.

* processing
The performance of logical operations and
calculations on data, including the

Glossary 177

temporary retention of data in processor
storage while this data is being operated
upon.

* processor
In a computer, a functional unit that
interprets and executes instructions. A
processor consists of at least an
instruction control unit and an arithmetic
and logic unit. (T)

processor storage
The storage contained in one or more
processors and available for running
machine instructions. Synonymous with
real storage.

real address
The address of a location in processor
storage.

real storage
See processor storage.

record A set of related data or words, treated as
a unit. See logical record, physical record.

residency mode (RMODE)
A program attribute that refers to the
location where a program is expected to
reside in virtual storage. RMODE 24
indicates that the program must reside in
the 24-bit addressable area (below 16
megabytes), RMODE ANY indicates that
the program can reside anywhere in 31-bit
addressable storage (above or below 16
megabytes).

* restore
To write back onto disk data that was
previously written from disk onto an
intermediate storage medium such as
tape.

* routine
A program, or part of a program, that
may have some general or frequent use.
(T)

shared area
An area of storage that is common to all
address spaces in the system. z/VSE has
two shared areas:
1. The shared area (24 bit) is allocated at

the start of the address space and
contains the supervisor, the SVA (for
system programs and the system
GETVIS area), and the shared
partitions.

2. The shared area (31 bit) is allocated at
the end of the address space and
contains the SVA (31 bit) for system
programs and the system GETVIS
area.

* shared virtual area (SVA)
A high address area that contains a
system directory list (SDL) of frequently
used phases, resident programs that can
be shared between partitions, and an area
for system support.

static partition
A partition, defined at IPL time and
occupying a defined amount of virtual
storage that remains constant. Contrast
with dynamic partition.

STOKEN (space token)
An eight-byte identifier of a data space. It
is generated by the system when you
create a data space.

sublibrary
A subdivision of a library. Members can
only be accessed in a sublibrary.

sublibrary directory
An index for the system to locate a
member in the accessed sublibrary.

* subsystem
A secondary or subordinate system,
usually capable of operating
independently of, or asynchronously with,
a controlling system. (T)

subtask
A task that is initiated by the main task or
by another subtask.

* supervisor
The part of a control program that
coordinates the use of resources and
maintains the flow of processor
operations.

supervisor mode
See ESA mode.

* system console
A console, usually equipped with a
keyboard and display screen for control
and communication with the system.

system directory list (SDL)
A list containing directory entries of
frequently-used phases and of all phases
resident in the SVA. The list resides in the
SVA.

178 z/VSE V5R1 Extended Addressability

* throughput
1. A measure of the amount of work
performed by a computer system over a
given period of time, for example,
number of jobs per day. (I) (A) 2. In data
communication, the total traffic between
stations per unit of time.

* user exit
A programming service provided by an
IBM software product that may be
requested during the execution of an
application program for the service of
transferring control back to the
application program upon the later
occurrence of a user-specified event.

virtual address
An address that refers to a location in
virtual storage. It is translated by the
system to a processor storage address
when the information stored at the virtual
address is to be used.

virtual disk
A range of up to two gigabytes of
contiguous virtual storage addresses that
a program can use as workspace.
Although the virtual disk exists in
storage, it appears as a real FBA disk
device to the user program. All I/O
operations directed to a virtual disk are
intercepted and the data to be written to,
or read from, the disk is moved to or
from a data space.

Like a data space, a virtual disk can hold
only user data; it does not contain shared
areas, system data or programs. Unlike an
address space or a data space, data is not
directly addressable on a virtual disk. To
manipulate data on a virtual disk, the
program has to perform I/O operations.

virtual storage
Addressable space image for the user
from which instructions and data are
mapped into processor (real) storage
locations.

volume
A data carrier that is mounted and
demounted as a unit, for example, a reel
of tape or a disk pack. (I) Some disk units
have no demountable packs. In that case,
a volume is the portion available to one
read/write mechanism.

volume ID
The volume serial number, which is a
number in a volume label assigned when
a volume is prepared for use by the
system.

VSE (Virtual Storage Extended)
A system that consists of a basic
operating system and any IBM supplied
and user-written programs required to
meet the data processing needs of a user.
Its current version is called z/VSE.

VSE/ESA (VSE/Enterprise Systems Architecture)
The most advanced VSE system currently
available.

VSE/ICCF library
A file composed of smaller files (libraries)
including system and user data which can
be accessed under the control of
VSE/ICCF.

VSE library
A collection of programs in various forms
and storage dumps stored on disk. The
form of a program is indicated by its
member type such as source code, object
module, phase, or procedure. A VSE
library consists of at least one sublibrary
which can contain any type of member.

VSE/VSAM (VSE/Virtual Storage Access
Method)

An IBM access method for direct or
sequential processing of fixed and
variable length records on disk devices.

z/Architecture
An IBM architecture for mainframe
computers and peripherals. The zSeries®

family of servers uses the z/Architecture.
It is the successor to the S/390® and 9672
family of servers.

z/OS® An IBM mainframe operating system that
uses 64-bit real storage.

31-bit addressing
Provides addressability for address spaces
of up to 2 gigabytes (GB). The maximum
amount of addressable storage in
previous systems was 16 megabytes (MB).

Glossary 179

180 z/VSE V5R1 Extended Addressability

Index

Numerics
24-bit addressing 3
31-bit addressing 3

31-bit programs for a mixed z/VSE
environment 13

AMODE and RMODE combinations at
program-run time 4

capping, linkage by using a prologue
and epilogue 35

changing the AMODE 6
converting a program to use 31-bit

addresses 10
determining the modes of a phase 18
establishing program linkage 25
example of changing the AMODE 22
example of I/O processing 37
example of using a linkage assist

routines 31
EXCP macro 37
High Level Assembler support of

AMODE and RMODE 18
I/O processing 37
librarian support 140
linkage assist routines 12, 31
linkage editor support 135
moving a program above 16 MB 10
new programs above 16 MB 13
new programs below 16 MB 13
obtaining storage above 16 MB 12
planning for 31-bit programs 9
pointer-defined linkage 29
program attributes AMODE and

RMODE 3
program where to reside in virtual

storage 5
programs that must reside below

16 MB 5
PSW AMODE bit 6
real storage considerations 39
rules and conventions 5
SET SDL processing 141
specifying AMODE and RMODE 4
STXIT routines 12
system services and 31-bit

addressing 8
techniques for passing control 10
using the BASSM and BSM

instructions to establish linkage 27
writing new programs that use 31-bit

addresses 12
64-bit address space

overview 44
using assembler instructions

binary operations 59
64-bit addressing

CCB macro 155
I/O processing 58

64-bit addressing mode 60
64-bit addressing mode (AMODE)

modal instructions 61
AMODE 24 61

64-bit addressing mode (AMODE)
(continued)

modal instructions (continued)
AMODE 31 61
AMODE 64 61

non-modal instructions 61
64-bit buffers

I/O processing 58
64-bit instructions

pitfalls to avoid 63

A
access list

adding an entry 81
adding entry for data space 82
definition of 71
description of 77
illustration of 91
relationship with z/VSE task 78
size of 78
types of 78, 91

access list entry
adding 77, 81
deleting 88
limits on 110

access register (AR) ASC mode 68
accessibility xiii
accessing data in a data space

example of rules 93
rules for 93, 96

ADD parameter on ALESERV 80
ADD statements for virtual disks 113,

114
adding an entry to an access list

description of 81
example of 82, 83

adding an entry to the DU-AL
rules for data spaces 96

adding entry to an access list
rules for data spaces 96

adding entry to the DU-AL
example of 83, 105
illustration of 83

adding entry to the PASN-AL
example of 83
illustration of 83
rules for data spaces 96

ADDPASN parameter on ALESERV 80
address space

establishing access through ARs 77
address space control (ASC) mode 68

description of 71
address/data spaces

definition of 71
adjusting VSIZE parameter for virtual

disks 113
AL parameter on ALESERV 81
ALCOPY parameter on ATTACH

macro 109

ALESERV
ADD request

process for SCOPE=COMMON
data spaces 107

ALESERV macro 156
ADD request

example of 82, 83, 105, 109
use of 80, 81, 83

ADDPASN request
use of 80

DELETE request
example of 88, 105
use of 80

EXTRACT request
use of 80, 83

SEARCH request
use of 80, 81

summary of functions 80
ALET

definition of 71
example of loading a zero into an

AR 80
example of loading into AR 77
illustration of 71, 91
obtaining 83
passing 83
passing across address spaces 83
reuse of 89, 108
rules for passing 83
special 77

ALET parameter on ALESERV 81
ALET-qualified addresses

definition of 74
AMODE (addressing mode) 3

assigned by the linkage editor 135
changing it 6
compared to ASC mode 71
example of changing 22
example of changing AMODE with

AMODESW macro 22
general considerations 3
high-order byte in address 4
introducing 3
programming aspects 4
PSW AMODE bit 6
specifying it 4
types of 3
valid combinations with RMODE 17
values 3
virtual address interpretation 4

AMODE/RMODE
combinations at program-run time 4
combinations from ESD 138
combinations in MODE control

statement 137
combinations in PARM field 138
determining the modes of a phase 18
linkage editor support of 20
specifying in ESD entries 20
specifying in MODE control

statement 20

© Copyright IBM Corp. 1993, 2013 181

AMODE/RMODE (continued)
specifying in PARM field of EXEC

LNKEDT statement 20
valid combinations 17
valid combinations at execution

time 18
valid combinations for linkage

editor 20
AMODESW macro 8, 147

example of changing AMODE 22
anchor of a cell pool 125
AR instructions

summary of 76
AR mode

coding instructions in 75
compared to primary mode 71, 74
definition of 71
description of 68, 71
importance of comma 75
importance of the contents of ARs 80
rules for coding in 75
switching to 71

ARs
advantage of 71
contents of 71
description of 71
example of loading ALET into 77
example of loading an ALET of zero

into 80
rules for coding in 75
using for data reference 71
why a program would use 71

ASC mode
access register (AR) ASC mode 68
compared to addressing mode 71
description of 68
primary ASC mode 68
switching 71

assembler instructions
modifying ARs 76

assigning
ownership of data space 92

ATTACH ALCOPY macro 157
ATTACH macro 150

example of passing DU-AL to
subtask 109

used to pass DU-AL to subtask 109
attaching a subtask and passing a

DU-AL 109
authority

to set up addressability to data
spaces 81

B
BAKR instruction (linkage stack) 122
BAL instruction 6
BALR instruction 6
BAS instruction 7
basic concepts

of extended addressability 68
BASR instruction 7
BASSM instruction 7
bimodal operation 4
BLOCKS parameter on DSPSERV 110
BSM instruction 7

C
CALL macro 8, 127
callable cell pool services 125
capping, linkage by using a prologue and

epilogue 35
CCB macro 152

Format-2 IDAW 155
CCW codes for virtual disks 116
CCW formats 152
CDDELETE macro 149
CDLOAD macro 149

obtaining a pointer defined value 31
cell pool services 125

anchor 125
CALL macro 127
coding example 130
CSRPxxx service 128
extent 125
link-editing programs 127
storage considerations 126

changing
AMODE 6
AMODE via AMODESW macro 22

channel program support for virtual
disks

DEFINE EXTENT command 162
fault symptom codes for SENSE

information 169
flags supported 168
information returned to a SENSE

command 169
LOCATE command 164
NO-OPERATION command 166
overview 161
READ command 165
READ DEVICE CHARACTERISTICS

command 167
restrictions 161, 168
SENSE command 166
SENSE ID command 167
supported commands 161
TRANSFER IN CHANNEL

command 167
valid CCW formats 161
WRITE command 166

channel programs for virtual disks 161
characteristics of access lists 78
choosing the name of a data space 97
coding instructions in AR mode 75
comma

careful use of in AR mode 75
commands

ADD 113
MAP 159
QUERY 159
QUERY DSPACE 116
SYSDEF 113, 158
VDISK 113
VOLUME 115

comparison of a PASN-AL and a
DU-AL 79

contents of an AR 71
conventions for 31-bit addressing 5
CPYA instruction

description of 76
creating

cell pool 128

creating (continued)
data spaces 91, 97
virtual disks 113

creating data spaces 97
example of 82, 99
requesting amount of storage 100
requesting size of 100
rules for 93, 96

CSRPxxx cell pool service 128
current size of data space 97

D
data in memory, use of virtual disks 113
data reference

using ARs 71
data space storage

extending 96
managing 100
releasing 96, 110
rules for releasing 110
serializing use of 101

data spaces
ALESERV macro, overview 156
application design 67
AR mode and data spaces 69
ATTACH ALCOPY macro 157
choosing the name for 97
compared to address spaces 67
creating 91, 97
default size of 100
deleting 93, 105
description of 69
DSPSERV macro, overview 157
dumps of storage 111
efficient use of 110
establishing access through ARs 77
example of creating 82
example of creating, using, deleting

data spaces 105
example of moving data into and out

of 102
example of using 69
extending current size of 93, 104
introducing 67
managing storage 100
MAP command 159
ownership of 92
QUERY command 159
referencing data in 91
releasing storage in 110
rules for creating, deleting, and

using 93
SDUMPX macro 158
SETPFA macro 158
shared between two address

spaces 83
solutions to programming

problems 67
storage available for 100
summary of rules 96
SYSDEF command, overview 158
SYSSTATE macro, overview 158

default
number of data spaces 100
size of data spaces 100
storage for data spaces 100

182 z/VSE V5R1 Extended Addressability

DEFINE EXTENT command for virtual
disks 162

defining
cell pool 128
data spaces 91
virtual disks 114
virtual disks via the Interactive

Interface 115
DELETE parameter on ALESERV 80
deleting

access list entry 88
example of 88, 105

data space 100
description of 105
example of 88, 105
rules for 93, 96

deleting virtual disks 116
DETACH AFFINTY=SYSTEM

shared memory object (SMO) 55
DETACH macro 151
DETACH processing, and user

tokens 56
determining AMODE and RMODE of a

phase 18
disability xiii
displaying information for virtual

disks 115
DSPSERV macro 157

CREATE request
example of 82, 99, 105, 109
use of 109

DELETE request
example of 88, 105

EXTEND request
example of 104

RELEASE request
use of 110

DU-AL
characteristics of 78
compared to PASN-AL 78, 79
definition of 78, 91
description of 78
illustration of accessing data space

through 93
illustration of PASN-AL and

DU-AL 79
dual programs 14
DUMP command used to dump data

space storage 111
dumping data space storage 111

E
EAR instruction

description of 76
ENQ/DEQ macros 151
EREG instruction (linkage stack) 123
ESD entries, AMODE/RMODE

specification in 20
ESTA instruction (linkage stack) 123
establishing

access for ARs 77
establishing addressability

example of 83
to a data space 83

definition of 71, 77, 91
example of 100, 105

establishing addressability (continued)
to a data space (continued)

procedures for 100
rules for 93, 96

to an address space
definition of 71, 77

EXCP macro 37
EXIT macro (linkage stack

restrictions) 123
EXTEND parameter on DSPSERV 104
extending current size of data space

example of 104
procedure for 104
rules for 93, 96

extent of a cell pool 125
EXTRACT parameter on ALESERV 80

F
fault symptom codes for SENSE

information (virtual disks) 169
FBAV parameter of ADD statement 114
FBAV parameter of ASSGN and CLOSE

statements 114
FCEPGOUT macro 149
FETCH macro 149
finding out the AMODE and RMODE of

a phase 18
flags supported for virtual disks 168
FREEVIS macro 148

G
GENL macro 149
GETSHARED request 52
GETSTOR request 48
getting addressability through DU-AL

example of 83
illustration of 83

getting addressability through PASN-AL
example of 83
illustration of 83

GETVCE macro, getting information
about virtual disks 117

GETVIS macro 148
GPR/AR

definition of 71
illustration of 71

H
High Level Assembler 1, 41, 65

AMODE 18
AMODE and RMODE assembler

instructions 19
AMODE and RMODE defaults 19
support of AMODE and RMODE 18

high-order bit in address 4
high-order byte in address 4

I
I/O processing in 31-bit mode 37

CCB macro 152
CCW formats 152

I/O processing in 31-bit mode (continued)
example of I/O processing 37
EXCP appendage routines 37
EXCP macro 37

I/O processing in 64-bit mode
CCB macro 155

I/O processing using 64-bit buffers 58
EXCP appendage routines 58

IARV64 macro services
program rules for 46

IARV64 services
use 46

ICM instruction 12
IDAW (Format-2)

CCB macro 155
information returned to a SENSE

command for virtual disks 169
initial size of data space 97
installation limits

on amount of storage for data
spaces 97, 100

on size of data spaces 97, 100
instructions

BAL 6
BALR 6
BAS 7
BASR 7
BASSM 7, 28
BSM 7, 28
CPYA 76
EAR 76
ICM 12
LA 7
LAE 76
LAM 76
LRA 7
mode sensitive 6
SAR 76
SPM 10
SR 12
STAM 76

instructions used to manipulate ARs 76

L
LA instruction 7
LAE instruction

description of 76
LAM instruction

description of 76
example of 77, 82, 105

LF64ONLY
definition 45

LFAREA
definition 45

librarian 140
support for 31-bit addressing 140

limiting use of data space 100
linkage assist routines 12, 31
linkage conventions 63
linkage editor 135

AMODE/RMODE combinations from
ESD 138

AMODE/RMODE combinations in
MODE control statement 137

AMODE/RMODE combinations in
PARM field 138

Index 183

linkage editor (continued)
AMODE/RMODE hierarchy 137
assigning the AMODE 135
assigning the RMODE 136
building overlay programs 22
ESD data 135
ESD entries, AMODE/RMODE

specification in 20
handling of invalid AMODE/RMODE

combinations 139
maximum size of a phase 135
MODE control statement 135
MODE control statement,

AMODE/RMODE specification
in 20

PARM field of EXEC LNKEDT
statement 135

PARM field of EXEC LNKEDT
statement, AMODE/RMODE
specification in 20

RMODE processing 22
specifying AMODE/RMODE 20
support for 31-bit addressing 135
support of AMODE and RMODE 20
valid AMODE/RMODE

combinations 20
linkage stack 121

BAKR instruction 122
entry 121
EREG instruction 123
ESTA instruction 123
EXIT macro (linkage stack

restrictions) 123
MSTA instruction 123
PC instruction 122
PR instruction 122
STXIT macro (linkage stack

restrictions) 123
linkage stack entry 121
load instruction in AR mode

example of 75
LOAD macro 150

obtaining a pointer defined value 31
LOCATE command for virtual disks 164
LRA instruction 7

M
macro expansion 14
macro library, downward level 13
macros

ALESERV 156
AMODESW 8, 147
ATTACH 150
ATTACH ALCOPY 157
CALL 8
CCB 152, 155
CDDELETE 149
CDLOAD 149
DEQ 151
DETACH 151
DSPSERV 157
ENQ 151
EXCP 37
FCEPGOUT 149
FETCH 149
FREEVIS 148

macros (continued)
GENL 149
GETVCE 117
GETVIS 148
LOAD 150
mode dependencies 143
page management macros 149
PAGEIN 149
PFIX/PFREE 149
POST 151
RELPAG 149
SDUMPX 158
SETPFA 158
SPLEVEL 153
STXIT 154
SYSSTATE 158
WAIT 151
WAITM 152

macros and their mode
dependencies 143

macros for data spaces
ALESERV 156
ATTACH ALCOPY 157
DSPSERV 157
SDUMPX 158
SETPFA 158
SYSSTATE 158

managing data space storage 100
manipulating data in a data space 105
MAP command 159
mapping macros 14
maximum size of data space 97
MEMLIMIT

definition 45
memory object

dumping 56
protecting storage 56
using storage in 56

memory objects
above the bar 45
and IARV64 macro services 46
diagram of how used 45
I/O processing 58
overview 44
prerequisites for using 46
types of 45

mode
AR 71
ASC 71
primary 71

mode sensitive instructions 6
Moving a Program above 16 MB 10
MSTA instruction (linkage stack) 123
MVC instruction

example in AR mode 74
example in primary mode 74

N
NAME parameter on DSPSERV 97
naming a data space 97
NO-OPERATION command for virtual

disks 166

O
obtaining and passing ALETs and

STOKENs 83
owner of data space, definition of 92
ownership of data space

assigning to another task 92
definition of 92

P
page management macros 149
PAGEIN macro 149
PARM field of EXEC LNKEDT statement,

AMODE/RMODE specification in 20
PASN-AL

characteristics of 78
compared to DU-AL 78, 79
definition of 78, 91
description of 78
illustration of accessing data space

through 93
illustration of PASN-AL and

DU-AL 79
passing ALETs

across address spaces
illustration of 83
rules for 83

to other programs
rules for 83

passing DU-AL to subtask, example
of 109

passing STOKENs to another program
illustration of 83

PC instruction (linkage stack) 122
PFIX/PFREE macro 149
phase, determining AMODE and

RMODE 18
planning for

31-bit programs 9
converting a program to use 31-bit

addresses 10
data spaces 65
virtual disks 65, 113
writing new programs that use 31-bit

addresses 12
pointer-defined linkage 29
pointer-defined linkage, example 30
POST macro 151
PR instruction (linkage stack) 122
primary ASC mode 68
primary mode

compared to AR mode 74
compared with AR mode 71
definition of 71
description of 68, 71
switching to 71

private memory objects (PMOs) 45
creating 48

example 49
creating, using and freeing a

example 51
fixing pages

example 50
fixing/unfixing the pages of 49
freeing 50

example 51

184 z/VSE V5R1 Extended Addressability

private memory objects (PMOs)
(continued)

GETSTOR request 48
ownership 49

program attributes AMODE and
RMODE 3

program linkage in 31-bit
environment 25

capping, linkage by using a prologue
and epilogue 35

example of pointer-defined
linkage 30

example of using a linkage assist
routines 31

example of using the BASSM and
BSM instructions 28

linkage assist routines 31
using an ADCON to obtain a

pointer-defined value 30
using pointer-defined linkage 29
using the BASSM and BSM

instructions 27
program status word (PSW) 71
programming considerations 31-bit

addressing
31-bit programs for a mixed z/VSE

environment 13
capping, linkage by using a prologue

and epilogue 35
CCW formats 152
changing the AMODE 6
converting a program to use 31-bit

addresses 10
example of I/O processing 37
example of using a linkage assist

routines 31
High Level Assembler support of

AMODE and RMODE 18
I/O processing 37
linkage assist routines 31
moving a program above 16 MB 10
new programs above 16 MB 13
new programs below 16 MB 13
obtaining storage above 16 MB 12
program linkage in 31-bit

environment 25
programs that must reside below

16 MB 5
PSW AMODE bit 6
real storage considerations 39
rules and conventions for 31-bit

addressing 5
system services and 31-bit

addressing 8
using pointer-defined linkage 29
using the BASSM and BSM

instructions to establish linkage 27
writing new programs that use 31-bit

addresses 12
programming notes

for using SCOPE=COMMON data
spaces 108

programs above 16 MB 13
programs below 16 MB 13
programs that must reside below

16 MB 5
PSW (program status word) 71

PSW AMODE bit 6

Q
QUERY command 159
QUERY DSPACE command 116

R
READ command for virtual disks 165
READ DEVICE CHARACTERISTICS

command for virtual disks 167
real storage considerations (31-bit),

programs above 16 MB 39
redefining virtual disks 116
relationship between data space and

owner 92
releasing

data space storage 96, 100, 110
rules for 110

RELPAG macro 149
remove

entry from access list 88
RMODE (residency mode) 4

assigned by the linkage editor 136
general considerations 3
introducing 3
processing by the linkage editor 22
program where to reside in virtual

storage 5
programming aspects 5
specifying it 4
types of 3
valid combinations with AMODE 17
values 3

rules for
passing ALETs 83

to other programs 83
rules for 31-bit addressing 5
rules for creating, deleting, and using

data spaces 96

S
SAC instruction

example of 82
SAM24 instruction 6, 7, 22
SAM31 instruction 6, 7, 22
SAR instruction

description of 76
SCOPE parameter on DSPSERV 92, 97
SCOPE=ALL data space

definition of 92
illustration of accessing 93
use of 92

SCOPE=COMMON data space
compared with SVA 107
creating and using 107
definition of 92
illustration of using 107
setting limits on 108
use of 92, 107

SCOPE=SINGLE data space
definition of 92
illustration of accessing 93
use of 92

SDUMPX macro 158
SEARCH parameter on ALESERV 80
SENSE command for virtual disks 166
SENSE ID command for virtual

disks 167
sense information for virtual disks 169
serialization of

shared memory objects (SMOs) 55
serializing use of

data space storage 101
set

ASC mode through SAC
instruction 71

SET SDL processing 141
SET symbol 14
set up

addressability to a data space 77, 81,
83, 91

example of 82
addressability to an address space 77

SETPFA macro 158
shared area data space 92
shared memory objects (SMOs) 45

accessing
example 54

creating/accessing 52
creating/using

example 53
DETACH AFFINTY=SYSTEM 55
freeing

example 54
GETSHARED request 52
overview 52
ownership 54
serialization of 55
SHAREMEMOBJ request 53
system affinity 54
system interest 54

SHAREMEMOBJ request 53
sharing data spaces

between two address spaces 83
between two problem state

programs 109
SHRLIMIT

definition 45
size of data space, specifying 97
special ALETs

adding entry to the DU-AL 77
specifying AMODE and RMODE 4
SPLEVEL macro 14, 153

example of using the macro 14
SET symbol 14

SPM instruction 10
SR instruction 12
STAM instruction

description of 76
START parameter on DSPSERV 110
STOKEN

definition of 77, 91
illustration of passing to another

program 83
obtaining from DSPSERV 83
obtaining from other programs 83
passing to another program 83
returned by DSPSERV 91

STOKEN parameter on ALESERV 81
STOKEN parameter on DSPSERV 81, 97

Index 185

storage available for data spaces 100
storing data in memory 113
STXIT macro 154
STXIT macro (linkage stack

restrictions) 123
STXIT routines 12
supported CCW codes for virtual

disks 116
SYSDEF command 158
SYSDEF command for allocating space

for data spaces 113, 114
SYSDUMPX macro used to dump data

space storage 111
SYSSTATE macro 158
system affinity, for an SMO 54
system interest, for an SMO 54

T
TRANSFER IN CHANNEL command for

virtual disks 167
types of AMODEs 3
types of RMODEs 3

U
user tokens, DETACH processing 56
using a data space

example of 69
using an entry to an access list

example of 82
using data spaces efficiently 110
using the AMODE and RMODE

attribute 17

V
values for AMODE 3
values for RMODE 3
VDISK command for defining virtual

disks 113, 114
virtual disks 111

adjusting VSIZE parameter 113
allocating space for data spaces 113,

114
based on support for data spaces 113
channel program support for virtual

disks 161
creating 113
defining via the Interactive

Interface 115
deleting 116
FBA disk emulation 113
FBAV parameter 114
getting information about 115, 117
planning for 113
redefining 116
supported CCW codes 116
uses 113
VDISK command 114

virtual storage
above the bar 57

VOLUME command, displaying
information about virtual disks 115

VSIZE, adjusting for virtual disks 113

W
WAIT macro 151
WAITM macro 152
work unit

definition of 77
WRITE command for virtual disks 166

Z
z/Architecture

setting and checking the addressing
mode 62

z/Architecture instructions
using the 64-bit GPR 59

z/VSE task
relationship to access list 78

186 z/VSE V5R1 Extended Addressability

Readers’ Comments — We'd Like to Hear from You

IBM z/VSE
Extended Addressability
Version 5 Release 1

Publication No. SC34-2630-01

We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,
organization, subject matter, or completeness of this book. The comments you send should pertain to only the
information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your
IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use
the personal information that you supply to contact you about the issues that you state on this form.

Comments:

Thank you for your support.

Submit your comments using one of these channels:
v Send your comments to the address on the reverse side of this form.
v Send a fax to the following number: +49-7031-163456
v Send your comments via email to: s390id@de.ibm.com
v Send a note from the web page: http://www.ibm.com/systems/z/os/zvse/

If you would like a response from IBM, please fill in the following information:

Name Address

Company or Organization

Phone No. Email address

Readers’ Comments — We'd Like to Hear from You
SC34-2630-01

SC34-2630-01

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Deutschland Research & Development GmbH
Department 3248
Schoenaicher Strasse 220
71032 Boeblingen
Germany

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Product Number: 5609-ZV5

Printed in USA

SC34-2630-01

	Contents
	Figures
	Tables
	Notices
	Trademarks

	Accessibility
	Using Assistive Technologies
	Documentation Format

	About This Book
	Who Should Use This Book
	How to Use This Book
	Where to Find More Information

	Summary of Changes
	Part 1. 31-Bit Addressing Support
	Chapter 1. Introducing 24-Bit / 31-Bit AMODE and RMODE
	General Considerations for AMODE and RMODE
	AMODE (Addressing Mode)
	RMODE (Residency Mode)
	Specifying AMODE and RMODE
	AMODE and RMODE Combinations at Program-Run Time

	Programming Aspects
	AMODE
	RMODE
	Programs that Must Reside Below 16 MB
	Rules and Conventions for 31-Bit Addressing
	Changing the AMODE
	Mode Sensitive Instructions
	BAL and BALR
	LA
	LRA

	AMODE Processing Capabilities
	BASSM and BSM
	BAS and BASR
	SAM24 and SAM31
	AMODESW Macro
	Note on the CALL macro:

	z/VSE System Services and 31-Bit Addressing

	Chapter 2. Planning for 31-Bit Programs
	Converting Existing Programs
	Converting a Program to Use 31-Bit Addresses
	Moving a Program above 16 MB

	Writing New Programs that Use 31-Bit Addresses
	New Programs below 16 MB
	New Programs above 16 MB
	Writing 31-Bit Programs for a Mixed z/VSE Environment
	Dual Programs
	Using the SPLEVEL Macro

	Chapter 3. Using AMODE and RMODE to Specify 24-Bit / 31-Bit Addressing Modes
	AMODE and RMODE Combinations
	AMODE and RMODE Combinations at Execution Time
	Determining the AMODE and RMODE of a Phase

	High Level Assembler Support of AMODE and RMODE
	AMODE and RMODE in the Object Module
	AMODE and RMODE Assembler Instructions

	Linkage Editor Support of AMODE and RMODE
	Linkage Editor RMODE Processing

	How to Change the AMODE

	Chapter 4. Establishing Linkage in a 31-Bit Addressing Environment
	Using the BASSM and BSM Instructions
	Calling and Returning with BASSM and BSM

	Using Pointer-Defined Linkage
	Using an ADCON to Obtain a Pointer-Defined Value
	Using the CDLOAD/LOAD Macro to Obtain a Pointer-Defined Value

	Linkage Assist Routines
	Example of Using a Linkage Assist Routine

	Using Capping - Linkage Using a Prologue and Epilogue

	Chapter 5. I/O Processing in a 31-Bit Environment
	Performing I/O in 31-Bit Mode
	Using the EXCP Macro for I/O to Virtual Storage Above 16 MB
	Example of Performing I/O While Residing Above 16 MB

	Chapter 6. Real Storage Considerations for User Programs (31-Bit Addressing)
	Part 2. 64-Bit Addressing Support
	Chapter 7. Using the 64-Bit Address Space
	What is the 64-Bit Address Space?
	Why Would You use Virtual Storage Above the Bar?
	Virtual Storage Management Above the Bar
	Prerequisites for Using Memory Objects
	IARV64 Macro Services and Program Rules
	Using Private Memory Objects
	Creating Private Memory Objects
	GETSTOR Request
	Example of Creating a Private Memory Object

	Relationship Between a Private Memory Object and Its Owner
	Fixing and Unfixing the Pages of a Private Memory Object
	Example of Fixing Pages of a Private Memory Object

	Freeing a Private Memory Object
	Example of Freeing a Private Memory Object

	Example of Creating, Using, and Freeing a Private Memory Object

	Using Shared Memory Objects
	Creating/Obtaining Access to Shared Memory Objects
	GETSHARED Request
	SHAREMEMOBJ Request
	Example of Creating and Using a Shared Memory Object – GETSHARED
	Example of Accessing a Shared Memory Object – SHAREMEMOBJ

	Relationship Between a Shared Memory Object and Its Owner
	Freeing a Shared Memory Object
	AFFINITY=LOCAL
	AFFINITY=SYSTEM
	Proper Serialization of Shared Memory Objects

	User Tokens and Detach Processing
	Protecting Storage Above the Bar
	Dumping Memory Objects
	Using the Storage in a Memory Object
	Listing Information About Virtual Storage Above the Bar
	Using a 64-Bit Application in z/VSE
	Using 64-Bit Applications and 64-Bit Operations
	Using 64-Bit Virtual I/O Operations on Memory Objects
	Using Assembler 64-bit Binary Operations
	z/Architecture Instructions That Use the 64-Bit GPR

	Using the Assembler 64-bit Addressing Mode
	Non-Modal Instructions
	Modal Instructions
	Setting and Checking the Addressing Mode
	Linkage Conventions
	Pitfalls to Avoid

	Part 3. Data Spaces and Virtual Disks
	Chapter 8. Introducing Data Spaces
	Basic Concepts
	The ASC Modes
	AR Mode and Data Spaces
	An Example of Using a Data Space

	Chapter 9. Using Access Registers
	Using Access Registers for Data Reference
	A Comparison of Data Reference in Primary and AR Mode
	Coding Instructions in AR Mode

	Using z/Architecture Instructions to Manipulate the Contents of Access Registers
	Example of Loading an ALET into an AR
	Access Lists

	The ALESERV Macro
	Setting Up Addressability to a Data Space
	Adding an Entry to an Access List
	Example of Adding an Access List Entry for a Data Space
	Obtaining and Passing ALETs and STOKENs
	Rules for Passing ALETs

	Examples of Establishing Addressability to Data Spaces

	Deleting an Entry from an Access List
	Example of Deleting a Data Space Entry from an Access List
	ALET Reuse by the System

	Chapter 10. Creating and Using Data Spaces
	Referencing Data in a Data Space
	Relationship Between the Data Space and Its Owner
	SCOPE=SINGLE, SCOPE=ALL, and SCOPE=COMMON Data Spaces

	Rules for Creating, Deleting, and Using Data Spaces
	Example of the Rules for Accessing Data Spaces

	Summary of Rules for Creating, Deleting, and Using Data Spaces
	Creating a Data Space
	Choosing the Name of a Data Space
	Specifying the Size of the Data Space
	Identifying the Origin of the Data Space
	Example of Creating a Data Space
	Establishing Addressability to a Data Space
	Example of Establishing Addressability to a Data Space

	Managing Data Space Storage
	Limiting Data Space Use
	Serializing Use of Data Space Storage
	Protecting Data Space Storage

	Examples of Moving Data Into and Out of a Data Space
	Programming Notes for Example 2

	Extending the Current Size of a Data Space
	Deleting a Data Space
	Example of Deleting a Data Space

	Example of Creating, Using, and Deleting a Data Space
	Creating and Using SCOPE=COMMON Data Spaces
	Programming Considerations

	Attaching a Subtask and Sharing Data Spaces with It
	Example of Attaching a Task and Passing a DU-AL

	Releasing Data Space Storage
	Using Data Spaces Efficiently
	Dumping and Displaying Data Space Storage

	Chapter 11. Creating and Using Virtual Disks
	Planning for Virtual Disks
	Creating Virtual Disks
	ADD Command
	SYSDEF Command
	VDISK Command
	Defining a Virtual Disk via the Interactive Interface

	Getting Information about Virtual Disks
	VOLUME Command
	QUERY DSPACE Command

	Deleting or Redefining Virtual Disks
	Programming Notes
	Supported CCW Codes for Virtual Disks
	GETVCE Macro

	Part 4. Programming Enhancements
	Chapter 12. Linkage Stack Functions
	Introduction
	Linkage Stack Characteristics
	Instructions for Adding or Removing a Linkage Stack Entry
	The Stacking PC (Program Call) Instruction
	The BAKR (Branch and Stack) Instruction
	The PR (Program Return) Instruction

	Instructions to Work with Linkage Stack Entries and their Contents
	Using the STXIT and EXIT Macro in Connection with Linkage Stack

	Chapter 13. Callable Cell Pool Services
	Characteristics of a Cell Pool
	Storage Considerations
	Link-Editing Programs Using Callable Cell Pool Services
	Using Callable Cell Pool Services
	The CALL Macro
	Available Cell Pool Services
	Creating a Cell Pool
	Adding an Extent and Connecting it to the Cell Storage
	Contracting a Cell Pool, Deactivating its Extents, and Disconnect its Storage
	Reusing a Deactivated and Disconnected Extent
	Allocating Cells and Deallocate Previously Allocated Cells
	Obtaining Status Information About a Cell Pool
	Invocation Requirements
	Register Usage
	Return Codes

	Cell Pool Services Coding Example

	Part 5. Appendixes
	Appendix A. Linkage Editor and Librarian Support
	Linkage Editor Support for 31-Bit Addressing
	Maximum Size of a Phase
	Assigning the AMODE
	Assigning the RMODE
	AMODE/RMODE Hierarchy
	AMODE/RMODE Combinations in the MODE Control Statement
	AMODE/RMODE Combinations in the PARM Field
	AMODE/RMODE Combinations from the ESD

	Handling of Invalid AMODE/RMODE Combinations
	Further Information
	Notes on the MODE Control Statement
	Notes on the EXEC LNKEDT Statement

	Librarian Support for 31-Bit Addressing
	Punching a Phase
	LISTDIR Output
	SET SDL Processing

	Appendix B. Macro and Command Support
	z/VSE Macros and Their Mode Dependencies
	Macro Support for 31-Bit Addressing
	AMODESW Macro
	Notes on Using the AMODESW Macro
	Notes on Using AMODESW SET

	Storage Management Macros
	GETVIS Macro
	FREEVIS Macro

	Page Management Macros
	PFIX Macro

	Program Load and Retrieval Macros
	CDDELETE Macro
	CDLOAD Macro
	FETCH Macro
	GENL Macro
	LOAD Macro

	Task Communication Macros
	ATTACH Macro
	DETACH Macro
	ENQ/DEQ Macro
	POST Macro
	WAIT Macro
	WAITM Macro

	I/O Processing Support for 31-Bit Addressing
	CCB Macro
	CCW Formats

	Other Macros
	SPLEVEL Macro
	STXIT Macro

	Macro Support for 64-bit Addressing
	Macro and Command Support for Data Spaces
	ALESERV Macro
	Restrictions when Using the ALESERV Macro
	Calling Requirements for ALESERV Macro

	ATTACH ALCOPY Macro
	DSPSERV Macro
	Restrictions when Using the DSPSERV Macro
	Calling Requirements for DSPSERV Macro
	SDUMPX Macro
	SETPFA Macro
	SYSSTATE Macro
	SYSDEF Command
	QUERY Command
	MAP Command

	Appendix C. Channel Program Support for Virtual Disks
	Channel Commands
	DEFINE EXTENT (X'63')
	LOCATE (X'43')
	READ (X'42')
	WRITE (X'41')
	NO-OPERATION (X'03')
	SENSE (X'04')
	TRANSFER IN CHANNEL
	SENSE ID (X'E4')
	READ DEVICE CHARACTERISTICS (X'64')

	Flags
	Sense Information
	Information Returned to a Sense Command
	Fault Symptom Code (Bytes 22-23) of Sense Information

	Glossary
	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

	Readers’ Comments — We'd Like to Hear from You

