

IBM z/VSE
VSE/Advanced Functions IBM

Supervisor
Diagnosis Reference
Version 9 Release 1

 xxxx-xxxx-xx

IBM z/VSE
VSE/Advanced Functions IBM

Supervisor
Diagnosis Reference
Version 9 Release 1

 xxxx-xxxx-xx

 Note!

Before using this information and the product it supports, be sure to read the general information under “Notices”
on page vii.

This edition applies to Version 9 Release 1 of IBM VSE/Advanced Functions, which is part of VSE Central Functions, Program
Number 5686-CF9, and to all subsequent releases and modifications until otherwise indicated in new editions.
VSE/Advanced Functions V9.1 is part of z/VSE V5.1.

You may send your comments via the Internet:

E-Mail: zvse@de.ibm.com

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1985, 2013. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . vii
Programming Interface Information . vii
Trademarks . vii

Preface . ix
Related Publications . x

Chapter 1: System Layout . 1
z/Architecture Mode and 64-bit Addressing . 3
64-bit Address Space Layout . 6
Storage Layout (Real and Virtual Address Spaces) 8
Real Storage Layout . 11
Partition Layout (31-bit) . 13
SVA (Shared Virtual Area) Layout . 14
Minimum System GETVIS Requirements as Calculated by IPL 16
System GETVIS Requirements when Vendor Exits are Enabled 19

Chapter 2: Design Information . 21

Interrupt Processors . 23
I/O Interrupt . 23
Program Check Interrupt . 24
External Interrupt . 29
Machine Check Interrupt . 29
Supervisor Call Interrupt (SVC) . 29

Dispatcher . 31
z/VSE (Turbo) Dispatcher - Introduction . 31
Turbo Dispatcher . 39
Steps to Task Selection . 52
VSE/AF Dispatcher - Internal Gating Mechanism 57
VSE/AF Dispatcher - Time Slicing (Partition Balancing) 68
z/VSE Dispatcher - Task Termination . 75
z/VSE Dispatcher - System Dump Interfaces . 79
z/VSE Dispatcher - VSE/ICCF Support . 88
z/VSE Dispatcher - Partition Preparation and Cleanup 90
VSE/AF Dispatcher - Identifiers and Limits . 95

Physical Input/Output Control System (PIOCS) 99
I/O Request Enqueuer . 99
Scheduler . 102
I/O Interrupt Handler . 103
I/O Error Processing . 112
Disk Error Recovery . 115
Resident Tape Error Recovery . 116
ERP Message Writer . 117
Missing Interrupt Handler . 118

Lock Management . 119

© Copyright IBM Corp. 1985, 2013 iii

LOCK and UNLOCK (SVC 110 - X'6E') . 120
Lock Manager Internals . 124
Deadlock Detection . 127
DASD Sharing (Lock Manager) . 131
Service and Debugging Information . 136

Channel Program Translation . 163

Page Management . 191
General . 191
Control Block Allocations . 197
PMRAS space layout . 201
Data Structures of Page Management . 201
Page Faults and Page Frame Selection . 218
Page Handling Routines . 224
Load Leveling . 253

Storage Management . 259
General . 259
Dynamic Storage Allocation . 265
Address Space Layout and GETVIS Areas . 265
GETVIS Processing . 266
z/OS (OS/390) Storage Management Services 289

z/Architecture Cross Memory Communication 299
Description . 299
The Cross Memory Environment . 299
Cross Memory Services . 301
Cross Memory Terminology . 302
Termination Processing - Service User . 303
Termination Processing - Service Provider . 303
Control Register Save Area . 303
Control Register Save Area Initialization . 304
Task Interrupt Handling . 304

z/Architecture Subsystem Storage Protection 307
Description . 307

z/Architecture Access Registers . 309
Introduction . 309
Address Spaces . 319
Data Spaces . 320

z/Architecture Linkage Stack . 327
Introduction . 327
Linkage Stack - z/Architecture implementation 327
$IJBLSTK - Create/Modify/Delete linkage stack 328

Capacity Measurement Tool (CMT) in z/VSE 4.1 331
Introduction . 331
Characteristics of the CMT system task . 331
System Resources . 331
New Macro . 331

iv VSE/AF Supervisor DRM

Program Retrieval . 333
DASD Sharing Environment . 362
Program Retrieval - Tape Fetch . 365
OS/390 Program Retrieval Services . 366

Machine Check, Channel Check and CRW Handling 369

Job Accounting . 377

Software Re-IPL . 381

Console Support . 385

Chapter 3: Diagnostic and Debugging Aids . 399

Diagnostic Aids . 401
Fixed Storage Locations in Processor Storage (Low Core) 402
Supervisor Patch Area . 403
Phase Load Trace Table . 404
Hard Wait Codes . 405

Cancel Code to Message Code Cross-Reference 413

Debugging Facilities . 415
Features . 415
How to Find and Read the Debug Trace Area 418
Format of the Debug Trace Entries . 420
DEBUG ON Command . 428
DEBUG TRACE Command . 429
DEBUG SELECT Command . 431
DEBUG SHOW Command . 432
DEBUG STOP Command . 433
LOCATE Command . 434
SHOW Command . 436

Appendices . 437

Appendix A. Supervisor Data Areas (without I/O) 439
Dynamic Class and System Limits Table (CLIMADR) 443
Dynamic Class Table . 444
Space Control Block (SCB) . 446
Partition Control Blocks . 450
Task Control Blocks . 453
Save Areas . 455
Control Blocks related to Lock Management . 459
Event Control Block (ECB) . 460
Resource Control Block (RCB) . 461
VIO Control Blocks . 462
OS/390 Control Blocks . 467

Appendix B. I/O Control Blocks . 473
Basic Input/Output Control Words (z/Architecture) 473

 Contents v

Input/Output Control Blocks and Areas . 475
Machine and Channel Check Control Blocks . 513
Track Hold Table (THTAB) . 518

Appendix C. Samples . 519

Appendix D. XPCC/APPCVM Protocol . 525

Appendix E. Performance Monitoring Interface 561
Interactions . 561

Index . 565

vi VSE/AF Supervisor DRM

 Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any func-
tionally equivalent product, program, or service that does not infringe any of the
intellectual property rights of IBM may be used instead of the IBM product,
program, or service. The evaluation and verification of operation in conjunction with
other products, except those expressly designated by IBM, are the responsibility of
the user.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785, U.S.A.

Any pointers in this publication to non-IBM Web sites are provided for convenience
only and do not in any manner serve as an endorsement. IBM accepts no responsi-
bility for the content or use of non-IBM Web sites specifically mentioned in this pub-
lication or accessed through an IBM Web site that is mentioned in this publication.

Programming Interface Information
This book documents information that is NOT intended to be used as a Program-
ming Interface of z/VSE.

 Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of Inter-
national Business Machnes Corporation, registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at "Copyright and trade-
mark information"; at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other coun-
tries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Micro-
soft Corporation in the United States, other countries, or both.

UNIX is a registeres trademark of The Open Group in the United States and other
countries.

Java and all Java-based trademarks and logos are trademarks or registered trade-
marks of Oracle and/or its affiliates.

IPv6/VSE is a registered trademark of Barnard Software, Inc.

© Copyright IBM Corp. 1985, 2013 vii

viii VSE/AF Supervisor DRM

 Preface

This manual is intended primarily for use by IBM personnel responsible for program
service. It is one of three publications that describe the design and the internal
control flow of the VSE/Advanced Functions Supervisor. The manual supplements
the program listings by providing text and charts as follows:

� Chapter 1: System Layout
Provides general information about the VSE supervisor, its basic functions and
modes, storage organization and storage allocations.

� Chapter 2: Design Information
Contains a detailed description of the various supervisor functions and compo-
nents. These descriptions provide information necessary to become familiar
with the internal logic of the supervisor.

� Chapter 3: Diagnostic and Debugging Aids
In this chapter information is provided which may be especially helpful in diag-
nosing program errors.

 � Appendices:
A: Layout of commonly used supervisor data areas
B: Layout of commonly used I/O control blocks
C: Contains samples of track hold processing.
D: Contains the XPCC / APPCVM protocol.
E: Describes the interface for performance monitoring.

© Copyright IBM Corp. 1985, 2013 ix

 Related Publications
The other two publications describing supervisor functions are:

� VSE Central Functions Error Recovery DRM, SC33-6326

� VSE Central Functions Logical Transients DRM, SC33-6324.

For overall system logic, the following manuals are to be used in addition:

� VSE Central Functions IPL and Job Control DRM, SC33-6325

� VSE Central Functions Librarian DRM, SC33-6330

� VSE Central Functions Linkage Editor DRM, SC33-6328.

For efficient use of Diagnosis Reference publications, the reader should be familiar
with the information contained in:

� z/Architecture Principles of Operation, SA22-7832

� z/VSE Guide to System Functions, SC33-8312

� High Level Assembler Language Reference, SC26-4940.

Procedures for isolating problems and analyzing storage dumps are contained in:

� z/VSE Planning, SC34-2635

� z/VSE Diagnosis Tools, SC34-2628

� z/VSE Extended Addressability, SC34-2630.

x VSE/AF Supervisor DRM

 Chapter 1: System Layout

The SUPERVISOR is that part of the VSE system which controls the execution of
programs and which provides common services for them. The supervisor consists
of:

� The Supervisor nucleus (fixed)

� The Supervisor transients

� Several SVA resident phases

The supervisor nucleus and the SVA resident phases are loaded at IPL time,
whereas transients, unless they execute from the SVA, are loaded as needed from
the sublibrary IJSYSRS.SYSLIB.

The following labels define the supervisor storage locations which are preserved for
the different types of transient routines:

LTA (Logical Transient Area)
 ($$B..... Phases)

Eyecatcher: 'B-TRANSIENT AREA'

PTA (Physical Transient Area)
 ($$A..... Phases)

Eyecatcher: 'A-TRANSIENT AREA'

RTA (Ras Transient Area)
 ($$R..... Phases)

© Copyright IBM Corp. 1985, 2013 1

The major functions performed by the supervisor are:

 � Interrupt processing
 � Task dispatching
� Physical input/output control (PIOCS)
� Channel program translation

 � Page management
 � Storage management
� Program Call support
� Subsystem Storage Protection support

 � Resource management
 � Job accounting
� Program retrieval (FETCH or LOAD)
� Error recovery and recording

 � Operator communication
� Common Supervisor Services (SVCs)
� Access Register support
� Data Space support
� Linkage Stack support

Notes:

� Starting with z/VSE V4, the z/VSE system is delivered with one supervisor,
$$A$SUPI, only. Supervisor generation options are no longer available.
You can still generate a supervisor to get a listing of the $$A$UPI super-
visor.
The z/VSE supervisor
– executes in z/Architecture mode.
– provides support for 1024 devices.

� z/VSE V5 requires IBM System z9 or higher

2 VSE/AF Supervisor DRM

z/Architecture Mode and 64-bit Addressing
Starting with z/VSE V4, the z/VSE system executes in z/Architecture mode only.
IPL starts its execution in ESA/390 mode, since this is the mode initially set by the
hardware. It switches permanently to z/Architecture mode after the supervisor and
dispatcher have been loaded. Once the supervisor receives control, the z/VSE
system executes in z/Architecture mode only.

z/Architecture mode is a prerequisite to execute in 64-bit addresssing mode.

64-Bit Real Addressing
Starting with z/VSE V4, z/VSE supports more than 2GB processor storage

� up to 8 GB in z/VSE 4.1
� up to 32 GB with z/VSE V4.2 and later.

The real storage beyond 2 GB is managed by the page manager.

� It is used as page frames backing virtual pages
� z/VSE 4.3 and later also uses real storage beyond 16M to back data spaces

with large (1 megabytes) pages. Large page support requires IBM System z10
or later and is available in LPAR mode only.

64-Bit Virtual Addressing
Starting with z/VSE 5.1, z/VSE supports 64-bit virtual address spaces.
z/VSE 5.1 provides 64-bit virtual addresssing support for user and programs. This
allows 64-bit applications to use virtual storage above 2 GB (the bar). 64-bit virtual
addressing vastly increases the virtual storage that is available within a single
address space.
z/VSE 5.1 provide an application programming interface (API), the IARV64 macro,
to manage storage above the bar.
The area above the bar can be used for data only. Programs will continue to
execute in the first 2 GB of an address space.

Notes:

1. z/VSE 5.1 does not support the full range of an 64-bit virtual address space.
The maximum size of a virtual address space is 90 GB.

2. In z/VSE 5.1, the size of a single data space remains restricted to 2 GB.
3. In z/VSE V4, both the size of an address space and data space is restricted to

2 GB.

What does z/Architecture mode mean?
In z/Architecture mode the hardware works with

 � 16-bytes PSWs
� 8-bytes general purpose registers
� 8-bytes control registers
� 4-bytes access registers
� prefix area that comprises two pages (8K)
� the layout and contents of the first page of the prefix area has changed, e.g.

– the location of new and old PSWs
– the location of addresses like

 - translation-exception identification
- failing storage address

 Chapter 1: System Layout 3

– the store status save areas are now in the second prefix page

Emulation of ESA/390 Interrupt Information
All interrupts handled by the supervisor occur in z/Architecture mode, since the
architecture mode is permanently changed to z before the supervisor is invoked the
very first time. When executing in z/Architecture mode, the hardware uses the
z/Architecture new / old PSWs and interrrupt locations to handle interrupts. These
are

 � External Interrupt
 � I/O Interrupt
 � SVC Interrupt
� Machine Check Interrupt
� Program Check Interrupt

When the first level interrupt handlers get control, the interrupt information is avail-
able at the z/Architecture locations. However, throughout the supervisor (and
related system / vendor phases), ESA/390 locations, especially ESA/390 old PSWs,
are referenced. To avoid, that all these programs have to be changed, the first
level interrupt handlers, pointed to by the z/Architecture new PSWs, emulate the
ESA/390 old PSWs locations. This is possible, since the ESA/390 old and new
PSW locations are not used by the hardware. Additionally, the program check
handler emulates the Translation-Exception Identification at location x'90' if it is a
24- or 31-bit address. Since a program check or machine check can occur in 64-bit
addressing mode and / or with a 64-bit address the machine check and program
check handlers have been adapted accordingly.

 Translation Tables
In ESA/390 architecture mode the hardware uses segment tables and page tables
for address translation. In z/Architecture mode, the hardware uses region tables,
segment tables and page tables for address translation. A segment table can back
virtual storage up to 2GB. Therefore, address spaces with more than 2GB require a
region table. Since a z/VSE address space can't exceed 90GB (this is the
maximum size of the virtual storage as defined in the IPL VSIZE operand or
through processor storage in a NOPDS system) a region third table is sufficient.

� Static and dynamic addres spaces have a region third table, segment and page
tables.

� Data spaces, Page Manager address spaces as well as the shared space con-
tinue to have a segment table and page tables only.

Note: Since in z/VSE V4 virtual spaces are restricted to 2 GB, no region table is
required. z/VSE V4 works with segment and page tables only.

Control Registers - Usage and Save Areas
z/VSE uses 4-bytes (low half) control registers only. Since storage is PFIXed
below 2GB, the high half of a control register containing a real address is always
zero. Therefore the existing 4-byte control register save areas are sufficient and
have not been extended.

4 VSE/AF Supervisor DRM

General Purpose Registers - Usage and Save Areas
Starting with z/VSE 4.3, z/VSE saves and restores 8-bytes general purpose regis-
ters. Existing save areas have been extended. This allows system, user and
vendor programs the use of 8-bytes register operations. In z/VSE 4.3 the exit save
areas have not been extended to save the high halves. This was done only with
zVSE 5.1.

Executing in 64-bit Addressing Mode
z/VSE 5.1 allows user and vendor programs to execute in 64-bit (virtual) addressing
mode. 64-bit addressing mode is required to access virtual storage above the bar.
64-bit addressing mode (real and/or virtual) is also required for z/VSE system pro-
grams that deal with (real and/or virtual) addresses beyond 2 GB (for example page
manager, machine check handler, and storage management routines).

Note: In z/VSE V4 64-bit addressing mode is not supported for user and vendor
programs.
Selected z/VSE system programs (e.g. page manager) execute partly in 64-bit
mode to work with real storage beyond 2GB.

 LRA Consideration
LRA for a PFIXed/TFIXed page will always return a 31-bit address (The PFIX and
TFIX services always assign real storage below 2 GB). If LRA in 24-bit or 31-bit
addressing mode returns a 64-bit address a special-operation exception is recog-
nized. This can happen for pages that are not fixed and that are backed by page
frames above 2GB. This special-operation exception is intercepted by the program
check handler and passed to the page manager. The page manager provides a
page frame below 2GB and returns a 31-bit address, which is passed to the issuer
of the LRA.

 Chapter 1: System Layout 5

64-bit Address Space Layout
The following figure shows the 64-bit address space layout.

� the shared area below 16MB (starting at '0') is named 'shared area (24-bit)'.
� the shared area at the end of the address space is named 'shared area

(31-bit)'.
� the shared area (31-bit) does always exist. The start is determined by the size

of the private area.
� the extended shared area starts on a 2 GB boundary. The size is determinded

through SHRLIMIT.
� the extended private area starts on a 2 GB boundary. The size is determined

through MEMLIMIT minus SHRLIMIT.

 ┌───┐ �
│ │ │ M
│ Extended Private Area (EPA) │ │ E
│ (initially no storage assinged) │ │ M
│ │ │ L
├───┤ │ I �
│ Extended Shared Area │ │ M │ SHR-
│ (initially no storage assigned) │ │ I │ LIMIT
│ │ │ T │

 ├───┤

│ ///////////////////////////////////// │

 xx ────� ├───┤ ────────────
 │ │ �

│ SVA (31-Bit) │ shared area (31-Bit)
 │ │

 ├───┤ ────────────
 │ │ �
 │ │ │
 │ │ │
16MB ───�│ │ private area
 │ │ (PASIZE)
 │ │ │
 │ │ │
 │ │

 ├───┤ ────────────
 │ │ � �
 │ Shared Partitions │ │ SPSIZE │
 │ │
 │
 ├───┤ │
 │ │ shared area
 │ SVA (24-Bit) │ (24-Bit)
 │ │ │
 ├───┤ │
 │ Supervisor │

 � ─────� └───┘ ────────────

Figure 1. 64-bit Address Space Layout

xx=min(2 GB,PASIZE + shared areas)
The ESA and z/Architecture hardware supports a segment size of 1 Megabyte.
Since the hardware requires the boundaries between shared and private areas to
be on a segment boundary, alignment takes place for both the shared area (24-bit)
and the shared area (31-bit). The size for the private area (SYS PASIZE) as well
as the size for shared partition allocation (SYS SPSIZE) has to be specified during
IPL. This keeps the boundaries between shared and private areas static after IPL.
Additionally the size for real partition allocation (SYS RSIZE) has to be specified

6 VSE/AF Supervisor DRM

during IPL, too. Therefore allocation of private, shared and real partitions can only
be done within the fixed boundaries.
The z/Architecture hardware supports a region size of 2GB. The extended shared
area as well as the extended private area starts on a 2GB boundary. The bounda-
ries are defined through MEMLIMIT and SHRLIMIT (SYSDEF). Initially no storage
is assigned. Storage is only assigned through an IARV64 request.

Notes:

1. The shared area (31-Bit) always exists.

2. The SMCOM control block and an EXTRACT service describe the storage
layout.

Shared Area (24-Bit)
The shared area (24-Bit) comprises the following areas

 � Supervisor
– including the SDAID trace area

� Shared virtual area (SVA) (24-Bit)
� Area for shared partition allocation

Shared Area (31-Bit)
The shared area (31-Bit) consists of the

� Shared virtual area (SVA) (31-Bit) only

 Chapter 1: System Layout 7

Storage Layout (Real and Virtual Address Spaces)

R(3) �(2) 2 3 B(4) X1 Y3 Z1 S(7)
 ┌─────┬─────┬───┐
 │\.\.\│\.\.\│ │

│\.\.\│\.\.\│ Extended Private Area (12) │
 │\(11)│\(11)│ │
 │\.\.\│\.\.\│ │
 ├─────┼─────┼───┤

│\.\.\│\.\.\│ Extended Shared Area (12) │
 │\(11)│\(11)│ │
 ├─────┴─────┴───┤
 │\.\ │
 <=2GB ├───┤
 │ SVA (31-Bit) (8) │
 --- ├─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┤
 � │\.\.\│/////│ │/////│/(5)/│ X1 │/////│/////│\.\.\│
 │ │\.\.\│/////│ F2 │/////├─────┤ │/////│/////│\.\.\│
 │ │\.\.\│/(5)/│ │/(6)/│ FB │ ├─────┤/////│\.\.\│
│ │\.\.\│/////│ │/////│ │ │ Y3 │/////│\.\.\│
│ │\.\.\│/////│ │/////│ │ │ │/////│\.\.\│

PASIZE ┌───├─────┤.....│.....│.....│.....│.....│.....│.....│.....│ 16MB
│ │ │/////│/////│ │/////│ │ │ │/////│\.\.\│
│
 │/////├─────┤ │/////│ │ │ │/////│\.\.\│
│ RSIZE(3)│/////│ F1 │ │/////│ │ │ ├─────┤\.\.\│
│ � ├─────┤ │ │/////│ │ │ │ Z1 │\.\.\│
│ │ │ F2R │ │ ├─────┤ │ │ │ │\.\.\│
│ └───├─────┤ │ │ F3 │ │ │ │ │\.\.\│
│ │\.\.\│ │ │ ├─────┤ │ │ │\.\.\│
│ │\.\.\├─────┤ │ │ F4 │ │ │ │\.\.\│
│ │\.\.\│ BG │ │ │ │ │ │ │\.\.\│
│ │\.\.\│ │ │ │ │ │ │ │\.\.\│

 │\.\.\│ │ │ │ │ │ │ │\.\.\│

 --- ┌───├─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┤

 │///│
 SPSIZE(7)├───┤
 � │ F9 (shared) │
 └───├───┤
 │ SVA (24-Bit) (8) │
 ├───┤

│ S u p e r v i s o r (9) │
 └───┘

PASIZE = size of private area
 RSIZE = size available for ALLOC R (may be zero)
SPSIZE = size available for ALLOC S (may be zero)

 ///// = invalid due to allocation
 \.\.\ = always invalid

Figure 2. 64-bit Storage Layout

8 VSE/AF Supervisor DRM

1. The organization of a system with 6 static and 3 dynamic partitions is shown.
The static partitions are allocated in the (static) virtual spaces 0, 2, 3 and B.
There are 12 static spaces, 0,1,...,A and B where static partitions can be allo-
cated.
Each static partition may or may not have a contiguous area of processor
storage allocated for program execution in REAL mode.
The dynamic partitions are allocated in the dynamic spaces X1, Y3 and Z1.

An active virtual partition comprises at least 128KB in the virtual address area.
The virtual partition size is always an integer multiple of

� 64KB for static partitions
� 1MB for dynamic partitions

A partition may be allocated totally below 16MB or may cross the 16MB line.
Note, that only one partition in an address space may cross the 16MB line.
The virtual background partition (BG) is always active and is allocated in space
0.

The address area of an inactive virtual partition may be reduced to zero.

2. Space 0 does always exist. It is initialized by IPL with an initial BG size of
1MB, which can be changed explicitly later on by an ALLOC command.

3. Space R is used to allocate real partitions for real execution. Real allocation is
restricted to an area below 16MB and the size for it must be reserved during
IPL (SYS RSIZE). No addressability exists between real and private virtual par-
titions.

Allocations for real partitions must be an integer multiple of 4KB. Note, that
real partitions are not required for PFIX processing. Instead the SETPFIX
command can be used to reserve frames for PFIX processing.

4. The space id must be specified explicitly in an ALLOC request if more than one
partition shall be allocated in one address space.

5. The area marked as 'invalid due to allocation' can be used to increase the
existing partitions provided that the VSIZE is not exceeded. This is possible
because the space has been created by specifying the space id explicitly and
therefore page tables exist for PASIZE. Since the last partition (FB) crosses
the 16MB line, no further partition can be allocated in the space.

6. If the space id was not specified, the area marked as 'invalid due to allocation'
cannot be used, because page tables are allocated only for the initial allocation
value. Otherwise, the area can be used to increase the existing partition or to
allocate new ones, provided that VSIZE is not exeeded.

7. Shared partitions are allocated in a contiguous area following the SVA
(24-Bit).The area available for shared partition allocation must be determined
by SPSIZE (may be zero) and is restricted by VSIZE, too.
Tasks in shared partitions are dispatched in the shared space S.

8. For the layout of the Shared Virtual Area (SVA) see Figure 5 on page 14.

9. The supervisor area consists of the supervisor phase and areas dynamically
allocated during IPL.

10. For the layout of a virtual and real partition see Figure 4 on page 13.

11. The extended area (above the bar) can only be used in an address space with
single partition allocation.

 Chapter 1: System Layout 9

12. The size of the extended area is defined through MEMLIMIT and SHRLIMIT.
However, a MEMLIMIT or SHRLIMIT specifcation does not allocate virtual
storage for the extended area. Virtual storage is only allocated through an
IARV64 REQUEST=GETSHARED|GETSTOR provided that VSIZE is not
exceeded.

10 VSE/AF Supervisor DRM

Real Storage Layout

 Virtual
 Processor Space
 Storage ┌───────────┐ �

--- ┌───────────┐ │ Extended │ │
Area 4 │PMR Tables │ │ area │ │ MEMLIMIT

 -�- ───────────── ├───────────┤

│ │ │Real Space │ Not usable│
│ │ ├───────────┼───────────┤ <= 2GB

Area 5 │ │shared area│shared area│
 │ │ │ (31-Bit) │ (31-Bit) │
 │ │ ├───────────┼───────────┤
 │ │ │ │ │
 │ │ │ │ │

 │ 2 GB │ │ │

--- ├───────────┤ │ │
Area 4 │ SCCB │ │ │

IJBEOR �-- ├───────────┤ │ │
│ │ │ │ │
│ │ │ │ │

 │ │ │
│ │ │ │ │

Area 3 │ │ │ │
│ │ │ │ │

 │ PFIX (31) │ │ │

 --- ├───────────┼───────────┤-----------│ 16MB
� │ PFIX (24) │ │ │

 │ ├───────────┼───────────┤ │
 Area 2 │ F4R │ F4R │ │
 │ ├───────────┼───────────┤ │

 │ F2R │ F2R │ │
 --- ├───────────├───────────┤ │

� │ │ │ │
│ │ │ │ │

Area 1 │ │ │ │
 │ │ ├───────────┼───────────┤

│ │ │shared area│shared area│

 │ │ (24-Bit) │ (24-Bit) │

 --- │-----------├───────────┼───────────┤
│ │ Supervisor│ Supervisor│

 └───────────┴───────────┴───────────┘

IJBEOR - Min(2GB,end of processor storage)
Area 5 - Used for paging and IARV64 REQUEST=PAGEFIX
Area 4 - reserved for system use
Area 3 - available for PFIX (31-Bit) (both user and system requests)

and IARV64 REQUEST=PAGEFIX
Area 2 - defined by RSIZE (available for ALLOC R and PFIX (24-Bit))
Area 1 - available for PFIX (24-Bit) (both user and system requests)

Figure 3. Real Storage Layout

Note: Frames in area 4 are never assigned to virtual addresses, whereas the real
storage from address 0 up to IJBEOR is used for paging.

 Chapter 1: System Layout 11

Setting of Boundaries
The boundaries of area x, x=1,..,3, are described by the labels SMCOM.SMCRBGx
and SMCOM.SMCRNDx. Area 2 does not exist if RSIZE=0 has been specified.
Area 3 does always exist, however it may be used totally by the system, e.g. if it
starts below 16MB. The boundaries are set as follows:
Area 1

� SMCRBG1 = SMCSSEND+1

� SMCRND1 = MAX{SMCSPEND,
 SMCRBG1+SMINSVPX(in bytes)-1,
 SMCRBG3-RSIZE(in bytes)}

– SMINSVPX - Minimum requirement for system PFIX in area 1

Area 2

� SMCRBG2 = SMCRND1+1

� SMCRND2 = SMCRBG3-1

 � Final RSIZE: SIZE(SMCRBG2,SMCRND2)

Area 3

� SMCRBG3 = MIN{16MB,
 IJBEOR+1

-MAX{area PFIXed by $INTVIRT,
 SMINSPX3(in bytes)},
 SMCSVA31}

� SMCRND3 = IJBEOR - SIZE(minimum page pool)

– SMINSPX3 - Minimum requirement for system PFIX in area 3

Area 3 is always available and contains at least data PFIXed by $INTVIRT (PMR
tables for the shared area and for the first PMR address space).
Area 5
Area 5 is only present with more than 2GB of processor storage.

� SMCRBG64 = 2GB

� SMCRND64 = SMCPEOR (end of processor storage)

12 VSE/AF Supervisor DRM

Partition Layout (31-bit)

 ----- ┌─────────────────────────┐ Partition end address
 � │ │ │

GETVIS(3) │ │ LOC=ANY (4) │
area │.│.......................│ --- 16MB

 │ │ │ � │ �
 │ │ │ │ LOC=BELOW (4) │ │ >= 48KB (3)

 │
 │ │

 ----- ├─────────────────────────┤ ---
 │ │ �
 │ │ │
 │ │ │
 │ │ │
 │-------------------------│ │

│ │ Program area (>= 8�KB) (2)
 │ │ │

│ Partition Save Area (5) │

└─────────────────────────┘ --- Partition begin address

Figure 4. Partition Layout (31-bit)

1. Job start time, for the time stamp, is stored in the last 6 bytes of this area
(bytes 82-87) when specified.

2. A partition always starts below the 16MB line with the program area, the size of
which can be changed by the SIZE command or the EXEC ..,SIZE parameter.
The program area is located totally below the 16MB line. If a partition crosses
the 16MB line, the 31-bit area of the partition belongs to the partition GETVIS
area.

3. A virtual partition always has a GETVIS area (minimum and default is 48KB).
The minimum GETVIS area of 48KB is required below the 16MB line.
In real mode the minimum/default value is 0KB; if the user wants to have a
GETVIS area he must specify it implicitly by using the SIZE parameter in the
EXEC statement.

4. GETVIS below the 16MB line can be requested with the GETVIS LOC=BELOW
parameter. It is allocated bottom-up up to the 16MB line. GETVIS, that can be
located anywhere in storage, can be requested with the LOC=ANY parameter.
Storage is then allocated top-down. For partitions, that are located totally
below the 16MB line, LOC=ANY is treated as LOC=BELOW.

5. In the partition save area the following information is stored:

� Program Name (8 bytes)
� Program Status Word (8 bytes)
� General Registers 9-8 (64 bytes) - low halves
� Job Start Time (1) (8 bytes)
� Floating-point Registers (32 bytes)

6. The partition layout below 2 GB (the bar) has not changed.

 Chapter 1: System Layout 13

SVA (Shared Virtual Area) Layout

 SVA (24-Bit) SVA (31-Bit)

end ┌───────────────────────────┐ end ┌──────────────────────────┐
 │ VPOOL (6) │ │ System GETVIS Area (4) │
 │ │ │ (31-Bit) │
 ├───────────────────────────┤ │ │
 │ SLA (5) │ │ │
 │ │ │ │
 ├───────────────────────────┤ │ │

│ System GETVIS Area (4) │ ├──────────────────────────┤
 │ (24-Bit) │ │ │
 ├───────────────────────────┤ │ │

│ Virtual Library Area (3) │ │ │
 │ (24-Bit) │ │ │
 ├───────────────────────────┤ │ │

│ System Directory List (2) │ │ Virtual Library Area (3) │
 │ (SDL) │ │ (31-Bit) │
begin └───────────────────────────┘ begin └──────────────────────────┘

Figure 5. SVA Layout

1. Shared Virtual Area (SVA): An area where heavily used reentrant programs are
loaded; they can be shared between partitions, and also parts of the system
(e.g. End-of-Job processing routines). The SVA (31-Bit) consists of the VLA
(31-Bit) and the system GETVIS area (31-Bit).

2. System Directory List (SDL): In-core directory of highly used programs
(phases). For further information refer to “Shared Virtual Area (SVA)” on
page 344. It is located in the SVA (24-Bit) and contains the entries for both the
(24-Bit) and the (31-Bit) VLA.

3. Virtual Library (Phase Area): Contains highly used programs (phases) which
can be shared between partitions and the system. For further information refer
to “Shared Virtual Area (SVA)” on page 344. Depending on the RMODE of a
phase, a phase is loaded in the VLA (31-Bit) (RMODE=ANY) or in the VLA
(24-Bit) (RMODE=24).

4. The GETVIS area for the system can only be used by requestors with a
storage protection key of zero. LOC=ANY users are served preferred from the
system GETVIS area (31-Bit), whereas LOC=BELOW users are served from
the system GETVIS area (24-Bit).

5. This area is allocated during IPL and used by Label Processing (SLA).

6. This area is allocated during IPL depending on the VPOOL parameter and is
used as a buffer pool for VIO.

14 VSE/AF Supervisor DRM

The following table shows the supervisor tables and buffers which are allocated at
IPL time.

 Copy buffers
 Channel queue
CCW chains for DASD file protection
CCW chains for TAPE set mode

 PUB2 areas
 PUBX area
 LUB extension
 Pubscan tables
 AVR table
Reentry rate table
Page frame table
Page to Disk Assignment String (PDAS)
Page table (1)
Segment table (1)
Page Table Assignment String (PTAS) (1)
Page-Out State List (POSL) (2)
Save areas for Access Registers

 Console buffer
 Hardcopy buffer
 SYSREC buffer
 PAGEIN table
Extended logout areas: IOEL, MCEL
Phase load lists for static partitions

 VIO/VPOOL area
Device control blocks
External interrupt buffer for IUCV/APPC/VM
Path ID table for IUCV/APPC/VM
Job accounting tables for static partitions
SAACOMM (supervisor/system dump communication area) (3)
Tasks data space control block (3)
Default job accounting table used during dyn. partition allocation
PCBATAB, PCEATAB, SMCBTAB, SCBATAB, PUBOWNER extension

 SCBATAB, CPCBATAB
Linkage stack for static partitions except BG
PCB extension for static partitions except BG
Cross memory resource tables

Figure 6. Supervisor Areas, Allocated at IPL Time

1. Allocated for space 0, the shared space and the first page manager space.
2. Allocated for space 0 and the shared space.
3. Allocated for static partitions and AR.

 Chapter 1: System Layout 15

Minimum System GETVIS Requirements as Calculated by IPL
The size of the System GETVIS areas is the sum of three parts:

1. AF space requirements determined from supervisor generation parameters.

2. AF space requirements determined from IPL options, including Librarian
requirements from $INITCON.

3. Size specification from the GETVIS parameter of the SVA command. This is a
user specification.

These sizes are used to calculate the total space allocated to the System GETVIS
area. There is no space reservation before explicitely requested.

The system assumptions 1. and 2. are listed in Figure 7 to Figure 11 on page 18.

Acronyms:

dev -- I/O devices
 part -- partitions

sdev -- shared I/O devices
vdisk -- virtual disk(s)

 / -- per

Figure 7. 24-Bit System GETVIS - Systemwide

Item
Algorithm

PFIX Size

SDAID buffers
(SYS SDSIZE>0)
(SYS SDSIZE=0)

no
90K
 0K

Reentrant dump work area no 72K

SLA work area1 no 12K

Hard copy support no 5K

User save area
(SYS JA=YES)
(SYS JA=NO)

no
 1K
 0K

Librarian control blocks2 no ca. 60K
 +7K/12 part

16 VSE/AF Supervisor DRM

Figure 8. 24-Bit System GETVIS - Static Partition Subpools

Item
Algorithm

Subpool PFIX Size

System control block address tables
(PCBATAB, SMCBTAB, ...)

IINIT 24-bit 8K

Class table IJBSSP 24-bit 4K

Subtask control blocks
6 subtasks per partition,
5 control blocks per page)

IPTIB 24-bit 60K

Subtask save areas
(save area length 120 bytes,
6 subtasks per partition,
34 save areas per page)

IPSAV no 12K

XECB subpool ISXECB no 4K

LOCK subpool
(10 resources per partition,
3 owner elements per resource)

ILCKSP no 12K

XTENT subpool SPXTNT no 4K

MSAT subpool SPMSAT no 4K

VIO subpool ISPVIO no 4K

Partition subpool
(1 page per partition)

IJBBG,
IJBFn

no 48K

Guaranteed DUMP subpool IJBDMP no 20K

Parameterized procedures
(2 pages per partition)

IJBPRC no 96K

SIO counter string
(SYS JA=YES: IJBNSDEV*8*12)
(SYS JA=NO: IJBNSDEV*4*12)

IJBFCB 24-bit 4K
/42 sdev
/85 sdev

Figure 9. 24-Bit System GETVIS - Static Partitions (12)

Item
Algorithm

PFIX Size

Security/Logging no 4K

SYSFIL on FBA no 4K

FETCH/LOAD trace tables
(&AGPHLSL*12)

no 4K

LUBX for MSAT
(4*(pgr_LUBs+system_LUBs*12))

no 16K

Job Control work areas1

(2 pages per partition)
no 96K

Job Accounting tables
(SYS JA=YES: (IJBNDEV*6+ACCTALEN)*12)
(SYS JA=NO)

no 19K
/254 dev
 0K

 Chapter 1: System Layout 17

Figure 10. 24-Bit System GETVIS - Dynamic Partitions

Item
Algorithm

Subpool PFIX Size

Dynamic partition control blocks
(4K per dynamic partition)
(xy = LOGID)

IJBPxy 31-bit (NPARTS-12)*4K

PUB ownership table
(1 bit per device and partition)

no 1K
/32 part, 254 dev

Figure 11. 31-Bit System GETVIS

Item
Algorithm

Subpool PFIX Size

GETVIS control information
(minimum)

no no 4K

XPCC buffers no 31-bit 20K

Access lists
(DUAL, PASENAL,
0,5K per partition,
8 lists per page)

IJBALE 31-bit 8K

Access module save areas
(1K per partition)

no no 12K

Data space control blocks
(SCB, DSCB, ASTE,
256 bytes per vdisk,
16 blocks per page)

IJBDSP 31-bit 4K
/16 vdisk

Virtual disk control blocks
(128 + (352 bytes per vdisk),
11 blocks per page)

IJBVDI 31-bit 4K
/11 vdisk

Attention Routine buffers ARCHSMON
ARCHPID

31-bit 32K

Attention Routine DEBUG buffers SPDBUG 31-bit 64K

Console router fixed queue space IJBCSM
IJBCSC

31-bit 128K

Console router pageable queue
space

IJBCSM
IJBCSC

no 124K

System control blocks IINIT 31-BIT 32K

Dynamic partition control blocks
(4K per dynamic partition)
(xy=LOGID)

IJBPxy 31-bit (NPARTS-12)*4K

1 These areas are part of the 24-bit System GETVIS area, but their size is not reflected in the displayed values of the GETVIS
command, because they are reserved from IPL to shut-down.

2 The size of this area is calculated by the librarian phase $INITCON.

18 VSE/AF Supervisor DRM

System GETVIS Requirements when Vendor Exits are Enabled
Since these system Getvis requirements cannot be considered by IPL, they have to
be specified in the SVA command by the user.

Figure 12. 31-Bit Pfixed System GETVIS

Item Subpool Size

TASKPROD/per task PEXITM (maintask)
PEXITS (subtask)

x'3A8'

IJBVEND control blocks PEXITP x'1A08'

PRODEXCB/1 per exit PEXITP x'98'

vendor information (fixed) plus
per vendor product

IPVEN x'800'
x'136'

 Chapter 1: System Layout 19

20 VSE/AF Supervisor DRM

 Chapter 2: Design Information

This chapter presents the design information by functions.

 � Interrupt Processors
The different interrupt types and supervisor routines to handle these interrupts.

� Dispatcher, Task Selection
A description of the dispatching of system and user tasks.

� Physical Input/Output Control System (PIOCS)
A description of device scheduling and I/O interrupt processing.

 � Lock Management
A description of the lock/unlock mechanism.

� CCW Translation and Retranslation
A description of CCW-translation, retranslation and CCW fixing.

 � Page Management
Page fault handling, page manager services.

 � Storage Management
Short description of storage management routine.

� z/Architecture PC-ss support

� z/Architecture Subsystem Storage Protection Facility

� z/Architecture Access Register (translation and use)
including

– Data Space Support

� z/Architecture Linkage Stack

 � Program Retrieval
FETCH/LOAD operations including SVA usage.

� Machine- and Channel Check Recovery and Recording
Types of machine checks, channel checks and resulting actions.

 � Job Accounting
Short description of job accounting routines.

 � Software Re-IPL
Short description of the Software Re-IPL routine.

 � Console Support

© Copyright IBM Corp. 1985, 2013 21

22 VSE/AF Supervisor DRM

 Interrupt Processors

Starting with z/VSE V4, the z/VSE supervisor operates in z/Architecture mode only.
z/VSE V5 requires an IBM System z9 or higher processor.
In the z/Architecture Program Status Word (PSW) bit 12 must be OFF.
Bit 12 of the PSW is the former Extended Control (EC) mode bit, which must
always be ON in an ESA/390 PSW.
When the ESA/390 emulation code prepares the ESA/390 old PSW, bit 12 must be
set ON, since the interrupted task is dispatched with an LPSW form the ESA/390
old PSW.

Processing may be interrupted by any of the following conditions:

 � Input/Output Interruption
 � Program Interruption
 � Machine-Check Interruption
 � Supervisor-Call Interruption
 � External Interruption

An interruption condition consists in storing the current PSW as an old PSW,
storing further detail information identifying the cause of the interruption, and
fetching a new PSW (Refer to IBM z/Architecture Principles of Operation). Proc-
essing resumes with the ESA/390 emulation as specified by the new PSW prior to
invoking the first level interrupt handler as specfied in the former ESA/390 new
PSW.

The first level interrupt handler saves all the information which is necessary to
resume the interrupted processing at a later point in time. After initialization control
is passed to the second level interrupt handler.

The second level interrupt handler which will be described in detail below performs
the actual interrupt processing and after completion returns to the task selection
routine.

 I/O Interrupt
Refer to Physical Input/Output Control System (PIOCS) later in this chapter.

© Copyright IBM Corp. 1985, 2013 23

Program Check Interrupt
Like the other interrupt handlers on VSE, the program check handler gets control
with a z/Architecture new PSW. As its first action, it emulates the ESA/390 PC old
PSW at the ESA/390 PC old PSW location (storage location x'28'), and (if appro-
priate) the ESA/390 PER address at location x'98', the Monitor Code at location
x'9C', and the the ESA/390 Translation Exception address at location x'90'-x'93', if
the translation exception occured for a 31-bit address.

SDAID is called right after this prolog.

The program check handler inspects the program interruption code and passes
control to the appropriate processing routine. It mainly differentiates between pro-
gramming exceptions and translation exceptions. The program check handler is
entered in real mode which means that the DAT-bit in the PSW is off.

Handling of a Normal Program Check
If a normal program check is to be handled, the DAT bit in the current PSW is first
turned on.
If the program check occurs in the supervisor code the system enters a hard wait,
unless one of the following conditions is fulfilled:

� The supervisor failed due to incorrect input parameters passed by the user
program. A list of addresses in the Supervisor is scanned to see if the program
check occurred at any of these addresses. If so, the user program is canceled.

� A check is made to see if ACF/VTAM is active and executing an SVC 49 (X'31')
or 53 (X'35') or one of its appendage routines. If so, that partition is canceled.

� A check is made to see if ICCF (SVC 82 - X'52') or an ICCF intercept routine is
active. If so the ICCF partition is canceled.

If the system goes into a Hard Wait, SYSCOM bytes 4 through 7 and low-storage
bytes 0 through 3 contain the appropriate hard wait code. The hardwait state is
entered by means of the hardwait routine (label SYSERRROR). (see Chapter 5,
Figure 170 on page 405).

If the program check occured while the program check handler was active, the
program check handler loads a hardwait PSW (X'000A0000 00001122') without
modifying SYSCOM and low-storage 0-3. Furthermore an indicator is set to force
other CPUs to enter hardwait whenever the program check handler is entered in a
MP environment.

If the program check handler is entered due to a 'stack-full' exception, phase
IJBLSTK is called to extend the linkage stack of the current task.

If the program check handler is entered due to a 'ALEN-translation-exception'
because of an ALET 2, phase IJBLSTK is called to create a DUAL (if not available)
and to initialize the third entry of the DUAL to address the home space of the cur-
rently active task.

If the program check occurs in a page handling overlap (PHO) appendage routine
or in an I/O appendage routine, the interrupt status and general registers are saved
in a separate save area (label SVPCSAVE) and the users program is canceled.

24 VSE/AF Supervisor DRM

If the program check occurs in the problem Program, it will be canceled, unless a
program check exit routine was specified. In this case the Program Check Handler
passes control to a special routine at label PCROUT which saves the interrupt
status information and general registers in the save area specified by the user's
STXIT (PC) macro for the following purposes:

� To restore for continuation.

� To enable the user's PC routine to analyze the status.

� To facilitate analysis of a dump, should a dump be requested (the dump then
contains all interrupt information).

To enter the user's PC exit routine, the PSW saved in SVEPSW is modified to point
to the users PC exit routine and a special bit in the TCB is turned on, indicating
that the PC exit routine is active. A program check encountered at a time while this
bit is still on, causes the task to be canceled.

The user's PC exit routine must end with an SVC 17 (X'11' - EXIT PC) to resume
processing at the point where it was disrupted. In this case the interrupt status
information and general registers are restored to the program save area and the
PC routine active bit in the TCB is reset.

Address-space-control element (ASCE) type exceptions as well as Region-First-
Translation, Region-Second-Translation and Region-Third-Translation exceptions
are handled like Segment-Translation exceptions: Depending on the RID either the
user is cancelled or the system enters a hardwait with hard wait code x'FFA'.

Handling of Special-Operation Exceptions from an LRA
A Special-Operation-Exception is raised when a LOAD REAL ADDRESS (LRA)
instruction is executed in 24-bit or 31-bit addressing mode, and when bits 0-32 of
the resulting real address are not all zeroes. This may happen when a virtual
address of a page that is not PFIXED or TFIXED, but assigned to a page frame,
has a corresponding 64-bit real address.
When this happens the program check handler calls the page manager to assign a
page frame below 2 GB thus providing a real address below 2 GB. The program
check handler then returns to the interrupted program and passes a real address
which is below 2 GB.

For details on page manager processing please refer to description of the LRA
Exception Appendage in section “LRA Exception Appendage” on page 228.

Handling of Page Fault Interrupts
Page faults are a special type of program checks and are handled by an extension
to the program check handler, the page fault first level interrupt handler (PFFLIH).
By means of the RID (Routine identifier, label RID in the supervisor) it is deter-
mined what action is to be taken. Figure 13 on page 27 shows the various RIDs
along with the actions taken if one of the appropriate routines causes a page fault.

The page fault handler also sets the TIBFLAG. This flag tells the dispatcher how to
dispatch the task after the page fault has been handled. The TIBFLAG indicates
that control is to be passed to SVRETURN if a supervisor service is to be reacti-
vated.

 Interrupt Processors 25

If no page-fault appendage is provided for the interrupted task, a page fault request
is queued for handling by the page management routines and the interrupted task
is set not dispatchable (PMRBND).

If an appendage is present for the task, control is passed to the appendage, and
the task causing a page fault remains dispatchable unless the page fault occurred
during a supervisor service for the task. (Refer to z/VSE System Macros User's
Guide, SC33-8407 for a more detailed explanation of Page Fault appendages.)

If, for a task owning an appendage, a page-fault-handling request has been queued
previously, the pending request is not queued.

Handling of Pseudo Page Faults
Pseudo-page-faults are a special type of program checks, that can occur in
systems running under VM.

Pseudo-page-faults are page faults detected while processing on a virtual machine
with I/O interrupts enabled and for which the SET PAGEX ON command has been
issued. When these conditions are satisfied, VM causes a pseudo-page-fault
exception by storing the virtual machine address that caused the page fault,
reflecting a program interrupt to the virtual machine, and removing the virtual
machine from page and execution wait. When VM has satisfied the page request
for the virtual machine, it reflects a pseudo-page completion.

For both pseudo-page-fault exception and pseudo-page-fault completion, the VSE
virtual machine is removed from the wait state by VM and given control by a
program check interrupt.

A pseudo-page-fault is first tested to see if it is a completion. If this is the case and
the page brought in is the same as the previous completion with no faults in
between, control is returned to the problem program.

If the pseudo-page-fault was a completion, interrupt status is not saved. For com-
pletions the waiting task is found in the page wait queue and posted dispatchable.
The previous completion address is set equal to the current one for the duplicate
test and control is returned to the dispatcher.

If the pseudo-page-fault is an exception it is tested to see if it occurred in the dis-
patcher. If this is the case control is returned to the dispatcher with disabled PSW.
If the fault is not in the dispatcher the page fault address is saved in the TIB, the
TIB is enqueued in the page wait queue and the task is set to the WAIT state.

26 VSE/AF Supervisor DRM

┌────────┬───────┬──────────────────────────────┬───────────────────────┐
│NAME │ ID │MEANING │ ACTION │
├────────┼───────┼──────────────────────────────┼───────────────────────┤
│SYSTEMID│ �� │System error condition, │ Hard wait. │
│ │ │for example, page fault in │ (see Note) │
│ │ │the I/O interrupt handler │ │
├────────┼───────┼──────────────────────────────┼───────────────────────┤
│REENTRID│ �4 │Page fault or GETREAL request │Save PSW and registers │
│ │ │in a reentrant routine │(general purpose + AR) │
│ │ │ │in user task's second │
│ │ │ │save areas. │
├────────┼───────┼──────────────────────────────┼───────────────────────┤
│USERTID │ �8 │Page fault from a user task │Hard wait X'FFB' │
│ │ │or from a system task. │if this is a system │
│ │ │ │task and the TCB shows │
│ │ │ │that the task does not │
│ │ │ │expect page faults; │
│ │ │ │else registers (general│
│ │ │ │purpose and floating │
│ │ │ │point) and interrupt │
│ │ │ │status are saved in the│
│ │ │ │user's save area, AR in│
│ │ │ │task's 1st AR save area│
│ │ │ │If the task operated │
│ │ │ │in disabled mode, the │
│ │ │ │task is canceled with │
│ │ │ │cancel code X'15'; │
│ │ │ │otherwise the page │
│ │ │ │request is enqueued. │
├────────┼───────┼──────────────────────────────┼───────────────────────┤
│APPENDID│ �C │Page fault in I/O appendage │Task is canceled with │
│ │ │routine │cancel code X'36'. │
├────────┼───────┼──────────────────────────────┼───────────────────────┤
│RESVCID │ 1� │Page fault in SVC 7 (X'�7') │Set RETRYSVC bit in TIB│
│ │ │ in SVC 13 (X'�D') │save interrupt status │
│ │ │ │and registers in user │
│ │ │ │save area; │
│ │ │ │enqueue page request. │
├────────┼───────┼──────────────────────────────┼───────────────────────┤
│DISPID │ 14 │Page fault in a routine which │Enqueue page request. │
│ │ │does not require any │ │
│ │ │information to be saved, e.g. │ │
│ │ │page fault in the dispatcher. │ │
└────────┴───────┴──────────────────────────────┴───────────────────────┘

Figure 13 (Part 1 of 2). Routine Identifiers (RID) as Used by the Page Fault Handler
(PFFLIH)

 Interrupt Processors 27

┌────────┬───────┬──────────────────────────────┬───────────────────────┐
│NAME │ ID │MEANING │ ACTION │
├────────┼───────┼──────────────────────────────┼───────────────────────┤
│PFARID │ 18 │Page fault in page fault │Save interrupt status │
│ │ │appendage routine │and registers in an │
│ │ │ │internal save area and │
│ │ │ │cancel user task with │
│ │ │ │cancel code x'�E'. │
├────────┼───────┼──────────────────────────────┼───────────────────────┤
│ETSSID │ 1C │Page fault in subsystem │Save interrupt status │
│SUBSYSID│ │ │and registers in an │
│ │ │ │internal save area. │
├────────┼───────┼──────────────────────────────┼───────────────────────┤
│MICRID │ 2� │Page fault in MICR or │Save interrupt status │
│ │ │subsystem appendage. │and registers in an │
│ │ │ │internal save area and │
│ │ │ │cancel user task │
│ │ │ │with cancel code X'�E'.│
├────────┼───────┼──────────────────────────────┼───────────────────────┤
│ │ 4� │Page fault in a gated │Close gate to routine │
│ │ . │Supervisor service. │(routine cannot be used│
│ │ . │ │until gate is opened). │
│ │ . │ │Save PSW and registers │
│ │ . │ │(general purpose + AR) │
│ │ . │ │in the user task's │
│ │ . │ │second save area; set │
│ │ . │ │TIBFLAG to return to │
│ │ . │ │SVRETURN. Enqueue page │
│ │ . │ │request. │
│ │ . │ │(Any task accessing a │
│ │ . │ │gated resource is put │
│ │ . │ │in a wait state and is │
│ │ . │ │marked resource bound. │
│ │ . │ │It is released from the│
│ │ . │ │wait state when the │
│ │ . │ │resource is ungated │
│ │ FF │ │after the page request │
│ │ │ │has been completed.) │
└────────┴───────┴──────────────────────────────┴───────────────────────┘

Note: Refer to “Hard Wait Codes” on page 405.

Figure 13 (Part 2 of 2). Routine Identifiers (RID) as Used by the Page Fault Handler
(PFFLIH)

 Breaking-Event-Address
All z/Architecture systems which have the PER-3 facility installed maintain a
Breaking-Event-Address register. This 64-bit CPU register is updated with the
address of any instruction that causes a break in sequential instruction execution
(for example with any branch instruction).
Whenever a program interruption occurs the contents of the breaking-event-address
register are stored at real storage location x110.

The VSE Program Check Handler saves this address into field TCBX.TCBXBEAR
for the active task. Furthermore (starting with z/VSE 5.1), this breaking-event-
address is provided to supervisor exit routines that have been established with the
STXIT PC, ESTAEX or ESPIE macro services.

28 VSE/AF Supervisor DRM

 External Interrupt
The external interruption provides a means by which the CPU responds to various
signals originating either from within or from outside the system. The sources that
may present a request for an external interrupt are:

 � Clock comparator
 � CPU timer
� External interrupt key

 � External signal
 � VM/IUCV
 � APPC/VM

Machine Check Interrupt
The resident machine check handler (MCH) analyzes the machine check inter-
ruption code and tests the problem state bit (Old PSW bit 15). The action taken
depends on the conditions detected. For a more detailed description refer to
“Machine Check, Channel Check and CRW Handling” on page 369 later in this
chapter .

Supervisor Call Interrupt (SVC)
The different processing routines are entered by the First Level Interrupt Handler
(FLIH). Some SVCs are optional and cause a CANCEL (ERR21) if the supervisor
was generated without the appropriate option.

After completion of the requested service (SVC), control is generally passed to the
task selection routine. The only exception is SVC 107 (X'6B' - FASTSVC) which
may return directly to the issuing program.

If the execution mode of a SVC differs from that defined in the table SVCMODT,
the SVC is cancelled with 'execution mode violation', (ERR45).
Execution mode comprises

 � addressing/residency mode
� access register mode
� cross memory mode

When a SVC processing routine gets control, it can find the execution mode of the
caller in the flag TCB.TCBEXFLG.

Normally, a SVC processing routine will get control in AMODE 24 and switch to
AMODE 31 by itself whenever necessary.

With a few exceptions, SVCs are not allowed in cross memory mode.

 Interrupt Processors 29

30 VSE/AF Supervisor DRM

 Dispatcher

z/VSE (Turbo) Dispatcher - Introduction
This paragraph gives an introduction to the Turbo Dispatcher. First we will discuss
the VSE partition and VSE task concept. VSE tasks are split into system tasks,
maintasks and subtasks, VSE partitions into one system partition, static and
dynamic partitions.

Note: The layout of an address space / partition below the bar (2 GB) has not
changed. The static and dynamic partition concept is not affected by 64-bit virtual
addresssing. Therefore, the pictures in this chapter describe only the 31-bit address
space. They do not show a potential extended shared or extended private area
above the bar.

Comparison System Task / User Task
For better understanding of system tasks processing it is important to distinguish
between server and service owner.

1. Normally a system task is performing the service which has been requested by
a user task.
In this case

� the system task is the server and
� the user task is the requester and owner of the service.

2. A system task may request participation of another system task on the same
service.
In this case, the service owner will remain the original service requester
whereas the first system task will be the immediate service requester to the
second one.

3. System tasks (for example, attention task) may perform processing which is not
connected to any kind of user task.
In this case (similar to user task) a system task is server and service owner of
its own.

 System Partition
In order to allow system and user task selection by the same mechanism identical
control blocks are used with both kinds of tasks. In addition to the user partitions a
pseudo partition (system partition) is used, which is the home of all system tasks
including attention. Task selection differentiates between two control blocks which
are related to partitions. These are

� Partition Control Block (PCB)
� Partition Information Block extension (PIB2)
� Partition Communication Region (COMREG)

A PCB represents a partition as the server whereas the PIB2 and COMREG are
representing the service owner. This means that in case of system task processing
the system PCB is involved in a combination with a user PIB2 and COMREG
whereas in the case of user task processing the PCB, PIB2 and COMREG belong
to the same user partition. If a system task has no service owner, the system PCB,
attention routine PIB2 and BG COMREG represent the selected environment.

© Copyright IBM Corp. 1985, 2013 31

 Static Partitions
Supervisor generation defines control information for 12 partitions, called static
partitions. Static partitions are compatible to the partitions in prior releases, that is
they support the old control block structure (defined by the partition COMREG
(SYSIR) interface) as well as the new control block structure defined by the PCE
(Partition Control block Extension). VSE allows to allocate 12 static partitions in up
to 12 address spaces. An address space contains a shared area and a private
area. The shared area is for all address spaces the same. The private area differs
dependent on the allocation. It is possible to allocate more than one partition in one
private area. Static partitions have the following predefined IDs:
F1, F2, F3, F4, F5, F6, F7, F8, F9, FA, FB, BG.

The following storage layout shows partitions BG, F1, F2, F3 and F4 allocated in
address spaces 0 to 3; one address space has a maximum size of 2 GigaByte
(GB).

 address spaces
� 1 2 3

up to 2GB ┌──────────────────────────────┐ ───────
 │ │ �
 │ SVA (31-Bit) │ Shared Area
 │ │ (31-Bit)
 │ │

 ├──────┬───────┬───────┬───────┤ ───────
 │//////│ F1 │///////│///////│ �
 │//////│ │///////│///////│ │
 │//////│ │///////│///////│ │
 │//////│ │///////├───────┤ │
 │//////│ │///////│ F4 │ │
 16MB │......│.......│.......│.......│ │

│//////│ ├───────┤ │ Private Area
 │//////│ │ F2 │ │ │

│//////│ │ │ │ │
├──────┤ │ ├───────┤ │
│ BG │ │ │ F3 │ │
│ │ │ │ │ │
│ │ │ │ │

 ├──────┴───────┴───────┴───────┤ ───────
 │ │ �

│ SVA (24 Bit) │ │
 │ │ Shared Area
 ├──────────────────────────────┤ (24-Bit)

│ S u p e r v i s o r │

 � └──────────────────────────────┘ ───────

Figure 14. Storage Layout (Static Partitions)

An operator or ASI procedure may allocate and start the partitions and give an exe-
cution priority to every partition. Static partitions may get JCL statements from a
physical reader or the job scheduler. In VSE the job scheduling, execution and
output spooling of a job is done by VSE/POWER, that is a job is VSE/POWER
controlled. VSE/POWER may also start the static partitions and run jobs in them,
that is VSE/POWER feeds JCL statements and data to the partition. The jobs are
located in the reader queue. The list or punch output may be directed to the corre-
sponding queues. The static partition is available for more than one job.
VSE/POWER allows to execute jobs in classes, the so called VSE/POWER
classes, where one or more static partitions may be assigned to.

32 VSE/AF Supervisor DRM

 Dynamic Partitions
Dynamic partitions (PCEDYNP in PCEFLAG) have a few incompatibilities com-
pared to static partitions. Two byte control block interfaces accessed via the
COMREG (SYSIR interface) are not supported, for example, PIBTAB, PIB2TAB,
DIB, NICL, FICL, etc., because partition related control blocks are allocated in the
SVA (24-bit, for example, PIB, PIB2, PCB, COMREG, SCB, TIB, TCB). That is for
dynamic partitions the supervisor only supports the new control block structure
defined by the PCE (Partition Control block Extension).

Also a few supervisor services are not available in a dynamic partition, for example,
PFIX, XECB, EXEC REAL. In the following you will find a description of the
dynamic partition characteristics.

VSE/POWER allocates and starts a dynamic partition for one job. VSE/POWER
controls the execution of the job and deallocates the dynamic partition after end of
job. The freed storage is available for another job.

Each dynamic partition has its own address space, that is only one dynamic parti-
tion is allocated in the private area of such an address space. Multiple dynamic
partitions may be allocated at a time.

To reduce the size of the shared areas a private system area is available for
dynamic partition address spaces called dynamic space GETVIS area. The
dynamic space GETVIS area belongs to the private area. Figure 15 on page 34
shows a comparison of static and dynamic Partition address space layouts.

The dynamic space GETVIS area is allocated together with the dynamic partition
and contains system data for the address space.

 Dispatcher 33

 Static Partition Dynamic Partition
Address Space Layout Address Space Layout

┌───────────────────┐ ────────────── ┌───────────────────┐
 │ │ � │ │

│ SVA │ Shared Area │ SVA │
 │ (31-Bit) │ (31-Bit) │ (31-Bit) │
 │ │
 │ │

├───────────────────┤ ────────────── ├───────────────────┤
 │///////////////////│ � │///////////////////│
 │//////invalid//////│ │ │//////invalid//////│
 │///////////////////│ │ │///////////////////│
 ├───────────────────┤ │ ├───────────────────┤

│ Static Partition │ │ │ Dynamic Partition │
 │ │ │ │ │
 │ (GETVIS area) │ │ │ (GETVIS area) │
 │ │ Private │ │
16MB │...................│ Area │...................│
 │ │ │ │ │
 │ │ │ │ │
 │ │ │ │ (program area) │

│ ... │ │ │ │
 │ │ │ │ │
 │ │ │ ├───────────────────┤
 │ (program area) │ │ │ Dynamic Space │
 │ │
 │ GETVIS area │

├───────────────────┤ ────────────── ├───────────────────┤
 │ │ � │ │

│ SVA │ │ │ SVA │
 │ (24-Bit) │ Shared Area │ (24-Bit) │
 ├───────────────────┤ (24-Bit) ├───────────────────┤
 │ Supervisor │
 │ Supervisor │
 � └───────────────────┘ ────────────── � └───────────────────┘

Figure 15. Address Space Layout for Static and Dynamic Partitions

Dynamic partitions are grouped into classes corresponding to the VSE/POWER
classes, where jobs can be executed. These classes are called dynamic classes.

Only the priority of the dynamic class can be specified. The dynamic partitions
within the class are time sliced.

Static and dynamic partitions may be grouped in one VSE/POWER class.

A table, the so called dynamic class table, contains the attributes of the dynamic
classes. The dynamic class table may be cataloged in the library, from where it
can be loaded.

Some dynamic class table attribute examples:

 � Storage allocation:
specifies the storage requirements of a dynamic partition (Dynamic Space
GETVIS and partition allocation) of the given class,

 � Partition SIZE:
defines the amount of contiguous virtual storage in a partition reserved for
program execution; the rest of the partition is available as partition GETVIS
area,

34 VSE/AF Supervisor DRM

� Dynamic Space GETVIS size:
defines the amount of contiguous virtual storage for the Dynamic Space
GETVIS area (refer to Figure 15 on page 34),

 � Profile(procedure):
will be executed in the partition prior to the job (corresponds to ASI procedure
of static partitions),

� Max. number of dynamic partitions within class:
specifies the maximum number of partitions that can be allocated in parallel
within the given class, when enough virtual storage and dynamic partitions are
available;

 � Disable indication:
allows to disable a dynamic class, that is no job can be executed within this
class;

� Spooled I/O devices:
specifies the spooled devices, for example, reader, printers and punches which
interfaces to VSE/POWER.

Dynamic partition IDs are built as follows:

 <class><pno>

where <class> = dynamic class (one character, defined by user)
<pno> = partition number within dynamic class

 Examples

1. The first dynamic partition allocated in a dynamic class P receives ID P1.

2. The following example shows a storage layout with partitions BG, F1 - F7 in
address spaces 0 to 3, 2 dynamic partitions of dynamic class N in address
spaces N1 and N2, one dynamic partition in address space P2 and one
dynamic partition in address space 04.

 address spaces
� 1 2 3 N1 N2 P2 O4

┌── - - - - - - - - - ┐
 │ SVA (31-Bit) │

├────┬────┬────┬────┬────┬────┬────┬────┬ - - - - - - - - - ┤
│ F2 │////│ F6 │////│////│////│ P2 │////│ │
│ │////│ ├────┤////│////│ │////│ │
│ │////│ │ F7 │////│////│ │////│ │
│ │////│ │ │////│////│ │////│ free │
│ │////│ │ │////│////│ ├────┤ storage │

16MB │....├────┤....│....├────┼────┤....│ O4 │ pool │
│ │ F1 ├────┤ │ N1 │ N2 │ │ │ │
│ │ │ F4 ├────┤ │ │ │ │ │
├────┤ ├────┤ F5 │ │ │ │ │ │
│ BG │ │ F3 │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │ │
├────┴────┴────┴────┴────┴────┴────┴────┴ - - - - - - - - - ┤

 │ SVA (24-Bit) │
├── - - - - - - - - - ┤

 │ Supervisor │
� └── - - - - - - - - - ┘

Figure 16. Storage Layout with Dynamic Partitions

 Dispatcher 35

Dynamic Partitions and Ease of Use
The following items show how easy it is to process jobs in dynamic partitions:

 1. Definition:
The dynamic class table allows to define the attributes of dynamic partitions in
only a few statements.

2. Dynamic partitions allocated when needed:
Dynamic partitions are only allocated, when a job is to be executed in a
dynamic class. This saves system resources. If a VSE/POWER class contains
static and dynamic partitions, static partitions will be used first for job execution
(default, may be changed by VSE/POWER startup parameter).

3. Automatic allocation, initialization and deactivation:
The job's environment and resources are allocated and released automatically
without user intervention.

4. Identical resource allocation within one dynamic class:
Resources needed for the job are allocated prior to job execution.

 5. Time slicing:
There is no need to control CPU intensive jobs, because after the time slice of
a job is exhausted, the job is moved to lowest priority position within the
dynamic class.

6. Migration from static to dynamic partitions:
It is easy to migrate jobs to dynamic partitions, because the design avoids
incompatibilities.

Dynamic Partition Concept
The concept shows, how dynamic classes can be defined and how dynamic parti-
tions are created and released, when the system resources are available (for
example, virtual storage).

The following paragraphs describe

1. dynamic class table maintenance,
2. dynamic partition dispatching,

 3. job execution.

1) Submit Job to be executed in a dynamic class
2) VSE/POWER requests dynamic partition allocation

─ create dynamic partition
3) VSE/POWER starts the dynamic partition

─ make dynamic partition dispatchable
4) dynamic partition initialization

─ initialize address space
─ run dynamic class profile

5) job execution
6) end of job process
7) dynamic partition deactivation

─ free system resources
─ stop partition
── make dynamic partition undispatchable

8) deallocate the dynamic partition
─ remove partition from dispatching queue

Figure 17. Job Execution - Overview

36 VSE/AF Supervisor DRM

Maintain the Dynamic Class Table (Create, Store and Load)
Any editor or the VSE dialog may create and change the dynamic class table. Ser-
vices are available to store the table into the library from where the operator or the
VSE/POWER ASI procedure may load the table.

The load process validates the dynamic class table values and translates the infor-
mation into an internal representation. Invalid entries are shown on the console.
Only valid entries can be activated, that is the dynamic class table is stored into
system storage (addressable by system routines). The dynamic classes receive a
predefined dispatching priority. An operator may change the priority by the priority
command.

A following load request may change or remove dynamic class table entries. A load
request is rejected, when a dynamic class to be removed has allocated dynamic
partitions.

How to Change the Priority
The operator or a startup procedure may change the priority of static partitions and
dynamic classes. To avoid that a CPU intensive partition/class can stop the dis-
patching of lower priority partitions/classes VSE allows to define a time sliced (bal-
anced) group. The member of the group (static partition or dynamic class) that
looses its time slice receives the lowest priority position within the group. If more
than one dynamic partition is allocated within a dynamic class the same algorithm
is used.

 Job Execution
Job selection for execution in a dynamic class is only possible, if the dynamic class
is enabled. This is indicated in the loaded (active) dynamic class table and can be
changed by a VSE/POWER command. This paragraph describes the processing
after a job for an enabled dynamic class is found.

Dynamic Partition Allocation and Start
VSE/POWER requests allocation of a dynamic partition. The allocation service
builds a partition ID, allocates and initializes control blocks and creates an address
space. The dynamic partition is included into the dynamic class dispatcher queue.
The partition start service makes the dynamic partition dispatchable (ready to run)
and starts initialization.
If a second dynamic partition is allocated within the same dynamic class, time
slicing for the dynamic class is started.

Dynamic Partition Initialization
During dynamic partition initialization the address space is validated, job control is
loaded and the dynamic partition prepared. A few system routines may be exe-
cuted during preparation. Job control executes the profile.
If the initialization cannot complete, the partition will be canceled, deactivated, deal-
located and the dynamic class disabled to avoid execution of other jobs.

After successful initialization the job is executed, that is VSE/POWER passes JCL
and data to the dynamic partition. VSE/POWER requests deactivation, when the
end of the job is reached.

 Dispatcher 37

Dynamic Partition Deactivation
System routines called during preparation are notified that deactivation is
requested. The system frees resources, stops the dynamic partition and makes the
partition undispatchable. VSE/POWER deallocates the partition.

Dynamic Partition Deallocation
The deallocation service frees the partition ID and system space allocated for
control information (for example, control blocks). It removes the dynamic partition
from the dynamic class dispatching queue. If only one dynamic partition remains in
the dynamic class, time slicing for the dynamic class will be reset.

Advantages of the Concept
The customer has only to define system resources available for dynamic partitions
(for example, virtual storage size, dynamic class table). The job execution including
partition allocation and deallocation is done by the system, that is system resources
are only used when needed. It is easy to migrate jobs from static to dynamic parti-
tions, because the incompatibilities (control blocks, services,etc.) are kept as low
as possible. Only system software should be affected. The dynamic partition
concept is open for follow on development.

38 VSE/AF Supervisor DRM

 Turbo Dispatcher

Turbo Dispatcher Design
A z/VSE system with the Turbo Dispatcher (TD) active can run on any supported
uni- or multiprocessor. The Turbo Dispatcher can utilize multiprocessors by distrib-
uting the workload across several processors (CPUs) of one Central Electronic
Complex (CEC), enabling them to work in parallel and thus increase the overall
throughput of a z/VSE system.

At Initial Program Load (IPL) the Turbo Dispatcher ($IJBDSPT) phase will be
loaded just after the z/VSE Supervisor.

The z/VSE Turbo Dispatcher works on a partition (job) basis, that is, it dispatches
an entire partition to a CPU waiting for work, instead of dispatching at a subtask
level like OS/390 does. Subsequently "jobs" is used as a synonym for partitions.
One job consists of many work units. A work unit is defined as a set of
instructions that are executed from the selection by the z/VSE Turbo Dispatcher
until the next interrupt. Only one work unit of a job can be processed at a time,
that is, no other work unit of the same job can run on a different CPU. This means
for jobs with multitasking applications (applications with attached VSE subtasks),
that no other task of the same job can execute on a different CPU, when one task
of that job is already active.

There are two different work unit types:

1. parallel work units (P)
Most customer applications in batch as well as the online (CICS/VSE or CICS
Transaction Server) environment are processed as parallel work units.
However, when an application calls a supervisor service, it has to process a
non-parallel work unit in most cases.

2. non-parallel work units (N)
Most system services and key 0 applications (such as supervisor-,
VSE/POWER and ACF/VTAM services) will be processed as non-parallel work
units.

Only one CPU within the CEC may process a non-parallel work unit at a time,
that is as long as this work unit type is active, no other CPU can execute a
non-parallel work unit. Any other job, that wants to process a non-parallel work
unit, has to wait until no other CPU processes a non-parallel work unit.

However, other CPUs may process parallel work units of other jobs.

Notes:

a. Work units of the VSE/POWER maintask can be processed in parallel, if
the VSE/POWER autostart statement

SET WORKUNIT=PA

is specified in the VSE/POWER startup procedure.

b. Some vendors adapted their applications to run parallel work units even if
they are executing in key zero.

The following simplified example (no interrupts are considered, all work units have
the same length) should give you an impression, how the z/VSE Turbo Dispatcher

 Dispatcher 39

processes a given workload (see Figure 18 on page 40). Job A, B and C are
ready for selection, job A has highest, job C lowest priority. Each job consists of 3
work units, e.g. job A consists of work units A1, A2, and A3. Work unit A1 has to
be processed before work unit A2 (of the same job) can be selected. Work units
are either parallel (P) or non-parallel (N). On a uni-processor the three jobs would
need 9 process steps (3 jobs times 3 work units), the z/VSE Turbo Dispatcher
would need only 5 steps on a 2-way (dyadic) CEC as shown in the example (with
CPU 0 and CPU 1):

 │
Work units of Job A, B, C: │ Jobs A, B, C executing in a two-way processor:

 │
PRTY ┌─────┐ ┌─────┐ ┌─────┐ │
high ├─────┤ ├─────┤ │ │ │ Step 1 Step 2 Step 3 Step 4 Step 5
 │ JOB A │A1(N)│ │A2(N)│ │A3(P)│ │
 │ ├─────┤ ├─────┤ │ │ │ ┌─────┐ ┌─────┐ ┌─────┐ ┌─────┐
 │ └─────┘ └─────┘ └─────┘ │ ├─────┤ │ │ ├─────┤ │ │
 │ ┌─────┐ ┌─────┐ ┌─────┐ │ CPU �│A1(N)│ │C1(P)│ │B2(N)│ │C2(P)│
 │ │ │ ├─────┤ │ │ │ ├─────┤ │ │ ├─────┤ │ │
 │ JOB B │B1(P)│ │B2(N)│ │B3(P)│ │ └─────┘ └─────┘ └─────┘ └─────┘
 │ │ │ ├─────┤ │ │ │
 │ └─────┘ └─────┘ └─────┘ │ ┌─────┐ ┌─────┐ ┌─────┐ ┌─────┐ ┌─────┐
 │ ┌─────┐ ┌─────┐ ┌─────┐ │ │ │ ├─────┤ │ │ │ │ │ │
 │ │ │ │ │ │ │ │ CPU 1│B1(P)│ │A2(N)│ │A3(P)│ │B3(P)│ │C3(P)│
 │ JOB C │C1(P)│ │C2(P)│ │C3(P)│ │ │ │ ├─────┤ │ │ │ │ │ │

 │ │ │ │ │ │ │ └─────┘ └─────┘ └─────┘ └─────┘ └─────┘
low └─────┘ └─────┘ └─────┘ │
 │
 (P) = parallel work unit
 (N) = non-parallel work unit

Figure 18. Processing Steps for Jobs A, B and C

 � Step 1:
CPU 0 selects non-parallel work unit A1, at the same time CPU 1 selects par-
allel work unit B1, because job A and B have a higher priority than job C.

 � Step 2:
The next two highest priority work units are A2 and B2. However, both work
units are non-parallel and therefore cannot run at the same time. So the next
lower priority parallel work unit C1 will be selected, that is this step is made of
work unit A2 and C1. A2 may be selected by CPU 0 or CPU 1, in the example
it executes on CPU 1.

 � Step 3:
Now non-parallel work unit B2 and parallel work unit A3 will be processed, as
given by their priority.

 � Step 4:
Job A terminated. C2 and B3 are both parallel work units and will be proc-
essed by CPU 0 and CPU 1.

 � Step 5:
Now also job B terminated. In our example CPU 1 processes the last available
work unit C3 of job C.

40 VSE/AF Supervisor DRM

Advantages on Uni-Processors
The Turbo Dispatcher provides advantages not only for multiprocessors but also for
uni-processors in terms of

� multiprocessor exploitation prediction,

� measurement tools (SIR command),

� partition balancing enhancements and

� performance improvements for some environments (e.g. when VSE/ICCF is
active).

Partition Balancing Enhancements
The Turbo Dispatcher provides an improved partition balancing algorithm, which
gives each partition, be it static or dynamic, equal weight within a balanced group.
The PRTY command defines the balanced group, e.g.

 PRTY F4,C=BG=F5,F3,F2,f1

In our example we have dynamic class C (which may hold up to 32 dynamic parti-
tions), static partitions BG and F5 as balanced group members.

Balanced group members are time sliced. The calculation of a time slice size is
based on the MSECS interval. The MSECS command may change this MSECS
interval (default is about 1000 milliseconds).

With the Turbo Dispatcher active all dynamic and static partitions of the balanced
group will receive the same time slice. That is when a dynamic partition's time slice
expires, only this partition will be moved to a lower priority, all other dynamic parti-
tions of the same class will not change their priority.

Relative CPU Shares
The PRTY SHARE command allows to specify a relative share of CPU time for
each static partition and dynamic class belonging to the balanced group. With this
enhancement it is much easier, for example, to balance a CICS partition with batch
partitions in a way that ensures acceptable throughput for the batch partitions and
acceptable response times for the CICS transactions.

 Quiesce CPUs
This support was especially implemented for VSE/ESA systems running as guests
under VM/ESA. Before VSE/ESA 2.3 not active (stopped) CPUs excluded the
VM/ESA guest from I/O assist, which caused performance degradation. With the
STOPQ parameter of the SYSDEF command it is possible to quiesce a CPU, that
is a CPU will be suspended from task selection, however the CPU is still active (not
in stopped state). A quiesced CPU which is not needed during a certain period of
time (for example during off-shift) helps to minimize the overhead caused by idle
additional CPUs.

 Dispatcher 41

z/VSE Turbo Dispatcher Considerations
The z/VSE Turbo Dispatcher support is transparent to most programs as well as
IBM's subsystems such as the CICS Transaction Server, CICS/VSE and
ACF/VTAM. Apart from few exceptions, application programs can run functionally
unchanged with the z/VSE Turbo Dispatcher. However, there may be the need to
adapt applications for better multiprocessor exploitation (e.g. by implementing
larger I/O buffers or using data spaces).

A few system applications run in key zero, have interfaces with the dispatcher or
supervisor areas or update the first 4 KB page. These applications may have the
need for adaptations. Examples for such applications are performance monitors,
accounting and scheduler routines.

Note: The traditional replacement of the SVC new PSW (Program-Status Word)
e.g. by vendors cause performance degradations in the multiprocessor envi-
ronment. z/VSE provides vendor exits to get rid of that replacement.

Most vendor products adapted their applications to the Turbo Dispatcher
environment and improved performance (compared to the standard dis-
patcher) by exploiting vendor exits.

Most user applications are written in high level languages (such as COBOL) and do
not access internal system areas.

 More Information
You will find further details about the Turbo Dispatcher in the following publications:

� VSE/ESA Turbo Dispatcher Guide and Reference, VSE/ESA 2.4.0,

� ITSO VSE/ESA 2.1 Turbo Dispatcher, SG24-4674,

� Hints and Tips for VSE/ESA, available on Internet (http://www.ibm.com/vse/),

� z/VSE Turbo Dispatcher Performance document, available on Internet
(http://www.ibm.com/vse/).

42 VSE/AF Supervisor DRM

z/VSE Turbo Dispatcher - Details
In z/VSE each CPU shares real memory and has also access to the shared areas
(supervisor, SVA, etc.). The first page, call prefix page, is an expection to that
rule, it is unique to each CPU. In z/VSE the prefix pages are allocated in virtual
storage accessible by all CPUs. Each CPU has its own work area, which is also
located in shared virtual storage. The supervisor code is available for all CPUs,
that is the supervisor services, that are not reentrant, have to lock code.

The following figure shows the virtual storage accessible by two CPUs, where the
CICS partition is assigned to CPU 0 and the VTAM partition to CPU 1 at one
instant.

 Virtual Storage Virtual Storage
of CPU � of CPU 1

 ┌──┐
up to 2 GB │ SVA (31 Bit) │
 └──┘
 ┌──────────────────┐ ┌──────────────────┐
 │ │ │ │

│ Serviced Private │ │ Serviced Private │
│ Area of CPU � │ │ Area of CPU 1 │

 │ CICS Partition │ │ VTAM Partition │
 │ │ │ │
 │ │ │ │
 │ │ │ │
 │ │ │ │
 │ │ │ │
 │ │ │ │
 │ │ │ │
 │ │ │ │
 └──────────────────┘ └──────────────────┘
 ┌──┐
 │ Shared Partitions │
 ├──┤

│ SVA (24 Bit) │
 ├──┤
 │ Supervisor │
 4K └──┘
 ┌──────────────────┐ ┌──────────────────┐

│ CPU � Prefix Page│ │ CPU 1 Prefix Page│
 � └──────────────────┘ └──────────────────┘

Figure 19. Sharing of Virtual Storage for one CEC (e.g. 2 CPUs)

IPL is processed on a single CPU. The z/VSE operator or VSE/AF ASI procedure
may start other CPUs via a new command. The supervisor use the Signal
Processor (SIGP) instruction to initialize and start a different CPU and to communi-
cate in between CPUs, which is used in rare cases. In general defined interfaces
located in the shared area are used for communication.

One VSE/POWER job consists of multiple work units. One work unit is defined as
the dispatchable entity of the partition, which can be processed on one CPU until
the next (SVC, I/O, external, etc.) interrupt.

All CPUs within one CEC have equivalent rights as long as no work unit is
assigned to a specific CPU. One job consists of parallel and non-parallel work
units.

 Dispatcher 43

Parallel work units (P) are defind as application code like CICS transactions
(running in problem state and non-key zero). Non-parallel work units (N) are
defined as system code like supervisor services, VSE/POWER, or ACF/VTAM (key
0, disabled and/or supervisor state work units).

Whenever (N) code is executing on one CPU (lets say CPU X), all other CPUs that
request execution of (N) code have to delay these work units or wait for the (N)
state, that is no other (N) code can run on a different CPU when active on CPU X.
However, any other CPU may process (P) code. When the (N) work unit has to be
delayed, a CPU may select another (P) work unit of a different partition, if available.
After CPU X has processed a (N) work unit, it looks for other enqueued (N) work
units. If no such (N) work units are available, any other CPU may run a (N) work
unit; CPU X will select the highest priority (N) or (P) work unit, if any.

Examples: The following examples show the assignments of two partitions to two
CPUs (CPU 0, CPU1), all ready-to-run, where the following abbreviations are used:

P1 = Partition 1
P2 = Partition 2
(P) = executing parallel work units
(N) = executing non-parallel work units

The examples also show the transition from (P) work units to (N) work units.

Example 1: Supervisor Call (SVC) Interrupt Process: The first example uses SVCs
to switch from (P) work units to (N) work units. The z/VSE TD decides, if the CPU
has to wait (using spin loops) until it can process the (N) work unit for the corre-
sponding job (partition) or delay the SVC and select another ready-to-run job.

44 VSE/AF Supervisor DRM

 CPU � CPU 1

 select P1 select P2
 ││ ││
 ││ ││

││ P1 (P) ││ P2 (P)
 ││ ││

 ││
 SVC ││
 │ ││
 │ ││

│ P1 (N)

│ SVC code SVC

 │ ..
│ .. wait for (N) = spin

 │ .. or delay

 dispatcher ──────────
 ││ │

││ P1 (P) │ P2 (N)

 │ SVC code

 interrupt │
 ││ │
 ││ (P) │

 dispatcher dispatcher
 ││ ││
 ││ ││

││ P2 (P) ││ P1 (P)
 ││ ││
 ││ ││

Figure 20. SVC Interrupt Process

 Dispatcher 45

Example 2: Clock Comparator and I/O Interrupt Process: The second example
shows how I/O and clock comparator (external) interrupts are processed. The CPU
that receives an I/O or external interrupt tries to get the N state. If this is not pos-
sible, it enqueues the interrupt to the CPU that runs (N) work units and continues
with interrupted (P) work unit (partition) or frees the work unit and continues with
the next higher priority work unit.

 CPU � CPU 1

 select P1 select P2
 ││ ││
 ││ ││

││ P1 (P) ││ P2 (P)
 ││ ││

 ││
 interrupt ││
 │ ││
 │ ││
 │ (N) enqueue

 │ �──────────────interrupt

│ to CPU � ││
 │

 │ dispatcher

 ││
 dispatcher ││

│ (N) ││ P1 (P)
│ process enqueued ││

 │ interrupt ││

 ││
 dispatcher ││
 ││ ││

││ P2 (P)

 ││ interrupt
 ││ │

 enqueue │ (N)
 interrupt ────────────────� │

││ to CPU 1 │

 │
 dispatcher │
 ││

 ││ dispatcher

││ P1 (P) │
││ │ process enqueued

 ││ │ interrupt

Figure 21. External and I/O Interrupt Process

Parallel work units are enabled for I/O and external interrupts like in prior VSE/ESA
releases. So any CPU may receive interrupts.

Note: With a few exceptions, e.g. IUCV and VMCF interrupts are enabled only on
that CPU, where IPL was performed.

Work units are selected dependent on the z/VSE priority scheme.

Note: The z/VSE Turbo Dispatcher will be implemented in separate module, which
is OCO (Object Code Only). Therefore you will find more details about the
Turbo Dispatcher in an internal document.

46 VSE/AF Supervisor DRM

z/VSE Turbo Dispatcher - CPU Management
The SYSDEF AR and JCL command allows to start and terminate all available or
selected CPUs.

The following paragraphs describe

� Activation and initialization of CPUs (Multiprocessing)

� Termination of CPUs (Multiprocessing)

 � CPU Recovery

Activation and Initialization of CPUs
A new AR/JCL SYSDEF operand will be introduced to activate z/VSE multiproc-
essing capabilities. All or one additional CPU can be activated.

The initialization process determines the number of CPUs available in the CEC
configuration (no supervisor generation is required) and allocates prefix pages
(page 0) and work areas for each CPU in system GETVIS (31 bit) storage. SIGP
instructions are used to initialize and start the CPUs. A CPU vector table (TDATAB)
will be allocated in virtual storage (outside page 0). The vector table holds an
address for each CPU pointing to the CPU control block (TCPU) of the corre-
sponding CPU. TCPU points to the CPU's work area. Each CPU has access to the
other CPUs page 0 and work areas.

Termination of Multiprocessing
A new AR/JCL SYSDEF operand will be introduced to terminate z/VSE multiproc-
essing capabilities. One specific CPU or all active CPUs are stopped using SIGP
instructions. When all additional CPUs are to be stopped, z/VSE continues to run
in uniprocessor mode on the 'IPLed' CPU.

z/VSE Turbo Dispatcher - Data Areas, Control Blocks and Structure

System Areas (Control Blocks)
Updates to system control blocks are only possible by tasks running with key zero,
which means in z/VSE's TD approach, can be changed from one CPU at a time.
Control blocks and areas that are changed dependent on the status of the system
should be removed from page 0 (low core).

The following control blocks and areas will be moved from page 0:

� Resource descriptor table
� TIBATAB (Task Information Block Address Table)

will be located at the 4K boundary, the static part will stay in page 0, the
remaining part in page 1.

 � RASLINK area
� whenever possible: move areas out of page 0

Most critical control blocks that are committed to applications are the SYSCOM and
the BG COMREG, because they are allocated in the page 0. These control block
will remain in page 0. When the task, running a non-parallel work unit, updates
these control blocks, the update will become active on the other CPUs, when the
(N) work unit is completed ((N) state is freed - in dispatcher or by service).

It may also be necessary to lock critical sections of code across all CPUs.

 Dispatcher 47

Note: Locking facilities will be provided to allow synchronization of control block
updates.

CPU Control Blocks
This Paragraph gives an overview of the CPU control blocks in z/VSE:

� TD Address Table (TDATAB)
� TD Communication Region (TDCOMREG)
� TD CPU Control Block (TCPU)

TD Address Table (TDATAB): The TDATAB holds addresses to all z/VSE CPU
control blocks. The first entry points to the TDCOMREG, the following up to 10
entries point to the TCPU control blocks of the corresponding activated CPUs. The
first entry with the high order byte set gives the first unused TDATAB entry.

The SYSCOM holds the address of the TDATAB at label IJBTDATB.

TD Communication Region (TDCOMREG): The TDCOMREG holds system infor-
mation, e.g.

 � started CPUs
 � control information
� delayed I/O and external interrupts
� global spin (compare-and-swap) locks

The TDCOMREG is allocated in the supervisor.

TD CPU Control Block (TCPU): The TCPU holds information specific for the cor-
responding CPU: such as:

 � CPU id
� active work unit type ((N) or (P))
� status of CPU
� process requests like

 – process PALB
– reset CPU time counters
– set default space

� CPU's PREFIX page (virtual and real)
� CPU's work area address

 � accounting information
– total CPU time since last IPL or reset
– total (N) time since last IPL or reset
– total spin time since last IPL or reset
– total allbound time since last IPL or reset
– dispatcher cycles since last IPL or reset

The TCPU for the IPLed CPU is allocated in the supervisor. The TCPUs for the
other CPUs are allocated in system GETVIS (31 bit) storage, when active.

Task Selection Control Blocks (TSCx)
Note: Task Selection Control blocks (TSC) are described in more detail in an

internal document.

The TSC holds the control information for a partition or task and is used by dis-
patcher services and task (work unit) selection. Dynamic Class related control infor-

48 VSE/AF Supervisor DRM

mation is located in the TSCC. Partition related control information is located in the
TSCP. Task related control information is located in the TSCT.

Information located in TSCC:

� dynamic class character
 � CPCB address
� partition status (active on CPU, ready-to-run)
� the priority chain forward and backward pointers

 � priority figures

The TSCC which is part of the priority chain will be replaced by a dynamic partition
TSCP, when the corresponding dynamic partition is allocated.

Information located in TSCP:

� partition identification key (PIK)
 � PCB address
� partition status (active on CPU, ready-to-run)
� address of ready-to-run TSCP with next lower priority
� the priority chain forward and backward pointers
� address of highest priority ready-to-run TSCT

 � priority figures
� address of TSCT active on any CPU
� page fault device information

The Partition Control Block (PCB) holds the address of the corresponding TSCP.
The system task and BG TSCPs are located in the supervisor, all other TSCPs are
allocated in system GETVIS (31 bit) storage.

Information located in TSCT:

� task identification (TID)
 � TIB address
 � TSCP address
� task status (active on CPU, ready-to-run)
� address of ready-to-run TSCT with next lower priority
� the priority chain forward and backward pointers

 � priority figures
� address of TCPU, where task is active

The Task Information Block (TIB) holds the address of the corresponding TSCT.
The system task and BG maintask TSCTs are located in the Turbo Dispatcher
phase, all other TSCTs are allocated in system GETVIS (31 bit) storage, when pos-
sible.

z/VSE Turbo Dispatcher - Task Selection
The z/VSE Turbo Dispatcher introduced a new task selection algorithm working on
queues of work units. One work unit is described by a task selection control block,
TSC. The queue elements (TSCs) are chained in priority order via forward pointer
and backward pointers. Each queue element holds a priority number (highest
number has highest priority).

VSE/AF has two TSC states:

1. TSC elements for non-parallel work units - TSC(N)

 Dispatcher 49

TSC(N) elements can be processed by only one CPU at a time, no other
TSC(N) element can be selected.

2. TSC elements describing parallel work units - TSC(P)

TSC(P) elements can be processed by any CPU, other CPUs may select
remaining ready-to-run TSC(P) elements.

VSE/AF has three TSC types:

1. the dynamic class TSC (TSCC), which is also part of the partition queue as
long as no dynamic partition within the dynamic class is active,

2. the partition TSC (TSCP), which is part of the partition queue, and

3. the task TSC (TSCT), which is part of the task queue.

TSCs of Ready-to-run partitions form the partition ready-to-run queue and TSCs
of ready-to-run tasks within a specific partition the task ready-to-run queue.

The system TSCP holds the anchor for the partition ready-to-run queue.

The TSCP holds the anchor for the task ready-to-run queue, which consists of
ready-to-run sub- or main-tasks.

 Partition Selection
Partition/task selection will be coded reentrant, that is any CPU may scan the TSC
ready-to-run queue to find a selectable element. When a CPU selects a TSCP, the
TSCP will be locked and is no longer available for other CPUs.

A VSE/AF partition is uniquely assigned to a TSCP.

When no task within the partition is ready-to-run, the corresponding TSCP will be
removed from the queue or is marked for deletion. The system TSCP (pointing to
the system PCB) will always be part of the TSCP ready-to-run queue, it is also
called the ready-to-run queue header.

If a partition with a newly readied task is not yet on the ready-to-run queue, it will
be added. To ensure that partitions are dispatched in priority order and in the order
in which the partitions became ready (in case of equal priority partitions - see parti-
tion balancing), the dispatcher will add a partition to the ready-to-run queue after all
partitions with equal or greater priority.

Task Selection (TSCT Queue)
Because tasks of a partition are not allowed to run concurrently on different CPUs,
the TSCT queue will only be locked on the partition TSCP. A ready-to-run task with
the highest priority will be selected by scanning the TSCT ready-to-run chain. A
new TSCT will be enqueued into the TSCT ready-to-run queue during the ATTACH
or post processing and deleted from the queue during unpost or DETACH process.
An application may change the priority of a subtask by issuing the CHAP macro.
Subtasks will always have a higher priority as the maintask, except the ICCF
pseudo partitions. They will have always a lower priority as the maintask. The
current priority of the task is formed by the partition's priority and the task priority.

When a ready-to-run task is selected, task selection process continues as
described in “Relating Control Blocks to Tasks” on page 53 and “Processing of
Task Selection Exit Routines” on page 54.

50 VSE/AF Supervisor DRM

The dispatcher services, system task as well as the balancing routine will be imple-
mented in an RMODE ANY module, which is located behind the supervisor phase.

System Resource Owners
System resource owners are known as End-Of-Task, Terminator or LTA owners.
The tasks that occupies one of these resources will receive the highest user task
priority, that is the corresponding TSCT will be enqueued just behind the system
TSCP as long as the resource is occupied and the TSCT is ready-to-run. All other
tasks of the corresponding TSCP will run with their defined priority. When a
resource owner TSCT is selected, no other task of the corresponding partition can
run concurrently.

ICCF Pseudo Partitions
TSCTs of ICCF pseudo partitions will always be queued to a lower priority as the
CICS maintask TSCT.

 Dispatcher 51

Steps to Task Selection
One VSE partition consists of one maintask and attached subtasks, where the
maintask has always the lowest priority within the partition.There is one exception:
ICCF pseudo (interactive) partitions have a lower priority as the maintask.

The current VSE system has a two level dispatching algorithm.

1. The highest priority partition ready to run is selected from the dispatcher queue.
2. The corresponding highest priority (sub)task ready to run is selected and dis-

patched. The task id (TID) is used to identify the control block structure.

How to Identify the Control Block Structure for a given Task ?
With a given task id (TID) the task's TIB pointer can be found via the TIB address
table (TIBATAB), the layout of which is shown in Figure 22.

TIBATAB

│�────System Tasks───�│�─────────────User Tasks────────────�│
│ │ │
│ │ │
│� 4 8 128│ │
┌───┬───┬───┬─ ─┬───┬───┬───┬─ ─┬───┬─ ─┬───┬─ ─┬───┐
│ � │TIB│TIB│ ��� │TIB│TIB│TIB│ ��� │TIB│ ��� │TIB│ ��� │ │
└───┴───┴───┴─ ─┴───┴───┴───┴─ ─┴───┴─ ─┴───┴─ ─┴───┘
│ ─ SNS DSK │AR BG F1 Fn─1 │S1 Sm │
│ │ │ │
│ │ │ │
│ │�────────Main tasks───────�│�─Subtasks──�│
│────�4�TID (offset within TIBATAB)

Where:
n = number of partitions (static and dynamic)
m = number of subtasks
TIB = Address of TIB

Figure 22. TIB Address Table (TIBATAB)

Once a TIB pointer is known, all related control blocks and areas can be accessed
as shown in Figure 23 on page 53.

52 VSE/AF Supervisor DRM

+++
 � ┌─────┐
 │ │ TID │
 │ └──┬──┘
 │ │
 │

 │ ─┬───────┬───────┬───────┬─
 │ ��� │ TIBPTR│ TIBPTR│ TIBPTR│ ��� TIBATAB
 │ ─┴───────┴───┬───┴───────┴─
 │ │
 S

 E ┌───────┐ ┌───────┐ ┌───────┐ ┌───────┐
 R │ SCBPTR│�───┐ │ PCBPTR│�───┐ │ TIBPTR│ ┌───� │ TCBPTR│
V └───┬───┘ │ └───┬───┘ │ └───┬───┘ │ └───┬───┘
 E │ │ │ └───────┐ │ ┌──────┘ │
 R │ └──────────┼──────────────┐ │ │ │ │
 │ │ │ │ │ │ │ │
 │

 │ │
 │

 │ ┌─────────┐ ┌─────────┐ ┌┴─┴────┴─┐ ┌─────────┐
 │ │ │ │ │ │ │ │ │
 │ │ SCB │ │ PCB │ │ TIB │ │ TCB │
 │ │ │ │ │ │ │ │ │
 │ └─────────┘ └─────────┘ └─┬──┬────┘ └─────────┘

 │ │
++│++│+++++++++++++++++++++++++
 � │+ │
 │ ┌─────┐ │+ │ ┌─────┐
 │ │ PIK │�────────────────────┘+ └────�│ TID │
 S └──┬──┘ + └──┬──┘
 E │ + │
 R
 +

 V ─┬───────┬───────┬───────┬─ + ─┬───────┬───────┬─
 I ��� │ PCBPTR│ PCBPTR│ PCBPTR│ ��� PCBATAB + ��� │ TIBPTR│ TIBPTR│ ���
 C ─┴───────┴───┬───┴───────┴─ + ─┴───┬───┴───────┴─
 E │ + │ TIBATAB
 │ +

 O ┌───────┐ │ ┌───────┐ + ┌───────┐
 W │CRADDR │ │ │PIBPTR2│ + │ TIBPTR│
 N └───────┘ │ └───────┘ + └───┬───┘
 E � │ � + │
 R │
 │ +

 │ │ ┌─────────┐ │ + ┌─────────┐
 │ └──────┤ ├─────┘ + │ │
│ │ PCB │ + │ TIB │
 │ │ │ + │ │

 └─────────┘ + └─────────┘
+++ +
 +

service owner �─────────� service requestor
 partition + task

Figure 23. Task Selection Control Block Interrelationship

Relating Control Blocks to Tasks
Control block connection is done by setting up the TID, PIK, TIBPTR, TCBPTR,
PIBPTR2, PCBPTR, and CRADDR fields in such a way that they correspond to a
task which has to be made active. Figure 23 shows that a control block connection
can be done by assuming a given task identifier. In case of task selection, some
pointers (for example, PCB pointer) are already known as a result of the first three
steps of task selection.

 Dispatcher 53

In case of user task processing the service owner and the server are the same,
that is the partition's COMREG, the PCB, the PIB2 and the PIK (CRADDR,
PCBPTR, PIBPTR2 and PIK in low core) belong to the same partition. A system
task may have a service owner, then the service owner's COMREG, PIB2 and PIK,
but the server's PCB is used to set up the low core fields.

Once the control block connections have been established a task is active. An
address space switch may be initiated by loading control register one and 7
dependent on the addressability scope of the selected task (TIBSCB in TIB). Corre-
sponding control registers must be set in addition to support access register mode.
The task's linkage stack entry address will be loaded into control register 15. But
prior to returning to task processing it might be necessary to perform some super-
visor services for these tasks. This is done by step 6 of task selection.

Processing of Task Selection Exit Routines
Before a user task is activated the task selection routine tests whether control has
to be transferred to any task selection exit routine.

Bits 0 to 7 of the TIBFLAG byte are associated with specific routines. They are
scanned left to right and, if the bit is set to one, the corresponding routines are
entered. After entry to a routine the corresponding bit is reset to zero.

There are the following exit routines:

� SVRETURN (Bit 0: X'80' - CSVRET in TIBFLAG)
Return to an interrupted (reentrant or gated) supervisor service routine. When
partition balancing and/or job accounting support is active and and the new
accounting owner is not the old one the current accounting interval is deter-
mined and added to the old owners time counter field (system overhead or user
CPU time) and a new accounting interval is initialized. The routine identifier is
moved from the TCB into the RID field.

In case of a gated routine the resource (which is given by the RID) is freed and
any waiting tasks are posted. The general registers of the interrupted routine
are loaded from the task's system save area and control is returned to the
routine loading its program status word.

� REENTSVC (Bit 1: X'40' - RETRYSVC in TIBFLAG)
Reenters the SVC first level interrupt handler routine without issuing an SVC. It
is used for performance purposes. It allows a short path when the entry to an
SVC routine should be retried.

� DELMOVE (Bit 2: X'20' - TIBDELMV in TIBFLAG)
Enters the general delayed move routine. Bits 0 to 7 of the TIBDMFLG byte are
associated with the delayed move routines. The routine address is determined
via a left to right scan of TIBDMFLG.

One of the following routines will be activated:

– MOVECCB (Bit 0: X'80' - TIBCMVEX in TIBDMFLG)
This exit routine has two different functions:
1. Move a CCB which could not be copied back after completion of

channel program translation because the page containing the virtual
CCB was not in processor storage. Return to task selection entry.

2. Return to SVC 119 (X'77') processing after the FBA I/O operation has
been completed.

– XPCCEXIT (Bit 1: X'40' - TIBXPCEX in TIBDMFLG)

54 VSE/AF Supervisor DRM

If a XPCC request is executed, where the destination is not in the same
space than the originator, the control information to be stored into destina-
tion XPCCB (such as traffic bits, user data, etc.) will be saved into a
supervisor control block (CRCB) and transferred to the destination XPCCB,
if the associated path is dispatched.

– SV103RET (Bit 2: X'20' - TIBSFLEX in TIBDMFLG)
If I/O is made by the SVC 103 routine, the SV103RET flag will be set in
order to return to the SVC 103 routine after I/O processing.

– TINFMOPD (Bit 3: X'10' - TIBPERST in TIBDMFLG)
Modifies the PER active indication in the partition control block (PCB) and
the save area PSW of the specified partition.

– DISPEXRI (Bit 3: X'08' - TIBGENEX in TIBDMFLG)
Activates the general dispatcher exit.

– TERMSRES (Bit 3: X'04' - TIBTERMX in TIBDMFLG)
Resets the task owning the message writer routine to its original priority, if
the task is running as 'system resource owner'.

– DISPTSTP (Bit 3: X'04' - TIBSTOPR in TIBDMFLG)
Stops the current task (task waiting to be restarted), which was requested
by the TDSERV FUNC=TASKSTOP service.

� CNCLEXIT (Bit 3: X'10' - FETCHEOJ in TIBFLAG)
There is no save area available to be used by the resident part of the termi-
nator routines. This exit is used to activate the terminator and to return control
to it after an interruption.

� ICCFEXIT (Bit 4: X'08' - ROLLOUT in TIBFLAG)
It supports synchronization between an ICCF 'Pseudo Partition' task and the
ICCF High Priority Task.

� EXTRETRN (Bit 5: X'04' - CDELEX in TIBFLAG)
This activates the user timer exit routine or posts the timer ECB after a timer
interrupt for this task. Since timer interrupts are asynchronous to user task
processing, activation and posting is delayed in order to have the system save
area available. This is necessary because a page fault may occur when
accessing the save areas or the timer ECB.

� OCEXIT (Bit 6: X'02' - OCPEND in TIBFLAG)
Provides delayed activation of a user OC exit routine. This is necessary
because an MSG command is asynchronous to the corresponding maintask
processing and the save areas involved may be paged-out.

� APSEXIT (Bit 7: X'01' - APSEXFLG in TIBFLAG)
Gives control to the ACF/VTAM dispatcher appendage routines (APS SWAP or
ISTAPCKU routine). After returning from an appendage routine a test is made
whether any OC or timer interrupts are unprocessed yet. If so, the corre-
sponding TIBFLAG bit is set. In addition to this CNCLEXIT may be reactivated
when the APSEXIT was called during EOJ processing. After processing, the
APSEXIT routine returns to the entry of the task selection routine.

Initialize Task's Processing and Give Control to it
Before control is given to a task a test is made whether tasks program status word
(PSW) is in a disabled state. If so, an interrupt window is opened, allowing for any
pending interrupt to occur. The interrupt window is closed immediately. This inter-
rupt window prevents any task from running fully disabled (that means over a
boundary of supervisor services). When partition balancing and/or job accounting
support is active and the new accounting owner is not the old one the current

 Dispatcher 55

accounting interval is determined and added to the old owners time counter field
(system overhead or user CPU time) and a new accounting interval is initialized.
For a maintask which is task timer owner the remaining time slice is set. At the
end of task selection the Routine Identifier (RID) field is set to the value USERTID.
This indicates that normal tasks processing is active. The task's floating point,
access registers and general registers are loaded and control is given to the task
loading its Program Status Word (PSW).

56 VSE/AF Supervisor DRM

VSE/AF Dispatcher - Internal Gating Mechanism
The internal gating mechanism controls the usage of internal resources.

Its function is to

� Post/unpost Tasks and Partitions
 � Free/occupy Resources
� Maintain Wait Queues

Flags, fields, tables involved in internal resource handling are:

� Partition and Task Selection String (PSS, TSS)
� Task Status Flags (located in TIB, label TIBRQID in the supervisor - Figure 26

on page 61)
� Resource descriptors (located in SRQTAB and in PCBs) including a header for

building wait queues
� Wait Queues (chains of TIBs enqueued on a resource)

For the Turbo Dispatcher all ready-to-run partitions and tasks have to be on the
TSCP/TSCT ready to run queues. A more exact description of a task's status is
given by its task status byte (TIBRQID) and the corresponding resource descriptor.

 Dispatcher 57

Addressing Resource Descriptors

 TIBRQID
 ┌─────┐

│ f │
 └──┬──┘
 │
 │

f < X'9�'
 f >= X'9�'
 �──�
 │ │
 │ │
 SRQTAB │ PCB │
│ (8-byte │ 8�f │ (8-byte │ 8�(f─X'9�')+c
 │ entries) │ │ entries) │
 │ │ │ │
 │ │ │ │
 │ │ │ │
 │
 │

 │f= X'81' X'82' X'83' X'8F' │ X'9�' X'91'
│ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │
│

 │

 │ ─┬────────┬────────┬────────┬─ ─┬────────┐ │ ┌────────┬────────┬─
 │���│SRQLTA │SRQWAIT │SRQREADY│���│SRQEXNT │ │ │SRQGTV │SRQCDL │���
 │ ─┴────────┴────────┴────────┴─ ─┴────────┘ │ └────────┴────────┴─
 │ │
 │ │�─c─�│
 │ │
 └──────� a └───────� b

f = Value in TIBRQID byte (task status flag)
c = Displacement of first descriptor (SRQGTV) within PCB
a = 8 � f (displacement to an entry in SRQTAB)
b = 8 � (f─X'9�') + c (displacement to an entry in PCB)

Figure 24. Addressing Resource Descriptors

58 VSE/AF Supervisor DRM

 Resource Descriptors
For compatibility and performance reasons there are different gating concepts
implemented. The method which has to be used with a given resource is specified
via a resource descriptor entry, shown in Figure 25.

 ┌───────────────┬───┬───┬───┬───┐
│ │ │ │ │ │
│ A C C C │ I │ F │ G │ O │
│ │ │ │ │ │ │ │ │

 └───┴───┴───┴───┴───┴───┴───┴───┘
� � � � �
│ │ │ │ └──Owner ID (RQOWNER)
│ │ │ └──Resource byte (RBYTE)

 │ │ └──Flag byte (RQFLAG)
 │ └──Resource ID (RQID)

│ (= task status flag)
└──4 byte queue header (RQCHAIN)

Figure 25. Resource Descriptor Entry

Description of Entries

 � ACCC: Queue header
In combination with specific resources the queue header is used for building
wait queues.

– A = X'80' (first byte of a queue pointer)
indicates end of a wait queue. In this case pointer ACCC points to the first
byte of the corresponding resource descriptor.

– A = X'00' (first byte of a queue pointer)
indicates a (or another) waiter is enqueued on a resource. In this case
pointer ACCC points to the first byte of the waiters TIB.

A = X'80' in a queue header indicates that there are no waiters enqueued on
the resource. A task is enqueued on a resource inserting its TIB to the front of
a wait queue.

Note: The symbolic names of gates, their types and displacements (flag
values) are shown in Figure 26 on page 61.

 � I: Resource ID:
For identification purposes, byte 4 of each entry contains the corresponding
task status flag value. For example, in the entry SRQREADY, I = X'83'.

� F: Flag byte (Resource Queue ID):
specifies the gating method to be used.

 Dispatcher 59

 ┌──────┬───────┬───────┬────────────────────────────────┐
 │ Flag │Labels │Apprev.│Type Description │
 ├──────┼───────┼───────┼────────────────────────────────┤
 │ X'8�'│SYSTQ │ S │system queue, │
│ │ │ │priority posting, │
│ │ │ │switchable gate │
 │ X'4�'│PARTQ │ P │partition queue, │
│ │ │ │priority posting, │
│ │ │ │switchable gate │
 │ X'2�'│WAITCHN│ T │TIB chain, │
│ │ │ │selective posting, │
│ │ │ │permanently closed gate │
 │ X'1�'│IOCHN │ I │I/O chain, │
│ │ │ │selective or direct posting, │
│ │ │ │permanently closed gate │
 │ X'�8'│PGATE │ C │no queue, │
│ │ │ │direct posting, │
│ │ │ │permanently closed gate │
 │ X'�4'│PREADY │ O │ready to run state, │
│ │ │ │permanently opened gate │
 │ X'�1'│NORDY │ N │do not ready task for cancel │
 └──────┴───────┴───────┴────────────────────────────────┘

� G: Resource byte (Gate):
The most significant element of internal resource handling is a resource byte,
known as a gate. The content of the resource byte is used as a switch:

– G = X'00' : a resource is occupied (NOTFREE)
– G = X'80' : a resource is free (FREE)

1. Switchable gates: (P or S)
The content of a switchable gate may be changed. It may represent a
single item resource (routine, system task, etc.) or multiple items of a
resource (channel queue, copy buffers, etc.). Services are provided to
close/open the gate, dequeue/enqueue waiters.

2. Permanently opened gates: (O)
They are used in combination with the ready to run status of tasks. When-
ever a task is ready to run its TSS bit is turned on and its status flag points
to a permanently opened gate.

3. Permanently closed gates: (C, I or T)
They are used in combination with the not ready to run status of tasks
when switchable gates cannot be used. They are assigned to fixed
owners. Tasks pointing to permanent gates are posted/unposted individ-
ually by the resource owners upon completion of a service (I/O, program
fetch, etc.).

 � O: Owner ID:
ID of resource owner (Task ID).

60 VSE/AF Supervisor DRM

Task Status Flags

 ┌──────┬───────┬──────────┬──┐
 │ Type │ Value │ Name │ Usage │
 ├──────┼───────┼──────────┼──┤
│ S │ 47 │ IARV64BND│ Gate for IARV64 shared requests │
│ S │ 47 │ XMSBND │ Gate for cross memory services │
│ S │ 48 │ DOCABND │ Gate for router automatic storage │
│ S │ 49 │ DOCBBND │ Gate for router buffer space │
│ S │ 4A │ G122BND │ Gate for SYSDEF SVC │
│ S │ 4B │ PMSBND │ Gate for SPMRSERV services │
│ S │ 4C │ PXBHIBND │ Gate for TFREE in PFIX 31-bit area │
│ S │ 4D │ PXBLOBND │ Gate for TFREE in PFIX 24-bit area │
│ S │ 4E │ DYNCBND │ Gate for dyn. class services │
│ I │ 4F │ SPDTBND │ Gate for SPDT task │
│ S │ 5� │ DSPBND │ Gate for data space support │
│ S │ 51 │ TDWBND │ Gate for TD │
│ S │ 52 │ │ Reserved │
│ S │ 53 │ │ Reserved │
│ S │ 54 │ SV3BND │ Gate for SVC 3 to wait on SYSIO │
│ W │ 55 │ PSPFBND │ Gate for Pseudo page fault processing │
│ S │ 56 │ SPFIXBND │ Gate for PFIX in SVA processing │
│ W │ 57 │ PWSRVBND │ Gate for usage of POWER service │
│ S │ 58 │ GQMGBND │ Gate for usage of LOG queue manager │
│ S │ 59 │ UNUSBND │ Gate reserved for future use │
│ S │ 5A │ NPGRBND │ Gate for usage of LUB allocation services│
│ S │ 5B │ VIOBND │ Gate for virtual I/O support │
│ O │ 5C │ CONDRDY │ Flag for conditional ready state │
│ S │ 5D │ IUCVBND │ Gate for IUCV support for VCNA │
│ S │ 5E │ G1�8BND │ Gate for usage of SVC─6C │
│ S │ 5F │ SATBND │ Gate for usage of stored assign.table │
│ S │ 6� │ │ Reserved │
│ S │ 61 │ │ Reserved │
│ S │ 62 │ ERQBND │ Gate for error queue entry │
│ S │ 63 │ G133BND │ Gate for XPCC processing │
│ S │ 64 │ │ reserved │
│ S │ 65 │ │ reserved │
│ S │ 66 │ EOTBND │ Gate for EOT routine │
 ├──────┴───────┴──────────┴──┤
 │ Type: O = permanently opened gate │
 │ C = permanently closed gate │
 │ I = I/O chain with permanently closed gate │
 │ W = wait chain with permanently closed gate │
 │ P = partition chain with switchable gate, │
 │ P gates located in Partition Control Block (PCB) │
 │ S = system chain with switchable gate │
 └──┘
Figure 26 (Part 1 of 3). Task Status Flags and Resource Gates

 Dispatcher 61

 ┌──────┬───────┬──────────┬──┐
 │ Type │ Value │ Name │ Usage │
 ├──────┼───────┼──────────┼──┤
│ S │ 67 │ DOCQBND │ Gate for router queue access │
│ C │ 68 │ LCKBND │ Gate for LOCK file I/O │
│ C │ 69 │ PGFXBND │ Gate for page to be freed │
│ S │ 6A │ GSMBND │ Gate for ALLOCATE processing │
│ S │ 6B │ THTABBND │ Gate for track hold table │
│ C │ 6C │ SFILBND │ Gate for SYSFIL I/O │
│ S │ 6D │ SGTVSBND │ Gate for GETVIS SVA │
│ S │ 6E │ LQBND │ Gate for security logger queue │
│ S │ 6F │ │ reserved │
│ C │ 7� │ MICRBND │ Gate for MICR I/O │
│ S │ 71 │ GETRBND │ Gate for GETREAL processing │
│ S │ 72 │ FDIRBND │ Gate for program fetch directory │
│ S │ 73 │ SEIZEBND │ Gate for SEIZE to be freed │
│ S │ 74 │ CILBND │ Gate for CIL update │
│ S │ 75 │ BUFBND │ Gate for copy blocks │
│ C │ 76 │ ICCFBND │ Gate for ICCF high priority task │
│ S │ 77 │ PFRBND │ Gate for page frames │
│ S │ 78 │ PFGBND │ Gate for page frames (occupied by TFIX) │
│ S │ 79 │ CHQBND │ Gate for channel queue entry │
│ S │ 7A │ DIBBND │ Gate for DIB access │
│ S │ 7B │ CCWBND │ Gate for CCW translation │
│ W │ 7C │ TRKBND │ Gate for track to be freed │
│ W │ 7D │ AVRBND │ Gate for AVR processing │
│ S │ 7E │ G41BND │ Gate for ENQ/DEQ processing │
│ S │ 7F │ G92BND │ Gate for XECB processing │
│ C │ 8� │ NOTACT │ Flag for inactive tasks │
│ C │ 8� │ SYSBND │ Flag for inactive system tasks │
│ S │ 81 │ LTABND │ Gate for LTA use │
│ I │ 82 │ WAITBND │ Gate for ECB/XECB (I/O or TIMER or POST) │
│ O │ 83 │ READY │ Flag for ready to run state │
│ S │ 84 │ IDRABND │ Gate for program fetch IDRA (old gate) │
│ S │ 84 │ FPGMBND │ Gate for program fetch IDRA (new gate) │
│ C │ 85 │ FETCHBND │ Gate for program fetch processing │
│ W │ 86 │ PGIOBND │ Gate for page I/O │
│ C │ 87 │ PMRBND │ Gate for page fault processing │
│ I │ 88 │ ENQBND │ Gate for RCB to be freed │
│ S │ 89 │ TERMBND │ Gate for terminator processing │
│ C │ 8A │ PGINBND │ Gate for page─in │
 ├──────┴───────┴──────────┴──┤
 │ Type: O = permanently opened gate │
 │ C = permanently closed gate │
 │ I = I/O chain with permanently closed gate │
 │ W = wait chain with permanently closed gate │
 │ P = partition chain with switchable gate, │
 │ P gates located in Partition Control Block (PCB) │
 │ S = system chain with switchable gate │
 └──┘
Figure 26 (Part 2 of 3). Task Status Flags and Resource Gates

62 VSE/AF Supervisor DRM

 ┌──────┬───────┬──────────┬──┐
 │ Type │ Value │ Name │ Usage │
 ├──────┼───────┼──────────┼──┤
│ S │ 8B │ USEBND │ Gate for LOCK/UNLOCK processing │
│ C │ 8C │ CNCLBND │ Gate for subtask to be cancelled │
│ S │ 8D │ SSIDBND │ Gate for subsystem id processing │
│ W │ 8E │ RURBND │ Gate for LOCK to be freed │
│ S │ 8F │ EXNTBND │ Gate for EXTENT processing │
│ P │ 9� │ GTVBND │ Gate for partition GETVIS │
│ P │ 91 │ CDLBND │ Gate for CDLOAD │
│ P │ 92 │ PFXBND │ Gate for PFIX │
│ P │ 93 │ IVMTSBND │ Gate for IMR data collection │
│ P │ 94 │ DYSGVBND │ Gate for dyn. space GETVIS │
│ P │ 95 │ PTERMBND │ Gate for dump handling │
 ├──────┴───────┴──────────┴──┤
 │ Type: O = permanently opened gate │
 │ C = permanently closed gate │
 │ I = I/O chain with permanently closed gate │
 │ W = wait chain with permanently closed gate │
 │ P = partition chain with switchable gate, │
 │ P gates located in Partition Control Block (PCB) │
 │ S = system chain with switchable gate │
 └──┘

Figure 26 (Part 3 of 3). Task Status Flags and Resource Gates

 Dispatcher 63

 Gating Methods
The different gating methods are described in the following, also the range of appli-
cation of the different kinds of gates and the function of the
POST/RPOST/UNPOST routines in connection with the gate types.

POST/RPOST/UNPOST routines are designed to be called in AMODE 31.

Setting a Task Ready-to-Run
Tasks selection bit in TSS is turned on.
When a task of a dynamic partition is to be posted, the partition selection bit of the
dynamic class (CPCPSS in CPCB) is turned on.
Partitions selection bit in PSS is turned on.
Tasks status flag (TIBRQID) is setup to point to a permanently opened gate (either
READY or CONDRDY).

Setting a Task Not Ready-to-Run
Tasks selection bit in TSS is turned off.
TSS is tested, when it is a zero string:

� When a task of a dynamic partition is to be unposted, the partition selection bit
of the dynamic class (CPCPSS in CPCB) is turned off.

� Partitions selection bit in PSS is turned off too.

Tasks status flag (TIBRQID) is setup to point to a closed gate.

 UNPOST Routine
Note: The UNPOST routine is always called by a task setting itself to wait.

The parameter to the UNPOST routine is a pointer to the corresponding resource
descriptor. In some cases an ECB (or any other) address is in the caller's register
R1 which will be passed from the UNPOST to the RPOST routine. For this purpose
the last three bytes of R1 are stored to the three bytes at label TIBSTATE+1
(located in the TIB).

 RPOST Routine
The RPOST routine is called in order to post one or more tasks enqueued on a
resource. Parameter to the RPOST routine is a pointer to the corresponding
resource descriptor. In some cases an ECB (or any other) address is in the caller's
register R1 which will be used to identify a wait condition: the last three bytes of R1
are compared with the content of the three bytes at TIBSTATE+1.

 POST Routine
POST routine is called to post a special task, which must be waiting for a perma-
nently closed resource with no central wait queue support. It provides a fast post
service for example, for I/O bound tasks. The parameter is a TIB pointer instead of
a pointer to a resource descriptor. Note that calls to POST and RPOST are not
interchangeable. It is necessary to call the right one in order to get a correct result.

Processing of Conditionally Ready State (CONDRDY)
In combination with resource types PS (Partition wait queue with Switchable gate)
and SS (System wait queue with Switchable gate) tasks are posted one at a time.
When there are any other tasks enqueued on the resource the posted one
becomes the CONDRDY state, which means that it has been posted in order to
take a resource. In order to allow later identification the old resource pointer is

64 VSE/AF Supervisor DRM

saved to tasks TIB. In some situations the task is not able to take the reserved
resource and tries to enter any new wait state. When the UNPOST routine detects
a task which is conditionally ready and the corresponding resource is not occupied
yet it sets up an implicit call to RPOST using the saved resource pointer. Such a
way the next waiter from the reserved queue is posted, allowing current task to
enter the new wait state.

Description of Routines
1. Using a Permanently Closed Gate with no Wait Queue Implemented

(Type P).

This method is used when the waiting routines are known to the posting routine
and can, therefore, be posted directly.
UNPOST routine:
When the task has a reserved resource RPOST is called. After this tasks status
byte is set up to point to the given gate and the task is set not ready to run.

POST routine:
Tasks status byte is changed to READY (X'83') and the task is set ready to run.

Note: A call to RPOST would not be correct, since there is no possibility
implemented to find a waiting routine using the resource descriptor.

2. Processing of a Partition Wait Queue with Switchable Gate
(Type PS).

This mechanism is used in combination with the partition internal gates (located
in the PCBs). It is assumed that the waiting and the posting tasks belong to
the same partition.

UNPOST routine:
When the task has a reserved resource RPOST is called. After this the gate is
closed (if not closed already) and tasks status byte is setup to point to the
closed gate. Tasks TIB is inserted to the front of the wait queue. The task is
set not ready to run.

RPOST routine:
The gate is opened by the posting routine. The queue is scanned and the
oldest waiter (when any) is dequeued. Status byte of the task is set to
CONDRDY (respectively READY when it was the only task enqueued on the
resource). The dequeued task is set ready to run.

3. Using a Common Wait Queue and a Permanently Closed Gate
(Type CP).

This mechanism is an extension to 1. A wait queue is maintained which
queues the TIBs of the waiting routines together. In addition the contents of
the waiting routine's and the posting routine's register 1 is used for wait identifi-
cation.

UNPOST routine:
When the task has a reserved resource RPOST is called. After this tasks status
byte is setup to point to the given gate. The waiting routine's register 1 is
stored to the TIBSTATE field. The task's TIB is inserted at the beginning of the
corresponding wait queue. (The header of the wait queue can be addressed
via the resource descriptor entry.) The task is set not ready to run.

RPOST routine:
A scan of the wait queue is performed. All tasks whose TIBSTATE match the
passed contents of the posting routine's register 1 are removed from the queue.

 Dispatcher 65

Status bytes of the tasks are changed to READY. The tasks are set ready to
run.

4. Using a System Wait Queue and a Switchable Gate (Type SS).

This is an extension to 2. By maintaining a common wait queue, tasks of mul-
tiple partitions can be handled.

UNPOST routine:
When the task has a reserved resource RPOST is called. After this the gate is
closed (if not closed already) and the task's status byte is set up to point to the
given gate. The task's TIB is inserted at the beginning of the corresponding
wait queue. The task is set not ready to run.

RPOST routine:
The gate is opened by the posting routine. The queue is scanned and the
partition priorities of all tasks compared. The oldest waiter (when any) from the
highest priority partition is dequeued. Status byte of the task is set to
CONDRDY (respectively READY when it was the only task enqueued on the
resource). The dequeued task is set ready to run.

66 VSE/AF Supervisor DRM

5. Gating Via a Permanently Closed Gate With the Additional Possibility to Scan
for Waiting Routine (Type FP).

This is an extension to 1. It allows fast direct posting as well as a scan for
tasks waiting for a specific ECB. It is implemented for two resources: RBWAIT
and RBENQ.

UNPOST routine:
When the task has a reserved resource RPOST is called. After this task's
status byte is set up to point to the given gate. The last three bytes of the
caller's register 1 (ECB pointer) are saved into the TIBSTATE field. The task is
set not ready to run.

POST routine:
Direct posting is supported in order to allow fast posting for example, from I/O
bound state. The task's status byte is set to 'ready' with no regard to the con-
tents of TIBSTATE. The dequeued task is set ready to run.

RPOST routine:
The task identifier string of the presently active partition (label TIDSTR, located
in the PCB) is scanned for a task with the requested status flag. Each task
with the given status flag is posted if

� the contents of the posting routine's register 1 is zero or
� the contents of the waiting routine's TIBSTATE is zero or
� the posting routine's register 1 is equal to the contents of the waiting rou-

tine's TIBSTATE field.

 Dispatcher 67

VSE/AF Dispatcher - Time Slicing (Partition Balancing)
The priority of the partition/dynamic classes can be changed by the z/VSE Job
Control or AR PRTY command. The command is extended to specify dynamic
classes also, for example,

 PRTY F9,F6,N,P,S=F2,F3,F1

where N, P, S are dynamic classes and S is balanced with F2. It is not necessary
anymore to specify all partitions/dynamic classes in the PRTY command.
Partitions/dynamic classes not specified receive a system defined lower priority.
The PRTY command allows to specify one balanced group (via separator '=').

The partition balancing routine as known in VSE/SP is extended to support bal-
anced partitions within dynamic classes in addition to the balanced group that may
be given by the PRTY command.

When a dynamic class contains more than one allocated dynamic partition, the par-
titions within the dynamic class are balanced (time sliced). The time slice value can
be modified via the MSECS command.

The following paragraphs describe the balancing algorithm.

 Definition
balanced group A balanced group is a number of partitions and/or dynamic

classes with a given time slice (entered by the MSECS
command). After the time slice is exhausted a partition may
be moved to the lowest priority in that group (described
later). The members of the balanced group (only one group
in the system) are determined by

1. the PRTY command, for example,

 PRTY ...,BG,F1=S=F3,F4,F5,...

In the example F1, S and F3 are members of the bal-
anced group.

CPUTX CPU time used by partition/dynamic class x

HTIME high time value for job accounting (8 hours)

MSECS user-specified limit for changing priorities (entered by the
MSECS command)

MAXMSECS 10*MSECS, max. possible CPU timer value

PBALTIME partition balancing time

RUNTIME partition time counter (reset during update of job accounting
counters)

SUMCPUT CPU time used by a balanced group

TSLICE time set into CPU timer

68 VSE/AF Supervisor DRM

GETPRTY / SETPRTY (SVC 57)
The PRTY command process calls the GETPRTY and SETPRTY services. The
priority processing routines (GETPRTY and SETPRTY) are extended to support
dynamic classes, too.

The external interface of the SETPRTY routine is not changed. Only the internal
processing is adapted.

The GETPRTY macro is extended to get the total priority string (static partitions
and dynamic classes) in addition to the string of static partition priorities.

SETPRTY - Internal Processing

1. No balanced Group Specified
The TSCP queues are rearranged dependent on the given priority list
(PRTYLIST). Balancing indications of a former PRTY command are reset and a
basic time slice value is set, when no more balanced groups are active.

2. One Balanced Group Specified

a. The following is done for all members of the group:
� the partition/dynamic class is marked as balanced (BALANCED set in

PCBFLAG)
� accounting on partition/dynamic class base, not on system base (parti-

tion PCB pointer moved to PCBJAPTR) is indicated
� reset partition/dynamic class time counter (RUNTIME in PCB),
� reset partition/dynamic class balancing time (PBALTIME in PCB),

b. rearrange selection strings,
c. save lowest balanced partition/dynamic class (ALBALPCB)
d. when the priority of a partition/dynamic class has changed, set PCEPRTYC

in PCEFLAG. This interface is used for communication with the
VSE/POWER partition. VSE/POWER resets the flag.

e. when no balanced group was active up to now,
� set CPU timer with time slice specified via MSECS command
� set time slicing active (PBALACT in SUPVFLAG)

Note: The first part of the CPCB (dynamic class PCB) is an overlay of the PCB,
therefore only PCB fields are shown to describe the balancing algorithm.

 Dispatcher 69

 ┌──────────────────┐
│ SETPRTY ─ SVC 57 │

 └─────────┬────────┘

 ┌───────────────────────┐ no ┌─────────────────┐

│ called by JCL or AR ├────────────�│ illegal SVC │
 └───────────┬───────────┘ └─────────────────┘

 yes
 ┌───────────────────────┐ no ┌─────────────────┐

│ user area valid ? ├────────────�│ invalid address │
 └───────────┬───────────┘ └─────────────────┘

 yes
 ┌───────────────────────────────────────┐
 │ update job accounting counters │
 └──────────────────┬────────────────────┘

┌───────────────────────────────────────┐ all CBs processed
┌──�│ Do for all TSCPs / TSCCs ├────────────┐
│ └──────────────────┬────────────────────┘ │
│
 │
│ ┌───────────────────────────────────────┐ │
│ │ move priority list entry to PRTYLIST │ │
│ └──────────────────┬────────────────────┘ │
│
 │
│ ┌───────────────────────────────────────┐ │
├�──┤ partition balancing required ? │ │
│ └──────────────────┬────────────────────┘ │
│
 yes │
│ ┌───────────────────────────────────────┐ │
│ │ ─ set BALANCED indication in PCBFLAG │ │
│ │ ─ set initial part.balancing time │ │
│ │ PBALTIME=RUNTIME │ │
│ └──────────────────┬────────────────────┘

│ │ ┌───────────────────────────────────────┐
└──────────────────────┘ │ ─ │
 │ ─ │

│ TD selection queues │
│ ─ account time │
│ ─ if partition balancing active, │
│ ── set time slice │
│ ── PBALACT in SUPVFLAG │

 └─────────────────────────┬─────────────┘

 ┌───────────────────────────────────────┐

│ return to dispatcher │
 └───────────────────────────────────────┘

Figure 27. SETPRTY Overview

 GETPRTY
See also the GETPRTY macro description.

 Partition Balancing
The dispatcher (DSP) system task sets up clock comparator time intervals to
inspect the partitions of the balancing group. The time interval can be modified via
the AR and JCL MSECS command.

The partition balancing routine inspects the CPU time for each partition of the bal-
ancing group and decides how to rearrange the priority of the partitions.

If partition balancing is specified for static and dynamic classes (via equal signs in
the PRTY command), static and dynamic partitions will receive the same time slice.

70 VSE/AF Supervisor DRM

In the past the dynamic class (with all its partitions) got the same time slice as a
static partition. When the priorities are to be rearranged, the whole TSCP
ready-to-run queue will be locked, that is no other CPU can select elements from
the TSCP ready-to-run queue.

Interrupt Processing and Dispatching
The accounting interval is marked via the ARUNTIME pointer (PCB pointer of the
balanced partition), that is accounting will be done only, if accounting interval is
switched. That may occur before dispatching of a task or for example, after an
external, I/O interrupt, etc. If time accounting has to be done, the used CPU time
of a balanced partition is determined and added to the partition time counter
(RUNTIME in PCB). For dynamic partitions the dynamic class CPU time is also
updated (CPCBRUNT in CPCB).

Time Slice Exhausted (Priority Change Processing)
When the time slice is exhausted, the CPU timer will present an external inter-
rupt. The external interrupt handler calls the CPU timer interrupt routine
(EXTCPUT).

 � Turbo Dispatcher

When the time slice is exhausted, the clock comparator will present an external
interrupt. The external interrupt handler posts the dispatcher (DSP) system
task.

Partition Balancing Not Active
When partition balancing is not active (PBALACT not set), the DSP system task
checks if any service is requested, sets up the basic time slice (MAXMSECS) and
waits for expiration of the clock comparator.

Partition Balancing Active
When partition balancing is active, the CHNGPRTY routine (for the Turbo Dis-
patcher located in the TD module $IJBDSPT) continues as follows:

1. When total time used for balancing (TOTTIME) is exhausted,

TOTTIME >= HTIME

reset TOTTIME and indicate job accounting update necessary,
2. First process the balanced group specified by PRTY command:

When it is necessary to rearrange the priorities,
a. update TSCP queues,
b. set new basic balancing value (PBALTIME),
c. update priority figures.

3. Do for all dynamic classes, where balancing is active:
When it is necessary to rearrange the priorities,
a. update TSCP queues,
b. set new basic balancing value (PBALTIME),
c. update priority figures.

4. Account used time and set new time slice,
5. Call UPDJA routine, if job accounting update is necessary.

How to Determine the Partition/Dynamic Class to Be Rearranged

1. Look for the highest priority partition/dynamic class within group
(=partition/dynamic class to be removed), such that

 Dispatcher 71

CPUTX >= SUMCPUT
where CPUX=used time of partition/dynamic class=RUNTIME-PBALTIME

2. Do not rearrange partition priorities, when

MSECS > SUMCPUT

3. Rearrange partition priorities, when

MSECS <= SUMCPUT

72 VSE/AF Supervisor DRM

How to Determine a New Time Slice

 TSLICE(new)=
 minimum(MAXMSECS,TSLICE(new),MSECS+TSLICE(old)-SUMCPUT)
 where MAXMSECS=1��MSECS

 Example
members of balanced group: F1,F2,S,F4,F5

 Priority command: PRTY ...,F1=F2=S=F4=F5,...

CPU intensive dynamic class to be removed: S

priority before move: (low ───� high)

 ┬────┬────┬────┬────┬────┬
.... │ F1 │ F2 │ S │ F4 │ F5 │

 ┴────┴────┴────┴────┴────┴

priority before move: (low ───� high)

 ┬────┬────┬────┬────┬────┬
.... │ S │ F1 │ F2 │ F4 │ F5 │

 ┴────┴────┴────┴────┴────┴

 Dispatcher 73

 ┌─────────────────────┐ ┌─────────────────────┐
│ Turbo Dispatcher ├─�│ Post DSP system task│

 ├─────────────────────┤ └──────────┬──────────┘
│ Clock Comp.interrupt│

 └─────────────────────┘ ┌─────────────────────┐
 ┌─────────────────────┐ │ Dispatcher │

│ DSP system task │ └─────────────────────┘
 └────────┬────────────┘

 ┌──────────────────────────────┐

│ Partition balancing active ? │ no
│ SUPVFLAG = PBALACT ├─────────────────┐

 └─────────────┬────────────────┘ │

 yes │
 ┌──────────────────────────────────┐ │

│ Balancing of Basic Group active?│ no │
│ CHNGFLAG = CHNGBASE ├────────┐ │

 └───────────────┬──────────────────┘ │ │

 yes │ │
 ┌──────────────────────────────────┐ │ │

│ CHNGPRTY: necessary to rearrange │ no │ │
│ priorities of basic group ? ├───────�┤ │

 └───────────────┬──────────────────┘ │ │

 yes │ │
 ┌──────────────────────────────────┐ │ │

│ PCB.PBALTIME, if necessary │ │ │
│ Update TSCP queues │ │ │

 └───────────────┬──────────────────┘ │ │

 �─────────────────────────┘ │
 ┌──────────────────────────────────┐ │

│ Balancing of Dynamic Partitions │ no │
│ active ? CHNGFLAG = CHNGCLSS ├────────┐ │

 └───────────────┬──────────────────┘ │ │

 yes │ │
 ┌──────────────────────────────────┐ │ │
┌───�│ Do for all Dynamic Classes ├───────�┤ │
│ └───────────────┬──────────────────┘ │ │
│
 │ │
│ ┌──────────────────────────────────┐ │ │
│ no │ CHNGPRTY: necessary to rearrange │ │ │
├�───┤ priorities of basic group ? │ │ │
│ └───────────────┬──────────────────┘ │ │
│
 yes │ │
│ ┌──────────────────────────────────┐ │ │
└────┤ PCB.PBALTIME, if necessary │ │ │

│ TD: Update TSCP queues │ │ │
 └──────────────────────────────────┘ │ │
 ┌──────────────────────────────────┐ │ │

│ set new time slice │�───────┴──────┘
│ update accounting pointers, │

 │ if necessary │
 └───────────────┬──────────────────┘

 ┌──────────────────────────────────┐

│ DSP system task waits for │
│ time slice expiration │

 └──────────────────────────────────┘

Figure 28. Partition Balancing Routine Overview

74 VSE/AF Supervisor DRM

z/VSE Dispatcher - Task Termination

 DISP
 ┌───┐
 │ │
 └─┬─┘
 │
 │
CNCLEXIT

┌──┐ ┌───┐
│ Cancel Exit │ ┌─────�│ 5 │
├──┤ │ └───┘
│ � If dynamic partition initialization in | |
│ process, initialize partition ──┼──────┘
│ │ ┌───┐
│ � When reentered after processing of first ──┼────────────�│ 2 │
│ part, goto process second part │ └───┘
│ │ ┌───┐
│ � If cancel of terminator or EOT, free it ──┼────────────�│ 4 │
│ │ ┌───┐ └───┘
│ � If VTAM process active, request VTAM ──┼───�│ │
│ scheduling │ └───┘
│ │
│ � Reset PHO, PAGEIN, ASYNOC entries, etc. │ DISP
│ │
│ � If task is seizing system, CRT or HC file │
│ owner, post any waiter │
│ │ ┌───┐
│ � If system dump to be called ──┼───�│ │
│ (not EOJ/DETACH or skip msg.) │ └───┘
└──────────────────────┬───────────────────────┘
 │
SETEOJSW

┌──┐
│ � Propagate cancel for "
│ - maintask termination, │
│ - cancel all request, or │
│ - cancel of a subtask running in OS/39� │
│ emulation mode. │
│ │
│ � Indicate to cancel exit part 1 has been │
│ processed │
└──────────────────────┬───────────────────────┘
 │

 ┌───┐

│ 2 │
 └───┘

Figure 29 (Part 1 of 3). Supervisor General Exit, Cancel Exit

 Dispatcher 75

 ┌───┐
│ 2 │

 └─┬─┘
 │
CONTTERM

┌──┐
│ � If LTA is occupied, quiesce LTA I/Os │
│ then free LTA │
│ │
│ � If maintask with subtasks, or subtask ──┼──────┐
│ running in OS/39� emulation mode with │ │
│ subtasks, wait for subtask's termination │ │
│ │ │
│ � Unless it is self─termination, activate ──┼──────┤
│ task's ABEND routine (if any) │ │
│ │

│ � Unless it is self─termination, post │ ┌───┐
│ abnormal termination bit in tasks │ │ │
│ attachment ECB (if any) │ └───┘
│ │
│ � Reset flags, resources, exit routine │ DISP
│ entries, etc. │
└──────────────────────┬───────────────────────┘
 │
 │
ENDTERM

┌──┐ ┌───┐
│ � Process EOJ transients, if necessary │────�│ │ (old interface)
│ EOT routines │ └───┘
│ │ SVC�2
│ � Process SVA resident EOT routines, ──┼─┐
│ if necessary │ │
└──────────────────────┬───────────────────────┘ │
 │ │ ┌───┐

│ ┌───┐ └──�│ │ (new interface)
│�─────┤ 5 │ └───┘

 │ └───┘
 │ DISP
INITEOT

┌──┐
│ EOT Initialization Routine │
├──┤
│ � If the SVA resident EOT routine is ──┼───────┐
│ occupied, setup task to wait for │ │
│ │

│ � Setup EOT save area, ──┼────�┌───┐
│ activate EOT routine │ │ │
└──┘ └───┘

 DISP

Figure 29 (Part 2 of 3). Supervisor General Exit, Cancel Exit

76 VSE/AF Supervisor DRM

EOTRTRN
┌──┐
│ EOT Terminator Routine │
├──┤
│ � Reset vendor interfaces for this task │
│ │
│ � Reset access register related information │
│ (e.g. control registers, delete data │
│ spaces and data space tables) │
│ │
│ � Free EOT routine │
│ │
│ � If entry was made from detach (SVC39), | ┌───────────┐
│ return to this routine ────────┼───────�| Return to |
│ │ │ caller │
│ � If dynamic partition preparation to be | └───────────┘
│ processed, prepare dynamic partition │
│ │
│ � If VSE/POWER is in termination, |
│ free dynamic class table and update │
│ related information. │
│ │
│ � Continue with job control |
└──────────────────────┬───────────────────────┘
 │
 │

 ┌───┐
 │ │
 └───┘

 DISP

Figure 29 (Part 3 of 3). Supervisor General Exit, Cancel Exit

 Dispatcher 77

 Entry point
┌───┐ if an error

 │ │ has been
 └─┬─┘ detected or

│ EOJ (SVC 14)
 │
 │
 ERRxx

┌─────────────────────────────┐
│ Cancel Routine │
├─────────────────────────────┤
│ � Calculate the cancel code │ ┌───�┌────────────────────────────┐
│ │ │ │ � Pointers are set to the │
│ � If I/O related cancel code├────┘ │ Channel Queue Entry, │
└─────────────┬───────────────┘ │ PUB and CCB, and exit │

│ │ is taken via routines │
│ │ in the I/O Interrupt │
│ │ Handler which dequeues │
│�─────────────────────┐ │ the channel queue entry |
│ │ │ and attempt to reschedule│

 ERRGO
 │ │ the channel. │
┌────────────────────────────────┐ │ │ │
│Activate any Termination Routine│ │ │ � If system task request ──|─┐
├────────────────────────────────┤ │ │ │ │
│ � Load TIB pointer | │ │ � If program error or | │
│ │ │ │ user does not accept │ │
│ � Store cancel code | └──┼───── I/O errors | │
│ │ └──────────────┬─────────────┘ │
│ � If any system task active, | │ │
│ load TCB pointer and │ |�──────────────┘
│ activate error exit routine │

│ │ ┌──────────────┐
│ � Set cancel in progress | │ post/dequeue │
│ │ | after cancel |
│ The next time the program to │ └──────────────┘
│ be canceled is selected, the │ PSTPUB
│ terminator (CNCLEXIT) will be │
│ entered to initialize program │
│ cancelation │
└────────────────────────────────┘

Figure 30. Cancel Routine

78 VSE/AF Supervisor DRM

z/VSE Dispatcher - System Dump Interfaces

 Overview
The System Dump routine (phase $IJBSDMP) consists of two parts

1. the message writer for abnormal termination messages and
2. the storage dump routine.

The System Dump routine will be called

� to process a dump service; the dump services use either SVC 2 (DUMP,
JDUMP, PDUMP macros) or SVC 123 (SDUMP, SDUMPX macros) to request
a call of the System Dump routine,

� during abnormal task termination.

This paragraph describes the supervisor interfaces implemented for System Dump
routine initialization and termination.

Since VSE/ESA 1.3.0 the System Dump routine can execute in parallel. Only tasks
within the same partition will be gated, that is tasks have to wait, if another task of
the same partition occupies the System Dump routine. Only in very rare cases,
when no GETVIS space is available the System Dump routine is gated system
wide.

The following interfaces are used:

� a resource descriptor (gate) in Partition Control Block (PCB)
� a supervisor / System Dump routine communication area (SAACOMM) per par-

tition, which will be allocated during the partition allocation process, and deallo-
cated during partition deallocation. The mapping macro MAPSAACM describes
the layout of SAACOMM.

� a pointer in PCB (PCBSAAPT), that holds the address of the SAACOMM.
� one master SAACOMM as part of $IJBSDMP, that is used when the GETVIS

space is exhausted
� the System Dump routine will return to the supervisor via SVC 14 (and no

longer via SVC 11)

The System Dump routine ($IJBSDMP) will be loaded during IPL. The supervisor
gets the address of $IJBSDMP from the supervisor subdirectory (SVASVDL).

Note: The Partition Debug Facility will also use the system dump initialization and
termination routines.

 Dispatcher 79

Flow of Control (Normal and Abnormal Termination)

 ┌──────────────────────────────────────┐
│ Cancel Routine in DISP │

┌──────────┐ ├──────────────────────────────────────┤
│ cancel ├───�│ � ERRxx labels │
│ requestor│ │ � determine cancel code │
└──────────┘ │ � indicate termination to be started │

│ � return to dispatcher │
 └──────────────────────────────────────┘

 CNCLEXIT
 ┌───┐

│ Dispatch Cancel Exit (Terminator) Routine │
 └──────────────────────┬────────────────────┘

 ┌──────────────────────────────┐

│ Cancel Exit Routine Part 1 │
 └───────────────┬──────────────┘

 yes ┌───────────────────┐

┌──────────────────┤ EARLY AB exit set │
 │ └─────────┬─────────┘
 │ │ no
 │

 │ ┌───────────────┐ ┌─────────────┐
 │ │ Dump/message │ yes │ Call │

│ │ required ├──────────�│ System Dump │

 └───────┬───────┘ │ Routine │

┌──────────────┐ │ no └─────┬───────┘
│ Call AB Exit │
 │
└──────────────┘ ┌──────────────────────────────────┐ │

� │ for maintasks or subtasks │�──────┘
│ │ running in OS/39� emulation mode:│
│ │ propagate cancel of its subtasks │

 │ └────────────────┬─────────────────┘
 │

 │ yes ┌───────────────────┐

└──────────────────┤ AB exit set │
 └─────────┬─────────┘
 │ no
 CONTTERM

 ┌──────────────────────────────┐

│ Cancel Exit Routine Part 2 │
 └──────────────┬───────────────┘
 ENDTERM

 ┌───┐

│ Process EOT Transients and SVA Routines │
│ (Subsystem clean─up routines) │

 └───────────────────┬─────────────────────┘

 ┌──────────────────────────────────┐

│ SVA Resident End─of─Task Routine │
 └──────────────────────────────────┘

Figure 31. Flow of Control for Normal and Abnormal Termination

80 VSE/AF Supervisor DRM

Flow of Control (System Dump Routine Initialization / Termination)

┌───────────┐ ┌───────────┐ ┌───────────┐ ┌─────────────┐
│Part. Debug│ or │ Abnormal │ or │IDUMP/PDUMP│ or │SDUMP/SDUMPX │
│ Facility │ │ Terminat. │ │ SVC 2 │ │ SVC 123 │
└─┬─────────┘ └─────┬─────┘ └─────┬─────┘ └─────────────┘
 │

 │
 │ ┌───┐ │
└───�│ System Dump Initialization Routine │�──────────┘

 ├───┤
│ � If SVA System Dump routine occupied │ ┌──────┐
│ by a task of the same partition ────────┼───────�│ WAIT │
│ � Protect dump against concurrent access │ └──────┘
│ of tasks from the same partition │
│ � Access SAACOMM area │
│ � Setup parameters, save areas and │
│ activate System Dump routine │

 └────────────────────┬──────────────────────┘

 ┌────────────┐ System
┌─────────────────�│ Dispatcher ├────────────────� Dump routine

 │ └────────────┘ |
│ In case of abnormal termination |

 │ ┌──────────────────────────────|
│ TERMCNCL
 (synchronous cancel) |

 │ ┌───┐ |
│ │ System Dump Abnormal Term. Routine │ |

 │ ├───┤ |
│ │ � Quiesce dump routines I/O │ |
│ │ � Indicate dump to terminate │ |
└────┤ � Activate System Dump routine again │ |

 └───┘ |

 ┌────────────────────────────SVC 14

TERMRETB
 End of dump routine
 ┌───┐

│ System Dump Normal Term. Routine │
 ├───┤

│ � Clear superv./dump communication flags │
│ � Restore task's interrupt information │
│ (for AB exit routine) and save area ptr.│ ┌──────┐
│ � Free SAACOMM area and post any waiter ──┼────────�│ POST │

┌────┤ � If not PDUMP / SDUMP │�────────┴──────┘
│ │ � If abnormal termination of P/SDUMP ─────┼──�┌────────────┐
│ │ � Continue task's processing │ │ Initiate │

 └────────────────────┬──────────────────────┘ │ cancel │

┌─────────────┐ │ │ processing │
│ Continue │
 └────────────┘
│ termination │ ┌────────────┐
│ processing │ │ Dispatcher │
└─────────────┘ └────────────┘

Figure 32. Dump Routine Initialization and Termination

 Dispatcher 81

System Dump Phase Structure
A System Dump SAACOMM area is located at offset 0 of $IJBSDMP. This com-
munication area is called master SAACOMM, indicated in SAAMCB of SAAFLAG2.
The address of the first instruction of $IJBSDMP is located at SAADSTRT. The
master SAACOMM will be used,

� if a GETVIS request fails.
Then the System Dump routine is gated system wide (SRQTERM).

 $IJBSDMP phase
ATERM of SVASVDL ────────�┌────────────────┐ ───────

│ SAACOMM │ �
 ┌─────┤SAADSTRT │ │
 │ │ │ │
 │ │ │ │
 │ │ │ │
 │ │ │

 │ ├────────────────┤ ───────
first instruction └────�│ │

 │ │
 │ │
 │ │
 │ │
 │ │
 │ │
 │ │
 │ │
 │ │
 └────────────────┘

Figure 33. System Dump Phase Structure

Activation of the System Dump Routine
The System Dump initialization routine will be activated

1. during abnormal termination, if message output (for example, cancel messages)
or dump output is wanted.

2. by a DUMP, JDUMP or PDUMP request via SVC 2. This will be indicated in
the flag byte SAAFLAG,

3. by a SDUMP or SDUMPX request via SVC 123. This will be indicated in the
flag byte SAAFLAG.

4. by a the Partition Debug Facility (e.g. for initialization of the facility or when
active after a PER interrupt). This will be indicated in the flag byte SAATFLAG.
The Partition Debug Facility will be processed like a PDUMP request, the
process will not be contained in the following paragraph.

System Dump Initialization Routine
This paragraph describes the steps necessary before activation of the System
Dump Routine.

1. identify the initialization routine as reentrable routine (RID = REENTRID)

2. protect the System Dump routine against concurrent access of tasks belonging
to the same partition, that is the System Dump routine has to be gated on parti-

82 VSE/AF Supervisor DRM

tion base. Therefore it was necessary to introduce a new partition gate
(PCBRBTRM) within resource SRQPTERM.

� If this gate is free,
– the task has to set the gate to "notfree" and can proceed.

� If the gate is not free,
– the task has to wait until it is posted by “System Dump Normal Termi-

nation Routine” on page 85. For PDUMP, SDUMP and SDUMPX
requests RESVCX has to be called, for abend dumps UNPOST.

Access the Supervisor/System Dump Communication Area (SAACOMM): The
pointer to this area (PCBSAAPT) can be obtained from the PCB. The SAACOMM
will be allocated in pageable system GETVIS area (24 bit) during partition allo-
cation.

 SAACOMM Update

1. Indicate the task as terminator owner (TERMACT in TIBFLAG1) and make the
SAACOMM addressable.

The SAACOMM area is pageable, therefore page faults may occur.

 2. Update SAACOMM
The fields are not cleared. Which fields are valid in SAACOMM, can be
obtained by the flag bytes SAAFLAG and SAAFLAG1.

The following fields may be updated:

� Set in use indication (SAAIUSE in SAAFLAG1) and initialize SAANAME.
� If LTA active for this task (LTAACT+LTAOWNER in TIBFLAG1),

– store the LTA save area pointer (TCBSAVE) to SAALTAPT,
– store the problem program save area (PIBSAV2 of ARPIB) to

SAAPPSPT,
– set SAALTA and SAAPPA in SAAFLAG,

� If not (LTAACT+LTAOWNER in TIBFLAG1),
– move TCBSAVE (actual problem program save area) to SAAPPSPT,
– set SAAPPA in SAAFLAG,

� Move first cancel code (TIBCNCL) to SAACCL1,
� Move second cancel code (TIBCNCL2) to SAACCL2,
� Move interrupt information (INTINFO of TCB) to SAAINTC,
� If abend dump, move additional message information to SAADMSGI (if

available) and set corresponding flag (SAAMSGI in SAAFLAG1)
� If PDUMP, SDUMP or SDUMPX,

– set SAAPDUMP for PDUMP in SAAFLAG,
– set SAASDUMP for SDUMP and SDUMPX in SAAFLAG,

� Move access registers to SAAARSAV and set corresponding flag SAAARA
in SAAFLAG1, if available.

Note: SAAARSAV will be restored after return from System Dump routine.

3. TCBSAVE:=pointer to SAARSAVE, make the System Dump save area (at
SAARSAVE) to current save area.

4. If abnormal termination is caused by supervisor,

� move supervisor special save area to SAASSAVE,and
� set SAAPCA in SAAFLAG,

 Dispatcher 83

5. Set System Dump cancel ECB (part of TIBFLAG4) address to SAACNECB.
The System Dump may wait for this ECB during dump process and will be
posted, if for example, the operator cancels the partition.

6. continue with “Make System Dump Dispatchable.”

Make System Dump Dispatchable

1. Move a new PSW to the System Dump save area. The new PSW contains the
start address of the System Dump routine (SAADSTRT).

2. Move SAACOMM pointer to dump routines register 0.

3. Move TERMSERV pointer to dump routines register 1.

4. If message to be printed only (PRTMSG in TCBABFL1),

� set SAANODMP in SAAFLAG1

5. If PERACT in PCBFLAG,

� Enable program event recording,

6. Dispatch System Dump

Return from (Termination of) System Dump Routine
This chapter describes the return from / termination of the System Dump Routine.
Three cases may occur:

1. Return from System Dump routine because of GETVIS error (via SVC 14 -
EOJ).

2. Abnormal termination (System Dump routine cancelled).

3. Normal termination (via SVC 14 - EOJ).

Return from System Dump Routine (GETVIS Error)
When the System Dump routine detects a GETVIS error,

1. it sets flag SAANGETV in SAAFLAG1 to indicate GETVIS error,

2. returns to the supervisor via SVC 14.

Now the supervisor processes the following steps:

1. Use system gating and master SAACOMM

2. Partition's SAACOMM address is saved in field TERMSCSA,

3. Set SAASYS in partition's SAACOMM,

4. PCBSAAPT and PCBMSAAE is set,

5. Set task's dispatching priority to highest user task priority,

6. Move partition's SAACOMM to master SAACOMM,

7. Continue with “Make System Dump Dispatchable.”

84 VSE/AF Supervisor DRM

System Dump Abnormal Termination Routine
The System Dump abnormal termination routine is called, whenever the System
Dump cancels, the processing continues with the following steps:

1. Quiesce LTA's I/O (SVC03LTA) of System Dump routine,

2. Set RID to REENTRID (allow page faults)

3. If multiple cancel (SAACNCL already set),

� indicate 'TERMINATOR ROUTINE CANCELLED' message has to be
written by end-of-task routine,

� continue with “System Dump Normal Termination Routine,”

4. Move cancel code (TIBCNCL2 for abend dump, TIBCNCL for PDUMP /
SDUMP/ SDUMPX) into SAACNCL3,

5. Set SAACNCL flag in SAAFLAG,

6. Move current status (PSW and registers to SAASSAVE) and set SAAPCA flag
in SAAFLAG,

7. If master SAACOMM used,

� set task's dispatching priority to highest user task priority,

8. Continue with “Make System Dump Dispatchable” on page 84.

System Dump Normal Termination Routine
This paragraph describes the steps necessary after normal termination of the
System Dump routine via SVC 14.

Note: The former return from System Dump routine via SVC 11 is replaced by
SVC 14 (EOJ macro).

1. Set RID to REENTRID (allow page faults)

2. Restore current save area pointer

� If SAALTA in SAAFLAG,
– move SAALTAPT to TCBSAVE,

� Otherwise move SAAPPSPT to TCBSAVE,

3. If master SAACOMM allocated to partition (PCBMSAAE in PCBSAAPT)

� post any system gate waiters
� restore partitions SAACOMM address (TERMSCSA -> PCBSAAPT)

 � clear TERMSCSA
� reset SAAFLAG and SAAFLAG1 flags of current SAACOMM,
� reset high priority indication

4. Post any partition gate waiters

5. Reset dump routine active (TERMACT in TIBFLAG1)

6. Restore interruption code (for AB exit routines) SAAINTC to INTINFO of TCB,

7. Restore access registers from SAAARSAV,

8. Check for VTAM application processing

9. If system abend request (SAAABEND in SAAFLAG1),

� reset partition's SAAFLAG and SAAFLAG1 flags
� continue with task's termination

10. For PDUMP/SDUMP/SDUMPX processing continues as follows:

 Dispatcher 85

� Reset partition's SAAFLAG and SAAFLAG1 flags
� If PDUMP/SDUMP/SDUMPX cancelled (TIBCNCL not zero),

– set TIBDMPCN flag in TIBFLAG4 to avoid call of System Dump routine
TIBDMPCN will be reset during the termination process,

– initiate cancel processing
- set FETCHEOJ in TIBFLAG,

� Check for delayed IT and OC (maintasks only) interrupts
� Return to dispatcher

Synchronous and Asynchronous Cancel
In the past no difference was made between synchronous and asynchronous
cancel.

First the difference between these two cancel situations:

synchronous all cancel conditions caused by the dump routine itself, for
example, program check.

asynchronous all cancel conditions caused by another task or partition, for
example, AR CANCEL logid .

Synchronous Cancel Conditions
All cancel conditions caused by the dump routine itself are so called synchronous
events. For more information see “System Dump Abnormal Termination Routine” on
page 85.

Note: In case of synchronous cancel the communication - supervisor to dump - is
done via the current SAACOMM area.

Asynchronous Cancel Conditions
All cancel conditions caused by other tasks or partitions are so called asynchronous
events. To avoid inconsistent states of the System Dump routine the cancel
process has to be delayed until the System Dump routine detects the request. The
cancel propagation routine (RDYCNCL) in the dispatcher will delay cancel requests
whenever the System Dump routine (TERMACT in TIBFLAG1) is active. The fol-
lowing actions have to be taken:

1. Request dump to terminate,

� indicate cancel request pending (TIBDMPCN of TIBFLAG4),
� move requestors cancel code into TIBCNCL3, if abend dump is taken. This

causes the end-of-task routine to write the 'TERMINATOR ROUTINE CAN-
CELED' message, if System Dump is not able to write the corresponding
message. If the System Dump routine was called because of a PDUMP,
SDUMP or SDUMPX request, TIBCNCL is set.

� post the System Dump routine, TIBDMPCN is used as ECB traffic bit.

2. The System Dump routine checks from time to time the TIBDMPCN field via
the new terminator service TERMSERV (see “System Dump Services
(TERMSERV)” on page 87). If a cancel condition is returned, the dump routine
terminates its processing (may be with a cancel message) with SVC 14 (normal
return to cancel exit).

Note: In case of asynchronous cancel the communication - supervisor to dump -
is done via the new TERMSERV services.

86 VSE/AF Supervisor DRM

System Dump Services (TERMSERV)
Currently two services are available

� check, if cancel of System Dump is requested

� reset task's dispatching priority to its original priority,

The address of the TERMSERV entry point will be passed in register 1 during
System Dump activation. When TERMSERV is to be called, a function code has to
be set in register 0.

Input Registers:

Register 0 function code

Register 15 TERMSERV routine address = base address

Output Registers:

Register 15 may contain a return code

Work Registers:

Register 0 and 1

Function Code 0: Check if System Dump to be Canceled
When System Dump cancel is requested, TIBDMPCN in TIBFLAG4 will be set in
RDYCNCL routine. The TERMSERV service checks this flag and if set,

 � resets TIBDMPCN,
� sets SAACNCL in SAAFLAG1,
� moves the cancel code into SAACNCL3
� clears TIBCNCL3 to avoid the end-of-task message,
� set return code of 4 in register 15.

TERMSERV returns with return code 0 otherwise.

Function Code 4: Set System Dump Owner to its Dispatching
Priority
The service schedules the dispatcher exit (TERMSRES). The exit sets the System
Dump Owner to its original dispatching priority.

Register Conventions for System Dump Activation
The System Dump initialization routine initializes the System Dump save area
(located in SAACOMM at label SAARSAVE), that is

� the PSW of System Dump start address (SAADSTRT)
� register conventions at activation:

Register 0 address of current SAACOMM
Register 1 address of terminator service routines
Registers 2 - 15 unpredictable.

 Dispatcher 87

z/VSE Dispatcher - VSE/ICCF Support
Since VSE/ESA 1.3.0 VSE/ICCF runs in VSE/AF subtasks, that is CICS will occupy
the VSE/AF maintask, even if VSE/ICCF is active within the CICS partition.

This section describes how the VSE/AF supervisor supports VSE/ICCF running in
subtasks.

VSE/ICCF Pseudo Partition: Dispatching
The ICCF pseudo partitions have to be dispatched with the lowest priority within the
CICS partition, where VSE/ICCF is activated. The priority has to be lower than the
priority of the CICS maintask and all other subtasks. When VSE/ICCF identifies a
VSE/AF subtask as a pseudo partition (via MODFLD service), the VSE/ICCF
pseudo partition is removed from the TSCT ready-to-run chain and is enqueued to
a lower priority than the maintask (behind the maintask TSCT).

VSE/ICCF Pseudo Partition: ICCF Screening
VSE/ICCF allocates a 256 byte screening table in PFIXed system GETVIS storage
(RMODE 24). A byte of the screening table is called SVC screening byte. Each
byte corresponds to a SVC number. VSE/ICCF has to initialize the SVC screening
bytes and to establish addressability to the table before ICCF screening is acti-
vated. The address of the table has to be stored into a new field of the VSE/ICCF
vector table:

 SYSCOM
X'8�' ─────� ┌────────┐
 │ │
 / /
 │ │
 ├────────┤ DTSVECDS

│IJBETSS ├─────� ┌────────┐
 ├────────┤ │ │
 │ │ / /
 / / │ │
 │ │ ├────────┤
 └────────┘ ┌───┤DTSCNTFA│
 │ ├────────┤
 │ │ │
 │ / /
 │ └────────┘
 │
┌─────────────────────────┘
│
│

 VSE/ICCF Screening Table
┌──┬──┬──┬──┬──┬──┬──┬──┬──┬─//
│xx│ │ │ │ │ │ │ │ │
└──┴──┴──┴──┴──┴──┴──┴──┴──┴─//

 xx = ICSVCIGN, ICSVC or ICSVCERR
(see “Contents of VSE/ICCF Screening Byte:” on page 89)

Figure 34. VSE/ICCF Screening Table - Control Block Relationship

88 VSE/AF Supervisor DRM

IJBETSS in SYSCOM holds address of the VSE/ICCF vector table
(DTSVECDS)

DTSVECDS mapping of VSE/ICCF vector table
DTSCNTFA address of VSE/ICCF screening table,

initialized by ICCF, removed during
VSE/ICCF shutdown.

Contents of VSE/ICCF Screening Byte:

ICSVCIGN (=0) VSE/ICCF interrupt handler will not handle the SVC,
ICSVC (=4) VSE/ICCF interrupt handler wants to handle the SVC,
ICSVCERR (=8) illegal SVC in the VSE/ICCF environment

The VSE/AF supervisor first level SVC interrupt handler will pass control to the
VSE/ICCF first level interrupt only, if the SVC screening byte contains value ICSVC
(=4) and the VSE/ICCF task's screening flag (ICCFSVC in TCBFLAGS) is set.

 Dispatcher 89

z/VSE Dispatcher - Partition Preparation and Cleanup
Before a VSE/POWER job is executed, partition preparation will be started within
the partition. When VSE/POWER job ends, partition cleanup will be called. The
following paragraphs describe the process for static and dynamic partitions.

Static Partition Preparation and Cleanup

 Normal Processing
� Preparation (DYNCLASS ID=PREPARE) will execute at the beginning of a

VSE/POWER job, Cleanup will execute at the end of each VSE/POWER job for
which preparation was done.

� Preparation/cleanup (P/C) will not execute in the VSE/POWER partition instead
it will run in the VSE/POWER-controlled partition being prepared/cleaned up.
Prepare will be called by Job Control before processing of the first Job Control
statement. Job Control calls cleanup. P/C is considered to be part of the
user's job.

� VSE/POWER posts Job Control for preparation and cleanup. "Do prepare" and
"Do cleanup" will be indicated in the PCE control block. The "Do prepare" indi-
cation will be reset by the DYNCLASS ID=PREPARE service. The "Do
cleanup" indication must not be reset.

� Job Control sets up a new read request after cleanup.

┌───────────────────────────────────┬─────────┬───────────────────────┐
│ Action to be taken │Initiated│ Function to │
│ │ by │ be called │
├───────────────────────────────────┼─────────┼───────────────────────┤
│ 1) Job submission to VSE/POWER │ II │ │
│ │ │ │
│ 2) Request preparation │VSE/POWER│ │
│ │ │ │
│ 3) Schedule the job in │VSE/POWER│ │
│ this partition │ │ │
│ │ │ │
│ 4) Initiate preparation │Job Cont.│ DYNCLASS ID=PREPARE │
│ │ │ │
│ 5) Process preparation │ superv. │ │
│ │ │ │
│ 6) VSE/POWER job is in execution │ │ │
│ │ │ │
│ 7) � $$ EOJ reached │ │ │
│ │ │ │
│ 8) Request partition cleanup │VSE/POWER│ │
│ │ │ │
│ 9) Initiate cleanup │Job Cont.│ DYNCLASS ID=CLEANUP │
│ │ │ │
│1�) Process cleanup │ superv. │ │
│ │ │ │
│11) Wait for next VSE/POWER job │Job Cont.│ │
│ │ │ │
└───────────────────────────────────┴─────────┴───────────────────────┘

Figure 35. Scenario: Static Partition Preparation and Cleanup

90 VSE/AF Supervisor DRM

┌──┐
│ VSE/POWER Supervisor Job Control │
├──┤
│ waiting for work │
│ ─ feed first job │
│ statement and │
│ request static │
│ partition preparation │
│ set PCEDOPR────────────────────────────────� ─ do preparation │
│ │ ┌──────────────── DYNCLASS │
│ │ │ ID=PREPARE│
│ │
 │
│ │ ─ do preparation │
│ │ ─ reset PCEDOPR ───� ─ process stmt. │
│ │ ─ start job proc.│
│ │ │ │
│ │ │ │
│ │ │ │
│ │ │ │
│ │ │ │
│
 │ │
│ � $$ EOJ (on reader) │ │
│ ─ set PCEDOCL
 │
│ └──────────────────────────────────────� ─ do clean─up │
│ clean─up processing �───── DYNCLASS │
│ - post ECBs ID=CLEANUP│
│ - VSE/POWER master ECB │
│ - PCEPWECB │
│ │ │
│ └──────────────� │
│ ┌─────────────────────────────────────── ─ SVC � on SYSRDR│
│ │ ─ WAIT │
│
 "waiting for work"│
│ │
└──┘

Figure 36. Internals - Static Partition Preparation and Cleanup

Dynamic Partition Preparation and Cleanup
Before the first z/VSE Job Control statement will be processed, partition initializa-
tion is done, that is

� the profile (procedure) specified for the dynamic class (defined in dynamic class
table) will be executed by z/VSE Job Control,

� assignments to VSE/POWER spooled devices will be established (as defined
by profile).

The preparation is part of the partition initialization. At end of a VSE/POWER job
partition deactivation is done, that is VSE/AF Job Control calls:

1. The cleanup service, which undoes assignments, drops LIBDEFs, etc.
2. Unbatch process (including TSTOP).

 Normal Processing
1. Preparation will execute at the beginning of a VSE/POWER job, cleanup will

execute at the end of each VSE/POWER job for which preparation was done.
2. Preparation/cleanup (P/C) will not execute in the VSE/POWER partition instead

it will run in the VSE/POWER-controlled partition being prepared/cleaned up.
Preparation will be called after start of the partition before Job Control is

 Dispatcher 91

loaded. Job Control will call Cleanup. P/C is considered to be part of the
user's job.

3. VSE/POWER posts Job Control for cleanup. "Do cleanup" will be indicated in
the PCE control block. The indication must not be reset.

4. For dynamic partitions no ASI procedure will be executed, instead a profile
(procedure) has to run after preparation. The same mechanism as for ASI
processing will be used.

5. For dynamic partitions the profile has to contain assignments for SYSIN,
SYSPCH and SYSLST. Initially SYSLST and SYSPCH are assigned IGN.

6. When VSE/POWER receives control after the first SVC 0 to a VSE/POWER
spooled reader, VSE/POWER resets PCEINIT in PCEFLAG.

7. From VSE/POWER's point of view, deactivation for dynamic partitions will
include the UNBATCH logic with respect to freeing resources held by the parti-
tion (for example, GETVIS, assigns, LIBDEFs, etc.).

8. After deactivation is complete the ECB in the PCE control block is posted to
inform VSE/POWER.

9. VSE/POWER deallocates (ALLOC) the dynamic partition.

 Cancel Conditions
� For the first read request (to get the first job statement) during initialization

(PCEINIT in PCEFLAG) SYSIN has to be assigned, otherwise Job Control
cancels the partition.

� IJBSINP calls the service routine TSRICNCL, when no dynamic space GETVIS
area is available for the first call of IJBSINP (in end-of-task processing) during
initialization.

� When a dynamic partition is canceled during Initialization,

1. the cleanup routine is called during end-of-task processing,
2. PCEDOCL and PCEICNCL flag is set,
3. job control is loaded and because PCEDOCL is set, processes unbatch,
4. TSTOP processing posts the VSE/POWER partition (PCEPWECB),
5. the whole VSE/POWER job stream is flushed (up to * $$ EOJ),
6. VSE/POWER deallocates the partition.

� When a VSE/POWER job executing in a dynamic partition is canceled after
profile processing, the system behaves the same as if a static partition was
canceled.

� If VSE/POWER has to cancel (TREADY) a controlled partition due to
VSE/POWER problems (for example, Data File I/O error or cancel of
VSE/POWER itself), cleanup will be done automatically during maintask EOT
processing of the canceled partition. Thereafter a dynamic partition is deacti-
vated by job control (see above) and deallocated (ALLOC) by VSE/POWER.
Note that VSE/POWER is posted via the PCE control block ECB.

92 VSE/AF Supervisor DRM

┌───────────────────────────────────┬─────────┬───────────────────────┐
│ Action to be taken │Initiated│ Function to │
│ │ by │ be called │
├───────────────────────────────────┼─────────┼───────────────────────┤
│ 1) Job submission to VSE/POWER │ II │ │
│ │ │ │
│ 2) Request a partition │VSE/POWER│ │
│ ─ Allocation of dynamic │ │ ALLOC │
│ partition │ │ │
│ │ │ │
│ 3) PSTART the partition │VSE/POWER│ │
│ │ │ │
│ 4) Partition initialization │ Superv. │ │
│ │ │ │
│ 5) Schedule the job in │VSE/POWER│ │
│ this partition │ │ │
│ │ │ │
│ 6) VSE/POWER job is in execution │ │ │
│ │ │ │
│ 7) � $$ EOJ reached │ │ │
│ │ │ │
│ 8) Request partition deactivation │VSE/POWER│ │
│ │ │ │
│ 9) Free all allocated resources │Job Cont.│ │
│ of this VSE/POWER job │ │ │
│ ─ initiate clean up │ │ DYNCLASS ID=CLEANUP │
│ ─ include logic of the │ │ │
│ JC UNBATCH statement, │ │ │
│ do deactivation (TSTOP), │ │ TSTOP COND=UNBATCH │
│ post VSE/POWER) │ superv. │ │
│ │ │ │
│1�) Reset spool indications │VSE/POWER│ │
│ │ │ │
│11) Request partition deallocation │VSE/POWER│ ALLOC │
└───────────────────────────────────┴─────────┴───────────────────────┘

Figure 37. Scenario: Dynamic Partition Preparation and Cleanup

 Dispatcher 93

┌──┐
│ VSE/POWER Supervisor Job Control │
├──┤
│ ─ request dynamic │
│ partition allocation ─� allocation routine │
│ ─ allocate c.blocks │
│ ┌──────────────── ─ do allocation │
│ │ ─ set PCEINIT │
│ │ ─ set PCEPREP │
│
 │
│ ─ TREADY COND=START ────� start processing │
│ │ ─ do start process. │
│
 ─ partition init. │
│ ─ ─ do preparation │
│ ─ prepare processing │
│ │ ─ reset PCEPREP ───� ─ execute profile │
│ │ ─ start job proc.│
│ ─ reset PCEINIT �──────────────────────────────── ─ first SVC � │
│ │ │ │
│
 │ │
│ � $$ EOJ (on reader) │ │
│ ─ set PCEDOCL
 │
│ └──────────────────────────────────────� ─ do cleanup │
│ cleanup processing �───── DYNCLASS │
│ ─ set PCEINIT ID=CLEANUP │
│ ─ set PCECLEAN │
│ └───────────� do unbatch │
│ ─ TSTOP │
│ deactivate partition �── COND=UNBATCH │
│ ─ reset PCECLEAN │
│ ─ do deactivation │
│ ┌──────────────── ─ post ECBs │
│ │ ─ VSE/POWER master ECB │
│ │ ─ PCEPWECB │
│
 │
│ ─ reset spool indication │
│ ─ request deallocation deallocation │
│ ─ do deallocation │
│ ─ free c.blocks │
└──┘

Figure 38. Internals - Dynamic Allocation, Initialization, Deactivation and Deallocation

94 VSE/AF Supervisor DRM

VSE/AF Dispatcher - Identifiers and Limits

Number of Partitions, Task and Partition Key Definitions

Number of Partitions
The current design limit for z/VSE is 212 partitions, which results from the 255 "old"
VSE tasks (an "old" VSE task is a task with a task-id in the range x0001 to x00FF).
Each VSE partition occupies at least one "old" VSE task (maintask). 32 VSE tasks
are reserved for system use (system tasks including attention routine task). 11 VSE
tasks are reserved for system functions and VSE/POWER basic subtask require-
ments.

===> Design Limit 212 = 255 - 32 - 11

which allows a maximum of 2�� dynamic partitions
and 12 static partitions.

The maximum number of partitions in a system can be calculated as follows:

Maximum Number of Partitions = 255
- 32 system tasks (incl. AR task)
- subtasks for z/VSE components
- subtasks for user applications

However the maximum reasonable number of concurrent allocated partitions is
dependent on:

 � the CPU,
� the system configuration,
� the customer environment and
� the job profile.

Notes:

1. The maximum number of partitions within the system can be specified via the
z/VSE IPL SYS command (NPARTS parameter). The generated default is 12
static partitions (no dynamic partitions).

2. Maintasks for the specified partitions (via NPARTS parameter) are reserved
during IPL.

Storage Protection Key
Each static partition in VSE is assigned a unique storage protection key, dynamic
partitions have always the same storage protection key. A storage protection key is
the hexadecimal representation of the value 16*n, where

n is the partition id of static partition

Dynamic partitions use the storage key 16*13 (may be changed in future). Storage
protection keys are assigned according to the scheme shown in Figure 39 on
page 96, where partition IDs X'0D' to X'11' show allocated dynamic partitions of
dynamic class X (X1, X2, X3) and Y (Y1).

 Dispatcher 95

┌─────┬──────┬───────────┬─────────┐ ┌─────┬──────┬───────────┬─────────┐
│Part.│Part. │ PIK Value │ Storage │ │Part.│Part. │ PIK Value │ Storage │
│ id │name │ in COMREG │ Key │ │ id │name │ in COMREG │ Key │
├─────┼──────┼───────────┼─────────┤ ├─────┼──────┼───────────┼─────────┤
│ �� │ SYS │ ���� │ �� │ │ �B │ F2 │ ��B� │ B� │
├─────┼──────┼───────────┼─────────┤ ├─────┼──────┼───────────┼─────────┤
│ �1 │ BG │ ��1� │ 1� │ │ �C │ F1 │ ��C� │ C� │
├─────┼──────┼───────────┼─────────┤ ├─────┼──────┼───────────┼─────────┤
│ �2 │ FB │ ��2� │ 2� │ │ �D │ X1 │ ��D� │ D� │
├─────┼──────┼───────────┼─────────┤ ├─────┼──────┼───────────┼─────────┤
│ �3 │ FA │ ��3� │ 3� │ │ �E │ X2 │ ��E� │ D� │
├─────┼──────┼───────────┼─────────┤ ├─────┼──────┼───────────┼─────────┤
│ �4 │ F9 │ ��4� │ 4� │ │ �F │ Y1 │ ��F� │ D� │
├─────┼──────┼───────────┼─────────┤ ├─────┼──────┼───────────┼─────────┤
│ �5 │ F8 │ ��5� │ 5� │ │ 1� │ X3 │ �1�� │ D� │
├─────┼──────┼───────────┼─────────┤ ├─────┼──────┼───────────┼─────────┤
│ �6 │ F7 │ ��6� │ 6� │ │ 11 │ Y2 │ �11� │ D� │
├─────┼──────┼───────────┼─────────┤ ├─────┼──────┼───────────┼─────────┤
│ �7 │ F6 │ ��7� │ 7� │ │ 12 │ � │ �12� │ D� │
├─────┼──────┼───────────┼─────────┤ ├─────┼──────┼───────────┼─────────┤
│ �8 │ F5 │ ��8� │ 8� │ │ │ │ │ │
├─────┼──────┼───────────┼─────────┤
│ �9 │ F4 │ ��9� │ 9� │ │ │ │ │ │
├─────┼──────┼───────────┼─────────┤ ├─────┼──────┼───────────┼─────────┤
│ �A │ F3 │ ��A� │ A� │ │ D4 │ �� │ �D4� │ D� │
└─────┴──────┴───────────┴─────────┘ └─────┴──────┴───────────┴─────────┘

Figure 39. Partition Identification and Storage Protection Key

Notes:

* No dynamic partition is allocated to the PIK value of X'0120', therefore no
partition name (SYSLOG id) is available.

** Shows the highest possible entry in the PIK table which can be defined
via the z/VSE IPL SYS command, NPARTS parameter. In our example
the entry is unused, that is no dynamic partition is allocated to this entry.

 Partition Identification
A partition is identified by its unique 2 byte Partition Identification Key (PIK). In
some cases a partition is identified by a 'Partition Identifier' (PID) value which is just
the value PIK/16.

 Task Identification
Tasks are identified by a 2-byte hexadecimal number.
When "support for more tasks" is not activated on z/VSE 4.2 (using the SYSDEF
SYSTEM command), the first byte of this 2-byte number is always x00. This is the
same as with z/VSE 4.1 and below. The task identifiers (task-ids) are in the
hexadecimal range from x'0001' to x'00FF', which means that 255 concurrently
active tasks are supported.
With z/VSE 4.2 the user may request (using the SYSDEF SYSTEM command) that
more than 255 tasks can be activated at the same time. The maximum number of
concurrently active tasks is 512. The task-ids are in the range from x'0001' to
x'0200'.
The following table shows the task identifier (TID) values and their assignments to
particular tasks:

96 VSE/AF Supervisor DRM

┌───┬──────────────┬────────────┐
│ System Task │ Main │ Sub │
│ │ Task │ Task │
│TID │ │ TID │ │ TID │ │
├────┼──────────────────────────────────────┼─────┼────────┼───────┼────┤
│ �� │ ─ Reserved │ 2� │ AR │ n │ �� │
│ �1 │ SNS ─ Unit check processing │ 21 │ BG │ n+1 │ �� │
│ �2 │ DSK ─ Resident disk error handler │ 22 │ F1 │ n+2 │ �� │
│ �3 │ RAS ─ Channel/machine check handler │ 23 │ F2 │ n+3 │ �� │
│ �4 │ PMR ─ Page manager │ 24 │ F3 │ n+4 │ �� │
│ �5 │ ─ Reserved │ 25 │ F4 │ n+5 │ �� │
│ �6 │ PGN ─ Page─in processing │ 26 │ F5 │ ... │ │
│ �7 │ SUP ─ Program Fetch processing │ 27 │ F6 │ n+m-1 │ �� │
│ �8 │ DIR ─ Directory read processing │ 28 │ F7 │ │ │
│ �9 │ VTA ─ Virtual Tape Processing │ 29 │ F8 │ │ │
│ �A │ AOM ─ Asynchronous Operations Proc. │ 2A │ F9 │ │ │
│ �B │ ERP ─ Transient error recovery │ 2B │ FA │ │ │
│ �C │ LCK ─ Lock─Unlock processing │ 2C │ FB │ │ │
│ �D │ CMT ─ Capacity Measurement Task │ ... │ � │ │ │
│ �E │ LOG ─ Access control processing │ ... │ � │ │ │
│ �F │ SVT ─ Special service processing │ ... │ � │ │ │
│ 1� │ DSP ─ Dispatcher system task │ ... │ � │ │ │
│ 11 │ SPT ─ Service processor │ │ │ │ │
│ 12 │ CST ─ Console support task │ │ │ │ │
│ 13 │ HCF Hard copy file task │ │ │ │ │
│ 14 │ FCP SCSI processing │ │ │ │ │
│ ...│ up to 1� vendor system tasks │ │ │ │ │
│ 1F │ ... │ │ │ │ │
│ 2� │ AR ─ Operator communication │ │ │ │ │
└────┴──────────────────────────────────────┴─────┴────────┴───────┴────┘

Figure 40. Task Identifier (TID) Values

Notes:

* Depending on the number of partitions up to 212 maintask TIDs may be
used.

** A pool of subtasks is created and maintained by the supervisor. The size
of this pool is given by the maximum number of subtasks active at the
same time, where

x = highest maintask TID = X'2�' + number of partitions (SYS NPARTS=...)
n = max.(X'3�', x + 1)
m = MTASKS - n = maximum number of subtasks
where MTASKS is either 256 (if the support for more tasks is not
active) or the NTASKS value from the SYSDEF SYSTEM command.

Identification of Current Partition and of Current Service Owner
Before control is given to a task the dispatcher sets up the PIK field (bytes 46-47 of
the background communication region - BG-COMREG) by a partition identifier key
value.

In case of a system task it is the PIK value of the service owner partition (in special
situations it may be the system partition key). In case of a user task it is the PIK
value of the task's home partition.

Note: Whenever a task of the BG partition is active, the PIK field is set to the
partition identifier key of the BG partition. Since bytes 46-47 of the other
communication regions are generated with the corresponding foreground
partition identification keys, any active user task may find its own partition
identification key via its own COMREG.

 Dispatcher 97

Identification of Current Task
Before the dispatcher gives control to a task, it puts the task identifier into the TID
field at displacement 90-91 in the system communication regions (SYSCOM). The
TID value in the TID field identifies the task which is currently active. This may be
any system or user task.

LTID (Logical Transient Owner)
The LTID, a halfword (LIK) at displacement 88 in the system communication region
(SYSCOM) contains the same value as the TID when the Logical Transient Area
(LTA) is in use and, therefore, identifies the owner of the LTA. When the LTA is
free, the LTID is zero. The SVC 2 (X'02') routine sets the LTID, and the SVC 11
(X'0B') routine resets it to zero.

Notes:

1. Do not use this interface anymore.

2. Any logical transient routine may find its own task identifier by using the TID
field.

LTK (Logical Transient Key)
The logical transient key, a halfword (LTK) at displacement 110 in each partition
communication region (COMREG). In a foreground communication, the key value
in the LTK is not significant. The LTK in the background communication region
(BG-COMREG) has the same value as the PIK of the partition of the task that owns
the LTA, or contains zeros when the LTA is free. When the LTA is occupied by the
task, therefore, the BG-COMREG has the same value in its LTK as in its PIK when
the owning task is active.

Note: This LTK interface should not be used anymore.

98 VSE/AF Supervisor DRM

Physical Input/Output Control System (PIOCS)

Physical IOCS is that portion of the resident supervisor that:

� Builds a schedule of I/O operations for all devices on the system (CHANQ
Table).

� Starts the actual I/O operations on a device (SSCH Instruction).

� Monitors all events associated with I/O operations.

� Performs error recovery actions. Refer also to VSE Central Functions Error
Recovery DRM, SC33-6326 and VSE Central Functions Logical Transients
DRM, SC33-6324.

I/O Request Enqueuer
When a channel program is to be executed for a user, the I/O Request Enqueuer
routine first checks to see if a channel queue entry is available.

If the channel queue is full, the issuer is set CHANQ-BOUND until a channel queue
entry is available again, which is normally the case after completion of I/O interrupt
processing.

Note: The occurrence of this bound condition is an indication that the number of
CHANQ entries, either the default value or the value specified at IPL time,
is less than the number of concurrent I/O requests. Low performance may
be the result. This situation could have been prevented by either speci-
fying, or increasing the specified CHANQ value of the SYS-command at IPL
time or by inactivating some of the TP-devices assuming that the maximum
number of CHANQ entries had already been specified.

If an entry is available in the channel queue, the GETPUB routine first validates the
users parameters and checks them for correctness (Error Exits: ERR21, ERR25,
ERR26, ERR27). In case the users input has been proven to be correct, the I/O
request enqueuer does some special work for special devices and/or components.

� For all I/O requests directed to a device which is logically assigned IGN
(Ignore):

It ensures that these types of request are immediately posted I/O complete
without having actually been started.

� For all I/O requests being issued from within a VSE/POWER controlled partition
and directed to an UR device which the user did define as 'spooled' device or
directed to the operator console:

It ensures that these type of requests are being passed to the VSE/POWER
SVC 0 appendage, and will be further processed due to the information
returned from that routine.

� For I/O requests directed to the system operator console (SYSOCDEV):

It ensures that these requests are passed to the Console Router (described in
the Console Functions DRM) for further processing.

© Copyright IBM Corp. 1985, 2013 99

� For DASD and Diskette I/O requests issued from user tasks:

It ensures that the associated channel program starts with a command consid-
ered valid by the VSE system (ERR33).
(Refer also to system files described later in this section.)

It ensures proper DASD file protection in case the user specified
DASDFP=YES (ERR42).

Special processing information is saved in general register 5 until a CHANQ entry
has been allocated (after CCW Translation).

If the I/O request needs to be translated control is passed to the CCW-Translation
Routine (described later in this chapter) to get the virtual channel program copied
into the copy blocks within the supervisor and to get all virtual addresses translated
to their correct real addresses.
The CCW-Fixing Routine is used to get all referenced I/O areas TFIXed, if they are
not already PFIXed, thus making sure, that this page will not be paged out by the
PAGE MANAGER routine.
In the next steps, all the information which is needed to further process any I/O
operation is saved in the CHANQ entry which is then enqueued into the chain of
I/O requests that might already be waiting for this device. The request is enqueued
due to its I/O priority retrieved from the I/O priority table (HQUPRI and HQUPPRI).
(For a sample of SYSIO request enqueuing refer to Appendix C, “Samples” on
page 519.

If the just enqueued I/O request is NOT THE FIRST one in the device chain,
control goes directly back to task selection.
If the request IS THE FIRST one in the device chain, the CPU time is charged to
the partition which issued the I/O request (refer to Job Accounting described later in
this chapter) and control is passed to the Device Scheduler Routine.

Special processing support provided by the I/O scheduler or related SVC-routines
will be described on the following pages.

Block Protection (SVC 35)
Block protection ensures that a 'block' on a disk device which is being held by one
task is not accessed by another task unless the holding task has released the
'block' again.

CKD Devices (BBCCHH): The unit of protection is one track. The track address is
retrieved from the users SEEK CCW, which must be the first CCW. The whole
track is always protected against access by another task.

FBA Devices: The unit of protection is always the range of FBA blocks as speci-
fied in the DEFINE EXTENT CCW which must be the first CCW. The whole range
of blocks is protected against access by another task.
If the first CCW is not a SEEK or a DEFINE EXTENT CCW, block protection is
simply ignored and normal SVC 0 processing is done. All requests to protect a
track on a CKD device or a range of FBA blocks against simultaneous use will be
entered into the Track Hold Table before the I/O Request Enqueuer gains control.
The block protection routine forces the issuing task to be set TRK-bound if the
given block is already held by another task. It will be reactivated as soon as the
requested block becomes available which is normally the case after the holding
task has released the track.

100 VSE/AF Supervisor DRM

Multiple I/O requests for tracks or ranges of FBA blocks which are to be held are
chained in a device chain with forward and backward pointers, and the appropriate
PUB contains the index to the first Track Hold Table ENTRY. For the format of the
Track Hold Table (THTAB) see Figure 234 on page 518.

 System Files
The SYSFIL support of the supervisor allows to have system files (SYSRDR,
SYSIPT, SYSPCH and SYSLST) on CKD and/or on FBA disk devices. The sched-
uler turns on a special bit in the CHANQ entry to ensure proper program flow within
the I/O supervisor. Special processing however, is required for system files
residing on FBA devices.

System Files on FBA Devices: SVC 103 (X'67') performs the input/output oper-
ations for system files on FBA devices. The code of the SVC 103 (X'67) consists
of:

� The resident part, performing supervisor functions.
� The pageable part, loaded into the SVA, performing data management

(blocking/deblocking) functions.

For details see description of SVC 103 (X'67').

 Physical Input/Output Control System (PIOCS) 101

 Scheduler
The Scheduler is entered from either the I/O Request Enqueuer to drive a single
device, or it is entered from the I/O Interrupt Handler (described later in this
section) to get the next request in a queue (if any) started. The Scheduler ensure
that all requests which have been enqueued by the I/O Request Enqueuer are
started in FIFO order as soon as the resource (Channel, Subchannel or Device) is,
or becomes available. The Scheduler ensures the accessibility of a device. In case
the device is gated, control is directly passed to task selection.
If the device is available, the Scheduler does some SIO-preprocessing for special
devices.

� For SYSIN I/O requests:
It ensures not reading past /& (ERR30)

� For Tape I/O requests:
It ensures control to be passed to the Tape ERP whenever Tape ERP has pre-
viously requested that the next SIO attempt is to be routed to Tape ERP. The
actual user request will be delayed until Tape ERP has completed its pre-
processing function.

In case of an I/O error on a previously initiated I/O operation it ensures the
recovery channel program, as specified by the ERP System Task and not the
channel program as specified in the user's CCB to be initiated.

It ensures that Tape I/O operations which do not meet the above criteria are
being suspended for normal processing until the service (SVT) task has com-
pleted its eventually ongoing Tape volume recognition process.

All other tape requests, not meeting one of the conditions described above are
ensured to be started with the assigned (PUB) Mode setting.

� For Advanced Function Printer (AFP) I/O requests:
It ensures control to be passed to the AFP-ERP whenever AFP-ERP has previ-
ously requested that the next SIO attempt is to be routed to Tape ERP.

 � For DASD-Devices:

The I/O Scheduler ensures that the user can only access those Records or
EXTENTS on a volume, that he is authorized to access (ERR30, ERR32).

Following the SIO-preprocessing the I/O Scheduler actually carries out the
requested I/O operation by means of a

SSCH

instruction. Depending on the resulting condition code the Scheduler either enters
the I/O INTERRUPT PROCESSOR to further process condition codes 1 (CSW
STORED) and 3 (DEVICE NOT OPERATIONAL) or it completes its Device Sched-
uling process by updating the appropriate SIO processing and SIO accounting infor-
mation and passing control to the task selection routine.

102 VSE/AF Supervisor DRM

I/O Interrupt Handler
The I/O interrupt handler is entered when an I/O interrupt occurs, or whenever the
I/O New PSW (FIXED STORAGE LOCATION X'78') is being loaded. The code to
handle I/O interruptions is in the IOINTER part of the supervisor. The I/O interupt
handler will first issue a TSCH (Test SubCHannel) instruction to retrieve the status
information into an IRB (Interrupt Response Block). The information will then be
re-mapped into the /370 fixed storage locations (CSW, ECSW and X'BA') to main-
tain subsytem compatibility.

An I/O interruption occurs when an I/O operation terminates or the operator inter-
venes on the device. The interrupt parameter from low storage location X'BC' is
used to allocate the PUB entry and to set up the related I/O pointers. It should be
noted here, that, in order to prevent system hangs, a PUB must have been defined
for any device of the installation, regardless of whether this device is being used or
not. Before an I/O interrupt for a known PUB is actually processed, privileged com-
ponents (VTAM, POWER) are given the ability to inspect the Channel Status Word
(CSW) via a BAL-type interface (Channel End Appendage (CEA)).

If none of the above conditions exists, the CSW is examined and action is taken
according to the table in Figure 41 on page 104.

 Physical Input/Output Control System (PIOCS) 103

┌──────────┬───────────────────────┬────────────────────────────────────┐
│CSW Status│ │ │
│ Bit On │Status Condition │Action │
├──────────┼───────────────────────┼────────────────────────────────────┤
│ 45 │Channel Control Check │Branch to the Channel Check Handler │
│ 46 │Interface Control Check│to interrogate the bits attempting │
│ │ │recovery. │
├──────────┼───────────────────────┼────────────────────────────────────┤
│ 38 │Unit Check │Retrieve the sense information from │
│ │ │the device and if user wants sense │
│ │ │data, provide it. │
│ │ │If user did provide its own error │
│ │ │routine, or if the issuing task was │
│ │ │a system task, post I/O request │
│ │ │complete with error. │
├──────────┼───────────────────────┼────────────────────────────────────┤
│ 42 │Program Check │If user did provide its own error │
│ │ │routine, or if the issuing task was │
│ 43 │Protection Check │a system task, post I/O request │
│ │ │complete with error. │
├──────────┼───────────────────────┼────────────────────────────────────┤
│ 44 │Channel Data Check │Retry the I/O operation several │
│ │ │times and if still persisting, treat│
│ 47 │Channel Chaining Check │as error. │
├──────────┼───────────────────────┼────────────────────────────────────┤
│ 32 │Attention │For attention from the operator │
│ │ │console (SYSOCDEV) activate the │
│ │ │CST─System task to further process │
│ │ │this request. │
│ │ │Branch to task selection routine. │
│ │ │ │
│ │ │Attention interruptions from other │
│ │ │devices are not processed directly. │
├──────────┼───────────────────────┼────────────────────────────────────┤
│ 35 │Busy │Indicate that the device is to be │
│ │ │restarted. │
│ │ │Branch to General Exit routine. │
├──────────┼───────────────────────┼────────────────────────────────────┤
│ 36 │Channel End │Post user │
│ │ │ │
├──────────┼───────────────────────┼────────────────────────────────────┤
│ 37 │Device End │Post user and/or reschedule the │
│ │ │device. │
│ 34 │Control Unit End │Restart the device. │
└──────────┴───────────────────────┴────────────────────────────────────┘

Figure 41. CSW Testing in I/O Interrupt Handler

104 VSE/AF Supervisor DRM

If the device status indicates that the channel program has been completed, the
appropriate information is posted in the CCB/IORB.

If the CCB/IORB indicates that this is a copied CCB/IORB (X'20' in byte 6) control
is given to a special routine (CSWTRANS) which,

� Frees all pages fixed for I/O areas.

� Retranslates the CCW address placed in the copied CCB/IORB to the correct
virtual address.

� Releases the CCW copy blocks and IDAL blocks.

� Moves changed parts of the CCB to the virtual-mode program and release the
CCB copy block. If the virtual CCB is not in real storage, the end of channel
information is not copied to the virtual CCB by CSWTRANS. Instead,
CSWTRANS posts a bit in the corresponding task information block (TIB) indi-
cating to the dispatcher that the CCB should be moved before the task is dis-
patched. This is necessary because no page faults are accepted during the
IOINTER process and the page fault will thus be delayed and handled under
users task id, next time he is dispatched.

� Activate tasks waiting for copy blocks or waiting for page frames.

CSWTRANS returns control to the interrupt handler when it has finished proc-
essing. The I/O Interrupt Handler will then dequeue the CHANQ entry from the
channel queue, assuming this was the final interrupt for a specific request and pass
control to the Channel Scheduler to get another or the same device started again.

Automatic Volume Recognition (AVR)
This facility keeps track of device-specific information of each DASD and TAPE
device in the system. The supervisor maintains a table, the volume characteristics
table (VCT), which contains the specific information for each device (see “Layout of
the VCT and DCT Tables” on page 107).

SVC 99 (GETVCE macro, see also Appendix B) retrieves data from this table for
the user. The Service System Task (SVT) facility interrogates the device when
requested, and updates the table. Requests for updating the table are made by the
I/O Interrupt Handler whenever the device becomes 'READY'and by SVC 101
(MODVCE macro, see also Appendix B), which can be issued by any user, but
especially IPL, utility programs when a change to the device is suspected and by
command processors (e.g. ONLINE and VOLUME command). The request flow is
shown in Figure 42 on page 106.

 Physical Input/Output Control System (PIOCS) 105

 │ I/O Interrupt
 │ 'READY'

│ Device Not Busy

 ┌─────────────┐

│ PIOCS │
│ (IOINTER) │

 │ │
 └───┬─────┬───┘
 │ │

│ │ Overflow of RQT Only
 │ │ │
 │ │ │
 │ │ │
 │ │ �────────┘
 │ │
 R│ │V
 Q│ │C
 T│ │T
 E│ │E
┌─────────────┐ │ │ ┌─────────────┐ ┌─────────────┐
│ │ │ │ │ │ │ │
│ User │ │ │ │ IPL │ │ Utilities │
│ │ │ │ │ │ │ │
└─────────────┘ │ │ └─────────────┘ └─────────────┘
 │ │ │ | │

┌─────────────┐ ┌─────────────┐ ┌─────────────┐
│ │ RQTE │ │ RQTE │ │
│ GETVCE ├────────�│ Service │�─────────┤ MODVCE │
│ SVC │ Request │ Task │ Request │ SVC │
└──────┬──────┘ └───┬─────────┘ └──────┬──────┘
 │ or │ � │
 ───────────┐ │ │ │

 │
 │

┌─────────────┐ │ ┌─────────┴───┐ ┌─────────────┐
│ │ │ │ │ │ Dispatcher │
│ User │ │ │ Wake up user│ │(user set in │
│ │ │ │ │ │ bound state)│
└─────────────┘ │ └─────────────┘ └─────────────┘
 │
 │
 │

 ┌─────────────┐
 │ │

│ RESVC │
 │ │
 └─────────────┘

Figure 42. General Flow of Volume Characteristic Table Entry Update

106 VSE/AF Supervisor DRM

Updating the VCT Table
The update request may come from two sources:

1. From the I/O INTERRUPT PROCESSOR whenever a DASD- or TAPE-Device
became 'READY'

2. From SVC 101 (MODVCE).

The first category must issue the request immediately, since it cannot save the
status. The second category, however, requires that the requesting task is readied
not before the VCT-Table has been updated. Also, more than one task can
request an update for a given device at a time, and if an entry is in the process of
being updated, any GETVCE request must be queued in order to wake up the
requesting task after the update. This results in two request queues:

� Device-related only.
� Task- and device-related.

The first queue is the VCT table itself. Each entry (VCTE) has a work-to-do and
work-in-progress flag.

The second queue is the RQT request table, a simple vector of task IDs, PUB
indexes, and function flags. The address of the RQT table can be found at label
RQTTAB. If the RQT overflows, the SVC can be retried at a later time using
RESVC.

Layout of the VCT and DCT Tables
The Volume Characteristics Table (VCT) entry contains mainly the information that
is defined by the AVRLIST macro (see Appendix B). The Device Characteristics
Table (DCT) entry is described by the DCTENTRY macro. Each entry is fixed
length and describes the device characteristics of a CKD, FBA DASD or TAPE
device. The DCT entry is immediately appended to the end of each AVR entry of
the appropriate device.

Usage of the two macros (AVRLIST and DCTENTRY) is discussed under
"GETVCE Macro" in Appendix B. The start address of the VCT table can be found
at label AAVRTAB.

Control Unit Initiated Reconfiguration (Quiesce/Resume support)
This part of the supervisor supports control unit initiated reconfiguration.

The CUIR Architecture: Basicly the processing of a request is done in the fol-
lowing steps:

� The control unit sends an attention interrupt to the host system.

� The system sets up CCWs to read all pending attention messages. It then
checks if the attention message is for quiesce resume purposes. VSE does not
interpret any other kind of attention messages.

� The system identifies the scope of the request. This scope is the set of
device/path (subchannel/chpid) pairs that are affected by the request.

� The system tries to apply the requested operation to the devices/paths in the
scope (i.e. either quiesce or resume).

� It sends back a response code to the Control unit indicating success or reason
of failure.

 Physical Input/Output Control System (PIOCS) 107

This processing is accomplished by the VSE service task. The service task is
informed about any incoming attention interrupt from a device that could support
quiesce resume. It then enters phase $IJBCUIR in the SVA to do the processing. If
no further processing is required it unposts itself again.

The phase $IJBCUIR All the processing of quiesce resume takes place in the
phase $IJBCUIR in amode 31. The phase consists of three parts, the code, a stack
area and a wrap around debug buffer. All the data required in the processing are
kept in an area named QRSGLOB, which is generated in the system task code in
the supervisor. Both the supervisor part and the code in $IJBCUIR are generated
by macro SGCUIR. Processing starts in routine QRBASE, which is basicly a loop
scanning all PUBX entries of the system for attention interrupts. Whenever an
attention interrupt is found it reads the attention message. If the attention message
is a quiesce resume request, routine QRMAIN is called to do the processing.
QRBASE will continue reading attention messages until the device indicates "no
more messages available". Scanning for new attention interrupts will only stop, if
the PUBX was scanned completely and no indication of an attention interrupt was
left.

QRMAIN first calls a subroutine to determine the scope of the request. This scope
is encoded in the reconfiguration request record and can not be seen directly from
it. The system has to read a so called configuration data record from every chpid in
every subchannel that could be connected to the same control unit. The reconfig-
uration request record contains an NED-map, an NEQ-map and a
SELECTORBYTE identifying the set of configuration data records that come from
the subchannel/ chpid pairs making up the scope of the request. Each configura-
tion data record consists of 32 byte entries. There is three different types of
entries:

� NEDs, node element descriptors. Each NED represents one separately identifi-
able component in a subsystem and contains its serial number and further
information. Only those NEDs that are flagged as "reconfiguration NEDs" are
requrired for the CUIR processing. One of the NEDs of a configuration data
record is flagged as so called "token NED".

� NEQs, node element qualifiers. These entries are not used for reconfiguration
request processing.

� GNEQ, the general node element qualifier. It should be the last entry in a con-
figuration data record. It contains a 24 byte area which is required in quiesce
resume processing.

The system first needs to find the so called base configuration data record. In order
to do this, the system first reads the configuration data record from the same
subchannel/chpid pair that it received the attention interrupt from. If the selector
byte in the reconfiguration request record is zero, this configuration data record is
the base configuration data record. If it is not zero, the system has to scan all
configuration data records that have the same token NED as the one that was read
from the same subchannel/chpid pair that it received the attention interrupt from.
The first configuration data record having the same selector byte value in its GNEQ
is the base configuration data record.

When the base configuration data record is found the system will determine the set
of related configuration data records. For this it will check each configuration data
record having the same token NED as the base configuration data record. If those
parts of a configuration data record, that are indicated in the NED map and the

108 VSE/AF Supervisor DRM

NEQ map of the reconfiguration request record, are equal to the corresponding
parts in the base configuration data record, the record is a related one.

Each bit in the NED map identifies one of the so called reconfiguration NEDs of a
configuration data record. Bit 0 the first one, bit 1 the second and so forth. The
configuration data record needs to be scanned, to find the NEDs in question and
compare them to the corresponding ones in the base configuration data record.
Each of the bits in the NEQ map refers to a byte in a 24 byte area in the GNEQ of
the base configuration data record. The contents of these bytes must be similar to
the contents in the GNEQ of the examined configuration data record to make it a
related one. All the subchannel/chpid pairs that have been used to read the related
configuration data records make up the scope of the request.

When the scope is determined it is handed back to the main routine in a list. This
list is processed from the first to the last entry. If processing stops due to some
error condition being found there is no recovery for the actions already taken. If for
example a list of paths is presented, that need to be quiesced and the list contains
five entries and processing encounters an error in the third entry, the first two paths
will remain quiesced, whereas entry three to five are not processed.

Messages issued by CUIR processing: Since the quiesce resume processing is
an infrequently used part of the system, there are messages issued for almost
every step the system takes. The messages range from 1H40I to 1H60I. The
normal sequence of messages on the console should be as follows:

1H40I quiesce resume message was received. The message is dis-
played for every reconfiguration request record that was read.
The data displayed are the first part of the record.

1H4xI indicating an action. Either a device or path was quiesced, or a
device or path was resumed. In case of a 1H52I a system identifi-
cation was sent to the requesting control unit.

1H54I indicating the response that was sent back to the control unit. If
the response was positive or not can either be seen from the
sequence of messages 1H4xI, or from the first byte of the
response data. The following values are defined by the architec-
ture:

x01 Request was completed successfully

x02 Request rejected. Quiesce resume processing
not supported.

x03 Invalid reconfiguration request.

x04 Operator denied request.

x05 Reject of quiesce path request, last path
affected.

x06 Reject of quiesce device, device is in use.

x07 Reconfiguration failed during vary processing

x08 Reconfiguration failed due to program failure.

x09 Unknown request type received.

Aside from these messages, there is a number of messages for unusual conditions
found by the system. These messages contain data that are intended for debugging

 Physical Input/Output Control System (PIOCS) 109

purposes by an IBM support team. All quiesce resume messages are produced by
the message writing routine QRMSGWRT in macro (SGCUIR). The following list
gives a description of the data that are just indicated by x..xx in the message
manual. xn(a-b) refers to the bytes a-b of the printed variable number n in the
message. If the message reads 1H55I QRES RESPONSE x..xx REJECT DATA
x..xx , the part behind the word RESPONSE is referred to as x1 and the x..xx data
behind the word DATA as x2.

1H55I The service task received a disaster error on the attempt to send
an answer back to the requesting control unit. x1(0-9) is the
answer that should be sent to the control unit, beginning with the
return code. x2(0-1) is the cuu, x2(3) the chpid, x2(3-11) the ccb,
x2(12-20) sense bytes 0-8 and x2(21-26) sense bytes 22-27 of
the failing operation.

1H56I An io error occured during read of the attention message. x1(0-1)
is the cuu, x1(3) the chpid, x1(3-11) the ccb, x1(12-20) sense
bytes 0-8 and x1(21-26) sense bytes 22-27 of the failing opera-
tion.

1H57I System received an attention interrupt on a path, on which we
cannot issue a read for the attention message since the IO on
this path is prohibited by some disabling path mask. x1 is the
path mask x2 the cuu we received the attention interrupt on.
x3(0-7) are the PUBX fields PBXNOERP, PBXNOPVF,
PBXNOOPR, PBXNOQSD, PBXPIM, PBXPAM and PBXLPM.
x3(8-15) are the chpids in PBXCHPID.

1H58I System received an invalid configuration data record. x1 is the
path mask, x2 the cuu on which we received the record. x3(0) is
set to 6 if the cdr does not contain a token NED and 7 if the last
32 byte entry in the cdr is not a GENERAL NEQ. x3(1-4) is the
storage address of where the cdr is kept in storage and the rest
of the data is the beginning of the CDR. This last part can only be
used to see if these data make sense as a cdr at all.

1H59I We received a bad return code from a getvis invocation.

1H60I System has encountered an internal processing error. x1 is the
field QRERRIND in the SGCUIR code. It should have one of the
following values:

1 System could not identify a base configuration
data record. None of the records tested had
the required selector byte in its GNEQ. Set by
subroutine QRGSCOPE.

2 There is a bit in the NED map set to on, but the
configuration data record currently scanned
does not have a corresponding reconfiguration
NED. Set by subroutine QRGSCOPE.

3 We could not obtain sufficient GETVIS storage
to build the scope list which is scanned by
QRMAIN. Issued by QRGSCOPE.

4 Same as 2, just detected in a different place in
the code.

110 VSE/AF Supervisor DRM

5 Could not obtain GETVIS for a cdr. Issued by
QRGETCDR.

Debugging Aids.: There is a number of debugging aids incorporated in the
SGCUIR code. First the data area QRSGLOB can be located by the eyecatcher
preceeding it. The first 3 pointers in it help in finding the $IJBCUIR phase in
storage. Part of that code is a wrap around debug area, the format of the entries of
which is described in the QRSTRACE subroutine in SGCUIR. It contains an entry
for each vital processing step of a reconfiguration request.

If the code encounters a severe logic error, it does not hardwait the system but
leaves to the SGSER service task code. In addition it zeroes the pointer to
$IJBCUIR in the SVA address vector table. This ensures that the code is not
entered any more. A dump can be taken any time from then on and should still
contain all the data from the time the logic error was detected. One possible reason
for this exit could be a stack overflow for example. There is no message given on
the console to indicate quiesce resume processing was terminated. The fact that it
was done can be seen from the fourth pointer in the QRSGLOB area, which is
either zero or points to the position in the code where we decided to leave, using
BAL R5,QRHARDWT.

For some logic errors that should not occur but are not due to coding errors in
SGCUIR an internal error message 1H60I is issued. If the system issues an
internal error message, quiesce resume processing is not switched off, but only the
current request is terminated.

System Console Attention Processing
Attention interrupts from the system console device (SYSOCDEV) cause an
appendage routine to called, that posts the CST system task.

 Physical Input/Output Control System (PIOCS) 111

I/O Error Processing
When the I/O interrupt handler detecs an error condition, it builds an error entry
containing information about the error condition and queues it on one of the four
chains to further process this error. This section is about the error processing that
the four system task error processing tasks do.

Error Entries: There is one error entry for each device added at IPL time. This
error entry is used for errors related to non-system task requests or to unsolicited
interrupts. There is one additional error entry for each system task (except SNS
and PGN), which is used for errors related to requests by this system task.

Error Chains: One chain of error entries is maintained for each of the four error
recovery system tasks: Sense Task (SNS), Disk Error Recovery Task (DSK), Error
Recovery Task (ERP) and Machine and Channel Check Handler (RAS). Each error
chain consists of an error chain header pointing to the first (if any) error entry in the
chain. System task error entries are enqueued on top of the chain, device error
entries at the bottom. Any error entry can be in only one error chain at a time.

General Procedure: The I/O error processing routine locates the appropriate error
entry and removes it, if necessary, from any error chain. After setting the error
information, it enqueues the error entry in one of the error chains, depending on the
type of error and on the available information. The chain owner is posted, if not
already active.

Each chain owner processes its chain in FIFO order. The first entry is dequeued, a
recovery action is carried out and the error entry is then passed to another chain, if
additional processing is needed; or freed, if the error recovery is completed. Error
recovery system tasks always exit to the I/O Interrupt Handler, before resuming
operation with the next entry in the chain. When an error recovery task has fin-
ished processing the last error entry on the chain, it deactivates itself.

Sense Task (SNS): The main function of the sense task is to read the sense data
related to a unit check error and to save them, if needed, in the error entry. The
error entry is then passed to the disk resident error recovery task (DSK) or to the
error recovery task (ERP).

Disk Error Recovery Task (DSK): The function of the DSK task is to analyze the
sense data related to a unit check error from a disk device and to initiate retries or
other recovery actions if appropriate. The error entry is passed to the error
recovery task for operator communication and/or error logging, if necessary.

Error Recovery Task (ERP): Four distinct functions are assigned to the ERP task:

� Recovery operations for all I/O errors on non-disk devices
� Handling of all operator messages related to I/O errors
� Logging of I/O error information on the recorder file
� Processing of recording requests which are being passed to the ERP via the

SVC 44 service.

The activity of the ERP task is monitored by resident code (SGERP). The resident
ERP logic decides upon the device type of the failing device whether further proc-
essing will be done by the resident tape ERP (SGTAP) or by the transient ERP.
The resident tape ERP is managing error recovery for cartridge tape devices. The
error entry is passed to SGTAP who performs the necessary recovery actions and

112 VSE/AF Supervisor DRM

handling of operator messages but not the logging of I/O error information on the
recorder file. When error logging is necessary resident tape ERP passes the error
entry to the transient ERP.

If transient ERP will do the processing the first error entry from the ERP chain is
dequeued and the contents of the error entry are moved into a fixed area (ERQ1),
which is accessible to the transient phases (ERBLOC) and which is the only means
to get error and process related information from there. The monitor next decides
which transient should run first and calls it and passes control to it. The transient
(A-transient) may call other A-transients, but will eventually return to the monitor at
label ERPEXIT providing information about the action that is to be taken by the
monitor.

Other system functions (SVC 44 and the Missing Interrupt Handler) also move
information to be recorded directly into the ERQ1 area, when it is not already occu-
pied. In this case, the ERP task first handles the information already available in
the ERQ1 area, before processing the next error entry from the ERP chain.

Machine and Channel Check Handler (RAS): Functions assigned to the Channel
Check RAS task are:

� Logging of I/O error information on the recorder file
� Handling of all operator messages related to I/O errors
� Recovery operations for all I/O errors on non-disk devices

The activity of the RAS task is monitored by resident code. The resident RAS logic
dequeues the first error entry from the RAS chain and moves the contents of the
error entry into a fixed area (ERPIB), which is accessible to the RAS transients.

 ERBLOC Area
The ERBLOC area is used as interface between the transients involved in I/O error
processing and/or Error Recording. The AERBLOC field in the SYSCOM contains
a pointer to this area. The layout of the ERBLOC area is shown in Figure 226 on
page 505.

 Error Entries
There is one error entry of each device added at IPL time. The pointer to this entry
can be found in the PUB extension (PUBX). The device-related error entries varies
in its length depending on the number of sense bytes.
There is one additional error entry per system task, except PGN and SNS task. The
address to that error entry is contained in the appropriate system task TCB.

Error entries are chained together and enqueued to the appropriate processing
task. There is a separate chain for each, the SNS, DSK ERP and RAS task. A bit
combination of outstanding recovery operations is used to address the appropriate
chain. The anchor address of any of these chains is contained within the ERBLOC
area (see Figure 226 on page 505). For the format of the error entries as proc-
essed by SNS, DSK, RAS and the ERP see Figure 227 on page 507.

 Physical Input/Output Control System (PIOCS) 113

Loading an ERP Transient
When exit is to be taken to a physical transient ERP system task issues an SVC 5
to get the transient phase loaded into the physical transient area which is then sub-
sequently entered.
To fetch another ERP transient, the active transient phase issues an SVC 5.

114 VSE/AF Supervisor DRM

Disk Error Recovery
Disk error recovery routines are resident device error recovery routines. They are
described below. A-transients ($$A) are only fetched when the error is to be
recorded, or when an operator message is to be issued.

A-transients are fully described in the VSE Central Functions Error Recovery DRM,
SC33-6326.

The error recovery actions done by SGDSK are oriented after the actions pre-
scribed in the controller manuals of the DASD devices. For FBA and CKD devices
the recovery procedure can be derived from sense bytes 0, 1, 2 and 7. ECKD
devices indicate the recovery action in sense byte 25 (Program action code) and
messaging and recording needs in sense byte 24.
The messaging and recording actions initiated by SGDSK may in some cases differ
from these recommendations. In case a recovery action is prescribed that would
exceed the device support normally provided by VSE, this action will not be exe-
cuted. Instead the error will be treated as unrecoverable.

SGDSK retries failing IO operations on a path selective basis. If an error can not
be recovered on a certain path recovery may be done on another path.
SGDSK may be instructed by sense data to fence a path, a storage director or a
controller and will do so, using the required diagnostic control commands.
SGDSK will break a duplex pair if the error recovery is exhausted on all paths of
the primary device and the nature of the error indicates, that it may be overcome
on the secondary device.

SGDSK keeps track of the last recovery actions it performed in a wrap-around
debug area (DERDEBUG).

 Physical Input/Output Control System (PIOCS) 115

Resident Tape Error Recovery
There are two different tape error recovery routines:

� Resident error recovery routine SGTAP for cartridge tape devices which is
described below.

� Transient error recovery for all other tape devices. The A-transients are fully
described in the VSE Central Functions Error Recovery DRM, SC33-6326.

SGTAP is processing on the ERP chain of error entries that may contain several
error entries for one or more devices. These error entries either belong to a PUBX
or to a TCB of a system task. SGTAP always dequeues the next error entry from
the chain and starts following error recovery procedure for that error condition:

1. Analyze the presented sense data.

2. Assign recovery attributes like recovery action, messaging and recording needs
to the error condition. The recovery attributes are leaned upon the actions pre-
scribed in the controller manuals of the tape devices.

3. Perform the recovery action. When recovery I/O has to be done SGTAP is not
waiting for I/O completion but initiates messaging for this error condition and
starts processing the next error entry queued in the ERP error entry chain.

4. When the recovery I/O request has been completed messaging is done, if still
applicable.

5. Recording, if necessary, is initiated by enqueuing an error entry containing all
information to be recorded into the ERP error entry chain. Transient tape ERP
will later process this error entry asynchronously.

6. If recovery could be completed, SGTAP is left to the ERP monitor SGERP and
the next error entry can be processed or a recovery procedure already started
can be completed.

7. If a new error condition is presented on a recovery I/O request the old error
condition is considered overcome and the new error condition is processed
from now on as if it had been the original one.

SGTAP keeps track of the last recovery actions it performed in a wrap-around
debug area (TERDEBUG).

116 VSE/AF Supervisor DRM

ERP Message Writer
The ERP message writer SGEMSG writes all recovery messages with prefix 0P.
This is done in following steps:

� Set up message output lines

� Issue message using macro WTO/WTOR

� Analyze operator reply in case of decision-type messages

� Select the proper exit

Usually, the ERP message writer gets either control from the resident tape error
recovery routine SGTAP or from the transient error recovery routines. They provide
the operator action and target codes by setting up a flag byte in the error entry or
ERBLOC area, respectively. The action code may be:

� A (action-type message, operator intervention required)

� D (decision-type message, operator reply required)

� I (information-type message, no operator action or reply required)

For decision-type messages the target code may be:

� I (decide between cancel or ignore)

� IR (decide between cancel, ignore, or retry)

� R (decide between cancel or retry)

For information-type messages the target code may be:

� C (I/O operation will be cancelled)

� I (the task could not be notified about the error)

� R (I/O operation is retried)

� P (the task was notified about the error)

For action-type messages, there is no target code.

 Physical Input/Output Control System (PIOCS) 117

Missing Interrupt Handler
The Missing Interrupt Handler (MIH) is a resident supervisor routine that interro-
gates all entries in the channel queue on an interrupt driven time slice basis. The
MIH is entered whenever an ATTENTION interrupt from the system operator
console (SYSLOG) is recognized, or whenever the system is going to enter an
ENABLED WAIT state.

The MIH will first ensure that a defined time interval has elapsed, otherwise it will
immediately return via the linkage register. If the defined interrupt has elapsed, all
channel queue entries will be examined to determine whether they have been
flagged as long-term entry. If the entry is not a long-term entry, it will be flagged as
such if the associated I/O operation has been successfully initiated and if it is a
device to be handled (see below). All entries which are already flagged will be
further investigated in order to determine why these entries are still in the channel
queue, for example, a channel end or device end is outstanding.

For this purpose, any associated I/O interrupt information as well as the current
device status, retrieved by means of a TIO instruction, will be used to set up the
appropriate message. The result of the TSCH determines whether an information-
type message or a decision-type message is provided. For both types of mes-
sages, the final action performed by the MIH depends on the communication bytes
in the CCB and on the task which issued the I/O operation. All missing interrupts
that can be uniquely identified as device errors will result in a record being written
to the recorder file in a standard format.

Certain TP devices cannot be supported since the supervisor cannot distinguish
between an endless polling loop or a subchannel hanging due to a missing inter-
rupt. These conditions are handled by the individual components, usually by timer
interrupts.

118 VSE/AF Supervisor DRM

 Lock Management

Locks a resource against simultaneous use by other tasks.
Unlocks a given resource that was previously locked.
The SVC 110 (X'6E') is invoked by the LOCK and UNLOCK macros.

Resources that may be locked/unlocked are:

� Data sets
 � Libraries
 � Catalogs
� Program routines
� Control blocks, etc.

In a DASD sharing environment the SVC 110 (X'6E') may be used:

� To lock resources against simultaneous use by other tasks of the own system
(internal locking), or

� To lock resources against simultaneous use by tracks of another VSE system
(cross-system locking).

The SVC 110 (X'6E') routine (the lock manager), including the SVC 63 (X'3F') and
SVC 64 (X'40') routines and the associated tables, is contained in the pageable
part of the supervisor.

The lock manager is a serially reusable routine. Only one LOCK or UNLOCK
request may be executed by the system at a time. If the lock manager is already
active, the issuing task will be set to USEBND (X'8B') and afterwards into WAIT
state (RESVCX).

Required Control Information
The resource to be locked/unlocked is described by the control block DTL (Define
The Lock), the address of which is passed to the SVC 110 (X'6E') routine in reg-
ister 1. Register 0 is used as a parameter passing register. The contents of reg-
ister 0 is used to differentiate between LOCK and UNLOCK.

┌────────┬───┐
│ DEC │ Description │
├────────┼───┤
│ � ─ 2 │ Zero │
│ 3 │ Option Flag Byte │
│ │ X'8�' FAIL=WAITECB │
│ │ X'4�' UNLOCK JC=SYSID │
│ │ X'2�' UNLOCK ALL │
│ │ X'1�' UNLOCK ALL,JC=EOJ │
│ │ X'�8' FAIL=WAITC │
│ │ X'�4' FAIL=WAIT │
│ │ X'�2' LOCK (USE) request │
│ │ X'�1' SVC 11� (X'6E') request │
└────────┴───┘

Notes:

1. LOCK - Option flag byte contains: X'03'
2. UNLOCK - Option flag byte contains: X'01'

Figure 43. Contents of Parameter Passing Register 0

© Copyright IBM Corp. 1985, 2013 119

LOCK and UNLOCK (SVC 110 - X'6E')

Locking a Resource
If a requested resource is available, it is assigned to the requesting task by building
an entry for this resource in LOCKTAB and chaining an owner element to the
LOCKTAB entry.

If the permanent LOCKTAB resp. owner element space (following the lock manager
code) is exhausted, SVA space for LOCKTAB resp. owner element entries will be
allocated.

If cross-system locking is requested an entry is placed into the external lock file,
too. For the relationship between LOCKTAB and owner elements refer to
Figure 192 on page 459.

The SVC 110 (X'6E') routine cannot issue an I/O request to the external lock file.
When access to the external lock file is requested, the SVC X'6E' routine changes
its status to that of a system task.

If a requested resource is locked by another task of the same system and
FAIL=WAIT or FAIL=WAITC or FAIL=WAITECB is specified in the LOCK macro, a
deadlock test is performed to avoid a soft wait condition. If the system is deadlock
free, the requesting task is set into WAIT state (RESVCX) for FAIL=WAIT and
FAIL=WAITC. If FAIL=WAITECB the lock request of the issuing task is queued to
this resource but control is given back to the caller. It's then the caller's decision
where and when he wants to wait until the resource is allocated to him.

A deadlock test is also performed if FAIL=WAIT is specified and the supervisor
runs out of LOCKTAB space or of owner element space.

For external locks a deadlock test is performed, if the disk block where an external
lock entry should be entered is full and all entries of that block are in use by tasks
of the own system.

Note: Deadlocks, where tasks of different systems lock resources in reversed
order, will not be detected.

If a task wants to lock a resource which is locked by a task of another system, the
LCK system task sets up a time interval (SVC 10 - X'0A') and sets the requesting
task to the "RURBND (X'8E')" state (RESVCX). When the time interval elapses,
the timer interrupt handler takes all tasks waiting for externally locked resources out
of the WAIT state.

120 VSE/AF Supervisor DRM

 Lock Options

┌───────┬───────┬───┐
│LOCKOPT│CONTROL│ Description │
├───────┼───────┼───┤
│ 1 │ E │ No other user is allowed to use the resource │
│ │ │ concurrently. │
│ ├───────┼───┤
│ │ S │ Other 'S' users are allowed concurrent access, but │
│ │ │ no concurrent 'E' user is allowed. (Note 1) │
├───────┼───────┼───┤
│ 2 │ E │ No other 'E' user gets concurrent access, however, │
│ │ │ other 'S' users can have access to the resource(Note 2│
│ ├───────┼───┤
│ │ S │ Other 'S' users can have concurrent access and, │
│ │ │ in addition, one 'E' user is allowed. │
├───────┼───────┼───┤
│ 4 │ E │ No other 'E' user from another system is allowed. │
│ │ │ However, other 'S' users from other systems may use │
│ │ │ the resource concurrently (LOCKOPT=2 support across │
│ │ │ systems). │
│ ├───────┼───┤
│ │ S │ Other 'S' users and in addition one 'E' user from │
│ │ │ another system is allowed. │
└───────┴───────┴───┘

Notes:

1. Either one 'E' user or n 'S' users are allowed
(n = number of 'S' users).

2. One 'E' user and n 'S' users are allowed.
 3.

CONTROL=E Resource is enqueued in exclusive mode.
CONTROL=S Resource is enqueued in shared mode.
LOCKOPT=4 Defines a system action, which treats the lock request

across systems as a LOCKOPT=2 request.

Figure 44. Lock Option and Control Parameter

 Lock Management 121

┌───────────────┬───┐
│ │ Current LOCK Status of Resource │
│Incoming │ LOCKOPT=1 │ LOCKOPT=2 │ LOCKOPT=4 │
│LOCK Request ├─────────────┼─────────────┼─────────────┤
│ │ CONTROL= │ CONTROL= │ CONTROL= │
│LOCKOPT│CONTROL│ E │ S │ E │ S │ E │ S │
├───────┼───────┼──────┼──────┼──────┼──────┼──────┼──────┤
│ │ E │ W │ W │ W │ W │ W │ W │
│ 1 │ │ │ │ │ │ │ │
│ │ S │ W │ G │ I │ I │ I │ I │
├───────┼───────┼──────┼──────┼──────┼──────┼──────┼──────┤
│ │ E │ W │ I │ W │ G │ I │ I │
│ 2 │ │ │ │ │ │ │ │
│ │ S │ W │ I │ G │ G │ I │ I │
├───────┼───────┼──────┼──────┼──────┼──────┼──────┼──────┤
│ │ E │ W │ I │ I │ I │ G/W │ G │
│ 4 │ │ │ │ │ │ │ │
│ │ S │ W │ I │ I │ I │ G │ G │
├───────┴───────┴──────┴──────┴──────┴──────┴──────┴──────┤
│ G = The LOCK request is granted (ret. code = �). │
│ I = Incoming LOCK request is inconsistent with │
│ current LOCK status (ret. code = 12). │
│ W = Access to resource cannot be granted │
│ (ret. code = 4 or 16). │
│ G/W = The access is granted, if the resource is already │
│ exclusively owned by the own system. │
│ The access is denied (ret. code = 4), if the │
│ resource is exclusively held by the other system. │
└───┘

Figure 45. System Actions Depending on Control Definition in DTLs

Unlocking a Resource
When a resource is to be unlocked, the appropriate LOCKTAB entry is cleared to
zeros or, if there is more than one user of this resource, the unlocking task is
removed from the owner chain of the entry.

If a LOCKTAB entry is cleared to zero, or if the locking status of the particular
resource is changed to a lower control level (i. e. from exclusive to shared control),
all tasks of the own CPU waiting for this resource are activated so that they retry
their lock request. If there is a requestor chain for this locktab entry, the lock
manager retries allocation for those tasks after completion of the UNLOCK function.

If a resource is locked 'cross-system' and the locking status is changed, the entry
on the external lock file is updated; as a result tasks of another CPU will find the
resource available when they retry their lock request.

122 VSE/AF Supervisor DRM

UNLOCK SYSTEM=sys-id (AR-Command)
All resources, which are held by another sharing system, will be freed (unlocked)
and the corresponding entries will be removed from the external lock file. 'sys-id'
specifies the CPU-id of the other system.

This service can be used only by the Attention task. Any other task issuing this
macro, will be canceled with 'illegal SVC'.

Return Codes in register 15

 0 (X'00') Successful request. All locks held by the other system have been
unlocked.

 4 (X'04') The specified sys-id has not been found in the external Lock file
(the operator specified probably a wrong system-ID).

 8 (X'08') External Lock file damaged.
12 (X'0C') Irrecoverable I/O error on the Lock file.

 UNLOCK ALL
All resources, which were locked by the task with 'KEEP=NO' will be freed
(unlocked).

The SVA space of owner elements and LOCKTAB entries (if no more owner ele-
ments chained) is released.

UNLOCK ALL will be automatically called at task detach time and EOJ step.
When UNLOCK ALL is called during EOT processing and the partition runs in
OS/390 emulation mode, additionally the OS/390 ENQ resources obtained by the
OS/390 ENQ macro are released.

 UNLOCK ALL,JC=EOJ
All resources, which were locked by the issuing task including those with
'KEEP=YES', will be freed (unlocked).

The SVA space of owner elements and LOCKTAB entries (if no more owner ele-
ments chained) is released.

At EOJ time (/& or // JOB statement processing) all resources still owned by the
partition are freed via UNLOCK ALL,JC=EOJ.

 Lock Management 123

Lock Manager Internals

 Entry Points
SVC110 LOCK / UNLOCK
SVC63 USE
SVC64 RELEASE

LOCK / UNLOCK Input Registers
Reg. 0 any parameter flags (stored to LOCKPARM)
Reg. 1 DTL address

 Exit
DISP exit to dispatcher
ERR1E I/O error on lock file
ERR21 invalid parameter list format
ERR25 invalid parameter list limits
ERR2E possible deadlock
RESVC or RESVCX if lock manager in use or resource already locked

 Permanent Usings
Reg. 1 DTL address (DTLADR)
Reg. 2 LOCKTAB entry pointer (LOCKADR)
Reg. 6 dispatcher (DISP)
Reg. A save area pointer (SVEARA)
Reg. B base register
Reg. C owner element pointer (LOKOADR)

request element pointer (LOKOADR)
Reg. D base register

Note: Refer to “Control Blocks related to Lock Management” on page 459.

124 VSE/AF Supervisor DRM

Lock Manager Flags

 ┌──────────┬────────┬──────────────────────────────┬──────┐
 │ Label │ Flag │ Description │Value │
 │ │ │ │ │
 ├──────────┼────────┼──────────────────────────────┼──────┤
 │ LOCKPARM │ │ Flag ─ lock/unlock parameters│ │
 │ │ │ (in register �) │ │
 │ │WAITEFLG│ FAIL=WAITECB (request/queue) │ X'8�'│
 │ │CHECKFLG│ if only deadlock check active│ X'4�'│
 │ │UNLSYS │ UNLOCK JC+SYSID is specified │ X'4�'│
 │ │UNLALL │ UNLOCK ALL is specified │ X'2�'│
 │ │UNLEOJ │ Request from EOJ routine │ X'1�'│
 │ │WAITCFLG│ FAIL=WAITC (conditional) │ X'�8'│
 │ │WAITUFLG│ FAIL=WAIT (unconditional) │ X'�4'│
 │ │LOCKSVC │ LOCK (SVC11�) or USE (SVC63) │ X'�2'│
 │ │NEWLOCK │ LOCK/UNLOCK (SVC11�) │ X'�1'│
 ├──────────┼────────┼──────────────────────────────┼──────┤
 │ UNLCKFLG │ │ Flag ─ unlock SVC (UNLOCK) │ │
 │ │BLKMODF │ External block modified │ X'1�'│
 │ │ │ (write back) │ │
 │ │WAKEUPE1│ Activate E1 requestors │ X'�8'│
 │ │FREELE │ Give up a LOCKTAB entry │ X'�4'│
 │ │FREEOE │ Give up an owner element │ X'�2'│
 │ │WAKEUP │ Activate waiting tasks │ X'�1'│
 ├──────────┼────────┼──────────────────────────────┼──────┤
 │ DSHRFLG │ │ Flag ─ for lock system task │ │
 │ │LCKSYS │ System task is active │ X'8�'│
 │ │LCKTIM │ Timer request is already set │ X'4�'│
 │ │LCKREQ │ Update on ext. file required │ X'2�'│
 │ │LCKRESVD│ Disk drive reserved │ X'1�'│
 │ │ │ (lock file) │ │
 └──────────┴────────┴──────────────────────────────┴──────┘

Figure 46. Lock Manager Flags

 Lock Management 125

 Return Codes

Lock Return Codes

 ┌───────────┬────────┬───────────────────────────────────┐
 │Return Code│ Flag │ Description │
 │ Dec │ Hex │ │ │
 ├─────┼─────┼────────┼───────────────────────────────────┤
│ � │ � │ │ Request executed successfully │
│ 4 │ 4 │ │ Resource owned by other task │
│ 8 │ 8 │ERRINTSP│ LOCKTAB space exhausted │
 │ 12 │ C │ERRINCON│ Resource request inconsistent │
│ │ │ │ with present lock status │
 │ 16 │ 1� │ERRDELO1│ Deadlock │
 │ 2� │ 14 │ERRDTLFO│ DTL format error │
 │ 24 │ 18 │ERRDELO2│ Already locked by issuing task │
│ │ │ │ (deadlock) │
 │ 28 │ 1C │ERREXTSP│ Space exhausted on external │
│ │ │ │ lock file │
 │ 32 │ 2� │ERRNOVOL│ Volume not mounted │
 │ 36 │ 24 │ERREXTIO│ Irrecoverable error on external │
│ │ │ │ lock file │
 └─────┴─────┴────────┴───────────────────────────────────┘

Figure 47. Lock Manager Return Codes (LOCK Macro)

Unlock Return Codes

 ┌───────────┬────────┬───────────────────────────────────┐
 │Return Code│ Flag │ Description │
 │ Dec │ Hex │ │ │
 ├─────┼─────┼────────┼───────────────────────────────────┤
│ � │ � │ │ Request executed successfully │
│ 4 │ 4 │ │ Resource is not locked for the │
│ │ │ │ issuing task/partition │
│ 8 │ 8 │ │ DTL format error │
 └─────┴─────┴────────┴───────────────────────────────────┘

Figure 48. Lock Manager Return Codes (UNLOCK Macro)

126 VSE/AF Supervisor DRM

 Deadlock Detection
Assume that task T1 requests a resource, say RES1, which is already locked.
The owner chain of RES1 is scanned for owners who prevent T1 from locking this
resource. If T1 itself is an owner of RES1 then a dead lock is detected.
The RESOURCE-BOUND owners (Task Status Byte, see Figure 26 on page 61)
are entered into the dead lock test table (DLTT) and processed the same way as
T1, owners that are not RESOURCE-BOUND are ignored.
This test is repeated for all entries of the DLTT (if there are any). Let's assume T2
is the first/next entry in the DLTT waiting for resource RES2. If T1 is an owner of
RES2 then a dead lock is detected. The RESOURCE-BOUND owners are entered
into the DLTT.
This testing is repeated until there are no more DLTT entries to be checked or until
a dead lock is detected.

Deadlock Test via Deadlock Test Table (DLTT)
The DLTT contains as many 2-byte entries as the maximum number of tasks speci-
fied for supervisor generation. If deadlock test is performed, the DLTT entries will
contain the TIDs of the lock-bound (RURBND - x'8E') tasks. The pointer to the
resource (LOCKTAB) on which a lock-bound task is waiting, will be found in the
TIBSTATE. If the last bit of TIBSTATE is on, the task will lock the resource exclu-
sively (E1 request).

Notes:

E1 request: CONTROL=E, LOCKOPT=1
E2 request: CONTROL=E, LOCKOPT=2

Internal Interface to Deadlock Test
If FETCH has to set a task into wait because the LTA is in use the deadlock test is
called before. The deadlock test checks if a specific task (in this case LTA owner)
is waiting for a resource which is owned by the actual running task (here the LTA
requesting task).

A deadlock situation is indicated by setting the deadlock return code before leaving
the deadlock test.

 Lock Management 127

 ┌─────────────────────────┐
│ Start with the resource │
│ which wants the issuing │
│ task to lock │

 └────────────┬────────────┘
 │
 ┌──────────────────�│
 │

 │ ┌─────────────────────────┐

│ │ Scan owner element │
 │ └────────────┬────────────┘
 │ │
 │

 │ ┌─────────────────────────┐

│ │ Owner not E user and │ Yes
│ │ E2 resource and ├───────────────────────────────┐
│ │ requestor not E1 ? │ │

 │ └────────────┬────────────┘ │
 │ │ No │
 │
 │

│ ┌─────────────────────────┐ Yes ┌──────────────────────┐ │
│ │ TID of owner (LOKOTID) ├────�│ Deadlock found │ │
│ │ = TID of actual task ? │ └──────────────────────┘ │

 │ └────────────┬────────────┘ │
 │ │ No │
 │
 ┌──────────────────────┐ │

│ ┌─────────────────────────┐ Yes │ Put LOKOTID of owner │ │
│ │ Owner lock─bound ? ├────�│ element into deadlock│ │
│ └────────────┬────────────┘ │ test table (DLTT) │ │

 │ │No └────────────┬─────────┘ │
 │
 │ │

│ No ┌─────────────────────────┐
 │
│�─────┤ All owners scanned ? │�──────────────────────────────┘

 │ └────────────┬────────────┘
 │ │ Yes
 │

│ ┌─────────────────────────┐ Yes ┌──────────────────────┐
│ │ All DLTT entries ├────�│ No deadlock │

 │ │ processed ? │ │ situation found │
 │ └────────────┬────────────┘ └──────────────────────┘
 │ │ No
 │

 │ ┌─────────────────────────┐

│ │ Scan next TID from DLTT │
│ │ and select resource │

 └──────┤ which this task is │
│ waiting for via │

 │ TIBSTATE │
 └─────────────────────────┘

Figure 49. Deadlock Test

128 VSE/AF Supervisor DRM

Possible Deadlock Situations
1. External space is exhausted:

� All resources of this block are owned by the issuing task or by a resource-
bound task of this CPU (only deadlocks are detected which are caused by
actions of one system).

2. Supervisor space is exhausted:

� Waiting for a free owner element:
– No owner element of this resource found, whose owning task is not

resource bound (owner element has the TID of the requesting task).
� Waiting for LOCKTAB space:

– No LOCKTAB entry found, whose owners are all running (no owner is
resource bound). Every LOCKTAB entry has just one owner element
where its owning task is waiting for.

3. Resource is already locked:

� Locked by the issuing task itself:
– Deadlock if E1 request.
– Deadlock if resource already locked with E1 by the issuing task.
– Deadlock if resource already locked with E2 by the issuing task.

� Not locked by the issuing task:
– Find deadlock situation via deadlock test table (DLTT). (See para-

graph: Deadlock Test)

 Lock Management 129

External Deadlock Checking
The described deadlock check routine can also be called by other supervisor rou-
tines. The entry point for external deadlock checking is SGLOCKCK. The calling
function wants to set a task into wait state. By running the deadlock check routine it
can be detected if this would lead to a deadlock situation with tasks waiting for
locked resources.

The interface is described with:

INPUT R9 task id of deadlock candidate (actual task id)
INPUT R6 dispatcher address
INPUT R14 return address
OUTPUT R15 return code:

 0 = no deadlock

16 = deadlock will occur

EXIT R6 in case of lockgate is not free
EXIT R14 normal return to caller

130 VSE/AF Supervisor DRM

DASD Sharing (Lock Manager)
When resources are locked across systems, the resource name and some control
information are entered into the external lock file to assign the resource to this
CPU.

When an externally locked resource is unlocked, the lock entry is removed from the
external lock file, to allow other CPUs to lock the resource.

Within the SVC 110 (X'6E') processing routine it is not possible to issue SVC
instructions. Therefore, the external lock file processing is done by a special
system task, the Lock-System-Task (LCK). The LCK-Task is activated when the
SVC X'6E' processing routine wants to read from or write to the external lock file.
For additional information see description of “LOCK and UNLOCK (SVC 110 -
X'6E')” on page 120.

 External Locking
An external communication area, the external lock file, reflects at any time to all the
sharing systems the system-wide locking status.

The external lock file is a system file which is shared among all sharing systems.
Any resource to be locked across systems is contained in this external lock file.

The communication between the sharing systems is established during IPL via the
DLF (Define Lock File) command. The VSE system which is IPLed first creates the
external lock file. The other systems refer to this already created lock file, when
they join the sharing environment.

Lock File Format
The external lock file consists of a header block and data blocks. The header block
contains a file description of the external lock file and information about the sharing
CPUs. The data blocks contain the lock entries (resource name plus control infor-
mation).

┌────/ /────┬────/ /────┬────/ /────┬────/
 │ lock file header │ data block 1 │ data block 2 │
 │ min. 52 bytes │ 512 bytes │ 512 bytes │
 │ (2� + N � 8) │ │ │
└────/ /────┴────/ /────┴────/ /────┴────/
 � 512 1�24 1536

Notes:

1. N = Number of CPUs
2. default 4 CPUs, max. 31 CPUs

Figure 50. Lock File Format

Header Record Format
The lock file header record starts with a 20 byte file description of the lock file. The
fields of this file description are identical with the first 20 bytes of the DLF Table in
the supervisor.

 Lock Management 131

This file description is followed by a list of the CPU IDs of the sharing systems. For
any sharing CPU there is an 8-byte field containing two flag bytes and a 6-byte
CPU identification.

 ┌────────────────────┬───────────────┬──/ ... /──┬───────────────┬──/
│ Identical with │ CPU 1 │ │ CPU 4 │
 │ first 2� bytes │2 flag + CPU │ │2 flag + CPU │ ...
 │ of DLF DSECT │ bytes ident.│ │ bytes ident.│
 │ (at DLFADR) │ (at DLFCPUS) │ │ (at DLFCPUS) │
 └────────────────────┴───────────────┴──/ ... /──┴───────────────┴──/
 � 2� 28 44 52

Figure 51. Lock File Header Format

Lock File Data Blocks
The physical block length is 512 bytes for CKD devices. For FBA devices the
physical block length equals the physical block length of the FBA device (presently
always 512 bytes).

Each block contains a 2-byte identification field, a 2-byte count field and lock
entries.

The identification field contains the characters 'LF' (Lock File) The count field con-
tains the number of lock entries stored in this data block. The lock entries contain
the 12-byte resource name and one lock byte for any sharing CPU (a minimum of 4
and a maximum of 31 bytes).

 ┌──┬──┬──────────────┬──────────────┬───/─...─/──┬───────────────┐
 │LF│cl│lock entry 1 │ lock entry 2 │ │ lock entry E │
│ │ │ │ │ │ │
 └──┴──┴──────────────┴──────────────┴───/─...─/──┴───────────────┘
 � 2 4 512

cl = Count of lock entries
in this data block

E = Maximum possible number
of lock entries

Figure 52. Lock File Data Block Format

 ┌──────────────┬────┬────┬────┬────┬──/ ... /──┬────┐
 │resource name │cpu │cpu │cpu │cpu │ │cpu │
 │ │ 1 │ 2 │ 3 │ 4 │ │ N │
 │ │flag│flag│flag│flag│ │flag│
 └──────────────┴────┴────┴────┴────┴──/ ... /──┴────┘
� 12 13 14 15 16 12+(N─1)

Figure 53. Lock File Entry Format

132 VSE/AF Supervisor DRM

 ┌───────┬─────┬───────────────────────┐
 │ Flag │Appr.│ Description │
 ├───────┼─────┤───────────────────────┤
 │ x'��' │ │ no locking │
 │ x'�1' │ S1 │ CONTROL=S LOCKOPT=1 │
 │ x'11' │ E1 │ CONTROL=E LOCKOPT=1 │
 │ x'�2' │ S2 │ CONTROL=S LOCKOPT=2 │
 │ x'12' │ E2 │ CONTROL=E LOCKOPT=2 │
 │ x'�4' │ S4 │ CONTROL=S LOCKOPT=4 │
 │ x'14' │ E4 │ CONTROL=E LOCKOPT=4 │
 └───────┴─────┴───────────────────────┘

Figure 54. CPU N Flag

Lock File Block Capacity
The length of one lock entry depends on the number of sharing CPUs. The
maximum number of lock entries which may be stored into one disk block is
dependent on the number of sharing CPUs (max. 31) and on the data block length
(presently always 512 bytes).

The number of sharing CPUs is restricted to 31.

 Example:

Number of sharing CPU: 4
Length of one lock entry
(resource name length + no. of CPUs): 16

Length of available space in one data block
(512 - (2 byte ID + 2 byte count)): 5�8

Number of lock entries per data block
(length of avail. space DIV length of lock entry): 31

Figure 55. Maximum Number of Lock Entries in One Data Block (ex. 4 CPUs)

Mapping of Locks into Disk Blocks
Locked resources are stored into the external lock file at random. A hashing algo-
rithm maps the resource name into the disk block number. This is done to spread
the lock entries evenly over the external lock file. Within the disk block, lock entries
are stored on the next free place.
When a lock entry is deleted, the last lock entry is moved to the free place.

 Hashing Algorithm
1. Compress the 12-byte resource name by two EXCLUSIVE OR instructions into

a full word.
2. Divide this full word by the number of blocks in the lock file.
3. You will get the relative block number within the external lock file, if you use the

remainder of this division and add one block (for the header record block).

 Lock Management 133

 Example

Ex.: Look for resource "LOCKFILE��1" and compute disk
 block number.

Number of blocks in our example: X'25' (=DLFNBLK)

 Resource name (12 bytes):
 ┌───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┐
 │ D3│ D6│ C3│ D2│ C6│ C9│ D3│ C5│ F�│ F�│ F1│ 4�│
 └───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┘
 L O C K F I L E � � 1
 │�───part 1────�│�───part 2────�│�───part 3────�│

 Part 1: Part 2: Result 1:
 ┌───┬───┬───┬───┐ ┌───┬───┬───┬───┐ ┌───┬───┬───┬───┐
 │ D3│ D6│ C3│ D2│ XOR │ C6│ C9│ D3│ C5│ = │ 15│ 1F│ 1�│ 17│
 └───┴───┴───┴───┘ └───┴───┴───┴───┘ └───┴───┴───┴───┘
 L O C K F I L E

 Result 1: Part 3: Result 2:
 ┌───┬───┬───┬───┐ ┌───┬───┬───┬───┐ ┌───┬───┬───┬───┐
 │ 15│ 1F│ 1�│ 17│ XOR │ F�│ F�│ F1│ 4�│ = │ E5│ EF│ E1│ 57│
 └───┴───┴───┴───┘ └───┴───┴───┴───┘ └───┴───┴───┴───┘

� � 1

 Result 2: Number of blocks: Remainder:
 ┌───┬───┬───┬───┐ ┌───┬───┬───┬───┐ ┌───┬───┬───┬───┐
 │ E5│ EF│ E1│ 57│ MOD │ ��│ ��│ ��│ 25│ = │ ��│ ��│ ��│ 23│
 └───┴───┴───┴───┘ └───┴───┴───┴───┘ └───┴───┴───┴───┘

1 header record block + 1

Disk block number of lock entry (=DLFHBLK) 24

Figure 56. Mapping of Locks into Disk Blocks

Lock File Size
During IPL the lock file size is determined.

Lock Entry - Storing and Retrieval
Record insertion: New lock entries are entered into the first free place of the
selected block (selected via hashing). Records within one block are not ordered.

134 VSE/AF Supervisor DRM

┌─────┬─────┬─────┬─────┬─────┬─────┬─
│ 3 │ REC1│ REC2│ REC3│ RECx│ RECy│ ��� before
└─────┴─────┴─────┴─────┴─────┴─────┴─
Number
of rec.

┌─────┬─────┬─────┬─────┬─────┬─────┬─
│ 4 │ REC1│ REC2│ REC3│ REC4│ │ ��� after
└─────┴─────┴─────┴─────┴─────┴─────┴─
Number
of rec.

Record retrieval: Scan the whole block to find the required lock entry.

Record deletion: When a lock entry is deleted, the last lock entry is moved to the
free place (to keep the block 'dense').

Example: REC2 is deleted, REC4 is moved to the free place.

┌─────┬─────┬─────┬─────┬─────┬─────┬─
│ 4 │ REC1│ REC2│ REC3│ REC4│ RECx│ ��� before
└─────┴─────┴─────┴─────┴─────┴─────┴─
Number
of rec.

┌─────┬─────┬─────┬─────┬─────┬─────┬─
│ 3 │ REC1│ REC4│ REC3│ REC4│ RECx│ ��� after
└─────┴─────┴─────┴─────┴─────┴─────┴─
Number
of rec.

Fetch in a DASD Sharing Environment
For FETCH (Program Retrieval) in a DASD Sharing Environment see “DASD
Sharing Environment” on page 362.

 Lock Management 135

Service and Debugging Information

The here described data areas can be changed at any time by IBM if necessary
and cannot be considered as an interface. Any interpretation, dependency or con-
clusion is only valid for the shown environment.

 Overview

 Basics
LOCK Protects resources against simultaneous access by other tasks.

UNLOCK Frees locked resources.

VSE SVC LOCK/UNLOCK is SVC 110 (X'6E).

USE/RELEASE (SVC 63/64) are still supported without interface macro.

LOCK Gate The SVCs are serialized with system gate SRQUSE (X'8B).

Resources

 � Libraries

 � Catalogs

 � Data sets

� Data (e.g. control blocks)

Protection Scope

Internal Locking Protects resources against
other tasks or partitions.

External Locking (DASD Sharing) Protects resources in the
present system and all
sharing systems.

Lock Manager Macros
Define the Lock (DTL) Parameter List for LOCK/UNLOCK, generated at compile

time

GENDTL DTL, generated at run time

MODDTL Modifies the DTL contents

LOCK Own a resource

UNLOCK (ALL) Free a resource or all held resources by this task/partition

136 VSE/AF Supervisor DRM

 DTL Mapping
MAPDTL DSECT DSECT FOR DEFINE THE LOCK
DTLLENG DS AL2 (DTLLEN) LENGTH OF DTL
DTLFLG1 DS XL1 '1�' CONTROL AND LOCKOPT SPECIFICATION
DTLEXC EQU X'1�' CONTROL=E
DTLOPT1 EQU 1 LOCKOPT=1
DTLOPT2 EQU 2 LOCKOPT=2
DTLOPT4 EQU 4 LOCKOPT=4
DTLFLG2 DC XL1 '��' JC & VSAM FLAGS
DTLKEEP EQU X'8�' KEEP UNTIL EOJ
DTLPART EQU X'4�' OWNER=PARTITION
DTLREDC EQU X'2�' REDUCE STRENGTH OF LOCK (UNLOCK ONLY)
DTLEXTR EQU X'1�' SCOPE=EXTERNAL
DTLVOL EQU 8 VOLID SPECIFIED
DTLNAME DS CL12 'DUMMYMAPDTL ' RESOURCE NAME
DTLVOLID DS CL6 ' ' VOLUME IDENTIFICATION
DTLECB DS XL1 '�' ECB OF REQUESTING TASK
DTLRC DS XL1 '�' RETURN CODE OF THE REQUEST
DTLPOST DS XL1 '�' FLAG TO POST THE TASK
DTLECB3 DS XL1 '�' BYTE 3 OF ECB
 DS XL4 '�' RESERVED
DTLLEN EQU �-MAPDTL LENGTH OF DTL

 LOCK Function

Request the usage of a resource. Beside the DTL a FAIL parameter defines the
system action in case of unsuccessful completion.

FAIL=RETURN The requesting task always gets control back and has to check
the return code for the SVC's response.

FAIL=WAITC The system places the task in a wait state (state X'8E, waiting
for locked resource), if the resource cannot be obtained cur-
rently.

all other cases the task gets control back and has to check the
return code.

case a resource cannot be obtained because it is in use by
another system, the lock system task retries the lock request
every second (there is no other way to recognize that the
resource becomes free).

FAIL=WAIT The requesting task gets control back, when it's owning the
resource.

If the resource is locked by another task or if lock file or DLF
space is exhausted then the task is set into a wait state (X'8E).

In case a resource cannot be obtained because it is in use by
another system, the lock system task retries the lock request
every second.

In all other unsuccessful cases the task is cancelled.

 Lock Management 137

FAIL=WAITECB The requesting task always gets control back and has to check
the return code.

If the resource is currently locked by another task, then the
request is queued to the resource.

As soon as the resource is UNLOCKed the lock system task
repeats this lock request and tries to lock it for this task.

In case a resource cannot be obtained because it is in use by
another system, the lock system task retries the lock request
every second.

If the task becomes owner of the resource the ECB in the DTL
is posted to indicate completion of the former lock request.

 UNLOCK Function
Free a resource. All tasks waiting for this resource are posted (FAIL=WAIT/WAITC)
and retries for existing requests from tasks with FAIL=WAITECB are performed.

IF parameter 'ALL' is specified, all resources held by that task are released (except
KEEP=YES). In this case FREEVIS of the no longer used control blocks is per-
formed.

UNLOCK ALL does not provide a return code.

Data Lock File (DLF)

� The lock file resides on a DASD which must be ADDed with the option SHR.

� The lock file contains all external locks from all sharing systems.

� The access to the lock file is established with the IPL DLF statement. Either
CUU or VOLSER must be specified and further parameters specify extent and
size of the lock file and the number of sharing systems.

� Lock file I/O is protected via channel commands reserve/release (X'B4/94).
Therefore it's not recommended to place performance critical data on that CUU.

� The lock file format is the same for all VSE releases.

� The lock file can only be formatted while all sharing systems are down.

� Formatting of the lock file can be done by any sharing system.

� Formatting of the lock file is necessary if

– A new storage medium is used

– The number of sharing systems is increased

138 VSE/AF Supervisor DRM

 Sharing Systems
� Each sharing system needs a unique CPU ID.

� If all VSE systems are guests of the same VM system, then the lock file can be
defined on a VM virtual disk.

� In all other cases, like VSE native, VSE native in LPAR, VSE guests in more
than one VM or a combination of the above, the lock file has to reside on a
FBA, CKD or ECKD DASD with sharing capability.

 UNLOCK SYSTEM
� If one of the sharing systems ends up in hardwait or softwait it may block all

other systems because of held locks.

� The AR command UNLOCK SYSTEM=cpuid performs an UNLOCK ALL on the
lock file for the specified system. The header entry for this system is also
cleared.

 Data Structures
The following examples are taken from dumped storage.

Lock File Header Format
The lock file header's length is 20 + ncpu*8 bytes.

 Lock Management 139

Example for a lock file header:

D3C6���4 �2���2B1 ��1F��1� ���1��2E �6 �LF £ �
���F�3�C 8���FFFF 1���9221 �������� �6 � � k �
�������� �������� �������� �������� �6 � �
�������� �������� �������� �������� �6 � �

block indicator
||||
||||number of sharing systems (cpu fields)
||||||||
|||||||| physical block length
|||||||| ||||
|||||||| ||||number of data blocks in lock file
|||||||| ||||||||
|||||||| |||||||| number of entries per block
|||||||| |||||||| ||||
|||||||| |||||||| ||||length of one entry (12+ncpu)
|||||||| |||||||| ||||||||
|||||||| |||||||| |||||||| cylinder address of lock file
|||||||| |||||||| |||||||| ||||
|||||||| |||||||| |||||||| ||||number of blocks per track
|||||||| |||||||| |||||||| ||||||||
vvvvvvvv vvvvvvvv vvvvvvvv vvvvvvvv
D3C6���4 �2���2B1 ��1F��1� ���1��2E �6 �LF £ �

number of tracks per cylinder
||||
||||device type = rps ckd (fba=1, ckd=2, eckd=4)
||||||
||||||device type code = ckd dasd
||||||||
|||||||| flag1 8� = this cpu field is in use, else ��
|||||||| ||
|||||||| ||flag2 not used
|||||||| ||||
|||||||| ||||cpu id (sharing system identification)
|||||||| |||||||| ||||||||
|||||||| |||||||| |||||||| currently only 1 system
vvvvvvvv vvvvvvvv vvvvvvvv
���F�3�C 8���FFFF 1���9221 �������� �6 � � k �
�������� �������� �������� �������� �6 � �
�������� �������� �������� �������� �6 � �

140 VSE/AF Supervisor DRM

Lock File Data Format

A data block is always 512 bytes long

Example for a lock file data block:

D3C6���1 D9C5E2D6 E4D9C3C5 6�C5F1F7 �6 �LF RESOURCE-E17�
11������ �������� �������� �������� �6 � �
�������� �������� �������� �������� �6 � �

block indicator
||||
||||number of entries in this block
||||||||
|||||||| resource name
|||||||| |||||||| |||||||| ||||||||
vvvvvvvv vvvvvvvv vvvvvvvv vvvvvvvv
D3C6���1 D9C5E2D6 E4D9C3C5 6�C5F1F7 �6 �LF RESOURCE-E17�

in use by slot �, exclusive = 1x option 1 = y1
|| shared = �x option 2 = y2
|| option 4 = y4
|| not used = ��
||
||other slots
||||||||
|||||||| not yet used
vvvvvvvv
11������ �������� �������� �������� �6 � �
�������� �������� �������� �������� �6 � �

 Lock Management 141

Lock Table Format
� The Lock table contains all locks of one VSE system.

� All entries are chained in a double linked list, the anchor point to the table is at
label ALOKTABA in the supervisor. ALOKTABA is the first fullword after eye
catcher ILCKSP.

� The control block, containing the resource name and the locking status is called
LOCKTAB ENTRY. Pointers refer to

– OWNER ELEMENTS (owner's task ID) and

– REQUEST ELEMENTS (tasks which previously issued LOCK with
FAIL=WAITECB and resource was in use).

� A locktab entry is 32 bytes long, owner and request element's length is 16
bytes.

142 VSE/AF Supervisor DRM

Example for a locktab entry with owner and requestors:

V���4F9D4 ��311�8� ��311�C� D9C5E2D6 E4D9C3C5 � Ø {RESOURCE�
V���4F9E4 6�C5F1F� 118����1 ���4F9F4 �������� �-E1� Ø 94 �

V��311�8� �������� ��25���� ���11��� �������� � �

V��311�C� ���4FA74 ��24���� �������� ��6��ABE � ⅞È - ”�

V���4FA74 �������� ��23���� �������� ��6��ABE � - ”�

LOCKTAB ENTRY:
pointer to first owner element

 ||||||||
|||||||| pointer to first request element

 ||||||||
|||||||| |||||||| resource name
|||||||| |||||||| |||||||| ||||||||
vvvvvvvv vvvvvvvv vvvvvvvv vvvvvvvv

V���4F9D4 ��311�8� ��311�C� D9C5E2D6 E4D9C3C5 � Ø {RESOURCE�

resource name (contd.)
 ||||||||

|||||||| locking status: exclusive = 1x option 1 = y1
|||||||| || shared = �x option 2 = y2
|||||||| || option 4 = y4

 |||||||| || not used = ��
 |||||||| ||

|||||||| ||flag: 8� = entry in use, 4� = owner=partition
|||||||| |||| 2� = s user waits, 1� = entry in lock file
|||||||| |||| �8 = e user waits

 |||||||| ||||
|||||||| ||||total number of exclusive users

 |||||||| ||||||||
|||||||| |||||||| pointer to next entry

 |||||||| ||||||||
|||||||| |||||||| |||||||| pointer to previous entry
|||||||| |||||||| |||||||| ||||||||
vvvvvvvv vvvvvvvv vvvvvvvv vvvvvvvv

V���4F9E4 6�C5F1F� 118����1 ���4F9F4 �������� �-E1� Ø 94 �

 Lock Management 143

OWNER ELEMENT:

pointer to next owner element
 ||||||||

|||||||| owner's task id
 |||||||| ||||

|||||||| ||||number of shared users
 |||||||| ||||||||

|||||||| |||||||| number of exclusive users
|||||||| |||||||| ||||
|||||||| |||||||| ||||flag: 8� = keep until end of job
|||||||| |||||||| |||||| 1� = exclusive usage
|||||||| |||||||| ||||||
|||||||| |||||||| |||||| reserved
vvvvvvvv vvvvvvvv vvvvvv

V��311�8� �������� ��25���� ���11��� �������� � �

REQUEST ELEMENT 1:

pointer to next request element
 ||||||||

|||||||| requestor's task id
 |||||||| ||||

|||||||| |||| user's dtl address
 |||||||| ||||reserved ||||||||
 vvvvvvvv vvvv vvvvvvvv
V��311�C� ���4FA74 ��24���� �������� ��6��ABE � ⅞È - ”�

REQUEST ELEMENT 2:

V���4FA74 �������� ��23���� �������� ��6��ABE � - ”�

144 VSE/AF Supervisor DRM

 Algorithms

 Lock Algorithm

 |START |

|validate input parms |
|search in locktab for resource|

 |

 | |
 ---------------------- ------------------------------

RESOURCE FOUND		RESOURCE NOT FOUND
check consistency		get space for control blocks
check locking status		check locking scope

 ---------------------- ------------------------------
 | |
 ------------------- ---------------------

| | | |
--------------- ----------------- --------------------- ---------------
|RESOURCE FREE| |RESOURCE LOCKED| |INTERNAL LOCK | |EXTERNAL LOCK|
|>>> | |>>> | |write locktab entry| |>>> |
--------------- ----------------- |chain owner | ---------------
end

 |RESOURCE FREE |

|get space for owner element|
|check locking scope |

 |

 | |
 --------------- ---------------
 |INTERNAL LOCK| |EXTERNAL LOCK|
 |chain owner | |>>> |
 |end | ---------------

 Lock Management 145

Lock Algorithm cont...

 |RESOURCE LOCKED |

check FAIL option

| | |
 ------------------- -------- ---------------

|WAIT or WAITC | |RETURN| |WAITECB |
|do deadlock check| |end | |chain request|

 ------------------- -------- |end |

--------------- -------------------------------
DEADLOCK		NO DEADLOCK
WAIT - cancel		set user RURBND (X'8E)
WAITC - end		(waiting for locked resource)
--------------- |end |

 |EXTERNAL LOCK |

check locking status

 | |
 ------------------------ -------------------
 |RESOURCE FREE | |RESOURCE LOCKED |
 |update lock file entry| |check FAIL option|
 |write locktab entry | -------------------
 |chain owner | |
 |end | |
 ------------------------ -------------------------------------
 | | |

-------- --------------------- -----------------
|RETURN| |WAITECB | |WAIT or WAITC |
|end | |start timer | |start timer |
-------- |write locktab entry| |set user LCKBND|

 |chain request | |(X'68) |
 |end | |end |
 --------------------- -----------------

146 VSE/AF Supervisor DRM

 Unlock Algorithm

 |START |

|validate input parms |
|search in locktab for resource|

 |

 | |
 ----------------- --------------------

|RESOURCE FOUND | |RESOURCE NOT FOUND|
 |check ownership| |end |
 ----------------- --------------------
 |

 | |
 ---------------------- ---------------------

|TASK IS OWNER | |TASK IS NOT OWNER |
|chain next owner | |check request chain|
|free owner element | ---------------------
|check locking status| |

 ---------------------- -------------------------
 | | |
 | ---------------------- ---------------------

| |TASK HAS REQUEST | |TASK HAS NO REQUEST|
| |chain next request | |end |
| |free request element| ---------------------

 | |end |
 | ----------------------
 |

 | |
 ---------------- --------------------
 |STATUS CHANGED| |STATUS NOT CHANGED|
 |>>> | |end |
 ---------------- --------------------

 Lock Management 147

Unlock Algorithm cont...

 |STATUS CHANGED |

check locking scope

 | |
 --------------- -------------------------------
 |INTERNAL LOCK| |EXTERNAL LOCK |

--------------- |update lock file entry |
| |reserve cuu with first update|
| |release cuu with last update |

 | -------------------------------

|post waiters WAIT/WAITC|
check chains

 | |
 ------------------------------ ---------------------------

|NO OWNERS OR REQUESTS QUEUED| |OWNERS or REQUESTS QUEUED|
|end | |check request chain |

 ------------------------------ ---------------------------
 |
 |

 | |
 ------------- -----------------------------
 |NO REQUESTS| |REQUESTS FOUND |

|end | |at completion of unlock |
------------- |loop with lock algorithm |

|thru all requests till |
|return code <>� |

148 VSE/AF Supervisor DRM

Unlock All Algorithm

 |START |

loop thru all locktab entries

 | | |
----------------------- ------------------------- -----------------------
|TASK IS OWNER | |TASK HAS REQUEST | |NOT OWNER /NO REQUEST|
|chain next owner | |chain next request | |next locktab entry |
|FREEVIS owner element| |FREEVIS request element| -----------------------
|check locking status | |next locktab entry |
----------------------- -------------------------
 |

 | |
--------------------- -----------------
|STATUS NOT CHANGED | |STATUS CHANGED |
|NEXT LOCKTAB ENTRY | |>>> |
--------------------- -----------------

 Lock Management 149

Unlock All Algorithm cont...

 |STATUS CHANGED |

check locking scope

 | |
 --------------- -------------------------------
 |INTERNAL LOCK| |EXTERNAL LOCK |

--------------- |update lock file entry |
| |reserve cuu with first update|
| |release cuu with last update |

 | -------------------------------

|post waiters WAIT/WAITC|
check chains

 | |
 ------------------------------ ---------------------------

|NO OWNERS OR REQUESTS QUEUED| |OWNERS or REQUESTS QUEUED|
|FREEVIS locktab entry | |check request chain |

 |end | ---------------------------
 ------------------------------ |
 |

 | |
 ------------- -----------------------------
 |NO REQUESTS| |REQUESTS FOUND |

|end | |at completion of unlock all|
------------- |loop with lock algorithm |

|thru all requests till |
|return code <>� |
|and thru all such resources|

 IPL Algorithm

150 VSE/AF Supervisor DRM

 --
 |START |

|get own cpu slot |
|loop thru all lock file data blocks |
|loop thru all entries in each data block|

reserve cuu

 | |
 ------------------- ------------------

|CPU IS OWNER | |CPU IS NOT OWNER|
|free own entry | ------------------

 |(count,slot,move)| |
 ------------------- |

 |release cuu|

next entry

Check Waiting for Locked Resource

The task is in state X'8E and in TIBSTATE (TIB, offset 4) is:

� The address of the locktab entry, that contains the resource and current
owner(s).

� X'0000000C if task waits for the lock system task (= task id 0C) to complete.
This is the case when the lock manager retries for external locking. The
resource con be found via register 1 in the user save area.

 Lock Management 151

Lock Manager Trace Area
Eye catcher is LCKT in SGLOCK. A trace entry is 64 bytes long. The first 3
fullwords specify start, end and actual position in the wrap around area.

Example for trace entries:

V���4FAD� D3C3D2E3 ���4FAE8 �6 �........LCKT ⅞Y�
V���4FAE� ���5�4E7 ���4FB68 2424�7�� ��6�92C4 �6 � X Üy -kD�
V���4FAF� 11������ �1������ 5BD1D6C2 C1C3C3E3 �6 � $JOBACCT�
V���4FB�� 4�4�4�4� ���4FA34 ���4FA74 �������� �6 � ⅞ ⅞È �
V���4FB1� 5BD1D6C2 C1C3C3E3 4�4�4�4� 118����1 �6 �$JOBACCT Ø �
V���4FB2� ���4FA14 �������� 2424�1�� ��6�92C4 �6 � ⅞ -kD�
V���4FB3� 11����24 �1���F�� 5BD1D6C2 C1C3C3E3 �6 � $JOBACCT�
V���4FB4� 4�4�4�4� ���4FA34 �������� �������� �6 � ⅞ �
V���4FB5� �������� �������� �������� �������� �6 � �
V���4FB6� ���4FA14 �������� �6 � �

pointer to first byte of area
 ||||||||
 vvvvvvvv
V���4FAD� D3C3D2E3 ���4FAE8 �6 �........LCKT ⅞Y�

pointer to last byte of area
 ||||||||

|||||||| pointer to next free entry in area
 |||||||| ||||||||

|||||||| |||||||| LAST BUT ONE ENTRY:
|||||||| |||||||| task id as used for owner
|||||||| |||||||| ||
|||||||| |||||||| ||actual running task (low core)
|||||||| |||||||| ||||
|||||||| |||||||| ||||lock/unlock req.: �� release
|||||||| |||||||| |||||| �1 unlock
|||||||| |||||||| |||||| �3 lock fail=return
|||||||| |||||||| |||||| �6 use
|||||||| |||||||| |||||| �7 lock fail=wait
|||||||| |||||||| |||||| �B lock fail=waitc
|||||||| |||||||| |||||| 21 unlock all
|||||||| |||||||| |||||| 31 unlock all eoj
|||||||| |||||||| |||||| 41 unlock sysid
|||||||| |||||||| |||||| 43 deadlock check
|||||||| |||||||| |||||| 83 lock fail=waitecb
|||||||| |||||||| ||||||
|||||||| |||||||| ||||||return code (see return codes)
|||||||| |||||||| ||||||||
|||||||| |||||||| |||||||| user's dtl address
|||||||| |||||||| |||||||| ||||||||
vvvvvvvv vvvvvvvv vvvvvvvv vvvvvvvv

V���4FAE� ���5�4E7 ���4FB68 2424�7�� ��6�92C4 �6 � X Üy -kD�

152 VSE/AF Supervisor DRM

user's dtl flag1 (see dtl, here: exclusive, option 1)
 ||

||user's dtl flag2 (see dtl, here: default)
 ||||

||||lock manager SERVFLG, see source for expl.
 ||||||

||||||if an owner exists then first owner's tid
 ||||||||

|||||||| lock manager LOKOWORK, see source for expl.
 |||||||| ||

|||||||| ||lock manager REQWORK, see source for expl.
 |||||||| ||||

|||||||| ||||lock manager UNLCKFLG, see source for expl.
 |||||||| ||||||

|||||||| ||||||lock manager DSHRFLG, see source for expl.
 |||||||| ||||||||

|||||||| |||||||| resource name
|||||||| |||||||| |||||||| ||||||||
vvvvvvvv vvvvvvvv vvvvvvvv vvvvvvvv

V���4FAF� 11������ �1������ 5BD1D6C2 C1C3C3E3 �6 � $JOBACCT�

resource name (contd.)
 ||||||||

|||||||| address of current locktab entry
 |||||||| ||||||||

|||||||| |||||||| contents of current locktab entry
|||||||| |||||||| |||||||| ||||||||
vvvvvvvv vvvvvvvv vvvvvvvv vvvvvvvv

V���4FB�� 4�4�4�4� ���4FA34 ���4FA74 �������� �6 � ⅞ ⅞È �

contents of current locktab entry (contd.)
|||||||| |||||||| |||||||| ||||||||
vvvvvvvv vvvvvvvv vvvvvvvv vvvvvvvv

V���4FB1� 5BD1D6C2 C1C3C3E3 4�4�4�4� 118����1 �6 �$JOBACCT Ø �

contents of current locktab entry (contd.)
 |||||||| ||||||||

|||||||| |||||||| LAST ENTRY:
|||||||| |||||||| see previous entry
|||||||| |||||||| |||||||| ||||||||
vvvvvvvv vvvvvvvv vvvvvvvv vvvvvvvv

V���4FB2� ���4FA14 �������� 2424�1�� ��6�92C4 �6 � ⅞ -kD�
V���4FB3� 11����24 �1���F�� 5BD1D6C2 C1C3C3E3 �6 � $JOBACCT�
V���4FB4� 4�4�4�4� ���4FA34 �������� �������� �6 � ⅞ �
V���4FB5� �������� �������� �������� �������� �6 � �
V���4FB6� ���4FA14 �������� �6 � �

 Lock Management 153

 Statistic Counters

At eye catcher COUNTERS in SGLOCK there are fields for LOCK/UNLOCK
request return code tracking:

 � Internal requests

 � External requests

 � Internal LOCKs

 � External LOCKs

 � UNLOCKs

 � deadlock checks

� Lock file gets

� Lock file puts

LOCKCNTS DC CL8'COUNTERS'
SVC11�IN DC A(�) INTERNAL LOCKING COUNTER
SVC11�EX DC A(�) EXTERNAL LOCKING COUNTER
LOCKRC�� DC A(�) LOCK COUNTER FOR RC = �
ELCKRC�� DC A(�) LOCK COUNTER FOR RC = �
LOCKRC�4 DC A(�) LOCK COUNTER FOR RC = 4
ELCKRC�4 DC A(�) LOCK COUNTER FOR RC = 4
LOCKRC�8 DC A(�) LOCK COUNTER FOR RC = 8
ELCKRC�8 DC A(�) LOCK COUNTER FOR RC = 8
LOCKRC�C DC A(�) LOCK COUNTER FOR RC = 12
ELCKRC�C DC A(�) LOCK COUNTER FOR RC = 12
LOCKRC1� DC A(�) LOCK COUNTER FOR RC = 16
ELCKRC1� DC A(�) LOCK COUNTER FOR RC = 16
LOCKRC14 DC A(�) LOCK COUNTER FOR RC = 2�
ELCKRC14 DC A(�) LOCK COUNTER FOR RC = 2�
LOCKRC18 DC A(�) LOCK COUNTER FOR RC = 24
ELCKRC18 DC A(�) LOCK COUNTER FOR RC = 24
LOCKRC1C DC A(�) LOCK COUNTER FOR RC = 28
ELCKRC1C DC A(�) LOCK COUNTER FOR RC = 28
LOCKRC2� DC A(�) LOCK COUNTER FOR RC = 32
ELCKRC2� DC A(�) LOCK COUNTER FOR RC = 32
LOCKRC24 DC A(�) LOCK COUNTER FOR RC = 36
ELCKRC24 DC A(�) LOCK COUNTER FOR RC = 36
ULOCKRC� DC A(�) UNLOCK COUNTER FOR RC = �
ULOCKRC4 DC A(�) UNLOCK COUNTER FOR RC = 4
ULOCKRC8 DC A(�) UNLOCK COUNTER FOR RC = 8
ULOCKRCC DC A(�) UNLOCK COUNTER FOR RC = 12
DEADRC�� DC A(�) DEADLOCKCHECK WITH RC = �
DEADRC�4 DC A(�) DEADLOCKCHECK WITH RC = 4
IOGET DC A(�) READ I/O'S TO LOCKFILE
IOPUT DC A(�) WRITE I/O'S TO LOCKFILE

154 VSE/AF Supervisor DRM

Error on Lock File

Message 0T01E ERROR ON LOCK FILE indicates one of these situations:

1. user error in DLF statement

2. an unrecoverable I/O error

3. lock file format error

4. lock file logical error

The investigation of type 1, 2 and 3 errors does not necessarily require a stand-
alone dump. Type 4, which is the most frequent one, however needs analysis of
the current lock manager data at the point of failure. The system does not stop
processing after issuing the message and therefore a dump at a later point might
not show the reason of the problem. In order to speed up the error analysis of such
situations a method to circumvent the standard procedure

� take standalone dump

� mail to IBM

� analyze a dump

has to be established.

The lock manager writes together with the message 0T01E ERROR ON LOCK
FILE additional data that describes the error situation. This information can be sent
in for analysis via FAX.

 Lock Management 155

 Example

this example shows an inconsistency between lock table and lock file
when an UNLOCK function was performed.

F4 ��25 �T�1E ERROR ON LOCK FILE
F4 ��25 LOCK MANAGER EMERGENCY DATA
V���51138 ���C��25 �1�1���F 8������� ��25D9C5 � Ø RE� R���51138
V���51148 E2D6E4D9 C3C56�C5 F1F�111� ���51148 �SOURCE-E1� ç� R���51148
F4 ��25 LOCKTAB ENTRY
V���4FE7� �������� �������� �������� �������� � � R���4FE7�
V���4FE8� �������� �������� ���4FE9� �������� � Ú° � R���4FE8�
F4 ��25 LOCK FILE DISK BLOCK
V���86198 D3C6���� D9C5E2D6 E4D9C3C5 6�C5F1F� �LF RESOURCE-E1�� R���86198
V���861A8 11������ �������� �������� �������� � � R���861A8
V���861B8 �������� �������� �������� �������� � � R���861B8
V���861C8 �������� �������� �������� �������� � � R���861C8
 .
F4 ��25
V���86358 �������� �������� �������� �������� � � R���86358
V���86368 �������� �������� �������� �������� � � R���86368
V���86378 �������� �������� �������� �������� � � R���86378
V���86388 �������� �������� �������� �������� � � R���86388
F4 ��25 LOCK MANAGER TRACE AREA
V���4FF78 D3C3D2E3 ���4FF88 ���5�987 ���5�788 �LCKT h g h� R���4FF78
F4 ��25 LOCK MANAGER TRACE AREA
V���4FF88 3F3F�B�� ��9�2D8� �1�8���� �1������ � ° Ø � R���4FF88
V���4FF98 E5C3E3E2 F2F2F�E4 D7D3���� ��33B16� �VCTS22�UPL £-� R���4FF98
V���4FFA8 ��33B14� �������� E5C3E3E2 F2F2F�E4 � £ VCTS22�U� R���4FFA8
V���4FFB8 D7D3���� �18����� ��33B18� ��33B12� �PL Ø £Ø £ � R���4FFB8
 .
F4 ��25
V���5�748 2525�B�� ��6��B9� �11����� �1������ � - ° � R���5�748
V���5�758 D9C5E2D6 E4D9C3C5 6�C5F1F7 ��33B52� �RESOURCE-E17 § � R���5�758
V���5�768 ��33B51� �������� D9C5E2D6 E4D9C3C5 � § RESOURCE� R���5�768
V���5�778 6�C5F1F7 �19����� �������� ��33B4E� �-E17 ° fl\� R���5�778
 .
F4 ��25
V���5�948 3F3F�1�4 ��9�2D8� 11������ �1������ � ° Ø � R���5�948
V���5�958 E5F24��� 9�42CCC3 C1E7���� �������� �V2 °âöCAX � R���5�958
V���5�968 ���A���� �������� �������� �������� � � R���5�968
V���5�978 ����748� ����3F�� �7�C���� 8��7146A � ÈØ Ø]� R���5�978

156 VSE/AF Supervisor DRM

Lock file emergency data contains:
2 bytes: TID (low core)
2 bytes: LCKUTID (lock manager TID, for which the service runs)
1 byte : LOCKPARM (already explained)
1 byte : LOKOWORK (work area to compare DTL info)
1 byte : REQWORK (work flag for deadlock test)
1 byte : UNLCKFLG (flag for unlock service: �1 activate waiting tasks

�2 free owner element
�4 free locktab entry
�8 activate E1 requestors
1� lock file block modified

1 byte : DSHRFLG (flag for system task: 8� system task is active
4� timer request already set
2� update on lock file required
1� disk drive reserved

2 bytes: LCKCNT (count locked tasks, deadlock check)
2 bytes: TRCOTID (first owner's TID, if the resource is in use)
12bytes: TRCRESN (current resource name)
1 byte : TRCFLG1 (user's DTL option byte 1)
1 byte : TRCFLG2 (user's DTL option byte 2)
4 byte : reserved (ignore contents)

Analysis of the Example
The UNLOCK request came for resource RESOURCE-E10 from task 25(F4).
Current task is lock task C.

The UNLOCK was performed sucessfully in the lock table since the locktab entry
was cleared.

However this resource was an external one. TRCFLG2 (DTLFLG2) shows X'10',
scope=external.

The corresponding lock file block shows 0 as number of entries. It still can be seen
that RESOURCE-E10 has been placed in this block before.

The lock manager detects the mismatch between local lock table and lock file and
issues the error message.

The cause of such a type of error can be

� There are several VSE systems under one VM and 2 of them are running with
the same CPUID.

� The reserve/release mechanism did not work. Software caching did suppress
the lock manager's CCW's but did not provide a proper exclusive access han-
dling. Software caching is not done in VSE. VM or vendor products (on VM or
VSE) are candidates.

 Lock Management 157

 Display Facility
To allow faster diagnosis in case of resources being in use or deadlock situations it
is possible to display the actual locking status of

� the entire lock table

� all locks held by a specified partition (PIK)

� a given resource name

� a set of resource names, specified with name*

� a set of resource names held by a given partition

This feature is available via Attention Routine command LOCK SHOW. Examples
for the usage of the command are

LOCK SHOW shows all currently held locks (resources) of
this VSE system.

LOCK SHOW=F4 shows all currently held locks (resources) of
partition F4.

LOCK SHOW,RESOURCE-E10 shows who is currently holding resource
RESOURCE-E10 (if held at all).

LOCK SHOW,VSYSOPEN'00000001 shows who is currently holding resource
VSYSOPEN0000001 (if held at all), where
VSYSOPEN is interpreted as characters and
00000001 as hex value.

LOCK SHOW,RESOURC* shows who is currently holding resources,
starting with the character string RESOURC.

LOCK SHOW=F6,RES* shows, if partition F6 is currently holding
resources, starting with the character string
RES.

For interpretation of the output please refer to the lock table description.

158 VSE/AF Supervisor DRM

 Example

lock show
AR ��25 LOCKTAB ENTRY
V���4F344 ��3245A� �������� D9C5E2D6 E4D9C3C5 � áff RESOURCE� R���4F344
V���4F354 6�C5F1F� 119����1 ���4F364 �������� �-E1� ° 3À � R���4F354
AR ��25 OWNER ELEMENT
V��3245A� �������� ��2C���� ���11��� �������� � � R��87F5A�
AR ��25 LOCKTAB ENTRY
V���4F364 ���4F3E4 �������� C4E3E2E5 C5C3E3C2 � 3U DTSVECTB� R���4F364
V���4F374 4�4�4�4� 118����1 ���4F384 ���4F344 � Ø 3d 3à� R���4F374
AR ��25 OWNER ELEMENT
V���4F3E4 �������� ��4����� ���11��� �������� � � R���4F3E4
AR ��25 LOCKTAB ENTRY
V���4F384 ���4F3F4 �������� E5C3E3E2 F2F2F��� � 34 VCTS22� � R���4F384
V���4F394 �������� �4C����� ���4F3A4 ���4F364 � { 3u 3À� R���4F394
AR ��25 OWNER ELEMENT
V���4F3F4 �������� ��23���1 �������� �������� � � R���4F3F4
AR ��25 LOCKTAB ENTRY
V���4F3A4 ���4F414 �������� E5C3E3E2 F2F2F��� � 4 VCTS22� � R���4F3A4
V���4F3B4 �������1 �4C����� ��324�2� ���4F384 � { 3d� R���4F3B4
AR ��25 OWNER ELEMENT
V���4F414 �������� ��23���1 �������� �������� � � R���4F414
 .
AR ��25 LOCKTAB ENTRY
V��32444� ��3245E� �������� D9C5E2D6 E4D9C3C5 � á\ RESOURCE� R��87F44�
V��32445� 6�C5F1F7 �19����� �������� ��32442� �-E17 ° à � R��87F45�
AR ��25 OWNER ELEMENT
V��3245E� �������� ��2C���1 �������� �������� � � R��87F5E�
AR ��15 1I4�I READY

 Lock Management 159

 Trace Facility

A trace facility for unsuccessful locks (RC<>0) and unlocks is provided. Trace con-
tents can be specified according to the display facility from above. Besides that a
command for trace deactivation is available. Traces can be done for

� all tasks and resources

� all resources belonging to a specified partition (PIK)

� a set of resource names, starting with name* for all tasks

� a set of resource names and a specified partition

The Attention Routine command LOCK TRACE controls the various trace options.
Examples for the usage of the command are

LOCK TRACE traces all unsuccessful locks and unlocks of
all partitions.

LOCK TRACE=OFF sets the trace facility off.

LOCK TRACE=F4 traces all unsuccessful locks and unlocks of
partition F4.

LOCK TRACE,RESOURCE-E10 traces all unsuccessful locks and unlocks of
RESOURCE-E10 of all partitions.

LOCK TRACE,VSYSOPEN'00000001 traces all unsuccessful locks and unlocks of
VSYSOPEN0000001, where VSYSOPEN is
interpreted as characters and 00000001 as
hex value, of all partitions.

LOCK TRACE,RESOURC* traces all unsuccessful locks and unlocks of
resources, starting with the character string
RESOURC of all partitions.

LOCK TRACE=F6,RES* traces all unsuccessful locks and unlocks of
resources, starting with the character string
RES of partition F4.

For interpretation of the output please refer to the lock table description.

160 VSE/AF Supervisor DRM

 Examples

lock trace=f4
AR ��15 1I4�I READY
F4 ��25 LOCKTAB ENTRY
V���4F344 ��32444� �������� D9C5E2D6 E4D9C3C5 � à RESOURCE� R���4F344
V���4F354 6�C5F1F� 119����1 ���4F364 �������� �-E1� ° 3À � R���4F354
F4 ��25 OWNER ELEMENT
V��32444� �������� ��2C���� ���11��� �������� � � R��87F44�
F4 ��25 LOCKTAB ENTRY
V��32416� ��32449� �������� D9C5E2D6 E4D9C3C5 � à° RESOURCE� R��87F16�
V��32417� 6�C5F1F1 119����1 ��32442� ��3244�� �-E11 ° à à � R��87F17�
F4 ��25 OWNER ELEMENT
V��32449� �������� ��2C���� ���11��� �������� � � R��87F49�
F4 ��25 LOCKTAB ENTRY
V��32445� ��32448� ��32444� D9C5E2D6 E4D9C3C5 � àØ à RESOURCE� R��87F45�
V��32446� 6�C5F1F3 �19����� ��3244A� ��32442� �-E13 ° àff à � R��87F46�
F4 ��25 OWNER ELEMENT
V��32448� �������� ��2C���1 �������� �������� � � R��87F48�
F4 ��25 REQUEST ELEMENT
V��32444� �������� ��25���� �������� ��6��B18 � - � R��87F44�
AR ��15 1I4�I READY
lock trace=off
AR ��15 1I4�I READY

lock trace=f4,resource-e1�
AR ��15 1I4�I READY
F4 ��25 LOCKTAB ENTRY
V���4F344 ��3245C� �������� D9C5E2D6 E4D9C3C5 � á{ RESOURCE� R���4F344
V���4F354 6�C5F1F� 119����1 ���4F364 �������� �-E1� ° 3À � R���4F354
F4 ��25 OWNER ELEMENT
V��3245C� �������� ��2C���� ���11��� �������� � � R��87F5C�
F4 ��25 LOCKTAB ENTRY
V���4F344 ���4F4�4 ��3245E� D9C5E2D6 E4D9C3C5 � 4 á\RESOURCE� R���4F344
V���4F354 6�C5F1F� 119����1 ���4F364 �������� �-E1� ° 3À � R���4F354
F4 ��25 OWNER ELEMENT
V���4F4�4 �������� ��2C���� ���11��� �������� � � R���4F4�4
F4 ��25 REQUEST ELEMENT
V��3245E� �������� ��25���� �������� ��6��ABE � - ”� R��87F5E�
AR ��15 1I4�I READY
lock trace=off
AR ��15 1I4�I READY

 Lock Management 161

162 VSE/AF Supervisor DRM

Channel Program Translation

Note: Whenever in this section (Channel Program Translation) a reference is
made to a CCB (Channel Command Block), it also includes the IORB
(Input/Output Request Block).

The supervisor must do the following before initiating an I/O operation (if not EXCP
real):

� Translate format 1 CCWs into format 0 CCWs.

� Copy the CCB and the entire channel program into copy blocks in the super-
visor.

� Translate the addresses used by the CCB and the channel program into real
storage addresses and place these addresses into the copied CCB and
channel program.

� Build IDALs (Indirect Data Address Lists) for all I/O areas which cross one or
more page boundaries.

� Build IDALs for all I/O areas with a real address larger than 16MB.

� Fix all pages containing I/O areas in real storage for the duration of the I/O
operation.

These functions are performed by the routine CCWTRANS. CCWTRANS is called
by the channel scheduler every time a virtual-mode I/O request is made.

At the completion of an I/O operation, the routine CSWTRANS is called by the I/O
interrupt handler. It must do the following:

� Retranslate the address of the last CCW pointed to by the CSW at channel end
to its correct virtual address. This address is placed in the copied CCB.

� Free the data areas.

� Release the copy blocks used for the translation except the CCB copy block.

� Transfer the CCB information which has changed to the original CCB. If this is
not possible (because the original CCB is not in real storage) indicate to the
dispatcher that this must be done before the user task is given control again. In
this case, the dispatcher calls a special routine (MOVECCB) to transfer the end
of channel information from the copied CCB to the CCB in the user program.

Translation Control and Copy Blocks
The following control and copy blocks are used to copy and translate a CCB and
channel program for a virtual-mode I/O request:

� A translation control block (CCWTCB). This is a work and save area, located
in the task control block (TCB) and used during translation.

� A CCB copy block. The user CCB and sense CCW (if any) are copied into this
block. The CCB copy block also contains information about the copied and
translated channel program.

� CCW copy blocks. Each block contains copy locations for up to 7 contiguous
CCWs and queuing information.

© Copyright IBM Corp. 1985, 2013 163

� IDAL blocks used for building Indirect Data Address Lists for data areas which
cross-page boundaries.

� Fix information blocks containing the page frame numbers of pages fixed for
this request.

The Translation Control Block (CCWTCB)
Because a translation request may be interrupted (by a page fault, wait), it is nec-
essary that the translation routine be partially reenterable so that several requests
may be handled simultaneously.

The CCWTCB is located in the work area of the task control block (TCB) of the
requesting task. The other blocks are 72-byte blocks located at the end of the
supervisor. They are dequeued from the free copy block queue (pointed to by
AFCB) as needed, and enqueued again when they are no longer needed by the
requesting task.

If the queue of free copy blocks is empty when a request for a copy block is made,
one of the following actions will be taken:

� If the requesting task is the only one using the CCW translation routines, it will
be canceled (not enough copy blocks available to ever satisfy the request).

� If the request is for a CCB copy block or if at least one request has been
handled successfully, the requesting task is set copy block bound.

If no other task is complete, and if the request is not for a CCB copy block, the
used copy blocks are freed and the task is set translation bound. When another
translation has been successfully completed, the request will be started again from
the beginning.

CCB Copy Blocks
For each virtual-mode request one copy block is used to contain the copied CCB
and its sense CCW, if any. The rest of the block contains control information about
the translated program. Figure 57 on page 165 shows the layout of the CCB copy
block.

If an Input/Output Request Block (IORB) is used for the request, bytes 0-15 (iden-
tical to a CCB) are set into the CCB copy block.

All the CCB copy blocks in use are queued in the queue pointed to by ACCBB.
Each CCB copy block is also individually pointed to by a field in the request's TCB.
After translation, the address of the copied CCB is placed in the channel queue.
Figure 57 on page 165 shows the mutual and external relationships of the CCB
copy blocks.

164 VSE/AF Supervisor DRM

 ┌──────┬──────┬──────┬──────┬──────┬──────┬──────┬──────┐
 │ � │ 1 │ 2 │ 3 │ 4 │ 5 │ 6 │ 7 │
 ├──────┴──────┼──────┼──────┼──────┼──────┼──────┼──────┤────
 �│ CCBCNT │CCB │res- │CCB │CCB │CCB │CCB │ �
 │ │COM1 │erved │STA1 │STA2 │CLS� │LNO │ Copied
 ├─────────────┴──────┴──────┼──────┼──────┴──────┴──────┤ CCB
 8│ CCBCCW │CCBBY3│CCBCSWW │ │
│ Address of first CCW │ │ │

 ├───────────────────────────┴──────┴────────────────────┤────
16│ CCBSENS │
│ Sense CCW if any │

 ├─────────────┬──────┬──────┬───────────────────────────┤
24│ TID │CCB │Unused│CCBVA │
│ TASKID │Flag��│ │Virtual address of CCB │

 ├─────────────┴──────┴──────┼───────────────────────────┤
32│ CCBACB │CCBICB │
│ Address of first CCW copy │Address of first IDAL block│
│ block in channel program │in channel program │
│ with lowest VBA │ │

 ├───────────────────────────┴───────────────────────────┤
4�│ CCBXINF (Fix information) │
│ Real page numbers of TFIXed pages │

 ├───────────────────────────┬──────┬────────────────────┤
64│ CCBXPTR │ ��� │CCBNEXT Address of │
│ Address of additional │ │next CCB copy block │
│ fix information block │ X'A�'│ │

 └───────────────────────────┴──────┴────────────────────┘

Figure 57. CCB Copy Block

� * - Bit 2 is set (X'20') to indicate copied CCB

� ** - Legend CCBFLAG:

Bits Description
0: Indicates that CCW-translation of this request is complete; indicator is set

before I/O request is enqueued in channel queue.
1: Indicates that control has been transferred to TFIX routine at least once

during CCW translation; if 0, scan through CCBXINF for freeing pages is
skipped; indicator is set immediately before control is passed to TFIX
routine.

2: Reserved.
3: Reserved (former BTAM request)
4: Indicates that the channel program is valid for fast CCW translation

(CCWs are contiguous and the requestor is not a system task request
with an I/O area in the SVA).

5: Indicates that this CCB copy block is on the saved CCB queue.
6: Indicates that the pages containing I/O areas for this channel program

require fixing.
7: Reserved.

� *** - 'Block in use' indicator

CCW Copy Blocks
Each CCW copy block consists of 7 copy locations and 16 bytes for pointers and
inserted TIC commands. The layout of a CCW copy block is shown in Figure 59
on page 167.

 Channel Program Translation 165

(Pointer in Low Core)
 ┌────────────┐
 │ ACCWT ├────┐
 └────────────┘ │
 │
 ┌─────────────────┘
 │

┌────────────┐ CCB Copy Blocks

 │ CCWTADR ├─────────────────────────────────�┌─────────────┐
 │ ACCBB │ � │ │
 └────────────┘ │ │ │

CCWTCB in TCB │ │ │
(only if CCW Trans. active)│ │ │

 ┌───────────────�┌────────────┐ │ ├─────┬───────┤
 │ │ │ │ │X'A�'│CCBNEXT├───┐

│ │ │ │ +68 └─────┴───────┘ │
 │ │ │ │ │
 │ │ │ │ ┌─────────────────┘
 ┌─────┴──────┐ ├────────────┤ │

│ TCBPTR │ │ TCBACCB ├───┘ ┌─────────────┐

 └────────────┘ ├────────────┤ │ │
(Pointer to current TCB │ │ │ │
 in Low Core X'26�') └────────────┘ │ │
 ├─────┬───────┤

Channel Queue Entry +68 │X'A�'│CCBNEXT├───┐
 ┌────────────┐ └─────┴───────┘ │
 │ │ │
 └──┬─────────┘ ┌─────────────────┘
 │

 └────────────────────�┌─────────────┐
 │ │
 │ │
 │ │
 ├─────┬───────┤

+68 │X'A�'│������ │
 └─────┴───────┘

Figure 58. Locating CCB Copy Blocks

166 VSE/AF Supervisor DRM

 ┌──────┬──────┬──────┬──────┬──────┬──────┬──────┬──────┐
 │ � │ 1 │ 2 │ 3 │ 4 │ 5 │ 6 │ 7 │
 ├──────┴──────┴──────┴──────┴──────┴──────┴──────┴──────┤
 �│ 1st Copy location for CCW │
 ├───┤
 8│ 2nd Copy location for CCW │
 ├───┤
16│ 3rd Copy location for CCW │
 ├───┤
24│ 4th Copy location for CCW │
 ├───┤
32│ 5th Copy location for CCW │
 ├───┤
4�│ 6th Copy location for CCW │
 ├───┤
48│ 7th Copy location for CCW │
 ├──────┬────────────────────┬───────────────────────────┤
56│X'A�' │ X'������' │ Virtual address of first │
│ � │ │ CCW in copy block (VBA) │

 ├──────┼────────────────────┼──────┬────────────────────┤
64│X'A8' │ X'������' │ ��� │Addr. of next CCW │
│ �� │ │ │copy block in chain │

 │ │ │ X'A�'│ (ANB) │
 └──────┴────────────────────┴──────┴────────────────────┘

Figure 59. CCW Copy Block

Notes:

1. * X'A0' indicates the end of the CCW copy locations in the block. It is replaced
by a TIC (Transfer in channel command) if the 7th copy location contains a
copied CCW with data- or command chaining. Bytes 57-59 will then point to the
copy location of the CCW following the CCW in the 7th copy location. Bytes
56-59 will not be changed if the CCW in the 7th copy location is a TIC.

2. ** X'A8' indicates the last 8-byte entry in the block. It is replaced by a TIC if the
CCW in the 7th copy location is a status modifier CCW. Bytes 65-67 will then
point to the copy location of the second CCW following the status modifier
CCW.

The CCW copy blocks for a translation are queued in order of increasing VBAs
(see Figure 59) with the lowest one being pointed to by the field CCBACB in
the CCB copy block. Figure 60 on page 168 shows the relation of CCW copy
blocks to one another.

3. *** X'A0' 'Copy block in use' indicator.

 Channel Program Translation 167

 IDAL Blocks
CCWs whose data areas cross 4K boundaries must have an IDAL (Indirect Data
Address List) in the copied channel program. If a ESA supervisor operates on a
machine with more than 16MB real storage, CCWs will have always IDALs in the
copied channel program.

In both cases, the CCW is changed to show that an IDAL is used (bit 37 of the
copied CCW is set) and the address of the IDAL is placed in the data address of
the CCW. The IDAL pointed to contains one entry for the beginning of the data
area and one entry for each 2K boundary crossed.

CCB Copy Blocks CCW Copy Blocks
───�┌─────────────┐ ┌────────�┌──────────────┐
 │ │ │ │ │
 │ │ │ │ │
 ├─────────────┤ │ │ │
 │ CCBACB ├────────────────┘ │ │Block 1
 ├─────────────┤ │ │
 │ │ │ │
 │ │ │ │
 ├─────┬───────┤ ├─────┬────────┤
 +68│X'A�'│CCBNEXT│ │X'A�'│ ANB ├───┐
 └─────┴───────┘ └─────┴────────┘ │
 � │
 � ┌──────────────────┘
 �

 ┌──────────────┐

more CCB copy blocks, if any │ │
 │ │
 │ │
 │ │Block 2
 │ │
 │ │
 │ │
 ├─────┬────────┤
 │X'A�'│ ANB ├───┐
 └─────┴────────┘ │
 │
 ┌──────────────────┘

 ┌──────────────┐
 │ │
 │ │

The blocks are queued such that: │ │
 │ │Block 3
VBA(Block 1) < VBA(Block 2) < VBA(Block 3) │ │
 │ │
 │ │
 ├─────┬────────┤
 │X'A�'│������ │
 └─────┴────────┘

Figure 60. Locating CCW Copy Blocks

An IDAL must be located in consecutive copy block locations, so that if an IDAL
cannot fit into the last block in the queue (the count in IDALCNT is less than the
number required) a new block must be enqueued. For I/O areas with a length of
less than 32KB a single copy block is dechained as IDAL block with 17 locations
for Indirect Data Address Words (IDAWs). If the area is larger than 32KB two con-
secutive copy blocks are dechained from the free copy block queue. This double
block has 33 locations for IDAWs.

168 VSE/AF Supervisor DRM

After an I/O area has been TFIXed in real storage, the addresses in the IDAL are
translated to point to the correct real storage locations (the begin address of the I/O
area and the begin address of the page frames for the rest of the I/O area, or for a
read-backward command, the end address of the I/O area, and the end address of
the page frames).

Each IDAL is pointed to by the CCW which references it. In addition, the IDAL
blocks are queued with the first one being pointed to by the field CCBICB in the
CCB copy block. Figure 61 shows the relation between the IDAL blocks and the
other blocks.

CCB Copy Blocks IDAL Blocks
 ┌───────────────────┐ ┌────�┌─────────┬─────────┐
 │ │ │ │IDAL1 │IDAL1 │
 ├───────────────────┤ │ ├─────────┼─────────┤
 │ │ │ │IDAL1 │IDAL1 │
 ├───────────────────┤ │ ┌─�├─────────┼─────────┤

│ │ │ │ │IDAL2 │IDAL2 │
├─────────┬─────────┤ │ │ ├─────────┼─────────┤
│ │ │ │ │ │IDAL2 │IDAL2 │
├─────────┼─────────┤ │ │ ├─────────┼─────────┤

┌───┤CCBACB │CCBICB ├────────────────────�┤ │ │IDAL2 │IDAL2 │
│ ├─────────┴─────────┤ │ │ ├────┬────┼─────────┤
│ │ │ │ │ │ 9� │ │ │
│ ├───────────────────┤ │ │ ├────┴────┼─────────┤
│ � � │ │ � │ �
│ ├───────────────────┤ │ │ ├─────────┼─────────┤
│ │ │ │ │ │ │Note 1 │
│ └───────────────────┘ │ │ └─────────┴─────────┘
│ │ │
└────────────────────�┌───────────────────┐ │ │
 │CCW1 (no IDAL) │ │ │
 ├───────────────────┤ │ │
 │CCW2 (IDAL1) ├───┘ │
 ├───────────────────┤ │
 │CCW3 (no IDAL) │ │
 ├───────────────────┤ │
 │CCW4 (IDAL2) ├──────┘
 ├───────────────────┤
 � �
 ├────────┬──────────┤
 │ │ VBA │
 ├────────┼─────┬────┤
 │ │X'A�'│ANB │
 └────────┴─────┴────┘

CCW Copy Blocks

Figure 61. Relation of IDAL Blocks to other Blocks

 Channel Program Translation 169

Notes:

 1.

Single IDAL block
 ┌─────┬─────────┐
+68 │X'A�'│ ──────┐
 └─────┴─────────┘ │
 │
 │

├─── Address of next IDAL block for this
Double IDAL block │ request or zero
 │
 ┌─────┬─────────┐ │
+14�│X'E�'│ ──────┘
 └─────┴─────────┘

the contents of X'C�' being:
X'A�' Block in use
X'4�' Double copy block

2. The X'90 in the first byte of the 11th IDAW indicates the end of the IDAWs for
the block. In this case, the IDALCNT field in the CCWTCB would show seven
free copy locations.

3. The data area of CCW2 crosses three 2K boundaries (may be up to 8KB) and
the data area of CCW4 crosses five 2K boundaries (may be up to 12KB).

Fix Information Blocks
In order to keep track of which page frames have been TFIXed for a request, the
real page frame numbers of the pages fixed are kept in the copied CCB at label
CCBXINF. If more than six pages have to be TFIXed for the I/O request, additional
copy blocks are used. They are queued with the first one being pointed to by
CCBXPTR in the copied CCB.

A page used more than once by a request is only TFIXed once.

Copying and Translating Channel Programs
User channel programs are copied into the copy blocks described in the previous
section by the routine CCWTRANS.

By way of initialization, the following is done before the actual copying and trans-
lation is begun:

� The CCWTCB for the requesting task is initialized. As part of the initialization
procedure, the TCB pointers to the two special command lists for the device
are filled in (see Figure 62 on page 171).

� Two copy blocks are dequeued from the free copy block queue for the CCB
copy block and the first CCW copy block.

� The CCB is copied and initialized so that the CCW address points to the first
location in the first CCW block. The VBA in the first CCW copy block is set to
the virtual address of the CCW the virtual CCB is pointing to (which is the
virtual address of the first CCW to be executed).

� If a sense CCW was present, it is also copied into the CCB copy block and its
data areas are TFIXed in real storage (unless it crosses a 2K boundary, in
which case an IDAL is built), and the address is translated.

170 VSE/AF Supervisor DRM

The channel program is then copied and any necessary IDALs are built. The
channel programs translated can be divided into three classes according to the
types of commands they contain. They are described in the following order:

1. Channel Programs without TIC or Status Modifier Commands.

2. Channel Programs with TIC Commands.

3. Channel Programs with Status Modifier Commands.

A schematic representation of channel program translation is shown in Figure 63
on page 173.

 DEVTRTAB
 (256 bytes) DEVLIST
┌────────┐ ───────┌────────┐ ───────┌────────────┐ ┌────────┐
│DEVTYPE │ � │ X'FE' │ � │ │ │DEVL1ST │
└───┬────┘ │ ├────────┤ │ ├─ ─ ─ ─ ─ ─ ┤ └────────┘

│ (from PUB) │ │ X'FF' │ │ │ │
 │ │ ├────────┤ X'nn' ├────────────┤ ┌────────┐
 │ │ │ │ │ │ │ │DEVL2ST │

│ │ ├────────┤ │ ├─ ─ ─ ─ ─ ─ ┤ └────────┘
 │ │ │ │
 │ │
 │ │ │ │ ┌────�├────────────┤ ┌────────┐
 │ DEVTYPE │ │ │ │ ADDR1 ├─────�│DEVL3ST │

│ │ │ │ │ ├─ ─ ─ ─ ─ ─ ┤ └────────┘
 │ │ │ │ │ │ ADDR2 ├──┐ �
 │ │ ├────────┤ │ ├────────────┤ │ �
 │
 │ │ │ │ │ │ ┌────────┐
 └─────────────────�├────────┤ │ │ │ │ │DEVLnST │
 │ X'nn' ├────┘ │ │ │ └────────┘
 ├────────┤ │ │ │
 │ │ │ │ │
 ├────────┤ ├────────────┤ │ ┌────────┐
 │ │ │ │ │ │DEVL1CD │
 ├────────┤ │ │ │ └────────┘
 │ │ │ │ │
 ├────────┤ ├────────────┤ │ ┌────────┐

│ 1 byte │ │�──4 bytes─�│ │ │DEVL2CD │
 │ └────────┘
 │
 │ ┌────────┐
 └──�│DEVL3CD │
 └────────┘
 �
 �
 ┌────────┐
 │DEVLnCD │
 └────────┘

Figure 62. Initializing Special Command List Pointers in CCWTCB

DEVTYPE: Device type code from PUB
DEVTRTAB: Entries:

X'FF' = Unsupported device.
X'FE' = Device does not support status modifier commands or

control commands with data area.
X'nn' = Displacement to entry in DEVLIST if device supports

status modifier commands and/or control commands
with data area.

 Channel Program Translation 171

DEVLIST: List of pointers to the special command lists. The two entries (if
any) for the device on which the I/O is requested are moved to the
TCB when this is initialized.

DEVLnST: Status modifier command list for device type n.
DEVLnCD: Control command with data area list for device type n (see note

below).

Note: DEVLnST and DEVLnCD are bit strings. When a CCW is copied, the
command code is used to refer to a bit in these strings. By testing this
referred bit it is determined whether a CCW is a status modifier command
or a control command with data area, or does not belong to these catego-
ries.

Copying Channel Programs without TIC or Status Modifier
Commands
The first CCW in a channel program is always copied into the first copy location
pointed to by the copied CCB. If command chaining or data chaining is specified in
the CCW the following chained CCWs are copied into successive copy locations.

If a program of chained CCWs should contain 8 or more commands, a new CCW
copy block must be used. The eighth copy location of the first copy block is then
converted into a TIC command pointing to the first location of the next copy block.
The VBA of the next copy block is set to the virtual address of the eighth chained
CCW.

Figure 64 on page 175 is an example of a copied channel program containing 11
chained CCWs.

172 VSE/AF Supervisor DRM

│ ┌───────────────┐ │ ┌───────────────┐
│ │Virtual Storage│ │ │Virtual Storage│
� └───────┬───────┘ � └───────┬───────┘
│ User
 Partition │
 Supervisor Area
├───────────────────────┼──
│ Original CCB │ Channel Queue Entry
│ ┌─────────┐�────────┼──────────────────────────┐ ┌───────┐
│ │ │ │ │ ┌────────────────┼────┼──── │
│ └────┼────┘ │ │ │ └───────┘
│ │ │ │ │
│ ┌────┘ │ │ │
│ │ Original │
 CCB Copy Block │
│
 CCWs │ ┌──────────────┐ │
│ ┌────┐ │ ┌───┤ Copied CCB │ │
│ │CCW1│�─────────────┼──┐ │ ├──────────────┤ │
│ ├────┤ │ │ │ │ │ │
│ ┌─┤CCW2│ │ │ │ │ ┌──────┤ │
│ │ ├────┤ │ │ │ │ │ ────┼─┘ IDAL Block
│ │ │CCW3│ │ │ │ ├───────┼──────┤ ┌──────────┐
│ │ └┬───┘ │ │ ├───┼──── │ ────┼────┬─�│ │ ──┼───┐
│ │ │ │ │ │ ├───────┴──────┤ │ ├──┼───────┤ │
│ │
 │ │ │ │ │ │ │ │ │ │
│ │ ┌──────────┐ │ │ │ │ │ │ │ │ │ │
│ │ │ B │ │ │ │ │ │ │ │ │ │ │
│ │ ├──────────┤ │ │ │ └──────────────┘ │ │ │ │ │
│ │ │ │ │ │ │ │ │ │ │ │
│ └�├──────────┤ │ │ │ │ │ │ │ │
│ │(1st part)│ │ │ │ CCW Copy Block │ └──┼───────┘ │
│ ├─A────────┤ │ │ └──�┌──────────────┐ │ │ │
│ │(2nd part)│ │ │ │ CCW1 │ │ │ │
│ ├──────────┤�────┐ │ │ ├──────────────┤ │ │ │
│ │ │ │ │ │ │ CCW2 ├───�┘ │ │
│ └──────────┘ │ │ │ ├──────────────┤ │ │
│ │ │ │ │ CCW3 ├──┐ ┌─────┘ │
│ 2K │ │ ├──────────────┤ │ │ Page Pool │
│ Boundary│ └──────┼──────────┐ │ │ │ I/O Areas │
│ │ ├───────┬──┼───┤ │ │ ┌──────────┐ │
│ │ ┌───┼──── │ │ │ │ │ │ │ │
│ │ │ ├───────┼──────┤ │ └─�├──────────┤ │
│ │ │ │ │ │ │ │ │A(1. part)│ │
│ │ │ └───────┴──┼───┘ │ ├──────────┤ │
│ │ │ │ │ │ │ │
│ │ ├�─────────────┘ └───�├──────────┤ │
│ │ │ CCW Copy Block │B │ │
│ │ └──�┌──────────────┐ ├──────────┤ │
│ │ │ │ │A(2. part)│�──┘
│ │ │ (Additional) │ ├──────────┤
│ │ │ │ │ │
│ │ └──────────────┘ └──────────┘

Figure 63. Schematic Representation of Channel Program Translation

Copying Programs Containing TIC Commands but no Status
Modifier Commands
A TIC command (transfer in channel) command is, when encountered, copied into
the next copy location just as any other chained command is. Although a TIC is 8
bytes long, only the first 4 bytes have any meaning (the command code and
transfer address). The second four bytes of the copied TIC are set to zero. These
bytes are used as a chain pointer for TICs which follow status modifier commands
(refer to the section "Copying Status Modifier Commands"). The command code of
a copied TIC is set to X'08' (standard user TIC).

 Channel Program Translation 173

The virtual storage location pointed to by the TIC command must be mapped into a
location in the copied channel program. This mapped location is then placed in the
copied TIC (unless the copied TIC is the first location of a copy block, in which
case the address is placed in the end-of-block TIC (eighth copy location of the pre-
vious copy block) and used as the copy location for the CCW pointed to by the
TIC. The mapped location is determined in the following way:

� If the CCW pointed to by the TIC command has a copy location in an existing
copy block (that is, there is a block such that the virtual CCW address lies
between the block's VBA and the block's VBA+56), place the location thus
found in the TIC and copy the CCW in the location if it is free. If the location is
not free, go to the translation termination routines. Figure 65 on page 176 is
an example of a TIC which points to an already existing copy location.

� If there is no existing copy location, a new CCW copy block must be enqueued.
The new block is enqueued at either end of the existing queue or between two
existing blocks, depending upon where the virtual address in the TIC is in
relation to the VBAs of the existing blocks. Figure 60 on page 168 shows how
a new CCW copy block is queued to provide a copy location for a CCW pointed
to by a TIC. Once enqueued, the VBA of the new copy block must be deter-
mined. If at all possible, the new block will be aligned to the one either above
or below it (the VBA is 56 greater than the VBA of the lower block or 56 less
than the VBA of the upper block). This is only possible if the address pointed to
by the TIC lies within one of the ranges (that is, is less than 56 below the VBA
of the above block or less than 112 above the VBA of the block chained
below). If possible to align to both blocks the alignment is made to the lower
block. Considering the example in Figure 66 on page 177 again it is copied in
the fourth copy location.

� If it is possible to align the new block to both the upper and lower blocks but
not to both at the same time (the difference between the VBAs of the two
blocks is less than 112), a short block must be created by moving the end-of-
block indicators to the copy location following the last logical copy locations.
Figure 67 on page 178 shows how a short block is enqueued.

� If no alignment of the new block with either of its neighbors is possible, the
VBA of the new block is made equal to the virtual address pointed to by the
TIC and the first copy location in the block is used. Figure 68 on page 179
shows such a copy block being enqueued.

174 VSE/AF Supervisor DRM

 Virtual Storage │ Processor Storage
───────────────────┼───
 Virtual │ CCW Copy Blocks
 Channel Program │
 ┌──┐
 │ │ │

 │ ┌───┐ │

CCW1 CCW │ │ CCW1 CCW │ │
 │ ├───┤ │

CCW2 CCW │ │ CCW2 CCW │ │
 │ ├───┤ │

CCW3 CCW │ │ CCW3 CCW │ │
 │ ├───┤ │

CCW4 CCW │ │ CCW4 CCW │ │
 │ ├───┤ │

CCW5 CCW │ │ CCW5 CCW │ │
 │ ├───┤ │

CCW6 CCW │ │ CCW6 CCW │ │
 │ ├───┤ │

CCW7 CCW │ │ CCW7 CCW │ │
 │ ├─────┬─────────┬─────────────────────────┤ │
┌───�CCW8 CCW │ │ TIC │ Address │ Virtual Address ─────┼───┘
│ │ │ │ of CCW8 │ of CCW1 │
│ CCW9 CCW │ ├─────┼───────┼─┼────────┬────────────────┤
│ │ │ A8 │ ������│ │ X'A�' │Address of next │
│ CCW1� CCW │ │ │ │ │ │CCW Copy Block │
│ │ └─────┴───────┼─┴────────┴──┬─────────────┘
│ CCW11 CCW │ │ │
│ │ ┌─────────────┴─────────────┘
│ │

│ │ ┌───┐
│ │ │ CCW8 CCW │
│ │ ├───┤
│ │ │ CCW9 CCW │
│ │ ├───┤
│ │ │ CCW1� CCW │
│ │ ├───┤
│ │ │ CCW11 CCW │
│ │ ├───┤
│ │ � �
│ │ ├─────┬─────────┬─────────────────────────┤
│ │ │ A� │ ������ │ Virtual Address │
│ │ │ │ │ CCW8 ─────┼──┐
│ │ ├─────┼─────────┼─────────────────────────┤ │
│ │ │ A8 │ ������ │ A������� │ │
│ │ └─────┴─────────┴─────────────────────────┘ │
│ │ │
└──┘

Figure 64. CCW Translation for a Channel Program. Without TIC or Status Modifier Commands.

 Channel Program Translation 175

 Virtual User │ Processor Supervisor
 Storage Partition │ Storage Area
────────────────────────┼──
 │
 User Channel Program │ Copied Program
 │

────────── │ CCW Copy Blocks
 │
 ────────── │ �
 │ �
 ────────── │ �
 │
 ────────── │
 │ ┌──────────────────────────────────┐
┌───�CCW1 CCW │ │ CCW1' CCW │
│ │ ├──────────────────────────────────┤
│ CCW2 CCW │ │ CCW2' CCW │
│ │ ├──────────────────────────────────┤
│ CCW3 TIC CCW5 │ │ CCW3' TIC │ │
│ │ ├────────────────────────┼─────────┤
│ CCW4 CCW │ ┌─────────────────────────────┘ │
│ │ │ ├──────────────────────────────────┤
│ CCW5 CCW │ └───�│ (Copy location for CCW5) │
│ │ ├──────────────────────────────────┤
│ ────────── │ │ │
│ │ ├──────────────────────────────────┤
│ ────────── │ │ │
│ │ ├─────┬─────────┬──────────────────┤
│ ────────── │ │X'A�'│ � │ ──────────┼───┐
│ │ ├─────┼─────────┼──────┬───────────┤ │
│ ────────── │ │X'A8'│ � │ X'A�'│ �─� │ │
│ │ └─────┴─────────┴──────┴───────────┘ │
│ │ │
└───┘

Figure 65. Copy Location for a CCW Pointed to by a TIC. If location is in already used copy block.

176 VSE/AF Supervisor DRM

 Virtual User │ Processor Supervisor
 Storage Partition│ Storage Area
────────────────────┼──
User Channel Program│ Copied Channel Program Free Copy Block Queue
 │

CCB │ CCB Copy Block
 ┌──────────────┐ │ ┌──────────┬──────────┐

│ │ │ │ │ │
 ├───────┬──────┤ │ ├──────────┼──────────┤
┌�─┼──── │ │ │ │+8 CCBCCW│ │ AFCB
│ ├───────┴──────┤ │ ├──────┬───┼──────────┤ ┌───────┐
│ │ │ │┌───────────┘ / / │ │ │
│ └──────────────┘ ││ ├──────────┼──────────┤ └───┼───┘
│ ││ │+32 CCBACB│ │ │
│ ││ ├─────┬────┼──────────┘ │
│ ││ / │ / / │
│ ││ ┌────────┴�──────────────────┐ ┌──────┴─────────┐
│ ││ │ │ │ │
│ ││
 CCW Copy Blocks │
 │
│ ┌──────────────┐ ││ ┌─────────────────────┐ ┌───┼─�┌──────────────┐ │
│
 │ ││ │ CCW1 CCW │ │ │ │ │ │
│ CCW1 CCW │ ││ ├─────────────────────┤ │ │ ├──────────────┤ │
│ CCW2 CCW │ ││ │ CCW2 CCW │ │ │ │ │ │
│ CCW3 TIC CCW11│ ││ ├─────────────────────┤ │ │ ├──────────────┤ │
│ CCW4 CCW │ ││ │ CCW3 TIC │ │ │ │ │ │
│ CCW5 CCW │ ││ ├─────────────────────┤ │ │ ├──────────────┤ │
│ CCW6 CCW └─┼┼────────────────────┐ / │ │ / / │
│ CCW7 CCW ││ ├──────────┬───────┼──┤ │ │ ├──────────────┤ │
│ CCW8 CCW ││ │ │ VBA │ │ │ │ │ │ │
│ CCW9 CCW ││ ├──────────┼─────┬────┤ │ │ ├──────────────┤ │
│ CCW1� CCW ││ │ │X'A�'│ ├──┘ │ │ │ │ │
│ CCW11 CCW ││ └──────────┴─────┴──┬─┘ │ └────────────┼─┘ │
│ CCW12 CCW ││ │ │ │ │
│ CCW13 CCW ││ ┌───────────────────┘�───────┼──┬────────────┘ │
│ CCW14 CCW ││
 │
�───────────────┘
├─�CCW15 CCW │└�┌─────────────────────┐ │ ┌──────────────┐
│ CCW16 TIC CCW1 │ │ CCW15 CCW │ │ │ │
│ │ ├─────────────────────┤ │ ├──────────────┤
│ │ │ CCW16 TIC ───┼─────�┘ │ │
│ │ ├─────────────────────┤ ├──────────────┤
└�──────────────────┼─────────────────────┐ / / /
 │ ├──────────┬───────┼──┤ ├──────────────┤

│ │ │ VBA │ │ │ │
 │ ├──────────┼─────┬────┤ ├──────────────┤
 │ │ │X'A�'│ �─�│ │ │ │
 │ └──────────┴─────┴────┘ └────────────┼─┘
 │ │

│ / / / �────────────┘

Figure 66. Enqueuing a New Copy Block. To the correct location in the CCW copy block
chain to handle a CCW pointed to by a TIC (see Note 1).

 Channel Program Translation 177

 Virtual User │ Processor Supervisor
 Storage Partition│ Storage Area
────────────────────┼──
User Channel Program│ Copied Channel Program
 │

CCB │ CCB Copy Block
 ┌──────────────┐ │ ┌──────────┬──────────┐

│ │ │ │ │ │
 ├───────┬──────┤ │ ├──────────┼──────────┤
┌�─┼──── │ │ │ │+8 CCBCCW│ │
│ ├───────┴──────┤ │ ├──────┬───┼──────────┤
│ │ │ │┌───────────┘ / │
│ └──────────────┘ ││ ├──────────┼──────────┤
│ ││ │+32 CCBACB│ │
│ ││ ├─────┬────┼──────────┤
│ ││ / │ / /
│ ││ ┌────────┴�──────────────────┐
│ ││
 CCW Copy Blocks │ New Block
│ ┌──────────────┐ ││ ┌─────────────────────┐ ┌───┼─�┌──────────────┐
│
 │ ││ │ CCW1 CCW │ │ │ │ │
│ CCW1 CCW │ ││ ├─────────────────────┤ │ │ ├──────────────┤
│ CCW2 CCW │ ││ │ CCW2 CCW │ │ │ / /
│ CCW3 TIC CCW11│ ││ ├─────────────────────┤ │ │ ├──────────────┤
│ CCW4 CCW │ ││ │ CCW3 TIC ────┼──┼───┼─�│Copy location │
│ CCW5 CCW │ ││ ├─────────────────────┤ │ │ │ of CCW11 │
│ CCW6 CCW └─┼┼────────────────────┐ / │ │ ├──────────────┤
│ CCW7 CCW ││ ├──────────┬───────┼──┤ │ │ │ │
│ CCW8 CCW�───┐ ││ │ │ │ │ │ │ ├─────┬────────┤
│ CCW9 CCW │ ││ ├──────────┼─────┬────┐ │ │ │X'A�'│ │
│ CCW1� CCW │ ││ │ │X'A�'│ ──┼──┘ │ ├─────┼────────┤
│ CCW11 CCW │ ││ └──────────┴─────┴────┘ │ │X'A8'│ │
│ CCW12 CCW │ ││ │ ├─────┼────────┤
├─�CCW13 CCW └───┼┼──────────────────────────────┼──┼─────┼───── │
│ CCW14 CCW │└�┌─────────────────────┐ │ ├─────┼─────┬──┤
│ CCW15 CCW │ │ CCW13 CCW │ │ │ │X'A�'│ │
│ CCW16 TIC CCW1 │ ├─────────────────────┤ │ └─────┴─────┴──┘
│ │ │ CCW14 CCW │ │
│ │ ├─────────────────────┤ │ X'A�' and X'A8'
│ │ │ CCW15 CCW │ │ End of block
│ │ ├─────────────────────┤ │ indicators
│ │ │ CCW16 TIC ───┼─────�┘
│ │ ├─────────────────────┤
└───────────────────┼─────────────────────┐ /
 │ ├──────────┬───────┼──┤
 │ │ │ │ │
 │ ├──────────┼─────┬────┤
 │ │ │X'A�'│ �─�│
 │ └──────────┴─────┴────┘

Figure 67. CCW Copy Block Queuing. Requiring the creation of a "short" block to maintain
alignment (see Note 2).

178 VSE/AF Supervisor DRM

 Virtual User │ Processor Supervisor
 Storage Partition│ Storage Area
────────────────────┼──
User Channel Program│ Copied Channel Program
 │

CCB │ CCB Copy Block
 ┌──────────────┐ │ ┌──────────┬──────────┐

│ │ │ │ │ │
 ├───────┬──────┤ │ ├──────────┼──────────┤
┌�─┼──── │ │ │ ┌──┼────── │ │
│ ├───────┴──────┤ │ │ ├──────────┼──────────┤
│ │ │ │ │ / / /
│ └──────────────┘ │ │ ├──────────┼──────────┤
│ │ ├�─┼────── │ │
│ │ │ ├──────────┼──────────┘
│ │ │ / / /
│ │ │
│ │ │
│ │
 Copied CCWs
│ │ ┌─────────────────────┐
│ ┌──────────────┐ │ │ CCW1 CCW │
│
 │ │ ├─────────────────────┤
└─�CCW1 CCW │ │ │ CCW2 CCW │
 CCW2 CCW │ │ ├─────────────────────┤

CCW3 TIC CCW15│ │ │ CCW3 TIC │
 CCW4 CCW │ │ ├─────────────────────┤
 CCW5 CCW └─┼─────────────────────┐ /
 CCW6 CCW │ ├──────────┬───────┼──┤
 CCW7 CCW │ │ │ │ │
 CCW8 CCW │ ├──────────┼─────┬────┤
 CCW9 CCW │ │ │X'A�'│ │ │
 CCW1� CCW │ └──────────┴─────┴─┼──┘
 CCW11 CCW │ │
 CCW12 CCW │ ┌──────────────────┘─────────┐

CCW13 CCW │
 New Copy Block │
 CCW14 CCW │ ┌─────────────────────┐ │
┌─�CCW15 CCW │ │ │ │
│ CCW16 CCW │ ├─────────────────────┤ │ Copy location
│ │ │ │ for CCW15
│ │ ├─────────────────────┤
└───────────────────┼─────────────────────┐ /
 │ ├──────────┬───────┼──┤
 │ │ │ │ │
 │ ├──────────┼─────┬────┤
 │ │ │X'A�'│ �─�│
 │ └──────────┴─────┴────┘

Figure 68. Enqueuing New Copy Block to Existing Block. Because the copy block cannot
be aligned. CCW is too far removed from VBA of any existing block (see Note 3).

 Channel Program Translation 179

Notes:

 1.

Problem CCW3 has just been copied. The problem is to find the copy
location for CCW11.

Solution Free copy block is queued between A and B because the address
used by the TIC at CCW3 lies between the VBA for A and the
VBA for B. The solid line shows the condition before the new
block is enqueued and the dotted lines the condition afterwards.

Once enqueued the VBA in the newly enqueued block will point to
CCW8 (the block is aligned to the next lower block) and the TIC in
CCW3 will point to the fourth copy location in the new block.
Copying will then continue with CCW11 being copied into that
location.

 2.

Problem CCW3 has just been copied and the copy block for CCW11 has
been enqueued. The problem is to align the block.

Solution Make the new block a 'short' block in that the end of block indica-
tors are moved to the copy position following that for CCW12.

 3.

Problem CCW3 has just been copied and it is necessary to find a copy
location for CCW16, the next CCW copied.

Solution Enqueue a new copy block behind the first one and use the first
copy location for CCW16 because it is impossible to align the new
block to an existing block.

180 VSE/AF Supervisor DRM

Copying Status Modifier Commands
Status modifier commands may transfer control to either of the next two following
CCWs depending upon the result of the status modifier's operation. If, for example,
a SEARCH command is unsuccessful, control is transferred to following CCW. If it
is successful, on the other hand, the following CCW is skipped and control is
passed to the second following command.

Consider the following chain of commands:

 READ
 READ
 SEEK
 SEARCH
 TIC A
 READ
 READ
A WRITE
 WRITE
 SEARCH
 TIC B
 READ
 READ
B READ
 READ

If the first SEARCH in this program is successful, no branch is taken as the TIC
command is skipped. If the SEARCH is not successful the chained commands
beginning at A are executed. The same is true when the second SEARCH is
encountered. This can be done any number of times in a program. Since a program
is copied as it is executed, the presence of status modifier commands makes it
necessary to take several passes through a program in order to cover all the pos-
sible branches.

In the first pass through a program, a TIC following a status modifier command is
copied but otherwise ignored (unless the status modifier is copied into the last copy
location of a copy block). The TICs thus encountered are queued in a line pointed
to by LINEPTR in the TCB (the queuing addresses are in the second 4 bytes of the
copied TICs). Figure 69 on page 183 shows a program with status modifier com-
mands after the first pass has been made a copying it.

If a status modifier command happens to be copied into the last copy location of
the block, an entry in a different queue is made. This contains as entries the last
locations of blocks where a status modifier command is copied into the last copy
location. The first entry in the queue is pointed to by BENDPTR in the TCB. The
queuing addresses are in bytes 1-3 of the queue elements (last location of the
CCW copy blocks concerned). Copying continues with the first CCW following the
status modifier command being copied into the first location of the next queued
copy block, and, if chained, copying continues with the following command. If, as is
usually the case, the first command after the status modifier command is a TIC, the
branch taken by the TIC command is copied. Figure 70 on page 184 shows a
program with a status modifier command in the last copy position.

As soon as an end is reached in copying a program (a command without data or
command chaining is copied or a copy location for a command is already filled) the
program checks to see if there are any members in the queue pointed to by

 Channel Program Translation 181

LINEPTR or BENDPTR. The members of these queues are handled one at a time.
See Figure 70 on page 184 to Figure 72 on page 186.

Note: LINEPTR and BENDPTR entries can be created while others are being
handled. Translation is complete when both LINEPTR and BENDPTR are
zero (that is, no more entries in either queue).

Translating Data Addresses and Page Fixing
Parallel to the copying of a channel program, the pages containing the data areas
for the various CCWs are TFIXed in real storage and the virtual addresses of the
data areas are translated into real addresses.

IDALs are first built using the virtual addresses of the beginning of the data area
and the 2K boundaries. When the individual pages are TFIXed in real storage these
addresses are replaced with the correct real addresses. Figure 73 on page 187
shows an IDAL built for a data area both before and after the pages have been
TFIXed. Figure 74 on page 188 shows how the IDAL looks if the command is a
read backward command.

182 VSE/AF Supervisor DRM

 Virtual User │ Processor Supervisor
 Storage Partition│ Storage Area
────────────────────┼──
User Channel Program│ Copied Channel Program
 ┌────────────────┼──┐
 │ │ ┌────────────────┐ │

│ │ │LINEPTR (in TCB)│ │

 │ └─┬──────────────┘ │
 CCW1 SEEK │ │ ┌───────────────────────────────────┐ │

CCW2 SEARCH │ │ │ CCB Copy Blocks │ │
 CCW3 TIC CCW9 │ │ │ ┌──────────────────────────┐ │ │

CCW4 CCW │ │ │ │ CCW1 SEEK │ │ │
 CCW5 CCW │ │ │ ├──────────────────────────┤ │ │

CCW6 SEARCH │ │ │ │ CCW2 SEARCH │ │ │
 CCW7 TIC CCW12 │ │ └───�├───────────────┬──────────┤ │ │
┌─�CCW8 CCW │ │ │ CCW3 TIC CCW9 │ � │ │ │
│ CCW9 CCW �──────┼───┼───────────────────────│ │ │ │
│ CCW1� CCW │ │ ├───────────────┴──────────┤ │ │
│ CCW11 CCW │ │ │ CCW4 CCW │ │ │
│ CCW12 CCW │ │ ├──────────────────────────┤ │ │
│ � │ │ │ CCW5 CCW │ │ │
│ │ │ │ ├──────────────────────────┤ │ │
│ │ │ │ │ CCW6 SEARCH │ │ │
│ │ │ └──────�├───────────────┬──────────┤ │ │
│ │ │ │ CCW7 TIC CCW12│ ─────┼───┘ │
│ └─── │ │ │
│ │ ├───────────────┼──────────┤ │
│ │ │ TIC │ │ VBA ───┼───────┘
│ It is assumed │ ├─────────┼─────┼─────┬────┤
│ that the user's │ │ X'A8' │ │X'A�'│ │ │
│ original CCB │ └─────────│─────┴─────┴─┼──┘
│ points to CCW1. │ ┌─────────┴�────────────┘
│ Translation starts│ │
│ with this CCW. │

│ CCW8 and CCW9 │ ┌──────────────────────────┐
│ are not chained. │ │ CCW8 CCW │
│ │ ├──────────────────────────┤
│ │ / /
│ │ ├──────┬────────┬──────────┤
│ │ │ X'A�'│ │ VBA ──┼───┐
│ │ ├──────┼────────┼─────┬────┤ │
│ │ │ X'A8'│ │X'A�'│ � │ │
│ │ └──────┴────────┴─────┴────┘ │
│ │ Status of copied channel │
│ │ program after first pass. │
│ │ First pass ends with CCW8 │
│ │ because it is not chained. │
└───────────────────┼──┘
 │

Figure 69. Channel Program. Containing status modifier commands after its first copying
path has been made.

 Channel Program Translation 183

 Virtual User │ Processor Supervisor
 Storage Partition│ Storage Area
────────────────────┼──
User Channel Program│ Copied Channel Program
 │
┌�──────────────────┼──┐
│ │ ┌────────────────────────┐ │
│ CCB │ │ CCB Copy Block
 CCW Copy Blocks │
│ ┌──────────────┐ │ │ ┌──────┬──────┐ ┌───────────────────┐ │
│ │ │ │ │ │ │ │ │CCW1 CCW │ │
│ ├───────┬──────┤ │ │ ├──────┼──────┤ ├───────────────────┤ │
├�─┼──── │ │ │ ├�─┼─── │ │ │CCW2 CCW │ │
│ ├───────┴──────┤ │ │ ├──────┼──────┤ ├───────────────────┤ │
│ │ │ │ │ � � � │CCW3 CCW │ │
│ └──────────────┘ │ │ ├──────┼──────┤ ├───────────────────┤ │
│ │ └�─┼─── │ │ │CCW4 CCW │ │
│ │ ├──────┼──────┤ ├───────────────────┤ │
│ │ � � � │CCW5 CCW │ │
│ │ X'B�' in byte 4 of the ├───────────────────┤ │
│ │ last entry in CCW copy │CCW6 CCW │ │
│ │ block indicates that ├───────────────────┤ │
│ │ this entry is in block │CCW7 SEARCH │ │
│ │ end chain. ├─────────┬─────────┤ │
│ │ (in TCB) │TIC │ │ VBA ───┼─�┘
└─�CCW1 CCW │ LINEPTR BENDPTR │ └──┼────────────┐
 CCW2 CCW │ ┌──────┬──────┐ ├──┬──────┼──┬──────┤ │
 CCW3 CCW │ │ � │ ────────────�│A8│������│B�│ - │ │
 CCW4 CCW │ └──────┴──────┘ └──┴──────┴──┴──┼───┘ │
 CCW5 CCW │ ┌───┘ │
 CCW6 CCW │ │ ┌──────────────────────┘
 CCW7 SEARCH │

CCW8 TIC CCW15�┐│ ┌───────────────────┐ ┌─�┌───────────────────┐
CCW9 CCW ││ │CCW8 TIC CCW15 │ │ │CCW15 CCW │
CCW1� SEARCH ││ ├───────────────────┤ │ ├───────────────────┤
CCW11 TIC CCW16 └┼──────────────────┐ � │ � �
CCW12 CCW │ ├──┬──────┬──────┼──┤ │ ├──┬──────┬─────────┤
CCW13 CCW │ │A�│������│ VBA - │ │ │A�│������│ VBA ──────┐
CCW14 CCW │ ├──┼──────┼──┬──────┤ │ ├──┼──────┼──┬──────┤ │
CCW15 CCW │ │A8│������│A�│ ───────┘ │A8│������│A�│ � │ │

┌─�CCW16 CCW │ └──┴──────┴──┴──────┘ └──┴──────┴──┴──────┘ │
│ │ │
└───────────────────┼──┘
It is assumed that │ That status modifier command CCW7 is copied into
CCW14, CCW15 and │ the 7th copy position necessitating an entry into
CCW16 are not │ the BENDPTR queue. The first pass ends when CCW15
chained. │ is copied, because this CCW is not chained.

Figure 70. Channel Program. Containing status modifier commands after its first copying
path has been completed.

184 VSE/AF Supervisor DRM

 Virtual User │ Processor Supervisor
 Storage Partition│ Storage Area
────────────────────┼──
User Channel Program│ Copied Channel Program
┌�──────────────────┼──┐
│ │ ┌────────────────────────┐ │
│ CCB │ │ CCB Copy Block
 CCW Copy Blocks │
│ ┌──────────────┐ │ │ ┌──────┬──────┐ ┌───────────────────┐ │
│ │ │ │ │ │ │ │ │CCW1 CCW │ │
│ ├───────┬──────┤ │ │ ├──────┼──────┤ ├───────────────────┤ │
├�─┼──── │ │ │ ├�─┼─── │ │ │CCW2 CCW │ │
│ ├───────┴──────┤ │ │ ├──────┼──────┤ ├───────────────────┤ │
│ │ │ │ │ / / / │CCW3 CCW │ │
│ └──────────────┘ │ │ ├──────┼──────┤ ├───────────────────┤ │
│ │ └�─┼─── │ │ │CCW4 CCW │ │
│ │ ├──────┼──────┤ ├───────────────────┤ │
│ │ / / / │CCW5 CCW │ │
│ │ (in TCB) ├───────────────────┤ │
│ │ LINEPTR BENDPTR │CCW6 CCW │ │
│ │ ┌──────┬──────┐ ├───────────────────┤ │
│ │┌──┼─── │ � │ │CCW7 SEARCH │ │
│ ││ └──────┴──────┘ ├─────────┬─────────┤ │
│ ││ ┌─────────────────────┐ │TIC │ │ VBA ───┼─�┘
│ ││ │ │ │ └──┼────────────┐
└─�CCW1 CCW ││
 │ ├─────────┼──┬──────┤ │

CCW2 CCW ││ ┌───────────────────┐ │ │TIC │ │A�│ │ │ │
CCW3 CCW ││ │CCW8 TIC CCW15 │ │ └──────┼──┴──┴──┼───┘ │
CCW4 CCW ┌┼┼──────────────┘ │ └────────┼────────┘ │

 CCW5 CCW │││ ├───────────────────┤�─────────┘ │
 CCW6 CCW │││ │CCW9 CCW │ ┌──────────────────────┘
 CCW7 SEARCH │││ ├───────────────────┤

┌─�CCW8 TIC CCW15 │││ │CCW1� SEARCH │ ┌�┌───────────────────┐
│ CCW9 CCW ││└─�├───────────────┬───┤ │ │CCW15 CCW │
│ CCW1� SEARCH ││ │CCW11 TIC CCW16│ � │ │ │───────────────────┤
│ CCW11 TIC CCW16�┼┼────────────────┘ │ │ │ / /
│ CCW12 CCW ││ ├───────────────┴───┤ │ ├──┬──────┬─────────┤
│ CCW13 CCW ││ │CCW12 CCW │ │ │A�│������│ VBA ──────┐
│ CCW14 CCW ││ ├───────────────┴───┤ │ ├──┼──────┼──┬──────┤ │
│ CCW15 CCW �─────┘│ │CCW13 CCW │ │ │A8│������│A�│ � │ │
│ CCW16 CCW │ ├───────────────┴───┤ │ └──┴──────┴──┴──────┘ │
│ │ │CCW14 CCW │ │ to virtual CCW15 �──┘
│ │ ├──┬──────┬─────────┤ │
└───────────────────┼─────────────┼──────┐ │ │ The only BENDPTR entry

│ │A�│������│ VBA - │ │ has been resolved. Note
It is assumed that │ ├──┼──────┼──┬──────┤ │ that a LINEPTR entry has
CCW14, CCW15 and │ │A8│������│A�│ ────┼─┘ been created,
CCW16 are not │ └──┴──────┴──┴──────┘ necessitating at least
chained. │one more pass to complete the copying of the program.

Figure 71. Channel Program. Containing status modifier commands after completion of the
second path.

 Channel Program Translation 185

Virt.Stor. User Part│ Processor Storage Supervisor Area
────────────────────┼──
User Channel Program│ Copied Channel Program
┌�──────────────────┼──┐
│ │ ┌────────────────────┐ CCW Copy Blocks │
│ CCB │ │ CCB Copy Block └──�┌───────────────────┐ │
│ ┌──────────────┐ │ │ ┌──────┬──────┐ │CCW1 CCW │ │
│ │ │ │ │ │ │ │ ├───────────────────┤ │
│ ├───────┬──────┤ │ │ ├──────┼──────┤ │CCW2 CCW │ │
├�─┼──── │ │ │ ├�─┼─── │ │ ├───────────────────┤ │
│ ├───────┴──────┤ │ │ ├──────┼──────┤ │CCW3 CCW │ │
│ │ │ │ │ / / / ├───────────────────┤ │
│ └──────────────┘ │ │ ├──────┼──────┤ │CCW4 CCW │ │
│ │ └�─┼─── │ │ ├───────────────────┤ │
│ │ ├──────┼──────┤ │CCW5 CCW │ │
│ │ / / / ├───────────────────┤ │
│ │ (in TCB) │CCW6 CCW │ │
│ │ LINEPTR BENDPTR ├───────────────────┤ │
│ │ ┌──────┬──────┐ │CCW7 SEARCH │ │
│ │ │ � │ � │ ├─────────┬─────────┤ │
│ │ └──────┴──────┘ │TIC │ │ VBA ───┼─�┘
│ │ ┌─────────────────────┐ │ └──┼────────────┐
│ │
 │ ├─────────┼──┬──────┤ │
└─�CCW1 CCW │ ┌───────────────────┐ │ │TIC │ │8�│ │ │ │

CCW2 CCW │ │CCW8 TIC CCW15 │ │ └──────┼──┴──┴──┼───┘ │
CCW3 CCW ┌┼───────────────┘ │ └�───────┼────────┘ │

 CCW4 CCW ││ ├───────────────────┤�─────────┘ │
 CCW5 CCW ││ │CCW9 CCW │ ┌──────────────────────┘
 CCW6 CCW ││ ├───────────────────┤

 CCW7 SEARCH ││ │CCW1� SEARCH │ ┌�┌───────────────────┐
┌─�CCW8 TIC CCW15 ││ ├───────────────┬───┤ │ │CCW15 CCW │
│ CCW9 CCW ││ │CCW11 TIC │ │ � │ │ │───────────────────┤
│ CCW1� SEARCH ││ │ └───┼─────┼�│CCW16 CCW │
│ CCW11 TIC CCW16 ││ ├───────────────┴───┤ │ │───────────────────┤
│ CCW12 CCW ││ │CCW12 CCW │ │ / /
│ CCW13 CCW ││ ├───────────────┴───┤ │ ├──┬──────┬─────────┤
│ CCW14 CCW ││ │CCW13 CCW │ │ │A�│������│ VBA ───────┐
│ CCW15 CCW �─────┘│ ├───────────────┴───┤ │ ├──┼──────┼──┬──────┤ │
│ CCW16 CCW │ │CCW14 CCW │ │ │A8│������│A�│ � │ │
│ │ ├──┬──────┬─────────┤ │ └──┴──────┴──┴──────┘ │
└───────────────────┼─────────────┼──────┐ │ │ to virtual CCW15 �──┘
It is assumed that │ │A�│������│ VBA - │ │ Translation terminates
CCW14, CCW15 and │ ├──┼──────┼──┬──────┤ │ because a command without
CCW16 are not │ │A8│������│A�│ ─────┼─┘ chaining, CCW16, has been
chained. │ └──┴──────┴──┴──────┘ copied.

Figure 72. Channel Program. Containing status modifier commands after completion of
translation.

186 VSE/AF Supervisor DRM

Virtual User │ Processor Supervisor and Page
 Storage Partition│ Storage Area Pool
────────────────────┼──
User Channel Program│ ┌────────────────────────┐

│ │ CCB Copy Block
 CCW Copy Block
│ │ ┌──────┬──────┐ ┌───────────────────┐

──────── │ │ │ │ │ │ │
──────── │ │ ├──────┼──────┤ ├───────────────────┤

 ──────── │ ├�─┼ +8 │ │ │ │
CCW data │ │ ├──────┼──────┤ ├───────────────────┤
──────── address │ │ / / / │ │ │

 ──────── │ │ │ ├──────┼──────┤ ├─────────┼─────────┤
 ──────── │ │ └�─┼ +32 │+36 │ │ / │ /
 ──────── │ │ ├──────┼────┼─┤ │

│ │ / / │ / │
┌�────────┘ │ ┌───────────┴�──────────────────┘
│ │
 IDAL Block

 │ │ ┌──────┬──────┐
├─────────┤�────────┼─────┼──── │ ────┼───┐ Copied Channel Program
│ A1 │ │ ├──────┼──┬───┤ │ before data area pages
───────1───�─┐ ┌───────────── │9�│ │ │ are TFIXed.
│ A2 │ │ │ │ ├──────┼──┴───┤ │ Note: IDAL entries
│ │ │ │ │ / / / │ point to begin
│ │ └───┼──┼───────────────────────┘ of a 2K block.
├──────1──┤�─────┘ ├──
│ A3 │ │ ┌────────────────────────┐
├─────────┤ │ │ CCB Copy Block
 CCW Copy Block
/ / │ │ ┌──────┬──────┐ ┌───────────────────┐

│ │ │ │ │ │ │
─1─ 2K boundary │ │ ├──────┼──────┤ ├───────────────────┤
────────────────────┘ ├�─┼ +8 │ │ │ │
 Page Pool │ ├──────┼──────┤ ├───────────────────┤
/ / │ / / / │ │ │
├──────1──┤�──┐ │ ├──────┼──────┤ ├─────────┼─────────┤
│ A2 │ │ └�─┼ +32 │+36 │ │ / │ /
│ │ │ ├──────┼────┼─┤ │
│ │ │ / / │ / │
├──────1──┤ │ │ │
/ / │ ┌───────────┴�──────────────────┘
├──────1──┤�──┼──────┐
 IDAL Block
│ A3 │ │ │ ┌──────┬──────┐
├─────────┤ │ ┌────┼────┼──── │ ────┼───┐ Copied Channel Program
│ │ │ │ │ ├──────┼──┬───┤ │ after data area pages
───────1─── │ │ └───────── │9�│ │ │ are TFIXed.
│ │ │ │ ├──────┼──┴───┤ │ Note: IDAL entries
├─────────┤�──┼─┘ / / / │ point to begin
│ A1 │ │ │ of a 2K block.
├──────1──┤ └─────────────────────────────┘
/ /

Figure 73. Copied CCW. Requiring an IDAL to be Built (normal READ or WRITE
command)

 Channel Program Translation 187

Virtual User │ Processor Supervisor and Page
 Storage Partition│ Storage Area Pool
────────────────────┼──
User Channel Program│ ┌────────────────────────┐

│ │ CCB Copy Block
 CCW Copy Block
│ │ ┌──────┬──────┐ ┌───────────────────┐

──────────── │ │ │ │ │ │ │
──────────── │ │ ├──────┼──────┤ ├───────────────────┤

 ──────────── │ ├�─┼ +8 │ │ │ │
CCW data address │ │ ├──────┼──────┤ ├───────────────────┤
──────────── │ │ / / / │ │ │
──────────── │ │ ├──────┼──────┤ ├─────────┼─────────┤
──────────── │ └�─┼ +32 │+36 │ │ / │ /
──────────── │ ├──────┼────┼─┤ │

 │ / / │ / │
 │ ┌───────────┴�──────────────────┘

│
 IDAL Block
/ / │ ┌──────┬──────┐
├─────────┤ ┌───┼─────┼──── │ ────┼───┐ Copied Channel Program
│ A1 │ │ │ ├──────┼──┬───┤ │ before data area pages
───────1───�────────────────── │9�│ │ │ are TFIXed.
│ A2 │ │ │ ├──────┼──┴───┤ │
│ │ │ │ / / / │
├──────1──┤�────┼───┼───────────────────────┘
│ A3 │ │ ├──
├─────────┤�────┘ │ ┌────────────────────────┐
/ / │ │ CCB Copy Block
 CCW Copy Block

│ │ ┌──────┬──────┐ ┌───────────────────┐
─1─ 2K boundary │ │ │ │ │ │ │

│ │ ├──────┼──────┤ ├───────────────────┤
────────────────────┘ ├�─┼ +8 │ │ │ │
 Page Pool │ ├──────┼──────┤ ├───────────────────┤
/ / │ / / / │ │ │
├──────1──┤ │ ├──────┼──────┤ ├─────────┼─────────┤
│ A2 │ └�─┼ +32 │+36 │ │ / │ /
│ │ ├──────┼────┼─┤ │
│ │ / / │ / │
├──────1──┤�─────────┐ │ │
/ / │ ┌───────────┴�──────────────────┘
├──────1──┤ │
 IDAL Block
│ A3 │ │ ┌──────┬──────┐
├─────────┤�─────────┼────┼──── │ ────┼───┐ Copied Channel Program
│ │ │ ├──────┼──┬───┤ │ after data area pages
───────1─── ┌────────────── │9�│ │ │ are TFIXed.
│ │ │ │ ├──────┼──┴───┤ │
├─────────┤ │ │ / / / │
│ A1 │ │ │ │
├──────1──┤�────┘ └──────────────────────┘
/ /

Figure 74. Copied CCW. Requiring an IDAL to be Built (READ Backward Command)

188 VSE/AF Supervisor DRM

 Channel Program Translation 189

190 VSE/AF Supervisor DRM

 Page Management

 General

Introduction into Page Management
The page management is responsible for the management of the data set con-
taining the virtual address and data space(s), for the allocation of the processor real
storage to parts of the virtual space being requested and for the related replace-
ment strategy. The unit of logical storage is the PAGE, the data set is called PAGE
DATA SET (PDS). The real storage area containing a page is called a PAGE
FRAME.

A page management function satisfies those processor requests created by
addressing a valid logical area not yet assigned to and located in real storage
(PAGE FAULTS). The related page is in disconnected state and its copy - if valid -
has to be read from the PDS into a selected page frame. The page has thereafter
addressable state. However, if there is no free page frame, at first the page cur-
rently located in the selected page frame has to be saved onto the PDS before the
frame can be used by the new page. The state of the saved page is changed from
addressable into disconnected.

A further function provides the capability to FIX a page in the real storage. This
function is required for the I/O subsystem which operates on real storage (page
frames) only. Because of performance considerations the fixing can be also desir-
able for frequently used address ranges.

Another function allows the user to control the paging environment by its own ser-
vices. These services are implemented for the various subsystems to allow an opti-
mization of the 'page' resources.
As seen, the total page management can be subdivided into the following main
parts:

� Page handling support
– Page fault handling together with the page selection algorithm
– Page out handling
– Pseudo-Page Fault handling
– SVC services concerning page state (SVC106, SVC109/121)
– Subroutine service concerning page state (INVPAGE)

� FIX / FREE support
– TFIX / TFREE services for the I/O subsystem, FETCH and SVC44
– SVC services for user PFIX / PFREE (SVC67/121, SVC68/121)
– subroutine service for SVA PFIX / PFREE (SVAFX2ND)
– SVC services for allocation of real storage with SVC54 and SVC55
– SVC service for CHECKPOINT / RESTART (SVC74)

� Page handling by user
– PHO capability (Page Fault Overlap) with SVC71/121
– SVC services concerning page-in, release page and forced page out

(SVC85/121, SVC86/121, SVC87/121)
– VIO (Virtual I/O) support.

 � Load-Levelling:

© Copyright IBM Corp. 1985, 2013 191

– Deactivation, Reactivation routines
– Teleprocessing Balancing (SVC88/89)

All page management services are called and executed in AMODE(31), with the
following exceptions:

� Parameter list handling routines of PFIX, PFREE, RELPAG, FCEPGOUT and
PAGEIN, which are executed in AMODE(requestor)

� Deactivation, Reactivation routines are called and executed in AMODE(24)

� SCANPGT service is called and executed in AMODE(24)

� All SVC services are invoked with AMODE(24)

� All SVC services are executed in AMODE(31) with the following exceptions:

– SVC 71 (SETPFA)
– SVC 88 (TPIN)
– SVC 89 (TPOUT)

Support of Processor Storage above 2GB.
Processor storage above 2 BG is used by the page manager for paging purposes.
These page frames cannot be used transparently, though. There are a few
restrictions.

Page frames must be assigned below 2 GB to

 � PFIXed pages

 � TFIXed pages

� Real partition pages

 � Prefix area

A real address below 2 GB must be returned for

 � LRA

64-bit Page Frame Queues
The page frames below and above 2GB are organized in separate PFTE queues
because of their selective use. A PFTE - page frame table entry - represents a
page frame. There are two queues, IPFQ and IPFQ64 for invalid 31-bit page
frames, repectively invalid 64-bit page frames. There are two page frame selection
queues PSQ and PSQ64. The main reason is: To keep search loops for available
31-bit page frames short after a PFIX or TFIX request. Also page selection after a
page fault is faster with separate PFTE queues.

64-bit Page I/O
Page I/O for page-out and page-in can be done with 64-bit page frames. The page
manager builds Format 1 CCW chains. IOS does not modify the channel programs
and executes the Format 1 CCWs.

 64-bit Addressing
64-bit addressing mode is required for managing storage above 2GB. Since the
Page Frame Table is allocated at the high end of processor storage this mode is
needed when the page frame table entries or the page frames are manipulated or
inspected. Therefore most of the page manager code executes in 64-bit
addressing mode. Also services like PFIX/TFIX have to execute partly in 64-bit
mode.

192 VSE/AF Supervisor DRM

Affected are routines and subroutines of

� Page fault handler (SGPMR),
� General page management routines (SGPDATA),
� Prefix allocation (SGPPMT),
� Page fixing services (SGPFIX),
� Allocation and fixing of real space areas (SGPREAL),
� VIO services (SGPSVC),
� Page fault optimization services (SGPOPT).

Description of Parallel Page I/O
Parallel page I/O is done by overlapping the page I/O operations for separate page-
data-set devices. Therefore, parallel page I/O requires a multiple extent
page-data-set, at best each extent distributed on a separate device but at least two
extents on two devices.

For every page-data-set device, there is one page-in queue per static partition
(inclusive system partition), one page-in queue per dynamic class (that means,
page faults for dynamic partitions belonging to the same class are queued in one
queue) and one page-out queue.

The I/O operations are controlled by a system task, the so called PMR-task. The
page-data-set devices are serviced in wrap-around mode. The PMR-task tries to
start an I/O request on each device as long as requests are pending and not yet
started. Thereafter, the PMR-task waits for completion of at least one I/O.

However, before the page-fault request is enqueued it is checked whether the
request can be serviced without any I/O. If so, the request is handled under the
requesting task without any activation of the PMR-task.

Handling of Address Spaces
VSE/AF supports n virtual address spaces. With z/VSE 5.1, z/VSE supports the
64-bit address space. The size of a 64-bit address space is limited by the value of
VSIZE, which is currently 90GB. The storage within a 64-bit address space is sepa-
rated in storage below the 2GB bar and storage above the 2GB bar.

The address space below the bar is separated into a private adressable area and a
shared addressable area. The shared area is unique in the system. Programs and
data used in any address space must be located in the shared area (for example,
supervisor routines, SVA programs, control blocks in the system GETVIS area).

The area above the bar, called Extended Area, can only be used for data. Storage
above the bar is organized as Memory Objects. A Memory Object is a contiguous
range of virtual addresses. There are Private Memory Objects that are created
within the Extended Private Area and Shared Memory Objects that area created
within the Extended Shared Area (see Extended Addressability, SC34-2606).

The sum of all private areas and shared areas is restricted to 90GB, an arbitrary
limitation (The real limit is the size of the maximal 15 page-data-set
extents/devices).

The address translation, as defined by the z/Architecture (see Principles of Opera-
tion, SA22-7832) is done via Region-Third-Table Entry (RTTE), Segment-Table
Entry (STE) and Page-Table Entry (PTE). Each RTTE addresses a list of contig-

 Page Management 193

uous STEs, which describe a logical address range of 2GB, one region. Whereas a
single STE addresses a list of contiguous PTEs which describe a logical address
range of 1MB, one segment. The architectured page size is 4KB. The STE points
to a page table of 256 entries.

The different address spaces are represented by different region third tables (RTT)
and each region is managed by its own Space Control Blocks (SCB). The shared
areas (SVA, Extended Shared Area) are represented by an extra RTT with invalid
private areas (private area, Extended Private Area) The private areas of an address
space are only addressable via one unique RTT.

The virtual address range of one region (private or shared) can be thought as one
contiguous and linear area. This area is represented by a list of PTEs. Each entry
is associated to an unique virtual address range (page) and to a unique block on
an external storage medium (these blocks build the Page Data Set (PDS), con-
sisting of a set of data extents on one or more disk devices). The index in the list
of PTEs for a specific page is called the Extended Page Number (EPA#) of this
page and the EPA# multiplied by the page size (4KB) is called the Extended Page
Address (EPA).
The page table describing one private region is anchored in the SCB of the related
region of the space, the private area belongs to. The page table corresponding to
a region in the shared area is anchored in the related SCB_S (SCB of shared
region).

During page handling (PMR-task), each page of virtual storage is represented by its
EPA and its SCB. The SCBs of a space are anchored in the SCBXTAB pointed to
by the SCB, describing the first 2GB of a space (region index 0). Each SCB con-
tains the region index of the related region. All SCBs with region index > 0 are
called SCB Extension (SCBX).

Virtual address to EPA translation:

virtual address in Extended Shared or Extended Private Area

EPA := virt. address - region index * 2GB

virtual address in 24-bit shared area

EPA := virt. address

virtual address in 31-bit shared area

EPA := virt. address - (size of private area)

virtual address in private area

EPA := virt. address - (size of 24-bit shared area)

The concept of real partitions is separately implemented. There is no RTT allocated
for a real address space (size limited to 2GB). The real address space has its own
space control block (SCB_R), segment table and page tables. In opposition to the
virtual address spaces there is no PTAS and no POSL.

194 VSE/AF Supervisor DRM

Size of an address space
The size of an 31-bit addres space is determined during IPL and used for all
address spaces (COMREG.EOCADR contains the value). The minimal address
space size is MIN(32M,VSIZE) and the maximal address space size is
MIN(VSIZE,90G), both values rounded up to the next multiple of the segment size.

Note: In a non-PDS system VSIZE is calculated out of the real storage usable by
page management and the specified VIO size.

The actual size of an 31-bit address space is determined by the size of the shared
areas and the user specified size of the private area (PASIZE). If the actual size
would be above the allowed maximal value, PASIZE is decreased, and if the actual
size would be below the allowed minimal value, PASIZE is increased, to fit into the
address space limits. In case the resulting PASIZE is below the allowed minimal
value (1M if VSIZE is smaller than 256M and 6M if VSIZE is 256M or larger) a
message is given to the user.

The size of a 64-bit address space is determined by the size of the Extended Area
(MEMLIMIT).

Handling of Data Spaces
A data space remains 31-bit addressable and can't be extended beyond 2GB. This
is why there is no RTT allocated for a data space. Besides the fact that a data
space is addressed via a SGT, they are handled in page management the same
way as address spaces. A data space is represented by a SCB too, therefore a
page fault in a data space is represented by an EPA and its corresponding SCB,
the same way as a page fault in an address space (only the way to get the SCB
address for a data space is different). Besides page fault handling, page manage-
ment is involved in data space support in the following areas:

� Page fault handling overlap
 � Release page
 � INVPAGE service
� create/delete PMR tables

 � PAGESTAT service

Distribution of Virtual Storage to Page-Data-Set
The supported virtual storage (VSIZE) is distributed in blocks of 32KB on the page
data set devices. To do this, two types of tables are used.
Every block of 32KB (8 page-table entries) is associated an entry in the Page Table
Assignment String (PTAS), containing mainly the relative record number of the 1st
page of the block on the PDS. The entry is abbreviated as PTASE and contains
zero if unused. The PTAS is used to get from the EPA the corresponding disk
address. There exists one PTAS per address area, which is anchored in the SCB
of this area.
The corresponding 32KB area of virtual storage is also called allocation unit.

A second table, the Page to Disk Assignment String (PDAS) is used to indicate
whether a block of 32KB on PDS is allocated or not. The relative record number of
the 1st page of the block divided by 8 is the index in this table. The allocation
algorithm provides both minimal SEEK time and an uniform distribution over the
extents and devices.

 Page Management 195

Blocked Page I/O
Whenever feasible, the page I/O activities are done in blocks up to eight pages
(part or total of an allocation unit) to avoid single page I/O in a multi partition and
multi space environment; the aspects are both the seek overhead for each I/O and
the resulting I/O contention. Blocked paging exploits the high data transfer rate
capability of disks. Blocked paging is done for the following operations:

 � pre-page-out,
� unconditional page-out and
� page-in (triggered by PAGEIN-macro)

System without Page Data Set
If enough real storage is available to hold the required VSIZE and VIO, no page
data set is required. The user indicates this to the system via the option NOPDS on
the supervisor parameters IPL command. In this case the VSIZE parameter is not
allowed and the system calculates the VSIZE (in multiples of 64K) out of the avail-
able real storage and the requested VIO space (in routine $INTVIRT).

In a non-PDS system no page selection takes place, if a page fault occurs, there
has to be at least one entry in the invalid page frame queue.
In addition, the following page-management functions result in a null operation:

FCEPGOUT - return code zero is provided in register 15.
PAGEIN - ECB, if present, is posted.

 TPIN
 TPOUT

 General assumptions
Due to the fact, that part of the PMR-tables can only be accessed with DAT off,
part of the page management routines run in real mode. To do this the following
assumptions are done:

1. Control blocks residing in an area "Virtual=Real":

 BLKTBE

VTABEs (one entry per VPOOL page)

DEVCBs (device control blocks, one per PDS device)

Entry in Page-out queue (pseudo TIBs)

PGTPCB (PCB for page-out)

System PCB, PIB

 SMCB

SRQPFG, SRQPGFX, SRQPGIO, SRQPFR

2. Control blocks not crossing page-boundary and being in real storage if the
system is working for the corresponding partition/task.

PCB and PIB

3. Control blocks residing in 24-bit virtual:

PCB, PIB, TCB, TIB, VIOTABE and PAGETAB

196 VSE/AF Supervisor DRM

Control Block Allocations
With increasing address space size, the storage requirements for the page man-
agement tables increase dramatically (about 2.4 MB are required to support a
private area of 1GB). Therefore the page management tables (Page Frame Table,
Reentry tables, Page to Disk Assignment String, Page Table Assignment String,
Page Out State List, Page Tables, Segment Tables and Region Third Tables) are
allocated in one or more page manager address spaces instead of shared areas.

Page management control blocks unique in the system, like Page Frame Table,
Reentry tables and Page to Disk Assignment String, are allocated in real processor
storage and are addressable with DAT bit off only. They are allocated at the top of
the processor storage, or below 2GB if the storage is less than 2GB. IJBEOR (end
of real storage) points to the last byte of the highest real storage frame not con-
taining these tables. IJBEOR may be addressed by applications and therefore
remains a 31-bit address. The actual physical end address of processor storage is
an 64-bit value internally kept in SMCOM.SMCPEOR.

Page management control blocks not unique in the system are allocated in the
private area of extra address spaces, the page management address spaces. The
size of these private areas is a multiple of 64K.

Page Frame Table, PDAS, Reentry-Rate Tables
These tables are allocated at IPL time ($INTVIRT) from top of real storage. The
sequence from the top is as follows: PDAS, RTAB, RTABX, PFT.
PDAS, RTAB, and RTABX are set on fullword boundary. The PFT will be set on
page boundary.
IJBEOR is set to APFT-1.

Page to Disk Assignment String (PDAS)
The PDAS is allocated for the total VSIZE. It requires 64KB per 2GB (one byte per
32KB)

Reentry Rate Tables (RTAB, RTABX)
These tables are allocated adjacent to the PDAS for the total VSIZE. Access to
these tables is via the record number on PDS.

Page Frame Table (PFT)
In $INTVIRT (during IPL) the page frame table entries belonging to the supervisor
and IPL, as well as the PFTE's belonging to the area containing the PMR-tables for
the 1st page manager address space and the shared address space are marked as
PFIXed. All other entries are enqueued in the invalid page frame queues (IPFQ and
IPFQ64). After this is done PFTE's are handled only by page-management (via
INVPAGE service or page faults).

 Page Management 197

 <=32GB ┌─────────────────────┐
│ PFT, RTABX, RTAB, │

 │ PDAS │
 ├─────────────────────┤
 │ │

 │ │
 │ │
 <=2GB ├─────────────────────┤
 │ SCCB │
IJBEOR+1├─────────────────────┤

│ min. page-pool │
 ├─────────────────────┼─── SMCRND3

│ RTT, SGT, PT, PTAS, │ �
│ POSL for shared area│ │

 ├─────────────────────┤ │
 │ SGT, │ │ SMPFIX3(system)
 │ PT, │ │
 │ PTAS │ │
 │ for PMRAS1 │

 ├─────────────────────┼───
 │ │
 │ │
 │ │
 │ │
 │ │
SMCRBG1 ├─────────────────────┤
 │ │
 │ SUPVR │
 │ │
 �└─────────────────────┘

Figure 75. Real Storage Layout after $INTVIRT

Region Third-, Segment-, Page-Table, PTAS and POSL
At space creation time, these tables will be allocated and PFIXed (done in
SGPPMT).

For spaces containing static partitions (not in default space), allocation is done for
maximum PASIZE (Private Area Size), to ensure that the tables for one space are
contiguous. Only those parts of the tables are PFIXed, which describe the actual
allocated partitions.

The tables are allocated in the private area of a special address space, the so
called Page Manager Address Space (PMRASn). Since there is no RTT allocated
for a PMRAS, it is addressed via a SGT. The PMRAS is an address space with
nearly the total private area consting of GETVIS the private area of extra address
spaces (the Page Manager Address Spaces, PMRASn). Each SCB contains a
pointer (SCB.SCBAPMRA) to the SCB of the PMRAS containing the tables. The
1st PMRAS (PMRAS1) is allocated at IPL time ($INTVIRT).
The PMRAS is an address space with nearly the total private area consisting of
GETVIS space. At the beginning of the private area the tables for the PMRAS itself
are allocated, which don't belong to the GETVIS space.
The size of the private area of a PMRAS is calculated at IPL time to:

MIN((VSIZE in Meg.)*4KB,Max. private area size)

198 VSE/AF Supervisor DRM

The PT, PTAS and POSL for private area, together with the RTT and SGT for the
address space are allocated in one contiguous area in PMRAS.
Allocation procedure for RTT, SGT, PT and PTAS:

� RTT on 4K boundary

� SGT at 4K boundary after RTT (SCB.SCBVSTO contains address)

� PT, PTAS and POSL each contiguous for total private area:

– PT of private area at 1K boundary after SGT (SCB.SCBAPT contains
address)

– PTAS of private area after PT, at 1K boundary (length of page table for one
segment is 1K). (SCB.SCBAPTAS contains address)

– POSL of private area after PTAS (SCB.SCBAPOSL contains address)

Notes:

1. The space 0 containing the BG-partition is created at IPL time ($INTVIRT), by
issuing a ALLOCATE request for BG and running in PMRAS1

2. The shared space containing the shared area is created at IPL time
($INTVIRT).

Region third tables
At creation time of an address space the region third table will be created (at 4K
boundary) with invalid entries for all regions with index > 0 (above 2GB). The
region third table will be allocated in the PMRAS and PFIXed. The length of the
region third table for an address space is determined during space creation time
and a multiple of 4096 bytes (512 entries).

The region table is freed up at space termination time.

Segment tables
At creation time of an space the segment table will be created (at 4K boundary)
with invalid entries for the private area of the space (STEINV=ON). The segment
table will be allocated in the PMRAS and PFIXed. The length of the segment table
for an address space is determined during IPL and a multiple of 4096 bytes (512
entries).

The length of the segment table of a data space is calculated at allocation time and
a multiple 4096 bytes (512 entries).

The segment table is freed up at space termination time.

Note: The private area of a data space is the whole space.

Page tables
Page tables will be allocated at 1K boundary for all usable segments.

The page tables for the shared areas are allocated and PFIXed at IPL time
($INTVIRT). The page tables for the private segments of an address space are
allocated in a PMRAS during creation of the space, they will be freed up at space
termination time.

Page Table Assignment String (PTAS)

 Page Management 199

The PTAS for a segment is allocated in the same area and together with the page
table (at 8-byte boundary).

Page-Out State List (POSL)
The POSL for a segment is allocated in the same area and together with the page
table (at 8-byte boundary).

 ┌───────┐
│ GETPT │ ┌─────────────┐

 └───────┘ │

 ┌─────────────� │ │ ┌─────────────────────┐

│
 │ │ data space, real │
 │ ┌────────────────────┐ │ │ space or PMRAS to │────┐

│ │ switch to 1st/next │ │ │ be allocated ? │ │
 │ │ PMRAS │ │ └─────────────────────┘ │
 │ └────────────────────┘ │ │ NO │

│ │ │
 │
│ │ │ ┌─────────────────────┐ │

 │ ┌────────────────────┐ │ │ get frame(s) for │ │
│ │ SGETVIS area req. │ │ │ region third table │ │ YES

 │ │ for PMR─tables │ │ └─────────────────────┘ │
 │ └────────────────────┘ │
 │

│ │ │ ┌─────────────────────┐ │
│ ┌────────┐ YES │ │ assign RTT page(s) │ �) │
│ │ RC=� ? │──────────┘ │ to frame(s) │ │

 │ └────────┘ └─────────────────────┘ │
 │ NO │ │ │
 │

 │
 │ ┌────────────────────┐ ┌─────────────────────┐ │

│ │ get next PMRAS │ │ get frame(s) for │ �──┘
 │ └────────────────────┘ │ segment table │
 │ │ └─────────────────────┘
 │

 │ YES ┌─────────┐ ┌─────────────────────┐

└───────────│ PMRAS │ │ assign SGT page(s) │ �)
│ avail.? │ │ to frames (s) │

 └─────────┘ └─────────────────────┘
 │

 │ ┌─────────────────────┐
 │ │ SPFIX actual req. │
 │ │ PMR tables │
 │ └─────────────────────┘
 │

 NO │ ┌─────────────────────┐
 │ │ initialize SGT │
 │ │ (private area inv.) │
 │ └─────────────────────┘
 │

 │ ┌─────────────────────┐
 │ │ initialize RTT │
 │ │ (1st RTTE set) │
 │ └─────────────────────┘

 ┌───────────────────┐ ��) ┌─────────────────────┐

│ return with RC=4 │ │ return with RC=� │
 └───────────────────┘ └─────────────────────┘

�) Can't be done via SPFIX, since region third and segment table must be
contiguous even in real storage and may require more than 4 KB.
��) Results in an allocation request for a new PMRAS.

Figure 76. Allocation of PMR Tables

200 VSE/AF Supervisor DRM

Since the PMR tables for a PMRAS are allocated in the PMRAS itself, SGETVIS
and SPFIX can't be used in this case. The frames for the PMR tables have to be
obtained "manually" (using GETREAL) and the pages containing the tables have to
be assigned to the frames while running in real mode.

Handling of Space R (Real Address Space)
The segment and page tables for space R will be allocated and PFIXed in a
PMRAS during 1st ALLOC of a real partition. If there are no more real partitions
allocated, the segment table and page tables are freed up again. There is no RTT
allocated for space R.

PMRAS space layout

 <= 2GB┌──────────────┐
│ shared high │

 SMCSVA31 ├──────────────┼──────────────────────────────── SMCPRPND
 │///////////// │ �

│// invalid // │ │
 │///////////// │ │
 ├──────────────┼──────────────────────PMPRPEND │
 │ │ � � � │
 │ │ │ │ │ │

│ │ │ space │ space │ PASIZE │ max. PASIZE
│ │ │ GETVIS │ GETVIS │ of │

16MB│--------------│ │ area │ area │ PMR │
│ │ │ PMRAS1 │ other │ address │

 │ │ │ │ PMRAS │ spaces │
 │ │
 │ │ │
 ├──────────────┼─── │ │ │

│RTT, SGT, PT │ │ │ │
│PTAS POSL for │ │ │ │

 │shared space │ │ │ │
│(PMRAS1 only) │
 │ │

 PMPRPBEG├--------------┼──────────── │ │
│ SGT, PT, PTAS│ │ │

 │ for PMRAS │

 SMCPRPBG├──────────────┼────────────────────────────────

│ shared low │
 ├──────────────┤
 │ SUPVR │
 � └──────────────┘

Figure 77. Layout of Page Manager Address Space (PMRAS)

Data Structures of Page Management
Each logical space is identified by its address-space-control element (ASCE). The
ASCE can either be a region-table designation, a segment-table designation or a
real-space designation.

In z/VSE there is a segment-table designation for:

 � real space
 � data spaces
� page manager address spaces

 Page Management 201

For all other address spaces, the ASCE is a region-table designation.

Region Third Table
The logical space (virtual memory) is organized as regions. One region is 2GB in
size. In z/VSE the logical maximum of an address space is limited to 90GB. This is
why there is no need to allocated a region first or region second table.

A region third table (RTT) with its region-third-table entries (RTTE) describes an
address space. Each RTTE represents a 2GB address range and points to a
related segment table (SGT) if the RTTE is valid. At IPL time the complete RTT is
genereted for shared address space and the first private address space. This table
contains one entry for each region of virtual storage.

The RTT for the other address spaces are allocated and initialized whenever the
first partition of this address space is activated and the related Space Control
Blocks (SCB) are built. The SCB provides a pointer to the associated region table
origin.

The RTTE is defined by the z/Architecture (see Principles of Operation,
SA22-7832), as shown in the following Figure 78:

 ┌──────────/───────────────┬──┬─┬─┬──┬─┬─┬──┬──┐
│ Segment-Table Origin │ │P│ │TF│I│ │TT│TL│

 └──────────/───────────────┴──┴─┴─┴──┴─┴─┴──┴──┘
� 52 54 56 58 6� 63

Figure 78. Region-Third-Table Entry

 segment-table origin:
11 zeroes appended on the right, form the
address of the segment table for this region.

P: DAT protection bit

TF: Table offset (for next-lower-level table)

 I: Invalid bit

TT: Table-type bits (for this table)
�1: Region third table

 Segment Table
The segment table (SGT) with its segment-table entries (STEs) describes a region
of an address space or data space. Each STE represents a 1MB address range
and points to the related page table (PT) if the STE is valid.

The SGT table describing the first region of an address space, is allocated along
with the corresponding RGT. All following SGTs for regions with region index > 0
are allocated whenever storage within this regions is requested.

The SGT-s describing a data space or real space, are allocated when the first parti-
tion of this space is activated and the related SCB are built. In this case the SCB
provides a pointer to the associated segment table origin.

The STE is definded by the z/Architecture (see Principles of Operation,
SA22-7832), as shown in the following Figure 79 on page 203:

202 VSE/AF Supervisor DRM

 ┌─────────/─────────────┬─┬─┬──┬─┬─┬──┬──┐
 │ Page-Table origin │ │P│ │I│C│TT│ │
 └─────────/─────────────┴─┴─┴──┴─┴─┴──┴──┘
 � 53 55 58 6� 63

Figure 79. Segment-Table Entry z-Mode

page table origin:
with 11 zeroes appended on the right, forms the
address of the page table for this segment.

 P: Page-Protection Bit

I: invalid segment bit (= � - the segment is valid)
(= 1 - the segment is invalid)

C: common segment bit

 TT: Table-type bits
��: Segment table

Page Table and Page Frame Table Entries
The unit of virtual storage is the page of the size of 4KB. It is represented by the
associated PTE which describes the state of a page.

A page is addressable, if it is located in a page frame; it is disconnected, if it is not
in a page frame; it is connected if it is located in a frame but not addressable (con-
nected state only used for page management purposes, during page I/O) and it is
invalid, if the page does not exist (doesn't belong to any address space).

The PTE is given by the z/Architecture (see Principles of Operation, SA22-7832) if
the invalid bit is off. If the invalid bit is on the PTE is interpreted by the VSE/AF
software as shown in Figure 81 on page 204.

 ┌─────┬──────────────┬─────────────────────────────────┐
│ Bits│ Label │ Description │

 ├─────┼──────────────┼─────────────────────────────────┤
│ �─63│ PTE │ Page addressable │
│ �─51│ PTEFRA64 │ Page frame number │
│32-51│ PTRFRA │ 31-bit page frame number │
│ 52 │ │ X'�8 Architected = � │
│ 53 │ PTEIBIT │ X'�4' Invalid bit = � │
│ 54 │ │ X'�2' Protect.bit = � │
│ 55 │ │ X'�1' Architected = � │

 │56-62│ │ unassigned │
│ 63 │ PTEPDS │ X'�1' copy on page data set │

 └─────┴──────────────┴─────────────────────────────────┘

Figure 80. Page Table Entry (PTE) for Addressable Page

 Page Management 203

 ┌─────┬──────────────┬─────────────────────────────────┐
│ Bits│ Label │ Description │

 ├─────┼──────────────┼─────────────────────────────────┤
│ �─63│ PTE │ Page not addressable │

 │ �─39│ │ Filler │
│4�-43│ PTEKEY │ Storage key of page │
│ 44 │ │ X'�8' fetch protection bit │

 │45-47│ │ reserved │
│ 48 │ PTEERR │ X'8�' Erroneous page: │

 │ │ │ PTEERR=PTEIBIT=1 │
│ 49 │ PTENASS │ X'4�' Page not assigned: │

 │ │ │ PTENASS=PTEIBIT=1 │
│ 5� │ PTEINVAD │ X'2�' Invalid state: │

 │ │ │ PTEINVAD=PTEIBIT=1 │
│ 51 │ PTEPGCO │ X'1�' Connected state: │

 │ │ │ PTEPGCO=PTEIBIT=1 │
 │ 52 │ │ reserved │

│ 53 │ PTEIBIT │ X'�4' Invalid bit = 1 │
 │54-62│ │ reserved │

│ 63 │ PTEPDS │ X'�1' Valid copy on PDS = 1 │
│ │ │ no copy on PDS = � │

 └─────┴──────────────┴─────────────────────────────────┘

Figure 81. Page Table Entry (PTE) for not Addressable Page

The page has addressable state: PTEIBIT = 0.
That means the page is currently in real storage and the frame is given by the
PTEFRA value.

PTEFRA = frame-address * 2**(-12)

The page has invalid state: PTEIBIT = PTEINVAD = 1 and PTEPGCO = 0.
That means the page is not in the address range of the memory, for example, a
reference to the real partition if the virtual partition is active.

The page has connected state: PTEIBIT = PTEPGCO = 1 AND PTEINVAD = 0.
That means page I/O is running for this page.

The page has disconnected state: PTEIBIT = 1 and PTEINVAD=PTEPGCO = 0.
That means the page is not in real storage.

The page is not assigned: PTEIBIT = PTENASS = 1 AND PTEPGCO = 0.
That means no slot on the Page Data Set device is assigned to this page.

A data invariant is given as: PTEINVAD=PTEPGCO=1 not possible.

Page Table Initialization
1. During IPL, page table entries for shared space and for space 0 are initialized

as follows:

� All page table entries belonging to the supervisor area (nucleus and tran-
sient areas):

 PTEFRA Number of the corresponding page frame
PTEIBIT=PTEPDS = �
All other bits = �

 that means, the pages are addressable.

� Page table entries belonging to VIRTUAL BG partition:

204 VSE/AF Supervisor DRM

 PTEKEY Storage key of corresponding partition
 PTEINVAD = �
 PTENASS = �
 PTEPGCO = �
 PTEIBIT = 1
All other bits = �

 that means, the pages are disconnected.
� Page table entries belonging to SVA-24 and SVA-31:

 PTEKEY Storage key of SVA
 PTEINVAD = �
 PTENASS = �
 PTEPGCO = �
 PTEIBIT = 1
All other bits = �

 that means, the pages are disconnected.
� All remaining page table entries:

 PTEKEY = �
 PTEINVAD = 1
 PTENASS = 1
 PTEPGCO = �
 PTEIBIT = 1
All other bits = �

 that means, the pages are invalid and not assigned.

The storage key is part of frame and must be saved in the PTE whenever the page
is disconnected.

Page Frame Table (PFT)
The real storage is subdivided into page frames of the size of 4KB. Each frame is
uniquely associated to an entry in the PFT describing the status of the frame. This
entry is abbreviated as PFTE.
The page selection queue (PSQ) contains all PFTEs of frames occupied by pages
and usable for page replacement (essentially pages which are not FIXed). The
number of PFTEs in PSQ is given by len(PSQ).
The invalid page frame queue (IPFQ) contains all free PFTEs. The number of
PFTEs in IPFQ is given by len(IPFQ).

Page frames below 2GB are organized in the IPFQ and PSQ as described above.
The page frames above 2GB are managed in two separate PFTE queues, the
IPFQ64 and the PSQ64. They have the same format queuing free 64-bit page
frames and 64-bit page frames available for replacement. This is done because
31-bit page frames and 64-bit page frames cannot be used transparently. There are
restrictions for the use of 64-bit page frames: They cannot be PFIXed or TFIXed.
The seperation helps to keep searches for fixable page frames short, and to make
explicit selection of 31-bit page frames and 64-bit page frames easier and faster.

Since only 31-bit page frames can be used for loading programs or fixing data
areas, 64-bit frames have a relief function for the area below 2GB. Active 31-bit
page frames may be replaced by 64-bit frames before being reused.

The PFT is built at IPL time and contains one 32-byte entry for each real storage
block of 4KB. Field APFT (in SUPAVT) contains the begin address of the table.

 Page Management 205

Figure 82 on page 206 shows the layout of a page frame table entry (PFTE).

┌────┬────────┬────┬────┬─────┬─────┬─────┬──────┬──────┬──────┬ ┬──────┬───────┐
│PFTE│Extended│S37�│PFTE│PFTE-│PFIX │TFIX │PFTE- │PFTE- │PFTE- | │PFTE- │PFTE- │
│FLG │page # │FLG │FLG3│PIK │Count│Count│ DVCB │ TIB │ SCB | │FPTR │ BPTR │
│ │PFTEEPA#│ │ │ │ │ │ │ │ | │ │ │
└────┴────────┴────┴────┴─────┴─────┴─────┴──────┴──────┴──────┴ ┴──────┴───────┘
� 1 4 5 6 8 1� 12 16 2� 48 56 63

Figure 82. Page Frame Table Entry (PFTE)

206 VSE/AF Supervisor DRM

┌─────────┬─────────┬───┐
│ Byte(s) │ Label │ Description │
├─────────┼─────────┼───┤
│ � │ PFTEFLG │ PFTE flag │
│ │ │ X'8�' Reserved │
│ │ POEBIT │ 4� The PFTE is enqueued for page─out. │
│ │ │ 2� Reserved │
│ │ POABIT │ 1� I/O for a page─out has been started for │
│ │ │ this PFTE. │
│ │ PCBIT │ �8 The page which belongs to the page frame │
│ │ │ has connected state. Either a page─in or │
│ │ │ an unconditional page─out request is in │
│ │ │ progress. │
│ │ POSYSBIT│ �4 A page─out request is in a system queue. │
│ │ PIOERR │ �2 I/O error on frame │
│ │ PFTEQBIT│ �1 PFTE in enqueued (only used with DEBUG) │
│ 1 ─ 3 │ PFTEEPA#│ If a page belongs to the page frame, │
│ │ │ these bytes contain the Extended Page Number │
│ │ │ (index in page table pointed to by PFTESCB.SCBAPT)│
│ │ │ If a block of VIO storage belongs to the frame, │
│ │ │ these bytes contain the block number. │
│ 4 │ S37�FLG │ 37� mode flag │
│ │ NFRP │ X'8�' Frame is reserved for PFIX or GETREAL. │
│ │ │ If the TFIX counter is zero, the page must │
│ │ │ no more be TFIXED. If the frame is in IPFQ │
│ │ │ or in PSQ, NPSQE is decreased by one. │
│ │ NFVP │ 4� Page belonging to this frame is requested │
│ │ │ by PFIX. The frame is not in the PSQ. │
│ │ │ The PFIX request cannot be satisfied │
│ │ │ immediately. │
│ │ DRAP │ 2� The address space belonging to the PFTE is │
│ │ │ failing storage. │
│ │ PFTEBLK │ 1� Only block of VIO─storage connected to frame│
│ │ PNRINV │ �8 Page frame is unused. The content of the │
│ │ │ PFTE in invalid, except NFRP, PFTERES and │
│ │ │ DRAP bits in S37�FLG. │
│ │ PFTEREAL│ �4 Frame is used by real partition. │
│ │ PFTERES │ �2 Frame is reserved, don't PFIX │
│ │ │ �1 Reserved │
│ 5 │ PFTEFLG3│ 3rd PFTE flag │
│ │ POSLISON│ 8� marked for page-out │
│ │ │ 4�..2� reserved │
│ │ CURSELCT│ 1� current selection │
│ │ │ �8 reserved │
│ │ PFTEXCH │ �4 A(PFTE)/chaining inconsistent (31/64 Q) │
│ │ USPGBIT │ �2 used for internal statistics only │
│ │ RCLBIT │ �1 used for internal statistics only │
│ 6 ─ 7 │ PFTEPIK │ PIK of waiting partition, requesting PFIX. │
│ │ │ The page frame of the page to be PFIXed does not │
│ │ │ belong to the corresponding real area. │
│ 8 ─ 9 │ PFIXC │ Indicates how often the page is PFIXed. │
│1� ─ 11 │ TFIXC │ Indicates how often the page is TFIXed. │
│12 ─ 15 │ PFTEDVCB│ Addr. of DEVCB, waiting for this frame. │
│16 ─ 19 │ PFTETIB │ Addr. of page out TIB │
│2� ─ 23 │ PFTESCB │ Addr. of SCB the EPA belongs to │
│24 ─ 47 │ │ Reserved │
│48 ─ 55 │ PFTEFPTR│ Pointer to the next PFTE. │
│56 ─ 63 │ PFTEBPTR│ Pointer to the preceding PFTE. │
└─────────┴─────────┴───┘

Figure 83. PFT Entry Byte Description

Note: The pointers in bytes 24-31 are only valid if the PFTE is in the PSQ or
IPFQ.

 Page Management 207

Status of a Page Frame Table Entry (PFTE)
1. If a PFTE is not assigned to a page:

� If no block of VIO-storage is connected to the frame, the PFTE is enqueued
to the Invalid Page Frame Queue (IPFQ), the PNRINV bit is set, and the
NFRP, PFTERES bits may be set, and the remaining contents of the PFTE
is undefined.
If only a block of VIO-storage is connected to the frame, the PFTE is
enqueued to PSQ, the TFIX and PFIX counters are zero and PFTEBLK bit
is set.

2. If a PFTE is assigned to a connected page:

� The PFTE is neither enqueued to the PSQ nor to the IPFQ. The contents
of the PFTE is valid. The PCBIT is set, PFTEEPA# indicates a connected
page, PFTESCB contains the SCB of the corresponding space and the
PFIX and TFIX counters are zero.

3. If a PFTE is assigned to an addressable page, the contents of the PFTE is
valid:

� If the NFVP bit is set, the PFTE is neither enqueued to the PSQ, nor to the
IPFQ. If the NFVP bit is reset, and the PFIX and the TFIX counter are zero,
the PFTE is enqueued to the PSQ. If the NFVP bit is reset, and the PFIX
or the TFIX counter is not zero, the PFTE is neither enqueued to the PSQ
nor to the IPFQ.

 NPSQE
NPSQE represents the actual value of 31-bit page frames available for replace-
ment. That means:

NPSQE = len (PSQ) + len (IPFQ)

In order to prevent excessive page fixing and thus guarantee program execution
under all conditions, the number of available page frames must not be lower than a
specific limit MINPSQE. That means there is data invariant:

NPSQE >= MINPSQE

The reservation of MINPSQE, or if it is a request from the Fetch routine, of
MINPSQE-2 page frames for page replacement ensures that a page fault can
always be handled by the PMR task.

If the PFIXPGE or GETREAL routine is executed, the counter NPSQE does not
reflect all the time the actual number of PFT entries in the PSQ. The actual
number of entries in the PSQ can be greater than the number indicated in NPSQE.
Those additional entries are reserved by the PFIXPGE or GETREAL routine and
cannot be used for other requests. Please see sections Page Frame Table and
Selection Pool Queues.

NPSQE monitors only the availibitity of 31-bit page frames. 64-bit page frames
cannot be fixed and therefore are not taken into account.

208 VSE/AF Supervisor DRM

Page Table Assignment String (PTAS)
Every block of 8 page table entries, describing a contiguous address range of 32KB
is associated to an entry in the Page Table Assignment String (PTAS). It indicates
whether the related block is already in use or not. The entry is abbreviated as
PTASE and contains zero if unused. Field SCBAPTAS in SCB contains the begin
address of the table describing the area belonging to the SCB.

 ┌───────┬──────────────┬──────────────────────┐
│ Bytes │ Label │ Description │

 ├───────┼──────────────┼──────────────────────┤
│ � - 7 │ PTASE │ Entry length 8 bytes │
│ � - 1 │ │ Reserved │
│ 2 │ PTASFLG1 │ Flag byte 1 │
│ │ PTASUSED │ X'8�' entry in use │

 │ │ │ 4�..�1 Reserved │
│ 3 │ │ Reserved │
│ 4 - 7 │ PTASRECN │ Record# on PDS of 1st│
│ │ │ page of this block │

 └───────┴──────────────┴──────────────────────┘

Figure 84. Page Table Assignment String Entry (PTASE)

Page to Disk Assignment String (PDAS)
Every block of 8 pages on the page data set (PDS) describing a contiguous area of
32 KB (the so called allocation unit) is associated to an one byte entry in the Page
to Disk Assignment String (PDAS). It indicates whether the related block is already
in use or not. The entry is abbreviated as PDASE and contains zero if unused, and
X'FF' if it is used. Field APDAS in PMCOM contains the begin address of the
table.

Note: The PDAS is only addressable with DAT off.

Page State Lists (PSLs)
The Page State List (PSL) describes the states of the pages of an allocation unit.

The state descriptor of the PSL is implemented as a bitstring, indicating whether
the condition is satisfied or not.

 ┌─────────┬───────────┬───────────────────────────┐
│ Bytes │ Label │ Description │

 ├─────────┼───────────┼───────────────────────────┤
│ � - 15 │ PSL │ Header of PSL │

 │ ├───────────┼───────────────────────────┤
│ � - 3 │ PSLASCB │ Address of SCB the PSL │

 │ │ │ belongs to (PISL only) │
│ 4 - 7 │ PSLABEGP │ EPA number of 1st page..│

 │ │ │ ...of related page set │
│ 8 - 11 │ PSLAENDP │ EPA number of last page.│
│ 12 - 15 │ PSLSTLEN │ length of PSLSTATE │

 │ ├───────────┼───────────────────────────┤
│ 16 - │ PSLSTATE │ array of Boolean values │

 │ │ │ ... describing the │
 │ │ │ ... states of page set │
 └─────────┴───────────┴───────────────────────────┘

Figure 85. Page State List (PSL)

Currently there are two PSLs:

� POSL (Page-Out State List)

 Page Management 209

� PISL (Page-In State List)

The POSL is provided by the page selection algorithm and is addressed via
SCBAPOSL in the related SCBs.

The PISL is set up by the page-in SVC routine and is located in the page manager
data area.

The space requirements of a PSL is 1KB per 32MB address space (or 32KB per
1GB).

Pre-Page-Out Control Table (PREPGOTB)
The Pre-Page-Out Control Table (PREPGOTB) provides information to manage
pre-page-out processing via the current POSL.pslstate. PREPGOTB consists of
256 PREPGENT entries.

 ┌─────────┬───────────┬───────────────────────────┐
│ Bytes │ Label │ Description │

 ├─────────┼───────────┼───────────────────────────┤
│ � - 7 │ PREPGENT │ PREPGENT entry │

 │ ├───────────┼───────────────────────────┤
│ � - 1 │ PREPGBLK │ nbr of contiguous blocks │
│ 2 │ PREPGPTE │ relative EPA nbr of 1st │

 │ │ │ ...page in allocation unit│
│ 3 │ PREPGVAL │ blocking value mask │
│ 4 - 7 │ PREPGOFF │ offset of first page in │

 │ │ │ ... TIBAPFT │
 └─────────┴───────────┴───────────────────────────┘

Figure 86. PREPGENT Entry

Page-In Control Table (PAGEINTB)
The Page-In Control Table (PAGEINTB) provides information to manage blocked
page-in processing via the current PISL.pslstate. PAGEINTB consists of 256
PGINENT entries.

 ┌─────────┬───────────┬───────────────────────────┐
│ Bytes │ Label │ Description │

 ├─────────┼───────────┼───────────────────────────┤
│ � - 7 │ PGINENT │ PGINENT entry │

 │ ├───────────┼───────────────────────────┤
│ � - 1 │ PGINBLK │ nbr of contiguous blocks │
│ 2 │ PGINPFR │ number of required frames │

 │ │ │ ...to satisfy page-in │
│ 3 │ PGINVAL │ blocking value mask │
│ 4 - 7 │ PREPGOFF │ offset of first page in │

 │ │ │ ... TIBAPFT │
 └─────────┴───────────┴───────────────────────────┘

Figure 87. PGINENT Entry

210 VSE/AF Supervisor DRM

Storage Management Control Block (SMCB)
The SMCB - being part of the partition control block (PCB) - contains the neces-
sary control information for the storage allocation. The page management is con-
cerned by:

SMAXPFIX partition/SVA PFIX limit in pages (24-bit)

SMPFIX actual PFIX count (24-bit)

SMAXPFX3 partition/SVA PFIX limit in pages (31-bit)

SMPFIX3 actual PFIX count (31-bit)

Moreover, the virtual and real partition boundaries are considered by the page man-
agement.

Page Data Set Table
Page Management uses the Page Data Set Table (DPDTAB) to calculate the
correct address for a given page on the Page Data Set, if a read or write operation
is necessary. Bytes 224-227 (X'E0'-X'E3') of the System Communication Region
(SYSCOM.IJBDPDTB) contain the address of the DPDTAB. The DPDTAB consists
of a header and 15 extent definitions. Label DPDTAB identifies the first byte of the
table. The table has the following layout:

 ┌─────┬─────┬────────────────┬─────────────────────────┐
│ Dec │ Hex │ Label │ Description │

 ├─────┼─────┼────────────────┼─────────────────────────┤
│ �─15│ �─ F│ DPDADR │Header │
│ �─ 1│ �─ 1│ DPDEXT# │Number of possible │
│ │ │ │ extents │
│ 2─ 3│ 2─ 3│ DPDAEXT# │Number of actual extents │
│ 4─ 7│ 4─ 7│ │Reserved │
│ 8─11│ 8─ B│ DPDLLCON │Address of load leveling │
│ │ │ │ constants │
│12─13│ C─ D│ │Reserved │
│14─15│ E─ F│ DPDLEN │Length of one DPDENTR │

 └─────┴─────┴────────────────┴─────────────────────────┘

Figure 88. Page Data Set Table Header

 Page Management 211

 ┌─────┬─────┬────────────────┬─────────────────────────┐
│ Dec │ Hex │ Label │ Description │

 ├─────┼─────┼────────────────┼─────────────────────────┤
│ �─39│ �─27│ DPDENTR │Extent definition │
│ �─ 1│ �─ 1│ DPDUNT │CUU of PDS device │

 │ 2│ 2│ DPDDEVT │Device type:FBA, CKD, RPS│
 │ 3│ 3│ DPDDEVC │Device code (DTF) │

│ 4─ 5│ 4─ 5│ DPDREC# │CKD: # records/track │
│ 4─ 5│ 4─ 5│ DPDBLKLG │FBA: block length │
│ 6─ 7│ 6─ 7│ DPDTRCK# │CKD: # tracks/cylinder │
│ 6─ 7│ 6─ 7│ DPDBLKPG │FBA: # blocks/page │
│ 8─11│ 8─ B│ DPDRTLL │CKD: track# of lower │
│ │ │ │ extent limit │
│ 8─11│ 8─ B│ DPDBLKLL │FBA: block# of lower │
│ │ │ │ extent limit │
│12─15│ C─ F│ DPDTRCKU │CKD: # of used tracks │
│12─15│ C─ F│ DPDBLKU │FBA: # of used blocks │

 │16─17│1�─11│ DPDPUB │PUB index │
│18─23│12─17│ DPDVOLID │Volume id of PDS │
│24─27│18─1B│ DPDPGUL │Page # of upper limit │
│28─31│1C─1F│ DPDXNTLL │ECKD, ext. lower limit │
│32─35│2�─23│ DPDXNTUL │ECKD, ext. upper limit │
│36─39│24─27│ DPDDEVCB │Addr. of DEVCB for extent│
│4�-41│28-29│ DPDFCP │SCSI: CUU of FCP │
│42 │2A │ DPDDFLG │SCSI: Dump flags │
│ │ │ DPDDOP │8� - SCSI extent open │
│ │ │ DPDXERR │4� - error on SCSI extent│
│43 │2B │ │Reserved │
│44-51│2C-33│ DPDWWPN │SCSI: Port number │
│52-59│34-3B│ DPDLUN │SCSI: LUN number │

 └─────┴─────┴────────────────┴─────────────────────────┘

Figure 89. Page Data Set Extent Definition

212 VSE/AF Supervisor DRM

Device Control Block (DEVCB)
Every PDS device is described by its associated Device Control Block (DEVCB).

┌───────────────┬────────────────┬──────────────────────────────────────┐
│ Bytes │ │ │
│ Dec Hex │ Label │ Description │
├───────────────┼────────────────┼──────────────────────────────────────┤
│ � �│ DEVCB │Device control block │
│ �─ 3 �─ 3│ DEVCBNXT │Addr. of next DEVCB if any, addr. of │
│ │ │first DEVCB in chain for last DEVCB │
│ 4 4│ DEVSTAT │Status byte │
│ │ DEVSTRT │ X'8�' I/O request started │
│ │ DEVEMPTY │ X'4�' no I/O request enqueued │
│ │ DEVPGWO │ X'2�' request waits for │
│ │ │ unconditional page out │
│ 5 5│ DEVCBTYP │Device type: FBA,CKD,RPS,ECKD │
│ 6 6│ DEVEXT# │Number of extents on device │
│ 7 7│ DEVCPSL │PSLSTATE of active CCW-s (blocked I/O)│
│ 8─ 11 8─ B│ DEVACT │Address of IORE (TIB) │
│ 12─ 15 C─ F│ DEVDPD │Addr. of 1st DPD entry for device │
│ 16─ 19 1�─ 13│ DEVRELO │Relocation for 1st DPD entry on device│
│ 2�─ 23 14─ 17│ DEVAPDAS │Addr. of 1st PDASE for device │
│ 24─ 27 18─ 1B│ DEVPDASA │Highest offset of PDASE already occup.│
│ 27─ 31 1C─ 1F│ DEVPDASB │Number of PDASEs to be scanned │
│ 32─ 35 2�─ 23│ DEVPCB │Address of related Class PCB │
│ 36─ 39 24─ 27│ DEVCBMSK │Device mask for dispatching (turbo) │
│ 4�- 41 28- 29│ DEVERIN │number of failing blocked page-in │
│ 42- 43 2A- 2B│ DEVEROUT │number of failing blocked page-out │
│ 44─ 47 2C─ 2F│ APFPSS │Address of PFPSS for device │
│ 48─ 63 3�─ 3F│ DEVCCB │CCB for device │
│ 64─ 71 4�─ 47│ DEVCCW │CCW program area │
│ 72─471 48─1D7│ │Device specific information │
│472─475 1D8─1DB│ PFRQBEG │Begin addr. of system page fault queue│
│476─479 1DC─1DF│ PFRQEND │End addr. of system page fault queue │
│48�─655 1E�─28F│ │Partition queue headers in the │
│ │ │sequence BG, FB, ... , F1,Classes.. │
│ │ │ length = (12+NCLASS)�2�4 │
│ │ │ NCLASS = number of dynamic classes │
│656─659 29�─293│ PORQBEG │Begin address of page─out queue │
│56�─663 294─297│ PORQEND │End address of page─out queue │
└───────────────┴────────────────┴──────────────────────────────────────┘

Figure 90. Device Control Block (DEVCB)

 Page Management 213

Page I/O Request Element (IORE)
The IORE is part of Task Information Block (TIB). The following fields are relevant
for page management.

 ┌─────┬─────┬────────────────┬───┐
│ Dec │ Hex │ Label │ Description │

 ├─────┼─────┼────────────────┼───┤
 │ �│ �│ TIBADR │Task information block │

│ �─ 3│ �─ 3│ TIBCHAIN │ │
│ 4─ 7│ 4─ 7│ TIBSTATE │Bound state information │
│ │ │ │ page-in: ext. page addr. of page-fault │
│ │ │ │ blocked page-in: address of PGIN-TIB │
│ │ │ │ unc. page-out: addr. of PFTE triggering │
│ │ │ │ the page-out │
│ │ │ │ pre page-out: binary zeros │
│ 8─11│ 8─ B│ TIBPFAPP │Address of PHO appendage (PHO-TIB) │
│ 8─11│ 8─ B│ TIBVIOTB │Address of VIOTAB entry (VIO-TIB) │

 │ 12│ C│ PGQTYP │Request type │
│ │ │ PGPMRSP X'8�'│page-out for page-manager address space │
│ │ │ PGNCNT X'4�'│Page─in: counting done │
│ │ │ PGIN X'2�'│Page-In req. by PGIN task │
│ │ │ PGO X'1�'│Page─out request │
│ │ │ PGIOERR X'8�'│Page I/O error occured │
│ │ │ PGDELO X'�4'│page-out: deactivate request │
│ │ │ PGVIORQ X'�2'│VIO request │
│ │ │ PGBLK X'�1'│Blocked Page I/O request │
│ 13 │ D │ TIBFLAG1 │Flag byte │
│ │ │ PHOIND X'8�'│indicates PHO/VIO TIB │
│ │ │ PHOACT X'4�'│PHOIND=�: PHO initialized │
│ │ │ │ for this task │
│ │ │ PHOREQ X'4�'│PHOIND=1: Req. enqueued │
│ │ │ VIOREQ X'2�'│PHOIND=VIOREQ=1 indicates │
│ │ │ │ VIO TIB │
│ 14 │ E │ TIBFLAG4 │Flag byte │
│ │ │ TIBPFDSP X'4�'│PHO for page-fault in data spaces active │
│16─19│1�─13│ PGINF │Information for page I/O handling │
│ │ │ │ page-in: addr. of PFTE │
│ │ │ │ blocked page-in: binary zeros │
│ │ │ │ page-out: binary zeros / ... │
│ │ │ │ / address of waiting DEVCB │
│ 2� │ 14 │ PGOEQPSL │pslstate at ENQUEUE time │
│ 21 │ 15 │ PGOIOPSL │blocked part of pslstate at SVC-15-time │
│ 22 │ 16 │ PGOCYPSL │blocked part of pslstate if end-of- │
│ │ │ │ cylinder has been detected │
│ 24 │ 18 │ TIBPCB │Pointer to PCB the task belongs to │
│ . │ . │ │.... further TIB │
│ . │ . │ │ │
│28─31│1C─1F│ TIBAALU │page-out: addr. of allocation unit │
│ │ │ │ in current PSL │
│32─35│2�─23│ TIBPFSCB │SCB the TIBSTATE belongs to │
│36─39│24─27│ TIBPFARA │Addr. of PHO interface area │
│36-39│24-27│ TIBERPFT │offset of failing CCW (blocked I/O) │
│4�-71│28-47│ TIBAPFT │array of addr to PFTE-s (blocked I/O) │
│ . │ . │ │ │

 └─────┴─────┴────────────────┴───┘

Figure 91. Page I/O Request Element (IORE)

214 VSE/AF Supervisor DRM

Relationships between Control Blocks (31-bit addressing)

 SCBPTR (X'254') Address of Actual SCB (Virtual Address Range)
 ┌─────────┐ ┌───────────┐
 │curr SCB │ │PMCOM.APDAS│
 └─────────┘ ┌──────────────────────┐ └───────────┘
 │ │ │ │

 SCB_1 │ SGT_1 │ PT_1 │
 ┌─────────┐ │ ┌─────────┐
 ┌─────────┐ │
 │ Space_ID│ │ ┌───�│ shared ├─┐ ┌──�│ │ │
 ├─────────┤ │ │ ├─────────┤ │ │ │ one │ │
 : : │ │ │ │ │ │ . . │
 ├─────────┤ │ │ ├─────────┤ │ │ . segment . │
 │ @(SGT) ├─┼─┘ │1st priv.├─┼───┘ │ │ │
 ├─────────┤ │ ├─────────┤ │ │ │ │
 : ... : │ │ ... │ │ ├─────────┤ PTAS_1
PDAS
 ├─────────┤ │ : : │ │ │ ┌───┐ ┌───┐
 │ @(PT) ├─┘ │ │ one │ ┌──�│ u │─┐┌────�│ u │
 ├─────────┤ │ . . │ │---│ ││ ├───┤
 │ @(PTAS) ├────────────────────┼───────.─────────.────┘ │ u │─┼┼┐ │ f │
 ├─────────┤ │ │ segment │ ├───┤ │││ ├───┤

┌───────────────┘ │ │ │ u ├─┼┘│ │ f │
│ ├─────────┤ │---│ │ │ ├───┤
│ PT_S │ │ │ f │ │ │ ┌─�│ u │

SCB_S │ (PT shared area) │ one │ ├───┤ │ │ │ ├───┤
┌─────────┐
 ┌─────────┐ . . │ │ │ └─┼─�│ u │
 │ Space_ID│ ┌───�│ 1st segm│ . segment . │---│ │ │ ├───┤
├─────────┤ │ � ├─────────┤ │ │ │ │ │ │ : :
 : : │ │ │ ... │ │ │ ├───┤ │ │ ├───┤
 ├─────────┤ │ │ ├─────────┤ ├─────────┤ : : │ │ │ f │
 . . │ │ │ ... │ │ │ │ │ ├───┤
. . │ │ ├─────────┤ │ one │ │ │ │ f │
 ├─────────┤ │ │ │ │ │ ├───┤
 │ @(PT) │───┘ │ . . . segment . └───┼─�│ u │
 ├─────────┤ │ . │ │ │ ├───┤
 : ... : └─────────────┐ │ │ │ │ u │
 │ └─────────┘ │ ├───┤
 ┌──────────────────┼───┐ │ │ │

SCB_2 │ SGT_2 │ │ PT_2 │
 ┌─────────┐ │ ┌─────────┐ │
 ┌─────────┐ │
 │ Space_ID│ │ ┌───�│ shared ├─┘ ┌──�│ │ PTAS_2 │
 ├─────────┤ │ │ ├─────────┤ │ │ one │ ┌───┐ │
 : : │ │ │ │ │ . . ┌───�│ u ├─────┘
 ├─────────┤ │ │ ├─────────┤ │ . segment . │ │---│
 │ @(SGT) ├─┼─┘ │1st priv.├─────┘ │ │ │ │ f │
 ├─────────┤ │ ├─────────┤ │ │ │ ├───┤
 : ... : │ │ ... │ ├─────────┤ │ │ f │
 ├─────────┤ │ : : │ │ │ │---│
 │ @(PT) ├─┘ │ one │ │ │ f │
 ├─────────┤ . . │ ├───┤
 │ @(PTAS) ├────────────────────────────.─────────.───┘ │ │
 ├─────────┤ │ segment │ │---│ u=used block

│ │ │ │ f=free block
 ├───┤
 : :

Figure 92. Relations between SCB, Segment Table, Page Table, PTAS and PDAS

 Page Management 215

 ┌────────┐
│ L'PDAS │ L'PDAS=Length of PDAS

 └────────┘

 DEVCB PDAS
 ┌─────────┐ ┌───┐

│ │ │ u │
 │ │ ├───┤

│ │ │ u │
 │ │ ┌───�├───┤

. . │ � │ u │
 . . │ │ ├───┤

│ │ │ │ │ f │
 ├─────────┤ │ │ ├───┤

│ @(PDAS) │───┘ │ │ u │
 ├─────────┤ │ ├───┤

│ L(PDAS) │────�│ │ u │
 ├─────────┤ │ ├───┤

│ S(PDAS) │──┐ │ │ f │
├─────────┤ │ │ ├───┤
│ │ │ │ │ u │
. . │ │ ├───┤
. . │
 │ u │

 │ ───├───┤
│ � │ f │

 └─�│ ├───┤
│ │ f │

 │ ├───┤
DEVCB
 │ f │

 ┌─────────┐ ┌───�├───┤
│ │ │ │ u │

 ├─────────┤ │ ├───┤
. . │ │ u │

 . . │ ├───┤
 ├─────────┤ │ . .

│ @(PDAS) │───┘ . .
 ├─────────┤ ├───┤

│ L(PDAS) │ │ u │
 ├─────────┤ ├───┤

│ S(PDAS) │ │ f │
 ├─────────┤ ├───┤

│ │ │ f │

Figure 93. Relations between DEVCB and PDAS

216 VSE/AF Supervisor DRM

 ┌────────────┐ ┌────┐
 │real address│ │APFT│
 └┬───────────┘ └──┬─┘
 │(/4K) │
 │(�32) │

 │
 ┌─┐ │
 │+│�─────────────────────┘
└┬┘ Page Frame Table

 │ (PFT)
 │ ┌─────────────────────────┐
 │ │ │
 │ │ │
 │ │ │
 │ │ │
 │ │ │ Page Table
 │ ├─┬────────┬───┬───────┬──┤ SCB ┌────────────┐
 └─�│..PFTEEPA#│...│PFTESCB│..│ belonging │ │
 ├─┴───┬────┴───┴───┬───┴──┤ to EPA : :
 │ │ └──────┼────� ┌────────────┐ ├────────────┤
 │ │ │ │ │ ┌──�│ PTEFRA │
 │ │ │ │ │ │ ├────────────┤
 │ │ │ ├────────────┤ ┌┴┐ │ │
 │ │ │ │ @(PT) ├──�│+│ │ │
 │ │ │ ├────────────┤ └─┘ │ │
 │ │ │ │ │ � │ │
 └─────┼───────────────────┘ │ │ │ │ │
 │(�L'PTE) │ │ │ : :
 │ └────────────┘ │ │ │
 │ │ │ │
 └──┘ │ │
 │ │
 │ │
 │ │
 │ │
 └────────────┘

Figure 94. Relations between PFTE, SCB and PT

 Page Management 217

Page Faults and Page Frame Selection

Page Fault Processing

 page fault
 │
 │
 │/│

 │
 │

 ┌───────────────────┐

│ set up page mgr │
 │ address space │

│ select page frame │
 └─────────┬─────────┘
 │
 │

 ┌───────────────────┐
 ┌─────────┐ │ enqueue IORE │

│?pageI/O?├────────�│ in PGQI │
└────┬────┘ yes │ set causing task │

│ no │ in wait (PMRBND) │
 │ └─────────┬─────────┘
 │ │

 ┌───────────────────┐ ┌─────────┐
 │ make │ │? pmr │

│ page addressable │ ┌────┤ active?│
 └─────────┬─────────┘ │ └────┬────┘
 │ │ │ no
 │�─────────────┘ │
 │ │

 │
 exit dispatcher

 ┌───────────────────┐
 │ activate │
 │ page manager │
 └─────────┬─────────┘
 │

exit │ pmr

Figure 95. Page Fault Processing

Page fault handling is done under the causing task as long as possible. But when-
ever page I/O processing is needed the page manager task is concerned. Page
fault handling is done synchronously and the task causing causing the page fault is
set into wait (PMRBND condition). After successful completion of the page I/O the
page is made addressable and the task causing the page fault is posted. Page I/O
for pre-page-out and page-in SVC is done asynchronously.

218 VSE/AF Supervisor DRM

 Selection Pool
The selection pool consists of all page frames which can be selected by the Page
Management routines for paging. The selection pool contains all those pages
which do not belong to the supervisor or to active real partitions and which are not
fixed in some way (either by TFIX or PFIX).

Selection Pool Queues
The PFTEs that are not fixed (TFIX and PFIX counter zero) and have a page
assigned are queued in the Page Selection Queues (PSQ/PSQ64). The PFTEs
that have no page assigned are queued in the Invalid Page Frame Queues
(IPFQ/IPFQ64). One of each queues is for page frames below 2GB and the other
(...64) for page frames above 2GB.

Each queue has a queue header, which is 32 bytes long. Bytes 24 through 27
point to the first queue entry and bytes 28 through 31 to the last queue entry. How
the selection pool page frame entries are queued is explained in the following
section and in the section on the page frame selection.

 Selection Algorithm
Note: The reference (R) bit and the change (C) bit are located in the page frame.

Whenever they are mentioned in this paragraph they refer to the page
frame or the page belonging to the entry presently handled.

Unused page frames are available if the IPFQ64 or IPFQ are not empty and they
are selected by using the first one in the queue. First the the page frames from
IPFQ64 are taken, then the page frames from IPFQ.

To ensure that pages newly paged-in are not paged-out immediately, they are
enqueued at the end of the PSQ, the R-bit=OFF and C-bit=OFF.

To overlap the page-in and page-out functions and to avoid the necessity of exe-
cuting a page-out immediately before a page-in, a pre-page-out is implemented. It
ensures that a minimum number of page frames is available (that means, the page
belonging to a frame has its R-bit=OFF and C-bit=OFF). The pre-page-out is only
active if IPFQ is empty.

The two functions of the page selection algorithm are:

� To select a page to be replaced.
� To ensure that a pre-page-out is executed if necessary.

To achieve this, the PSQ is scanned and the state of the R- and C-bit is checked.

Note: The following algorithm applies to the PSQ only. Page selection from the
PSQ64 has not been implemented. The PSQ is scanned till a minimum number of
entries with the R-bit=OFF has been found. If all these entries have their
C-bit=OFF, too, the selection is finished, and the first PFTE found in the PSQ with
the R-bit=OFF and the C-bit=OFF is used for replacement.

The first PFTE in the PSQ with the R-bit=OFF and the C-bit=OFF is used for
replacement. If no such entry is found, the first PFTE with the R-bit=OFF is used.

For each PFTE found during the scan and with the R-bit=OFF and the C-bit=ON,
routine ENQUOBLK is called to mark the frame for pre-page-out and schedule pre-

 Page Management 219

page-out if necessary. Each PFTE found with the R-bit=ON is enqueued at the
end of the PSQ with the R-bit=OFF.

220 VSE/AF Supervisor DRM

Decision Tables Used for Page Selection

 ┌─────────────────┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┐
 │Conditions: │ │ │ │ │ │ │ │ │ │ │
 ├─────────────────┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───│
 │ R-bit │ 1 │ 1 │ 1 │ � │ � │ � │ � │ � │ � │ � │
 │ ├───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤
 │ C-bit │ 1 │ � │ � │ 1 │ 1 │ 1 │ � │ � │ � │ � │
 │ ├───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤
 │ SELCTFLG │ │ │ │ │ │ │ │ │ │ │
 │ =NEWSTRT │ - │ - │ - │ 1 │ � │ - │ 1 │ � │ 1 │ � │
 │ ├───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤
 │ SELCTFLG │ │ │ │ │ │ │ │ │ │ │
 │ =REPLFND │ - │ - │ - │ - │ - │ - │ 1 │ � │ � │ � │
 │ ├───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤
 │ POABIT │ - │ 1 │ � │ � │ � │ 1 │ - │ � │ � │ 1 │
 ├─────────────────┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤
 │Actions: │ │ │ │ │ │ │ │ │ │ │
 ├─────────────────┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤
 │ SELCTFLG │ │ │ │ │ │ │ │ │ │ │
 │ =X(NEWSTRT) │ │ │ │ │ x │ │ │ x │ │ x │
 │ ├───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤
 │ SELCTFLG │ │ │ │ │ │ │ │ │ │ │
 │ =REPLFND │ │ │ │ │ │ │ │ x │ x │ │
 │ ├───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤
 │ PSQRPTR │ │ │ │ │ x │ │ │ x │ x │ x │
 │ ├───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤
 │ PSQ= │ │ │ │ │ │ │ │ │ │ │

│ tl(PSQ)+hd(PSQ) │ x │ │ x │ │ │ │ │ │ │ │
 │ ├───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤
 │ PFTEPOSL │ │ │ │ │ │ │ │ │ │ │

│ (reset) │ x │ │ x │ │ │ │ │ │ │ │
 │ ├───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤
 │ ENQUOBLK │ │ │ │ x │ x │ │ | │ │ │
 │ ├───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤
 │ incr CNT1 │ │ x │ │ x │ x │ │ x │ x │ x │ x │
 │ ├───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤
 │ reset R-bit │ x │ x │ x │ x │ x │ x │ x │ x │ x │ x │
 │ ├───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤
 │ next PFTE │ x │ x │ x │ x │ x │ x │ x │ x │ x │ x │
 └─────────────────┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┘

Figure 96. Decision Table for Inspection of a Frame

 Page Management 221

 ┌─────────────────┬───┬───┬───┐
 │Conditions: │ │ │ │
 ├─────────────────┼───┼───┼───┤

│ PSQRPTR │ n │ y │ y │
 │ ├───┼───┼───┤
 │ SELECTFLG │ │ │ │

│ =REPLFND │ - │ � │ 1 │
 ├─────────────────┼───┼───┼───┤
 │Actions: │ │ │ │
 ├─────────────────┼───┼───┼───┤

│ PMRIOWT │ x │ │ │
 │ ├───┼───┼───┤
 │ PAGDISCA │ │ │ x │
 │ ├───┼───┼───┤

│ ENQUOUNC │ │ x │ │
 └─────────────────┴───┴───┴───┘

Figure 97. Decision Table for Page Frame Replacement

Rearranging of Page Selection Queues
Page frames below 2GB are organised in the PSQ and IPFQ.

1. The PFTE of a page frame below 2 GB is dequeued from the PSQ:

� If a TFIX or PFIX is requested for a page assigned to a page frame.
� If the page assigned to a page frame has to be disconnected next

(SELECTPG, INVPAGE, RELPAG).
� If GETREAL is requested for the page frame.

2. The PFTE of a page frame below 2GB is enqueued to the PSQ:

� If a page has been TFREEed and is otherwise not fixed, and the NFVP bit
is reset (if TFREE is from Fetch, the PFTE is enqueued at the beginning of
the PSQ; if it is not from FETCH, the PFTE is enqueued at the end of the
PSQ).

� If a page has been PFREEed and is otherwise not fixed (the PFTE is
enqueued at the end of the PSQ).

� If a page-in has been completed (the PFTE of the page frame assigned to
the page is enqueued at the end of the PSQ).

3. The PFTE of a page frame below 2 GB is moved within the PSQ:

� If during page selection a page is found with the R-bit on (PFTE is
enqueued at the end of the PSQ).

� If a PAGEIN request is for a page that is already in storage (the PFTE is
enqueued at the end of the PSQ).

� If a FCEPGOUT request is for a page that is in storage (the PFTE is
enqueued at the beginning of the PSQ).

4. The PFTE of a page frame below 2GB is enqueued at the beginning of the
IPFQ:

� If no page is assigned to the page frame (after disconnect, INVPAGE
RELPAG, FREEREAL).

5. The PFTE of a page frame below 2GB is dequeued from the IPFQ:

222 VSE/AF Supervisor DRM

� If an unfixed page frame is needed and the IPFQ is not empty during page
selection, and in case of TFIX, PFIX and GETREAL to exchange page
frames.

Page frames above 2GB are organised in the PSQ64 and IPFQ64.

1. The PFTE of a page frame above 2GB is dequeued from the PSQ64:

� If the page assigned to a page frame has to be disconnected next
(INVPAGE, RELPAG).

2. The PFTE of a page frame above 2GB is enqueued to the PSQ64:

� If a page-in has been completed (the PFTE of the page frame assigned to
the page is enqueued at the end of the PSQ64).

3. The PFTE of a page frame above 2 GB is moved within the PSQ64:

� If a PAGEIN request is for a page that is already in storage (the PFTE is
enqueued at the end of the PSQ64).

� If a FCEPGOUT request is for a page that is in storage (the PFTE is
enqueued at the beginning of the PSQ64).

4. The PFTE of a page frame above 2GB is enqueued at the beginning of the
IPFQ64:

� If no page is assigned to the page frame (after disconnect, INVPAGE
RELPAG, FREEREAL).

5. The PFTE of a page frame above 2GB is dequeued from the IPFQ64:

� If an unfixed page frame is needed and the IPFQ64 is not empty during
page selection, and in case of page-out for a page frame below 2GB to
exchange page frames.

Selecting Page Frames above 2GB
Page faults that are reported via interrupt usually occur in applications, that are not
interested in the real address of the page. Therefore preferrably page frames
above 2GB (64-bit page frames) are assigned to the page.

Internal page faults are queued by system functions like Fetch, TFIX or PFIX which
will refer to the real address of the page and therefore need a page frame below 2
GB. For that reason page frames below 2 GB are assigned to pages whose page
fault is raised internally.

The following shows the logic how page manager selects page frames above and
below 2GB.

Type of page fault:

1. External page fault (program exception x'11'): select a 64-bit page frame

 � Search IPFQ64

– Page frame found -> queue its PFTE at end of PSQ64 and use
selected page frame.

� IPFQ64 empty: search IPFQ

– Page frame found -> queue its PFTE at end of PSQ and use selected
page frame.

� IPFQ empty: search PSQ64

 Page Management 223

– Scan PSQ64 for a certain number of elements.
– R-bit on: requeue PFTE to end of PSQ64, reset R-bit.
– C-bit on: enqueue PFTE for pre-page-out.
– Use first page frame with R-bit off and C-bit off.

– Page frame found -> queue its PFTE at end of PSQ64 and use
selected page frame.

� No free 64-bit page frame found: search PSQ

– Scan PSQ for a certain number of elements.
– R-bit on: requeue PFTE to end of PSQ, reset R-bit.
– C-bit on: enqueue PFTE for pre-page-out.
– Use first page frame with R-bit off and C-bit off.

– Page frame found -> queue its PFTE at end of PSQ and reuse
selected page frame.

� None found: start unconditional page-out request.

� NOPDS: system error if no page frame is available in IPFQ64 or IPFQ

2. Internally queued page fault (e.g. from TFIX): select a 31-bit or 24-bit
page frame

 � Search IPFQ

– Page frame found -> queue its PFTE at end of PSQ and use selected
page frame.

� IPFQ empty: search PSQ

– Scan PSQ for a certain number of elements.
– R-bit on: requeue PFTE to end of PSQ, reset R-bit.
– C-bit on and IPFQ64 not empty: exchange page frame below 2GB with

64-bit page frame.
- Chain PFTE of 64-bit page frame at bottom of PSQ64.

– C-bit on and IPFQ64 empty: enqueue PFTE for pre-page-out.
– Use first page frame with R-bit off and C-bit off.

– Page frame found -> queue its PFTE at end of PSQ and reuse
selected page frame.

� None found: start unconditional page-out request.

� NOPDS: system error if no page frame is available in IPFQ or in IPFQ64
for 'page-out'

Page Handling Routines
The following conditions result in some form of page movement or reassignment of
page frames and may require activity by the page manager (PMR) system task:

 � Page Fault
 � GETREAL request
 � TFIX request
 � PFIX request
 � PAGEIN request
� VIO POINT request
� LRA special operation exception

However, the PMR system task is not activated for the following requests:

224 VSE/AF Supervisor DRM

 � FREEREAL request
 � TFREE request
 � PFREE request
 � RELPAG/FCEPGOUT request
 � INVPAGE request

The requests that require the activity of the PMR system task are queued in the
page-in queues or the page-out queue for the device on which the page to be
handled resides.

For each device on which the page-data-set resides, control information is main-
tained in a Device Control block (DEVCB). The page-data-set devices are serviced
in wrap around mode. The PMR system task tries to start an I/O-request on each
device as long as requests are pending and not yet started.

One page-in queue exists for each partition/class and one for the system. In addi-
tion one page-out queue exists on each device. 'User-page-faults' (that means,
page faults in the user area) are queued in the corresponding partition/class page
fault queue; 'system-page-faults' (that means, all other page faults) are queued in
the system page fault queue. Each queue consists of a forward chain of IOREs.
For page-in requests the IOREs are the normal TIBs of the tasks waiting for com-
pletion of the page-fault handling and TIBSTATE (in TIB) contains the Extended
Page Fault address of the page to be handled. For page-out requests pseudo TIBs
are used which don't belong to any specific task and TIBAALU contains the
address of the related allocation unit in the POSL. In case of unconditional
page-out, TIBSTATE contains the address of the PFTE to be handled. Begin and
end of chain are maintained per device in the DEVCB to allow for enqueue at the
bottom and dequeue at the top of the queue. PFRQBEG indicates the header of
the 1st page-in queue (PGQI), PORQBEG indicates the header of the page-out
queue (PGQO).

The requests that require writing pages onto the page data set (it may be
requested by GETREAL and for the handling of a page-fault) are queued in the
page-out queue , and handled on a FIFO (first-in-first-out) basis.

There exist twenty-three pseudo TIBs (IOREs) for page-out (each 72 bytes long)
which are allocated in the page management data area.

 Page Management 225

Page Manager Processing

 ┌───────────────────────────────────────┐

 │
 ┌───────────────────┐ │

│ get next request │ │
 │ (priority driven)│ │

│ get pmr addr space│ │
 └─────────┬─────────┘ │
 │ │

 │
 ┌─────────┐ │
 �───────┤?page-in?│ │
 │ no └────┬────┘ │
 │ │ yes │
 │
 │
 │ ┌───────────────────┐ │
 │ │ select page frame │ │
 │ └─────────┬─────────┘ │
 │ │ ┌───────────────────┐ │
 │
 │ make frame │ │
 │ ┌─────────┐ │ unaddressable │ │
 │ │?unc.pgo?├────────�│ enqueue page-out ├───�│
 │ └────┬────┘ yes │ in PGQSYS │ │
 │ │ no │(highest priority) │ │
 │
 └───────────────────┘ │
 │ ┌───────────────────┐ │
 │ │ disconnect frame │ │
 │ └─────────┬─────────┘ │
 └───────────�│ │

 │
 ┌───────────────────┐ │

│ build CCW program │ │
 │ SVC 15 │ │
 └─────────┬─────────┘ │
 │ │

 │
 ┌───────────────────┐ │

│ get pmr addr space│ │
│ do I/O completion │ │

 └─────────┬─────────┘ │
 │ │

 │
 ┌─────────┐ ┌─────────┐ │
 │?page-in?├─────────────�│?unc.pgo?├────────�│
 └────┬────┘ no └────┬────┘ no │
 │ yes │ yes │

 │
 ┌───────────────────┐ ┌───────────────────┐ │

│make page addr-able│ │ enq pfte in IPFQ │ │
│get req. addr space│ │ clear frame ├───�│
│deq IORE from PGQI │ │ post tasks waiting│ │

 │post requestor │ │ on pfte │ │
 └─────────┬─────────┘ └───────────────────┘ │
 └───────────────────────────────────────┘

Figure 98. Page Manager Processing

As long as a PMR request is handled, the following fields in SGPDATA are set:

� PFDEVCB - address of actual device control block
� PFPGQE - address of actual request element (IORE)
� PFSCB - address of SCB of area, the handled page(s) belong to
� PFVTABE - address of VTAB entry if page belongs to VPOOL, otherwise the

field is negative

226 VSE/AF Supervisor DRM

Handling of a Page-In Request
A page-in request is enqueued to the proper page-in queue by the routine ENQUI.
The PMR system task handles the page request queues in the priority order of the
corresponding partitions. The system queue (PGQSYS) has the highest priority,
the page-out queue (PGQO) has the lowest priority. Within each queue the entries
are handled on a FIFO (first-in-first-out) basis.

The page manager (PMR) system task does the following steps when handling a
page-in request.

� Select a page frame for the requested page (see Page Frame Selection and
Pre-Page-Out) and remove it from the PSQ or the IPFQ.

� If the page frame selected is in use and its contents are not the same as that
of the copy on the page data set (PDS) (that means, the change-bit is on) the
page is set to the connected state and enqueued for page-out. If the selected
page frame is in use and its contents are the same as that of the copy on the
PDS, the page is disconnected.

� Read the requested page from the PDS, if a valid copy exists on the PDS (that
means, PTEPDS bit is on in PTE) If not, the page is cleared to zero.

� Make the page addressable, that means: reset the reference and change bits,
initialize the corresponding PFTE and enqueue it at the end of the PSQ.

Handling of a Page-Out Request
Before a page-out request is actually enqueued for page frames below 2 GB the
page manager checks the IPFQ64 for an available page frame. If there is an
unused page frame the pages are swapped, and the page frame below 2 GB
becomes available without page-out I/O.

A pre-page-out request is enqueued to the PGQO (page-out queue), by the routine
ENQUOBLK, an unconditional page-out request on top of the PGQSYS (system
page i/o queue) by the routines ENQUOUNC or ENQUOW.

The page manager (PMR) system task performs the following steps when handling
an entry:

� Reset the change bit and set the PDS bit of the requested page.

� Indicate page-out as active in the PFTE and write the page onto the PDS.

� Reset the reference bit.

� If posting is required, post the tasks that are waiting for the page frame.

� Reset the PGQO indication in the PFTE.

Pre-page-out is done via blocked page I/O. That means the number of contiguous
pages of the affected allocation unit is sufficient high. Whenever feasible uncondi-
tional page-out is combined with pre-page-out to do blocked page I/O whenever
feasible.

Note: The handling of a pre-page-out request does not change the status of a
page. After the completion of an unconditional page-out request the page or
block is disconnected.

 Page Management 227

 Emergency Handling
Emergency handling is required if

IPFQ = {}
& <pfte∈PSQ|pfteflg≠POABIT & R-bit(Page-frame(pfte))=OFF> = <>

that means, a page fault can't be handled immediately. This state is indicated by
PMRFLAG.PMRIOWT and results in waiting on completion of some already started
page-out requests. As long as PMRFLAG.PMRIOWT is ON, any page fault is
queued into the related PGQI-queue but not yet processed (that means the page
manager is not activated).

LRA Exception Appendage
An LRA instruction will cause a special operation exception, when a page frame
above 2 GB has been assigned to the referred page, and a 64-bit real address
would have to be passed to the program which is in 31-bit addressing mode.
When a special operation exception occurs for an LRA instruction, the program
check handler calls the page manager appendage routine PMLRA64. The page
manager then replaces the 64-bit page frame by a page frame below 2GB. Its real
address is returned to the program instead of the 64-bit real address which caused
the exception.

The routine PMLRA64

� searches for a page frame below 2 GB that is available for exchange,

� invalidates the page table entries of the virtual address (LRA operand) and
target page frame,

� exchanges the data of the page frames,

� exchanges the storage keys including C-bit and R-bit of the page frames,

� restores the page table entries with the new page frame addresses.

The routine will always find a page frame below 2GB for exchange. If no available
page frame is found below 2GB, the page I/O request queues are scanned for a
request with a data area below 2GB which has not yet been started. That page
frame is then exchanged with the 64-bit page frame that caused the exception. The
number of unfixed pages will not be reduced by this action.

228 VSE/AF Supervisor DRM

 Blocked Paging

Blocked Paging Concepts
Blocked page I/O is triggered by the value of the actual allocation unit in the PISL
and the POSL respectively. For page out the value is determined by the states of
change bits of the addressable pages of the unit. For page in the value is deter-
mined by the states of pages of the unit to be read in. In any case, the value speci-
fies the current blocking factor.

Usually pre-page-out will be started, if at least the minimal blocking factor is
reached. This factor is dependent on the relation between the amounts of uncondi-
tional- and pre-page-outs. Both items are measured dynamically.
For any unconditional page-out request the related POSL state is inspected to
check whether pre-page-out can be combined with the unconditional page-out
request, even if the minimal blocking factor is not satisfied.
When servicing a PAGEIN SVC the page-in task supplies a PISL later be applied
by the page I/O routines to do blocked page-in.

The POSL is managed by page selection and related routines.

If an I/O error occurs in a blocked page I/O request, the request is ignored or will
be replaced by a sequence of unblocked I/O requests, which are handled as
current.

 ┌───────────────────────┬──────────────────────────────────┐
 │ Request Type │ Actions │
 ├───────────────────────┼──────────────────────────────────┤

│ pre-page-out │ increase error count │
 │ │ undo (pte,change_bit,posl │

│ │ for failing pages) │
 │ │ ignore error │
 ├───────────────────────┼──────────────────────────────────┤

│ blocked page-in │ increase error count │
 │ │ undo (pfte,pte) │

│ │ for failing pages │
│ │ reset IORE unblocked │

 │ │ adjust pisl │
 │ │ ignore error │
 ├───────────────────────┼──────────────────────────────────┤

│ blocked unconditl │ increase error count │
 │ page-out │ undo (pte,change_bit,posl) │

│ │ for all pages) │
│ │ reset IORE unblocked │

 │ │ (incl PGQDELO-s) │
 │ │ restart IORE │
 └───────────────────────┴──────────────────────────────────┘

Figure 99. Handling of I/O Errors

PMR I/O errors related to data spaces result in canceling of the affected user task.

After establishing the related page manager address space, the requested proc-
essing routine - pginsio for page-in requests, pgoutsio for page-out requests
respectively - gets control. Accordingly, at I/O completion time, the related page

 Page Management 229

manager address space is established and the processing routine - PGICIMPL for
page-in, PGOCOMPL for page-out- gets control.

I/O error detection is done in the subroutine PMRIOERR.

 Blocked Page-Out
Pre-page-out activities are delayed until a complete block of pages (not a neces-
sarily complete allocation unit) can be written onto the PDS.

The POSL is used to trigger pre-page-out of a block. If a page with change-bit
equal to ON is detected at page frame selection time, the corresponding bit in the
related POSL is set to ON. The POSL is addressed via the SCB, the bit in the
POSL.PSLSTATE is identified by the EPA number of the affected page, the
resulting byte describes the allocation unit. A POSL is provided for each private and
the shared address areas and each data space. A PSL is not supported for the real
address area (EXEC pgmname,REAL) and the private page manager address
areas.

In the time delay between enqueueing blocked pre-page-out and starting the
related CCW program one or more pages of this allocation unit might be invalidated
or changed. Therefore, it is verified whether the blocking factor is still high enough
to do the page-out. In case of page-out, the affected bit(s) in the POSL are reset
before starting I/O otherwise the request is dequeued and the POSL remains
unchanged.

Note: Whenever the change bit is reset the related POSL indication must be reset
too.

 SCB
 ┌───────────┐
 │ │
 / │
 │ │
 ├───────────┤
 │ SCBAPOSL ├───┐
 ├───────────┤ │
 / / │
 └───────────┘ │
 │ POSL
 │ ┌─────────┐

└──�│ PSLASCB │ address of SCB
 ├─────────┤

│ PSLABEGP│ EPA-nr of 1st page ...
├─────────┤ ... in POSL
│ PSLAENDP│ EPA-nr of last page...

 ├─────────┤
│ PSLSTLEN│ length of page state list

 ├─────────┤
│ │ page state list
│ │

 │ │
│ 1�1�1�11│ PSLSTATE: page states of one
│ │ ... allocation unit
│ │ (8 pages)

 │ │
 │ │
 └─────────┘

Figure 100. POSL

230 VSE/AF Supervisor DRM

Check and Control Blocked Page-Out

The value of POSL.PSLSTATE is applied as index in the table PREPGOTB to get
the related PREPGENT entry. This entry provides all information necessary to
check whether blocked page-out can be performed: to create the CCW-s at
SVC-15 TIME. the number of contiguous pages in the current allocation unit is
shown by PREPGENT.PREPGBLK and is compared with the actual minimal
blocking value in SGPDATA.PPOBLCUR. If PREPGENT.PREPGBLK is equal to or
or greater than SGPDATA.PPOBLCUR, blocked pre-page-out is done and
PREPGENT.PREPGVAL represents the "blocked" part.

 SCB
 ┌─────────┐
 │ │

/ / POSL
 ├─────────┤ ┌────────┬───/────┬──┬──────/────────────────┐

│ SCBAPOSL├────────�│ │ │ │ │
 ├─────────┤ └────────┴───/────┴──┴──────/────────────────┘
 / / PSLSTATE

└─────────┘ of one allocation unit
describing those pages
to be paged-out

 PREPGOTB
 ┌─────────┐ ─┬─ ┌────┬──┬──┬────────┐

│APREPGTB ├───────────┼─�│ │ │ │ │
 └─────────┘ │ ├────┼──┼──┼────────┤

│ │ │ │ │ │
│ │ │ │ │ │

PSLSTATE�len(PREPGENT)│ │ │ │ │ │
│ │ │ │ │ │
│ / / / / /

 ├────┼──┼──┼────────┤
─── │ │ │ │ │

 ├────┼──┼──┼────────┤
/ / / / /

 └────┴──┴──┴────────┘

Figure 101. Relationship between POSL and PREPGOTB

The current value of the POSL.PSLSTATE is the index in PREPGOTB and deter-
mines the related PREPGENT entry:

 Page-Out Scenario
There are two different scenarios, one for blocked pre-page-out dependent on the
minimal blocking factor and the other for unconditional page-out trying to do
blocked page-out in any case.

Enqueuing Pre-Page-Out Request

The blocking factor in the allocation unit is sufficient high and the allocation unit is
not yet enqueued, an IORE is enqueued in PGQO. So far, no PFTE is affected.

DEVCB.DEVACT contains the address of the IORE with running I/O. If there is no
active I/O at all for the DEVCB the field DEVCB.DEVACT is set to X'0'. The
current value of POSL.PSLSTATE is saved into IORE.PGOEQPSL.

 Page Management 231

 SCB
 ┌─────────┐
 ┌─�│ │
│ / / POSL PSLSTATE
 │ ├─────────┤ ┌────────┬─/───┬──┬─────────/────────────────┐
 │ │ SCBAPOSL├────────�│ │ │37│ │
 │ ├─────────┤ └────────┴─/───┴──┴─────────/────────────────┘
 │ / / ��
 │ └─────────┘ ││ corresponding PREPGENT
 │ ││ ┌────┬──┬──┬────────┐
 �───────────────────────────────────┐ │└──�│���3│�5│�7│������14│
 │ │ └────┴──┴──┴────────┘
 DEVCB │ │
 ┌─────────┐ │ │
 │ │ │ │
 ├─────────┤ │ │

│DEVACT │ addr(IORE with I/O) │ │
 ├─────────┤ │ │
 / / │ │
 │ │ │ │
 │ │ │ │
 │ │ │ │
 ├──┬──────┤ │ │
 │ │ │DEVCPSL │ │
 ├──┴──────┤ │ │
 / / │ │
 │ │ │ │

│ │ IORE │ │
├─────────┤ ┌─────────┐ │ │
│PGQO ├───//───�│ │ │ │
└─────────┘ ├─────────┤ │ │

│ TIBSTATE│ │ │ TIBSTATE = X'�'
├─────────┤ │ │
│ PGQTYP │ │ │ PGQTYP = PGBLK+PGO
├─────────┤ │ │
│ PGOEQPSL│ │ │ PGOEQPSL = X'37'
├─────────┤ │ │

 │ TIBPFSCB├──┘ │
 ├─────────┤ │

│ TIBAALU ├─────┘
 ├─────────┤
 / /
 ├─────────┤
 │TIBAPFT │
 / /
 └─────────┘

Figure 102. Enqueuing Pre-Page-Out Request

Starting Pre-Page-Out Request

In the time interval between enqueueing the IORE and starting I/O some pages
might be released. Accordingly, POSL.PSLSTATE of the allocation unit has been
changed (for example, from X'37' to X'9D').

The value is used to get the corresponding PREPGENT entry, which contains the
actual number of contiguous pages - equal to the actual blocking number - and the
resulting blocking value applied to create the CCWs.

The affected pfte-s are connected to the SCB and to the IORE and are flagged in
PFTEFLG with POEBIT=ON and POABIT=ON.

The resulting blocking value is saved in DEVCB.DEVCPSL and IORE.PGOIOPSL.

232 VSE/AF Supervisor DRM

POSL.PSLSTATE is updated accordingly (for example, the DEVCPSL value X'1C'
applied on POSL.PSLSTATE X'9D' results in X'81').

 ┌─────────┐ SCB
 ┌─�│ │
│ / / POSL PSLSTATE
 │ ├─────────┤ ┌────────┬─/───┬──┬─────────/────────────────┐
 │ │ SCBAPOSL├────────�│ │ │9D│ │
 │ ├─────────┤ └────────┴─/───┴──┴─────────/────────────────┘
 │ / / ��
 │ └─────────┘ ││ corresponding PREPGENT
 │ ││ ┌────┬──┬──┬────────┐
 │�──────────────────────────────────┐ │└──�│���3│�3│1C│�������C│
 │ DEVCB │ │ └────┴──┴──┴────────┘
 │ ┌─────────┐ │ │
 │ │ │ │ │
 │ ├─────────┤ │ │
 │ │DEVACT ├────┐ │ │
 │ ├─────────┤ │ │ │
 │ / / │ │ │
 │ ├─────────┤ │ │ │
 │ │CCW(pft1)│ │ │ │
 │ │CCW(pft2)│ │ │ │
 │ │CCW(pft3)│ │ │ │
 │ ├──┬──────┤ │ │ │
 │ │1C│ │ │ │ │
 │ ├──┴──────┤ │ │ │
 │ / / │ IORE │ │ PFTE-Table
│ ├─────────┤
 ┌─────────┐ │ │ ┌───────────────────┐
│ │PGQO ├────────�│ │ │ │ │ │
│ └─────────┘ � ├─────────┤ │ │ │ │
│ │ │ TIBSTATE│ │ │ / /
│ │ ├─────────┤ │ │ │ │
│ │ │ PGQTYP │ │ │ │ │
│ │ ├─────────┤ │ │ │ │
│ │ │ PGOEQPSL│ │ │ / /
│ │ ├─────────┤ │ │ │ │
 │ │ │ TIBPFSCB├──┘ │ │ │
 │ │ ├─────────┤ │ ├─────────┬────┬────┤
 │ │ │ TIBAALU ├─────┘ ┌─────�│ │IORE│ SCB│
 │ │ ├─────────┤ │ ├─────────┴────┴────┤
 │ │ / / │ / /
 │ │ ├─────────┤ │ ├─────────┬────┬────┤
│ │ │ � │TIBAPFT│ ┌──�│ │IORE│ SCB│
│ │ / . / │ │ ├─────────┴────┴────┤
 │ │ │ pft1 ├───────┘ │ / /
│ │ │ pft2 ├──────────┘ ├─────────┬────┬────┤
 │ │ │ pft3 ├─────────────�│ │IORE│ SCB│
│ │ │ � │ ├─────────┴──┬─┴──┬─┤
│ │ / . / / │ │ /
 │ │ └─────────┘ └────────────┼────┼─┘
 │ └──┘ │
 �───┘

Figure 103. Starting Pre-Page-Out Request

 Page Management 233

The POSL.PSLSTATE is updated accordingly (for example, the DEVCPSL value
X'1C' applied on the POSL.PSLSTATE X'9D' results in X'81').

 SCB
 ┌─────────┐
 │ │

/ / POSL PSLSTATE
 ├─────────┤ ┌────────┬─/───┬──┬─────────/────────────────┐
 │ SCBAPOSL├────────�│ │ │81│ │
 ├─────────┤ └────────┴─/───┴──┴─────────/────────────────┘
 / /
 └─────────┘

Figure 104. State of POSL after Starting the Request

End of Cylinder Condition for CKD

If the CCW program would cross a cylinder boundary on a CKD device the CCW
program will be cut on this cylinder boundary. The other pages will be handled by
another I/O request at later time.

POSL.PSLSTATE and DEVCB.DEVCPSL must be adjusted accordingly (for
example, EOC is detected for the third page with the POSL mask X'40',
DEVCB.DEVCPSL is adjusted to X'18' and POSL.PSLSTATE to X'85'). Moreover,
POEBIT and POABIT in PFTEFLG of not yet considered pfte-s must be reset.

 SCB
 ┌─────────┐
 │ │

/ / POSL PSLSTATE
 ├─────────┤ ┌────────┬─/───┬──┬─────────/────────────────┐
 │ SCBAPOSL├────────�│ │ │85│ │
 ├─────────┤ └────────┴─/───┴──┴─────────/────────────────┘
 / /
 └─────────┘

Figure 105. State of POSL after Adjusting for CKD

Enqueuing Unconditional Page-Out Request

If the page selection algorithm has identified a frame containing page with
change-bit=ON, this page must be written on the PDS before the frame can be
used. POSL.PSLSTATE of the related allocation unit is set accordingly.

The request gets highest priority and the IORE is enqueued at top of PGQSYS of
the corresponding DEVCB.

IORE.PGOEQPSL contains the related pslstate of the page to be page-out and
POSL.PSLSTATE of the related allocation unit contains the current value including
the poslmask of the unconditional page-out.

The selected PFTE is removed from the PSQ and PFTEFLG.POEBIT = ON.

The page to be page-out is set into disconnected state.

234 VSE/AF Supervisor DRM

 ┌─────────┐ SCB
 ┌─�│ │
│ / / POSL PSLSTATE
 │ ├─────────┤ ┌────────┬─/───┬──┬─────────/────────────────┐
 │ │ SCBAPOSL├────────�│ │ │97│ │
 │ ├─────────┤ └────────┴─/───┴──┴─────────/────────────────┘
 │ / / � pslstate includes related
 │ └─────────┘ │ value for uncond. pageout
 │ │
 │�──────────────────────────────────┐ │
 │ DEVCB │ │
 │ ┌─────────┐ │ │
 │ │ │ │ │
 │ ├─────────┤ │ │
 │ │DEVACT │ │ │
 │ ├─────────┤ │ │
 │ / / │ │ PGQTYP = PGO
 │ │ │ │ │ PGOEQPSL = X'1�'
 │ │ │ │ │
 │ │ │ │ │
 │ ├──┬──────┤ │ │
│ │ │ │DEVCPSL │ │
 │ ├──┴──────┤ │ │
 │ / / IORE │ │ PFTE-Table
│ ├─────────┤ ┌─────────┐ │ │ ┌───────────────────┐
│ │PGQSYS ├─//─────�│ │ │ │ │ │
│ ├─────────┤ � ├─────────┤ │ │ │ │
│ / / │ │ TIBSTATE├──┼──┼───┐ │ │
│ └─────────┘ │ ├─────────┤ │ │ │ │ │
│ │ │ PGQTYP │ │ │ │ │ │
│ │ ├─────────┤ │ │ │ │ │
│ │ │ PGOEQPSL│ │ │ │ │ │
│ │ ├─────────┤ │ │ │ │ │
 │ │ │ TIBPFSCB├──┘ │ │ │ │
 │ │ ├─────────┤ │ │ │ │
 │ │ │ TIBAALU ├─────┘ │ │ │
 │ │ ├─────────┤ │ │ │
│ │ / / │ │ │
 │ │ ├─────────┤ │ │ │
│ │ │ � │TIBAPFT │ │ │
│ │ / . / │ │ │
│ │ │ � │ │ / /
 │ │ │ pfte ├────────�│ ├─────────┬────┬────┤
│ │ │ � │ └───�│ │IORE│ SCB│
│ │ │ � │ ├─────────┴──┬─┴──┬─┤
│ │ │ � │ / │ │ /
 │ │ └─────────┘ └────────────┼────┼─┘
 │ └──┘ │
 �───┘

Figure 106. Enqueuing Unconditional Page-Out Request

Special Consideration for PFTE with Active I/O (POABIT=ON)

Page-out runs concurrently to page frame replacement. As result a PFTE with
active I/O might be selected. There are two possibilities:

� PFTE is part of a pre-page-out request
as a consequence, the pre-page-out is modified to an unconditional page-out
by updating IORE.TIBSTATE; the IORE remains in PGQO.

� PFTE is part of blocked unconditional page-out
as a consequence, an new IORE is created with PGDELO indication and
enqueued into the PGQSYS just behind the running page-out request.
The IORE is needed in case of I/O error only.

Determination of Blocking Value for Unconditional Page-Out

 Page Management 235

Special Consideration for PFTE with active I/O (POABIT=ON)

Page-out runs concurrently to page frame replacement. As result a PFTE with
active I/O might be selected. There are two possibilities:

� PFTE is part of a pre-page-out request
as a consequence, the pre-page-out is modified to an unconditional page-out
by updating IORE.TIBSTATE; the IORE remains in PGQO.

� PFTE is part of blocked unconditional page-out
as a consequence, a new IORE is created with PGDELO indication and
enqueued into the PGQSYS just behind the running page-out request.
The IORE is needed only if an I/O error occurs.

Determination of Blocking Value for Unconditional Page-Out

It is most effective to combine the unconditional page-out request with other
page-out requests for the same allocation unit. Analogously to pre-page-out, the
POSL of the related allocation unit might be changed between enqueueing and
starting the I/O request. Therefore, the determination of the blocking factor and the
creation of the CCW-program is done at SVC-15 time. The new POSL.pslstate
value of the allocation unit is inspected by means of the POSL mask of the uncon-
ditional page-out. The resulting blocking value is determined as follows: every
POSL mask of an allocation unit is related to a special control table (UNCPTBxx).
Accordingly to the POSL mask of the unconditional page-out the corresponding
control table is selected. By the way, there are eigth special control tables. The
current POSL value is applied as index in this control table UNCPHOxx to get the
effective POSL value which is used as index in the page-out control table
(PREPGOTB) to get the actual PREPGENT entry.

Now all information is available to create the CCW program.

236 VSE/AF Supervisor DRM

 SCB
 ┌─────────┐
 │ │

/ / POSL PSLSTATE
 ├─────────┤ ┌────────┬─/───┬──┬─────────/────────────────┐
 │ SCBAPOSL├────────�│ │ │9B│ │
 ├─────────┤ └────────┴─/───┴─┬┴─────────/────────────────┘
 / / │
 └─────────┘ │
 ┌────────────────────────────────────┘
 │
 │ POSL-mask

│ for uncond. page-out UNCPGOX UNCPGOTB
 │ ┌──┐ ─┬─┌──┐ ─┬─┌─────────┐
 │ │1�│ │ │ │ │ │ │
 │ └─┬┘ POSL│ / / nn│ / /
 │ │ mask│ │ │ │ │ │
 │ │ │ │ │ │ │ │
 │ │
 ├──┤
 ├─────────┤
 │ └────────────� ───│nn│ ───│A(PGPSLi)├────┐
 │ ├──┤ ├─────────┤ │

│ │ │ / / │
 │ │ │ └─────────┘ │
 │ │ │ address table │
 │ / / │

│ └──┘ index table │
 │ │
 │ ┌──────────────────────────────────┘
 │ │
 │ UNCPGO�1
UNCPGO1� UNPGO8�
 │ ┌──┐ ─┬─┌──┐ ┌──┐

│ / / │ │ │ | |
 │ │ │ │ │ │

│ POSL │ / / / /
 │ pslstate
 ├──┤ │ │
 └───────────────────� ───│18│�─────┐ │ │
 ├──┤ │ │ │
 / / │ / /
 └──┘ │ └──┘
 │
 │ corresponding PREPGENT
 │ ┌────┬──┬──┬────────┐
 └────�│���2│�3│18│�������C│
 └────┴──┴──┴────────┘

Figure 107. Determination of Blocking Value for Unconditional Page-Out

Starting Unconditional Page-Out Request

In the time interval between enqueueing the IORE and starting I/O some pages
might be changed. Accordingly, the state of the allocation unit has been changed
(for example, from X'97' to X'9B'). Whenever possible, blocked page-out will be
done, even if the current blocking value does not satisfy the value in
SGPDATA.PPOBLCUR.

Special Considerations for Combined Unconditional Page-Out

A blocked unconditional page-out might contain the PFTE-s of other unconditional
page-outs also enqueued in the PGQSYS of the same DEVCB.
Because every unconditional page-out is represented by its IORE, the not yet
started IORE(-s) are indicated by PGQTYP.PGDELO.
(The IORE is needed in case of I/O error incl. end-of-cylinder).

 Page Management 237

 ┌─────────┐ SCB
 ┌─�│ │
│ / / POSL PSLSTATE
 │ ├─────────┤ ┌────────┬─/───┬──┬─────────/────────────────┐
 │ │ SCBAPOSL├────────�│ │ │9B│ │
 │ ├─────────┤ └────────┴─/───┴──┴─────────/────────────────┘
 │ / / �
 │ └─────────┘ │
 │ │
 │�──────────────────────────────────┐ │
 │ DEVCB │ │ corresponding PREPGENT
 │ ┌─────────┐ │ │ ┌────┬──┬──┬────────┐
 │ │ │ │ │ ┌─�│���2│�3│18│�������C│
 │ ├─────────┤ │ │ │ └────┴──┴──┴────────┘
 │ │DEVACT │ │ │ │
 │ ├─────────┤ │ │ │
 │ / / │ │ │
 │ ├─────────┤ │ │ │
 │ │CCW(pft1)│ │ │ │
 │ │CCW(pft2)│ │ │ │
 │ ├──┬──────┤ │ │ │
 │ │18│ │ │ │ │
 │ ├──┴──────┤ │ │ │
 │ / / IORE │ │ │ PFTE-Table
│ ├─────────┤ ┌─────────┐ │ │ │ ┌───────────────────┐
│ │PGQSYS ├────────�│ │ │ │ │ │ │
│ ├─────────┤ � ├─────────┤ │ │ │ │ │
│ / / │ │ TIBSTATE├──┼──┼───┐ │ │ │
│ └─────────┘ │ ├─────────┤ │ │ │ │ │ │
│ │ │ PGQTYP │ │ │ │ │ │ │
│ │ ├─────────│ │ │ │ │ │ │
 │ │ │ PGOEQPSL│�─┼──┼───┼─┘ │ │
│ │ ├─────────┤ │ │ │ │ │
 │ │ │ TIBPFSCB├──┘ │ │ │ │
 │ │ ├─────────┤ │ │ │ │
 │ │ │ TIBAALU ├─────┘ │ │ │
 │ │ ├─────────┤ │ │ │
│ │ / / │ / /
 │ │ ├─────────┤ │ ├─────────┬────┬────┤
│ │ │ � │ ┌───┼───�│ │IORE│ SCB│
│ │ / . / │ │ ├─────────┴────┴────┤
│ │ │ � │ │ │ / /
 │ │ │ pft1 ├─────┼──�│ ├─────────┬────┬────┤
 │ │ │ pft2 ├─────┘ └───�│ │IORE│ SCB│
│ │ │ � │ ├─────────┴──┬─┴──┬─┤
│ │ │ � │ / │ │ /
 │ │ └─────────┘ └────────────┼────┼─┘
 │ └──┘ │
 �───┘

Figure 108. Starting Unconditional Page-Out Request

Tuning of Pre-Page-Out
The objectives are: minimize the number total page-outs and minimize the number
of unconditional page-outs. There are two threshold values:

1. No pre-page-out at all, that means only unconditional page-out
2. No unconditional-page-out at all, that means only pre-page-out

The number of pre-page-out is a function of both the blocking factor b and the
searching depth k in the PSQ (performed by page selection). An increasing value
of k or a decreasing value of b does result in an increasing number of pre-page-
outs. A high rate of pre-page-outs results in a low rate of unconditional page-outs;
but it might be a high rate of useless pre-page-outs.

238 VSE/AF Supervisor DRM

The tuning algorithm applies these dependencies: pre-page-out and unconditional
page-out rates must be balanced; additional parameter is the number of PDS
devices.

procedure pgotunig(k : inout �, b : inout �) :=
/� k : cur searching depth �/
/� b : cur blocking factor �/

 dcl
d ∈ �, /� no of PDS devices �/
m ∈ �, /� maximal blocking factor �/
n ∈ �, /� minimal blocking factor �/
u ∈ �, /� exp.average of unc-pgout�/
o ∈ �, /� exp.average of pre-pgout�/
f ∈ �, /� constant �/
h ∈ �, /� maximal value for search�/
l ∈ �, /� minimal value for search�/

/� ... ing depth �/
 dclend;

if (u = �) & (b < m)
then b = b + 1; /� decrease pre-page-out �/

 else do;
if (2�u > d)
then do; /� increase pre-page-out �/
if k < h then h = k + 1;
if b > n then b = b - 1;

 end;
 else do;

if (o < u) & (b > n)
then b = b - 1; /� increase pre-page-out �/

 else do;
if (o > d)
then do; /� decrease pre-page-out �/
if k > l then k = k - 1;
if b < m then b = b + 1;

 end;
 end
 end;
 end pgotunig;

 Page Management 239

 Blocked Page-In
Applicable for the supervisor services (SVC X'57' and SVC X'121').

During the first scan of the parameter list in procedure PAGEIN (supervisor gener-
ation macro SGPOPT) all affected pages in the PSQ are removed to bottom of the
PSQ. A further scan creates a PISL for those pages not currently addressable and
with a valid copy on PDS. For each allocation unit, blocked page-in will be tried. A
third scan is necessary if blocked page-in was not successful and page-in is pro-
vided via normal page fault processing.

Blocked page-in is done per allocation unit if:

� there are contiguous pages in the allocation unit with ptepds=ON and
� len(IPFQ) ≥ (number of pages with PDSBIT=ON).

In more detail this is:

1. The PISL is initialized for each allocation unit.

2. If the page is not addressable and there is a valid copy on PDS the related
PISL.pslstate is set to ON.

3. The procedure PGINENQI checks whether blocked page-in can be performed
and if so, enqueues the IORE in the PGQSYS of the related DEVCB and sets
the Page-in system task into wait (PMRBND).

4. At SVC-15 time the CCW program for blocked page-in will be generated by the
procedure PGINBLK.

5. I/O completion is done in the procedure PGICOMPL and the waiting Page-in
system task is posted.

Page In State List (PISL)

The page-in system task owns the PISL located in SGPDATA and describing the
page states of one allocation unit. Each bit in PISL.PSLSTATE identifies one page.
The bit is set to ON if the related page must be read in.

 SGPDATA SCB
 ┌───────────┐ ┌───────────┐
 │ │ ┌───�│ │
 / │ │ │ │
 │ │ │ │ │
 ├───────────┤ │ │ │
 │ APGIPISL ├───┐ │ │ │
 ├───────────┤ │ │ │ │
 / / │ │ │ │
 └───────────┘ │ │ └───────────┘
 │ │
 │ PISL │
 │ ┌─────────┐ │

└──�│ PSLASCB ├────┘ address of related SCB
 ├─────────┤

│ PSLABEGP│ EPA-nr of 1st page ...
├─────────┤ ... in PISL
│ PSLAENDP) EPA-nr of last page...

 ├─────────┤
│ PSLSTLEN│ length of pslstate (=1)

 ├─────────┤
│ 1�1�1�11│ page states of one
└─────────┘ ... allocation unit

Figure 109. PISL

240 VSE/AF Supervisor DRM

Check and Control Blocked Page-In

 SGPDATA
 ┌───────────┐
 │ │
 / /
 │ │ PISL pslstate
 ├───────────┤ ┌────────────────┬──┐
 │ APGIPISL ├──────�│ │ │
 ├───────────┤ └────────────────┴──┘
 ┌────┤ APGINTAB │
 │ ├───────────┤
 │ / /
 │ └───────────┘
 │
 │ PAGEINTB
 │ ─┬─ ┌────┬──┬──┬────────┐
 └─────────────────────┼─�│ │ │ │ │

│ │ │ │ │ │
│ │ │ │ │ │
│ │ │ │ │ │

PSLSTATE�len(PGINENT) │ │ │ │ │ │
│ │ │ │ │ │
│ / / / / /

 ├────┼──┼──┼────────┤
─── │ │ │ │ │

 ├────┼──┼──┼────────┤
│ │ │ │ │

 └────┴──┴──┴────────┘

Figure 110. Relationship between PISL and PAGEINTB

The value of PISL.PSLSTATE is applied as index in the table PAGEINTB to get the
corresponding PGINENT entry.

 Page-In Scenario
Enqueuing Page-In Request

Blocked page-in is done for the allocation units one after the other. For each allo-
cation unit the prerequisites are:

� there are valid pages on the PDS and
� there are sufficient free frames to satisfy the page-in request.

During the page-in service the PISL is built and initialized for each allocation unit.
Every page of the current allocation unit is inspected to decide whether a page-in
must be done. If so, the related PISL mask is activated in the PISL and the page is
connected to a free frame. After inspection of the allocation unit, the page-in
request is initiated by enqueueing the IORE in the PGQSYS of the corresponding
DEVCB.

The field DEVCB.DEVACT contains the address of the IORE with not yet com-
pleted I/O. If there is no I/O running for this DEVCB, DEVCB.DEVACT contains
X'0'.

 Page Management 241

 SGPDATA
 ┌─────────┐

/ / PISL PSLSTATE
 ├─────────┤ ┌─────┬────────┬──┐

│ APGIPISL├────────�│ SCB │ │54│
 ├─────────┤ └──┬──┴────────┴──┘

/ / │ ��
└─────────┘ │ ││ related PGINENT

 │ ││ ┌────┬──┬──┬────────┐
 │ │└──�│���5│�3│7c│�������4│
 │ │ └────┴──┴──┴────────┘
 DEVCB │ │

┌─────────┐ │ │
│ │ │ │ SCB
├─────────┤ │ │ ┌─────────┐

 │DEVACT │ └────────────┼───────�│ │
 ├─────────┤ │ � / /
 / / │ │ │ │
 ├─────────┤ │ │ └─────────┘
 │ │ │ │
 │ │ │ │�─────────────────────────┐
 ├──┬──────┤ │ │ │
 │ │ │ DEVCPSL │ │ │
 ├──┴──────┤ │ │ │
 / / │ │ │

│ │ IORE │ │ PFTE-Table │
 ├─────────┤ ┌─────────┐ │ │ ┌───────────────────┐ │
 │PGQSYS ├─//─────�│ │ │ │ │ │ │
 ├─────────┤ � ├─────────┤ │ │ │ │ │
 / / │ │ PGQTYP │ │ │ / / │
 └─────────┘ │ ├─────────┤ │ │ │ │ │
 │ │ TIBPFSCB├─────┼───┘ │ │ │
 │ ├─────────┤ │ ├─────────┬────┬────┤ │

│ │ TIBAALU ├─────┘ ┌───�│ │IORE│ SCB├─┘
 │ ├─────────┤ │ ├─────────┴────┴────┤

│ / / │ / /
 │ ├─────────┤ │ ├─────────┬────┬────┤
 │ │ � │TIBAPFT │ ┌─�│ │IORE│ SCB│
 │ │ pft1 ├─────────┘ │ ├─────────┴────┴────┤
 │ │ � │ │ │ │

│ │ pft2 ├───────────┘ / /
 │ │ � │ ├─────────┬────┬────┤
 │ │ pft3 ├─────────────�│ │IORE│ SCB│
 │ │ � │ ├─────────┴──┬─┴────┤
 │ │ � │ / │ /
 │ └─────────┘ └────────────┼──────┘
 └──┘

Figure 111. Enqueuing Page-In Request

Starting Page-In Request

Between enqueue and SVC-15 time no change of the PISL value is possible. The
pages are connected and the frames are reserved.

At SVC 15 time the request is set up accordingly to the PISL value. Analogously to
blocked page-out the control table PAGEINTC provides information about the
blocking factor and the effective blocking etc which is used to create the CCW
program. All affected pages of an allocation unit are paged-in via one
CCW-program, any gap between affected pages are handled by one or more Read
CCW(-s) with data transfer suppression.

The field PISL.PSLSTATE is reset to zero.

The corresponding pte-s are still in connected state.

242 VSE/AF Supervisor DRM

 SGPDATA
 ┌─────────┐

/ / PISL PSLSTATE
 ├─────────┤ ┌─────┬────────┬──┐
 │ APGIPISL├────────�│ │ │54│
 ├─────────┤ └──┬──┴────────┴──┘

/ / │ ��
└─────────┘ │ ││ related PGINENT

 │ ││ ┌────┬──┬──┬────────┐
 │ │└──�│���5│�3│7c│�������4│
 DEVCB │ │ └────┴──┴──┴────────┘

┌─────────┐ │ │
│ │ │ │ SCB
├─────────┤ │ │ ┌─────────┐

 │DEVACT ├────┐ └────────────┼───────�│ │
 ├─────────┤ │ │ � / /
 / / │ │ │ │ │
 ├─────────┤ │ │ │ └─────────┘
 │CCW(pft1)│ │ │ │
 │CCW(xsup)│ │ │ │
 │CCW(pft2)│ │ │ │
 │CCW(xsup)│ │ │ │
 │CCW(pft3)│ │ │ │�─────────────────────────┐
 ├──┬──────┤ │ │ │ │
 │54│ │ │ │ │ │
 ├──┴──────┤ │ │ │ │
 / / │ IORE │ │ PFTE-Table │
 ├─────────┤
 ┌─────────┐ │ │ ┌───────────────────┐ │
 │PGQSYS ├────────�│ │ │ │ │ │ │
 ├─────────┤ � ├─────────┤ │ │ │ │ │
 / / │ │ PGQTYP │ │ │ / / │
 └─────────┘ │ ├─────────┤ │ │ │ │ │
 │ │ TIBPFSCB├─────┼───┘ │ │ │
 │ ├─────────┤ │ ├─────────┬────┬────┤ │

│ │ TIBAALU ├─────┘ ┌───�│ │IORE│ SCB├─┘
 │ ├─────────┤ │ ├─────────┴────┴────┤

│ / / │ / /
 │ ├─────────┤ │ ├─────────┬────┬────┤
 │ │ � │TIBAPFT │ ┌─�│ │IORE│ SCB│
 │ │ pft1 ├─────────┘ │ ├─────────┴────┴────┤
 │ │ � │ │ │ │

│ │ pft2 ├───────────┘ / /
 │ │ � │ ├─────────┬────┬────┤
 │ │ pft3 ├─────────────�│ │IORE│ SCB│
 │ │ � │ ├─────────┴──┬─┴────┤
 │ │ � │ / │ /
 │ └─────────┘ └────────────┼──────┘
 └──┘

Figure 112. Starting Page-In Request

Page Fault Handling Overlap
Programs that execute in virtual mode and do their own multi-tasking can use the
page fault handling overlap facility. This gives the user the opportunity to control
the page-in queue entry for the page fault caused by its own task. This is done by
a user-written page fault appendage routine.

Whenever a page-fault occurs, page management first checks if a page fault
appendage has been initiated for the task and the type of the page fault (the user
can specify, that he doesn't want to overlap page-faults due to access to a data-
space).

If the task has an appendage for the actual page-fault, control is first passed to that
appendage, unless the task is using a supervisor service, the LTA, or an
ACF/VTAM function. The request is then enqueued in the page fault queue using a

 Page Management 243

special TIB (PHOTIB) located in the PCB, or it gives an indication that a page fault
is already pending for that task. The task causing the page fault is not set into the
wait state.

When pseudo-page faults occur (running under VM and 'SET PAGEX ON' issued),
the page fault overlap handling appendages are not entered.

If the page fault was caused by a supervisor service or logical transient, or if an
ACF/VTAM function is outstanding, or if the user doesn't want to overlap page-
faults in data-spaces, no overlap is performed. The page fault is handled like any
normal page fault condition and the task is set into the wait state.

When an asynchronous page fault has been handled, the appendage is entered
again to see if there are any more page faults to be processed. If so, the page-in
request returned from the appendage is enqueued in the correct device queue.

 Pseudo-Page Fault
Pseudo page faults are a special type of program check used when running under
VM. There are two different types of pseudo page faults:

� Pseudo page fault exception (whenever VM gets a page fault and must do I/O
operations)

� Pseudo page fault completion (whenever the I/O operation of VM is completed)

For both exceptions VM passes control to VSE by means of program check inter-
ruption.

244 VSE/AF Supervisor DRM

 Pseudo Page Fault
 │
 │

┌──────────────┐ ┌───────────────┐
│ Completion │ yes │ Same │ yes
│ │─────�│ as last one │───────────────┐
│ interrupt │ │ │ │
└──────────────┘ └───────────────┘ │
 no │ no │ │
 │ �────────────────────┘ │

┌──────────────┐ ┌───────────────┐ ┌───────────────┐
│ Interrupt │ yes │ Completion │ no │ Exit via │
│ in │─────�│ │──────�│ LPSW to inter─│
│ dispatcher │ │ interrupt │ │ rupted task │
└──────────────┘ └───────────────┘ └───────────────┘
 no │ yes │
 │ │

 │
┌──────────────┐ │
│ Save │ │
│ │ │
│ status │ │
└──────────────┘ │
 │ │
 │ │

┌──────────────┐ ┌───────────────┐
│ Completion │ yes │ RPOST │
│ │─────�│ (condition = │───────────────┐
│ interrupt │ │ SRQPSPF) │ │
└──────────────┘ └───────────────┘ │
 no │ │
 │ │

 │
┌──────────────┐ ┌───────────────┐ │
│ ICCF high │ no │ Indicate │ │
│ priority │─────�│ page │ │
│ task │ │ fault │ │
└──────────────┘ └───────────────┘ │
 yes│ │ │
 │ │ │

┌──────────────┐ ┌───────────────┐ ┌───────────────┐
│ Exit │ │ UNPOST │ │ Exit │
│ to │ │ (condition = │──────�│ to │
│ ALLBOUND │ │ SRQPSPF) │ │ DISP │
└──────────────┘ └───────────────┘ └───────────────┘

Figure 113. Pseudo Page Fault Handling

 GETREAL Request
A GETREAL request is issued by SVC X'37' (request for SDAID area), SVC X'3A'
(if initialization of a real partition is requested) and GETPT service, to reserve an
area of real storage.

On entry, register 2 contains the beginning, and register 3 the end address of the
area requested. All PFT entries of the page frames in this area are posted as not
fixable (NFRP-bit is set on), and the TFIX counter of each entry is checked for zero
(page is not TFIXed). If a page frame is found to be TFIXed, the requesting task is
set to PGFX bound. If the area requested is free of TFIXed pages, the following
steps are executed:

1. If the page frame is unused:

 Page Management 245

Remove the PFTE from IPFQ. Increase PFIX counter in PFTE by 1. If it is not
a special GETREAL request from GETPT (GTRSBIT not on in PCB.FIXTYPE)
the following is done in addition:

a. Make page with same address as page frame addressable.

b. Reset the NFRP bit, and increase the partition PFIX counter by 1.

2. If the page is connected to a page frame:
Wait for end of page connected state and take actions depending on the new
state of the page frame.

3. If the page frame contains a valid page that is requested by PFIX:
Get an unfixed page frame and exchange the contents of the two page frames.
Take actions according to the new state of the page frame.

4. If the page frame contains a valid page which is not in connected state and
which is not requested by PFIX:
Remove the PFTE from the PSQ. If the change bit for the page frame is set,
call ENQUOW to write the page onto the PDS. On return, take actions
depending on the new state of the page frame.
If the change bit for the page frame is not set, the page is disconnected using
routine PAGDISCA and the actions described in 1. are taken (except for the
removing of the PFTE from its queue).

5. If a page frame is found to be unusable because of a hardware error (DRAP bit
in PFT entry on):
No area is allocated when this condition is detected in the first page frame. If
the page frame in error is not the first one, the allocated area ends at the start
address of the failing page frame, if it is a SVC X'37' request, otherwise no
area is allocated.

The following return codes are passed by GETREAL:

0 = The requested area is reserved (PFIXed).
4 = The page frame belongs to failing storage and is not the first page of the real

partition.
8 = The page frame belongs to failing storage and is the first page of the real

partition.

 TFIX Request
The TFIX routine fixes pages temporarily, that is, a page is fixed in a page frame
for the duration of an I/O operation. This routine is called by the CCW translation
routines, the Fetch routine, the SVC X'2C' routine, and others.

The caller provides in register 1 an address that points to a parameter list of the
following format:
Parmlist := list(Parm)
Parm := (addr. in first page to be handled BIN FIXED(31), addr. in last page to
be handled BIN FIXED(31))
Parm := (A(0), NIL) indicates end of list.

A TFIX request for p pages which are not already TFIXed or PFIXed can be satis-
fied as long as the condition

p <= NPSQE - MINPSQE

246 VSE/AF Supervisor DRM

is satisfied. Otherwise the requesting task is set into wait. NPSQE is reduced by p
pages:

NPSQE' = NPSQE - p

Note: Here and in the following formulas the new value of the variable xxxx is
noted as xxxx', the original value is noted as xxxx.

The length of PSQ is reduced by q page frames:

len(PSQ)' = len(PSQ) - q

where q = p - r with r = min(len(IPFQ),p).
Analogously yields:

len(IPFQ)' = len(IPFQ) - r

The TFIX counter of all PFTEs is increased in any case:

PFTE.TFIXC' = PFTE.TFIXC + 1

The following return codes are passed by the TFIX routine:

0 = If the request is issued by the fetch routine and the number of available page
frames in the PSQ reaches a minimum, and no page can be TFIXed; or

if the request is not from the Fetch routine and the number of available page
frames in the PSQ reaches a minimum, and no page can be TFIXed.

4 = The TFIX counter has reached the maximum value for a page and the page
cannot be TFIXed.

8 = All requested pages are TFIXed.

A special interface is established for a TFIX request from the Fetch routine. It has
to be ensured that at least 2 pages can be fixed. As long as NPSQE >
MINPSQE-2, the Fetch request is satisfied. If not all requested pages can be fixed,
control is given back to the Fetch routine without freeing the pages already fixed for
this request.

 PFIX Request
A PFIX request may be issued by a user task or by the restart (RSTRT) statement
processor (Job Control). Actually it is called by SVC X'43', SVC X'4A', SVC X'79',
GETPT service, XPCC service, FETCH and storage management.

Register 1 points to a parameter list that defines the pages to be PFIXed. If the
page is not in storage the request is enqueued to the page queue and the PMR
system task is activated.

A PFIX request for p pages can be performed immediately, as long as the condi-
tions

� p + SMPFIX < SMAXPFIX + 1
� p < NPSQE - MINPSQE + 1
� PFTE.PFIXC < MAXPFIX for all PFTEs associated to the PFIXed pages
� the pages occupy frames belonging to the correct area (1, 2 or 3).

are satisfied. Otherwise the requesting task is set into wait or is posted with a
return code indicating no PFIX possible.

 Page Management 247

Before a page can be fixed it must be determined whether this can be done imme-
diately or not. If the page occupies a page frame in the PFIX area_1 or PFIX
area_2 respectively, the page can be fixed at once. If the page occupies a page
frame in PFIX area_3 and the PFIX macro is specified with RLOC=ANY, the page
can be fixed at once. If the page occupies a page frame outside the areas or if the
page is not yet addressable, a page frame out of the related PFIX area must be
selected.

The page frame table entry address of this reserved page frame is stored in the
partition control block (label PFTERSVD) by the PFIX routine, or by the PFREE
routine or by the TFREE routine, if a page has to be freed before the page frame
can be reserved.

If there is no page frame for a PFIX request in PFIX area_2 but there are pages
only TFIXed, all page frames in the related PFIX area are set to 'not temporarily
fixable' and the task is put into the wait state; processing of the request continues
as soon as a page has been freed by either a TFREE or by a PFREE request.

If there are no page frames for a PFIX requests in PFIX area_1 or area_3 the
requesting tasks are put into wait state of the related area. There are frames occu-
pied by TFIXed pages and the processing is resumed as soon as a page has been
freed by either a TFREE or by a PFREE request.

If the page was neither PFIXed nor TFIXed, the corresponding page frame table
entry is removed from the page selection queue, NPSQE is decreased by 1, and
the partition PFIX counter is increased by 1.

The state changes for NPSQE etc. are the same as for TFIX. The PFIX counter of
all PFTEs is increased:

PFTE.PFIXC' = PFTE.PFIXC + 1

The pages are PFIXed one after each other and if during this process the free
frames are exhausted, all pages which have just been PFIXed are freed again. A
special return code, is passed to the requesting task, indicating that the PFIX
request cannot be performed under the actual system conditions.

The page will be fixed immediately, if the page is in real storage and if the following
conditions are true:

� The page frame is in the correct real partition. In that case, it is only necessary
to increase the PFIX counter by 1 and to remove the page frame from the
selection pool if it has not already been removed.

� The page is not TFIXed and the page frame is not in the correct real partition,
but a page frame in the real partition is available for PFIXing. The two pages
are then exchanged and the page is PFIXed.

The following return codes are passed by the PFIX routine:

0 = Function successfully completed.
4 = Maximum number of allowed PFIXed pages for the partition is exceeded by

this request only.
8 = Maximum number of allowed PFIXed pages for the partition is exceeded

because of previous PFIX requests.
12 = Negative length of area or invalid address.

248 VSE/AF Supervisor DRM

16 = PFIXed page above 16MB found, but current request with RLOC=BELOW.
20 = Invalid function code or option (not possible if macro interface is used).
24 = Wait for TFREE required, but caller requested return instead of WAIT. Only

possible on subroutine interface.
28 = PFIX counter overflow. Only possible on subroutine interface.

PFIX Requests for RSTRT
Handling PFIX requests for the RSTRT routine (Job Control) requires special action
because each PFIXed page must be returned to the page frame in which it was
located at the time the program was checkpointed. When a page is PFIXed by the
RSTRT processor, not only the page address but also the page frame address and
the value of the PFIX counter are passed. The address of the reserved page frame
is placed in the field PCB.PFTERSVD for the task; the page is PFIXed in the
reserved page frame and thereafter the PFIX counter of the page is set to its value
at checkpoint time.

 PAGE-IN Request
A valid page-in request is handled by the PGIN system task, which is activated
when the SVC X'57' routine has received such a request. The task's dispatching
priority is higher than that of the Fetch (SUPVR) task, but lower than that of the
page manager (PMR) system task.

The PGIN task runs asynchronously with the requesting user task.

For a page in real storage, the task determines (by looking at the corresponding
PFT entry) whether this page is fixed.

� If the page is fixed, the request for the page is ignored.
� If the page is not fixed, its reference bit is set and the associated page frame is

enqueued at the end of the Page Selection Queue (PSQ).

For a page not in real storage, the PGIN system task uses the ENQUI routine to
have this page enqueued to the page-in queue. The request is then handled like a
page-in request that resulted from a normal page fault; however, no exit is taken to
a private routine that may be specified in a SETPFA macro in the program which
issued the page-in request.

The PGIN system task detects the following error conditions and takes the actions
indicated:

� If a page is outside the partition in which the requesting program is executing,
the request for that page is ignored.

� If an area specification contains a negative length, the request for that area is
ignored.

The task posts an ECB (if one is specified) as shown for SVC X'57' in “Supervisor
Call Interrupt (SVC)” on page 29. The ECB's address is obtained from the cur-
rently processed PAGETAB entry.

Whenever a task is terminated, the scan routine SCANPGT scans table PAGETAB
and deletes all entries that carry the task's TID. If the PGIN system task is proc-
essing a page-in request of a task which is being terminated, the PGIN system task
stops processing of that page-in request.

 Page Management 249

 TFREE Request
A TFREE request is issued by routines such as CCW translation, SVC X'2C' or
Fetch, to release TFIXed pages.

Register 1 points to a parameter list that defines the pages to be freed (see
description of TFIX).

The TFREE request frees p page frames and the TFIX counter of all affected
PFTEs is decreased:

PFTE.TFIXC' = PFTE.TFIXC - 1

Only if the conditions

PFTE.TFIXC' = 0
 PFTE.PFIXC = 0

are satisfied for q < p + 1 PFTEs, the q related page frames can be used by the
page replacement algorithm or for PFIX / GETREAL requests. The page frames are
inserted in the PSQ; that means:

NPSQE' = NPSQE + q
len(PSQ)' = len(PSQ) + q

Additionally, the tasks waiting for free page frames must be posted if
NPSQE' > MINPSQE.

Depending on the setting of bits NFRP and NFVP in the PFTE, additional actions
may be taken when returning the PFTE to the PSQ:

NFVP=ON:
The freed page is requested by PFIX but the page frame does not belong to the
real partition. The task registered in the PCB (FIXTIB) of the partition that is identi-
fied by the PFTEPIK field in the PFTE is posted ready to run.

NFRP=ON:
The freed page frame is requested by PFIX. The address of the PFTE of the freed
page frame is inserted in PFTERSVD of PCB (see SVC X'43') and thus reserved
for the PFIX request. The task issuing the PFIX request is posted ready to run. All
page frames in the partition, except the reserved one, are set to temporarily fixable
(NFRP=OFF) before the next request is processed.

FREEREAL and PFREE Requests
The PFREE request frees p page frames and the PFIX counter of all affected
PFTEs is decreased:

PFTE.PFIXC' = PFTE.PFIXC - 1

The conditions for further processing and the processing itself is analogous to that
one of TFREE.

For handling of FREEREAL and PFREE requests see SVC X'36' (FREEREAL) and
SVC X'44' (PFREE) in “Supervisor Call Interrupt (SVC)” on page 29.

250 VSE/AF Supervisor DRM

RELPAG and FCEPGOUT Requests
For the handling of RELPAG and FCEPGOUT requests see SVC X'55' (RELPAG)
and SVC X'56' (FCEPGOUT), in “Supervisor Call Interrupt (SVC)” on page 29.

 INVPAGE Requests
The INVPAGE service is used to set a number of virtual pages to disconnected
with no copy on page-data set (for R5>=0) or to invalid (for R5<0). In addition for
R5>=0, the storage key provided in R5 is set for the area. The page table and
page frame table entries belonging to specific pages are initialized and the allo-
cation and deallocation of blocks on page-data set is done (using PTASG and
PTUSG routines).

The following parameters are passed to this routine:

RD: Address located in the first page of the area to be invalidated.
R1: Address located in the last page of the area to be invalidated.
R5:

positive or zero: storage key for disconnected pages.
negative: area to be deactivated.

RE: Return address
RB: Address of data space SCB (only if entered for data spaces)

If the area to be invalidated belongs to an active virtual partition or data space (i.e.
R5>=0) the corresponding page table entries (PTE) are set to X'00KP0400' where
K corresponds to storage key and where P indicates whether the page is fetch-
protected (P=8) or not (P=0). If the area to be invalidated belongs to a inactive part
of an virtual partition or data space (i.e. R5<0) the corresponding PTE's are set to
X'00002400'. Each PTE within the area defined by RD and R1 is initialized in that
way. If the page referred to by an entry is in processor storage, the page frame
table entry of the corresponding page frame is initialized as follows:

� The page frame is marked as unused (the PNRINV bit in S370FLG is set), and
the PFIX counter is set to zero.

� The page frame is removed from the page selection queue and enqueued to
the top of the invalid page frame queue.

� The page frame is cleared.

VIO POINT Request
The VIO storage is considered as an extension of the page data set. The size of a
VIO storage block is equal to the size of a page. To control the VIO storage a
number of pages in the address space is reserved for system usage. This area is
named V-POOL and is located at the end of the SVA (24-bit) area.
As a result of a VIO point request, the user gets access to a page out of V-POOL,
which contains the requested block of his VIO-file. The next VIO POINT request
frees implicitly the block obtained by the previous request (that means, the user is
no more allowed to access it directly).
The system tries to keep as much VIO-blocks as possible in real storage. There-
fore, if a block is freed it is not immediately written to page data set but the page
representing the block is set in connected state instead. If a page is requested by
a VIO POINT request and no free page exists in V-POOL, an available V-POOL
page is freed by disconnecting the page and setting the frame in 'block-connected'
state (i.e. the PFTEBLK bit is set on in the corresponding PFTE).

 Page Management 251

The page frames occupied by VIO storage blocks are written on the PDS due to
paging.

VIO storage is allocated in units of 64K. The total VIO storage is represented by an
allocation string pointed to by VIOCM.VIOSPBEG. One byte in this string repres-
ents 64K of VIO storage (X'FF' indicates an occupied segment of 64K and X'00'
indicates a free segment). VIOCM.VIOSPEND points to the last byte of the allo-
cation string.

The VIO storage is managed using the following tables:

� VTAB (V-POOL table) which contains one entry per page in V-POOL, see
Figure 199 on page 464.

� BLKTAB (block table) which contains one entry per block of VIO storage, see
Figure 201 on page 466.

� VIOTAB (vio identification block) one VIOTAB entry exists per open VIO-file,
see Figure 200 on page 465.

� FLSEGTBE (file segment-table) contains up to 8 segment table entries for a
VIO file.

One segment table entry is 2 bytes long and contains the total blocknumber
of the first block belonging to this segment. If more than 8 segments are
required, a new FLSEGTBE is queued to the existing one.

Handling of VTAB-entries (VTABEs):
Two queues are maintained to handle the VTAB-entries. One, the free queue, con-
tains all VTABEs which are not connected to a VIO storage block (VTUSCNT < 0).
The other, the available queue, contains all VTABEs which are connected to a VIO
storage block, but the user is not allowed to access it directly (VTUSCNT=0).
VTABEs which are active that means, the user is allowed to access the page
represented by the entry (VTUSCNT > 0) are not queued.
To allow enqueue at the bottom and dequeue at the top of the available queue,
begin and end of this queue is maintained. For the free queue only begin of queue
is maintained.
If due to a free the VTUSCNT reaches zero, the VTABE is enqueued on the bottom
of the available queue. If a free VTABE is requested and the free queue is empty
the first entry in the available queue is freed.

Note: As long as VTUSCNT>=0, the PTE belonging to the VPOOL-page of the
VTAB entry represents the status of the block (i.e. BLKSTAT=PGCON); or as long
as BLKSTAT=PGCON, the PTE represents the status of the block.

Valid states in VIO:

252 VSE/AF Supervisor DRM

IF BLKSTAT=PGCON /� page connected to block �/
 THEN VTBLKN(BLKPAG)=BLKN
 VTUSCNT>=�

BLKPAG el. VPOOL
 IF VTUSCNT=�
 THEN PAGSTAT=CON|DISC

IF PAGSTAT=CON THEN PFSTAT=(ADDR or CON)
 IF VTUSCNT>�

THEN PAGSTAT el. (ADDR,CON,DISC)
 IF PAGSTAT=ADDR
 THEN PFSTAT=ADDR
 IF PAGSTAT=CON
 THEN PFSTAT=CON

IF BLKSTAT=FRCON /� only frame connected to block �/
THEN BLKPAG = addr of frame connected to block

PFTEEPA#(BLKPAG) = total block number of connected block
PFSTAT(BLKPAG) = (ADDR and PFTEBLK) or (CON and PFTEBLK)

IF VTUSCNT>� /� VPOOL page in use �/
 THEN BLKSTAT(VTBLKN)=PGCON
 BLKPAG(VTBLKN)=VPAG
 IF PAGSTAT=ADDR
 THEN PFTEEPA#(PTEFRA)=VPAG
 PFSTAT(PTEFRA)=ADDR
 IF PAGSTAT=CON
 THEN PFSTAT(PTEFRA)=CON

IF VTUSCNT=� /� VPOOL page not in use, but still connected to block �/
 THEN BLKSTAT(VTBLKN)=PGCON
 BLKPAG(VTBLKN)=VPAG
 PAGSTAT=CON|DISC

IF PAGSTAT=ADDR THEN ��� ERROR ���
 IF PAGSTAT=CON

THEN PFSTAT()=(CON or ADDR)
� PFSTAT=CON if page-out in process
� PFSTAT=ADDR if PAGSTAT=CON due to VIOFREE, no page I/O

 in process

IF VTUSCNT<� /� VPOOL page is free �/
 THEN VTBLKN=NIL
 PAGSTAT=DISC

 Load Leveling
In regard to unnecessarily high paging activities in the system - that is thrashing -
the page management provides algorithms to measure and to reduce high paging
activities. This is done by the deactivation of one or more partitions/classes. Deac-
tivation means, that no paging requests are satisfied for the partition/class;
however, the partition/class is still in the dispatching queues and may be dis-
patched.

Note: Dynamic partitions are deactivated/reactivated by deactivating/reactivating
the whole class. Whenever partition is mentioned in this paragraph, static
partition or dynamic class is meant.

 Page Management 253

When thereafter the paging activities are dropped under an acceptable level, the
deactivated partition(s) can be reactivated.

Load Leveling Parameters
The load leveling algorithm is managed by so called load leveling constants which
are determined by size and speed of the processor type.

NPI Maximum number of page-ins during measurement interval
ACONST Maximum number of page-ins per second
MINTIME Minimum time interval for reactivation measurement

There are some further variables indicating actual values of the paging environ-
ment. They are listed below:

PIDCTR No. of page-ins for deactivation measurement interval
PIRCTR No. of page-ins for reactivation measurement interval
TIME1 Begin of reactivation interval
TIME2 Actual time at reactivation measurement
TIMEA Begin of deactivation interval
TIMEB Actual time at deactivation measurement
RRCTR Reentry rate during deactivation interval
RRCTRX Reentry rate during reactivation interval
EXPAVD Exponential average of NPI/(TIMEB-TIMEA)
EXPAVE Exponential average of PIRCTR/(TIME2-TIME1)
EXPAVR Exponential average of RRCTR/(TIMEB-TIMEA)
EXPAVX Exponential average of RRCTRX/(TIME2-TIME1)
REACTECB ECB set up for a timer interval; after posting the reactivation can take

place.

As system parameters the following variables are used by the load leveling rou-
tines:

IJBAPNO Number of active static virtual partitions plus number of active
dynamic classes

NDEACTP Number of deactivated static partitions plus number of deactivated
dynamic classes

Considerations to the Parameters

Exponential Average of Page-Ins per Second (for Deactivation)
The exponential average is a value which is calculated periodically (every time NPI
page-ins have occurred). The old exponential average is used to calculate the new
exponential average:

New exp. av. = EXPAVD'=(EXPAVD + (NPI/measurement period))/2

The measurement period is the time between the time when PIDCTR reached NPI
(and was reset to zero) and the moment when it reaches this value again.

When NPI page-ins have occurred for the first time after IPL, the old exponential
average does not exist. It is, therefore, set equal to NPI/measurement period and
then the above formula is applied. Analogously, the exponential average EXPAVR
is defined as the reentry rate RRCTR per second during the deactivation measure-
ment interval.

254 VSE/AF Supervisor DRM

 Reentry Rate
The reentry rate is equal to the number of page-ins of pages that were paged-out
earlier in the same measurement period. To establish this value, a reentry rate
counters RRCTR and RRCTRX are maintained. This counter is set to zero at the
start of each measurement period. If the page manager determines that a page
which is to be paged-in was paged-out earlier in the same measurement period, it
increases the reentry rate counter by one. This procedure makes use of the
reentry rate tables RTAB and RTABX, which are bit strings containing a bit for each
page in the virtual storage. At the beginning of a measurement period, all bits of
RTAB respectively RTABX are set to zero.

When the page manager determines that a page is to be read in from the page
data set, the bits in RTAB respectively RTABX corresponding to the page is tested.
If this bit is on, reentry is detected, and the reentry rate counter RRCTR respec-
tively RRCTRX is increased by one.

 Deactivation Algorithm
After completion of a page-in request the variable PIDCTR is increased by one and
tested if it is got equal to the constant NPI. If so, control is passed to the DEACT
routines and further condition for deactivation are checked:

if RTAB(page) = ON (page previously paged out)
then RRCTR' = RRCTR + 1
else RRCTR' = RRCTR

if RTABX(page) = ON (page previously paged out)
then RRCTRX' = RRCTRX + 1
else RRCTRX' = RRCTRX

Note: Here and in the following formulas the new value of the variable xxxx is
noted as xxxx', the original value is noted as xxxx.

if PIDCTR + 1 < NPI
then PIDCTR' = PIDCTR + 1
else PIDCTR' = �

 RTAB' = �
 RRCTR' = �

TIMEB' = actual time
 TIMEA' = TIMEB'

EXPAVD' = (EXPAVD + NPI/(TIMEB'-TIMEA))/2
EXPAVR' = (EXPAVR+RRCTR/(TIMEB'-TIMEA))/2
if EXPAVD' >= DCONST

then free page frames kept by FAST_CCW_X
if EXPAVD' >= ACONST and 2�EXPAVR' > EXPAVD'

 then deactivate

If the deactivation conditions are satisfied, the virtual partition with the currently
lowest dispatching priority is selected for deactivation. The set of these partitions
is given by the formula:

(part (deactivation)) =

(part | part = not(POWER or VTAM or ICCF or CICS or OCCF)
& part = virtual
& part = not(deactivated or TPIN or inactive)
& part = not(open ACBs))

 Page Management 255

if number (part(deactivation)) > 1
then DEACT_P' = min_disp_priority(part(deactivation))

REACTECB' = 4 sec
NDEACT' = NDEACT + 1
IJBAPNO' = IJBAPNO - 1

else DEACT_P' = not determined
REACTECB' = REACTECB

 NDEACT' = NDEACT
 IJBAPNO' = IJBAPNO

Deactivation means that no user page fault will be handled anymore. However, if
the deactivated partition owns the LTA or other system resources the deactivation
is delayed until the resources are released.

 Reactivation Algorithm
Whenever the dispatcher algorithm doesn't find a task ready to run the system
enters into ALLBOUND state. During this cycle a load leveling routine checks the
criteria for reactivation of partitions - if there are any. There are two different types
of reactivation:

� the u n c o n d i t i o n a l and
� the c o n d i t i o n a l reactivation.

Unconditional reactivation is done if:

� there is no active virtual partition or
� no I/O is queued to any PUBS other than CRT or TP devices

Conditional reactivation is done if:

� exponential average of page-ins not greater than CCONST and
� measurement interval not lower than MINTIME

After completion of a page-in request the variable PIRCTR is increased by one.

PIRCTR' = PIRCTR + 1

The conditions and actions are :

if IJBAPNO = � (no active virtual partition)
then unconditional reactivation
else if NDEACTP = � (no deactivated partition)

 then (no action)
else if (PUB(I/O) pending & not(CRT or TP device) &

not(U/R device under POWER))
then conditional reactivation
else unconditional reactivation

256 VSE/AF Supervisor DRM

TIME2' = actual time
if TIME2'-TIME1 < MINTIME

then if unconditional reactivation
then reactivate highest priority partition

 else (no reactivation)
else TIME1' = TIME2'

EXPAVE' = (EXPAVE + PIRCTR/(TIME2'-TIME1))/2
EXPAVX' = (EXPAVX + RRCTRX/(TIME2'-TIME1))/2
PIRCTR' = �
RRCTRX' = �

 RTABX' = �
if conditional activation

then if 4�EXPAVX' < EXPAVE'
then reactivate highest priority partition

 else (no reactivation)
else reactivate highest priority partition

Reactivation means:

 if reactivation
then REACT_P' = max_disp_priority(deactivated partitions)

DEACT_P' = not determined
DEACTP' = DEACTP - 1
IJBAPNO' = IJBAPNO + 1
REACTECB' = 4 sec

else (no action)

After successful reactivation all PDS devices are set to NONEMPTY in order to
continue with the possibly already queued page requests for the reactivated
partition(s).

The page manager will be activated if it is not yet active and gets control in any
case.

Exponential Average of Page-Ins per Second (for Reactivation)
The exponential average of page-ins per second for reactivation is calculated for
both conditional and unconditional requests. The calculation is similar to the calcu-
lation of the exponential average for deactivation:

New exp. av. = EXPAVE'=(EXPAVE + (PIRCTR/time interval))/2

Note that two other quantities are used. PIRCTR is the page-in counter for reacti-
vation. It is reset to zero after calculation of the new exponential average, and is
increased by one each time a page-in occurs. Time interval is the elapsed time
between the previous call of the reactivation routines and this call.

The highest priority partition which is deactivated is selected for reactivation. This
is done by scanning STATPOWN from left to right (decreasing priorities). When
the partition is found, it is reactivated. The byte for the partition in DEACTPSS is
posted X'FF' (was X'00'), and the entry in the system communications region indi-
cating the number of active virtual partitions is increased by one.

 Page Management 257

Teleprocessing Balancing (TP Balancing)
Teleprocessing balancing is a special way of load leveling which is triggered by:

1. The TBAL command (see z/VSE Operation, SC33-8309)

2. The combined use of SVC X'58' (TPIN) and SVC X'59' (TPOUT)

3. The occurrence of page faults.

In a system with both teleprocessing and concurrent batch processing the teleproc-
essing subsystem may, at certain times, monopolize system resources in order to
improve its response time. The performance of batch processing is decreased. TP
balancing works via the deactivation string DEACTPSS by deactivating one or more
of the batch partitions on request. SVC X'58' represents the request for TP Bal-
ancing, and is issued by the teleprocessing subsystem. After a certain amount of
processing has been completed, SVC X'59' must be issued in order to reset TP
balancing.

The TPBAL command allows the operator to turn this special load leveling on or
off. If it is off, SVC X'58' and SVC X'59' have no effect. The same is true if there is
no page traffic in the system, since a page fault may trigger deactivation. The oper-
ator may turn on TP Balancing by specifying the number of partitions in which
delayed processing can be tolerated. This number is stored in the TPBAL param-
eter in the SYSCOM.

Only as many lowest-priority partitions as indicated by the TPBAL parameter are
deactivated. The partition that issued the SVC X'58' is always protected from being
deactivated.

258 VSE/AF Supervisor DRM

 Storage Management

 General
The storage management part of the supervisor consists of the areas

� Static Storage Allocation

� Dynamic Storage Allocation

� 64-bit virtual storage allocation

Static and dynamic storage allocation has not changed through 64-bit virtual
storage allocation. Therefore, the figures in this chapter still describe the 31-bit
address space / partition layout and do not show the extended areas (beyond 2GB,
the bar).

Static storage allocation consists of the following routines:

ALLOCATE (SVC 83 - X'53')
This routine (de)allocate and reallocate partitions (virtual and real).

SETLIMIT (SVC 84 - X'54')
This routine changes partition sizes and/or sets the PFIX limits for a parti-
tion.

The ALLOCATE routine is located in the SVA(24-bit)-module IJBSSM, the
SETLIMIT routine in the SVA(24-bit)-module IJBSSM1. The interface between
IJBSSM/IJBSSM1 and the supervisor is established via various communication
areas and control blocks, especially the Storage Management Communication Area
(SMCOM) which is accessible via SYSCOM.IJBSMCOM and the Storage Manage-
ment Control Block (SMCB see Figure 114 on page 264) as part of the PCB.

Dynamic storage allocation provides work space for (reentrant) programs as well as
a dynamic load facility.

It comprises the z/VSE services

GETVIS (SVC 61 - X'3D')
FREEVIS (SVC 62 - X'3E')
CDLOAD (SVC 65 - X'41')
CDDELETE (SVC 65 - X'41')

and the services ported from OS/390

GETMAIN (allocate virtual storage)
expands in OS/390 SVC 4, SVC 10, SVC 120 depending on the chosen format
FREEMAIN (free virtual storage)
expands in OS/390 SVC 5, SVC 10, SVC 120 depending on the chosen format
STORAGE OBTAIN (allocate virtual storage)
expands in PC X'30B'
STORAGE RELEASE (free virtual storage) expands in PC X'311'

These services have been ported to VSE with VSE/ESA 2.4.

They are available both in the OS390 emulation mode and in the VSE native envi-
ronment. OS/390 services and VSE services can be mixed in any combination.

© Copyright IBM Corp. 1985, 2013 259

Note: Storage obtained by VSE services (GETVIS) can only be freed by VSE ser-
vices (FREEVIS) and vice versa. The reason is the different subpool concept in
OS/390 and VSE.
The OS390 requests are mapped to the GETVIS/FREEVIS interface and then proc-
essed the same way as a GETVIS/FREEVIS request (see “z/OS (OS/390) Storage
Management Services” on page 289).

64-bit virtual storage allocation was introduced with z/VSE 5.1. It allows to extend
the 31-bit address beyond 2GB (the bar). Virtual storage above the bar is available
through the IARV64 macro. The IARV64 macro creates and frees storage areas
above the 2GB address and manages the physical frames behind the storage The
IARV64 macro expands in PC x'90E' The IARV64 macro was ported from z/OS. A
subset of parameters is supported by z/VSE. IARV64 requests are handled by
module $IIARV64, which is located in SVA-31. Storage areas allocated by IARV64
are called memory objects. z/VSE supports both shared and private memory
objects.
The 64-bit support is described in detail in the z/VSE Extended Addressability
manual.
Control information for the extended shared area is located in System Getvis 31-bit
and anchored in SMCOM.SMCCIESA. The area is pageable.
Control information for the extended private area is located at at the begin of the
extended private area (that is beyond 2GB) and is anchored in PCBX.PCBXPCTL.
The area is pageable.
$IIARV64 executes partly in AMODE64.
Gates used:

� A request for the extended shared area is gated through SRQIARV gate.
� A request for the extended private area is gated through the partition getvis

gate SRQGTVS, that is it cannot run in parallel with a partition getvis request.

Static Storage Allocation - Static Partition Support
The external interface for static partition allocation (virtual/real) are the commands
ALLOC/ALLOC S/ALLOC R. These commands invoke the ALLOCATE macro which
expands into SVC X'53'.
There are 12 static spaces supported (additionally to the real ('R ') space and the
shared area ('S ')), so that each static partition can be allocated within its own
address space.
The space identifiers for the static spaces are '0 ', '1 ',.. '9 ','A ', 'B '.
For each static partition there is a corresponding default space id, which is taken if
no space id has been specified in the ALLOC command.

Partition Default Space Id
 BG �
 F1 1
 . .
 . .
 FA A
 FB B

260 VSE/AF Supervisor DRM

Static Storage Allocation - Dynamic Partition Support
There is no external command interface for dynamic partition allocation. Dynamic
partition allocation is requested internally by VSE/POWER with SVC X'53' when a
(POWER) job is scheduled for a dynamic partition.
Allocation values as well as the permanent SIZE value are taken from the class
table.
The SIZE parameter in the EXEC statement has the same meaning as for static
partitions.
During (De)Allocation various supervisor services are called. These are:

 � TSRALLOC
to check the class and to reserve a dynamic partition.

 � TSRALLER
to free the reserved partition in case an error occurred during allocation.

 � TSRACT
to activate the dynamic partition.

 � TSRDEALL
to check the PIK and to deactivate the dynamic partition.

Dynamic Partition Allocation - Control Block Handling
The control blocks for a dynamic partition are allocated in a special subpool in the
system GETVIS area during allocation processing and freed during deallocation
processing. The subpool has a part in the system GETVIS area (24-bit) for control
blocks which must be located below 16 MB and a part in the system GETVIS area
(31-bit) for control blocks which may be located anywhere in storage.
To reduce calculation of storage requirements the requirement for the fixed length
control blocks (PCB, COMREG,..) is calculated during supervisor generation.
During IPL, the requirements for machine dependant and IPL dependant (for
example, number of added devices) control blocks are added.
During allocation processing only the class dependant parts need to be calculated.
This is done during the first allocation request for a class. The length is then stored
in the class PCB. After a PLOAD request the length is cleared and must be calcu-
lated again.
Normally three GETVIS requests are done: One for fixed control blocks (24-bit) one
for fixed control blocks (31-bit) and one for the non fixed ones. The fixed control
blocks are located in the partition-related subpool IJBP<syslog id>, the non fixed
ones in the system-related subpool IJBNFC.
Since an allocation unit for a subpool is one page it is calculated whether the non
fixed part and the fixed part (31-bit) fits in the already needed pages for the fixed
request (24-bit). In this case only one subpool request is done.
During deallocation processing of a partition the whole subpool IJBP<syslog id> is
freed. In the subpool IJBNFC only the area reserved for the partition is freed.

Note: The PCB and SCB may not cross a page boundary (Page Manager
dependency).

Interface IJBSSM - VSE/POWER
POWER does not use the ALLOCATE macro.

Input: Register 1

Register 1 = x'800000'<class> (Allocation Request)
Register 1 = x'0000< pik > (Deallocation Request)

 Storage Management 261

Output: Register 15 (Return Code)
Register 1 (only for allocation request)

Register 1 = PCEPTR (Return Code 0)
Register 1 = x'....'<syslog id> (Return Code 28)
Register 1 = undefined for all other return codes

The following return codes apply only for dynamic partition (de)allocation. They are
completely handled by VSE/POWER (messages, etc.).

� Register 15 = 0 (De)Allocation completed successfully

� Register 15 = 8 Invalid Class (Allocation request)
Invalid PIK (Deallocation request)

The following return codes apply only for an allocation request.

� Register 15 = 12 Class disabled for dynamic partitions

� Register 15 = 16 No free partition within class available

� Register 15 = 20 No free partition available in the system

� Register 15 = 24 Not enough virtual storage available

� Register 15 = 28 Subpool IJBPxx does already exist

� Register 15 = 32 Not enough system GETVIS storage available

� Register 15 = 36 Not enough PFIX storage available

� Register 15 = 60 Not enough storage for vendor control blocks

Static Storage Allocation - (De-)Allocation of Page Manager Tables
The following applies for non-shared partitions only, since the page manager tables
for the shared areas are allocated during IPL.

The interface between IJBSSM and the supervisor is the macro SPMRSERV
whereas the page manager itself is invoked by using the macro GETPMT. When
the first partition within a space (virtual/real) is allocated (SCB.SCBVSTO=0), the
page manager is called to allocate the tables for this space (SPMRSERV
ID=ALLPMRT). They are allocated within a page manager address space.
Since the page tables for the private area must be contiguous, the maximum allo-
cation value for the private area must be determined during space creation. This
value is passed to the page manager in SCB.SCBPASZ and would normally be
PASIZE. To avoid a waste of storage in case of smaller partitions the following
rules apply:

� static (virtual) partitions
– SCBPASZ = PASIZE if space id is specified explictly
– SCBPASZ = ALLOC value if space id is omitted (defaults used)

� static (real) partitions
– SCBPASZ = RSIZE

 � dynamic partitions
– SCBPASZ = allocation value as specified in the class table

For that reason, it is not possible to increase the initial allocation value of a partition
that was allocated by using defaults.
Exception:
For space '0', page tables are allocated for PASIZE. Therefore it is possible to
increase the size of the BG partition even it is a default space.

262 VSE/AF Supervisor DRM

When the last partition within a space is deallocated, the page manager tables are
freed by using the macro SPMRSERV ID=FREPMRT.
They are not freed when the allocation value decreases but the space still exists.

Static Storage Allocation - Size Processing
With the SIZE command, the area within the partition, that is available for program
execution, is changed. This change is permanent. The permanent start address of
the GETVIS area (SMCB.SMVGVIS) is set. The command is available for static
partitions only. For dynamic partitions the permanent SIZE value is taken from the
class table.
The SIZE parameter of the EXEC statement has the same function but the change
is temporary (only for the current job step). The temporary end of the program area
is set (COMREG.PPEND). Temporary start of the GETVIS area is PPEND + 1.
Both the SIZE command and the SIZE operand invoke the SETLIMIT macro which
expands into SVC X'54'.
A SIZE value, that does not leave the minimum GETVIS area of 48KB below 16MB
is rejected.

Static Storage Allocation - SETPFIX Processing
With the SETPFIX command the PFIX limits for a partition are set
(partSMCB.SMAXPFIX, partSMCB.SMAXPFX3). These limits determine how many
frames are available for PFIX processing. All frames, that are not reserved for parti-
tion PFIX processing are made available for system use (added to
sysSMCB.SMAXPFIX, sysSMCB.SMAXPFX3).

Static Storage Allocation - Partition Information
The actual boundary between the partition and its GETVIS area can be found in the
corresponding partition communication region at label PPEND (PPEND + 1 = begin
of partition GETVIS area). All information about permanent partition boundaries
can be found in the Storage Management Control Block (SMCB), (see Figure 114
on page 264), which is part of the Partition Control Block (PCB). An address table,
pointed to by SYSCOM.IJBASMCB (SYSCOM.ASMCB) provides addressability to
the specific SMCB entries.

 Storage Management 263

SMCB Address Table Format:
┌─────────┬─────────┬─────────┬──��────┬──────────┬──────────┬──��────┬─────────┐
│Address │ Address │ Address │ │ Address │ Reserved │ │Reserved │
│of System│ of BG │ of FB │ │ of F1 │ for dyn. │ │for dyn. │
│Entry │ Entry │ Entry │ │ Entry │ part. │ │part. │
└─────────┴─────────┴─────────┴──��────┴──────────┴──────────┴──��────┴─────────┘
� 4 8 12 52 52+(n-1)�4

 n = NPARTS(SYS NPARTS=) - no of static partitions (12)

┌───┐
│ SMCB Entry Format (SMCB) │
├─────┬─────┬──────────┬──┤
│ DEC │ HEX │ Label │ Description │
├─────┼─────┼──────────┼──┤
│ � │ � │ SMAXPFIX │ Partition: PFIX (24-bit) limit in pages │
│ │ │ │ System : SVA(24-bit) PFIX limit in pages │
│ 4 │ 4 │ SMPFIX │ Partition: PFIX (24-bit) PFIX count in pages │
│ │ │ │ System : SVA (24-bit) PFIX count in pages │
│ 8 │ 8 │ SMAXPFX3 │ Partition: PFIX (31-bit) limit in pages │
│ │ │ │ System : SVA(31-bit) PFIX limit in pages │
│ 12 │ C │ SMPFIX3 │ Partition: PFIX (31-bit) PFIX count in pages │
│ │ │ │ System : SVA (31-bit) PFIX count in pages │
│ 16 │ 1� │ SMPSAVE │ Partition: Save area address │
│ │ │ │ System : Reserved │
│ 2� │ 14 │ SMVGVIS │ Partition: permanent start of GETVIS area │
│ 24 │ 18 │ SMVPBEG │ Virtual Partition Begin Address │
│ 28 │ 1C │ SMVPEND │ Virtual Partition End Address + 1 │
│ 32 │ 2� │ SMRPBEG │ Real Begin Address │
│ 36 │ 24 │ SMRPEND │ Real End Address + 1 │
├─────┼─────┼──────────┴──┤
│ 4� │ 28 │ �──── Length of SMCB │
└─────┴─────┴───┘

Figure 114. Format of Storage Management Control Block (SMCB) and SMCB Address Table

264 VSE/AF Supervisor DRM

Dynamic Storage Allocation
Dynamic storage allocation performs the management of the various GETVIS
areas. Furthermore it includes a dynamic load facility.

Address Space Layout and GETVIS Areas
There are 3 different GETVIS areas within an address space
� Partition GETVIS area

The partition GETVIS area may cross the 16MB line depending on the allo-
cation value. The partition GETVIS control information (PCI) is located at the
high end of the partition.

� System GETVIS area
There is a (24-bit) and a (31-bit) system GETVIS area, whereas the (31-bit)
area may not exist or may reside partly or totally below 16MB. The system
GETVIS control information (SCI) is located at the begin of the (31-bit) area for
both the (31-bit) and the (24-bit) area. It is located at the begin of the (24-bit)
area, if the (31-bit) area does not exist or is to small to hold the control informa-
tion.

� Dynamic Space GETVIS area (only for dynamic partitions)
There is only a (24-bit) Space GETVIS area. The control information (DCI) is
located at the begin of the area. The Space GETVIS area is an extension to
the System GETVIS area (with similar properties) and has been introduced to
reduce System GETVIS requirements.

up to ┌─────────────────────┐ ───┐
 2GB ││ system GETVIS area │ │ SCI = system GETVIS control
 ││ (31-Bit) ┌───┤ │ information
 │
 LOC=ANY │SCI│

├─────────────────┴───┤ shared area (31-Bit)
 │ │ �
 ├─────────────────────┤ ───┘
 │//////invalid////////│
 ├─────────────────┬───┤

│ G │ │PCI│ PCI = partition GETVIS control
 │ E │LOC=ANY └───┤ information
 │ T │ │
16MB │......│..............│

│ V │ � │ �
│ I │ │ LOC=BELOW │ │ �= 48KB
│ S
 │ │

│.─.─.─.─.─.─.─.─.─.─.│ partition start + size

 │ │
 │ program area │
 ├─────────────────────┤ partition start

│ � dynamic space ┌───┤
│ │ GETVIS │DCI│ DCI = dynamic space GETVIS control

 ├─────────────────┴───┤ ───┐ information
 ├─────────────────────┤

│� system GETVIS area │ shared area (24-Bit)
 ││ (24-bit) │ �

││ LOC=BELOW (ANY) │ │
 ├─────────────────────┤ │

� └─────────────────────┘ ───┘

Figure 115. Dynamic Space/Partition Layout (with System GETVIS Area(31-Bit) Located
Above 16MB)

 Storage Management 265

up to ┌─────────────────────┐ ───┐
 2GB ││ system GETVIS area │ │ SCI = system GETVIS control
 ││ (31-Bit) │ │ information
 16MB ││....................│ │
 ││ ┌───┤ │
 │
 LOC=ANY │SCI│

├─────────────────┴───┤ shared area (31-bit)
 │ │ �
 ├─────────────────────┤ ───┘
 │/////////////////////│
 │//////invalid////////│
 │/////////////////////│
 ├─────────────────┬───┤

│ G � │PCI│ PCI = partition GETVIS control
 │ E │ └───┤ information

│ T │ LOC = ANY │
│ V │ LOC = BELOW │

 │ I │ │
 │ S │ │

│.─.─.─.─.─.─.─.─.─.─.│ partition start + size
 │ │
 │ F2 │
 ├─────────────────────┤ partition start
 │ │
 │ │
 │ F1 │
 ├─────────────────────┤ ───┐
 │ │ │
 ├─────────────────────┤

│� system GETVIS area │ shared area (24-bit)
 ││ (24-Bit) │ �

││ LOC=BELOW (ANY) │ │
 ├─────────────────────┤ │
 │ │ │

� └─────────────────────┘ ───┘

Figure 116. Static Space/Partition Layout (System GETVIS Area(31-Bit) Located Partly
below 16MB)

 GETVIS Processing
From the internal point of view, a GETVIS area is divided in 2 parts:

1. Storage available for the user (from now on called GETVIS area)

2. Control information (CI), which reflects this storage and shows free/occupied
areas

GETVIS/FREEVIS processing is mainly done in the CI, that means:

 � GETVIS request
It is checked whether the CI shows enough free storage to satisfy the request.
If yes, the free storage is marked as occupied in the CI and the address within
the GETVIS area, that is reflected by the free storage in the CI, is calculated.

 � FREEVIS request
The GETVIS area to be freed is mapped to the CI and the occupied storage in
the CI is shown as free.

266 VSE/AF Supervisor DRM

Mapping between GETVIS Area and Control Information
The GETVIS area is managed on a page base, that means, it is logically divided
into pages (4KB). Each page is described by a page descriptor, called subpool
chain table entry (see Figure 124 on page 283). All chain table entries build the
subpool chain table. They are chained in ascending order. BSUBPCHN is the begin
of the subpool chain table.
Since a page is a too rough unit, each page (and therefore the GETVIS area) is
sub-divided in allocation units (which is 128 byte in the partition and 16 byte in the
SVA/SPACE GETVIS area). The allocation units of the GETVIS area are mapped
by a bit string called VISTAB (virtual storage table) pointed to by BVISTAB. Each
bit in the VISTAB represents an allocation unit (128(16) byte).
A GETVIS request can be done in multiple of allocation units (it is always rounded
to the next higher multiple of an allocation unit).
Relation between GETVIS Area, page descriptor and VISTAB
The following Figure 117 shows a GETVIS area which is divided in n pages
P1,..,Pn. Each page is sub-divided in m allocation units (m=32(4096/128) for parti-
tion, m=256(4096/16) for SVA/Space). Since each allocation unit is represented by
a bit in the VISTAB, a page is represented by m (m/8) VISTAB bits (bytes).

Vistab bit Bxy represents allocation unit Pxy, x=1,..,n, y=1,..,m
Bxy = 1: allocation unit Pxy is occupied
Bxy = �: allocation unit Pxy is free

The mapping between page descriptor and VISTAB is done by SPCHVSTB, which
is the byte offset of the page in the VISTAB.

GETVIS Area Page Descriptors Vistab

 ┌───────────┐ ┌─────┐
│Desc. Pn │ │ Bnm │

 │ │ ├─────┤
│ │ byte offset= │ ... │

┌──────────┐ │ SPCHVSTB │────────────┐ ├─────┤
│ Pn│ │ │ (n-1)�m/8 │ │ Bn1 │
├───┬──┬───┤ └───────────┘ └───�├─────┤
│Pn1│..│Pnm│ │ ... │
├───┴──┴───┤ │ ... │
│ │ ┌───────────┐ ├─────┤
│ │ │Desc. P2 │ │ B2m │
│ │ │ │ ├─────┤
│ │ │ │ byte offset= │ ... │
├──────────┤ │ SPCHVSTB │────────────┐ ├─────┤
│ P2│ │ │ 1�m/8 │ │ B21 │
├───┬──┬───┤ ├───────────┤ └───�├─────┤
│P21│..│P2m│ │Desc. P1 │ │ B1M │
├───┴──┴───┤ │ │ ├─────┤
│ P1│ │ │ byte offset= │ ... │
├───┬──┬───┤ │ SPCHVSTB │────────────┐ ├─────┤ ┌───────┐
│P11│..│P1m│ │ │ ��m/8 │ │ B11 │ │BVISTAB│
└───┴──┴───┘ └───────────┘ └───�└─────┘ �─────└───────┘

Figure 117. Relation Page Descriptor - VISTAB

 Storage Management 267

 Subpool Concept
A subpool is identified by a name and consists of a number of pages belonging to
that subpool. The number depends on the GETVIS/FREEVIS requests given for
that subpool. A page cannot be shared between different subpools. If a page does
not belong to a subpool it is enqueued to the pool of empty pages (free queue).
GETVIS works on a subpool base, that means, each GETVIS request is done for a
certain subpool, either specified explicitly by the user through the GETVIS SPID
operand or for the general subpool 0 if the SPID operand has been ommitted.
Each subpool is described by an entry in the subpool index table (see Figure 125
on page 283). The entry is built when the first request for a subpool is done.
The pointer to the page descriptor of the first subpool page (SPITFRST) is part of
the subpool index table entry. The page descriptors of all pages belonging to a
subpool are chained together by forward (SPCHFORW) and backward
(SPCHBACK) pointers contained in the page descriptor. Therefore with SPITFIRST
all other page descriptors of a subpool can be accessed. They are chained in
ascending order.
After initialization of the GETVIS area all page descriptors are chained together in
ascending order and build the subpool chain table. All pages belong to the pool of
empty pages. This pool is not represented by an entry in the subpool index table
but by a pointer (FIRSTPNT) to the first free page (page descriptor). After initializa-
tion this is the begin of the subpool chain table (BSUBPCHN). A page is free if all
VISTAB bits representing this page are zero. The page descriptor of this page is
then enqueued to the pool of empty pages. If at least one allocation unit within a
page is used (corresponding VISTAB bit set), the page descriptor of this page is
enqueued to a subpool.
When the first request for a subpool is done an entry is built in the subpool index
table and the number of pages necessary to satisfy the request are taken from the
free queue and enqueued to the subpool. Enqueue/dequeue means that the
forward and backward pointers of the affected page descriptors are updated. Note,
that the ascending order is always kept. As many bits as allocation units are
requested, are set in the VISTAB. If the request is not a multiple of a page there is
free storage within the pages enqueued for the subpool. For this storage the corre-
sponding VISTAB bits are not set.
Figure Figure 118 on page 269 shows the subpool chain table with 3 pages
enqueued to subpool S1 and one page enqueued to subpool S2. All other pages
belong to the pool of empty pages (free queue).

268 VSE/AF Supervisor DRM

Subpool chain table (page descriptors)

 ┌───────────┐
│ Page n │

┌─────────│ SPCHFORW │�───────┐ page belongs to
 │ ┌─�│ SPCHBACK │──┐ │ free queue

│ │ └───────────┘ │ │
│ │ ┌───────────┐ │ │
│ │ │ Page n-1 │ │ │
│ └──│ SPCHFORW │�─┘ │ page belons to

 │ ┌─�│ SPCHBACK │──┐ │ free queue
│ │ └───────────┘ │ │

 │ │
 │ │
 │ │ │ │

│ │ ┌───────────┐ │ │
┌────────┐│ │ │ Page 6 │ │ │
│S2 ││ └──│ SPCHFORW │�─┘ │ page belongs to
│SPITFRST││ ┌─�│ SPCHBACK │──┐ │ free queue
└────┬───┘│ │ └───────────┘ │ │
 └────┼──────┼─�┌───────────┐ │ │

│ │ │ Page 5 │ │ │
│ ┌─┼──│ SPCHFORW │�─┼─┐ │ page belongs to

 │ └─┼─�│ SPCHBACK │──┼─┘ │ subpool S2
│ │ └───────── │ │
│ │ ┌───────────┐ │ │
│ │ │ Page 4 │ │ │

┌────────┐│ ┌───┼──│ SPCHFORW │�─┼───┐ │ page belongs to
│FIRSTPNT││ │ ┌─┼─�│ SPCHBACK │──┼─┐ │ │ subpool S1
└─────┬──┘│ │ │ │ └───────────┘ │ │ │ │

└───┼──┼─┼─┼─�┌───────────┐ │ │ │ │
│ │ │ │ │ Page 3 │ │ │ │ │
│ │ │ └──│ SPCHFORW │�─┘ │ │ │ page belongs to

 └──┼─┼───�│ SPCHBACK │────┼─┼─┘ free queue
│ │ └───────────┘ │ │
│ │ ┌───────────┐ │ │

┌─────────┐ │ │ │ Page 2 │ │ │
│S1 │ │ └────│ SPCHFORW │�───┘ │ page belongs to
│SPITFRST │ │ ┌───�│ SPCHBACK │────┐ │ subpool S1
└──────┬──┘ │ │ └───────────┘ │ │

─┬───┼─┼───�┌───────────┐ │ │

│ │ │ │ Page 1 │ │ │ page belongs to
┌────────┴┐ │ └────│ SPCHFORW │�───┘ │ subpool S1
│BSUBPCHN │ └─────�│ SPCHBACK │──────┘
└─────────┘ └───────────┘

Figure 118. Subpool Concept

 Subpool properties
Within each GETVIS area there may be one or more subpools, which are managed
separately. Each of the subpools has the following properties:

� A subpool may be created within the partition, system or space GETVIS area.
� The maximum number of subpools for each partition/space GETVIS area is

128. For the system GETVIS area it is 128 + (4 * number of dynamic parti-
tions).

� Each subpool consists of a number of pages which are allocated dynamically.
� All GETVIS requests which do not specify a specific subpool are satisfied within

a general subpool.

 Storage Management 269

� Subpool pages are only contiguous if they are requested contiguous, that
means, when requesting more than one page.

� Empty pages are automatically deallocated from the subpool.
� Each task may own one subpool within a partition for exclusive use.
� Each subpool, except the general and the exclusive subpool, is defined by

means of a 8-byte name which consists of a 6-byte user supplied name and a
concatenated 2-byte system supplied identifier.

� All subpools, except the exclusive one, may be accessed by each task of the
corresponding partition.

� Single SVA subpool pages may be PFIXed if requested by the caller.
� SVA subpools may be fetch protected (only for internal GETVIS calls).
� SPACE subpools may be fetch protected or protected with the key of the parti-

tion.
� Subpools may be created controlled, that means, subpool access is only

allowed with the correct index.
� an entry in the subpool index table is deleted by a FREEVIS subpool request. It

is not deleted when the last page of the subpool is freed.

 GETVIS Algorithm
First Fit Algorithm
Since at least one allocation unit is occupied within a page belonging to a subpool,
a request of at most 2 pages minus 2 allocation units can be fulfilled within an
existing subpool. The GETVIS algorithm for this kind of requests is implemented
as a first fit algorithm, meaning that the first gap within the subpool, that meets the
requirements, is taken to satisfy the request. To avoid an unnecessary search from
the begin of the subpool, a current pointer (see Figure 119 on page 271) is main-
tained, saying that there is no gap in the subpool before the current pointer. If the
current pointer is set optimally it points to the first gap in the subpool. The search
is done from the current pointer till the end of the subpool until the requested
number of contiguous free VISTAB bits is found. If there is not enough free space
within the subpool MIN1,MIN2 processing takes place.

MIN1,MIN2 Processing
If the request can not be satisfied within the existing subpool, pages from the free
queue must be taken. It is tried to get along with n-2 (n-1) pages from the free
queue by involving the existing subpool pages, where n is the requested length
rounded on the next multiple of a page (length =x.y pages => n=x+1).

This is basically how GETVIS works.

Definition of the Current Pointer (CUR_POINT)
The current pointer points to the first free storage in the subpool. Since a page is
represented by an entry in the subpool chain table and m (m/8) VISTAB bits (bytes)
the CUR_POINT is a triple consisting of

 � SPITCURP
– pointer to the chain table entry of the first page in the subpool with a pos-

sible gap. SPCHVSTB gives the offset of this page in the VISTAB.
 � SPITRLVB

– SPITRLVB is the first byte within the page's VISTAB representation where
not all bits are set. (SPITRLVB = 0,,,,m/8-1).

 � SPITBIT0
– mask for bits set in byte SPITRLVB

270 VSE/AF Supervisor DRM

The following figure shows a subpool whose first page is page x-1 (page 1 till page
x-2 belong to other subpools/empty queue), and whose second page is page x,
which has free storage.

 subpool index page descriptors VISTAB
 table entry of subpool

 │ │
 │ │
 │ │
 ├──────┤
 │ 1/� │
 │ . │
 │ 1/� │

┌──────────┐ │ � │ byte 2 of page x
│ SPITBIT� │ SPITBIT� = x'C�' │ 1 │

 │ │ ┌──┐ │ 1 │
│ SPITRLVB │───────────────────────────│+ │──�├──────┤
│ SPITCURP │───────┐ └─┬┘ │ 1 │
│ SPITFRST │───┐ │ │ │ . │ byte 1 of page x
│ │ │ │ ┌───────────┐ │ │ 1 │
└──────────┘ │ │ │ page x+y │ │ ├──────┤

 │ │ │ │ │ │ 1 │
│ │ └───────────┘ │ │ . │ byte � of page x

 │ │ │ │ 1 │
 │ │ │───�├──────┤
 │ │ │ │ │
 │ └─�┌───────────┐ │ │ │

│ │ page x │ ┌──┐ │ │
│ │ SPCHVSTB │────�│+ │ │ │

 │ └───────────┘ └┬─┘ │ │
 └─────�┌───────────┐ │ │ │

│ page x-1 │ ┌───────┐ │ │
│ SPCHVSTB │ │BVISTAB│ │ │

 └───────────┘ └───────┴─�──────┘

GETVIS area
 ┌──┐
 │ │
 ├───────────────────────────┬──────────────────────────┤
 │ Page x-1 │ Page x │
 ├───────────────────────────┼────┬────┬────┬──────┬────┤

│ │Px1 │Px2 │Px3 │ │Pxm │
│ │not │not │free│ │ │

 │ │free│free│ │ │ │
 ├───────────────────────────┴────┴────┴────┴──────┴────┤
 │ │
 └──┘

Figure 119. Definition of the Current Pointer

 Storage Management 271

 31-Bit Addressing
With the introduction of an address space size of up to 2GB a GETVIS area may
have a part below 16MB (GETVIS area 24-bit) and a part above 16MB (GETVIS
area 31-bit) from now on called below and above area (see Figure 115 on
page 265).
It must be distinguished between the two areas, since programs which cannot
process 31-bit addresses (LOC=BELOW request) must be served from the below
area, whereas programs that can handle 31-bit addresses (LOC=ANY request) are
served preferred from the above area (see Figure 115 on page 265).

� the above area may not exist

– partition is totally below 16MB
– Space GETVIS area (24-bit area only)

� if both areas exist, they may be contiguous (partition GETVIS area) or not
(system GETVIS area (24-bit) and system GETVIS area (31-bit)).

External point of view
Allocation of GETVIS for LOC=BELOW requests is done bottom-up, following the
first-fit algorithm.
Allocation of GETVIS for LOC=ANY requests is done top-down, following the first-fit
algorithm.
Internal point of view
From the internal point of view, the below and above area are considered as two
independent GETVIS areas, each of one is described by some control information.
Since the GETVIS algorithm works on the control information and passes the
address in the GETVIS area, that maps the found location in the control informa-
tion, the GETVIS algorithm works basically the same for both LOC=BELOW and
LOC=ANY requests. The only change is in the address calculation. This means:

� for LOC=BELOW request, search is done in the control information that
describes the below area.

� for LOC=ANY requests, search is done in the control information that describes
the above area following the same algorithm as for LOC=BELOW requests. If
a free area is found, the address is calculated as for below and 'mirrored' at the
end of storage.
If the above area is exhausted, GETVIS searches in the control information
describing the below area.

Exception

If it is a partition request, boundary crossing is tried (see “Boundary Crossing
(Partition Requests only)” on page 276).

 Control Information
Although the GETVIS area is artificially split in two separate areas, there is only
one control information.
The control information (described by macro MAPGVCTL) contains general infor-
mation valid for both the below and above area, and data describing either the
below or the above area (area 2 and 3 in Figure 120 on page 273). Within the
mapping structure both areas can be accessed by labels. Depending on the LOC
request GETVIS works either with the data describing the below or the one
describing the above area. If GETVIS would work either with area 2 or area 3, most
routines would have to be duplicated using the different labels. To avoid this and to
allow that both requests can be treated basically the same way there is a so-called

272 VSE/AF Supervisor DRM

active area (area 2) (see Figure 120 on page 273) with which GETVIS works.
Since area 2 contains normally the below data, this means, that for a LOC=ANY
request the above data have to be moved from area 3 to area 2. A third area (area
1) is needed to save the below data. So the above data can be accessed by using
the labels for below. There is no need to distinguish in the GETVIS code between
the different requests. Of course, if a LOC=ANY request is followed by a
LOC=BELOW request, area 2 has to be set up again for below.
So, depending on the LOC request, the active area has to be set up. Flag
GVFVFLGS.GVFVABVE shows whether the active area is set up for below or
above.
GVFVFLGS.GVFVABVE=ON : area 2 contains above data
GVFVFLGS.GVFVABVE=OFF: area 2 contains below data

CI, as set up during CI, as set up
 initialization or for LOC=ANY
 for LOC=BELOW

 ┌──────────────────┐ ┌───────────────────┐
 │ general │ │ general │
 │ information │ │ information │
 │ │ │ │
 ├──────────────────┤ ├───────────────────┤

│ area 1 │ │ area 1 │
│ (data not │ │ (saved below data)│

 │ meaningful) │ │ │
 ├──────────────────┤ ├───────────────────┤

│ area 2 (active) │ │ area 2 (active) │
│ data for below │ │ data for above │

 │ area │ │ area │
 ├──────────────────┤ ├───────────────────┤

│ area 3 │ │ area 3 │
│ data for above │ │ (data not │

 │ area │ │ meaningful) │
 ├──────────────────┤ ├───────────────────┤
 │ general │ │ general │
 │ information │ │ information │
 │ │ │ │
 └──────────────────┘ └───────────────────┘

Figure 120. Control Information (MAPGVCTL) - Global Structure

A subpool can contain pages both from the below and the above area.
Therefore, subpool information like first/current pointer must be available twice.
Following the same principle as for the CI, the subpool CI (subpool index table
entry) contains an active area, which has to be set up for below or above according
to the set up of the CI. SPITFLG1.SPSWABVE shows whether the subpool is set
up for below or above. The area to save the subpool fields during rotation is not
part of the subpool index table entry, since it must be available only once. Note,
that the same is true for the free queue, where FIRSTPNT/AFRSTPNT points to the
first page descriptor within the free queue for the below/above area.

 Storage Management 273

 Subpool index Page Descriptors VISTAB
table entry of subpool S1

 ┌─────┐ ┌───┐
 ┌─────────────┐ ┌────│Last │�───┐ │ │
 │ │ │ ┌─�│page │──┐ │ │ │
 │ S1 │ │ │ └─────┘──┼─┼──────�└───┘
 │ │ │ │ │ │
 │ │ │ │ │ │
 │ ASPTCURP │───────┼───� │
 │ ASPTFRST │──┐ │ │
 │ │ │ │ │ │ │
│ SPITCURP │─┐│ │ │ ┌─────┐ │ │ ┌───┐
 │ SPITFRST │─┤│ │ └──│2nd │�─┘ │ │ │
 │ │ ││ │ ┌─�│page │──┐ │ │ │
 └─────────────┘ ││ │ │ └─────┘──┼─┼──────�└───┘
 ││ │ │ │ │
 │└────┼─┼─�┌─────┐ │ │ ┌───┐

│ │ └──│First│�─┘ │ │ │
 │ └───�│page │────┘ │ │
 │ └─────┘───────────�└───┘ Above Part
 │
 //
 │ ┌─────┐ ┌───┐
 │ ┌────│Last │�───┐ │ │

│ │ ┌─�│page │──┐ │ │ │
 │ │ │ └─────┘──┼─┼──────�└───┘
 │ │ │ │ │
 │ │ │ │ │
 │ │ │
 │ │ │
 │ │ │ │ │

│ │ │ ┌─────┐ │ │ ┌───┐
 │ │ └──│2nd │�─┘ │ │ │

│ │ ┌─�│page │──┐ │ │ │
 │ │ │ └─────┘──┼─┼──────�└───┘
 │ │ │ │ │
 └─────┼─┼─�┌─────┐ │ │ ┌───┐

│ └──│First│�─┘ │ │ │
 └───�│page │────┘ │ │
 └─────┘───────────�└───┘ Below Part

Figure 121. Relation CI - Subpool CI

Duplicated Fields
In order to divide the GETVIS
Area into the two distinct parts, the Control Information must duplicate the following
fields contained in area 2 and area 3 during initialization.

BVIRTMEM, ABVRTMEM (begin of below/above GETVIS area)

EVIRTMEM, AEVRTMEM (end of below/above GETVIS area)

BVISTAB, ABVISTAB (begin of VISTAB for the below/above area)

EVISTAB, AEVISTAB (end of VISTAB for the below/above area)

BSUBPCHN,ABSUBCHN (begin of page descriptor chain for below/above)

ESUBPCHN,AESUBCHN (end of page descriptor chain for below/above)

GTVSHIGH,AGTVSHI (high water mark for below/above)

274 VSE/AF Supervisor DRM

FIRSTPNT,AFRSTPNT (pointer to first page descriptor in free queue
below/above)

CURPOINT,ACURPNT (pointer to current page descriptor in free queue
below/above)

NBRGVPG,ANBRGVPG (no of pages in below/above area)

GTVSPGCT,AGTVSPCT (no of used pages in below/above area)

GTVSMXCT,AGTVSMCT (no of pages to be used in below/above area)

Following fields are duplicated in the subpool index table entry:

SPITFRST,ASPTFRST (pointer to first page descriptor below/above)

 (SPITCURP,SPITRLVB,SPITBIT0),(ASPTCURP,ASPTRLVB,ASPTBIT0)
(current pointer below/above)

Notes:

1. If the above area does not exist, the above fields are not set.

2. During initialization of the GETVIS area, area 2 contains the below data and
area 3 the above ones.

Location of the Control Information
Partition GETVIS Area
The CI, pointed to by COMREG.IJBGVCTL, is located at the high end of the parti-
tion.
If the area above 16MB holds only the CI, the above fields are not set (LOC=ANY
treated as LOC=BELOW).
System GETVIS Area
The CI, pointed to by SMCOM.SMCSGV31, is located at the begin of the above
area. If the above area holds only the CI, the above fields are not set (LOC=ANY
treated as LOC=BELOW).
Space GETVIS Area
The CI, pointed to by PCB.PCBDYSPC, is located at the begin of the below area
(above area does not exist).

 Mirroring
From the user point of view, the space in the above part is allocated top-down,
although the search algorithm works bottom-up. This problem is solved by imple-
menting a mirroring function for addresses in the above part.
GETVIS requests
The address, calculated by the search algorithm in the above part, is mirrored at
the end of storage line (AEVRTMEM) before it is returned to the user.

ADDR : address calculated by the search algorithm
LENGTH: length of requested area
M_ADDR: mirrored address (as passed to the user)
M_ADDR = AEVRTMEM-(ADDR-ABVRTMEM+LENGTH)

FREEVIS requests
If the address passed by the caller belongs to the above part it is re-mirrored
before it is fed into the algorithm.

 Storage Management 275

M_ADDRR: address passed by the caller
LENGTH: length of area to be freed
ADDR : address to be fed in the algorithm
ADDR = AEVRTMEM-(M_ADDR-ABVRTMEM+LENGTH)

Boundary Crossing (Partition Requests only)
If a LOC=ANY cannot be served totally from the above area, it is tried to include
the boundary in the search, that means, take storage that is adjacent to the 16MB
line both from the above (as much as possible) and the below part to fulfil the
request.

 LOC=ANY
 GETVIS Area ────────� GETVIS Area
 request
 AEVRTMEM ┌─────────────┐ ┌──────────────┐

│ │ LOC=ANY │ │ │
│ │ (occupied │ │ occupied │

 │
 storage) │ │ │
 ├─────────────┤ ├──────────────┤─────┐
 │ │ │ │ LOC=ANY │ │

│ free │ │ │ with │

 16MB │-------------│ │-│------------│ request
 │ │ │ │ boundary │ �

│ free │ returned │
 crossing │ │
 │ │ ───────� ├──────────────┤─────┘

│ │ address │ free │
 ├─────────────┤ ├──────────────┤
 │ � LOC=BELOW│ │ │

│ │ (occupied │ │ occupied │
 │ │ storage) │ │ │
 BVIRTMEM └─────────────┘ └──────────────┘

Figure 122. Boundary Crossing

GETVIS (SVA) PFIX Processing
A GETVIS PFIX request can be devided into 3 parts:

1. Handle GETVIS request (including update of the control information)

2. PFIX GETVISed area

3. Set PFIX indication in the control information, respectively do an internal
FREEVIS of the area if the PFIX request fails.

For point 1 and 3 the GETVIS gate must be closed. To avoid a deadlock, that can
occur, if a task owning the GETVIS gate, is set into 'waiting for TFREE', the
GETVIS gate is opened before the PFIX routine is called and closed again after the
PFIX processing is done.
When the GETVIS gate is opened, further system GETVIS requests, especially to
the subpool for which a PFIX is pending, must be handled:

� Before the GETVIS gate is opened and the PFIX routine is called, a PFIX
pending indication is set for the subpool. If this indication is set, FREEVIS of
this subpool is not allowed (RC = 'x'28')

� If the subpool is created by this request (SPITFLAG.SPCREATE set) and the
PFIX request fails, an internal FREEVIS of the subpool is done.

276 VSE/AF Supervisor DRM

� If the PFIX request fails and the 'subpool create' indication is not set, only the
reserved GETVIS area is freed.

Flow of control of a GETVIS PFIX request:

 � Gating
� Handle GETVIS request
� Open GETVIS gate
� Do PFIX storage
� Close GETVIS gate
� Open PFIX gate
� Update control information
� Do cleanup processing if PFIX failed
� Open GETVIS gate

 Gating
� Close PFIX gate and gate GETVIS (close gate or set RID).

This is only done if both gates are free. Otherwise GETVIS waits until both
gates are free. The PFIX gate is closed by the GETVIS processing and no
longer by the PFIX routine. This is done for several reasons:

– The save area for the registers destroyed by the PMR is available only
once.

– In case of a PFIX request, the subpool offset and the address of the
subpool name in the users are are saved. They are necessary for
FREEVIS processing if the PFIX request fails. These areas are located in
the GETVIS control information, therefore only one PFIX request at a time
is allowed to enter the GETVIS code.

� Open GETVIS gate before calling PFIX

 – avoid deadlock

� Close GETVIS gate after PFIX
By the same reason as described above, the GETVIS gate is closed again after
PFIX processing before opening the PFIX gate.

� open PFIX gate

� open GETVIS gate

 GETVIS/FREEVIS Options
Input for GETVIS service (SVC X'3D'):

R0: Length of requested area
R1:

� Not required or
� Pointer to area to start search (if POOL specified) or
� Pointer to subpool name field (if SPID specified)

R15: Option in low order byte:
X'01': Page boundary requested (2K/4K boundary depending on length)
X'02': POOL specified
X'04': SVA space requested
X'08': Subpool specified
X'10': PFIX requested
X'20': Exclusive subpool wanted
X'40': Fetch protection requested

 Storage Management 277

X'80': Prevent page boundary crossing (only for internal calls)
R15: Option in byte 2:

X'01': Excessive requestor (only internal call)
X'02': SPACE request
X'04': SPACE request with partition key protection
X'08': Controlled subpool
X'10': LOC=BELOW request
X'20': LOC=ANY request
X'40': request for pmr space (only for internal calls)
X'80': IPL request (only for internal use)

R15: Option in byte 3:
X'01': STATUS=SIZE request (only internal call)
X'02': STATUS=ALL request (only internal call)
X'04': PREFIX=YES request (only internal call, 8K prefix area)

Output for GETVIS service (SVC X'3D'):

R1: Pointer to found area
R15: Return code in low order byte:

� See GETVIS Macro description

Input for FREEVIS service (SVC X'3E'):

R0: Length of area to be freed
R1:

� Pointer to area to be freed or
� Pointer to subpool name field (if SPID specified)

R15: Option in byte two and three
X'0002': Subpool specified
X'0004': SVA space to be freed
X'0008': FREEVIS ALL specified

EOJ: Invalidate the corresp. partition GETVIS area.
EOT: Free the task related exclusive subpool.

X'0010': ROUTED space to be freed (only for internal call)
� called during UNBATCH processing

X'0200': SPACE request
X'4000': PMR space request

Output for FREEVIS service (SVC X'3E'):

R15: Return code in low order byte:
� See FREEVIS Macro description

I/F GETVIS - IPL
Before allocating the SVA, IPL calls Getvis to calculate the size of the control infor-
mation. At this point in time, IPL knows all system and user requirements for the
system Getvis area. IPL passes this information to Getvis. Getvis returns the size
of the control information.
IPL then increases the size of the 31-bit system Getvis area by this value.
Getvis initializes the control information with the first Getvis request. However, the
24-bit system Getvis area may not yet be usable, because the 31-bit system Getvis
area is validated some time before the 24-bit system Getvis area. As long as the
24-bit system Getvis area is not validated, only LOC=ANY requests can be satis-
fied. When bit SMCGVBEL in SMCOM.SMCFLG1 is set, both areas are valid.

278 VSE/AF Supervisor DRM

When Getvis is called by IPL to calculate the size of CI

� R0 contains the number of dynamic partitions
� R1 contains the size of system getvis area (24-bit and 31-bit) in bytes.

On return to IPL

� R0 contains the size of the control information in bytes.
� RF contains the return code (always 0)

 Storage Management 279

GETVIS Control Blocks

 MAPGVCTL

Figure 123 (Page 1 of 3). Layout of GETVIS Area Control Information (MAPGVCTL)
Offsets

Type Len Name (Dim) DescriptionDec Hex
0 (0) SIGNED 4 ANCHDIR (0) ANCHOR TABLE

 MOVECIL "52" LENGTH FOR MOVING THE DATA

 MOVESPTL "10" LENGTH FOR MOVING THE DATA

 OFVRTMEM "16" OFFSET OF BVIRTMEM

1024 (400) SIGNED 4 BSUBPIND BEGIN OF SUBPOOL INDEX TABLE

1028 (404) SIGNED 4 ESUBPIND END OF SUBPOOL INDEX TABLE

1032 (408) SIGNED 4 EGVCTLB LAST BYTE OF CONTROL INFORM.

1036 (40C) SIGNED 4 ENDGVCTL END OF CONTROL AREA

1040 (410) BITSTRING 1 DUPCILSV (0) SAVE AREA FOR DUPLICATED FLD

1056 (420) SIGNED 4 BBVRTMEM

1060 (424) SIGNED 4 BEVRTMEM

1092 (444) SIGNED 4 NBRGVPG NBR OF AVAILABLE PAGES

1096 (448) SIGNED 4 GTVSPGCT NBR OF CURRENT USED PAGES

1100 (44C) SIGNED 4 GTVSMXCT MAX NBR OF PAGES TO BE USED

1104 (450) SIGNED 4 GTVSEXCT MAX NBR OF PAGES TO BE USED BY EXCESSIVE
SUBPOOLS

1108 (454) SIGNED 4 BVIRTMEM BEGIN OF GETVIS AREA

1112 (458) SIGNED 4 EVIRTMEM END OF GETVIS AREA

1116 (45C) SIGNED 4 BVISTAB BEGIN OF VISTAB

1120 (460) SIGNED 4 EVISTAB END OF VISTAB

1124 (464) SIGNED 4 BSUBPCHN BEGIN OF SUBPOOL CHAIN TAB.

1128 (468) SIGNED 4 ESUBPCHN END OF SUBPOOL CHAIN TABLE

1132 (46C) SIGNED 4 GTVSHIGH PAGE CHAIN HIGH WATER MARK

1136 (470) SIGNED 4 FIRSTPNT FIRST PAGE WITHIN EMPTY POOL

1140 (474) SIGNED 4 CURPOINT START SEARCH ADDRESS

THE FOLLOWING FIELDS ARE DUPLICATED FOR THE ABOVE PART
OF THE GETVIS AREA (UP TO MOVECIL)

1144 (478) SIGNED 4 ANBRGVPG NBR OF AVAILABLE PAGES

1148 (47C) SIGNED 4 AGTVSPCT NBR OF CURRENT USED PAGES

1152 (480) SIGNED 4 AGTVSMCT MAX NBR OF PAGES TO BE USED

1156 (484) SIGNED 4 AGTVSXCT MAX NBR OF PAGES TO BE USED BY EXCESSIVE
SUBPOOLS

1160 (488) SIGNED 4 ABVRTMEM BEGIN OF GETVIS AREA

1164 (48C) SIGNED 4 AEVRTMEM END OF GETVIS AREA

1168 (490) SIGNED 4 ABVISTAB BEGIN OF VISTAB

1172 (494) SIGNED 4 AEVISTAB END OF VISTAB

1176 (498) SIGNED 4 ABSUBCHN BEGIN OF SUBPOOL CHAIN TAB.

1180 (49C) SIGNED 4 AESUBCHN END OF SUBPOOL CHAIN TABLE

1184 (4A0) SIGNED 4 AGTVSHI PAGE CHAIN HIGH WATER MARK

1188 (4A4) SIGNED 4 AFRSTPNT FIRST PAGE WITHIN EMPTY POOL

280 VSE/AF Supervisor DRM

Figure 123 (Page 2 of 3). Layout of GETVIS Area Control Information (MAPGVCTL)
Offsets

Type Len Name (Dim) DescriptionDec Hex
1192 (4A8) SIGNED 4 ACURPNT START SEARCH ADDRESS

1196 (4AC) SIGNED 4 ADDRSAV SAVE AREA FOR USER ADDRESS

1200 (4B0) SIGNED 4 LGTHSAV SAVE AREA FOR REQUEST LENGTH

1204 (4B4) SIGNED 4 SPIDSAV (0) ABS. ADDR(SUBPOOL NA.) IN CI

1208 (4B8) SIGNED 4 SSEARCH NEW START SEARCH ADDRESS

1212 (4BC) SIGNED 4 SVWORK1 SAVE WORK REG 1

1216 (4C0) SIGNED 4 RESERVED

1220 (4C4) SIGNED 4 SSPPTRCI SAVE PTR TO SP IN BSUBPIND

1224 (4C8) SIGNED 4 SSPNPTR SAVE PTR TO USERS SUBPOOL N.

1228 (4CC) SIGNED 4 SAVR2ND (0) SECOND SAVE AREA FOR SUBR

1228 (4CC) SIGNED 4 SAVR2ND6 SAVE AREA FOR REG6

1232 (4D0) SIGNED 4 SAVR2ND7 SAVE AREA FOR REG7

1236 (4D4) SIGNED 4 SAVR2NDF SAVE AREA FOR REGF

1240 (4D8) SIGNED 4 SAVR3RD (0) SECOND SAVE AREA FOR SUBR

1240 (4D8) SIGNED 4 SAVR3RD7 SAVE AREA FOR REG7

1244 (4DC) SIGNED 4 SAVR3RD8 SAVE AREA FOR REG8

1248 (4E0) SIGNED 4 SAVR3RDF SAVE AREA FOR REGF

1252 (4E4) SIGNED 4 SAVREGS
(16)

REG. SAVE AREA F. SUBROUTS

1316 (524) SIGNED 4 SVPFSPID SAVE USER'S SUBPOOL ADDR

1320 (528) SIGNED 4 SVPFR1 SAVE USER'S REGISTER 1

1324 (52C) SIGNED 4 SVPFLIST (2) PFIX/PFREE PARM LIST

1332 (534) BITSTRING 1 SVPFEND PFIX/PFREE PARM LIST END

1333 (535) BITSTRING 1 GVFVFLGS NEW FLAG BYTE

 1 GVMIN2 "X'01'" INDICATE MIN_2 PROCESSING

 1. GVFVABVE "X'02'" INDICATE PROCESSING ABOVE

 1.. GVCIMOV "X'04'" CI MOVED TO BELOW PART

 1... GVFVINT "X'08'" INTERNAL FREEVIS PROCESSING

 ...1 GVUPDCP "X'10'" UPDATE CURRENT POINTER

 ..1. GVFIRSTT "X'20'" SUBPOOL'S FIRST CONT. AREA SCANNED.

 .1.. GVCHKPRO "X'40'" PAGES ENQUEUED, CHECK PROTECTION.

 1... GVLNG0RQ "X'80'" REMEMBER LENGTH 0 REQUEST

1334 (536) SIGNED 2 MXSUBPLH MAX NBR OF SUBPOOLS AVAIL.

1336 (538) BITSTRING 1 GVFVFLG2 FLAG BYTE

1337 (539) BITSTRING 3 RESERVED

1340 (53C) SIGNED 4 SCURPSAV SAVE AREA FOR SPITCURP

1344 (540) BITSTRING 1 SRLVBSAV SAVE AREA FOR SPITRLVB

1345 (541) BITSTRING 1 SBITOSAV SAVE AREA FOR SPITBITO

1346 (542) BITSTRING A DUPSBPSV SAVE AREA FOR DUPLICATED FLD

1356 (54C) SIGNED 4 FPAGEPRO FIRST PAGE TO BE PROTECTED

1360 (550) SIGNED 4 LPAGEPRO LAST PAGE TO BE PROTECTED

1364 (554) SIGNED 4 GVFVGATE ADDRESS OF AREA GATE

1368 (558) SIGNED 8 GMFMSPNM OS/390 SUBPOOL NAME

 Storage Management 281

Figure 123 (Page 3 of 3). Layout of GETVIS Area Control Information (MAPGVCTL)
Offsets

Type Len Name (Dim) DescriptionDec Hex
1376 (560) SIGNED 4 MAXGAP NO OF CONT.PAGES BELOW

1380 (564) SIGNED 4 MAXGAP_ABV NO OF CONT.PAGES ABOVE

1384 (568) SIGNED 4 MAXGAP_BDY NO OF CONT.PAGES ACROSS BDY

1388 (56C) SIGNED 4 SMAXGAP SAVED ..

1392 (570) SIGNED 4 SMAXGAP_ABV MAXGAP ..

1396 (574) SIGNED 4 SMAXGAP_BDY VALUES

1400 (578) SIGNED 4 GVFVGATE_SAV SAVED DURING PFIX

1404 (57C) SIGNED 4 GMFMSPLE

1408 (580) SIGNED 4 SPITMVSP ADDR OF CURRENT SPLE

1412 (584) BITSTRING 1 SAVSHIFT

1413 (585) BITSTRING 1 SAVRQST

1414 (586) SIGNED 2 SPIDSAVH

1416 (588) 64 SAVE AREA

1480 (5C8) SIGNED 4 GMFMWRK1_EXT

1484 (5CC) SIGNED 20C GMFMWRK2 IJBSSM2 WORK AREA

2008 (7D8) VISTAB "*" BEGIN OF BIT PATTERN

Note: Due to compatibility reasons, the VSAM control information remains at the
same location within the GETVIS area, that means, it has the same offsets
relative to PPEND as in former releases. The mapping macro for the VSAM
control information is still MAPANCH and contains only this information.

282 VSE/AF Supervisor DRM

Subpool Chain Table Entry

Figure 124. Layout of Subpool Chain Table Entry (SUBPCHN)
Offsets

Type Len Name (Dim) DescriptionDec Hex
0 (0) SIGNED 4 SPCHFORW SUBPOOL FORWARD POINTER

4 (4) SIGNED 4 SPCHBACK SUBPOOL BACKWARD POINTER

8 (8) SIGNED 4 SPCHVSTB RELATIVE PAGE VISTAB PTR

12 (C) SIGNED 2 SPCHNMBR SUBPOOL ID (NUMBER)

14 (E) BITSTRING 1 SPCHFLAG SUBPOOL PAGE FLAGS

 1 SPPGCONC "X'01'" CONCATENATION FLAG

 ...1 SPPGPFIX "X'10'" PAGE IS PFIXED (ONLY SVA)

15 (F) BITSTRING 1 RESERVED FOR FUTURE USE

Subpool Index Table Entry

Figure 125 (Page 1 of 2). Subpool Index Table Entry (SUBPINT)
Offsets

Type Len Name (Dim) DescriptionDec Hex
0 (0) CHAR-

ACTER
6 SPITNAME SUBPOOL NAME FIELD

6 (6) BITSTRING 2 SPITNMBR SUBPOOL NUMBER

8 (8) BITSTRING 1 SPITKEY KEY FOR PAGE PROTECTION

9 (9) BITSTRING 1 SPITFLAG SUBPOOL FLAG

 1 SPFTCHPR "X'01'" SUBPOOL IS FETCH PROTECTED

 1... SPPKEYPR "X'08'" SUPOOL IS PROTECTED WITH PARTITION KEY

 ...1 SPCNTRLD "X'10'" SUBPOOL IS CONTROLLED

 ..1. SPCREATE "X'20'" SUBP. CREATED BY CURR. REQ

 .1.. SPPFXPND "X'40'" SUBPOOL WITH PENDING PFIX

10 (A) SIGNED 1 SPITPIK PIK OF OWNING PARTITION

12 (C) BITSTRING 1 RESERVED

13 (D) BITSTRING 1 SPITFLG1 SUBPOOL FLAG BYTE 2

 1... SPFPEMTY "X'80'" FIRST PAGE EMPTY

 .1.. SPLPEMTY "X'40'" LAST PAGE EMPTY

 ..1. SPCLPMR "X'20'" CALL PAGE MANAGER

 ...1 SPBTHPRT "X'10'" BOTH PARTS FREED

 1 SPSWABVE "X'01'" SUBPOOL SWITCHED TO ABOVE

14 (E) SIGNED 2 SPITTASK TASK THAT CREATED SUBPOOL

16 (10) SIGNED 4 SPITPUSC PAGE USAGE COUNT

20 (14) SIGNED 4 SPITFIRST PTR TO FIRST CHAIN TABLE ENTRY OF SUBPOOL

24 (18) SIGNED 4 SPITCURP PTR TO CURRENT CHAIN TABLE ENTRY

28 (1C) BITSTRING 1 SPITRLVB REL. CURRENT PTR WITHIN CURRENT PAGE

29 (1D) BITSTRING 1 SPITBITO OR MASK FOR SPITRLVB (IMPLICIT CURRENT BIT
PTR)

30 (1E) SIGNED 2 RESERVED

THE FOLLOWING FIELDS ARE DUPLICATED FOR THE ABOVE PART
OF THE GETVIS AREA (UP TO MOVESPTL)

 Storage Management 283

Figure 125 (Page 2 of 2). Subpool Index Table Entry (SUBPINT)
Offsets

Type Len Name (Dim) DescriptionDec Hex
32 (20) SIGNED 4 ASPTFRST PTR TO FIRST CHAIN TABLE ENTRY OF SUBPOOL

36 (24) SIGNED 4 ASPTCURP PTR TO CURRENT CHAIN TABLE ENTRY

40 (28) BITSTRING 1 ASPTRLVB REL. CURRENT PTR WITHIN CURRENT PAGE

41 (29) BITSTRING 1 ASPTBITO OR MASK FOR SPITRLVB (IMPLICIT CURRENT BIT
PTR)

42 (2A) SIGNED 2 RESERVED

SUBPINTL "*-SUBPINT" LENGTH OF SUBPOOL INDEX TAB.

284 VSE/AF Supervisor DRM

CDLOAD Support (SVC X'41')
This function loads a phase dynamically into the partition GETVIS area when called
by the macro CDLOAD.

Exception: The phase is found in the SVA and the requesting program is not
running in real mode (real mode checked by Fetch/Load processing).

For each phase, that is loaded into the partition GETVIS area, and entry in the
anchor table, which is part of the GETVIS control information, is built.

Before the SVC X'41' routine is invoked, the name of the phase to be loaded (spec-
ified by the first operand of the CDLOAD macro) must be pointed to by general
register 1.

CDLOAD first checks to see if the GETVIS area control table is already initialized; if
so, the anchor table is searched for an entry for the requested phase. If an entry is
found, the return parameters are retrieved from the entry and control is returned to
the caller.

If the anchor table does not exist or does not have an entry for the requested
phase, a LOAD is issued with the parameters DE=YES and TXT=NO. The FETCH
routine moves only the directory entry for the requested phase into an area speci-
fied by CDLOAD (an area at DFWKNAME in the TCB). The CDLOAD routine then
checks the directory entry: if the phase is not found, control is passed to ERR22,
or the return code is passed. If the phase resides in the SVA, the required parame-
ters are retrieved from the directory entry and passed in registers 0, 1, and 14. In
addition, return code X'00' (successful completion) is passed in register 15.

A phase residing in the SVA is not added to the anchor table. If the requesting
task runs in a real partition, a SVA phase is loaded into the corresponding real
partition GETVIS area.

The phase name is inserted in the first free entry in the anchor table (see
Figure 127 on page 287 and Figure 126 on page 287). If there is no free entry,
storage for a new anchor table is obtained in the dynamic space GETVIS (system
GETVIS) area. If there is no free space for a new anchor table return code X'10' is
passed. SVC X'41' then obtains the length of the phase to be loaded from the
directory entry and passes this information to the GETVIS routine. Depending on
the RMODE of the phase a LOC=ANY respectively a LOC=BELOW request is
done.

The GETVIS routine reserves the required storage and returns the load address of
the phase to SVC X'41'. SVC X'41' then loads the phase by issuing a LOAD with
the parameters TXT=YES and DE=YES. After completion of the load operation, the
load point, the entry point, the length and the attributes of the phase are stored in
the anchor table and the load count of the phase is incremented by one. If the load
count is at the maximum (X'FFFF') it is not increased. Instead an indication is set to
prevent a CDDELETE of the phase.
Successful completion is indicated by passing the return code X'00' in register 15.
The layout of the anchor table is shown in Figure 127 on page 287. The layout of
an anchor table entry is shown in Figure 126 on page 287.

Input for CDLOAD service (SVC X'41'):

R1: Pointer to phase name

 Storage Management 285

R15: Option in low order byte:
X'01': Page boundary requested (2K/4K depending on length)
X'04': Consider only SVA phases

If the phase is not in the SVA, it is not loaded.
X'10': Return if phase not found

Output for CDLOAD service (SVC X'41'):

R0: Load address of phase
R1: Entry point of phase

CDLOAD set the high-order bit in register 1 to indicate the phase's AMODE
(0 for AMODE 24, 1 for AMODE 31). If the phase's AMODE is ANY the high-
order bit is set corresponding to the caller's AMODE.

R14: Length of phase
R15: Return code in low order byte:

� See CDLOAD Macro description

CDDELETE Support (SVC X'41')
This function deletes a phase previously loaded by a CDLOAD request.

Since both the CDLOAD and the CDDELETE macro expand into SVC X'41' an
option in register 15 indicates which function is required.
On entry to the SVC X'41' routine, the name of the phase to be deleted must be
pointed to by general register 1.
If the GETVIS control information is not initialized or if there is no entry for the
requested phase a return code is passed.
If the load count was exceeded by a previous CDLOAD request
(ATPHFLAG.ATLOADCE set), the phase is not deleted but a return code is passed.
Otherwise the load count is decremented by one. If the load count is zero, the entry
in the anchor table is cleared and the storage occupied by the phase is freed (by
use of the FREEVIS routine). Successful completion is indicated by return code 0.

The anchor table is freed after the last entry is cleared. Only the first anchor table
which is part of the GETVIS control information is never freed.

Input for CDDELETE service (SVC X'41'):

R1: Pointer to phase name
R15: Option in low order byte:

X'02': CDDELETE request

Output for CDDELETE service (SVC X'41'):

R15: Return code in low order byte:
� See CDDELETE Macro description

Anchor Table Handling Each anchor table consits of header information followed
by storage to hold the phase entries. The first anchor table is located at the begin
of the partition GETVIS control information which is pointed to by
COMREG.IJBGVCTL. Whenever a phase is loaded, an entry in the anchor table is
built and the use count (ANCHNOUE) is incremented by one. If the anchor table is
full, a new one is allocated by using the SGETVIS SPACE function. The forward
(ANCHFWP) and backward (ANCHBWP) pointer is updated. The backward pointer
of the first and the forward pointer of the last anchor table is set to zero. Whenever
the load count of a phase is zero the entry in the anchor table is cleared and the
use count of the anchor table (ANCHNOUE) is decremented by one. If the anchor

286 VSE/AF Supervisor DRM

table is empty, it is freed by means of the SFREEVIS SPACE function. The forward
and backward pointer of the previous and following anchor table is update accord-
ingly.

┌───┐
│ Anchor Table Entry Layout (ATENTRY) │
├─────┬─────┬──────────┬──┤
│ DEC │ HEX │ Label │ Description │
├─────┼─────┼──────────┼──┤
│ � │ � │ ATPHSNME │ Phase Name Field │
│ 8 │ 8 │ ATLOADP │ Load Point in GETVIS Area │
│ 12 │ C │ ATENTP │ Entry Point in GETVIS Area │
│ 16 │ 1� │ ATPHSLEN │ Length of loaded Phase │
│ 2� │ 14 │ ATLDCNT │ No of CDLOAD requests (maximum is X'FFFF') │
│ 22 │ 16 │ ATPHATT │ Flag moved from TCB.DFWKEMVS (AMODE,RMODE) │
│ 23 │ 17 │ ATPHFLAG │ Flag byte │
│ │ │ ATLOADCE │ X'8�' phase load count exceeded │
│ 24 │ 18 │ ATLDSYS │ No of system load requests │
│ 26 │ 1A │ ATPHFLG2 │ Flag byte │
│ 27 │ 1B │ ATSUBPOL │ Subpool id of GETMAIN │
├─────┼─────┼──────────┴──┤
│ 28 │ 1C │ �──── Length of Anchor Table Entry (ATENTRY) │
└─────┴─────┴───┘

Figure 126. Format of Anchor Table Entry

┌───┐
│ Anchor Table Layout │
├─────┬─────┬──────────┬──┤
│ DEC │ HEX │ Label │ Description │
├─────┼─────┼──────────┼──┤
│ � │ � │ ANCHFWP │ Ptr to next anchor table (� if not existing) │
│ 4 │ 4 │ ANCHBWP │ Ptr to previous anchor table(� if not exist.)│
│ 8 │ 8 │ ANCHNOUE │ Number of used entries │
│ 1� │ A │ ANCHNUME │ Number of total directory entries │
│ 12 │ C │ ANCHDIRF │ First phase entry (described by ATENTRY) │
│ 4� │ 28 │ │ Second phase entry │
│ .. │ .. │ │ ... │
│ .. │ .. │ │ ... │
│ 992 │ 3E� │ │ Last phase entry │
│1�2� │ 3FC │ │ Reserved │
├─────┼─────┼──────────┴──┤
│1�24 │ 4�� │ �──── Length of Anchor Table │
└─────┴─────┴───┘

Figure 127. Layout of an Anchor Table

 Storage Management 287

 COMREG
 ┌──────────────┬────────┬─────────────── ///
 │ │IJBGVCTL│
 └──────────────┴───┬────┴─────────────── ///
 │
 ┌──────────────────┘
 │

 ┌────────────┐ ┌────────────┐

 │
 │

┌─────────┐ │ ┌──�┌──────────┐ │ ┌───�┌─────────┐
 │ANCHFWP──┼──┼─┘ │ANCHFWP───┼─┼─┘ │ANCHFWP=�│
 ├─────────┤ │ ├──────────┤ │ ├─────────┤
 │ANCHBWP=�│ └─────│ANCHBWP │ └──────│ANCHBWP │

├─────────┤ ├──────────┤ ├─────────┤
 │ │ │ │ │ │
 │ │ │ │ │ │
 │ │ │ │ │ │

└─────────┘ └──────────┘ └─────────┘

Figure 128. Example of Three Anchor Tables Allocated

288 VSE/AF Supervisor DRM

z/OS (OS/390) Storage Management Services

 Overview
� OS/390 requests are mapped directly to VSE requests and are then processed

the same way as VSE requests. Hence, the GETMAIN/FREEMAIN/STORAGE
requests and GETVIS/FREEVIS requests can be used in any combination
within an application.

� Since the subpool concept of OS/390 differs from that of VSE, OS/390 sub-
pools can only be addressed by OS/390 requests and vice versa.

� On OS/390, the allocation unit is 8 bytes.
On VSE, the allocation unit is the same for OS/390 requests and VSE
requests.

– 16 bytes for system/space getvis
– 128 bytes for partition getvis

� FREEMAIN and STORAGE RELEASE will always clear the storage

� Storage areas in OS/390 are the CSA, the SQA, the LSQA, and the PVT.
These areas are mapped to VSE's storage areas.

� In a VSE partition, there is one Job Step Task per job, the maintask, i.e. the
main task is the related job step task for all of its subtasks.

Implementation is done by new code in the macros SGAM and SGAMSUBR and in
a new module, IJBSSM2(phase name = $IJBSSM2).

� dependencies on GETVIS/FREEVIS are put into SGAM(SUBR),
� dependencies on GETMAIN/FREEMAIN/STORAGE are put into IJBSSM2.

The mapping of an OS/390 request into a VSE request is mainly done in
module IJBSSM2.

Mapping of OS/390 Storage Areas to VSE
 � SQA/ESQA, CSA/ECSA

system queue area, common service area
-> mapped to system Getvis area

 � LSQA/ELSQA
local system queue area
-> mapped to space Getvis area

 � PVT
-> mapped to partition Getvis area
On OS/390 the PVT is divided into a private low and private high area. This
distinction is not done in VSE.

OS/390 Subpool Concept
� In OS/390, subpools are identified by a number and not by a name. The range

is 0-255. Not all numbers are used by OS/390 and only a subset is supported
by VSE. Valid numbers in VSE are

 – 0-127,129-132,226-231,239-241,245,250-255

� the subpool number defines attributes which are associated with the subpool's
pages such as

 Storage Management 289

– location (storage area)
 – fetch protection
 – type (pageable|fixed)
 – owner (lifetime)
 – storage key

� the subpool number defines whether it's an authorized subpool.
These subpools can be used by authorized programs only. A program is
authorized when it runs in supervisor state, key 0 or is a CICS or vendor sub-
system.

Subpool Owner (Lifetime)
A subpool is created during the first GETMAIN/STORAGE request for the subpool.
The subpool owner defines the lifetime of the subpool. Owner of a subpool can be
a task, the maintask (job step task in OS/390), the address space or the system.

� task related storage
The storage is owned by a task and anchored to the task's TCB. Normally it's
the task, that issued the request.
An exception is the TCBADDR parameter. The storage is owned by the TCB
specfied in the TCBADDR parameter.
Task related storage can be in the partition or space getvis area.
A subpool which is task related is discarded during task termination. During
task termination, FREEVIS ALL is called. FREEVIS ALL will loop through all
subpools owned by the task and do

– discard the control block which describe the OS/390 subpool (SPLE)
– freevis all subpools belonging to the task
– clear the chain pointer in the VSE TCB

� maintask (job step) related storage
The storage is owned by the maintask. It is anchored to the maintask's TCB,
independent which task in the partition issues the request. A job step related
subpool exists only once in the partition. The storage can be in the partition or
space getvis area. The subpool is discarded during maintask termination.
Cleanup is done the same way as for subtasks, except that partition getvis sub-
pools are not freed explicitly, since the partition getvis area is invalidated.

� address space related storage
The storage is owned by the address space and anchored to the SCB. The
storage is in the space getvis area. The subpool is discarded during address
space termination. Address space termination means UNBATCH for static par-
titions and de-allocation for dynamic partitions. During UNBATCH processing
for static partitions FREEVIS ROUTED will loop through all subpools owned by
the address space and do

– discard the control block which describe the OS/390 subpool (SPLE)
– freevis all LSQA subpools (space getvis area) subpools
– clear the chain pointer in the SCB.

For dynamic partitions the SPLE, the SCB as well as the whole Space Getvis
Area are freed during de-allocation.

� system related storage
The storage is owned by the system, not by a task. The subpool is only dis-
carded when explicitly specified. The storage is in the system getvis area.

290 VSE/AF Supervisor DRM

 Sharability
� System related subpools are shared by all tasks of the system

� Address space related subpools are shared by all tasks of the address space

� Maintask related subpools are shared between the maintask and all subtasks of
the partition.

� Task related subpools cannot be shared.
Exception: Subpool 0 is shared by the maintask and all subtasks.

 Storage Key/Protection
Subpools can be store and fetch protected with any key in any area. A subpool
with multiple keys will be implemented as multiple subpools.
For some subpools the storage key is selectable. All other subpools have a default
key, which is either key 0 or the

� OS/390 TCB key when running in emulation mode or
� PCEKEY when running in native mode.

 Implementation Approach
A VSE request (SVC x'3D' and SVC x'3E') is described by the options in register
15, the length in register 0 and the address of the subpool name in register 1. The
registers of an OS/390 request are not set the same way and differ depending on
the SVC/PC. So the OS/390 requests have to be mapped to the VSE interface.

� There is one entry point in the supervisor for each of the OS/390 storage man-
agement SVCs and PC.

� These entry points map the OS/390 request to the GETVIS/FREEVIS interface
(R0,R1,R15) assisted by new functions incapsulated in the new module
IJBSSM2. An artificial save area within the Getvis CI is used.

� BALR to the GETVIS/FREEVIS main paths
This is done multiple times for subpool release or for variable or list request
types.

� map the GETVIS/FREEVIS return codes back to the OS/390 interface via
IJBSSM2

 Subpool Description
In VSE each subpool is described by an entry in the subpool index table (dsect
subpint). This table cannot be extended to hold all OS/390 subpools, since it is not
known in advance how many subpools are needed and the maximum number is
too high.
Therefore each subpool is described by a so-called SPLE. The subpint information
is part of the SPLE. The SPLE are chained together. The SPLEs are anchored to
the

� TCB for task and maintask owned subpools
TCBSPL = addr(first SPLE of task)

� SCB for address space owned subpools
SCBSPL = addr(first SPLE of address space)

� SMCOM for system owned subpools
SMCSYSPL = addr(first SPLE of system)

 Storage Management 291

The subpool index table is extended by two entries, one to hold the current OS/390
request and one entry used for initialization.
When the first GETMAIN request is processed for a subpool during the scope of its
lifetime, the subpool control block (SPLE) is created and hooked into the respective
chain. This control block remains in the chain until the end of the subpool's lifetime.

As the last entry of the Subpool Index Table, at entry number MXSUBPLH+2, an
additional slot is added to hold the OS/390 subpool being processed by the current
request. The control block for VSE subpools is extended as shown below, to
account for the characteristics of an OS/390 subpool.

At the beginning of request processing this slot is filled with the respective subpool
characteristics of the MVS subpool(ACTIVATE).

At the end of request processing this slot is copied back to the respective control
block describing the OS/390 subpool(UPDATE), and the slot is re-initialized.

 SPITMVSP
 SUBPINT Table TCB │
 │ (SPLE) │

1 ┌──────────┐ └────────� ┌───────────┐ │
 ├──────────┤ │SPTTTYPE │ │
 2 └──────────┘ │SUBPINT │ │
 . │NEXT │ │
 . └─────┬─────┘ │
 . │

 MXSUBPLH+1 ┌──────────┐ (ACTIVATE) ┌─
─────────┐

├──────────┤ ┌ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─│SPTTTYPE │
MXSUBPLH+2 └────------┘�─ ─ ─┘ │SUBPINT │

 ┌ -�│NEXT │
└─ ─ - ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─┘ └───────────┘

 (UPDATE)

Figure 129. Control Blocks for OS/390 subpools.

OS/390 Request Processing
� Determine area (sva,space,partition) and pfix

 � Close gate(s)

� Build and anchor SPLE

� Build a 'Getvis' request (with R0,R1,RF) in artificial save area

– let RD point to artificial save area
– the save area is locatad within the Getvis CI

� copy SPLE in subpool index table slot

� call GETVIS/FREEVIS to process request

 � update SPLE

� map VSE output to OS/390 output and pass result to user

292 VSE/AF Supervisor DRM

 IJBSSM2
 STORAGE macro
 ┌──────────────┐ GETMAIN macro
 │ GETSTYPE │�───────┐ │ �
 │ ANALIZE │�───────┤
 │
 ┌──────────────�│ ACTIVATE │ │ SIMSVC
 | │ LOCATE_NKY │ │ │ �
 | │ OUTPUT │ │ │ �
 | │ UPDATE │�────┐ │ │ │
 | │ DISCARD │ │ │ │ │
 | │ MAPRC │�────┤ │ │ │
 │ └──────────────┘ │ │ │ │
 │ │ │ │ │
 │ │ │ │ │

│GETVIS │ │ GETMAIN/STORAGE │ │
 │ │ │ │ │
 │┌──────────┐ │ │┌─────────┐�─────────┘ │

││GETVISMR │�──────────────────────┐│ ││ SVC4 │ │
└┼─ │ several times, for ││ ││ SVC1� ──┼─┐ │

 │ │ variable and ││ │| SVC12� │ │ │
│ │ list type requests ││ ││ PC 3�B │ │ │

 │GVRET.. | ││ └|─Common �┼─┘ │
 | ──┼┐ └┼───┼── │ │
 └──────────┘└───────────────────────┼──�│ │ │
 └───│ Exit │───────────────┘
 └─────────┘

Figure 130. Code Structure for GETMAIN/STORAGE OBTAIN

 1. GETSTYPE
GETSTYPE determines the area (system, space..) and whether pfix or not.

 2. Gating
With the result of GETSTYPE, gating is done. The gating routine returns the
ptr to the CI. The CI contains an additional save area, which is pointed to by
register RD. This area must look like the VSE save area which is used during
getvis processing (Getvis uses the area pointed to by RD).
� GETMAIN and PFIX

During PFIX processing the GETVIS gate is opened. But only one
GETMAIN request at a time may be executed, even if it is no PFIX request.
The reason is that too much information would have to be saved.

 3. ANALYZE
At the end of the CI there will be as much as possible SPLEs. During
ANALYZE, it is checked whether there is space for one more SPLE. If not, a
return code is passed and the getmain mainpath must do a space getvis
request for the SPLE.

4. With the output of the ANALYZE, a 'Getvis' request is built in the save area
pointed to by register D, (R0, RF, R1(ptr to subpool name in save area)).

 5. ACTIVATE

 Storage Management 293

Subpool index table
 ┌───────────┐
 │ │ ┌──────┐ SUBPINT
 │ │ │sple │ ┌──────────┐
 │ (1) │ └──┬───┘ │ │
 │ │ └───────�│ │
 │ │ └────┬─────┘
 ├───────────┤ copy │
 │ (2) │ �────────────────────────┘
 ├───────────┤
 │ (3) │
 └───────────┘

a. (1) part of subpool index table containing VSE subpools
b. (2) slot for current MVS request
c. (3) used to init subpool index table entry

SUBPINT, pointed to by SPLE is copied. If it does not yet exist, the slot in the
subpool index table is initialized.

 6. OUTPUT
1. pass result to user
2. determine if list request or not

 7. UPDATE

subpool index table
 ┌──────────┐
 │ │ ┌────────┐
 │ │ │ SPLE │
 │ │ └─┬──────┘
 │ │ │
 (2) ├──────────┤
 SUBPINT

┌───�│ │ │ copy (1) ┌───────────────┐
│ ├──────────┤ └────────────� │ │

 └────│ init │ └───────────────┘
 └──────────┘

After the GETMAIN request is finished, the GETMAIN subpool index table entry
is copied back in SUBPINT pointed to by SPLE and the element in the subpool
index table is initialized by copying the init element in the subpool index table.

Note: When the first request of a list type request fails, all storage obtained up to
now is freed again.

294 VSE/AF Supervisor DRM

 IJBSSM2
 STORAGE macro
 ┌──────────────┐ FREEMAIN macro
 │ GETSTYPE │�───────┐ │ �
 │ ANALIZE │�───────┤
 │
 ┌──────────────�│ ACTIVATE │ │ SIMSVC
 | │ LOCATE_NKY │�────┐ │ │ �
 | │ UPDATE │�────┤ │ │ │
 | │ DISCARD │ │ │ │ │
 | │ MAPRC │�────┤ │ │ │
 │ └──────────────┘ │ │ │ │
 │ │ │ │ │
 │ │ │ │ │
 │FREEVIS │ │ FREEMAIN │ │
 │ │ │ │ │
 │┌──────────┐ │ │┌─────────┐�─────────┘ │

││FREEVSM� │�──────────────────────┐│ ││ SVC5 │ │
└┼─ │ several times, for ││ ││ SVC1� ─┼─┐ │
| | subpool release or || || SVC12� | | |
│ │ list type requests ││ ││ PC 311 │ │ │

 │ │ ││ │| │ │ │
 │FVRET.. | ││ └|─Common �┼─┘ │
 | ──┼┐ └┼───┼── │ │
 └──────────┘└───────────────────────┼──�│ │ │
 └───│ Exit │───────────────┘
 └─────────┘

Figure 131. Code Structure for FREEMAIN.

It is assumed that a Getvis Area is initialized via a GETVIS request before the first
GETMAIN/FREEMAIN request is issued (reason: GETMAIN needs initialized CI,
including save area).

System Getvis : OK, done by IPL

Space Getvis : OK, done by allocation (JCL workarea)

Partition Getvis : OK, done by JCL except when partition Getvis size for EXEC
REAL is zero.
If the GETVIS area does not exist, the GETMAIN request is terminated.
GETSTYPE and MAPRC do not need a save area.

Note: Subpool release for a subpool is the same as FREEVIS subpool except that
SUBPINT is not thrown away.
FREEVISMO may be called several times for a subpool that exist several times
because it has different keys.
List type request: The first request that fails terminates the list type processing.
Areas freed up to now are not getmained again.

The OS/390 Subpool Table

 Storage Management 295

Figure 132 (Page 1 of 2). Storage Subpools and Their Attributes.

Legend:
FP Fetch Protection

Subpool Location FP Type Owner Storage Key

0 Partiton Getvis Yes Pageable Maintask Same as TCB
key at time of
first storage
request

1-127 Partiton Getvis Yes Pageable Task Same as TCB
key at time of
first storage
request

129 Partiton Getvis Yes Pageable Maintask Selectable
See note 1

130 Partiton Getvis No Pageable Maintask Selectable
See note 1

131 Partiton Getvis Yes Pageable Maintask Selectable
See note 1

132 Partiton Getvis No Pageable Maintask Selectable
See note 1

226 System Getvis
24-bit

No Fixed System 0

227 System Getvis Yes Fixed System Selectable
See note 1

228 System Getvis No Fixed System Selectable
See note 1

229 Partition Getvis Yes Pageable Task Selectable
See note 1

229 Partition Getvis No Pageable Task Selectable
See note 1

230 Partition Getvis No Pageable Task Selectable
See note 1

231 System Getvis Yes Pageable System Selectable
See note 1

239 System Getvis Yes Fixed System 0

240 Partition Getvis Yes Pageable Task Same as TCB
key at time of
first storage
request

241 System Getvis No Pageable System Selectable
See note 1

245 System Getvis No Fixed System 0

250 Partition Getvis Yes Pageable Task Same as TCB
key at time of
first storage
request

296 VSE/AF Supervisor DRM

Notes:

1. Possible storage keys are described in “Storage Keys for Selectable Key
Subpools”

Figure 132 (Page 2 of 2). Storage Subpools and Their Attributes.

Legend:
FP Fetch Protection

Subpool Location FP Type Owner Storage Key

251 Partition Getvis Yes Pageable Maintask Same as TCB
key at time of
first storage
request

252 Partition Getvis No Pageable Maintask 0

253 Dynamic Space
Getvis

No Fixed Task 0

254 Dynamic Space
Getvis

No Fixed Maintask 0

255 Dynamic Space
Getvis

No Fixed Address
space

0

Storage Keys for Selectable Key Subpools
Figure 133 (Page 1 of 2). Possible Storage Keys

Subpool Macros and Parameters Storage Key

129-132 � GETMAIN with LC,LU,VC,VU,EC or R.
� FREEMAIN with LC,LU,L,VC,VU,V,EC,EU

or R.
� STORAGE with OBTAIN or RELEASE;

CALLRKY=YES is specified.

The storage key is
equals the caller's PSW
key. (The KEY param-
eter is not allowed.

� GETMAIN with RC,RU,VRC,VRU.
� FREEMAIN with RC,RU.

The storage key is the
key the caller specifies
on the KEY parameter.
If KEY is not specified,
the default equals the
caller's PSW key.

� STORAGE with OBTAIN or RELEASE;
CALLRKY=YES is omitted or CALLRKY=NO
is specified.

The storage key is the
key the caller specifies
on the KEY parameter.
If KEY is not specified,
the default is 0.

227-231,
241

� All GETMAIN/FREEMAIN requests
� STORAGE with OBTAIN or RELEASE;

CALLRKY=YES specified

The storage key equals
the caller's PSW key.
(For RC, RU, VRC and
VRU, the KEY param-
eter is ignored. For
other GETMAIN and
FREEMAIN requests,
the KEY parameter is
not allowed.)

 Storage Management 297

Figure 133 (Page 2 of 2). Possible Storage Keys

Subpool Macros and Parameters Storage Key

� STORAGE with OBTAIN or RELEASE;
CALLRKY=YES omitted or CALLRKY=NO
specified.

The storage key is the
key the caller specifies
on the KEY parameter.
If KEY is not specified,
the default is 0.

298 VSE/AF Supervisor DRM

z/Architecture Cross Memory Communication

z/VSE supports the stacking space switching Program Call.
For a detailed description of the PC-ss instruction refer to z/Architecture Principles
of Operation, SA22-7832.

The PC-ss instruction enables programs to use cross memory communication.

 Description
Cross memory communication enables one program to transfer control to another
program. This is done by means of the PC instruction. The program that receives
control is called PC routine. The PC routine returns to the user with the PR instruc-
tion.
The PC routine is provided by the so-called service provider. Before the PC
instruction can be used, the necessary control block structure (environment) has to
be established. This is also done by the service provider. The control block struc-
ture connects the service provider's address space to the user's address space.
Part of the PC instruction is the PC number. This number determines which PC
routine is selected.
The user program and the PC routine can execute in the same or in different
address spaces. To transfer control to a different address space, the space-
switching PC (PC-ss) must be used. However, the PC routine executes always
under the same task as the user program.
A PC routine can access data in the user's address space by using access regis-
ters or by an ALET of two. With the proper authority it can also access data in
other address or data spaces.

 user service provider
 ┌────────────────┐ ┌────────────────┐
 │ │ │ │
 │ │ PC-ss │ PC routine │
 │ ─────────┼──────────┼───────� │
 │ │ │ │
 │ │ │ │
 │ │ PR │ │
 │ �────────┼──────────┼──────── │
 │ │ │ │
 │ │ │ │
 └────────────────┘ └────────────────┘

The Cross Memory Environment
The cross memory environment consists of
 � entry tables
 � linkage tables
 � PC number
 � authorization tables
� program authorization - PKM (PSW Key Mask)

The services to establish the cross memory environment have been ported from
OS/390. The services itself are PC based. They are available both in VSE native
and OS390 emulation mode. To use the services default allocation is required, i.e

© Copyright IBM Corp. 1985, 2013 299

only one partition per space is allowed. The user must either execute in supervisor
state or with a PKM 0.

Entry Table (ETDEF, ETCRE service)
� contains one entry for each PC routine
� ETDEF macro to define

– PC routine (name or address)
 – problem/supervisor state
 – space switch
– ARR (name or address of recovery routine)
– EAX (EAX authority for PC routine)

 – PKM
 – ...

� ETCRE macro to create entry table
– owned by service provider's partition
– must be connected to linkage table of user's partition

Linkage Index LX (LXRES)
� Index in linkage table (unique within system)
� obtained by service provider through LXRES macro

 � non-system LX
– connect an entry table to selected partitions (LT) in system

� system LX (not supported in VSE)
– connect entry table to all partitions (LT) in system
– i.e user can not connect ETs to system linkage table in VSE

Linkage Table (ETCON)
� each partition has a linkage table, which is the system linkage table as long as

no ETCON done
� points to one or more entry tables
� entry table connected to linkage table by ETCON macro

 PC Number
� created by service provider
� consists of LX and EX (index in entry table)

Program Authorization (PKM)
� each program (task) runs with a PSW key mask (PKM)
� 16 bit string, each bit represents storage protection key valid for a problem

state program to use
� used for SPKA instruction
� defines which PC routine can be invoked
� programs are initially dispatched with a PKM equal to the partition's storage

protection key
– plus key 9 if SSP and OS390 emulation mode

� PC and PR instructions can change the the PKM

300 VSE/AF Supervisor DRM

 Authorization Tables
� each partition owns an authority table
� each table entry consists of two bits

– P-bit (PT authority)
– S-bit (SSAR authority,EAX authority)

� each table entry corresponds to an AX (auth. index)
� AX = 0 : neither PT nor SSAR authority
� AX = 1: both PT and SSAR authority
� a partition is dispatched with an AX value of 0
� in VSE, the AX value can not be changed
� ETDEF with SASN=NEW only, i.e. neither PT nor SSAR authority needed

Cross Memory Services

AXRES - Reserve authorization index
The AX is owned by the issuing partition. The AX is used as an EAX for PC rou-
tines.

AXFRE - Free authorization index
The AXFRE service returns an AX value to the system.

AXEXT - Extract authorization index
The AXEXT service returns the AX of the partition. AX is always 0 in VSE.

ATSET - Set authorization table
The service sets PT and SSAR(EAX) authority bits in the authority table for use
during EAX authority checking.

ETDEF - Create an entry table descriptor (ETD)
� ETD used as input for ETCRE to create an entry table
� defines PC routines

– name, space switch, problem/supervisor state,EAX
– ARR(recovery routine if PC routine abends),...

ETCRE - Create Entry Table
� output : entry table token

ETCON - Connect Entry Table
� connects entry table(s) to specified linkage index(es) in the linkage table of the

current partition
– pair (LX,entry table token) is used

� must run under task of service user
� connection exists until

– ETDIS removes the connection
– the entry table owner terminates
– the partition that owns the linkage table terminates

 z/Architecture Cross Memory Communication 301

ETDIS - Disconnect Entry Table
� disconnects entry tables from the partition's linkage table
� input: entry table token(s)

ETDES - Destroy entry table
� Only the partition that owns the ET can destroy it.
� ET must no be connected to any linkage table unless PURGE=YES is coded
� PURGE=YES disconnects the ET from all LTs of the system.
� input : ET token

LXRES - Reserve a Linkage Index
� reserves linkage index(es).
� LX(s) owned by current partition
� LX remains reserved until

– LXFRE frees a reserved linkage index
– the maintask terminates

LXFRE - Free a Linkage Index
� LX(s) must be owned by current partition
� no ET must be connected to the LX unless FORCE=YES is coded.
� FORCE=YES disconnects ET

Cross Memory Resources
Cross Memory Resources are owned by the maintask, even if the service was
given by a subtask. The resources are freed explicitly by a service or by the system
at maintask termination. This is a deviation from OS/390.

Cross Memory Terminology
� ASN: address space number

– each partition has it's own ASN. In VSE the ASN is PIK/16
� Home Address Space (partition)

– allocation space (partition), in which the task is initially dispatched.
– CR D points to segment table of home address space
– HASN = ASN of home space
– during execution of a task, the home address space does not change
– low core is set up for the home space (scbptr, pcbptr) independent of the

space in which a task is currently executing
– ALET 2 denotes the home space

� Primary Address Space
– address space whose segment table is used to fetch instructions
– CR 1 points to segment table of primary address space
– PASN = ASN of primary space

� Secondary Address Space
– used in secondary ASC mode. Not supported in VSE
– CR 7 points to segment table of secondary address space
– SASN = ASN of secondary space

� Cross Memory Mode
– a task executes in cross memory mode, when the primary and home

address space are different address spaces, i.e. HASN /= PASN
� Switch to home space means

302 VSE/AF Supervisor DRM

– set HASN = PASN = SASN
– it does not mean home space mode in PSW

 � Space switch
– primary address space changes
– VSE supports SASN=NEW only, i.e. SASN changes during PC-ss
– nested PC-ss is not supported in VSE

 user provider
┌────────────┐ ┌────────────┐ ┌────────────┐

 │ task x │ │ │ │ │
│ │PC-ss│ │ │ │

 │ ──────┼─────┼───� │PC-ss│ │
│ │ (1) │ ───────┼─//──┼─────� │
│ │ │ │ (2) │ │

 │ │ │ │ │ │
└────────────┘ └────────────┘ └────────────┘

 HASN=PASN=SASN
(1) HASN (CR D) PASN=SASN (CR 1= CR 7)

 (2) HASN PASN=SASN

Termination Processing - Service User
When the user partition (maintask) terminates, either normally or abnormally and all
ESTAE-TYPE recovery exits and the early STXIT AB exits have been processed
and did not recover the following happens:

� all subtasks are canceled due to maintask termination. When the subtask is
executing in another partition by PC-ss the recovery exits (including ARR) get
control. The exits must percolate (retry is not allowed).

� all entry tables connected to the LT are disconnected.
� the linkage table is freed.

Termination Processing - Service Provider
The service provider partition (maintask) terminates (normally or abnormally). All
AB exits have been processed and all subtasks have been terminated.

� prevent further connects to the terminating partition
� prevent further PC-ss to the terminating partition by disconnecting the provider's

ETs from all LT of the system
� cancel all tasks executing in the terminating partition by PC-ss

– an ARR will not get control
� free resources owned by terminating partition, such as ET(s), LXs, AXs.
� invalidate partition, since it is ensured that no task will access failing partition.

Control Register Save Area
� control registers are partly task related and need to be saved when a task is

interrupted.

� each task has two control register save areas, TCBX1CRS, TCBX2CRS in
TCBXADR

� when a task is interrupted/dispatched, CRs are saved/restored depending on
the RID

– rid=x'08' or x'10': CR first save area is used

 z/Architecture Cross Memory Communication 303

– rid=x'04' or gated: CR second save area is used

� when a task is dispatched for the first time, CRs are loaded from the CR first
save area

Control Register Save Area Initialization
The CR save area needs to be initialized/updated several times.

� During supervisor generation for

– static partition maintasks and system tasks for use during IPL

� During IPL processing for

– BG maintask and system tasks after segment table for space 0 is allocated

� During SVC 43 processing for

– BG maintask and system tasks after ASN second table is allocated and to
enable ASN translation

� During IJBLSTK processing

– called during attach subtask processing
– SVC 133 processing
– TREADY COND=START processing
– called for user tasks assigned to another partition
– called for vendor system tasks

� Activation of system tasks

 – SGSETUP services

Task Interrupt Handling
 � SVC Interrupt

– is only allowed when HASN=PASN=SASN
exception: SVC x'79' (leave ESTAE-type exit routine)

– otherwise the task is cancelled. During cancellation the system
- switches to home (set PASN=HASN=SASN)
- saves the CRs
- dumps area around SVC

� I/O - External - Machine Check Interrupt

– may occur in cross memory mode (PASN/=HASN)
– is processed if non parallel state is available
– I/O data must be in the home address space

� Page Fault Interrupt

– when a page fault occurs, the SCB of the space where the page fault
occured is needed. Since the supervisor does not get control during a
PC-ss, the SCBPTR and TIBSCB are not pointing to the active space SCB
if a page fault occurs in a routine called via PC-ss (SCBPTR not changed
during PC-ss). Therefore, the PMR can't use SCBPTR,

– SCBPTR in low core can't be taken. It is not changed during PC-ss
– SCB obtained by means of ASN translation which

- denotes entry in ASN 2nd table (ASTE)
- ASTE contains SCB pointer

304 VSE/AF Supervisor DRM

- If the page-fault is due to usage of the 1st STD, ASN in CR4 is used.
- If the page-fault is due to usage of the 2nd STD, ASN in CR3 is used.
- The ASN 1st table origin is taken from CR14.
- The control registers used for ASN translation are taken from 1st level

control register save area in TCB-extension.
- The above change requires that the following has to be true:

� ASTE exists even for system-space (ASN=0).
� ASN 1st table and ASTE for BG has to be allocated during ALLO-

CATE request for BG, to allow pagefaults in BG during INITVIRT
and later on.

� ASNs have to be given for PMR address spaces and ASTE allo-
cated for 1st PMR address space (in $INTVIRT), to allow
ASN-translation even for PMR address spaces.

� Program Check Interrupt

– call vendor hook (maybe in cross memory mode)
 – save status
 – set HASN=PASN=SASN
– initiate task termination

- if an ARR is defined, it gets control in cross memory mode

 z/Architecture Cross Memory Communication 305

306 VSE/AF Supervisor DRM

z/Architecture Subsystem Storage Protection

 Description
When subsystem storage protection is active, key-controlled storage protection is
ignored for storage locations having an associated storage-key value of 9 (see also
IBM Enterprise Systems Architecture/390 Principles of Operation, SA22-7201.).
Subsystem storage protection is set active, when the storage protection facility is
installed and bit 7 of control register 0 is set. The subsystem storage protection
facility can be used to protect subsystems from erroneous applications running in
the same partition.
The technique for doing this is as follows. The storage accessed by the application
program is given storage key 9. The storage accessed by the subsystem only is
given some other non-zero key, the partition key. The application is executed with
PSW key 9. The subsystem is executed with a PSW key equal to the partition key.
As a result, the subsystem can access both the key-9 and the partition key storage,
while the application program can access only the key-9 storage.

Subsystem storage protection
When the subsystem storage protection facility is installed, it is activated by VSE by
setting the corresponding bit (bit 7) in control register 0.
Furthermore bit CVTOVER in the CVT is set: This bit can be used by programs to
check whether subsystem storage protection is active.

Key 9 storage can be obtained by means of the GETMAIN/STORAGE macro. To
do so, the program must have associated with it a PSW key mask (PKM), that indi-
cates, that the program is authorized to use key 9.

Only programs running in OS390 emulation mode, are dispatched with a PKM that
allows to request key 9 storage. (Of course, the PKM is only set when subsystem
storage protection is active).
So programs, running in native VSE mode, cannot use the subsystem storage pro-
tection facility.
EXEC ...,OS39� is rejected if there is more than one partition per space.
So only one partition within one address space can have key 9 storage.

Within a partition, it is now possible to have different keys:
� partition key storage
� key 9 storage
� key 0 storage

Note: Partition F4 has partition key 9. Therefore subsystem storage protection
cannot be used in partition F4.

© Copyright IBM Corp. 1985, 2013 307

308 VSE/AF Supervisor DRM

z/Architecture Access Registers

 Introduction
Access register support will be used

� for cross memory services by authorized programs
� to increase the addressing capability of programs

Note: Access registers were introduced with ESA/390. Only minor changes in
z/VSE's access register support were necessary to support z/Architecture mode.
These changes are:

� CR0.47 (CR0.15 in ESA/390) is no longer used. The only format supported is
the one, that was set in ESA/390 with CR0.15 = 1.
When running in ESA mode, VSE always had set CR0.15=1, thus using the
format (e.g. 64-bytes ASTE), which is now the only one supported. CR0.47 is
no longer set by z/VSE.

� The layout of DU-AL and ASTE has changed in z/Architecture.

Access Register Translation (ART)
Reference: z/Architecture Principles of Operation, SA22-7832.

z/Architecture provides a set of registers known as the Access Registers. There
are 16 32-bit Access Registers (numbered 0-15) and their usage is paired with the
General Purpose Registers.

The Access Registers are used to provide Dynamic Address Translation (DAT) with
a different Segment Table Origin (STO) during address translation. The contents of
the Access Register do not contain the STO, but contain a Access List Entry Token
(ALET). This ALET is used by the ART to verify authorization to the space and to
complete the address translation. As with DAT, a look-aside buffer is provided to
improve the performance of the address translation.

Once a program has obtained the proper ALET from the z/VSE supervisor, the
program itself controls when it is to be in Access-Register mode and which Access
Register(s) are to be used.

Only data references through a base register are affected by Access Registers.
Instructions are always fetched from the primary address space. Access Registers
do not apply to index registers. Since General Purpose Register zero can never be
used as a base register, Access Register zero is never used for ART.

Access Register Translation (ART) uses the following control blocks and fields:

Access-List Entry Token (ALET): The ALET has the following format:

 ┌───────┬──┬───────┬──────┐
│�������│P │ALESN │ALEN │

 └───────┴──┴───────┴──────┘
 � 7 8 16 31 (bits)

© Copyright IBM Corp. 1985, 2013 309

A DSECT (MAPALET) is provided to map the ALET.

Primary-List Bit (P) specifies which Access List contains the designated Access List
Entry:

� 0 - Dispatchable-Unit Access List
� 1 - Primary-Space Access List

The specified list is called the Effective Access List.

Access-List-Entry Sequence Number (ALESN) is described on page 312.

Access-List-Entry Number (ALEN) when multiplied by 16 is the number of bytes
from the beginning of the effective access list to the designated Access-List Entry.

The ALET is placed into the appropriate Access Register by the program prior to
placing itself into Access-Register Mode.

Dispatchable-Unit Control Table (DUCT): The DUCT is pointed to by Control
Register 2 and must be on a 64-byte boundary. The format of the DUCT is:

 ┌────┬─────┬─────┬────┬───────┐
│��� │DUALD│ ��� │ // │ ����� │

 └────┴─────┴─────┴────┴───────┘
 � 16 2� 28 32 63 (bytes)

Bytes 0-15, 20-27 and 32-63 of the DUCT are reserved for possible future expan-
sions and should contain all zeros. Bytes 28-31 are available for use by program-
ming.

A DSECT (MAPDUCT) is provided to map the DUCT.

Dispatchable Unit Access-LIST Designation (DUALD) contains the Access-List Des-
ignation (ALD). The dispatchable-unit and primary-space access-list designations
both have the same format:

Format─� Access─List Designation

 ┌─┬────────────────────┬─────┐
│ │ Access─List Origin │ ALL │

 └─┴────────────────────┴─────┘
 � 1 25 31 (bits)

Bit 0 is reserved for a possible future expansion and should be zero.

The Access-List must be aligned on a 128-byte boundary. The Access-List Length
(ALL) specifies the length of the Access-List in units of 128 bytes (making the
length of the Access-List variable in multiples of eight 16-byte entries. The length of
the Access-List, in unit of 128 bytes, is one more than the value in bit positions
25-31.

Access-List Entries: The effective Access List is the Dispatchable-Unit Access
List if bit 7 of the ALET being translated is zero, or is the Primary-Space Access
List if bit 7 is one. The entry fetched from the effective list is 16 bytes in length and
has the following format:

310 VSE/AF Supervisor DRM

 ┌─┬────┬─┬────────┬───────┐
 │I│ │P│ ALESN │ ALEAX │
 └─┴────┴─┴────────┴───────┘
 � 1 7 8 16 31 (bits)

 ┌─────────────────────────┐
 │ │
 └─────────────────────────┘
 32 63

 ┌─┬───────────────────┬───┐
 │ │ ASTE Address │ │
 └─┴───────────────────┴───┘
 64 9� 95

 ┌─────────────────────────┐
 │ ASTESN │
 └─────────────────────────┘
 96 127

A DSECT (MAPALE) is provided to map the ALE.

Bits 1-6, 32-64 and 90-95 are reserved for possible future expansions and should
be zeros.

In both the Dispatchable-Unit Access List and the Primary-Space Access List,
Access-List entries 0 and 1 are intended not to be used in Access-Register Trans-
lation (ART). Bits 1-127 of Access-List Entry 0 and bits 1-63 of Access-List Entry 1
are reserved for possible future expansion and should be zeros. Bit 0 of Access-
List Entries 0 and 1, and bits 64-127 of Access-List Entry 1, are available for use
by programming. However, bit 0 of Access-List Entries 0 and 1 should be set to
one in order to prevent the use of these entries in which the ALEN is 0 or 1.

 z/Architecture Access Registers 311

The fields in the Access-List Entry are:

ALEN-Invalid Bit (I): Bit 0, when zero, indicates that the Access-List Entry specifies
an address/data space.

Private Bit (P): Bit 7, when zero, specifies that any program is authorized to use
the access-list entry in access-register translation. When bit 7 is one, this indicates
that further authorization is required and described below.

Access-List-Entry Sequence Number (ALESN): These bits are compared against
the ALESN in the ALET during ART. They must be equal for ART to continue.

Access-List-Entry Authorization Index (ALEAX): Used to determine whether or not
a program using access-register translation is authorized to use the Access-List
entry. The program is authorized if any of the following conditions are met:

1. Bit 7 is zero (indicating public)
2. ALEAX matches Extended Authorization Index (EAX) in Control Register 8.
3. The EAX selects a secondary bit that is one in the authority table for the speci-

fied address space.

ASN-Second-Table-Entry (ASTE) Address: Points to the ASTE for the specified
address space. ART obtains the STO for the address space from the ASTE.

ASTE Sequence Number (ASTESN): Compared against the ASTESN in the desig-
nated ASTE during ART. An inequality halts ART.

ASN-Second-Table Entries (ASTE): The ASTE begins on a 64 byte boundary.
Each entry is 64 bytes in length. The layout is described in z/Architecture Principles
of Operation, SA22-7832 ASN-Second-Table Entries. Since z/VSE works with
segment tables only (no region table), ASCE part 1 is zero. ASCE part 2 contains
the address of the segment table (as in CR 1).

A DSECT (MAPASTE) is provided to map the ASTE.

ASX-Invalid Bit (I): Bit 0 controls whether the address/data space associated with
the ASTE is available. When bit 0 is one, ART is halted.

Authority-Table Origin (ATO): Designates the beginning of the authority table. This
is used only if the private bit in the access-list entry is one and the access-list-entry
authorization index (ALEAX) in the access-list entry is not equal to the EAX in CR8.

Authorization Index (AX): Not used during ART.

Authority-Table Length (ATL): Specifies the length of the authority table in units of
four bytes. If the EAX is greater than the ATL, then ART is halted if extended
authority must be checked.

Segment-Table Designation (STD): Used by DAT to translate the logical address
for the storage-operand reference being made during ART.

Linkage-Table Designation (LTD): Not used during ART.

Access-List Designation (ALD): When this ASTE is designated as the Primary
ASTE Origin in Control Register 5, this field becomes the Primary Access-List des-
ignation (PSALD).

312 VSE/AF Supervisor DRM

ASN-Second-Table Entry Sequence Number (ASTESN): Compared against the
ASTESN in the Access-List Entry. An inequality halts ART.

Bits 224-255 (bytes 28-31) are available for use by programming.

The second 32 bytes of the 64-byte ASTE are reserved for possible future exten-
sions and should contain all zeros.

Access-Register-Translation (ART) Process: ART operates on the access reg-
ister designated in a storage-operand reference in order to obtain a segment-table
designation for use by DAT. When one of the access registers 1-15 is designated,
the Access-List-Entry Token (ALET) that is in the Access Register is used to obtain
the Segment-Table designation. When access register 0 is designated, an ALET
having the value of 00000000 hex is used.

When the ALET is 00000000 or 00000001 hex, the Primary or Secondary
Segment-Table designation, respectively, is obtained.

When the ALET is other than 00000000 or 00000001 hex, the Primary-List bit in
the ALET is used and the contents of Control Register 2 or 5 are used to obtain the
effective Access-List designation and the Access-List Entry Number (ALEN) in the
ALET is used to select an entry in the effective Access List.

The Access-List Entry is checked for validity and for containing the correct Access-
List-Entry Sequence Number (ALESN).

The ASN-Second-Table Entry (ASTE) addressed by the access-list entry is
checked for validity and for containing the correct ASN-Second-Table-Entry
sequence number (ASTESN).

Whether the program is authorized to use the Access-List Entry is determined
through the use of one or more of:

1. The private bit and Access-List-Entry Authorization Index (ALEAX) in the
Access-List Entry

2. The Extended Authorization Index (EAX) in Control Register 8, and
3. An entry in the Authority Table addressed by the ASN-Second-Table Entry.

When no exceptions are recognized, the Segment-Table designation in the
ASN-Second-Table Entry is obtained.

To improve the performance of ART, an ART-Lookaside Buffer (ALB) is provided.

Access Register Indication on Page Fault: When a segment- or page-
translations exception occurs on an System z processor, the processor must indi-
cate to the software how the virtual address was translated (using the primary STD,
secondary STD, home STD, or in access-register mode). This is indicated in the
last two bits of the 8-bytes Translation-Exception Identification field at location 168
(x'A8') (in z/VSE, bytes 168-171 are zeros, since z/VSE supports virtual addresses
up to 2GB only).

� 00 - Primary STD used
� 01 - Access register mode
� 10 - Secondary STD used
� 11 - Home STD used

 z/Architecture Access Registers 313

Note: z/VSE maintains the ESA/390 location x'90' - x'93'.

When access-register mode is indicated and the translation exception was caused
by a storage-operand reference that used an AR-specified STD, then the specific
access register being used is indicated in low storage field called Exception Access
Identification at location 160 (x'A0'). Location 160 (x'A0') contains zeros is the
processor was in access-register mode and the translation exception was caused
by an instruction fetch.

 ┌────┬────┐
│����│xxxx│ ─ Access Register Number

 └────┴────┘
 x'A�'

Translation Modes: z/Architecture offers four modes of operation:

 � Primary-Space Mode
 � Secondary-Space Mode
� Access-Register (AR) Mode

 � Home-Space Mode

Home-Space Mode can only be set in supervisor state. The other translation
modes can be set by the user. The design in z/VSE is such that effectively only
Primary-Space Mode and Access-Register Mode are used. To avoid use of
Secondary-Space Mode, z/VSE will always insure that Control Registers 1 and 7
are always equal. A program using the Set Address Control (SAC) instruction to
set itself in Secondary-Space Mode will not fail, but will always be addressing data
in its own address space.

314 VSE/AF Supervisor DRM

 │
AR - Translation │ AR - Translation
with P=1 in ALET │ with P=� in ALET

───┼───────────────────────────────
 │
 CR5 ALET CR2
 ┌────┬───────┬────┐ ┌──────┬─┬─────┬────┐ ┌──────────────┐
 │ │PASTEO │ │ │ │P│ALESN│ALEN│ │ DUCTO │
 └────┴──┬────┴────┘ └──────┴─┴─────┴──┬─┘ └──┬───────────┘
┌──────────┘ │
 DUCT
│ ASN second table │ ┌──────┬───────┬──────┐
│ ┌─────────────────┐ │ │ │ DUALD │ │
│ │ │ ┌─────┬───────┐ │ └──────┴───┬───┴──────┘
│R ├───────────┬─────┤ │
 │ │ │
└─�│ │ ALD │ │ ┌─┐ │ │ │
 ├───────────┴──┬──┤ │ │+│�─────┼────┘ │
 │ └──┼────────┘ └┬┘ │ │
 │ │ │ └──────────────────────────┘
 └─────────────────┘ │
 ┌───────────┘
 │
 │ Access List
 │ ┌────────────────────┐
 │ │ │
 │ R ├────┬─────────┬─────┤
 └───�│ │ASTE addr│ │
 ├────┴────┬────┴─────┤
 │ │ │
 │ │ │
 │ │ │
 │ │ │
 │ │ │
 └─────────┼──────────┘
 │
 ┌──────────────┘
 │

│ ASN Second Table Entry
 │ R ┌────────┬────┬──────┐
 └───�│ │STD │ │
 └────────┴─┬──┴──────┘
 │ ┌────┬─────┬───┐

└──────────────� │STO │ │STL│
 ├────┴─────┴───┘

 ┌───────────────┐

│ Segment table │
 │ │

R - real addresses │ │

Figure 134. Access Register Translation

 z/VSE Implementation
Two types of Access Lists are supported in z/Architecture

� A primary address space access list (PASN-AL) - addressed through CR 5.

� A dispatchable unit access list (DU-AL) - addressed through CR 2

z/VSE has a dummy DUCT, pointing to a dummy DU-AL, where all entries are
invalid.

 z/Architecture Access Registers 315

In z/VSE, each dispatchable work unit (that means, a VSE task) has a DU-AL.
When the task is initialized, it gets the dummy DU-AL. When the task adds the first
entry to the DU-AL, a DU-AL for the task is created. This DU-AL is deleted when
the task is terminated. If the task is created with the ATTACH macro using the
ALCOPY=YES parameter the DU-AL is a copy of the DU-AL of the attaching task,
in all other cases an empty DU-AL is created. The DU-AL can contain entries for
data spaces TYPE=SINGLE|ALL and address spaces.

When the system allocates a partition, it gives that partition a PASN-AL that con-
tains entries for all currently defined common data spaces (that means, data
spaces created with parameter SCOPE=COMMON).

The PASN-AL is divided into two parts. The first part is designed to contain entries
for data spaces defined with TYPE=COMMON. The number of entries in this
'common' part of the PASN-AL is the sum of

� three reserved entries for hardware purpose

� five entries default value for data spaces TYPE=COMMON. This value can be
modified with the SYSDEF AR command or the SYDEF JCL statement.

� number of VDISKs added at IPL time.

The second part (private part) of the PASN-AL is designed to contain entries for
data spaces TYPE=SINGLE|ALL and address spaces.

If a program needs access to data in another address space or data in a data
space, a connection between the program and the address/data space must be
established that means, an entry in either the DU-AL or the PASN-AL must be
created and the program has to know the ALET that indexes the entry in the AL.

The entry in the AL and the related ALET may be obtained either through a
GETFLD FIELD=ALET macro call in case of an address space or through an
ALESERV macro call in case of address space and data space.

When the first request after IPL for an ALET is issued in the system (either
ALESERV or GETFLD) a 'Model PASN-AL' is created. This Model will be given to
partitions at allocation time. As long as the partition does not add entries to the
private part of the PASN-AL it will stay with the Model PASN-AL.

When a partition is deallocated the related PASN-AL is invalidated (if it is not the
Model PASN-AL) and all entries pointing to the partition in all ALs are invalidated.

The Access Registers will be saved/restored at entry/exit to the supervisor. The
proper EAX value will be loaded into CR 8 when the task is dispatched.

The page fault address will be handled properly if Access Register Mode was in
effect when the page fault occurred.

The partition's ASTE is updated to point to the proper address space's SCB when
the partition switches modes (REAL|VIRTUAL).

The partition's Access List Entries are invalidated when the partition is unbatched.
For dynamic partitions, this occurs at end of VSE/POWER job. For static partitions,
this occurs only when the partition is explicitly unbatched.

316 VSE/AF Supervisor DRM

SDAIDS will recognize that Access Register Mode was in effect when the data ref-
erence was made to a data area that PER was monitoring.

DUMP will dump and print the 16 Access Registers along with the General Purpose
Registers.

Authorization: Public Access List Entries are used for data spaces that means, no
authorization check is performed for data spaces by ART. Access List Entries for
address spaces are made private in z/VSE, forcing ART to perform validation
before granting access to the ALE. VSE supports two methods to set the value for
the EAX (CR 8) so that ART will be successful.

� GETFLD FIELD=ALET to load a sytem defined EAX into CR8 of the current
task.

� ETDEF and ETCRE to set the EAX in an entry in the entry table for a specific
space switching PC (program call instruction). Execution of the PC will load the
EAX from the entry table entry into CR8.

Extended authorization check is setup to fail always: Authority Table Designation
points to a field of binary zeros.

ART Control Block Structure in z/VSE: Each partition has its own ASTE. The
PCB contains a pointer to the ASTE. The ASTEs for the static partitions are allo-
cated during supervisor generation. The ASTE for a dynamic partition is allocated
at the time the dynamic partition is allocated.

The TCB contains a pointer to a task's access registers save area. The access
register save areas for the static partitions (maintasks) are allocated during super-
visor generation. The access register save area for a subtask or dynamic partition
is allocated when the subtask or dynamic partition is allocated.

The control block structure implemented in z/VSE is:

 z/Architecture Access Registers 317

 PCB TCB
 ┌───────┐ ┌───────┐
 │ │ │ │
 │ │ │ │
 ├───────┤ ├───────┤
 ┌──┤ │ ┌──────────────────────┤ │
 │ ├───────┤ │ AR save ├───────┤
 │┌─┤ │ │ ┌────┐�───────┤ │
 ││ ├───────┤ │ │ │ ├───────┤
 ││ │ │ │ │ │ │ │
 ││ │ │ │ │ │ │ │
 ││ └───────┘ │ │ │ └───────┘
 ││ │ └────┘
 ││ CR5 │ CR2 CR8
 ││ ┌───────┐ │ ┌────────┐ ┌────┬────┐
 ││ │PASTEO │ │ │DUCTO │ │EAX │ │
 ││ └──┬────┘ │ └────────┘ └────┴────┘
 ││ │
TDSE │
 ││
PASTE ┌───────┐ │ TIB
 │└────�┌──┬─┬──┐ │ │ │ ┌───────┐
 │ │ │ │ │ │ │ │ │ │
 │ └──┴┬┴──┘ │DUCT │ │ ├───────┤
 │ ┌───────┘ ├──┬─┬──┤ │�─────────────┤ │
 │ │ │ │ │ │�┘ ├───┬───┤
 │ │ └──┴┬┴──┘ │EAX│ │
 │ │ │ ├───┴───┤
 │
PASN-AL
DUAL │ │
 └─�┌───────┐ ┌───────┐ │ │
 │ │ │ │ └───────┘
 │ │ │ │

│ALE │ │ │ SCB
├───────┤ │ │ ┌───────┐
│ │ │ALE │ │ │
├───────┤ ├──┬─┬──┤ │ │

 │ │ │ │ │ │ ├───────┤
 │ │ ├──┴┬┴──┤ ┌─────┤ │

│ │ │ │ │ │ ├───────┤
│ │ │ │ │ │ │ │
│ │ │ │ │ │ └───────┘
└───────┘ │ │ │ │

 └───┼───┘ │
 │
ASTE
 └────�┌──┬─┬──┐
 │ │ │ │ ST
 └──┴┬┴──┘ ┌───────┐
 └───────�│ │
 │ │
 │ │
 │ │
 │ │
 └───────┘

318 VSE/AF Supervisor DRM

 Address Spaces
The usage of Access Registers in z/VSE is for cross memory services for author-
ized programs to provide efficient means of accessing data that resides in other
address spaces. Authorized programs have to introduce themselves to the VSE
system either by means of a SUBSID macro call or a PRODID macro call.

Authorization by means of the PRODID macro is designed to be used by Vendor
programs.

The authorized programs using SUBSID are:

 � VSE/POWER
 � ACF/VTAM
 � OCCF
 � VSE/PT
 � CICS TS3

To use Access Registers to address another address space, the authorized
program must do the following:

 � Obtain the

– PIK of the target partition (GETFLD service is available) if
GETFLD FIELD=ALET is used

– STOKEN of the target partition may be retrieved by the target partition and
must be passed to the calling partition if ALESERV ADD is used

� To obtain the ALET for that partition use

 – GETFLD FIELD=ALET,PART=pik

– ALESERV ADD with STOKEN for partition

� Load the desired Access Register with the ALET.
� Set itself into Access-Register Mode by using the SAC 512 instruction.
� Reference the data using any ESA/390 instruction except MVCP or MVCS (key

zero may be required).
� Take itself out of Access-Register Mode by using the SAC 0 instruction.

A z/VSE service (XMOVE) is provided which allows movement of data between
partitions in the same or other address spaces. To use the XMOVE facilities, the
program would do the following:

� Obtain the PIK of the partition that the authorized program wants to address
(GETFLD services are provided for this purpose).

� Use the GETFLD FIELD=ALET,PART= service to obtain the ALET for that par-
tition.

� Place the ALET into the desired ALET field for the XMOVE parameter list
(XMOVE provides for both 'from' and 'to' ALET fields).

� Issue the XMOVE macro.

3 Support for CICS TS subsystem is provided primarily so that transactions can be written to access data in other address spaces.
CICS TS contains no knowledge of the access registers. It is the responsibility of the user transaction to save the access regis-
ters prior to going to CICS for services and to restore those access registers on return. It is also the responsibility of the trans-
action to ensure that access-register mode is set off prior to going to CICS for services.

 z/Architecture Access Registers 319

The GETFLD FIELD=ALET,PART=pik service is no fast path SVC anymore. It is a
service-class C request now, that means, a normal SVC which can be issued only
by authorized programs in user state (RID=8). The SVC checks if the requestor is
a authorized subsystem. If so, EAX in ASTE is set up. Then the input for calling
phase IJBALE is build:

� Register 5 points to the PCB of the partition to which access should be estab-
lished.

� Register 14 will be loaded with a function code 1 if the request comes from the
VTAM partition, function code 2 if the request is issued by a VTAM application
and function code 0 in all other cases. IJBALE will build an entry in the DUAL
of the current task if the function code is 0. If the function code is 1 or 2 an
entry in the private part of VTAM's PASN-AL is build. If the function code is 0
or 1 the EAX is loaded from the ASTE into CR8.

 � Call IJBALE.

� Pass ALET in register 1 and return code in register 15 to issuer of GETFLD.

The EAX in CR8 is only set up properly by means of calling IJBALE with function
code 0 or 1. Therefore, when the effective access list is created with ATTACH
ALCOPY=YES, authorization check of ART will fail as long as no GETFLD
FIELD=ALET is issued from the current task.

 Data Spaces

 Introduction
An address space, literally defined as the range of addresses available to a com-
puter program, is like a programmer's map of the virtual storage available for code
and data. An address space provides each programmer with access to all of the
addresses available through the computer architecture.

Because it maps all of the available addresses, an address space includes system
code and data as well as user code and data. Thus, not all of the mapped
addresses are available for user code and data. This limit on user applications was
a major reason for System/370 Extended Architecture (370-XA). Because the
effective length of an address field expanded from 24 bits to 31 bits, the size of an
address space expanded from 16 megabytes to 2GB.

A 2GB address space, however, does not, in and of itself, meet all of programmers'
needs in an environment where processor speed continues to increase, where busi-
nesses depend on quick access to huge amounts of information stored on DASD.

What programmers need in this environment is a large address space, of course,
but, even more, programmers need the ability to control what goes on in all those
addresses. Extended addressability meets that need. It allows programmers to
extend the power of applications through the use of additional address spaces or
data-only spaces. The data-only spaces that are available for your programs are
called data spaces. Your program can ask the system to create these spaces.
Their size can be up to 2GB, as your program requests. Unlike an address space,
a data space contains only user data; it does not contain system control blocks or
common areas. Program code cannot run in a data space.

320 VSE/AF Supervisor DRM

The following diagram shows, at an overview level, the difference between an
address space and a data space.

 Address Spaces Data Spaces
 2GB ┌──────────────────────┐ 2GB ┌──────┬───────┬───────┐

│ SVA (31 bit) │ │ │ │ │
──────── ├──────┬───────┬───────┤ │ │ │ │

� │ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │

Private │ │ │ │ │ │ │ │
Partitions │ BG │ F1 │ X1 │ │ DS1 │ DS2 │ DS3 │

│ │ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │

 │ │ │ │ │ │ │ │

──────── ├──────┴───────┴───────┤ │ │ │ │
│ Shared Partitions │ │ │ │ │
├──────────────────────┤ │ │ │ │
│ SVA (24-Bit) │ │ │ │ │
├──────────────────────┤ │ │ │ │
│ Supervisor │ │ │ │ │

� └──────────────────────┘ � or 4KB └──────┴───────┴───────┘

 Invocation.
Data Space services are invoked via the macros

� DSPSERV to create, delete, extend or release a data space.

� ALESERV to control access to a data space.

� SYSDEF to modify installation limits for data spaces. Or to retrieve data space
information for JCL and sub-systems. For the description see Appendix B.

 z/Architecture Access Registers 321

 DSPSERV Macro
The DSPSERV macro expands into the definition of the following parameter list and
a Program call (program call numbers X'00000900' and X'00000903'). The
Program Check Handler gets controls and interprets the Program Call 208 by
passing control to the SVA routine IJBDSP.

┌─────────────────────┬────────────┬──────────────────────────────┐
│ │ │ │
│ Bytes │ │ │
│ Dec Hex │ Label │ Description │
├─────────────────────┼────────────┼──────────────────────────────┤
│ │ │ │
│ � ─ � � ─ � │ DSPXVERS │ VERSION IDENTIFIER │
│ 1 ─ 1 1 ─ 1 │ DSPXSERV │ SERVICE CODE: │
│ │ │ X'�1' CREATE │
│ │ │ X'�2' DELETE │
│ │ │ X'�3' RELEASE │
│ │ │ X'�6' EXTEND │
│ 2 ─ 2 2 ─ 2 │ │ Must be zero │
│ 3 ─ 3 3 ─ 3 │ DSPXFLG1 │ FLAGS: │
│ │ │ B'1��xxxxx' SCOPE=SINGLE │
│ │ │ B'�1�xxxxx' SCOPE=ALL │
│ │ │ B'��1xxxxx' SCOPE=COMMON │
│ │ │ B'xxxx1xxx' GENNAME=COND │
│ │ │ B'xxxxx1xx' GENNAME=YES │
│ │ │ B'xxx�xx��' MUST BE ZEROES │
│ 4 ─ 4 4 ─ 4 │ DSPXFLG2 │ FLAGS: │
│ │ │ B'�1������' FETCH PROTECT │
│ │ │ B'�x������' MUST BE ZEROES │
│ 5 ─ 5 5 ─ 5 │ DSPXKEY │ STORAGE KEY │
│ 6 ─ 6 6 ─ 6 │ DSPXTYPE │ ONLY TYPE= BASIC SUPPORTED │
│ │ │ X'8�' │
│ 7 ─ 7 7 ─ 7 │ DSPXFLG3 │ FLAGS: │
│ │ │ X'��' MUST BE ZERO │
│ 8 ─ 15 8 ─ 1� │ DSPXOUTN │ NAME OF DATA SPACE │
│ 16 ─ 23 11 ─ 17 │ DSPXSTKN │ STOKEN │
│ 24 ─ 27 18 ─ 1B │ DSPXSTRT │ START ADDRESS FOR RELEASE │
│ 28 ─ 31 1C ─ 1F │ DSPXBLKS │ NUMBER OF MAXIMAL BLOCKS │
│ 32 ─ 47 2� ─ 2F │ DSPXTTKN │ TTOKEN │
│ 48 ─ 51 3� ─ 33 │ DSPXORIG │ START ADDRESS OF DSPACE │
│ 52 ─ 55 34 ─ 37 │ DSPXNBLK │ NUMBER OF EXTENDED BLOCKS │
│ 56 ─ 59 38 ─ 3B │ DSPXINIT │ NUMBER OF INIT BLOCKS OF DAT│
└─────────────────────┴────────────┴──────────────────────────────┘

322 VSE/AF Supervisor DRM

 ALESERV Macro
The ALESERV macro expands into a declaration of the following parameter list and
a PC instruction (program call numbers X'0000000D' for ADD, X'0000000E' for
DELETE, X'0000000F' for EXTRACT and X'00000010' for SEARCH)

┌─────────────────────┬────────────┬──────────────────────────────┐
│ │ │ │
│ Bytes │ │ │
│ Dec Hex │ Label │ Description │
├─────────────────────┼────────────┼──────────────────────────────┤
│ │ │ │
│ � ─ � � ─ � │ ALSSRVC │ SERVICE CODE: │
│ │ │ X'�1' ADD │
│ │ │ X'�2' ADD-PASN │
│ │ │ X'�3' DELETE │
│ │ │ X'�4' EXTRACT │
│ │ │ X'�5' SEARCH │
│ │ │ X'�6' EXTRACTH │
│ 1 ─ 1 1 ─ 1 │ ALSFLGS1 │ FLAGS: │
│ │ │ B'�����xxx' RESERVED │
│ │ │ B'xxxxx1��' MUST BE 1 │
│ │ │ B'xxxxxx�x' DU─AL │
│ │ │ B'xxxxxx1x' PASN─AL │
│ │ │ B'xxxxxxx�' MUST BE � │
│ 2 ─ 2 2 ─ 2 │ ALSRESV1 │ reserved: must be � │
│ 3 ─ 3 3 ─ 3 │ ALSRESV2 │ reserved: must be � │
│ 4 ─ 7 4 ─ 7 │ ALSALET │ ALET │
│ 8 ─ 15 8 ─ F │ ALSSTOKN │ STOKEN │
└─────────────────────┴────────────┴──────────────────────────────┘

 z/Architecture Access Registers 323

Control Block Structure.

 TCB TDSE DU─AL
 ┌────────┐ ┌───�┌────────┐ ┌────────────┐
 │ │ │ ┌─│TDSESCB │ ┌───�│ │
 │ │ │ │ ├────────┤ │ │ │
 ├────────┤ │ │ │ │ │ │ │
 │TCBTDSE │────┴ │ │ │ │ │ │
 ├────────┤ │ ├────────┤ │ │ │
 │ │ │ │TDSEDUCT│──────┘ └────────────┘
 │ │ │ └────────┘
 └────────┘ │
 ┌────────────────┴
 │ ┌─────────────────────────────────────┐
 SCB1 │ SCB2 │ SCB3

 │
 ┌────────┐ ┌────────┐ │ ┌────────┐
 │ ... │�─────┐┌─────�│ ... │�────┐┌────┼──�│ ... │�──┐
├────────┤ ││ ├────────┤ ││ │ ├────────┤ │
 │SCBFWPT │──────┼┘ │SCBFWPT │─────┼┘ └───│SCBFWPT │ │
 ├────────┤ │ ├────────┤ │ ├────────┤ │
 │SCBBWPT │───┐ └───────│SCBBWPT │ └─────────│SCBBWPT │ │
 ├────────┤ │ ├────────┤ ├────────┤ │
 │ ... │ │ │ ... │ │ ... │ │
 │ │ │ │ │ │ │ │
 │ ... │ │ │ ... │ │ ... │ │
 ├────────┤ │ ├────────┤ ├────────┤ │
 │ │ │ │ │ │ │ │
 │DSCB │ │ │DSCB │ │DSCB │ │
 │ │ │ │ │ │ │ │
 │ │ │ │ │ │ │ │
 └────────┘ │ └────────┘ └────────┘ │
 └──┘

Every data space is owned by the task which created it. In the TDSE there is a
pointer (TDSESCB) to the SCB of the data space which was first created by the
task. All SCBs for data spaces which were created lateron are chained forward and
backward amongst each other. The forward pointer of the last SCB in this chain
points to the first SCB in the chain. The backward pointer of the first SCB in this
chain points to the last SCB in the chain. TDSESCB is X'00000000' when the task
does not own any data space.

� Extension of SCB for Data Spaces:

For every Data Space a Space Control Block is created as it is done for
Address Spaces. But for Data Spaces this control block has an extension. The
format of the extension is described in the following figure. Note that this exten-
sion is only appended to the SCB, if the flag SCBDSP within the SCB is on.

324 VSE/AF Supervisor DRM

┌─────────────────────┬────────────┬──────────────────────────────┐
│ │ │ │
│ Bytes │ │ │
│ Dec Hex │ Label │ Description │
├─────────────────────┼────────────┼──────────────────────────────┤
│ │ │ │
│128 ─135 8� ─ 87 │ DSCBNAME │ NAME OF DATASPACE │
│136 ─143 88 ─ 8F │ DSCBSTKN │ STOKEN OF DATA SPACE │
│144 ─146 9� ─ 92 │ DSCBFLGS │ FLAGS │
│ │ │ B'1��xxxxx' SCOPE = SINGLE │
│ │ │ B'�1�xxxxx' SCOPE = ALL │
│ │ │ B'��1xxxxx' SCOPE = COMMON │
│ │ │ B'xxx1xxxx' VDISK │
│ │ │ B'xxxx����' RESERVED │
│147 ─147 93 ─ 93 │ DSCBSKEY │ STORAGE KEY OF DATA SPACE │
│148 ─151 94 ─ 97 │ DSCBSTRT │ ADDRESS OF AREA TO RELEASE │
│152 ─155 98 ─ 9B │ DSCBRLSZ │ SIZE OF AREA TO RELEASE │
│156 ─156 9C ─ 9C │ DSCBREND │ END INDICATOR FOR RELEASE │
│157 ─159 9D ─ 9F │ DSCBRSVD │ RESERVED │
│16� ─163 A� ─ A4 │ DSCBTIB │ ADDRESS OF OWNER'S TIB │
└─────────────────────┴────────────┴──────────────────────────────┘

SCBs for data spaces are always located in the system GETVIS area (31-bit).

� Extension of TCB for Data Spaces:

All the task specific fields needed for the data space support are defined in a
separate control block within the system GETVIS area (31-bit) addressed via
the field TCBTDSE (within TCB).

┌─────────────────────┬────────────┬──────────────────────────────┐
│ │ │ │
│ Bytes │ │ │
│ Dec Hex │ Label │ Description │
├─────────────────────┼────────────┼──────────────────────────────┤
│ │ │ │
│ � ─ 3 � ─ 3 │ TDSEID │ IDENTIFIER OF CONTROL BLOCK │
│ 4 ─ 7 4 7 │ TDSESCB │ ADDRESS OF FIRST DATA SPACE │
│ │ │ IN CHAIN OF OWNED DATA SPACE│
│ 8 ─ 11 8 ─ B │ TDSEAUTS │ ADDRESS OF AUTOMATIC STORAGE│
│ │ │ FOR IJBDSP/IJBALE │
│ 12 ─ 15 C ─ F │ TDSEAUTL │ LENGTH OF AUTOMATIC STORAGE │
│ │ │ FOR IJBDSP/IJBALE │
│ 16 ─ 19 1� ─ 13 │ TDSETIB │ TIB ADDRESS OF CURRENT TASK │
│ 2� ─ 63 14 ─ 3F │ │ RESERVED │
│ 64 ─127 4� ─ 7F │ TDSEDUCT │ DISP. UNIT CONTROL TABLE │
└─────────────────────┴────────────┴──────────────────────────────┘

 z/Architecture Access Registers 325

326 VSE/AF Supervisor DRM

z/Architecture Linkage Stack

 Introduction
z/Architecture offers the facility to call subroutines or programs where neither the
caller nor the called program has to make provisions to save registers, access reg-
isters, address space numbers etc.
To support BAKR and stacking PC instructions, z/VSE

� provides the necessary storage area (called linkage stack)

� generates Linkage Table and Entry Tables for selected stacking PCs

� loads control register 13 with home segment-table designation

� loads control register 15 with virtual linkage-stack-entry address

Linkage stack instructions and layout of the linkage stack are described in:

z/Architecture Principles of Operation, SA22-7832.

Note: The Linkage stack was introduced with ESA/390. Only minor changes in
z/VSE's linkage stack support were necessary to support z/Architecture mode.
The functionality has not changed.
These changes are:

� Adaptations to the changed layout of the linkage stack entries.

� When allocating getvis storage for a linkage stack, consider the increased
length of a status entry. The status entry has changed to support 16-bytes
PSWs, and 8-bytes addresses and registers

Linkage Stack - z/Architecture implementation
When a task is started it gets a linkage-stack, consisting of a header, one status
and a trailor entry. The linkage stack for all system tasks and BG is generated
within supervisor. This allows system tasks and BG to use stacking PC during IPL.

When the linkage stack becomes full program check is raised (a 'Stack-Full Excep-
tion' X'0030' or X'00B0' at location X'8E'). If the Stack-Full exception occurs while
RID was 4 (REENTRID), 8 (USERTID) or 16 (RESVCID), the program check
handler saves the status into the appropriate save area and calls then phase
$IJBLSTK which assignes a linkage stack in the System-Getvis-Area and reexe-
cutes the failing BAKR or stacking PC instruction.

When a task terminates, $IJBLSTK is also called to free up the linkage stack space
in the System-Getvis-Area and give the task the dummy-linkage-stack.

z/VSE supports two types of linkage stacks. The 'normal linkage stack' which con-
tains 97 status entries for use by the programs running under a single z/VSE task.
The task is canceled when it requests more than 97 status entries. A 'recovery
linkage stack' is created for the task, which is used during abend-exit processing. It
consists of 24 entries. If the abend-exit routine requires more than 24 entries in the
recovery linkage stack, the task is finally terminated.

© Copyright IBM Corp. 1985, 2013 327

$IJBLSTK - Create/Modify/Delete linkage stack
$IJBLSTK is designed to handle all requests dealing with the linkage stack. The
phase is pfixed and resides in the SVA high. Several function codes are defined to
handle the different tasks which may be requested from $IJBLSTK.

Function code 0 - create/extend linkage stack
This function is called from the program check handler (SGPCK) when a Stack-Full
exception was raised.

Its processing consists of the following steps:

� If the recovery linkage stack has already 24 entries, cancel the task (ERR47).

� If the linkage stack has already 97 entries prepare exit to cancel task, save
normal linkage stack entry address, set up dummy linkage stack and indicate
that recovery linkage stack is active from now on.

� Get a new linkage stack section consisting of a header entry, 12 status entries
and a trailer entry out of a linkage stack pool.
Extend pool if possible (2nd save area is free), otherwise inform supervisor to
extend pool (IJBLPOOL).

� Append new section to trailer entry of current section.

� Initialize first control register save area for CR15 in TCB-extension
(TCBX1CRF) and load CR15.

� Exit to dispatcher or DISPSERV (to cancel user)

Function code 4 - Delete Recovery Linkage Stack, Empty Linkage
Stack.

This function is called from

� Terminator (SGAP) before clean-up routines get control

� Dispatcher (DISP) at termination of system tasks

� AB exit processing (SVC 95, SGEXIT)

Its processing consists of the following steps:

� clear second linkage stack savearea (TCBX2CRF in TCB-extension)

� clear VTAMs linkage stack savearea (TCBXTLSA in TCB-extension)

� If recovery linkage stack exists issue SFREEVIS for all its linkage stack
sections, update TCB-extension and reestablish normal linkage stack.

� set TCBX1CRF to point to header of first section of normal linkage stack, load
cr15 and return to caller

Function code 8 - Initialize Linkage Stack Values
This function is called from

� Terminator (SGAP, DISPSERV fct.code 36) after VENDOR EOT hooks

� Attach subtask (SGAP, SVC 38)

� Start program (SGAP, SVC 133)

328 VSE/AF Supervisor DRM

Its processing consists of the following steps:

� clear second linkage stack savearea (TCBX2CRF in TCB-extension)

� clear VTAMs linkage stack savearea (TCBXTLSA in TCB-extension)

� If recovery linkage stack exists issue SFREEVIS for all its linkage stack
sections.

� Give task normal linkage stack consisting of a header, one status and a trailor
entry and issue SFREEVIS for all other sections.

� Initialize linkage stack related fields in TCB-extension from the Data Space
Information Control Block.

� set TCBX1CRF to point to header of the linkage stack, load cr15 and return to
caller

Function code 12 - Free storage for both linkage stacks
This function is called from SGTINF for TSTOP COND=UNBATCH

It issues SFREEVIS requests for all existing linkage stack sections (except the per-
manent sections i.e. the normal linkage stack consisting of a header, one status
and a trailor entry).

 z/Architecture Linkage Stack 329

330 VSE/AF Supervisor DRM

Capacity Measurement Tool (CMT) in z/VSE 4.1

 Introduction
Capacity Measurement is started in any partition through:
// EXEC IJBCMT,PARM='START ID=xxxx'
When started, every 30 minutes it writes a so-called SCRT89 record into a sequen-
tial disk file. The data in the SCRT89 record are similar to the one in the SMF70
record of a z/OS system. CMT is implemented as a system task, i.e. collecting of
measurement data and writing of the SCRT89 record into the disk file is done
under control of a system task.

Characteristics of the CMT system task
� The system task is named CMT

� CMT task id is x'0D'. This is a reuse of the REC system task, which was not
used.

� Priority of the CMT task is between DSP and SPT task

� The CMT task is generated with TIBRQID=WAITBND (x'82') It is activated
through TREADY TASK=

� After the CMT task has written an SCRT89 record, it does SETIME and WAIT.

� The CMT task executes mostly enabled for interrupts. Page faults can occur.

� When the CMT task is started, it does STXIT AB to establish an AB exit.

� In case the AB exit is entered the first time, the CMT task is restarted internally.

� If the AB exit is entered the second time, no internal restart is done. The CMT
task must be started manually through

– // EXEC IJBCMT,PARM='START ID=xxxx'

 System Resources
Subpool ICMTSP in System Getvis Storage (both LOC=BELOW and LOC=ANY
requests). The storage is freed after the SCRT89 record has been written to disk.

 New Macro
SGCMT

© Copyright IBM Corp. 1985, 2013 331

332 VSE/AF Supervisor DRM

 Program Retrieval

External and Internal Interface
The program retrieval provides a set of services either to get the information about
an executable program or to load such a program into the storage. The programs
are contained in a partitioned data set, the so called LIBRARY. This library is
divided into sublibraries each of these may contain programs (or phases). The ser-
vices are realized by means of supervisor calls.

The SVCs are:

SVC X'�1' (FETCH macro)
SVC X'�2' (B-Transient load)
SVC X'�4' (LOAD and SLOAD macros)
SVC X'�5' (A-Transient load)
SVC X'17' retrieves load address; req. can only be JCL or B-trans.
SVC X'33' (HIPROG macro)

The interface to these SVCs is described in “Supervisor Call Interrupt (SVC)” on
page 29. Any of the above SVC routines has a common interface to the program
retrieval service, the so called FETCH / LOAD service. This interface is described
below:

Input:

Register 1 = address (parameter-list | phasename)

Register � = null
| address(loadpoint) for SVC X'�2',X'�4',X'�5',X'3�',X'41'
| address(entrypoint) for SVC X'�1'
| address(area, where loadpoint should be stored, is passed

for SVC X'17')

parameter list = [id,addr(phasename),flag,addr(local-list)]

id = 00 - for normal LOAD / FETCH
01 - ICCF load request
02 - CDLOAD load request
03 - SLOAD request
04 - reserved

flag = 80 - return code requested
40 - SVA load / update
20 - no SDL search
10 - reserved
08 - directory entry with SDL format
04 - system search sequence
02 - directory entry
01 - bypass program fetch (phase in SVA or TXT=NO)

addr(local-list) = address(list) | null

Register 2 = addr (comreg) of pseudo partition if identified as ICCF request.

© Copyright IBM Corp. 1985, 2013 333

Output:

If successful, requested directory information and / or phase processing.

Register 0 NIL for SVC X'17'
Address of entrypoint otherwise

Register 1 NIL for SVC X'17'
null
address of directory entry in local list

Register 2 NIL for SVC X'17'
Address of entrypoint (otherwise)

Return code if requested

Note: A load point must be specified for self-relocatable phases.

 RMODE Considerations
All parameter lists passed to program retrieval must be located below 16MB.

 31-Bit Considerations
Program Retrieval executes mostly in AMODE 24 and switches to AMODE 31 only
when necessary, for example, to load a phase above 16MB, to do the relocation
above 16MB, to call subroutines requiring AMODE 31....

334 VSE/AF Supervisor DRM

Structure of the FETCH Environment
The diagram in Figure 135 gives an overview of the flow of control for the exe-
cution of a FETCH request.

Part 1 shows the actual control flow, part 2 shows the interrelationship between
logic and control blocks.

┌────────────────┐
│ Requester task │
│────────────────│
│Enter supervisor│
│via SVC │
│ │ │
├────│───────────┼───┐
│ │ │ Fetch processing │
│
 │ │
│Analyze FETCH │ ┌─────────────────────┐ │
│request if ─────�│Activate directory │ ┌───────────────────┐ │
│directory read │ │search task if ───────�│Dir. Search Task │ │
│ │ │ │successful else RWAIT│ ├───────────────────┤ │
│ no │ └─────────────────────┘ │Search directories │ │
│ │ │ │after requested │ │
│
 │ │phase │ │
│ │ │ ┌────────────────────┐ │ │ │
│ │�───if�──────────┤Deactivate directory│ │ │ │
│ │ successful│ │search task │�───────End search │ │
│ │ else CANCEL └────────────────────┘ └───────────────────┘ │
│ │ or give RC│ │
│
 │ ┌────────────────────┐ │
│if program fetch─────�│Activ. program fetch│ ┌───────────────────┐ │
│ │ │ │task if successful ────�│Program Fetch Task │ │
│ no │ │else RWAIT │ ├───────────────────┤ │
│ │ │ └────────────────────┘ │Determine length of│ │
│ │ │ │phase to fetch and │ │
│ │ │ │PFIX/TFIX the space│ │
│ │ │ ┌────────────────────┐ │READ─in phase │ │
│ │�────────────────┤Deactivate program │ │ │ │
│ │ │ │fetch task │�───TFREE the space │ │
│ │ │ └────────────────────┘ └───────────────────┘ │
│
 │ │
├────────────────┼───┘
│Return to SVC │
│Interface │
└────────────────┘
Figure 135 (Part 1 of 2). Fetch Control Flow

 Program Retrieval 335

 ┌────────────────────┐
 │ │
 │ SVC interface │
 │ │
 FETCH data └─────────┬──────────┘
 section │
 ┌──────┐ │ ┌───────┐
 │ FCB │ │ │FWORK │ FWORK is
 ├──────┼──────────────────┼───────────────────┼───────┤ part of
 │State │ │ │State │ TCB
 │ of │ ┌─────────┴──────────┐ │ of │ or FETCH
 │fetch │ │ │ │request│ requestor
 │tasks │ │ Fetch overall logic│ │ │
 └──────┘ │ │ └───────┘
 └─────────┬──────────┘
 │
 ┌──────┐ │ ┌───────┐
 │DFICBR│ ┌──────┴──────┐ │DFICBP │
 ├──────┼──┬────────┼─────────────┼────────────┼───────┤
 │State │ │ │ │ │State │
 │ of │ │ ┌────┴─────┐ ┌────┴─────┐ │ of │
 │Dir │ │ │ Directory│ │ Program │ │ Pgm │
│Task │ │ │ Search │ │ Fetch │ │ task │
└──────┘ │ │ Task │ │ Task │ └───────┘
 │ └────┬─────┘ └────┬─────┘
 ┌──────┐ │ │ │ ┌───────┐
 │CHAIN ├──┘ ├─────────────┼────────────┤FRPL │
 ├──────┤ │ │ ├───────┤
 │Table │ │ ├────────────┤FRPL │
 │ for │ │ │ ├───────┤
 │search│ ┌───┴─────────────┴───┐ │ │
 │ seq │ │ │ │ │
└──────┘ │ I/O layer │ └───────┘
 │ │
 └─────────────────────┘
 � � �
 � � �
 � � �

┌──────┐ ┌──────┐ ┌──────┐
│DEVTAB│ │EXTTAB│ │ SDL │
├──────┤ ├──────┤ ├──────┤

 │ │ │ │ │ │
 │ │ │ │ │ │
 │ │ │ │ │ │

└──────┘ └──────┘ └──────┘
Control blocks of the I/O layer

Figure 135 (Part 2 of 2). Fetch Control Flow

336 VSE/AF Supervisor DRM

Fetch Concept in Librarian
The librarian supports a uniform and condense-free library concept. A Library
(NLIB) consists of a non-empty set of sublibraries each may contain members of
various types like PHASE, MODULE, PROCEDURE etc. A sublibrary consists of a
directory, alphamerically ordered after 'TYPE.MEMBERNAME', and a member
space. It may have more than one extent on more than one volume of the same
disk device type. For faster search algorithm, the directory can be accessed via an
index set (B-tree).

The physical organization of the library is done into so called Library Blocks (LBs)
of the size of 1KB. The LBs are comparable to the CIs (Control Intervals) in VSAM.
A LB contains the data record and VSAM like control information. This is called
LBCF and consists of CIDF (Control Interval Definition Field), RDF (Record Defi-
nition Field), phase ID and LB chaining field. The next logical LB entity is
addressed by the LB chaining field. In such a way the requirement of condense-
freeness is satisfied.

As a consequence however, the contiguity of the directory and the space of an
individual member cannot be guaranteed. In a frequently updated library respec-
tively sublibrary the degree of fragmentation (directory-, index- and member-space)
is increased during its lifetime. The resulting FETCH performance will be essen-
tially decreased. A reorganization of the library is recommended for a proper
FETCH performance.

For CKD devices the search on key high or equal is no longer used.

The system library IJSYSRS supports only one extent (on a single volume) and
contains at least one sublibrary called SYSLIB. The system library starts on a fixed
disk location and contains at least all phases and procedures necessary for IPL.

The library-sublibrary pairs, active in the system, are described by control blocks
located in the System GETVIS area. The allocation of these pairs to the VSE parti-
tions is given in the Library Offset Table (LOT).

 Librarian Structure
Library Format

The following figure shows the structure of the LIBRARIAN in such a detail neces-
sary for understanding the FETCH / LOAD processing.

 Program Retrieval 337

LB (Library Block)
 │�──────────────────── LB Size ──────────────────────────�│
 ┌───┐
 │///////////////////////////│ │//////////│
 └───┘
 │�─────── Data ──────────�│�── Free Space ──�│�─ LBCF ─�│

LBCF (Library Block Control Field)
│�─────────────── Size = F(#records) ─────────────────────────────�│

 ┌─────┬───┬─────┬────┬────┬─────┬─────┬─────┬────┬─────┬─────┬─────┐
│l'RCn│...│l'RC1│ ID │FLAG│#REC │L'REC│A'FSP│L'FSP│#CLB│BPRBA│FPRBA│

 └─────┴───┴─────┴────┴────┴─────┴─────┴─────┴────┴─────┴─────┴─────┘
 │�─────│───────�│�─────────── fixed length ─────────────────────�│
 │

└── only for compressed or variable length records

applied only for directory and index LBs
(but not in TEXT and RLD LBs)

 xPRBA
 │�─2�│�──4─�│
 ┌───────────┐
 │OFFS│RBLKNR│
 └───────────┘
 │�──�│�────�│
 │ │

│ └─── block number relative to LIB─start
└───────── offset in library block

Figure 136. Library Format

The abbreviations are:

F(#records): function of number of records contained in the LB
l'RCn: length of record number n (at least one record differs in length

from the others)
ID: phase ID
#REC: number of records
L'REC: length of records (if all records of same length)
A'FSP: begin address of free space
L'FSP: length of free space
#CLB: number of contiguous LBs following this LB
BPRBA: backward pointer RBA (relative byte and block address)
FPRBA: forward pointer RBA of next logical LB
xPRBA: FPRBA or BPRBA

338 VSE/AF Supervisor DRM

LIBRARY STRUCTURE

 LB
 ┌─────────┐
 │ │ Library Descriptor
 ├─┬─┬──┬──┘

│ │ │ │
│ │ │ │
│ │ │ │
│ │ │

│ │ │ ┌────────┐ ┌─────────┐ ┌────── Sublibrary
│ │ │ │ �│���│ �│���│ Descriptors
│ │ │ └────────┘ └─────────┘ └──────
│ │ │
│ │ │
│ │ └..........................

 │ │

 │ │ ┌─────────┐ Control
 │ │ │ │ Information
 │ │ └─────────┘ inside
 │ │ FREE─SPACE─MAP Library
 │ │
 │ └.............
 │ │

 ┌─────────┐ ┌─────────┐ Control
 │ │ │ │ Information
 └─────────┘ └─────────┘ outside
 LIB─DEF─TAB EXTNT─DEF─TAB Library

'�' represents the logical LB chain pointers
'.' represents the logical chaining of data entities

Figure 137. Library Structure

Notes:

1. The control information tables are not necessarily located as physical fields in
the library. They may be built during "Library Allocation" time by means of label
information etc...

2. All directory LBs are on the same (lowest) index level and are alphamerically
sorted after "TYPE.MEMBERNAME". The highest index level of a sublibrary
consists of one or more LBs (performance considerations).

3. The data length of TXT, or RLD LBs is L'LB - L'LBCF.

4. The EOB indication for DIR or INDEX LBs is given by:
LBCF.L'REC = X'0'

5. End of a logical chain (for example, member, directory) is given by:
FBRBA = X'FFFFFFFFFFFFF'.

 Program Retrieval 339

SUBLIBRARY STRUCTURE

 ──────────────────────────────
 LB
 ┌─────────┐ Sublibrary
 │ │ Descriptor
 └─┬─────┬─┘
 │ │ ─────────────────────────────
 │ │ LB
 �───

─────�┌─────────┐
 │ │ │
 │ └┬───────┬┘
 │ │ │
 │ │ │
 │ LB

│ ┌─────────┐ ┌─────────┐

 │ │ │ │ │ Index Level
│ └────┬───┬┘ └────┬────┘ (B─Tree)

 │ │ │ │
 │ │ │ │
 │

 │ ┌─────────┐ ┌────── ┌─────────┐
 │ │ �│──�│ │ F│
 │ └┬────────┘ └────── └────────┬┘
 │ │ │
 │ │ │ ─────────────────────────────
 │�──

───┐

 ┌─────────┐ ┌───── ┌──────────┐ ┌──────────┐
│ �│──�│ │ �│──�│ F│ Directory

 └┬────────┘ └───── └──────────┘ └──────────┘ Level
 │
 │ ─────────────────────────────
 │ ┌──────────────────────────────────────┐
 │ │ │

 │
┌─────────┐ ┌─────────┐ ┌──────────┐ ┌──────────┐

 │ �│─┐ │ │ │ F│ │ �│ Member
└─────────┘ │ └─────────┘ └──────────┘ └──────────┘ Space

 │ �
 └───────────────────────────────┘
 ──────────────────────────────

'�' represents the logical LB chain pointers
'.' represents the logical chaining of data entities

Figure 138. Sublibrary Structure

340 VSE/AF Supervisor DRM

Directory and Index

Each member of a sublibrary is described by a corresponding directory entry. Direc-
tory entries on one physical LB are accessible via an index entry in the (next
higher) index level. If this index level consists of more than 3 LBs, then a higher
index level is provided in order to support a fast search algorithm.
However, at any point in time these relationships might not be valid: a LB-split of a
lower level LB can be already successfully performed but is not yet reflected in the
higher level index-LB.
In such a case more than one I/O operations must be done for the same index
level.
The data part of a directory or index LB may be empty.
As a consequence, the SLD might not be consistent to the directory LBs, therefore
the possible LB-split must be considered by the directory search algorithm too.

 ┌─┬────┬──┬──┬───┐ ────────────────────
│T│ ...│N │X │.. │

 └─┴────┴─┬┴─┬┴───┘
 │ │
 ┌────────────

───┐
 │ │ Index Level

 ┌─┬─────────┬──┬─┐ ┌─┬─────────┬──┬─┐
 │T│... │N │�│──�│T│... │X │�│�...
 └─┴─────────┴─│ ─┘ └─┴─────────┴─┬┴─┘
 │
...
 ┌─────────────

│ ┌───────────────────┐ ───────────────────

 │

 ┌─┬────┬───┬───┬─┐ ┌─┬─────── ┌─┬────┬───┬───┬─┐ Directory
 │T│... │K++│///│�│ │T│... │T│.. │N++│///│�│ Level
 └─┴────┴───┴───┴─┘ └─┴─────── └─┴────┴───┴───┴─┘ with splitted
 � │ DIR─LBs
 └────────────────────────────┘

 ────────────────────

Note:
 T: TYPE entry
 N: Index entry
 X: Index entry
 K++: Directory entry
 N++: Directory entry

'�' represents the logical LB chain pointers
'.' represents the logical chaining of data entities

Figure 139. Directory and Index

 Program Retrieval 341

The general format of a directory is as follows:

DIRECTORY : header : descriptor record
lb-list : � dir-LB �

 dir-LB : datalist : data1 | data2 | NIL
 lengthlist: length-data | NIL

LBCF : control field

data1 : datah1 : �type-entry� v �index-entries�
datarest1 : data1 | NIL

data2 : datah2 : �type-entry� v �dir-entries�
datarest2 : data2 | NIL

length-data : � tail (length-data), head (data i) �

 typ-entry : typname : (PHASE,PROCEDURE,...)
typflag : flag value
typdata : type data

 dir-entry : dirname : name
dirflag : flag value
dirdata : directory data

Data invariant : tail(datah1) not= NIL
tail(datah2) not= NIL

342 VSE/AF Supervisor DRM

Library Member

A member is the smallest unit of data which is accessed by the FETCH services. A
member of the type=PHASE uses the complete data section available on the LB.
A member starts always on LB boundary and consists of two different types of
information:

TXT: Contains the executable code is cataloged by the Linkage Editor.

RLD: Contains addresses in the TXT to be relocated.

The following diagram shows the relationship between directory entry and member:

 ┌──────┬────────┬───┬────────┬───┬──────────┐ Directory
 │M─NAME│RBA(TXT)│...│RBA(RLD)│...│ │ entry
 └──────┴──────┬─┴───┴┬─────┬─┴───┴──────────┘
 │ │ │
 │ │ │
┌─────────────────
 │ │
│ │ │
│ │ │

┌───── ───────┐ ┌───┬─┬────┐ ┌───┬───────┐ Member of
│ n TXT LBs �│���│TXT│.│RLD�│���│RLD│ │ type = PHASE
└───── ───────┘ └───┴─┴────┘ └───┴───────┘

'�' represents the logical LB chain pointers
'.' represents the logical chaining of data entities

Figure 140. Library Member

The general format of LB of a PHASE - member is as follows:

 PHASE : PHASELIST : �LB-PHASE�

LB-PHASE : DATA : record
LBCF : control field

RECORD : TXT : phasetxt | NIL
RLD : � rlditems � | NIL

Data invariant : RECORD not= NIL

 Program Retrieval 343

Shared Virtual Area (SVA)
The SVA (24-bit) (Figure 5 on page 14) contains

� A system directory list (SDL) providing a list of either descriptors of programs
(phases) located in the SVA or in-storage directory entries of highly used pro-
grams (phases) located in the SYSLIB sublibrary of the SYSRES file. It con-
tains both the entries for the SVA (24-bit) and the SVA (31-bit).

– The SDL entry is a subset of the directory entry of the library and contains
all information required to satisfy the fetch / load services. The SDL has
fixed-length entires of 72 bytes. The last entry contains 8X'FF' as
phasename. The external directory format is mapped into an internal direc-
tory format which is also used as SDL entry format.

� Highly used programs (phases) located in the SVA can be shared between par-
titions (virtual library). These programs run with the PSW of the requesting
task. SVA resident programs must be relocatable and refreshable. If used in
connection with Fast B- and C-transient Fetch (Move-mode), the SVA resident
transients must be self-relocatable. In any case, the programs (phases) must
be loaded into the virtual library during IPL or job control time. Any subsequent
Fetch request for a B- or C-transient moves the SVA copy of the phase into the
LTA/CRT area, instead of loading it from the library on disk. A phase in loaded
in the SVA by a SLOAD request issued by the librarian. Depending on the
RMODE attribute of the phase, the librarian passes a loadpoint pointing to the
SVA (24-bit) or SVA (31-bit).

 SYSCOM
 � F4 F7
┌────────── ───────────┬──────────┬─────── ──────────┐

 │ ��� │ IJBSVA │ ��� │
└────────── ───────────┴─────┬────┴─────── ──────────┘

 │
 │

 8 B
 ┌──────────┬──────────┬─

Start of SVA (24-Bit) │ │ │ ���
 └──────────┴─────┬────┴─
 │
 │
 ┌───────────────────────────────────────┘
 │

 4 4B 4C
 ┌──────────┬───����───┬───����───┬─

SDL │Total len.│SDL entry1│SDL entry2│ ���
│ of SDL │ │ │

 └──────────┴───����───┴───����───┴─

Figure 141. How to Locate SDL Entries

344 VSE/AF Supervisor DRM

┌────┬────┬───────────┬───┐
│ DEC│ HEX│ Label │ Description │
├────┼────┼───────────┼───┤
│ � │ � │ SDLESEG1 │ Directory Entry (DE) ─ common segment │
│ � │ � │ SDLENAM │ Member name │
│ 8 │ 8 │ │ Reserved │
│ 9 │ 9 │ SDLEDEF1 │ Attributes for DE (flag byte) │
│ │ │ SDLEETYP │ X'8�' Type of entry = type │
│ │ │ SDLEEHLX │ 4� Type of entry = high level index │
│ │ │ SDLEEDIR │ 2� Type of entry = directory │
│ │ │ │ 1� ─ �1 Reserved │
│ 1� │ A │ SDLEPRBA │ PRBA of member │
│ 16 │ 1� │ SDLECONT │ Number of contiguous LBs │
│ 18 │ 12 │ │ Reserved │
│ 2� │ 14 │ SDLEPFL │ User area1 (type = PHASE) │
│ 2� │ 14 │ SDLEFLG │ Flags │
│ │ │ SDLEBSR │ X'8�' Self relocating phase │
│ │ │ SDLEBRL │ 4� Relocating phase │
│ │ │ SDLEBSE │ 2� SVA eligible │
│ │ │ SDLEBSV │ 1� Phase in SVA │
│ │ │ SDLEBPC │ �8 PCIL flag for incore directory │
│ │ │ SDLEBNF │ �4 Not found flag (incore directory) │
│ │ │ SDLEBAC │ �2 Entry active (incore directory) │
│ │ │ SDLESVPF │ �1 SVA eligible and PFIX request │
│ 21 │ 15 │ SDLESWT │ Switches │
│ │ │ SDLECLM │ X'8�' Set SDL: move mode phase │
│ │ │ SDLECLS │ 4� Set SDL: SVA eligible │
│ │ │ SDLERMOD │ 2� RMODE: 1=ANY, �=24 │
│ │ │ SDLEAM31 │ 1� AMODE: 1�=31, 11=ANY │
│ │ │ SDLEAM24 │ �8 ��=24, �1=24 │
│ │ │ │ �4 ─ �1 Reserved │
│ 22 │ 16 │ │ Reserved │
│ 24 │ 18 │ SDLEPLN │ Length of phase(TXT) in bytes │
│ 28 │ 1C │ SDLELPT │ Load point at link─edit time │
│ 32 │ 2� │ SDLEENP │ Entry point at link─edit time │
│ 36 │ 24 │ SDLESTR │ Partition start at link─edit time │
│ 4� │ 28 │ SDLERLD │ Number of RLD items │
│ 42 │ 2A │ SDLERLDA │ PRBA of first RLD item if any, otherwise x'FF'│
│ 48 │ 3� │ │ Reserved │
│ 56 │ 38 │ SDLESVAP │ Entry point in SVA if any, otherwise X'��' │
│ 6� │ 3C │ SDLEIDEN │ Library block id │
│ 64 │ 4� │ SDLEALIB │ Address of LIB─DEF─TAB │
│ 68 │ 44 │ SDLEASLB │ Address of SUBLIB─DEF─TAB │
├────┼────┼───────────┴───┤
│ 72 │ 48 │ Total length │
└────┴────┴───┘

Figure 142. SDL Format of a Directory Entry

A program is loaded into the requesting partition only, if it is not in the virtual
library.

A phase is loaded into the SVA at the next available double-word boundary.

 Program Retrieval 345

Directory List Support
Directory list support allows the user to create in-storage directories of highly used
phases. Once initialized, loads and fetches of such selected phases are made
without searching the allocated sublibrary directories on disk. A system directory
list, available to all partitions, is provided in the SVA for phases resident in the SVA
and for other highly used phases.

Local directory lists may be created by the user at any time. A local directory list
exists for the duration of the job step, in which it is created.

It should be noted that an in-storage directory entry in the user's partition does not
contain any valid information, except for the phasename, length of directory entry
and entry status, until the first FETCH or LOAD request for the phase specifying
this entry has been executed. The first FETCH or LOAD request for the phase
activates the entry and subsequent requests can use this entry.

If an in-storage directory entry points to a phase which is already deleted, then
FETCH reacts as if the 'phase not found' condition had occurred - that means: the
phase will not be loaded. Notice, that in previous releases the phase was loaded in
this case.

The user macros LOAD, FETCH and GENL generate the new directory entry
format if the option DE=VSE is specified. Otherwise a list in old DE-format is gener-
ated.
Both the old DE=YES and the DE=VSE version of LOAD, FETCH, and GENL
macros are supported by the FETCH environment.
But in regard to LIBRARIAN and security aspects, some directory entry fields of the
DE=YES format are no longer supported or their meaning has been changed.

346 VSE/AF Supervisor DRM

┌────┬────┬───────────┬──┐
│ DEC│ HEX│ Label │ Description │
├────┼────┼───────────┼──┤
│ � │ � │ DIRNAME │ Member name │
│ 8 │ 8 │ │ ��� internally used ��� │
│ 11 │ B │ DIRN │ Number of halfword containing │
│ │ │ │ user data │
│ 12 │ C │ DIRTT │ Number of TXT blocks (1�24 bytes) │
│ 14 │ E │ DIRNN │ TXT bytes in last TXT block │
│ 16 │ 1� │ DIRC │ Flags │
│ │ │ SELFREL │ X'8�' selfrelocatable │
│ │ │ RELPHASE │ X'4�' relocatable │
│ │ │ SVAELIG │ X'2�' SVA eligible │
│ │ │ SVAPHASE │ X'1�' phase is SVA─loaded │
│ │ │ PCIL │ X'�8' not─SYSLIB flag for in─core─DE │
│ │ │ NOTFND │ X'�4' not found flag │
│ │ │ ACTIVE │ X'�2' active DE (but possibly not found) │
│ │ │ │ X'�1' reserved │
│ 17 │ 11 │ DIRSWIT │ More flags │
│ │ │ DIRJCLM │ X'8�' MOVE MODE flag from SET SDL │
│ │ │ DIRJCLS │ X'4�' SVA eligible │
│ │ │ DIRRMOD │ X'2�' RMODE: 1=ANY, �=24 │
│ │ │ DIRAM31 │ X'1�' AMODE: 1�=31, 11=ANY │
│ │ │ DIRAM24 │ X'�8' AMODE: ��=24, �1=24 │
│ 18 │ 12 │ DIRPPP │ Loadpoint at LINKEDT time │
│ 21 │ 15 │ DIREEE │ Entrypoint at LINKEDT time │
│ 24 │ 18 │ │ ��� not supported ��� │
│ 27 │ 1B │ DIRAAA │ Partition begin at LINKEDT tme │
│ 3� │ 1E │ DIRVEE │ SVA entry point (if SVA─loaded) │
│ 34 │ 22 │ A │ ��� not supported ��� │
├────┼────┼───────────┴──┤
│ 38 │ 26 │ Total Length │
└────┴────┴──┘

Figure 143. Layout of the Old LIBRARIAN User DE-Format (DE=YES)

 Program Retrieval 347

┌────┬────┬───────────┬──┐
│ DEC│ HEX│ Label │ Description │
├────┼────┼───────────┼──┤
│ � │ � │ DIRNAME │ Member name │
│ 8 │ 8 │ │ X'FFFFFF' │
│ 11 │ B │ DIRN │ Number of halfword containing │
│ │ │ │ User data (X'�E') │
│ 12 │ C │ DIRLMBR │ Length of phase in bytes │
│ 16 │ 1� │ DIRC │ Flags │
│ │ │ SELFREL │ X'8�' selfrelocatable │
│ │ │ RELPHASE │ X'4�' relocatable │
│ │ │ SVAELIG │ X'2�' SVA eligible │
│ │ │ SVAPHASE │ X'1�' phase is SVA─loaded │
│ │ │ PCIL │ X'�8' not─SYSLIB flag for in─core─DE │
│ │ │ NOTFND │ X'�4' not found flag │
│ │ │ ACTIVE │ X'�2' active DE (but possibly not found) │
│ │ │ │ X'�1' reserved │
│ 17 │ 11 │ DIRSWIT │ More flags │
│ │ │ DIRJCLM │ X'8�' MOVE MODE flag from SET SDL │
│ │ │ DIRJCLS │ X'4�' SVA eligible │
│ │ │ DIRRMOD │ X'2�' RMODE: 1=ANY, �=24 │
│ │ │ DIRAM31 │ X'1�' AMODE: 1�=31, 11=ANY │
│ │ │ DIRAM24 │ X'�8' AMODE: ��=24, �1=24 │
│ 18 │ 12 │ │ Reserved │
│ 2� │ 14 │ DIRACOPY │ P T R T O D E ─ C O P Y │
│ 24 │ 18 │ DIRALPT │ Loadpoint at LINKEDT time │
│ 28 │ 1C │ DIRAEPT │ Entrypoint at LINKEDT time │
│ 32 │ 2� │ DIRAPART │ Partition begin at LINKEDT time │
│ 36 │ 24 │ DIRASVA │ SVA entry point (if SVA─loaded) │
├────┼────┼───────────┴──┤
│ 4� │ 28 │ Total Length │
└────┴────┴──┘

Figure 144. Layout of the LIBRARIAN User DE-Format (DE=VSE)

The length DIRN is given in number of halfwords following this field. If the user
does not specify the length (field is zero), nothing is moved into the user's directory
entry.

 Fetch Initialization
Before a FETCH service can be activated, all physical and logical descriptions
about the library (-ies) must be available. Especially the control blocks for the
SYSLIB (SYSRES) must be initialized before the first FETCH request can be satis-
fied.

These control blocks are:

 � DEVTAB
� EXTTAB (one entry only because SYSLIB consists of one extent)
� LIBRARY DEFINITION TABLE for the IJSYSRS file
� SUBLIBRARY DEFINITION TABLE for SYSLIB sublibrary

348 VSE/AF Supervisor DRM

Functions and Algorithms
The control blocks and their related functions are as follows:

EXTTAB ==
 init1(SYSCOM,GETVCE(IJSYSRS),SYSLIB-PUB)

DEVTAB ==
 init2(EXTTAB(SYSLIB),SYSLIB-PUB)

The access path to index set is as follows:

start(IJSYSRS)---RBA ---�Lib-Descr(IJSYSRS)
 ---ptr ---�Slib-Descr(SYSLIB)
 ---PRBA---�Index-Set

The relationships between the control blocks are the same as for the LIBRARIAN.
A so called system searching chain is established during the FETCH initialization
and will be maintained by the LIBRARIAN services.

 SYSCOM LIB─DEF─TAB
 ┌────────┐ ┌────�┌─────────┐
 │ │ │ │ │
 │ │ │ │ │
 │ │ │ │EXTTAB │────┐
 │ @LPB │───┐ │ └─────────┘ │
 │ │ │ │ │
 │ │ │ │ │
 └────────┘ │ LPB │ │
 └─────�┌───────┐ │ EXTTAB │

│ @LDEF │─────────┘ ┌─────────┐�───┘
│ @LDEF │ │ │
│ │ ┌─────│ @DEVTAB │
│ │ │ │ @EXTTAB │────┐

 ┌──────│ @SLDEF│ │ └─────────┘ │
 │ └───────┘ │ │
 │ │ │
 │ │ EXTTAB │
 │ SYSLIB─TAB │ ┌─────────┬────┘
 └─────�┌───────┐ │ │ │

│ │─────┐ ├────�│ @DEVTAB │
└───────┘ │ │ │ @EXTTAB │

 │ │ └─────────┘
 │ │
 SDL │ │ DEVTAB
 ┌─────────┐�───┘ └────�┌─────────┐
 │ │ │ │
 └─────────┘ └─────────┘

Figure 145. Relationship Between Library Control Blocks

Notes:

1. The SLD of the SYSLIB is built by the librarian at end of IPL time.

2. The meanings of the various control blocks are given below.

 Program Retrieval 349

 FETCH/LOAD Processing
The SVC interface routine at SGCFCH passes control to the fetch overall logic
routine in SGDFCH. Before entering the fetch routine, the return address is stored
in register 11. Moreover, in register 9, a parameter is stored indicating the SVC
interface routine that requested the fetch routine. The meaning is as follows:

� = Requested by SVC X'17'.
4 = Requested by any other routine.
8 = Requested by SVC X'33'.

Registers 8 through 14 are saved in the requestor's TCB. The user supplied reg-
ister 1 points either to a parameter list or to an entry of the fetch/load list or a
phasename (each time an 8-byte area). For a more detailed description please see
the section 'External and Internal Interface'.

Directory Searching Sequence and Directory Entry Processing
The directory search is performed by the directory search task. Prior to accessing
the directories, the searching sequence must be determined. The searching
sequence depends on the following conditions:

1. Request given by attention task

a. SDL (system directory list)
 b. SYSLIB directory

2. Request given in test mode (COMREG byte 59, bit 5=1)

a. VIO-directory, if any
b. Temporarily chained sublibrary directories (SDL)
c. Permanently chained sublibrary directories

 d. SYSLIB directory

3. No test mode and ($-phase or SYS=YES)

 a. SDL
 b. SYSLIB directory

c. Temporarily chained sublibrary directories
d. Permanently chained sublibrary directories
e. VIO directory, if any

4. No test mode and non-$-phase and SYS=NO

a. VIO directory, if any
 b. SDL

c. Temporarily chained sublibrary directories
d. Permanently chained sublibrary directories

 e. SYSLIB directory

However, a directory search is not necessary if the user has provided an active
directory entry for the requested phase. Such a directory entry has been built as a
result of a preceding FETCH/LOAD request. It can be provided in one of the fol-
lowing ways:

� As a directory element to which the phase name parameter is pointing
(DE=YES in the FETCH/LOAD macro).

� As a directory entry in a local directory list (LIST parameter in FETCH/LOAD
macro).

� As an SDL entry (for special system services).

350 VSE/AF Supervisor DRM

Note: It is an essential prerequisite that the FETCH must not be locked against
LIBRARIAN services.

If the user has passed a local list, this list is validated and searched for the
requested phasename.

If no active directory entry has been provided, the directory search task is activated
and the first level chain (FETCH CHAIN) is built.

The so called first level entries are available for SDL and SYSLIB, whereas so-
called second level entries are reserved for the concatenation chain. In the later
case, the addresses of the Library Definition Table (LDT) and the Sublibrary Defi-
nition Table (SDT) are calculated by means of the actual entry in the LOT (Library
Offset Table).

The directory search operates on a set of control blocks described as follows:

� DEVTAB (Device Definition Table)
The DEVTAB describes the library device in all its physical aspects, such as
device types and device characteristics.

� EXTTAB (Extent Definition Table)
The EXTTAB describes the location of the library on a device and provides the
relation to the RBA addresses. Moreover, it contains the PUB index of the
device.

� LPB (Library Pointer Block)
The LPB is the focal point for any access to chained libraries. It provides the
maximum number of entries in the search chain (=maximum number of chained
sublibraries) and addresses to the searching chains of library-sublibrary pairs.
There is a temporary S-chain (search chain) which is reset at EOJ time and a
permanent S-chain which must explicitly be reset. The existence of such a
search chain is considered by the searching algorithm. The LPB is address-
able via SYSCOM. The address pointer will be negative (X'80000000'), if the
control tables are not yet initialized.

� LANC (Libdef Anchor Table)
The Libdef Anchor Table contains for each partition the pointers to the partition-
related LOTs (temporary and permanent) within the LOT pool. Each partition is
represented by an entry in the LANC table. The partition related entry can be
addressed by using the PIK.

� LOTxxxx (Library Offset Table)
The LOTs (one for a permanently assigned library chain and one for a tempo-
rarily assigned library chain) describes the various S-chains of a specific library
type in the various partitions. The fields relevant for FETCH are:

 � VIO library
The VIO library has no separate description. Essentially it is identified by its
related VIORB. An address to the VIORB is given by a special LOT row.

The FETCH searching algorithm works on an internal control table which is built
for each FETCH request. All information of the searching chains in the LOTs is
mapped into this internal table. Thus, the complete searching mechanism is
staged in three levels:

� The FETCH chain table DSRCHNx located in the fixed part of the supervisor
reflects the searching chain described above. The entries for SDL and SYSLIB
are filled, while the other entries are dummy entries only. By this way any

 Program Retrieval 351

unnecessary page fault is avoided if the phase is found in the SDL or on the
SYSLIB ($-phase) The essential information are the address of the DEVTAB
and EXTTAB.

� The searching chain of the LOT is accessed whenever an entry in the
DSRCHNx is found indicating permanent or temporary chain or VIO-library. If
the chain entry is active and the DSRCHNx is not yet initialized, the related
LOT is accessed and the first chain entry is taken in order to activate the
DSRCHNx entry. otherwise the next chain entry will be taken as long as there
are active entries. In the case of end of chain the next DSRCHNx entry will be
processed.

� The DEVTAB and EXTTAB entries are required to read on the physical library
device.

A FRPL for directory (DIR) respectively VIO read must be set up for each
search of a sublibrary. Moreover, the related addresses of the LDT and SDT
for DIR-read respectively of the VIORB for VIO-read must be provided in
FCHWORK.

If finally the requested phase is found its directory information is built up in the
FCHWORK for further processing.

Note: FCHWORK is part of the requester's TCB. If the directory entry is
found in the SDL and the corresponding phase resides in the SVA, no
further processing is done. The entry point address, available in the
SDL entry, is passed to the user.

If unsuccessful, the user is notified by a 'not found' indication in the directory
entry or by a return code in general register 15 (as RET=YES has been speci-
fied) or is canceled with the message 'phase(name) not found'.

After a successful search, the user provided directory entry will be activated
and updated.

Functions and Algorithms
The directory search is structured into two levels, a logical level determined by the
searching chain and a physical level for the I/O operations. On the logical side the
related control blocks are FCHWORK and FETCH-CHAIN; on the physical side
DEVTAB, EXTTAB and SLD are concerned.
The directory search mechanism is provided by the following control blocks and
their related functions:

FETCH-CHAIN ==
bldchain (PARM-LIST, state)

FETCH-CHAIN (entry) ==
nxtchain (LOT-CHAIN)

LB-DIR-ENTRY ==
scandir (phasename, FETCH-CHAIN)

SDL-DIR-ENTRY ==
binsrch (SDL)

FCHWORK == bldwrk (.-DIR-ENTRY)

Note: The functions BLDCHAIN and NXTCHAIN build together with the
FETCH-CHAIN control table an abstract data type.

352 VSE/AF Supervisor DRM

The initialization of the FETCH-CHAIN control table is represented by the following
algorithm:

bldchain (parm-list,state) ==

select

when state = ATTENTION-mode
then FETCH-CHAIN := (SDL,SYSLIB)
when state = TEST-mode
then FETCH-CHAIN := (LOT-TEMP or SDL,

 LOT-PERM,SYSLIB)
when state = SYS-mode
then FETCH-CHAIN := (SDL,SYSLIB,LOT-TEMP,

 LOT-PERM)
when state = USER-mode
then FETCH-CHAIN := (SDL,LOT-TEMP,

 LOT-PERM,SYSLIB)

endselect;

 Program Retrieval 353

The algorithm for provision of the first / next entry of the LOT-CHAIN is given by
the following program:

nxtchain (LOT-CHAIN) ==

if entry(FETCH-CHAIN) = EMPTY
then state.LOT-CHAIN := not EOL

 else
endif
get-next(LOT-CHAIN) / may post EOL ...

... if no more valid LOT entry/
if state.LOT-CHAIN = not EOL

then entry(FETCH-CHAIN) := entry(LOT-CHAIN)
 save-ptr(LOT-CHAIN) / save addr of current...

... of actual LOT entry /
 else
endif;

The searching algorithm on the LBs is defined by the following program:

scandir(phasename,entry(FETCH-CHAIN)) ==

state.DIR := not EOF
do while state.DIR = not EOF
 DIRREAD (ENTRY(FETCH-CHAIN))

/ EOF if no more dir-LBs /
do while state.LB = not EOB or state.DIR = not EOF

get-next(LB)
/ EOB if LB is empty or processed/

 select
case phasename = name(LB-entry)

then DIRENTRY := LB-entry
state.DIR := FOUND & EOF

case phasename � name(LB-entry)
then state.DIR = (not FOUND) & EOF

 endselect
 enddo
enddo;

354 VSE/AF Supervisor DRM

The algorithm for searching the sublibraries is given by the following program:

find(phasename,parmlist,state) ==

FETCH-CHAIN := bldchain(parmlist,state)
do while state.DIR = (not FOUND) or FETCH-CHAIN = EOL
 get-next(FETCH-CHAIN)

/ EOL if FETCH-CHAIN is processed/
if entry(FETCH-CHAIN) = 2NDLEVEL and FETCH-CHAIN = not EOL

then entry(FETCH-CHAIN) := nxtchain(LOT-CHAIN)
/ FETCH-CHAIN = EOL IF LOT-CHAIN /

 / IS PROCESSED /
 else
 endif

if LOT-CHAIN = not EOL
then if entry(FETCH-CHAIN) = SDL
then DIRENTRY := binsrch(phasename,SDL)
else DIRENTRY := scandir(p-name,entry(FETCH-CHAIN))

/ state.DIR = (not FOUND) if phase not In dir/
 endif
 else
 endif
enddo;

Program Fetch Service
The program fetch task provides services for:

� Load-in of phases (TXT processing)
� Address relocation (RLD processing)

In opposite to the DIRECTORY SEARCH TASK, the library and the sublibrary are
known. The addresses of the related control tables are part of the internal directory
entry.

Essentially, the related TXT and RLD LBs must be read in and be processed. To
do so, CCW-programs have to be generated. If the storage is virtual, the input
space must be fixed before any read request can be performed. If the phase is to
read into PFIXed storage, the phase area is completely PFIXed before reading the
phase into storage. Otherwise the input space must be TFIXed. The size of
TFIXed area is calculated via the number of contiguous TXT-LBs. But the CCWs
are generated in dependence of the actual TFIXED space (not all space might be
TFIXed) or the number of contiguous TXT-LBs.

For TXT processing the first RLD-LB is read-in with the first TXT-LBs (via chaining
of TXT and RLD CCW-programs due to performance reasons).
This can only be done, if RLD and TXT are located on the same DASD device.

The offset of the RLD in a LB is provided in the directory entry (type=phase user
information part).

 Program Retrieval 355

Program Fetch Interface
The program fetch task operates on a library member. Therefore the library device
and the (absolute) disk address must be known (or at least derivable).

The related directory entry is provided in the FCHWORK area before activation of
the PROGRAM FETCH task. It contains the relative block numbers of begin of
TXT or RLD. The disk device address and the disk address must be calculated by
means of DEVTAB and EXTTAB information.

The addresses of the related DEVTAB and EXTTAB are saved in FCHWORK too.

The interface to the I/O layer is the FRPL. As for the Directory search the FRPL
must be initialized before the first read request for TXT or RLD LBs can be per-
formed.

Algorithm for TXT processing: The algorithm for TXT processing is as follows:

gettxt (fchwork) ==

BEG-PHASE := function(d-entry(phase),loadpoint)
LEN-PHASE := function(d-entry(phase))
END-PHASE := BEG-PHASE + LEN-PHASE
RELO-FACT := function(loadpoint,loadpoint(LINK-EDIT))
validate (BEG-PHASE,END-PHASE)
if RELO-FACT = not �
 then read(RLD-LB)

/ might result in chaining RLD-CCWs to TXT-CCWs/
 else
endif
if pfix of phase is requested
 then PFIX(BEG-PHASE,END-PHASE)
 else
endif

BEG-READ := BEG-PHASE
do while LEN-PHASE > �
LEN-READ := function (contiguous TXT-LBs)
do while LEN-READ > �
if is-address-space virtual and no-PFIX-done
/ only the contiguous part is TFIXed /
then TFIX (BEG-READ,LEN-READ)

 else
 endif
 read(TXT-LBs,l'TFIXED space)
 process(RLDs,REL-FACT)

if is-address-space virtual and space-TFIXed
then TFREE(BEG-READ,l'TFIXED space)

 else
 endif

LEN-READ := function(l'TFIXED space or l'contiguous part)
BEG-TXT := BEG-TXT + LEN-READ

 enddo
LEN-PHASE := LEN-PHASE - LEN-READ

enddo;

356 VSE/AF Supervisor DRM

Directory entry
┌─────┬───────┬──┬────────┬───────┐
│ Name│RBA─TXT│//│RBA(RLD)│OF(RLD)│
└─────┴────┬──┴──┴─┬──────┴─┬─────┘
 │ │
─────────────────────────────┐
 └────┐ │ │
 │ └───────────────────────────┐ │
 │ │ │
Library
 Library member

┌─── ┌───────────────┐ ┌───── ┌──────────┬─────┐
│ ����� │ TXT_LB │ │ TXT ��� │ TXT │ RLD │
└─── └───────────────┘ └───── └──────────┴─────┘
│ │ │
│�────────────────── RBA ───────────────────�│�─OFFSET─�│
│ Library start RBA = �

Figure 146. Relationship Between Directory and Phase-Member

 Program Retrieval 357

 RLD Processing
The FETCH / LOAD services relocates the address constants given in the TXT part
of the requested phase.
The load point of a phase is either provided in general register 0 or is implicitly
determined by the load address at linkage edit time. In the later case the load point
is the partition start address (behind the save area) plus the difference between
load address and partition start address at linkage edit time (given in the directory
entry).
The load point of a self-relocatable phase must always explicitly provided.

The relocation of the address constants is performed for relocatable phases. Such
a phase contains additional information of the location of address constants, the so
called RLD items.

 ┌────────────────┐
Bit │� 1 2 3 4 5 6 7 │

 ├────────────────┼────────────────────────────────────┐
│� � � L L � � S │ │

 ├────────────────┼────────────────────────────────────┤
 Byte │� │1 2 3 │
 │ │ │

│ Address const. │ Address of address constant │
 │ description │ │
 │

│ Fullword boundary

LL = Object length of address constant in TXT
11 = length 4, 1� = length 3, �1 = length 2, �� = length 1

S = Relocation factor application
� = Add
1 = Subtract

Figure 147. Layout of RLD Items

 I/O Processing
The I/O layer handles all I/O operations for the FETCH/LOAD processing. It pro-
vides a control block interface, the so called FRPL. This FRPL must be built for
each sequence of I/O operations (like TXT-read-in) and identifies the CCW
program to be used, the record and the block-length, the number of records to be
read-in and the input area. Its format is described in the section Control Blocks.

358 VSE/AF Supervisor DRM

Directory Read Algorithm
The directory read algorithm is given below. The input parameters are the FRPL,
the phasename and the (sub-)libraries EXTTAB, DEVTAB and SLD.

dirread (FRPL, phasename, sublib) ==

do while FRPLOPC = 1strd
 get-acc (sublib)

FRPLOPC: = nxtrd
IF sublib.SLD = active and not in back level state

then call SCANSLD (phasename)
/searches SLD - returns ok or/
/ phase not found in SLD/

 else
 endif

if sublib.SLD = (inact v in back level state
v phase not found in SLD)

then get-LB-addr (index)
do while index = not processed

call REQIO / read index-LB /
 get-LB-addr (phasename)
 enddo
 else
 endif
enddo
call REQIO / read directory-LB /
save (LBCF.FRBA); / save addr of next-LB /

The directory or index LBs are read into the DIRBUF area, part of the pageable
supervisor and located on page boundary.

As all other internal FETCH input buffers, the DIRBUF is TFIXED whenever a direc-
tory read request must be performed. The related CCWs must be translated.

TXT and RLD Processing
The I/O of TXT and RLD LBs is performed by a generated CCW program for the
TXT LBs and -if appropriate- a command-chained RLD CCW program. The TXT
CCWs are generated in a special area, the so called GENarea.

Layout of the I/O Buffers
┌───────────────────────┬───────────────────────────┬─────────────────┐
│ DIRBUF │ RLDBUF │ GENAREA │
├───────────────────────┼───────────────────────────┼─────────────────┤
│�────── L' LB ── ────�│�──────── L' LB ────────�│�───── 512 ─────�│
│ │ │ │
│ │ │ │
│�..Page boundary │ │ │
│ │ │CCW──�....�──IDAL│

Note: CCW generation is done upwards
IDAW generation is done downwards

Figure 148. Layout of I/O Buffers

 Program Retrieval 359

The algorithm for TXT read-in is given below:

txtread(fchwork,FTTAB,EXTTAB)==

do while FRPLOPC = 1strd
FRPLOPC = nxtrd

 get-LB-addr (phase)
enddo
do while FRPLNRC > �
 call REQCCW

/ provide space for next CCW /
do while FRPLNRC > � & not EOG

/ EOG = END OF GENERATION /
 generate-CCW (FRPL)

if IDAL = yes
then call REQIDAL
/ provide space for idal /

 generate-IDAL(CCW-addr)
else provide-REAL (CCW-addr)

 endif
 call REQCCW

FRPLNRC = FRPLNRC - 1
 enddo
if last TXT LB processing

then if len (TXT) < len(LBCIF)
then if last TXT LB not contiguous

then call REQLBLK
/adjust CCWs to read LBCIF(2nd last TXT-LB/

else call REQFBA
/do not read LBCIF(2nd last TXT-LB) /

 set-CCW-len (FRPLLRC)
 endif
 else
 endif
 else
endif
if RLD = delayed

then chain (RLD-CCW)
 else
endif
call REQIO/ perform I/O request /
enddo;

360 VSE/AF Supervisor DRM

 RLD Read
A RLD read request supplies the information necessary to relocate the address
constants of the relocatable phase to be fetched or loaded. The RLD-LBs are read
into the RLD-buffer, from where the RLD items are processed by the program fetch
task.

The necessary data are:

� Start address for the library is available in the EXTTAB.
� Relative start address of the phase is available in the directory entry as a

library block number.
� Relative start address of the RLD item.

The first RLD block is read-in with the first TXT blocks (by means of chaining of
TXT and RLD CCW programs). For any further RLD LB a separate SVC X'0F'
must be issued.

 Program Retrieval 361

DASD Sharing Environment
A DASD sharing environment is built of two or more CPUs which are operating on
common DASD devices. In general there is no direct signalling between the CPUs.
Any data access control must be done via gating the shared DASD devices. The
related hardware facilities are the DEVICE-RESERVE and DEVICE-RELEASE com-
mands. That means gating on device level.

The software however wants to provide a locking facility for the entity 'data set'.
Therefore a special data set (the LOCK FILE) is established by the software, which
describes the locks of all DASD shared resources in the system. Only the device
containing the LOCK FILE is protected by the hardware facilities.

The FETCH is concerned by DASD sharing in regard to PHS-LIBs and corre-
sponding SLDs.

 ┌──────────────────┐
 │ │
 │ LIBRARY │
 │ │
 └────────┬─────────┘
 │
 │
 ┌───────────┴───────────┐
 │ │
 │ │
 │ │
 │ │
 │ │
 ┌───────┴────────┐ ┌───────┴─────────┐
 │ System│ │ System│
 │ │ │ │
 │ │ │ │
 ├────────────────┤ ├─────────────────┤
 │ User │ │ User │
 │ │ │ │
 │ PROGRAMS │ │ PROGRAMS │

│ LOCAL DE │ │ LOCAL DE │
 ├────────────────┤ ├─────────────────┤
 │ SVA │ │ SVA │
 │ │ │ │
 │ SDL │ │ SDL │

│ SVA PROGRAMS │ │ SVA PROGRAMS │
 │ SLD │ │ SLD │
 └────────────────┘ └─────────────────┘
 CPU─1 CPU─2

Figure 149. DASD Sharing Environment

The Second Level Directory (SLD), General Remarks
The SLD was introduced in order to have a quick access to a directory entry.

It has one entry for each directory block of a sublibrary. The entry contains the
highest phase name, for which a directory entry is contained inside the directory
block and the relative block address. So, by searching through the SLD, Fetch can
find at once, (that means with only one I/O operation) the directory block which
contains a special directory entry.

362 VSE/AF Supervisor DRM

 ┌─────────────────────────┬──────────────────────┐
 │ Highest phase name in─ │ PRBA of directory │
 │ side directory block 1 │ block 1 │
 ├─────────────────────────┼──────────────────────┤
 � � � one entry for
 � � � each directory
 │ │ │ block
 ├─────────────────────────┼──────────────────────┤
 │ highest phase name in─ │ PRBA of directory │
 │ side directory block n │ block n │
 └─────────────────────────┴──────────────────────┘

Figure 150. SLD Layout

The SLD of the system sublibrary IJSYSRS.SYSLIB is initialized at IPL time; the
SLD of the private sublibraries at LIBDEF time.

Initiation of a SLD Update
Some operations, for example the deleting, cataloguing or renaming of a phase,
change the directory and might leave the SLD in a back level state.

A SLD update should be done to avoid performance degradation. The SLD update
is done by the librarian after a delete, catalogue etc. command was given.

If shared disks are used and the delete command for example, was given by
another CPU, then it is Fetch which makes the SLD update.

Fetch identifies a back level SLD by the following criterions:

� More than one library block had been read in to find the directory entry
although the SLD was used.

� The SLD entry does not point at all to a directory block, but e. g. to a TXT or
RLD block (space reclamation took place).

OR

� The library block found by SLD search is flagged as deleted
(LBCFFLG2.LBCFMDEL set) and the library is on a shared DASD.

If Fetch identifies a back level SLD, then a SLD update is initiated unless one of
the following is true:

� The sublibrary, whose SLD is in a back level state, is part of a temporary (not
permanent) search chain.

� The SLD update for the sublibrary is already initiated, but not finished yet.

SLD Update / Algorithm
The SLD update processing for a sublibrary consists in the following activities:

� Enqueuing the SLD update request into the SLD queue.
� Activating the Service Task.
� Doing the SLD update by the UPDSLD routine, which is called by the Service

Task.
� Dequeuing the SLD update request from the SLD queue.
� Deactivating the Service Task, if there are no more SLD queue entries to be

processed.

Each one of these points will be discussed in more detail.

 Program Retrieval 363

Notice, that the SLD update itself is done by the Service Task and not by Fetch.
That means, that the SLD update runs in parallel with Fetch and does not lead to a
lower Fetch performance.

The SLD Queue
The enqueuing of a SLD update request into the SLD queue is done by the
ENQSLD routine, the dequeuing by the UPDSLD routine. The elements of the SLD
queue are chained together. The first element is pointed to by SLDACT.

The layout is:

┌────────────────────┐ Pointer to the
SLDACT ──────� │ ───────────┼────� next SLD queue

├────────────────────┤ entry or FF..F
│ Pointer to the LOT │

 │ entry │
 ├────────────────────┤

│ Pointer to the LDT │
│ entry of type 'c' │

 ├────────────────────┤
│ Pointer to the LDT │
│ entry of type 'p' │

 ├────────────────────┤
│ Pointer to the SDT │

 │ entry │
 └────────────────────┘

Figure 151. Layout of the SLD Queue

A type 'c' LDT entry is a complete LDT entry while a type 'p' LDT entry refers to a
library which is already defined by another LDT. It only contains the library name
and a pointer to the corresponding 'c' entry. A type 'p' entry exists when a library is
accessed at the same time under another name by the same or another partition.

The layout of an SLD queue entry, disregarding the pointer field, is identical to the
layout for the Library Information Area (see VSE Central Functions Librarian DRM,
SC33-6330). Enqueuing a SLD request into the SLD queue means:

� Dequeuing an element from the SLD free chain, pointed to by SLDFREE. The
SLD update request is canceled, if there are no free entries in the SLD free
chain (SLDFREE=0).

� Putting the right values in the element.

� Enqueuing the element into the SLD queue pointed to by SLDACT.

The Activation / Deactivation of the Service Task
The activation of the Service Task to do the SLD update is controlled by the flag
RQTUPSLD.

If set, the UPDSLD routine is called by the Service Task. The flag is reset if there
are no more entries in the SLD queue.

364 VSE/AF Supervisor DRM

The UPDSLD Routine
The UPDSLD routine calls the Librarian services INLMSCON, INLMRESN,
INLMSLD and INLMDIS to update the SLD.

See VSE Central Functions Librarian DRM, SC33-6330 for a description of these
services.

Algorithm of the UPDSLD Routine

The following actions must be done for each entry of the SLD queue:

� Call INLMSCON to connect the sublibrary.
� Call INLMRESN to get the resource name of the sublibrary.
� Lock the sublibrary.
� Call INLMSLD to update the SLD.
� Unlock the sublibrary.
� Call INLMDIS to disconnect the sublibrary.
� Dequeue SLD entry.

Program Retrieval - Tape Fetch

 General
In a SA environment no libraray access is done by Program Retrieval. All required
phases are on a tape from which they are loaded into storage, part of which is the
SVA. Phases are loaded in storage either for immediate execution or into the SVA
for later execution. The SVA is used as a library, i.e. it does not contain only sva-
eligible phases. After all phases have been downloaded from tape, the tape is no
longer used by Program Retrieval. A subsequent load request will cause Program
Retrieval to move a phase from the SVA to the specified storage location which can
be the partition, LTA or PTA. Of course, SVA eligible phases are still executed in
the SVA.

So the Program Retrieval support for the SA environment consists of two parts:

1. read a phase from tape into storage
2. move a phase from the SVA to the specified storage location

or execute the phase in the SVA.

To move phases from the SVA to the specified storage location the existing
Program Retrieval code within the supervisor is adapted.
But there will be a new routine to load phases from tape into storage. This tape
fetch routine is needed before the supervisor is loaded. Therefore tape fetch is
designed to be part of IPL phases, where it is called with BAL interface, or to be a
separate phase which is called by SVC 4 processing after the supervisor has been
loaded. The tape fetch routine is implemented as a macro named SATFCH, which
is once assembled with the IPL phases $$A$PLBT (first bootstrap phase) and
$$A$IPLR (second bootstrap phase) and is once assembled to be a separate
phase ($IJBTFCH). A parameter is used to determine whether the macro is part of
the IPL phases (SATFCH CALLER=IPL) or whether it is a separate phase
(SATFCH CALLER=SUP).
$IJBTFCH is loaded by IPL after the supervisor has been loaded using the BAL
interface. IPL will put the address of the phase $IJBTFCH in the SUPAVTEX at
label AIJBTFCH. $IJBTFCH is located on tape after the supervisor phase and is

 Program Retrieval 365

loaded in storage behind the supervisor. $IJBTFCH is the last phase which is
loaded using the BAL I/F. Afterwards SVC 4 is used (LOAD and SLOAD macro).
The tape fetch routine/phase must be self-relocatable.
The SA environment is indicated by a bit SYSCOM.IJBFLG08.IJBSAENV set by
IPL. The bit SYSCOM.IJBFLG08.IJBSVALC (sva load complete), set by IPL, deter-
mines whether the tape fetch routine $IJBTFCH or the supervisor code is used to
process a SVC 4 request. If the bit is set, the supervisor routine is used, otherwise
the tape fetch routine $IJBTFCH. The indication 'SVA LOAD COMPLETE' (bit
IJBSVALC) is only meaningful in a standalone environment. The address of the
IPLed tape is set by IPL in SYSCOM.IJBRESDV.
The tape fetch routine will handle both load requests and requests to get directory
information. However the tape fetch routine will not use an active DE, passed by
the requestor, since it does not contain relevant information for the following TXT
processing.

Note: The tape fetch routine will support a directory format of DE=VSE and
DE=SDL. The DE=YES format is not supported. IPL will change the usage of
DE=YES to DE=VSE.

OS/390 Program Retrieval Services
With VSE/ESA 2.4.0 the OS/390 program retrieval services BLDL, LOAD and
DELETE have been ported to VSE.
These services are available in OS/390 emulation mode only.

 BLDL Macro
The BLDL macro expands into OS/390 SVC x'12'. It is used to obtain information
about library members of type phase. The information is provided in SDL format.

 LOAD Macro
The LOAD macro expands into OS/390 SVC x'08' or SVC x'7A'. It is used to load
a phase into virtual storage. Before the phase is loaded, the storage is obtained by
means of a GETMAIN-like request, i.e. OS/390 subpools are used.
Normally a phase is loaded in the partition Getvis area:

� subpool 252 if the phase is SVA eligible
� subpool 251 otherwise

Authorized requests can specify the GLOBAL parameter. The phase is then loaded
in the system Getvis area.

� subpool 228 if the phase is to be fixed
� subpool 241 otherwise

A phase, that is loaded by the OS/390 LOAD macro is owned by the task, not by
the partition. It can be deleted by the DELETE macro. The DELETE must be done
by the same task that did the LOAD.
At task termination, all phases owned by a task are deleted.

366 VSE/AF Supervisor DRM

 DELETE Macro
The DELETE macro cancels a previous LOAD request. The load count of a phase
is decreased. When the load count is zero, the storage occupied by the phase is
freed, using a FREEMAIN-like interface.

DCB Parameter in VSE
The DCB parameter is used to specify a task oriented library/sublibrary chain. It is
implemented in VSE by applying the Librarian API.

1. define the librarian control block LDCB
� LDCB LIBRDCB FUNC=GEN,AREA=LDCBAREA

2. establish task oriented library chain
 � LIBRM LIBDEF,LDCB=LDCBAREA,CHAIN=x1,CHAINID=x2

where x1 specifies up to 15 library/sublibraries and
x2 specifies the name of the chain.

3. using the dcb parameter
 � LOAD ..,DCB=LDCB

Directory Searching Sequence
The directory searching sequence for BLDL and LOAD depends on the DCB
parameter.

� DCB not specified (DCB = 0)
– job chain (temporary chain)
– partition chain (permanent chain)

 – SDL, IJSYSRS.SYSLIB
� valid DCB specified

– libary/sublibrary chain as specified in the DCB
 – SDL, IJSYSRS.SYSLIB

 � DCB=1
– job chain (temporary chain)
– partition chain (permanent chain)

 – SDL, IJSYSRS.SYSLIB
– -> DCB=1 is special processing for CICS.

 Implementation
The approach is to use existing VSE functions and put OS/390 dependencies into a
new supervisor macro named SGXFCH. This macro contains

� entry points for the BLDL, LOAD and DELETE SVCs
� a BAL interface for ATTACHX processing

– during ATTACHX processing a phase is to be loaded
� a BAL interface for FREEVIS ALL processing

– during FREEVIS ALL processing of a task, all phases owned by the task
are to be deleted.

On entry, the parameters are checked and then the OS/390 request is mapped to a
VSE request. Afterwards existing VSE load/delete functions are called. After the
VSE function is completed, the VSE return codes are mapped to a OS/390 return
or cancel code.

 Program Retrieval 367

368 VSE/AF Supervisor DRM

Machine Check, Channel Check and CRW Handling

Machine checks, channel checks and channel report words (CRWs) are handled by
a supervisor part (macro MCRAS) and a set of RAS transients (phases $$RASTxx)
which are loaded and executed in the RAS transient area. The RAS transient area
is located within the supervisor behind macro MCRAS and preceded by eye-catcher
R-TRANSIENT AREA.

Machine Check Analysis and Recording
Machine Check Analysis and Recording (MCAR) responds to Machine Check Inter-
rupts (MCIs), attempts recovery and provides operator messages on SYSLOG.
Machine check error information is written to the recorder file IJSYSRC by the RAS
transients.

In general, a machine check is caused by a machine malfunction and not by data
or instruction. Hardware provided mechanisms first try to recover from this mal-
function. If these are successful, a machine-check-interruption may or may not be
raised indicating the recovery condition. If these are not successful, either a check-
stop state is entered (when an uncorrectable malfunction occurs and the machine is
unable to recognize a specific machine-check-interruption condition) or a machine
check interruption is raised.

 Hardware actions
A MCI causes following actions to be taken by the hardware:

The PSW reflecting the point of interruption is stored as the MC old PSW into low
core storage together with some other valuable information (see Figure 152).
Processing continues with the MC New PSW fetched from real location 480
(x'1E0'). This MC New PSW is a z/Architecture PSW and points to the
z/Architecture Entry Point of the VSE Machine Check Handler.
Note: The S/390 MC New PSW at real location 112 (x'70') is still maintained
(although not used) and also points into the VSE Machine Check Handler but
behind its z/Architecture prolog.

© Copyright IBM Corp. 1985, 2013 369

For Hardware-related details on Machine Check Handling please refer to IBM
z/Architecture Principles of Operation.

Figure 152. MC interruption provided information (z/Architecture
mode)

Information provided Start location Length

MC Interruption code 232 (x' E8') 8

External-damage code 244 (x' F4') 4

Failing-storage address 248 (x' F8') 8

MC old PSW 352 (x' 160') 8

Floating Point Registers 4608 (x'1200') 128

General Registers 0 - 15 4736 (x'1280') 128

Fixed-logout area 4864 (x'1300') 16

CPU Timer 4904 (x'1328') 8

Clock Comparator 4912 (x'1330') 8

Access Registers 0 - 15 4928 (x'1340') 64

Control Registers 0 - 15 4992 (x'1380') 128

Software (VSE) actions
The VSE MC new PSW points to supervisor label MACHEKZ, the entry point of the
resident MC Handler (in macro MCRAS).

First of all, the "old" S/390 MC OLD PSW at location x'30' is emulated from the
current z/Architecture MC OLD PSW. This is done in order to avoid that system
and vendor programs have to change their programs.

Then, the MC is enqueued into an MC queue. This queue holds up to 5 entries.
Up to a maximum of five successive machine checks may be queued at a time.
Each MC entry is filled with all HW provided information together with other infor-
mation (like current task, jobname, TOD, etc.) that is needed later on by the RAS
system task. This MC queue entry is held in-use until the RAS system task has
finished its processing.

Then, the HW provided MC information is analyzed. Dependent on the severity of
the MC, one of the following actions are taken:

� terminate system (hardwait)
 � terminate task (cancel)
� continue processing (with or without information msg).

Following is a (not-complete) list of conditions which lead to these actions:

1. Conditions for system termination:

370 VSE/AF Supervisor DRM

� no MC interruption code stored at location x'E8'
� system damage (location x'E8' shows x'80')
� instruction processing damage which is not Backed Up (location 'E8' shows

x'40' but location x'E9' does NOT show x'02')
� channel subsystem damage (location x'E8' shows x'08')
� warning condition (location x'E9' shows x'10')
� uncorrected storage or storage key errors (location 'EA' shows x'80' or

x'20') with invalid failing-storage address
� uncorrected storage or storage key errors (location 'EA' shows x'80' or

x'20') with failing-storage address within Supervisor/SVA routines
� PSW and Register Validity bits are OFF in MCIC (location x'EA'-x'EB')

when PSW is in Supervisor State
� more than 10 MCs within 10 minutes (not including MCs with

CRW-pending-indication).

Action: Post C'A' in location 0 (system termination code) and the emergency
exit bit (X'08') is posted in the RAS Linkage Area (see Figure 231 on
page 514)

2. Conditions for task termination:

The system can continue but the damaged task is to be canceled.

� uncorrected storage or storage key errors (location 'EA' shows x'80' or
x'20') with failing-storage address in private partition

� PSW and Register Validity bits are OFF in MCIC (location x'EA'-x'EB')
when PSW is in Problem State

Action: Activate RAS system task and branch to the cancel routine to cancel
the task.

3. Soft machine check (if none of the above conditions is present).

Only recording is required for errors from which hardware recovered success-
fully.

Action: Activate RAS system task (if not already active) and return to the inter-
rupted code by loading the machine check old PSW.

Nonresident machine check handling is described in VSE Central Functions Error
Recovery DRM, SC33-6326.

Channel Report Word (CRW) Handler
When a Machine Check is raised with 'CRW Pending' indication (location x'E9'
shows x'40'), the resident MC handler sets a 'CRW-to-Process' Flag into the RAS
linkage area (RASLINK, Figure 231 on page 514).

During the next allbound cycle, a dispatcher appendage in MCRAS (label
MCCRWALB) gets control. If the RASLINK 'CRW-to-Proces' Flag is ON, all pending
CRWs are retrieved from the Hardware (using the STRCW instruction) and stored
into the CRW queue.
This CRW queue has 5 entries, where 1 entry is used for one allbound cycle. Each
entry may hold up to 32 CRWs.

After having retrieved all pending CRWs, the resident CRW handler in MCRAS per-
forms special actions for the various CRW reporting sources (RSC) and error-
recovery codes (ERC), with one exception: When the Channel Subsystem reports

 Machine Check, Channel Check and CRW Handling 371

'Event Information Pending', the RAS transients perform the necessary actions to
retrieve the event information from the channel subsystem.
For an overview on reporting sources, error-recovery codes and VSE actions see
Figure 153.

Later on, the RAS system task is posted to record the CRWs into the System
Recorder File and to issue a console msg, if required.

Figure 153. CRW handling (Overview)

RSC ERC Handling Message

Subchannel Available - -

Subchannel Installed
Parameters
Initialized

Update path masks and CHPID string in PUBX
entry of affected subchannel.
Set interrupt subclass 3 and enable sub-
channel.
Call sense task path verification.

-

Subchannel Installed
Parameters
Modified

Update path masks and CHPID string in PUBX
entry of affected subchannel.
Call sense task path verification.

-

Subchannel Available - -

Channel Path Terminal Clear subchannel (CSCH) for all devices using
the affected channel path and have a function
pending.
Reset path masks in all PUBX entries that are
using the affected channel path.
Reset the affected channel path (RCHP).

0T34

Channel Path Permanent
error with
facility initial-
ized

Update path masks and CHPID string in all
PUBX entries that are using the affected
channel path.

0T33

Channel Path Permanent
error with
facility not
initialized

Update path masks and CHPID string in all
PUBX entries that are using the affected
channel path.

0T33

Channel Path Initialized Update path masks and CHPID string in all
PUBX entries that are using the affected
channel path.
Call sense task path verification.

-

Channel Path Temporary
error

- 0T31

Channel Sub-
system

Event Infor-
mation
Pending

(in RAS transients) Retrieve the event informa-
tion from the hardware and record it into the
recorder file.

-

Configuration
Alert Facility

Temporary
Error

- 0T32

Monitoring
Facility

Temporary
Error

- -

Channel Check Handler (CCH)
The resident CCH gains control from the I/O interrupt handler and (with the excep-
tion of 3590 TPA devices) it handles only interface control checks or channel
control checks. Channel chaining and channel data checks are handled by the I/O
supervisor.

372 VSE/AF Supervisor DRM

The channel subsystem supplies additional channel check information in the
interruption-response block (IRB). The extended-status word 0 (IRBESW0) from the
IRB is copied into the ECSW location.
The ECSW is inspected to determine if enough information is valid to isolate the
damage to either a channel or a device or if a system termination condition exists.
For each channel check an error entry in the PUB extension is used to save error
and recording information. If channel and device information is valid the error entry
of the corresponding PUB is used.

If a channel damage or a propagated external damage condition exist, the error
entry of the first busy device not queued in error on the indicated channel is used
for RAS processing. Any other busy device will restarted if it is a DASD device or
set queued in error for none DASD devices.

For channel checks on disk devices the recovery actions are initiated by the resi-
dent CCH. After recovery is done, the error entry is completed and chained to the
RAS error chain. The RAS task is posted and control is given to the dispatcher. For
an unsuccessful recovery the task in error is canceled.

For channel checks on non-disk devices the error entry is completed, enqueued to
the RAS error chain, the RAS task is posted and control is given to the dispatcher.
Device-dependent recovery actions and recovery-dependent cancel actions are per-
formed by the RAS monitor and the R-transients.
For 3590 TPA devices, in addition to the RAS error entry a CC error queue entry is
allocated and filled with all information needed later on by the RAS system task to
recover/record CC errors for these devices.

When a system termination condition is detected, the emergency exit bit is posted
in the RAS linkage area (see Figure 231 on page 514) and the RAS task is
entered. The applicable termination code is posted at storage location 0. The fol-
lowing list gives the termination codes for the various types of disastrous channel
errors:

B Irrecoverable channel check on fetch.
C Irrecoverable channel check on paging channel.
E ECSW not stored.
G Channel address invalid.
H Channel check on log with RASMSG.

Nonresident channel check handling is described in VSE Central Functions Error
Recovery DRM, SC33-6326.

 Machine Check, Channel Check and CRW Handling 373

┌─────────┬────────┬────────┬────────┬────────┬────────┬────────┐
│ │Record │Message │Termi─ │ │HIO │Recovery│
│ │error │on │nate │CLRCH │CLRIO │action │
│ │ │SYSLOG │System │ │ │ │
├─────────┼────────┼────────┼────────┼────────┼────────┼────────┤
│No ECSW │ │ │ │ │ │ │
│stored │ │ X │ X │ │ │ │
│ │ │ │ │ │ │ │
│─────────┼────────┼────────┼────────┼────────┼────────┼────────│
│Inter─ │ │ │ │ │ │ │
│face in─ │ X │ X │ │ X │ │ X │
│operative│ │ │ │ │ │ │
│─────────┼────────┼────────┼────────┼────────┼────────┼────────│
│CUA │ │ │ │ │ │ │
│valid │ X │ X │ │ │ │ X │
│ │ │ │ │ │ │ │
├─────────┴────────┴────────┴────────┴────────┴────────┴────────┤
│ RECOVERY ACTION VERIFICATION │
├─────────┬────────┬────────┬────────┬────────┬────────┬────────┤
│ │Retry │Post │Cancel │ │ │ │
│ │channel │error │channel │ │ │ │
│ │program │in CCB │user │ │ │ │
│─────────┼────────┼────────┼────────┼────────┼────────┼────────│
│User own │ │ │ │ │ │ │
│error │ │ X │ │ │ │ │
│recovery │ │ │ │ │ │ │
│─────────┼────────┼────────┼────────┼────────┼────────┼────────│
│Channel │ succ. │ │ │ │ │ │
│program │ │ │ │ │ │ │
│retryable│ unsucc.│ X │ X │ │ │ │
│─────────┼────────┼────────┼────────┼────────┼────────┼────────│
│User │ succ. │ │ │ │ │ │
│accepts │ │ │ │ │ │ │
│I/O error│ unsucc.│ X │ │ │ │ │
└─────────┴────────┴────────┴────────┴────────┴────────┴────────┘

Figure 154. Channel Check Handling Overview

Recovery Transients and RAS Monitor
The recovery transients (R-transients) perform machine check and channel check
recovery and recording.

The RAS monitor is a supervisor resident control program which

� Dequeues error blocks from the RAS error chain.
� Moves error information to the work ERPIB.
� Fetches R-transients into the RTA.
� Schedules I/O requests from the RTA.
� Performs services for the R-transients.
� Provides an exit interface from R-transients.

The RAS monitor table (RASTAB, Figure 232 on page 515), the RAS linkage area
(RASLINK, Figure 231 on page 514) and the Error Recovery Procedure Informa-
tion Block (ERPIB, Figure 233 on page 517) contain the necessary information for
the RAS monitor and the R-transients.

374 VSE/AF Supervisor DRM

Queues for Machine Checks, Channel Checks and CRWs
Every Machine Check, every Channel Report Word, and every Channel Check for a
3590 TPA device, is stored in a corresponding queue by the resident MC, CC and
CRW handlers in MCRAS.

The MC and the CC queue may hold 5 entries, the CRW queue may hold 5 times
32 CRW entries in parallel. Queue-full conditions for the CC and the CRW queues
reside in information-lost conditions (with a corresponding console msg), whereas a
queue-full condition for the MC queue results in a hardwait.

 Queue control

How to locate these queue addresses?

 1. LOCATE 'RAS-SCHIB
2. Subtract x'38' from the given address
3. New address points to begin of above structure (MCSTKNUM)

The queue entries in-use are forward-chained with a forward pointer at offset 0.

A queue entry is held in-use until all required processing has been done by the
resident MC/CRW/CC handler and the RAS system task.

For a layout of a queue entry please refer to

� Macro MAPMCSTK (for a MC queue entry)
� Macro MAPCRWST (for a CRW queue entry)
� Macro MAPCCSTK (for a CC queue entry)

Figure 155. MCRAS queue control

Offset Supervisor
Label

Description

 0 (x00) MCSTKNUM Number of MC/CRW/CC Queue entries

 2 (x02) reserved

 4 (x04) MCSTKQUE MC queue: Ptr to 1st entry in use

 8 (x08) MCSTKBEG MC queue: Ptr to begin of queue

12 (x0C) MCSTKEND MC queue: Ptr to end of queue + 1

16 (x10) MCSTKNXT MC queue: Ptr to next free queue entry

20 (x14) MCRWSQUE CRW queue: Ptr to 1st entry in use

24 (x18) MCRWSBEG CRW queue: Ptr to begin of queue

28 (x1C) MCRWSEND CRW queue: Ptr to end of queue + 1

32 (x20) MCRWSNXT CRW queue: Ptr to next free queue entry

36 (x24) MCRWSLST CRW queue: Ptr to last CRW in current Q-entry

40 (x28) CCSTKQUE CC entry: Ptr to 1st entry in use

44 (x2C) CCSTKBEG CC entry: Ptr to begin of queue

48 (x30) CCSTKEND CC entry: Ptr to end of queue + 1

52 (x34) CCSTKNXT CC entry: Ptr to next free queue entry

 Machine Check, Channel Check and CRW Handling 375

376 VSE/AF Supervisor DRM

 Job Accounting

The support for job accounting is always generated in the VSE/AF Supervisor and
is optionally activated at IPL time by SYS JA=YES.

Job accounting is associated with the following data areas:

� Some fields in the system communication region SYSCOM
� The job accounting common table ACCTCOMN
� Some fields in the partition communication region COMREG and in the Partition

Control Block (PCB).
� For each partition the job accounting partition table ACCTABLE
� A set of device usage and SIO counters associated with the PUB-extension

PUBX and the PCB.
� A 1K-user save area.

All data areas are allocated below the 16MB line (RMODE 24).

Job accounting logic consists of three distinct parts:

� The allocation and initialization of accounting areas and fields at IPL time and
during dynamic partition allocation.

� The maintenance of accounting information at system run time.
� The interface to the user written accounting routine $JOBACCT.

 Initialization
The system and static partition related tables are allocated and initialized at IPL
time, the ones for dynamic partitions during dynamic partition allocation.
During IPL most work is done by phase $INITSYS, which is executed after all
system options have been specified. When $INITSYS is invoked, the following
initialization relevant to job accounting is already done:

� SYSCOM.IJBFLG02.IJBJA is set on if JA=YES was specified.
� A PUBX is allocated and initialized for every added device.
� The total number of added device is stored in SYSCOM.IJBNDEV.
� The total number of added 'partition sharable' devices is stored in

SYSCOM.IJBNSDEV.

DASD devices, unit record devices and the SYSLOG device are considered as par-
tition sharable. Unit record devices are included because they can be used as
dummy devices for VSE/POWER in more than one partition.
If SYSCOM.IJBFLG02.IJBJA is on,

 � $INITSYS
– Allocates a 1K-user save area and saves its address in

ACCTCOMN.ACCTUSEP.
– Calculates the length of ACCTABLE depending on SYSCOM.IJBNDEV and

saves it in ACCTCOMN.ACCTABLN.
� $INITSYS or dynamic partition allocation ($IJBSSM)

– Allocates and initializes one ACCTABLE per partition in pageable system
GETVIS space.

– Saves the address of each ACCTABLE in COMREG.JAPART.
– Sets COMREG.JCSW1.JASWITCH off as an external indication (mainly for

job control and VSE/POWER) that job accounting is active.

© Copyright IBM Corp. 1985, 2013 377

– Sets PCB.PCBJAPTR = A(PCB) as an internal indicator that job accounting
is active.

– Allocates in fixed system GETVIS space strings of usage and SIO counters
for partition sharable devices, one string per partition, saves the address of
each string in PCB.PCBCNT and the offset within the string of the SIO
counter for each device in PUBX.PBXJAOFF.

 Maintenance
At system run time, CPU time and SIO counters are maintained in internal fields,
which are not directly accessible to the user.

For CPU time accounting, short time intervals (typically between dispatching and
interrupt times) are measured with the CPU Timer in units of 16 microseconds and
assigned to a partition, whenever possible, or to the system as overhead times.
Time intervals with the CPU in wait state are accumulated in a separate allbound
time counter.
The criterion for assigning a time interval to a partition is that the time interval
represents a reproducible portion of productive work for that partition. System activ-
ities, which do not fall under this categories, are the following:

 � Paging
 � Channel scheduling
� Hardware error recovery
� First level timer interrupt processing
� Attention routine processing (operator commands)

CPU time intervals assigned to a partition are accumulated in the field
PCB.RUNTIME. The corresponding field in the system PCB is used to accumulate
overhead time intervals. System wait state intervals are accumulated in the low
core field SBNDTIME.
Field PCB.PCBJAPTR points to the PCB to which the current time interval is to be
assigned. For partition PCBs, PCBJAPTR may point to the PCB itself (partition
time) or the system PCB (overhead time). For the system PCB, PCBJAPTR may
point to the PCB of the service owner (partition time) or to the system PCB itself
(overhead time). System tasks, whose processing is always counted as overhead
time, are flagged by TIB.TIBFLAG2.OVHIND.

Whenever a CPU Timer interrupt occurs or a GETJA request is issued (see below),
the contents of the fields PCB.RUNTIME and SBNDTIME are transferred to another
set of internal fields in each partition PCB, namely PCPUTIME, POVHTIME and
PBNDTIME. PCB.RUNTIME in the partition PCB is simply added to PCPUTIME.
The accumulated overhead PCB.RUNTIME in the system PCB is distributed among
the fields PCB.POVHTIME of all active partitions in proportion to their
PCB.RUNTIME values. SBNDTIME is distributed in equal parts among the fields
PCB.PBNDTIME of all active partitions.

SIO counters are maintained for all devices in internal fields associated with each
PUBX. For devices, which are not partition sharable, a single counter
PUBX.PBXJACNT is sufficient. For partition sharable devices, there is one internal
SIO counter per device and partition located at (PCBCNT)+(PUBX.PBXJAOFF).

The SIO counter is updated immediately after a successful SIO and, for spooled
dummy devices, after successful invocation of the VSE/POWER SVC 0 appendage.
SIOs for system tasks with TIBFLAG2.OVHIND on as well as those associated with
the logical unit SYSUSE are not counted.

378 VSE/AF Supervisor DRM

 User Interface
Whenever a job step is completed, job control invokes the user accounting routine
$JOBACCT. Accounting data is passed to the user in the accounting partition table
ACCTABLE. The transfer of the internal counters into the ACCTABLE is controlled
by the macro GETJA, which is invoked by job control at well defined points within
job processing, in order to restrict the data in ACCTABLE to single job steps. For
details on the function of GETJA refer to the internal macro descriptions in
Appendix B.

The GETJA routine is also internally invoked by SVC 112 (X'70' - MSAT macro), to
save the SIO counter of a device, which is not partition sharable, into ACCTABLE
whenever device ownership is released.

 Job Accounting 379

380 VSE/AF Supervisor DRM

 Software Re-IPL

The main purpose of software re-IPL is to automatically re-IPL the system during
an automatic installation of a z/VSE system. It is activated via SVC 31 at the end
of stand-alone processing after the SYSRES has been restored.

Software re-IPL may also be requested by the operator REIPL command.

 REIPL cuu,LOADP=.......

Note: If the device to be REIPLed is a SCSI device, specify the cuu of the IPLed
FBA-SCSI disk, although the load device actually is the attaching FCP adapter.

 Execution
It depends on the architecture of the disk to be IPLed and also on the architecture
of the processor how software IPL is done. The following environments and hard-
ware features have to be considered:

� LPAR or basic mode

 � VM

� CCW based IPL as for ECKD or FBA SYSRES

� LD IPL as for SCSI SYSRES

 � PD IPL

Traditional CCW based IPL is handled in SGUNATT, LD IPL and PD IPL for SCSI
devices in SGREIPL.

The Re-IPL routine in SGUNATT performs the following functions:

� Simulates the Hardware IPL.

– Running in an LPAR

- Clears the TLB (translation look-aside buffer) and initializes the control
registers.

- Resets the I/O subsystem.

- Reads the bootstrap record from disk and passes control to the boot-
strap phase by loading the IPL PSW from location zero.

– Running under VM

- Passes the CP command 'IPL cuu' to VM with the VM Diagnose
instruction.

The Re-IPL routine in SGREIPL performs the following functions:

� Running in an LPAR supporting PD IPL:

– Builds the IPL Parameter List according to the architecture.

– Issues DIAGNOSE X'308', function 5 to pass the IPL Parameter List which
is needed for the subsequent LD IPL to the processor.

– Issues DIAGNOSE X'308', function 3 to request PD IPL.

� Running in an LPAR without PD IPL support:

© Copyright IBM Corp. 1985, 2013 381

– Enters a wait state, because software re-IPL cannot be performed. IPL is
required from the HMC.

� Running under VM

– Issues DIAGNOSE X'08' instruction to pass the CP command

SET LOADDEV PORT wwpn LUN lun SCP NEW '...'

and tell VM the connection path to the SCSI disk to be IPLed.

– Issues DIAGNOSE X'08' instruction to pass the CP cammand

IPL fcp_cuu

to have VM start LD IPL.

 Invocation

 SVC 31
In the SVC 31 processing, an authorization check is done. If the requestor has no
authorization, the caller is canceled with illegal SVC. Control is passed then to
either SGUNATT or SGREIPL.

Input Parameters:

� Call during automatic installation:

Configuration data - such as cuu of SYSRES, SYSWK1 and operator console,
connection pathes if applicable, load parameters - are transferred from the
stand-alone session to the re-initialization

– in main storage at locations that remain unmodified (ECKD, FBA),

– in the REIPL record of the disk being IPLed (SCSI).

The data are prepared and put in place by the caller before issueing SVC 31.

� Call from REIPL command processing:

None.

The re-IPL data are set up by the SVC routine

– in a fixed storage location (ECKD, FBA),

– in the SCP data part of the IPL Parameter List on a processor that supports
PD IPL (SCSI).

Software Re-IPL uses the following data areas:

� Hardware locations as defined in SGLOWC,
� Re-IPL control block UNATTCB,
� IPL Parameter List MAPIPLPL (Program Directed IPL),
� SCSI re-IPL control block MAPREIPL.

382 VSE/AF Supervisor DRM

 Software Re-IPL 383

384 VSE/AF Supervisor DRM

 Console Support

This chapter contains only information that is intended for public access and is not covered elsewhere in
this or in other externally available VSE publications.

 Overview

This section describes the data flow, structure and overall processing related to the console support. The
data flow is shown in Figure 156 on page 386.

IPL Processing: IPL supports the Integrated Console as communication device, in addition to 3215
and 3270 type devices. Whenever Console Integration is available, it allocates a PUB for a device of type
CONS with a dummy device address, to which SYSLOG can be assigned (during IPL or later).

The selection of the IPL communication device depends on ASI definitions, device availability and the IPL
load parameter. The access to the selected device during early IPL processing, before the supervisor is
loaded, is via synchronous interfaces (stage I). After the supervisor is loaded, the Console Router and the
console modules, that support the selected device (Integrated Console or CRT/Line Mode) and redisplay
from Console Router storage, are loaded in real storage and initialized (stage II), and communication
switches to the standard interfaces (SVC 0/15, WTO/WTOR). After the SVA is loaded, console processing
is taken over by console modules loaded in the 31-bit SVA (stage III) and the real area allocated during
stage II is reused.

IPL messages are collected in the Console Router queue, for later logging as soon as the HC File is
opened.

Console Router: The Console Router provides the following functions:

� MVS compatible WTO/WTOR support
� WTO/WTOR (VSE/ESA V1 level)
� Application control of message deletion (DOM macro)
� Analysis of console I/O channel programs (SVC 0/15)
� MVS compatible console interfaces (MCSOPER, MCSOPMSG and MGCRE macros)
� SVC 30 (command input)
� Console buffering asynchronous operator communication
� Routing to multiple consoles
� Interface to CMS users via VMCF

 � Console recovery
� Command interface to Attention Routine
� Queuing of AR commands
� Logging to HC File
� Support for HC File redisplay commands

 � Vendor exits

The Console Router also calls unique OCCF functions, when active:

� Message suppression and automated reply
 � Message/reply translation

The Console Router becomes active during IPL, immediately after the supervisor is loaded. It maintains a
set of queues for all console traffic in transit, including:

� Messages waiting for delivery to one or more consoles
� Action messages, held until deleted by the operator or by the originating application

© Copyright IBM Corp. 1985, 2013 385

 ┌───────┐
 │EXPLAIN│
 │ File │
 └───────┘
 │
 │ explain

 ┌─────────────┐ ┌─────┐ message ┌──────────────┐

│ Attention │�─────────────┐ │ IPL │─────────�│ Synchronous │
 │ Routine │�───────────┐ │ │ │�─────────│ Console I/F │
 └────────�────┘ │ │ └─────┘ reply └──────────────┘
 │ command │ │ │
 │ │ │ initialize

 │

 ┌──────────────┐ ┌─────────────┐ ┌──────────────┐
│┌─────────────┴┐ │ Console │ ┌┴─────────────┐│
││┌─────────────┴┐ │ Router │ ┌┴─────────────┐││
│││ Command Proc │ │ │�─────────│ Consoles │││
│││ AR, Exits │ │ │ activate │ │││
│││ OCCF │ │ ┌─────┐ │ │ │││
│││ ICCF │ │ ┌┴────┐│ │�─────────│ │││
│││ VTAM │ │ │ ├┘ │deactivate│ Integrated │││
└┤│ POWER │─────┐ │ └─────┘ │ │ Console │││
└┤ OC-Exits │ │ │ Console │�─────────│ │││
└──────────────┘ response │ Sessions │ command │ CRT Console │││

 │ │ │ │ │││
└───�│ │─────────�│ Line Mode │││

│ Message │ response │ Console │││
│ Queue │ │ │││

┌──────────────┐ │ ─┐ ┌─ │�────────�│ II Consoles │││
│┌─────────────┴┐ │ │───│ │ explain │ │││
││┌─────────────┴┐ │ │───│ │ │ VMCF/CMS │││
│││ │─────────�│ └───┘ │─────────�│ Console │││
│││ System Tasks │ message │ │ message │ │││
│││ │ │ │ │ OCCF/NetView │││
│││ Subsystems │�─────────│ │�─────────│ Console │││
│││ │ reply │ │ reply │ │││
└┤│ Applications │ │ │ │ │├┘
 └┤ │─────────�│ │─────────�│ ├┘
 └──────────────┘ delete └─────────────┘ delete └──────────────┘

│ │ �
log │ RED │ RED
item │ command │ response

 │
 ┌─────────────┐ HCF ┌─────────┐

│ HCF │─────────�│Hard Copy│
│ System Task │�─────────│ File │
└─────────────┘ record └─────────┘

Figure 156. Console Data Flow

� Decision messages awaiting a reply
� HC File records to be logged
� Commands to be processed by the Attention Routine or by the HCF task.

Queue storage is allocated in 31-bit system GETVIS space.

The Console Router supports a set of interfaces for the data flows shown in Figure 156. Most of these
interfaces are implemented by calls to Console Router services (SVCs, Program Calls and branch entries).
Since the Console Router has no task of its own, all control flows start from an external task calling the
Console Router and are executed under that task.

386 VSE/AF Supervisor DRM

The application 'message' and 'reply' flows (left side of Figure 156) are based on the SVC 0/15 and the
WTO/WTOR interfaces. The 'delete' flow corresponds to the DOM interface.

The console flows (right side of Figure 156 on page 386) are based on MVS-compatible extended-MCS
interfaces.

The Attention Routine interface ('command' flow) is called by the AR task to get the next command from
the Console Router command queue, and includes the name and ID of the originating console and a
command/response correlation token.

The 'explain' flow allows console with explanation support to obtain a pointer to help and message expla-
nation text, that is loaded in virtual storage by an AR service.

The 'log item' and 'RED command/response' flows describe the communication with the HCF system task,
that retrieves entries to be logged or redisplayed, as well as redisplay commands, from the Router queue,
and enqueues redisplay responses to be routed back to the requesting console.

Integrated Console: The Integrated Console is always activated, when the SPDT interface for
Console Integration is available, and is used as system console, when SYSLOG is assigned to it, or, in
connection with a CRT/Line Mode system console or other master consoles, as alternate console for
recovery situations. The support consists of a synchronous component, used during IPL stage I, and a
full-function component that runs under the existing SPT system task. The full-function component com-
municates with the Console Router via the standard MCS interfaces, and exchanges console traffic with
the Service Processor using the architected Message Data Block format.

The Integrated Console must be protected by physical security.

CRT/Line Mode Console: The CRT/Line Mode Console is activated only when SYSLOG is
assigned to a 3270 or 3215 device, and is used in this case as the standard system console. During IPL
stage I it is accessed via existing IPL interfaces. As soon as IPL stage II is entered, the full-function code
is loaded and executed under the CST system task. Communication with the Console Router is via the
standard MCS interfaces. The transition between IPL stages II and III is handled transparently for the
user (continuous screen contents).

The CRT console has the same appearance and usability characteristics as the II console. This is
ensured by isolating a major portion of the code, that is not sensitive to the environment or I/O character-
istics of the console, and by sharing this code with the II console.

The CRT console can be disconnected, in which case the system console role is automatically transferred
to the Integrated Console, when available.

The CRT/Line Mode console must also be protected by physical security (no operator logon).

II Consoles: The II supports CICS-based master and user consoles, that are independent of the CRT
console, but with identical appearance and usability characteristics (ensured by common code). These
consoles also communicate with the Console Router via the standard MCS interfaces.

Redisplay is implemented via redisplay commands routed to the HCF task, rather than through synchro-
nous HC File I/O (not tolerable under CICS).

Message explanation text is loaded asynchronously from the Online Message Explanation file via the AR
EXPLAIN service.

The access to the master console capability is controlled through II security facilities.

 Console Support 387

VM/VSE Interface Routines: The routing of console traffic between VSE and CMS users in a
VM/VSE environment is accomplished via a single VMCF Console. This console functions as a VSE
master console, when enabled via a SYSECHO command, and supports a variable number of CMS users,
that receive unsolicited messages only through the ECHO or ECHOU option.

All routing to CMS (including redisplay responses) is via MSGNOH/MSG commands submitted to CP by a
synchronous Router exit routine. This routine is invoked for all master console messages, and for other
messages with explicit destinations not identified by other active consoles. The MCSOPMSG macro is not
used for this console.

Input from CMS is supported through the VSECMD interface, that communicates via VMCF with a VSE
module running under the SPT system task.

When VSE security is active, access to master console functions by CMS users, other than the SYSECHO
userid, is protected by passing the CMS userid and the console authorization of an identical VSE userid to
the Router (UTOKEN parameter of MGCRE).

OCCF And NetView Console: OCCF message translation and automation functions do not
require a partition. They are activated via a system command, passed to OCCF through the AR sub-
system interface, and executed by OCCF exit routines invoked by the Router.

The support for the NetView console is available in connection with OCCF and runs in a private partition
(static or dynamic), along with the Unattended Node support. It communicates with the Console Router
via a unique console using standard MCS interfaces, and with NetView over an XPCC interface. Console
traffic is routed to this console based on a routing option set by the OCCF message exit.

The access to the master console capability of the NetView console is controlled through NetView security
facilities.

HCF Task: The HC File is opened by Job Control, when the first // JOB statement is encountered, and
independently of SYSLOG device type. All HC File I/O requests, both for logging console traffic and for
re-display purposes, are then handled by the HCF system task. The HCF task is started as soon as IPL
stage II is entered, and processes logging requests off the Router queue without interfering with console
traffic, except for a synchronization mechanism at end of job step, that guarantees a consistent HC File
contents for LISTLOG. Responses to re-display commands are passed through the Router queue and
delivered, like other messages, in the standard MDB format to the requesting console.

Attention Routine: AR retrieves commands from the Router queue via service routines, that queue
commands entered from different consoles. The 'busy' condition presented by subsystems is handled
transparently by a synchronization mechanism, with no impact on the processing of other commands.

Access to the Message Explanation File, in response to an EXPLAIN request, is supported by AR via
standard VSAM interfaces, that load message explanation text from a specified record into virtual storage.
Only the address and length of this area is returned to the requesting console.

388 VSE/AF Supervisor DRM

 Supervisor Interfaces

All interfaces to the Console Router are accessed through the supervisor (macro SGDOC) via various call
mechanisms. Independently of the mechanism the calling task is put into an SVC-like status, before
invoking the Console Router entry point in 31-bit SVA with a unique function code in register 0. Control
always returns to the supervisor, behind the point of invocation, and the original task status is restored
through an appropriate exit mechanism. This is summarized in Figure 157.

The Console Router executes as a reentrant supervisor routine (RID = REENTRID). Reentrancy is
ensured by allocating 8K of automatic storage for save and work areas for each call.

Two automatic storage areas are pre-allocated during Console Router initialization:

� The first area is fixed and reserved for system tasks that issue messages but do not tolerate page
faults (currently applies to the SNS and RAS tasks). Contention on this area is excluded, since
Console Router processing for these tasks is guaranteed to be non-interruptible.

� The second area is pageable and used for all other tasks, when available.

When the pre-allocated area is not available, one additional area is allocated dynamically in 31-bit system
GETVIS space, and freed when processing completes. When two pageable areas are already in use, the
calling task waits until one of them becomes free.

The structure of the automatic storage is shown in Figure 158 on page 390.

Figure 157. Console Router Interfaces

Interface Call Mechanism Function Code Exit Mechanism

New WTO/WTOR SVC 131, MVS SVC 35 1 DISPMVS

Old WTO/WTOR SVC 32 2 EXIT

DOM SVC 131, MVS SVC 87 3 DISPMVS

SYSLOG I/O BAL from SVC 0/15 4 EXIT

MGCRE SVC 131, MVS SVC 34 5 DISPMVS

SVC 30 SVC 30 6 EXIT

MCSOPER PC 1 7 DISPSERV function code
12

MCSOPMSG PC 6 8 DISPSERV function code
12

Message Clean-up BAL from SVC 3 9 Return to IOS

End of Task Clean-up BAL from Terminator 10 Return to Terminator

HCF Initialization BASSM from $IJBPHCF 11 DISPSERV function code
12

HCF Get Request BASSM from $IJBPHCF 12 DISPSERV function code
12

AR Initialization BASSM from $IJBAR 13 DISPSERV function code
12

AR Get Command BASSM from $IJBAR 14 DISPSERV function code
12

 Console Support 389

 ┌──────────────┬──────────────┬──────────────┬──────────────┐
Header │ Eye Catcher │ Current Work │ High Water │ Address of │

(16 bytes) │ 'CAST' │ Pointer │ Mark │ Last Byte │
 ├──────────────┼──────────────┼──────────────┼──────────────┤

SGDOC │ Address of │ -- │ Forward │ Return │
 Save Area │ Header │ │ SA Pointer │ Register 14 │
(144 bytes) ├ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┴ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ──┤

 │ │
│ General Registers 15-12 + Access Registers 14-12 │

 │ │
 ├──────────────┬──────────────┬──────────────┬──────────────┤

 Save Area │ Address of │ Backward │ Forward │ Return │
(144 bytes) │ Header │ SA Pointer │ SA Pointer │ Register 14 │

├ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┴ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┤
 │ │

│ General Registers 15-12 + Access Registers 14-12 │
 │ │

├ ─ ┤
 Work Area │ │
(variable │ │
 length) │ │

 ├──────────────┬──────────────┬──────────────┬──────────────┤
 Save Area │ Address of │ Backward │ Forward │ Return │
(144 bytes) │ Header │ SA Pointer │ SA Pointer │ Register 14 │

├ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┴ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┤
 │ │

│ General Registers 15-12 + Access Registers 14-12 │
 │ │

├ ─ ┤
 Work Area │ │
(variable │ │
 length) │ │

 ├───┤
 │ │

│ . . . │
 │ │
 │ │

8 K └───┘

Figure 158. Console Router Automatic Storage

The Console Router returns to the supervisor with return and reason codes in registers 15 and 0, that are
interpreted and processed as shown in Figure 159.

390 VSE/AF Supervisor DRM

The calling task may have to wait for Console Router resources, that are summarized in Figure 160

SYSLOG I/O Interfaces

Rules For SYSLOG Channel Programs: Operator messages may be issued by means of an
I/O request (SVC 0/15) for the logical unit SYSLOG, with a channel program suitable for a printer key-
board device. This interface is maintained for compatibility reasons. Conversion to WTO/WTOR is recom-
mended.

The rules for a valid SYSLOG channel programs are summarized in the table below.

Figure 159. Console Router Return and Reason Codes

Return Code Reason
Code

Processing

0 - Control is returned to caller via exit mechanism. Output registers have been
stored by the Console Router in the callers save area.

4 4 The caller must wait for console buffers. The task enters wait state via RESVCX
or RWAIT.

4 8 The caller must wait for a reply ID. The task enters wait state via RESVCX or
RWAIT.

8 4 The caller has supplied an invalid address. The task is cancelled with cancel
code x'25' (exit to ERR25)

8 8 The caller has supplied an invalid SYSLOG channel program. The task is can-
celled with cancel code x'39' (exit to ERRGO)

8 12 The caller has supplied invalid parameters. The task is cancelled with cancel
code x'21' (exit to ERR21)

8 12 The caller tried to send a message to an unknown destination. The task is can-
celled with cancel code x'1A' (exit to ERRGO).

16 - The mode of operation is REMOTE and a message requiring a reply could not be
routed to any destination other than the System Console. A software re-IPL is
initiated, since input from the System Console is inhibited in this mode of opera-
tion.

Figure 160. Console Router Bound Conditions

Bound State Meaning

DOCABND (x'48') Wait for automatic storage. The pre-allocated automatic storage was not available, and the
limit for dynamically allocated automatic storage has been reached or GETVIS failed.

DOCBBND (x'49') Wait for Console Router buffers or for a reply ID. This bound condition is used with a wait
argument of 0, when the limit of buffers per task was reached, or the overall buffer space
could not be expanded or GETVIS failed. The address of the task's bit map of outstanding
replies (TCSRBM in TCB-extension) is used as a wait argument in the latter case.

DOCQBND (x'67') Wait for Console Router page-fault gate. The task executing a gated Console Router
sequence was interrupted by a page fault, and the current task must wait until the gate
owner resumes and exits from the gated sequence.

 Console Support 391

Other channel commands and CCW flag settings will be rejected.

The following table shows the actions which are performed then and list also other conditions that lead to
a rejection of a SYSLOG channel program.

Rejection of a SYSLOG channel program means:

� the intended message is suppressed
� and one of the following actions is performed:

Action List:
1. Simulate Channel Program Check

– In user CCB/IORB
- set IORBCNT = 0
- post I/O complete, unrecoverable I/O error, channel end, device end
- post program check

– If unrecoverable I/O errors are not accepted
- cancel task with cancel code x'39' (Invalid CCW chain for SYSLOG)
- msg 0V12I (Error in SYSLOG channel program) is issued

2. Simulate Channel Protection Check
– In user CCB/IORB

Figure 161. Supported Channel Commands and CCW flags

Channel commands CCW flags

01 Write, no carrier return
09 Write, auto carrier return
0A Read inquiry
0B Audible alarm
03 No operation
04 Sense
08 Transfer in channel

CD Chain data of next CCW
CC Chain command code of next CCW
SLI Suppress incorrect-length indication

Figure 162. Rejection of a SYSLOG channel program

Condition Action (refer to action list below)

Unsupported channel command used Act. 3 (unit check)

Read-CCW (CommandCode x'0A') with command chaining or data
chaining

Act. 3 (unit check)

Unsupported CCW flag used Act. 1 (channel program check)

EXCP REAL for non-system tasks
(V=R addresses assumed for system tasks)

Act. 1 (channel program check)

CCW not on Doubleword-boundary Act. 1 (channel program check)

A TIC is directly followed by a TIC Act. 1 (channel program check)

CCW address or CCW data buffer invalid Act. 2 (channel protection check)

Data length in CCW is 0 Act. 1 (channel program check)

Read CCW (x'0A') or Sense CCW (x'04')
from non-system task with

� data area not within partition limits
� if task owns LTA and data area not in LTA
� if VTAM|CICS|POWER task and data area not in SVA

(Checking done in sequence given!)

Act. 2 (channel protection check)

More than 32 CCWs in a CCW chain Act. 1 (channel program check)

392 VSE/AF Supervisor DRM

- set IORBCNT = 0
- post I/O complete, unrecoverable I/O error, channel end, device end
- post protection check

– If unrecoverable I/O errors are not accepted
- Cancel task with cancel code x'25' (Invalid address)

3. Simulate Unit Check
– In user CCB/IORB

- set IORBCNT = 0
- post I/O complete, unrecoverable I/O error, channel end, device end
- post unit check

– If unrecoverable I/O errors are not accepted
- cancel task with cancel code x'39' (Invalid CCW chain for SYSLOG)
- msg 0V12I (Error in SYSLOG channel program) is issued

The next table shows some special processing for a SYSLOG channel program.

Note: Format-1 CCWs in SYSLOG channel programs are supported.

Assigning Routing and Descriptor Codes: Routing and descriptor codes for messages issued
via the SYSLOG I/O interface are assigned by the system, based on an exception list and on defaults
derived from other criteria, as described in Figure 164.

Figure 163. Special Processing of a SYSLOG Channel Program

Condition Action (refer to action list below)

Execution of Channel End appendage requested Ignored

Sense CCWs (Command Code x'04') returns zero sense data (x'00')
(CCW not passed to consoles)

NOOP CCWs (Command Code x'03') are skipped (and not passed to any console)

Write-CCW with data length of > 70 characters. A new line is forced after 70 characters (or
at a meaningful separation position, resp.).
The text of a following write (x'01') CCW will
be appended, a following write with carrier
return (x'09') will start the next new line.

SYSLOG channel programs with more than 12 lines (either specified
via carriage return CCWs x'09' or forced by the preceding rule) or
with more than an (accumulated) message length of 700 characters

Message will be truncated
(with an additional info message 0D96I over-
laying the last message line)

 Console Support 393

Whenever a message is also defined in the following exception list, the routing and/or descriptor codes
from this list will overwrite the routing and/or descriptor codes derived from the above rules.

Messages issued by the AR task via SYSLOG I/O are additionally tagged with the console-ID of the
console, where the current command was entered, as if they had been issued via WTO/WTOR with the
CONSID parameter. All responses (no READ CCW) to the same command are also connected, like
WTOs with CONNECT parameter, and a last line with linetype E is added by the system, when the
response is complete.

When a message is issued for a partition with active ECHO option (for the meaning of 'for a partition' see
“Message Presentation” on page 396) and routing code 11 was set according to above criteria, routing
code 11 is reset and the ECHO userid is inserted for CONSNAME.

When CONSID or CONSNAME were inserted, for one of the reasons mentioned above, and no console
with that name is active at the time the message was issued, nor a CMS user with that userid, the

Figure 164. Routing and Descriptor Codes for Message issued via SYSLOG I/O

Message Criteria Routing
Codes

Descriptor
Codes

Messages with a message code of the form 'xxxna'
(x alphanumeric, n numeric, a = W or A or E or D or I):

Found in exception list from list from list

Action code W 1 1

Action code E 1 3

Action code A or D, by system task/subsystem/LTA 1 2

Action code A or D, by AR task - -

Action code A or D, by partition/SVA 11 -

Action code I, for system task/subsystem 2 4

Action code I, for AR task - 5

Action code I, for partition 11 6

Other messages:

Reply needed 11 -

No reply needed, by AR task - 5

No reply needed, not by AR task 11 6

Note: The criteria for messages with action code D refer to the message origin
(task, LTA), whereas as those for action code I refer to the part-ID (service owner)
in the message prefix (see also “Message Presentation” on page 396).

Figure 165. SVC 0 Message Exception List

Msg Code RC DC

1Q05I set by above algorithm 11

1Q15I set by above algorithm 11

1Q2CI set by above algorithm 11

1Q2DI set by above algorithm 11

1QB5I set by above algorithm 11

4n44D
(n = 2,..,9)

set by algorithm 2

394 VSE/AF Supervisor DRM

message is processed anyway, if routing codes other than 11 are on, or suppressed if it does not require
a reply and is not immediately followed by a stand-alone read issued by same task. If a reply is required,
unrecoverable I/O error is posted in the CCB, when requested, or the issuing task is cancelled with cancel
code x'1A' (I/O error).

 Console Support 395

 Message Presentation

The system edits the message text, as supplied via WTO(R) or the SYSLOG I/O interface, and assigns
default color, highlighting and intensity attributes, independently of the device used to display the
message.

Message editing consists of splitting text lines that do not fit within the standard width of 70 characters
(applies only to single line WTO(R) and SYSLOG I/O messages), and of adding a message prefix in front
of the first line. The line splitting algorithm is the same as today. The message prefix is built, like today,
in the form

partition ID [+|-] reply ID

where:

partition ID takes as today one of the values AR, BG, Fn, cn (c = dynamic class), and identifies the
service owner partition. When the message is issued by a system task or by
VSE/POWER, this is the partition that is being serviced, when applicable. In all other
cases, it is the partition of the task that issued the message.

+ indicates a message that needs an immediate reply, because a system resource (e.g.
the LTA) is being held.

- indicates any other message needing a reply.

reply ID takes the form rnnn, where nnn is a 3-digit numerical value derived from the task ID of
the task that issued the message (algorithm see below), and r (new) is a digit 0-9 used
to distinguish multiple outstanding replies for the same task. The additional digit is
needed for tasks that are allowed to have more than 1 outstanding reply. Primarily
these are subsystems, like CICS or POWER, that use internal tasking.

(*) same as in VSE/ESA V.1.
(**) 512 (or x'0200') is the highest task-Id that can be in use only when support for more
tasks has been activated with SYSDEF SYSTEM,NTASKS=MAX. If support for more
tasks is not active, the highest task-id is 255 (or x'00FF').

The default background color is black, and the default message attributes are determined by the criteria
shown in the following table. Both may be modified by OCCF and Message Processing Vendor exits.
Presentation attributes of other display fields are controlled by console applications.

Figure 166. Algorithm to calculate "nnn" in reply id

Task Task Id "nnn"

Main tasks in static partitions x'21' - x'2C' 000 - 011 (*)

Selected system tasks x'01' Sense
x'0B' ERP
x'20' AR

013 (*)
014 (*)
015 (*)

Other system tasks x'02' - x'0A'
x'0C' - x'1F'

016 - 024
025 - 044

Subtasks or main tasks in dynamic
partitions

x'002D' - x'0200' 045 - 512 (**)

396 VSE/AF Supervisor DRM

HCF System Task

The HCF task is responsible for logging message traffic on the Hard Copy File and for responding to
REDISPLAY commands. It is activated when IPL stage II is entered, although the HC File is not yet open,
to enable REDISPLAY from the Console Router queue.

After activation, the HCF task waits in the supervisor on an ECB, that is posted by the Console Router
when there is work to do, or when the transition to IPL stage III is to take place. All actual processing is
done by the phase $IJBPHCF, residing initially in IPL space and later on in 31-bit SVA. Only persistent
status information is maintained within the supervisor (CRTGEN macro).

On unexpected error conditions, a system task error exit in the supervisor is invoked, causing recovery
and retry logic to be driven. When recovery fails to the point that no useful work can be done any more,
the HCF task terminates after issuing a final error message.

CST System Task

The CST system task manages the 3270 and 3215 system console. Depending on the type of IPL com-
munication device, it is activated when IPL stage II is entered, or otherwise after the transition to stage III
has occurred.

After activation the CST task calls phase $IJBCRT, residing initially in IPL space, when needed, and later
on in 31-bit SVA, and never returns to the supervisor. Only those data areas that must be below 16M (e.g.
CCB and CCW's) are maintained within the supervisor.

When the device managed by the CST task (SYSOCDEV) presents an attention interrupt, IOS calls a CST
appendage that in turn posts the CST task for pending console input. All I/O operations are done via the
standard SYSIO interface.

Figure 167. Default Message Presentation Attributes

Criteria Color Highlighting Intensity

Descriptor code 1 or 11 red none high

Descriptor code 2 or reply needed white none high

All other cases green none normal

 Console Support 397

398 VSE/AF Supervisor DRM

Chapter 3: Diagnostic and Debugging Aids

© Copyright IBM Corp. 1985, 2013 399

400 VSE/AF Supervisor DRM

 Diagnostic Aids

© Copyright IBM Corp. 1985, 2013 401

Fixed Storage Locations in Processor Storage (Low Core)

In z/Architecture mode, the prefix area (low core) comprises two 4K pages and is 8K in length.
In a multi-processing environment each CPU has its own (8K) prefix area. The layout of the prefix area is
standard for any IBM System z processor.
Usage of the z/Architecture prefix area in z/VSE:

� The locations of the ESA/390 new and old interrupt PSWs are not used by the hardware and are used
by z/VSE to emulate the ESA/390 PSWs.

� Storage locations in the prefix area (8K) which were used by VSE and which are now used by the
hardware have been rearranged.

� To avoid synchronization of the prefix areas in a multi- processing environment, variable system
control blocks have been moved beyond the prefix area.

402 VSE/AF Supervisor DRM

Supervisor Patch Area

Supervisor patch areas are provided for use by IBM programming support representatives. They use
those areas if there is a need for installing a local fix to (usually a bypass of) a problem.

There is one 28-byte patch area within the supervisor at label IJBPATCH (X'200' in low core). The first
four bytes of this area point to a 300-byte patch area in the high address range of virtual storage. The
small area within the supervisor allows coding of a limited number of instructions without the need for a
base register in operand addresses.

 Low Core
 � 2�� 2�3 2�4 CE Patch Area 21F
┌──── ───────┬────────┬────────── ──────────┬────── ──────┐
│ ��� │IJBPATCH│ ��� │ ��� │
└──── ───────┴───┬────┴────────── ──────────┴────── ──────┘
 │
 │
 │

 Patch Area
 ┌─────────────── ─────────────┐
 │ ��� │
 └─────────────── ─────────────┘

Figure 168. Patch Area Relationship

 Diagnostic Aids 403

Phase Load Trace Table
For every partition an area for the Phase Load Trace Table is allocated in the system GETVIS area. This
is done at IPL time for static partitions and during allocation for dynamic partitions. The address of the
area can be found at label IJBPHLST in the partition communication region. An area is IJBPHLSL (376)
bytes in length.
The supervisor writes a phase load entry into the table each time a phase is loaded into the partition. It is
possible to record 15 load requests. If the table is full, the supervisor wraps around and starts from the
beginning of the table.
At the end of a job step, the table is cleared by the system.

 Partition COMREG
 � 184 188
 ┌─────────────┬────────┬──────────────────────────────────┐
 │ │IJBPHLST│ │
 └─────────────┴────────┴──────────────────────────────────┘
 │
 ┌──────────┘
 │

 ┌────────┐

┌──│ │ Address of current entry
 │ ├────────┤

┌┼──│ │ Address of first entry
 ││ ├────────┤
┌─┼┼──│ │ End address of table

 │ ││ ├────────┤
 │ ││ │ │
 │ └┼─�├────────┴───────────────────────────┐
 │ │ │ phase entry 1 │
 │ │ ├────────────────────────────────────┤
 │ │ │ phase entry 2 │
 │ └─�├────────────────────────────────────┤
│ │ phase entry 3 │

 │ ├────────────────────────────────────┤
 │ │ │
 │ └────────────────────────────────────┘
 │ �
 │ �
 │ �
 │ ┌────────────────────────────────────┐
 │ │ │
 │ ├────────────────────────────────────┤
 │ │ │
 └───� └────────────────────────────────────┘

Layout of a table entry

 ┌───────────┬─────────────┬─────────────┬────────────┬────────────┐
 │phase name │load address │phase length │SDT pointer │LDT pointer │
 └───────────┴─────────────┴─────────────┴────────────┴────────────┘
 � 8 12 16 2� 23

Figure 169. Phase Load Trace Table

404 VSE/AF Supervisor DRM

Hard Wait Codes

Machine Check / Channel Check Wait Codes

┌─────────┬────────┬────────┬────────┬──────────────────────────────────┐
│Byte � │Byte 1 │Byte 2 │Byte 3 │ Description │
├─────────┼────────┼────────┼────────┼──────────────────────────────────┤
│ X'C1' │ X'��' │ A,I,S │not used│Irrecoverable machine check. │
│ │ │ │ │ │
│ X'C2' │ X'��' │ A,I,S │not used│Irrecoverable channel check │
│ │ │ │ │during FETCH. │
│ │ │ │ │ │
│ X'C3' │ X'��' │ A,I,S │not used│Irrecoverable channel check on │
│ │ │ │ │paging channel. │
│ │ │ │ │ │
│ X'C5' │ X'��' │ A,I,S │not used│No ECSW stored. │
│ │ │ │ │ │
│ X'C7' │ X'��' │ A,I,S │not used│Channel failure; channel address │
│ │ │ │ │invalid. │
│ │ │ │ │ │
│ X'C8' │ X'��' │ A,I,S │not used│Channel failure on SYSLOG │
│ │ │ │ │ │
└─────────┴────────┴────────┴────────┴──────────────────────────────────┘

Notes:

A X'C1' - SYSREC recording unsuccessful (No record written)
I X'C9' - SYSREC recording incomplete (Not all records written)
S X'E2' - SYSREC recording successfully completed

Figure 170. MCH/CCH Wait Codes

Device Error Recovery Wait Codes

┌─────────┬────────┬─────────────────┬──────────────────────────────────┐
│Byte � │Byte 1 │Byte 2 │Byte 3 │ Description │
├─────────┼────────┼────────┼────────┼──────────────────────────────────┤
│ X'�8' │ X'C1' │Channel │ Unit │ │
│ to │ or │ │ │Error recovery messages. │
│ X'6�' │ X'C4' │ │ │ │
└─────────┴────────┴────────┴────────┴──────────────────────────────────┘

Figure 171. Device Error Recovery Wait Codes. For Error Recovery Messages refer to 0P... messages in z/VSE
Messages and Codes, SC34-2632/2633/2634.

SDAID Soft Wait Codes

┌─────────┬─────────┬────────┬────────┬─────────────────────────────────┐
│Byte � │Byte 1 │Byte 2 │Byte 3 │ Description │
├─────────┼─────────┼────────┼────────┼─────────────────────────────────┤
│ X'62' │ X'C5' │Not used│Not Used│SDAID output device became │
│ │ │ │ │unready. Make printer ready and │
│ │ │ │ │press the EXTERNAL INTERRUPT key.│
├─────────┼─────────┼────────┼────────┼─────────────────────────────────┤
│ X'��' │ X'��' │ X'��' │ X'��' │SDAID stop on event. To continue,│
│ │ │ │ │press the EXTERNAL INTERRUPT key.│
└─────────┴─────────┴────────┴────────┴─────────────────────────────────┘

Figure 172. SDAID Soft Wait Code. (Identified by EEEE in the address part of the WAIT PSW).

 Diagnostic Aids 405

IPL Hard Wait Codes

┌────────┬────────┬────────┬────────┬────────────────────────────────┐
│ Byte � │ Byte 1 │ Byte 2 │ Byte 3 │ Explanation │
├────────┼────────┼────────┴────────┼────────────────────────────────┤
│ X'�7' │ X'E6' │ Device number │ IPL input/output error: │
│ │ │ │ - The identified device is │
│ │ │ │ preventing IPL to complete │
│ │ │ │ its process. |
├────────┼────────┼────────┬────────┼────────────────────────────────┤
│ X'�7' │ X'E6' │ X'C3' │ X'E2' │ Console router error 'CS': │
│ │ │ │ │ Byte 4,5: 2 bytes return code │
│ │ │ │ │ Byte 6,7: 2 bytes error code� │
├────────┼────────┼────────┼────────┼────────────────────────────────┤
│ X'�7' │ X'E6' │ X'C9' │ X'C3' │ Integrated Console error 'IC': │
│ │ │ │ │ Byte 5: 1 byte return code │
│ │ │ │ │ Byte 6,7: 2 bytes error code� │
├────────┼────────┼────────┼────────┼────────────────────────────────┤
│ X'C1' │ X'E2' │not used│not used│ Unrecoverable machine check │
├────────┼────────┼────────┼────────┼────────────────────────────────┤
│ X'cc' │ X'��' │ X'�F' │ X'D�' │ Error during IPL. IPL canceled.│
│ │ │ │ │ (cc=cancel code)� │
├────────┼────────┼────────┼────────┼────────────────────────────────┤
│ X'F�' │ X'C9' │ X'F�' │ X'F�' │ See message �I�� │
├────────┼────────┼────────┼────────┼────────────────────────────────┤
│ X'F�' │ X'C9' │ X'F�' │ X'F1' │ See message �I�1 │
├────────┼────────┼────────┼────────┼────────────────────────────────┤
│ X'F�' │ X'C9' │ X'F�' │ X'F6' │ The device type of SYSRES can │
│ │ │ │ │ not be identified. The volume │
│ │ │ │ │ label (VOL1) or format─4 record│
│ │ │ │ │ contains invalid information. │
│ │ │ │ │ The pack was not initialized │
│ │ │ │ │ correctly. │
├────────┼────────┼────────┼────────┼────────────────────────────────┤
│ X'F�' │ X'C9' │ X'F�' │ X'F7' │ See message �I�7 │
├────────┼────────┼────────┼────────┼────────────────────────────────┤
│ X'F�' │ X'C9' │ X'F1' │ X'F4' │ Unexpected return from SCLP │
│ │ │ │ │ See message �I14 │
├────────┼────────┼────────┼────────┼────────────────────────────────┤
│ X'F�' │ X'C9' │ X'F5' │ X'F4' │ Phase not found, │
│ │ │ │ │ phase name is appended. │
│ │ │ │ │ See message �I54 │
├────────┼────────┼────────┼────────┼────────────────────────────────┤
│ X'F�' │ X'C9' │ X'F6' │ X'F8' │ Unsupported Hardware. │
│ │ │ │ │ See message �I68, RC=2 │
├────────┼────────┼────────┼────────┼────────────────────────────────┤
│ X'F�' │ X'D1' │ X'F1' │ X'F7' │ Too many devices in IOCDS. │
│ │ │ │ │ See message �J17 │
├────────┼────────┼────────┼────────┼────────────────────────────────┤
│ X'F�' │ X'D1' │ X'F5' │ X'F�' │ Unsupported SYSLOG device. │
│ │ │ │ │ See message �J5� sup4. │
└────────┴────────┴────────┴────────┴────────────────────────────────┘

Figure 173. IPL Hard Wait Codes. For IPL Wait State Messages in low core refer to z/VSE Messages and Codes,
SC34-2632/2633/2634.

406 VSE/AF Supervisor DRM

Hardwait Originator Codes for IPL
The Hardwait Originator Codes for Re-IPL can be found in the
SYSCOM field IJBIPORG.
HWIPL��� EQU � UNKNOWN HARDWAIT ORIGINATOR
HWIPL��4 EQU 4 RE-IPL CODE OR DATA DESTROYED
HWIPL��8 EQU 8 SYSTEM IS NOT UNATTENDED
HWIPL�12 EQU 12 ERROR OCCURRED DURING RE-IPL INIT
HWIPL�16 EQU 16 I/O ERROR ON READ COUNTER RECORD
HWIPL�2� EQU 2� COUNTER RECORD ON DASD DESTROYED
HWIPL�24 EQU 24 NO RE-IPL (SET BY AR CMD AUTOIPL)
HWIPL�28 EQU 28 SAME REASON LIMIT IS ZERO
HWIPL�32 EQU 32 TOTAL IPL COUNTER LIMIT REACHED
HWIPL�36 EQU 36 NO ALTERNATE IPL DEVICE SPECIFIED
HWIPL�4� EQU 4� SAME REASON LIMIT REACHED AND
� ALREADY ON ALTERNATE DEVICE
HWIPL�44 EQU 44 SAME REASON LIMIT REACHED, SWITCH
� NOT ALLOWED,DEVICE=PRIMARY REQUST.
HWIPL�48 EQU 48 BACK SWITCH TO CURR.DEVICE REJECT
HWIPL�52 EQU 52 ALT. IPL DEVICE,SAME REASON LIMIT
� REACHED, SWITCH TO PRIM. NOT ALLOW
HWIPL�56 EQU 56 I/O ERROR ON WRITE COUNTER RECORD
HWIPL�6� EQU 6� CP IPL FAILED
HWIPL�68 EQU 68 I/O ERROR ON READ BOOTSTRAP
HWIPL�72 EQU 72 MACHINE CHECK DURING RE-IPL CODE
HWIPL�76 EQU 76 ERRONEOUS SVC OR EXTERNAL OR I/O
� INTERRUPTION DURING RE-IPL CODE
HWIPL�8� EQU 8� PROGRAM INTERRUPTION " " "
HWIPL�84 EQU 84 CLOCK NOT OPERATIONAL

 Diagnostic Aids 407

Supervisor Hard Wait Codes

┌─────────┬────────┬────────┬────────┬──────────────────────────────────┐
│Byte � │Byte 1 │Byte 2 │Byte 3 │ Description │
├─────────┼────────┼────────┼────────┼──────────────────────────────────┤
│ │ │ │ │ │
│ X'��' │ X'��' │ X'�F' │ X'EB' │Signal Quiesce (Signal Shutdown) │
│ │ │ │ │processing has completed │
│ │ │ │ │successfully. │
│ │ │ │ │ │
│ X'��' │ X'��' │ X'�F' │ X'EC' │Unexpected System Task cancelation│
│ │ │ │ │ │
│ X'��' │ X'��' │ X'�F' │ X'ED' │System error condition │
│ │ │ │ │(e.g.control block inconsistency).│
│ │ │ │ │General Register 5 contains the │
│ │ │ │ │address of the location where │
│ │ │ │ │the System inconsistency was │
│ │ │ │ │determined. │
│ │ │ │ │ │
│ X'��' │ X'��' │ X'�F' │ X'F1' │System error detected by the page │
│ │ │ │ │manager. │
│ │ │ │ │ │
│ X'��' │ X'��' │ X'�F' │ X'F2' │Unused │
│ │ │ │ │ │
│ X'��' │ X'��' │ X'�F' │ X'F3' │Unused │
│ │ │ │ │ │
│ X'��' │ X'��' │ X'�F' │ X'F4' │Unused │
│ │ │ │ │ │
│ X'��' │ X'��' │ X'�F' │ X'F5' │TFIX count outside limits. │
│ │ │ │ │ │
│ X'��' │ X'��' │ X'�F' │ X'F6' │I/O error during update of the │
│ │ │ │ │SLD. │
│ │ │ │ │ │
│ X'��' │ X'��' │ X'�F' │ X'F7' │No copy blocks available for BTAM │
│ │ │ │ │appendage I/O request. │
│ │ │ │ │ │
│ X'��' │ X'��' │ X'�F' │ X'F8' │Unused │
│ │ │ │ │ │
│ X'��' │ X'��' │ X'�F' │ X'F9' │Paging I/O error. │
│ │ │ │ │ │
│ X'��' │ X'��' │ X'�F' │ X'FA' │Translation specification │
│ │ │ │ │exception. │
│ │ │ │ │ │
│ X'��' │ X'��' │ X'�F' │ X'FB' │Page fault in supervisor routine │
│ │ │ │ │with identifier RID=X'��'. │
│ │ │ │ │ │
│ X'��' │ X'��' │ X'�F' │ X'FC' │Unused │
│ │ │ │ │ │
│ X'��' │ X'��' │ X'�F' │ X'FD' │Error during software Re-IPL │
│ │ │ │ │ │
│ X'��' │ X'��' │ X'�F' │ X'FE' │I/O error during fetch from │
│ │ │ │ │SYSLIB. │
│ │ │ │ │ │
│ X'��' │ X'��' │ X'�F' │ X'FF' │Program check in supervisor │
│ │ │ │ │or SDAID │
└─────────┴────────┴────────┴────────┴──────────────────────────────────┘

Figure 174. General Hard Wait Codes

Note: General Hard Wait Codes will be set by the VSE Supervisor or related routines at location x'00' to
x'03' as shown above.

408 VSE/AF Supervisor DRM

Usually the address field of the Hard Wait PSW is set to 00A00000 00001000. It is set to
00A00000 00001122 if a Program Check occured within the Program Check Handler. It is set to
00A00000 00000FFF by Signal Quiesce (Signal Shutdown) processing to indicate that the system
has been successfully shutdown.

 Diagnostic Aids 409

Hardwait Originator Codes for the Supervisor
The Hardwait Originator Codes for the supervisor can be found
in the SYSCOM field IJBHWORG.

HWORG��� EQU � UNKNOWN HARDWAIT ORIGINATOR
HWORG��4 EQU 4 SGEFCH GETVCE OF FETCH-LIB DEVICE NOT OK
HWORG��8 EQU 8 DISP NO TASK FOUND IN SCHEDULED PART.
HWORG�12 EQU 12 DISP ERROR ON RESOURCE CHAINING
HWORG�16 EQU 16 DISP ERROR ON POSTING OF RESOURCE WAIT
HWORG�2� EQU 2� SGNUC SECOND SAVE AREA NOT ACCESSIBLE
HWORG�24 EQU 24 SGNUC GATING ROUTINES MISS SYSTEM QUEUE
HWORG�28 EQU 28 SGPCK CONTROL BLOCK INCONSISTENCY PCB
HWORG�32 EQU 32 SGPCK INCONSISTENCY PIB: PIK|COMREG-PTR
HWORG�36 EQU 36 SGPCK PROGRAM CHECK IN SUPERVISOR
HWORG�4� EQU 4� SGPCK PAGE FAULT IN SUPERVISOR
HWORG�44 EQU 44 SGPCK TRANSLATION EXCEPTION
HWORG�48 EQU 48 SGDFCH FETCH I/O ERROR
HWORG�52 EQU 52 SGCCWT LRA FOR TFIXED ADDRESS NOT POSS.
HWORG�56 EQU 56 SGCCWT TFIX COUNT TOO HIGH
HWORG�6� EQU 6� SGCCWT NO COPYBLOCKS FOR 2ND TRANSLATION
HWORG�64 EQU 64 SGSVC CRT PHASE NOT FOUND, NO SL INFO.
HWORG�68 EQU 68 SGSVC CRT PHASE DOESN'T EXIST
HWORG�72 EQU 72 SGSVC CRT PHASE FETCH I/O ERROR
HWORG�76 EQU 76 SGSVC SYSTEM ERROR ON CRT PHASE
HWORG�8� EQU 8� SGSVCX TFIX COUNTER OVERFLOW
HWORG�84 EQU 84 MCRAS PERMANENT RAS I/O ERROR
HWORG�88 EQU 88 MCRAS RAS TRANSIENT FETCH ERROR
HWORG�92 EQU 92 SGIOS INCORRECT SVC� ROUTINE RETCODE
HWORG�96 EQU 96 SGIOS INCORRECT OCCF ROUTINE RETCODE
HWORG1�� EQU 1�� SGIOS EXTENT ENTRY DEQUEUE ERROR
HWORG1�4 EQU 1�4 SGIOS FIRST ENTRY MISSMATCH IN HEADQ.
HWORG1�8 EQU 1�8 SGIOS INCORRECT RETCODE FROM QUIESCE
HWORG112 EQU 112 SGIOS INCORRECT RETCODE QUIESCE NODEBUG
HWORG116 EQU 116 SGSCHED LOST CCB ADDRESS AT EXCP INIT
HWORG12� EQU 12� IOINTER INVALID ERP RETCODE
HWORG124 EQU 124 IOINTER INTERRUPT FROM WRONG PATH
HWORG128 EQU 128 SGERP PUB BASE POINTER INVALID
HWORG132 EQU 132 SGERP ERROR ON ERP TRANSIENT FETCH
HWORG136 EQU 136 SGAP IPL ERROR, EOT NOT IN SVA
HWORG144 EQU 144 SGPDATA DEVCB CHAIN ENTRY MISSING
HWORG148 EQU 148 SGPDATA ERROR ON TFREE
HWORG152 EQU 152 SGLOCK FREEVIS OWNER ELEMENT ERROR
HWORG156 EQU 156 SGLOCK FREEVIS LOCKTAB ENTRY ERROR
HWORG16� EQU 16� SGAM SPACE ON 2K BOUNDARY NOT FOUND
HWORG164 EQU 164 SGBFCH ADDRESS RELOCATION ERROR
HWORG168 EQU 168 SGBFCH SCIL I/O ERROR

410 VSE/AF Supervisor DRM

HWORG172 EQU 172 SGBFCH ERROR ON DIRECTORY ENTRY
HWORG176 EQU 176 SGSLDUP NO ACTIVE ENTRY IN SLD QUEUE
HWORG18� EQU 18� SGING NAME NOT IN SSID LIST
HWORG184 EQU 184 SGPMR I/O ERROR ON PAGE DATA SET
HWORG188 EQU 188 ILVRAS�� CHANNEL CHECK ON SYSLOG
HWORG192 EQU 192 ILVRAS�� PUB ENTRY OF RASLOG NOT FOUND
HWORG196 EQU 196 ILVRAS�� CONSOLE NOT OPERATIONAL
HWORG2�� EQU 2�� $$BOCRTF UNRECOVERABLE CONSOLE I/O ER.
HWORG2�4 EQU 2�4 $$BOCRTF ECSW NOT PROPERLY STORED
HWORG2�8 EQU 2�8 $$BOCRTF ECSW ADDRESS INVALID
HWORG212 EQU 212 $$BOCRTF ERROR DURING SEND MESSAGE
HWORG216 EQU 216 $$BOCRTF TEST I/O : DEVICE NOT OPER.
HWORG22� EQU 22� MCRAS TOO MANY MACHINE CHECKS
HWORG224 EQU 224 SGAP PHO INTERFACE ERROR
HWORG228 EQU 228 SGCCWT INSERT USED CB INTO FREE CHAIN
HWORG232 EQU 232 DISP INCORRECT CALL OF DISPSERV RTN
HWORG236 EQU 236 RAS VSIZE TO SMALL AF. STORAGE ERR
HWORG24� EQU 24� SA JCL USED BY IJWJCL (SA JCL)
HWORG244 EQU 244 DISP SYSTEM TASK SERVICE IN ERROR
HWORG248 EQU 248 IJBVEND SSTATE EXIT IN INVALID STATUS
HWORG252 EQU 252 SGACF ERROR DURING SEC.SYS TASK PROC
HWORG256 EQU 256 IJBLSTK INTERNAL ERROR IN IJBLSTK
HWORG26� EQU 26� SGEXIT LINKAGE STACK DESTROYED
HWORG264 EQU 264 SGPCK IJBLSTK NOT LOADED
HWORG268 EQU 268 IJBSPDT SIGNAL QUIESCE HONORED

 Diagnostic Aids 411

412 VSE/AF Supervisor DRM

Cancel Code to Message Code Cross-Reference

┌──────────┬────────┬──┐
│ Cancel │Message │Descriptive Part of Message (or Condition) │
│Code (Hex)│ Code │ │
├──────────┼────────┼──┤
│ �� │──── │In all cases default value except those listed │
│ �8 │�V16I │CANCEL request from VSE/POWER │
│ �9 │�V15I │CANCEL request from LIOCS │
│ �A │�S21I │Processing error in access control │
│ �B │�S2�I │Access control violation │
│ �C │�S19I │Execution failure in ICCF interactive partition │
│ �D │�V13I │Program check in subsystem or appendage │
│ �E │�V14I │Page fault in subsystem or appendage │
│ �F │�P8�I │Invalid 'read from/or write to' system file │
│ │ │on FBA device │
│ 1� │──── │Normal EOJ │
│ 11 │�V�7I │No channel program translation for unsupported │
│ │ │device │
│ 12 │�V�6I │Insufficient buffer space for channel program │
│ │ │translation │
│ 13 │ │Reserved │
│ 14 │�V�4I │Page pool too small │
│ 15 │�V�2I │Page fault in disabled program │
│ 16 │ │Reserved │
│ 17 │�S�2I │(Same as 23 but causes dump because subtasks were │
│ │ │attached when maintask issued CANCEL macro) │
│ 18 │──── │Eliminates cancel message when task issues │
│ │ │DUMP macro │
│ 19 │�P74I │I/O operator option │
│ 1A │�P73I │I/O Error │
│ 1B │�P82I │Channel failure │
│ 1C │�S14I │CANCEL ALL macro │
│ 1D │�S12I │Maintask termination │
│ 1E │�S13I │I/O error on lock file │
│ 1F │�P81I │CPU failure │
│ 2� │�S�3I │Program check │
│ 21 │�S�4I │Illegal SVC │
│ 22 │�S�5I │Phase not found │
│ 23 │�S�2I │Program request │
│ 24 │�S�1I │Operator intervention (cancel) │
│ 25 │�P77I │Invalid address │
│ 26� │�P71I │SYSxxx not assigned (unassigned LUB code) │
├──────────┴────────┴──┤
│ � If the CCB/IORB is unavailable, the logical unit is SYSxxx.│
└──┘
Figure 175 (Part 1 of 2). Cancel Code to Message Code Cross-Reference

© Copyright IBM Corp. 1985, 2013 413

┌──────────┬────────┬──┐
│ Cancel │Message │Descriptive Part of Message (or Condition) │
│Code (Hex)│ Code │ │
├──────────┼────────┼──┤
│ 27 │�P7�I │Undefined logical unit (invalid LUB code in CCB) │
│ 28 │�S35I │Phase too long (does not fit in LTA or partition) │
│ 29 │�P92I │Invalid Sublibrary structure │
│ 2A │�V1�I │I/O error on page data set │
│ 2B │�P84I │I/O error during fetch from private core image │
│ │ │library │
│ 2C │�V�9I │Illegal parameter passed by PHO routine │
│ 2D │�P881 │Failing storage block (program cannot be executed)│
│ 2E │�S16I │Invalid resource request (possible deadlock) │
│ 2F │�V�3I │More than 255 PFIX requests for 1 page │
│ 3� │�P72I │Reading past /& statement (on SYSRDR or SYSIPT) │
│ 31 │ │Reserved │
│ 32 │�P76I │Invalid DASD address │
│ 33 │�P79I │Invalid first CCW │
│ 34 │�P93I │GETVIS space exhausted │
│ 35 │�P85I │Job control open failure │
│ 36 │�V�8I │Program check or page fault in I/O appendage │
│ │ │routine │
│ 37 │ │Reserved │
│ 38 │�V11I │Wrong privately translated CCW │
│ 39 │�V12I │Invalid CCW chain for SYSLOG │
│ 3A │�V17I │Spool request out of sequence │
│ 3B │�V18I │VSE/OCCF detected error in canceled partition │
│ 3C │�V19I │VSE/OCCF subtask requested cancel of maintask │
│ 3D │L177I │Error during FETCH PFIX processing │
│ 4� │�V95I │VTAM error (termination of task) │
│ 41 │�V96I │VTAM error (invalid condition code) │
│ 42 │�P86I │Invalid dasd extent information │
│ 43 │�P94I │Not possible to execute in dynamic partition │
│ 44 │�S22I │Security manager error │
│ 45 │�S17I │Execution mode violation │
│ 46 │�S15I │Cancel code for data space services │
│ 47 │�S11I │Cancel with abend code │
│ 48 │�S27I │Cancel(OS/39� system completion code provided) │
│ 49 │�S28I │OS/39� ABEND macro issued │
│ 4A │�S37I │Task canceled because service provider terminated │
│ FF │ │Multiple cancel condition (see SYSLST for details)│
│ xx │�P78I │Unrecognized cancel code │
│ │�P83A� │Supervisor catalog failure │
│ │�P87A� │IPL failure │
├──────────┴────────┴──┤
│ � This cancel code is not significant in case of a supervisor │
│ catalog or IPL failure, because the System is placed in a │
│ WAIT state without any further processing by the Terminator. │
└──┘

Figure 175 (Part 2 of 2). Cancel Code to Message Code Cross-Reference

414 VSE/AF Supervisor DRM

 Debugging Facilities

All the debugging facilities described in this chapter must
 NOT BE TREATED AS AN INTERFACE OF ANY KIND.
Any of the facilities might be subject to changes and/or additions whenever necessary.

 DEBUG Overview

This facility is written to debug the z/VSE Supervisor and will therefore be adapted to internal needs when-
ever necessary.

The debug facility can be enabled via the AR 'DEBUG ON' command and disabled via the AR 'DEBUG
OFF/END' command.

A debug area will be allocated in the 31-bit system GETVIS-Area, as soon as the DEBUG=ON command
is being issued.

 Features

The following features are available:

Feature 1 Event Tracing
Feature 2 Address Compare Stop

One low core field is used to point to Debug Control Header

X'270' address of Debug Control Header.

The Debug Control Header consists of the following four fullwords:

XXHEADER address of current Debug Trace-area Header. The layout of the Debug Trace-area
Header will be described in detail later in this chapter.

XXESINFO address of Event Selection control Information. The contents of the Event Selection
control information is described in figure Figure 176 on page 416.

Reserved This fullword is reserved for future extensions
Reserved This fullword is reserved for future extensions

© Copyright IBM Corp. 1985, 2013 415

(pointed to by Debug Control Header (Word-1))

┌───────┬─────┬───┐
│ Bytes │ Bit │ Corresponding Trace Entry written to Trace Area │
│ Dec │ │ if Bit is 'on' │
├───────┼─────┴───┤
│ � - 1 │ Trace event selection information │
├───────┼─────┬───┤
│ │ � │ EEEE��nn entries (program check entry) PCK │
│ │ 1 │ Reserved for consistency check │
│ │ 2 │ EEEE�2��/�264 entries (display registers) REGS │
│ │ 3 │ EEEE�3�� entries (dispatcher exit) TASK │
│ │ 4 │ EEEE�4�� entries (I/O interrupt) INT │
│ │ 5 │ EEEE�5�� entries (start I/O) SIO │
│ │ 6 │ EEEE�6�� entries (external interrupt) EXT │
│ │ 7 │ EEEE�7�� entries (dispatcher entry) DISP │
│ │ 8 │ EEEE�8�� entries (supervisor call ─ SVC) SVC │
│ │ 9 │ EEEE�9�� entries (cancelation) TERM │
│ │ 1� │ EEEE�A�� entries (switch trace area) SWCH │
│ │ 11 │ EEEE�B�� entries (display data) DATA │
│ │ 12 │ EEEE�C�� entries (user data) USER │
│ │ 13 │ Reserved │
│ │ 14 │ Reserved │
│ │ 15 │ EEEE�F�� entries (monitor call entry) MCL │
│ 2 │ │ Debug Trace extention-1 │
│ │ � │ Reserved │
│ │ 1 │ Trace LOCK events LOCK │
│ │ 2 │ Trace TD events │
│ │ 3 │ Trace BSM events BSM │
│ 3 │ │ Debug Trace Extention-2 │
│ │ � │ Page protection stop defined │
│ │ 1 │ page protection active │
├───────┴─────┴───┤
│ 4 -35 Reserved │
├───────┬─────┬───┤
│ 36-37 │ │ Usage count information │
│ │ � │ SVC usage count requested │
│ │ 1 │ Fast SVC usage count requested │
│ │ 2 │ Bound state usage count requested │
│ │ 3 │ Performance counters requested │
│ │ 4 │ SVC-117 counters requested │
│ │ 5 │ SVC-132 counters requested │
├───────┴─────┴───┤
│ 38-39 TID of monitored partition │
├───┤
│ 4�-43 Monitoring buffer address │
├───┤
│ 44-95 Used internally │
├───┤
│96 -99 Partition Debug trace area address │
├───┤
│1��-227 Address Compare Start/Stop information │
├───────┬─────┬───┤
│1��-1�1│ │ Space ID │
│1�2 │ �-3 │ Processing bits │
│1�2 │ 4-7 │ Number of bytes to be compared �<n<9 │
│1�3 │ │ mask byte to be used for the compare result │
│1�4-1�7│ │ address of field to be compared │
│1�8─115│ │ hex data string of comparand │
│-------│ │ --│
│116-227│ │ 7 Repeats of fields (byte 1��-115) │
└───────┴─────┴───┘

Figure 176. Event Selection Control Information

416 VSE/AF Supervisor DRM

Feature 1 - Event Tracing:

Trace entries are set up whenever a program check/page fault, external interrupt, I/O interrupt or SVC
interrupt is encountered; or, in addition, whenever a SSCH instruction is issued, a task is being dispatched
or whenever a task is being canceled. User trace entries will be generated whenever appropriate. All the
trace entries are written into the Debug Trace Area.

Word-1 (byte 4-7) of the Debug Control Header contain the address of an Event Selection Parameter list,
which contains in byte 0 to 1 a bit map where each bit represents a special trace event. This Event
Selection Parameter List is used for selective debug traces. A bit of ON (1) indicates that the appropriate
trace entry is active whereas a bit being OFF (0) indicates that the appropriate entry is inactive, which
means no such trace entry will be written into the Debug Trace Area (see Figure 176 on page 416).

 All the bits of the Selective Event Trace can be turned ON/OFF by means of the:
 DEBUG TRACE={[NO]xxx,[NO]yy....[,[NO]zzz]}
command, where xxx, yyy, ... zzz are the options that the operator can choose. For details see the
DEBUG TRACE.... command later in this appendix.

Feature 2 - Address Compare Stop:

The Debug Control Header contains special entries which contain information about when and under
which conditions DEBUG is to Stop its event recording. There is a total of four entries and each of the
entries contains the space-Id in byte 0-1 followed at offset 2 by the number of bytes (0 < n < 9) that are to
be compared followed at offset 3 by the mask byte representing the compare mask and at offset 4-7 the
address of the field that, if its contents matches the contents given in bytes 8-15 of the appropriate Stop
entry will lead to a Hard Wait next time the Debug processing routine is being entered. The Hard Wait
PSW will be loaded before the new debug entry is being set up, which means that the event or task that
caused the last Debug entry in the Debug-area to be created did cause the DEBUG STOP to occur sub-
sequent to the creation, of this last Debug entry. For details see the DEBUG STOP.... command later in
this appendix. In addition see Figure 176 on page 416.

The PSW address portion will contain 0000EEEE to identify the STOP condition. Pressing the Restart Key
on the CPU, or specifying SYSTEM RESTART under VM, will cause the address compare stop to be
automatically reset and normal processing sequence to continue as if no stop would have been encount-
ered.

 Debugging Facilities 417

How to Find and Read the Debug Trace Area

At fixed storage location X'270' you will find a pointer to debug information. The storage area pointed to
actually holds two fullwords. The address to the Debug Trace Area Header (XXHEADER) in the first and
Debug Trace Information (XXESIESS) in the second fullword. Following the first one directs you to the
currently active Debug Trace Area (if zero, no debug information is available). Each Debug Trace Area
starts with the Debug Trace Area Header (consisting of 4 fullwords) as outlined below.

Each Trace-area has in front a 16-byte header (4 words).

� Word zero points to the next free entry within this trace area.
� Word one points to the NEXT TRACE AREA which will be used when a cancel condition occurs or,

when an exclusive switch request is being recognized.
� Word two points to the location within this trace area, where the last Debug-trace Entry can be build.
� Word three points to the PREVIOUS TRACE AREA that was used assuming it had been used at all.

 word � word 1 word 2 word 3
 ┌────────────┬────────────┬────────────┬────────────┐
 │ next free │ next area │ end of │ previous │
│ entry │ │ area │ area │

 └────────────┴────────────┴────────────┴────────────┘

Figure 177. Debug-trace Area Header

418 VSE/AF Supervisor DRM

 ┌────────┐
 │low core│
 └────┬───┘
 27� │

│ Event Selection Information
 │ ┌────────┬ ...─┬────┬─┬─┬────────┬─────────┐

│ ┌───────────�│ │ ... │ │ │ │ │ │
 │ │ └────────┴─...─┴────┴─┴─┴────────┴─────────┘

 │ � 3 � 1 2 3 4 7 8 15
 ┌────────┬────┴───┬──//─┐ │ │ │ │ │
│ │ │ │ │ │ │ │ └───>compare string
└────┬───┴────────┴──//─┘ │ │ │ └───�address to compare

│ │ │ └──────�compare mask
│ │ └────�number of bytes to compare
│ └─────�space ID (����=shared space)

 │
 │
 │ ┌──┐

 Debug Trace Area 2 Debug Trace Area 1 │
 ┌────
──
────�┌────────┐ ┌─────────�┌────────┐ │
│ ┌────────┤ word 1 │ │ ┌───┤ word 1 │ │

 │ │ ├────────┤ │ │ ├────────┤ │
│ │ │ word 2 ├─────┐ │ │ │ word 2 ├────────┘

 │ │ ├────────┤ │ │ │ ├────────┤
│ │ ┌────┤ word 3 │ │ │ ┌─┼───┤ word 3 │
│ │ │ ├────────┤ │ │ │ │ ├────────┤
│ │ │ │ word 4 ├─────┼────┘ │ │ │ word 4 ├────────┐
│ │ │ ├────────┤ │ � │ │ ├────────┤ │
│ │ │ / / │ │ │ │ / / │
│ │ │ / / │ │ │ └──�├────────┤ │
│ │ │ / / │ │ │ │ oldest │ │
│ │ │ │ │ │ │ │ │ entry │ │
│ └───┼───�├────────┤ │ │ │ ├────────┤ │
│ │ │ next │ │ │ │ / / │
│ │ │ entry │ │ │ └────�├────────┤ │

 │ │ ├────────┤ │ │ │ last │ │
 │ │ │ │ │ │ │ entry │ │
 │ │ / / │ │ └────────┘ │
 │ │ / / │ │ ┌─────────────────────────┘
 │ └───�├────────┤ │ │ │
│ │ last │ │ │
 Debug Trace Area 3

 │ │ entry │ └────┼─────────�┌────────┐
│ └────────┘ │ │ word 1 ├────┐

 │ │ ├────────┤ │
│ └──────────┤ word 2 │ │

 │ ├────────┤ │
│ ┌───┤ word 3 │ │

 │ │ ├────────┤ │
└──┼───┤ word 4 │ │

 │ ├────────┤�───┘
 │ / / �
 └──�├────────┤ │ unused
 │ last │ │

│ entry │

 └────────┘

Figure 178. Relationship of Debug Areas

 Debugging Facilities 419

Format of the Debug Trace Entries

The trace entries are always multiple of 16 bytes in length. The first two bytes of each entry contain
X'EEEE' to simplify the recognition of the variable length trace entries.

Program Check Entry (Param.: PCK - EEEE00ic)

┌───────┬──────┬──┐
│ Dec │ Hex │ │
├───────┼──────┼──┤
│ �─ 3 │ �─ 3 │ X'EEEE��ic' (ic is the program interruption │
│ │ │ code from location X'8F') │
│ 4─11 │ 4─ B │ Program check old PSW │
│ 12─13 │ C─ D │ TID (task ID) │
│ 14 │ E │ RID (routine ID) │
│ 15 │ F │ CPU state │
│ 16-23 │1�-17 │ Time Stamp │
│ 24-25 │18-19 │ CPU-Id │
│ 26-27 │1A-1B │ Reserved │
│ 28-31 │1C-1F │ Program Check Interruption code (X'8C') │
│ 32─35 │2�─23 │ Transl.except.addr. for PC interrupt code │
│ │ │ x'1�' and x'11' and x'14' │
│ or │ │
│ 32─35 │2�─23 │ Break Event Address Register contents │
│ │ │ if PER3 facility installed │
│ or │ │
│ 32─35 │2�─23 │ Contents of general register � │
│ 36─95 │24─5F │ Contents of general register 1 trough 15 │
└───┘

420 VSE/AF Supervisor DRM

Display All Registers (Param.: REGS - EEEE0200)

┌───────┬──────┬──┐
│ Dec │ Hex │ │
├───────┼──────┼──┤
│ �─ 3 │ �─ 3 │ X'EEEE�2��' │
│ 4─11 │ 4─ B │ Debug caller PSW │
│ 12─13 │ C─ D │ TID (task ID) │
│ 14 │ E │ RID (routine ID) │
│ 15 │ F │ CPU state │
│ 16-23 │1�-17 │ Time Stamp │
│ 24-25 │18-19 │ CPU-Id │
│ 26-27 │1A-1B │ Reserved │
│ 28-31 │1C-1F │ Reserved │
│ 32─95 │2�─5F │ Contents of General Registers � to 15 │
│ or │
│ 28─31 │1C─1F │ Constant 'AREG' │
│ 32─95 │2�─5F │ Contents of Access Registers � to 15 │
│ or │
│ 28─31 │1C─1F │ Constant 'CREG' │
│ 32─95 │2�─5F │ Contents of Control Registers � to 15 │
└───────┴──────┴──┘

Note: A second All Register Entry containing the contents of the Access Register will be appended to the
the first All Register entry whenever the issuing program is running in Access Register mode.
Such an entry does contain the character 'AREG' in byte 28-31 of the entry.

An All Register Entry containing the contents of the Control Registers will be generated prior to
another trace entry in case the contents of one of the control registers has changed, e.g. through
a space switch. Such an entry does contain the character 'CREG' in byte 28-31 of the entry.

┌───────┬──────┬──┐
│ Dec │ Hex │ │
├───────┼──────┼──┤
│ �─ 3 │ �─ 3 │ X'EEEE�264' │
│ 4─11 │ 4─ B │ Debug caller PSW │
│ 12─13 │ C─ D │ TID (task ID) │
│ 14 │ E │ RID (routine ID) │
│ 15 │ F │ CPU state │
│ 16-23 │1�-17 │ Time Stamp │
│ 24-25 │18-19 │ CPU-Id │
│ 26-27 │1A-1B │ Reserved │
│ 28-31 │1C-1F │ Reserved │
│ 32─159│2�─9F │ Contents of 64-Bit General Registers � to 15 │
│ or │
│ 28─31 │1C─1F │ Constant 'AREG' │
│ 32─95 │2�─5F │ Contents of Access Registers � to 15 │
│ or │
│ 28─31 │1C─1F │ Constant 'CREG' │
│ 32─95 │2�─5F │ Contents of Control Registers � to 15 │
└───────┴──────┴──┘

 Debugging Facilities 421

Dispatcher Exit (Param.: TASK - EEEE0300)

┌───────┬──────┬──┐
│ Dec │ Hex │ │
├───────┼──────┼──┤
│ �─ 3 │ �─ 3 │ X'EEEE�3��' │
│ 4─11 │ 4─ B │ PSW of selected task │
│ 12─13 │ C─ D │ TID (task ID) │
│ 14 │ E │ RID (routine ID) │
│ 15 │ F │ CPU state │
│ 16-23 │1�-17 │ Time Stamp │
│ 24-25 │18-19 │ CPU-Id │
│ 26-27 │1A-1B │ Reserved │
│ 28-31 │1C-1F │ Reserved │
│ 32─95 │2�─5F │ Contents of General Registers � to 15 │
└───────┴──────┴──┘

Note: An All Register Entry containing the contents of the Control Registers may be generated prior to
the Dispatcher exit entry in case the contents of one of the control Registers has changed. Such
an entry does contain the character 'AREG' in byte 28-31 of the All Register entry. An All Register
Entry containing the contents of the Access Register will be appended to this Dispatcher Exit entry
whenever the selected program is running in Access Register mode. Such an entry does contain
the character 'AREG' in byte 28-31 of the entry.

422 VSE/AF Supervisor DRM

I/O Interrupt (Param.: INT - EEEE0400)

┌───────┬──────┬──┐
│ Dec │ Hex │ │
├───────┼──────┼──┤
│ �─ 3 │ �─ 3 │ X'EEEE�4��' │
│ 4─11 │ 4─ B │ I/O check old PSW │
│ 12─13 │ C─ D │ TID (task ID) │
│ 14 │ E │ RID (routine ID) │
│ 15 │ F │ CPU state │
│ 16-23 │1�-17 │ Time Stamp │
│ 24-25 │18-19 │ CPU-Id │
│ 26-27 │1A-1B │ Reserved │
│ 28-31 │1C-1F │ Subchannel-Id word │
│ 32─33 │2�─21 │ Constant │
│ 34─35 │22─23 │ Device-Id (cuu) │
│ 36─51 │24─33 │ IRB │
│ 52─59 │34─3B │ CSW │
│ 6�─63 │3C─3F │ CAW │
└───────┴──────┴──┘

Start I/O (Param.: SIO - EEEE0500)

┌───┐
│ Dec │ Hex │ │
├───────┼──────┼──┤
│ �─ 3 │ �─ 3 │ X'EEEE�5��' |
│ 4─11 │ 4─ B │ Debug caller PSW |
│ 12─13 │ C─ D │ TID (task ID) │
│ 14 │ E │ RID (routine ID) │
│ 15 │ F │ CPU state │
│ 16-23 │1�-17 │ Time Stamp │
│ 24-25 │18-19 │ CPU-Id │
│ 26-27 │1A-1B │ Reserved │
│ 28-31 │1C-1F │ Subchannel-Id word |
│ 32─43 │2�─2B │ ORB Operation Request Block |
│ 44─47 │2C─2F │ CHANQ information |
│ 48─51 │3�─33 │ Address of real CCB |
│ 52─55 │34─37 │ Device-Id (cuu) |
│ 56-59 │38-3B │ Address of PUB entry |
│ 6�─63 │3C─3F │ Address of CHANQ entry. │
└───────┴──────┴──┘

 Debugging Facilities 423

External Interrupt (Param.: EXT - EEEE0600)

┌───────┬──────┬──┐
│ Dec │ Hex │ │
├───────┼──────┼──┤
│ �─ 3 │ �─ 3 │ X'EEEE�6��' |
│ 4─11 │ 4─ B │ External old PSW |
│ 12-13 │ C-D │ TID (task ID) |
│ 14 │ E │ RID (routine ID) |
│ 15 │ F │ CPU state |
│ 16-23 │1�-17 │ Time Stamp |
│ 24-25 │18-19 │ CPU-Id |
│ 26-27 │1A-1B │ Reserved |
│ 28-29 │1C-1D │ Reserved |
│ 3�-31 │1E-1F │ External Interruption code (location X'86') |
│ │ │ if External interruption code = 1xxx |
│ 32─39 │2�─27 │ Clock Comparator |
│ 4�─47 │28─2F │ CPU Timer |
│ or │ |
│ │ │ if External interruption code = 4xxx |
│ 32─63 │2�─3F │ External Interrupt buffer information (APPC) |
└───────┴──────┴──┘

Task Selection (Param.: DISP - EEEE0700)

┌───────┬──────┬──┐
│ Dec │ Hex │ │
├───────┼──────┼──┤
│ �─ 3 │ �─ 3 │ X'EEEE�7��' │
│ 4─11 │ 4─ B │ Debug caller PSW │
│ 12-13 │ C-D │ TID (task ID) |
│ 14 │ E │ RID (routine ID) |
│ 15 │ F │ CPU state |
│ 16-23 │1�-17 │ Time Stamp |
│ 24-25 │18-19 │ CPU-Id |
│ 26-27 │1A-1B │ Reserved |
│ 28-31 │1C-1F │ Reserved |
│ 32─33 │2�─21 │ LTID (task ID of task owning the LTA) │
│ 34─35 │22─23 │ Mnemonic partition ID │
│ 36─39 │24─27 │ System task working for task if any │
│ 4�─43 │28─2B │ TIB─address │
│ 44─47 │2C─2F │ TIBSCB │
│ 48─49 │3�─31 │ TIBRTID │
│ 5�─51 │32─33 │ TIBRPIK │
│ 52─53 │34─35 │ TIBRQPIK │
│ 54 │ 36 │ TIBFLAG1 │
│ 55 │ 37 │ TIBFLAG │
│ 56 │ 38 │ TIBFLAG2 │
│ 57 │ 39 │ TIBCNCL │
│ 58 │ 3A │ TIBCNCL2 │
│ 69 │ 3B │ TIBCNCL3 │
│ 6� │ 3C │ TIBFLAG3 │
│ 61 │ 3D │ TIBDMFLG │
│ 62 │ 3E │ PCEFLAG │
│ 63 │ 3F │ PCEFLAG1 │
└───────┴──────┴──┘

424 VSE/AF Supervisor DRM

Supervisor Call (Param.: SVC - EEEE0800)

┌───────┬──────┬──┐
│ Dec │ Hex │ │
├───────┼──────┼──┤
│ �─ 3 │ �─ 3 │ X'EEEE�8��' │
│ 4─11 │ 4─ B │ Supervisor call old PSW │
│ 12-13 │ C-D │ TID (task ID) |
│ 14 │ E │ RID (routine ID) |
│ 15 │ F │ CPU state |
│ 16-23 │1�-17 │ Time Stamp |
│ 24-25 │18-19 │ CPU-Id |
│ 26-27 │1A-1B │ Reserved |
│ 28-29 │1C-1D │ Constant │
│ 3�-31 │1E-1F │ SVC interuption code in the form xxnn │
│ │ │ xx, if unequal to �� is the OS/39� SVC code │
│ 32─48 │2�─2F │ Contents of General Registers 15 to 2 │
└───────┴──────┴──┘

Cancel Entry (Param.: TERM - EEEE0900)

Used at ERRGO.

┌───────┬──────┬──┐
│ Dec │ Hex │ │
├───────┼──────┼──┤
│ �─ 3 │ �─ 3 │ X'EEEE�9��' │
│ 4─11 │ 4─ B │ Debug caller PSW │
│ 12-13 │ C-D │ TID (task ID) |
│ 14 │ E │ RID (routine ID) |
│ 15 │ F │ CPU state |
│ 16-23 │1�-17 │ Time Stamp |
│ 24-25 │18-19 │ CPU-Id |
│ 26-27 │1A-1B │ Reserved |
│ 28-31 │1C-1F │ Reserved |
│ 32─33 │2�─21 │ LTID (task ID of task owning the LTA) │
│ 34─35 │22─23 │ Mnemonic partition ID │
│ 36─39 │24─27 │ System task working for task if any │
│ 4�─43 │28─2B │ TIB─address │
│ 44─47 │2C─2F │ TIBSCB │
│ 48─49 │3�─31 │ TIBRTID │
│ 5�─51 │32─33 │ TIBRPIK │
│ 52─53 │34─35 │ TIBRQPIK │
│ 54 │ 36 │ TIBFLAG1 │
│ 55 │ 37 │ TIBFLAG │
│ 56 │ 38 │ TIBFLAG2 │
│ 57 │ 39 │ TIBCNCL │
│ 58 │ 3A │ TIBCNCL2 │
│ 69 │ 3B │ TIBCNCL3 │
│ 6� │ 3C │ TIBFLAG3 │
│ 61 │ 3D │ TIBDMFLG │
│ 62 │ 3E │ PCEFLAG │
│ 63 │ 3F │ PCEFLAG1 │
└───────┴──────┴──┘

 Debugging Facilities 425

Switch Debug Trace Area (Param.: SWCH - EEEE0A00)

This Debug call forces a Debug Trace Area swap (done after cancelation or Debug was set ON again).

┌───────┬──────┬──┐
│ Dec │ Hex │ │
├───────┼──────┼──┤
│ �─ 3 │ �─ 3 │ X'EEEE�A��' │
│ 4─11 │ 4─ B │ Debug caller PSW │
│ 12-13 │ C-D │ TID (task ID) |
│ 14 │ E │ RID (routine ID) |
│ 15 │ F │ CPU state |
│ 16-23 │1�-17 │ Time Stamp |
│ 24-25 │18-19 │ CPU-Id |
│ 26-27 │1A-1B │ Reserved |
│ 28-31 │1C-1F │ Reserved |
│ 32─39 │2�─27 │ Phase name currently in LTA │
│ 4�─47 │28─2F │ Phase name currently in PTA │
└───────┴──────┴──┘

Display Data (Param.: DATA - EEEE0B00)

Before issuing the Debug call, the address of the data to be saved must be stored to XXUSAREA in low
core.

┌───────┬──────┬──┐
│ Dec │ Hex │ │
├───────┼──────┼──┤
│ �─ 3 │ �─ 3 │ X'EEEE�B��' │
│ 4─11 │ 4─ B │ Debug caller PSW │
│ 12-13 │ C-D │ TID (task ID) |
│ 14 │ E │ RID (routine ID) |
│ 15 │ F │ CPU state |
│ 16-23 │1�-17 │ Time Stamp |
│ 24-25 │18-19 │ CPU-Id |
│ 26-27 │1A-1B │ Reserved |
│ 28-31 │1C-1F │ Reserved |
│ 32─47 │2�─2F │ Data, addressed by the address in XXUSAREA │
└───────┴──────┴──┘

426 VSE/AF Supervisor DRM

Display User Data (Param.: USER - EEEE0C00)

This Debug entry will cause from one to a max. of four data areas, each with a fixed length of 16 bytes, to
be saved in the Debug Trace Entry. The data must be in storage when the debug call is being issued.

┌───────┬──────┬──┐
│ Dec │ Hex │ │
├───────┼──────┼──┤
│ �─ 3 │ �─ 3 │ X'EEEE�C��' │
│ 4─11 │ 4─ B │ Debug caller PSW │
│ 12-13 │ C-D │ TID (task ID) |
│ 14 │ E │ RID (routine ID) |
│ 15 │ F │ CPU state |
│ 16-23 │1�-17 │ Time Stamp |
│ 24-25 │18-19 │ CPU-Id |
│ 26-27 │1A-1B │ Reserved |
│ 28-31 │1C-1F │ Reserved |
│ 32─47 │2�─2F │ Data provided by Debug call address-1 │
│ │ │ optional │
│ 48─63 │3�─3F │ Data provided by Debug call address-2 │
│ │ │ optional │
│ 64─79 │4�─4F │ Data provided by Debug call address-3 │
│ │ │ optional │
│ 8�─95 │5�─5F │ Data provided by Debug call address-4 │
└───────┴──────┴──┘

Monitor Call Entries (Param.: EEEE0Fnn)

┌───────┬──────┬──┐
│ Dec │ Hex │ │
├───────┼──────┼──┤
│ �─ 3 │ �─ 3 │ X'EEEE�Fnn' (nn is the monitor call class) │
│ 4─11 │ 4─ B │ Monitor call PSW │
│ 12-13 │ C-D │ TID (task ID) |
│ 14 │ E │ RID (routine ID) |
│ 15 │ F │ CPU state |
│ 16-23 │1�-17 │ Time Stamp |
│ 24-25 │18-19 │ CPU-Id |
│ 26-27 │1A-1B │ Reserved |
│ 28-31 │1C-1F │ Program Check Interruption Code (X'8C') |
└───────┴──────┴──┘

 Debugging Facilities 427

DEBUG ON Command

 Command Description

 DEBUG [{ON[,nnnK]|OFF|END}]

DEBUG ON(,nnnK) Three areas in the specified length, default is 16K bytes each, will be allocated
within the 31-bit System GETVIS Area and one area at a time will be used in wrap
around mode to hold the trace information. An area swap will automatically be
made whenever a task ends abnormally (is being canceled).

The area swap will also be made when debug is reactivated after temporary deacti-
vation (DEBUG OFF).

DEBUG id A single Debug area of 16K bytes will be allocated within the 31-bit System GETVIS
Area and it will be used in wrap around mode to hold the trace information of the
specified partition only (id=BG,F1,F2,...Fn) This trace area will be maintained IN
ADDITION to the commonly used DEBUG trace-areas.

DEBUG OFF The 'DEBUG OFF' command will suspend tracing of all debug call events until reac-
tivated again (DEBUG ON).

DEBUG END The DEBUG END command causes tracing to be stopped immediately and all
System GETVIS Areas allocated for Debug to be freed again.

DEBUG The 'DEBUG' command, if entered without any operands will cause the current
TRACE setting to be displayed.

428 VSE/AF Supervisor DRM

DEBUG TRACE Command

 Command Description

 DEBUG TRACE={option|option,option....[,option]}

option Specify the trace events that the user wants to be selected for tracing. Any of the following
options can be chosen or suppressed.

(NO)PCK The user wants the PROGRAM-CHECK event to be traced (or suppressed in
case the NO option was chosen). These type of events will occur whenever a
program check, excluding the program check resulting from an MC-instruction,
is being recognized by the system.

(NO)REGS The user wants the ALL-REGISTER event to be traced (or suppressed in case
the NO option was chosen). These type of events will occur whenever the
contents of the general register seem of special interest to the user (e.g. in
case of a Machine Check, or after completion of a FAST-SVC (6B) request).

(NO)TASK The user wants the TASK-DISPATCHING event to be traced (or suppressed in
case the NO option was chosen). These type of events will occur whenever a
task is being dispatched.

(NO)INT The user wants the I/O-INTERRUPT event to be traced (or suppressed in
case the NO option was chosen). These type of events will occur whenever
an I/O interrupt has been recognized.

(NO)SIO The user wants the SSCH event to be traced (or suppressed in case the NO
option was chosen). These type of events will occur whenever the I/O sched-
uler has initiated an I/O operation.

(NO)EXT The user wants the EXTERNAL-INTERRUPT event to be traced (or sup-
pressed in case the NO option was chosen). These type of events will occur
whenever an external interrupt has been recognized.

(NO)DISP The user wants the TASK-SELECTION event to be traced (or suppressed in
case the NO option was chosen). These type of events will occur whenever
the dispatcher is being entered for task selection.

(NO)SVC The user wants the SUPERVISOR-CALL event to be traced (or suppressed in
case the NO option was chosen). These type of events will occur whenever
an SVC has been issued.

(NO)TERM The user wants the ABNORMAL-TERMINATION event to be traced (or sup-
pressed in case the NO option was chosen). These type of events will occur
whenever a task is being canceled for whichever reason. As a result of the
termination, a switch to the next DEBUG Trace Area will be made, assuming
the appropriate event selection bit (SWCH) has not been set OFF.

(NO)SWCH The user wants the SWITCH-DEBUG-AREA event to be traced (or suppressed
in case the NO option was chosen). These type of events will occur after a
task has been canceled, or after DEBUG has been re-activated (DEBUG ON).
If the user chooses NOSWCH, no switching to the next DEBUG Trace Area
will be initiated and the current area remains active.

 Debugging Facilities 429

(NO)DATA The user wants the SPECIAL-DATA event to be traced (or suppressed in case
the NO option was chosen). These type of events will occur whenever some
data seems of special interest to the user.

(NO)USER The user wants the USER-DATA event to be traced (or suppressed in case
the NO option was chosen). These type of events will occur whenever user
data seems of special interest to the user. This trace event is thought to be
used for user convenience.

(NO)MCL The user wants MONITOR-CALL event to be traced (or suppressed in case
the NO option was chosen). These type of events will occur whenever a
monitor call is being recognized by the system.

NONE The user wants ALL trace events to be set OFF.

ALL The user wants ALL trace events to be set ON.

The options can be set in any order and must be separated by a comma.

Note: The default setting is:

 DEBUG TRACE=PCK,REGS,TASK,INT,SIO,EXT,DISP,SVC,TERM,SWCH,DATA,USER

430 VSE/AF Supervisor DRM

DEBUG SELECT Command

 Command Description

 DEBUG SELECT,{INT=cuu|SIO=cuu|SVC=no}

This command will cause selected entries to be traced. Selective entries will only be provided for I/O
(SIO, INT) and Supervisor call (SVC) events. A single device (cuu) or SVC (number) can only be provided
per DEBUG SELECT command, however, more than one command can be given. A total of 32 devices
and all Supervisor calls can be selected. In order to reset the selected events, DEBUG must first be
turned OFF and then turned ON again.

 Debugging Facilities 431

DEBUG SHOW Command

 Command Description

 DEBUG [P|N]SHOW{=option|option,option....[,option][,CUU=cuu]}

This command will cause the (selected) entries in the (specified) Debug Trace Area to be formated prop-
erly and to either be displayed on the system operator console, or printed on a specified printer.

PSHOW The user wants the previous Debug Trace Area to be displayed on the console (or printed on
the specified printer).

NSHOW The user wants the next Debug Trace Area to be displayed on the console (or printed on the
specified printer).

Note: This area, if it contains data at all, does contain the oldest trace entries that are avail-
able within all Debug Trace Areas.

SHOW The user wants the current Debug Trace Area to be displayed on the console (or printed on
the specified printer). No new Debug Trace entries will be generated as long as printing the
currently active Debug Trace Area is ongoing.

Note: It is recommended to suspend debug (DEBUG OFF) before using the DEBUG
SHOW.... command.

SHOW=id The user wants the Partition Debug Trace Area to be displayed on the console (or printed on
the specified printer).

options Specify the entries which are to be SELECTED (or EXCLUDED) for displaying on the console
(or printing on the specified printer). The options are the same as specified in the DEBUG
TRACE command (see DEBUG TRACE... command in the previous section).

cuu Specifies the printer on which the output is to be printed. This operand, if it has been omitted,
causes the trace entries to be displayed on the operator console.

To get all three Debug Trace Areas the operator has to issue all three commands.

432 VSE/AF Supervisor DRM

DEBUG STOP Command

 Command Description

 DEBUG STOP,condition[,{AND|OR},condition]

condition = [id,][+]addr.len,{EQ|NE|LO|HI},string

This command will cause some data at a user specified address to be compared to a string of user speci-
fied data. If this compare matches all the condition which where specified by the user, the system will
cause a Hard Wait PSW to be loaded. It should be noted, however, that the data compare will ONLY take
place whenever a Debug call is being attempted, regardless of whether the appropriate trace event is
enabled or disabled.
The address of the WAIT PSW will contain 0000EEEE which uniquely identifies a MATCH STOP condi-
tion. Activating the PSW RESTART key, or, in case you are running under VM, entering SYSTEM
RESTART will cause normal operation to continue.

Note: The DEBUG STOP condition will be reset once it has been recognized. To stop another time, the
user must reenter the same command

STOP the user wants to STOP processing as soon as a specified condition is being recognized by the
Debug Processing routine.

id specifies the address space, or specifies the SYSLOG-Id of the partition, whose address is to
be searched for a matching string.

+ indicates that the address is relative to the begin address of the specified partition. The system
will ADD the partition start address to the given relative addr. to form an absolute address.

addr is the address [relative if + is prefixed to the address] that needs to be inspected.

len is the number of bytes 0 < n < 9 that the user wants to be compared. This number must match
the number of bytes specified in the string operand.

EQ|NE|LO|HI is the operator which is to be applied for the comparison operation.

EQ the operands must be equal
NE the operands must be unequal
LO the data at the given address must be lower than the string
HI the data at the given address must be higher than the string

string is a hex-character string representing the data that the storage contents is to be compared to.

AND|OR specifies the additional condition that must be satisfied for the Address Compare Stop

AND both specified conditions must be met before the system stops
OR either of the two conditions, if met will cause the system stop.

 Debugging Facilities 433

 LOCATE Command

 Command Description

The LOCATE command scans the virtual storage for the next occurrence of either a character-, or a
hexadecimal-character string whereby parts of the string may be unknown. The total string is limited to 16
characters or 32-hex digits.

The format of the command is as follows:

 LOCATE [id,][']string [([FROM=start][,TO=end][,RUN]]

id specifies the SPACE or the PARTITION which is to be scanned for the specified string.

If id is omitted, the space will be defaulted to private space number 0.
Valid IDs are:

S SHARED space

R REAL space

1 Private space number one

2 Private space number two

n Private space number n

BG BG (Background) partition

F1 F1 (Foreground) partition one

F2 F2 (Foreground) partition two

FB FB (Foreground) partition eleven

xy ID of dynamic partition

 ' is the single, special character that must be used to indicate that the following string is a
character string.
If the ' is missing, the string is assumed to be hexadecimal digits.

string is the string that the user wants to be located; limited to either 16 characters or, to 32
hexadecimal digits representing 16 bytes of storage.
Any character or hexadecimal digit that should be excluded from the scan, must be
presented by a . (dot).
An even number of hexadecimal digits, including . (dots), must be specified in case of
hexadecimal digit scan.

434 VSE/AF Supervisor DRM

OPTIONS
Any additional processing option(s) that the user wants to specify must be separated from each other by a
colon and the first OPTION specified must be preceded by a left parenthesis. The following processing
options can be specified:

FROM=start specifies an address within the specified id where the scan should begin. The FROM
option, if omitted will force the scan to be started at the first byte of the given id.
The user may want to specify an offset within the specified id rather than an absolute
address. In this case the offset must immediately be preceded by a +.

TO=end specifies the address within the specified id where the scan should end. The TO option,
if omitted will force the scan to be ended at the last byte of the given id.
The user may want to specify an offset or a length rather than an absolute address to
indicate where the scan should be ended within the specified id. In this case an offset
must be indicated by a + immediately preceding the offset relative to the begin of the
specified id, whereas a length can be identified by a leading . (dot).

RUN indicates that all addresses where a match is found (within the calculated or given
boundaries) should be logged onto the console without prompting for an operator
response.
The RUN option if omitted will cause the system to display 64 bytes of information
starting at the next lower 16-byte boundary which precedes the next subsequent string
match. The system will then WAIT for an operator response. A NULL response
(ENTER) will cause the system to check for the next occurrence of a matching string.
This will be repeated until a NONULL response is received, or, until the scan boundaries
are reached.
Operator prompting mode is the default option.

The LOCATE function can be terminated by entering "15 END".

 Debugging Facilities 435

 SHOW Command

 Command Description

The SHOW command displays a defined number of bytes from a given address in the specified space on
the operator console. The virtual address as well as its related real address, if applicable, will be dis-
played on the console.

The format of the command is as follows:

 SHOW [{id|id,DSPNAME=name|id,SGT|id,PT},]address[.length]

id specifies the SPACE or the PARTITION the bytes of which are to be displayed on the
console.
If id is omitted, the space will be defaulted to private space number 1.
Valid IDs are:

S SHARED space

R REAL space

1 Private space number one

2 Private space number two

n Private space number n

BG BG (Background) partition

F1 F1 (Foreground) partition one

F2 F2 (Foreground) partition two

FB FB (Foreground) partition eleven

xy ID of dynamic partition

DSPNAME=name name is the name of a data space which belongs to the specified partition.

SGT indicates that the system is to provide segment table information for the specified space
or partition and the eventually given address.

PT indicates that the system is to provide page table information for the specified space or
partition and the eventually given address.

address is the begin address of the area that is to be displayed, or for which SGT or PT infor-
mation is to provided, on the console once the associated space addressing has been
established. The address can be in the range from 1 to 6 hexadecimal digits.

OPTIONS
The user can append a length specification to the address which must be separated
from the address by a . (dot) and the length must not exceed 4095 bytes.

436 VSE/AF Supervisor DRM

 Appendices

This publication contains appendixes as follows:

� Appendix A: Supervisor Data Areas (without I/O)

� Appendix B: I/O Control Blocks supported by VSE system.

� Appendix C: Samples
Track hold processing examples.

� Appendix D: XPCC / APPCVM Protocol

� Appendix E: Performance Monitoring Interface

© Copyright IBM Corp. 1985, 2013 437

438 VSE/AF Supervisor DRM

Appendix A. Supervisor Data Areas (without I/O)

© Copyright IBM Corp. 1985, 2013 439

Below you find an overview of the most important supervisor data areas.

For each data area there is a short description of the data area and how you can
address it.

There is also a reference to the mapping macro for the data area The name of the
mapping macro can be used to find the layout (DSECT) of the data area in the
supervisor listing.

You also find references to figures which show the interrelationships between data
areas.

For an overview of the I/O Control Blocks see Appendix B.

Figure 179 (Page 1 of 3). Overview of the Supervisor Data Areas (except I/O data areas)

Data Area Name of Data Area Addressability Mapping
Macro

ACCTCOMN Job Accounting Common Table

contains informations about the Job
Accounting Partition tables and job accounting
areas

SYSCOM field IJBJATAB none

ACCTABLE Job Accounting Partition Table

contains accounting information for the parti-
tion

COMREG field JAPART none

CLIM Dynamic Class and System Limits Table

describes system limits f.ex. for the partition
size, the number of LUBs, the number of tasks
and the number of partitions

SYSCOM field IJBCLIM
Figure 180 on page 443

MAPCLIM

CLTAB Dynamic Class Table

one entry for each dynamic class; describes
the attributes of the dynamic class f.ex. limits
for the allocation of dynamic partitions, max.
number of partitions within the class

SYSCOM field IJBCLTAB

Figure 181 on page 444
Figure 182 on page 445

MAPCLASS

COMREG Partition Communication Region

one for each static and dynamic partition; con-
tains information related to jobs running in the
partition f.ex. job name, job start time, pointer
to job accounting table

PCE field PCECOMRA

Figure 184 on page 450
Figure 185 on page 452

MAPCOMR

CPCB Dynamic Class Control Block

one for each dynamic class; describes the dis-
patching control information for the dynamic
partitions of this class

SYSCOM field IJBCLTAB

Figure 182 on page 445
Figure 181 on page 444

MAPCPCB

LOCKTAB LOCK Table

an entry contains the resource name, a
pointer to the owner elements and a pointer to
the request elements

ALOKTABA in supervisor

Figure 192 on page 459

LOCKADR

PCB Partition Control Block

one for each static and dynamic partition; con-
tains partition related information

GETFLD FIELD=PCBPTR

Figure 185 on page 452

MAPPCB

440 VSE/AF Supervisor DRM

Figure 179 (Page 2 of 3). Overview of the Supervisor Data Areas (except I/O data areas)

Data Area Name of Data Area Addressability Mapping
Macro

PCBATAB Partition Control Block Address Table

contains pointers to the partition control blocks
(PCBs)

Low Core field x'264'

Figure 185 on page 452

none

PCBX Partition Control Block Extension

31-bit getvis extension of the PCB

PCB field PCBAPCBX MAPPCBX

PCE Partition Control Block Extension

one for each static and dynamic partition; con-
tains partition related information

GETFLD FIELD=PCEPTR

Figure 185 on page 452

MAPPCE

PCEATAB Partition Control Block Extension Address
Table

contains pointers to the partition control block
extensions (PCEs)

GETFLD FIELD=PCEATAB

Figure 185 on page 452

none

PIB Partition Information Block

contains information about the partition status
(inactive, stopped, ..) and the number of
System and programmer LUBs

GETFLD FIELD=PIB

Figure 184 on page 450
Figure 185 on page 452

MAPPIB

PIB2 Partition Information Block Extension

contains the TID of the main task, the PIK of
the partition and points to the PCB

GETFLD FIELD=PIB

Figure 184 on page 450
Figure 185 on page 452

MAPPIB

PJB Power Job Information Control Block

describes VSE/POWER and VSE/AF job infor-
mation f.ex. VSE/POWER job name,
VSE/POWER job start time

PCE field PCEPOWJB MAPPOWJB

SCB Space Control Block

describes the type and layout of an address
space

shows the partitions running in the address
space

Figure 183 on page 449 MAPSCB

SYSCOM System Communication Region

contains pointers to other supervisor
areas,flag bytes, and system variables f.ex.
number of partitions, number of channel
queue entries, end of real storage.

ASYSCOM SYSCOM

TCB Task Control Block

contains information about system and user
tasks

GETFLD FIELD=TCBPTR

Figure 186 on page 454

MAPTCB

TCBX Task Control Block Extension

31-bit getvis extension of the TCB

GETFLD FIELD=TCBPTR

Figure 186 on page 454

MAPTCBX

TIB Task Information Block

contains all task related information which has
to be kept in fixed storage

TIBATAB

Figure 186 on page 454

MAPTIB

 Appendix A. Supervisor Data Areas (without I/O) 441

Figure 179 (Page 3 of 3). Overview of the Supervisor Data Areas (except I/O data areas)

Data Area Name of Data Area Addressability Mapping
Macro

TIBATAB Task Information Block Address Table

contains pointers to the Task Information
Blocks

Low Core x'2C0'

Figure 186 on page 454

none

VIO Tables VIO tables; see also SVC 114 (x'72') SYSCOM field IJBVIOCM
points to the VIO communi-
cation area

Figure 197 on page 462

none

442 VSE/AF Supervisor DRM

Dynamic Class and System Limits Table (CLIMADR)
The 'CLIM' control block shows dynamic class and system limits.

SYSCOM

┌──────/────────┬──────────┬───────────────
│ │ IJBCLIM │ ///
└──────/────────┴────┬─────┴───────────────
 │
 ┌─────────────┘
 │

 ┌────────┐

│CLEN │ length of control block
 ├────────┤

│CALLOCL │ min. private space allocation for partitions
 ├────────┤

│CALLOCH │ max. private space allocation for partitions
 ├────────┤

│CPROF │ default profile name for partition allocation
 ├────────┤

/ / other limits and defaults
 ├────────┤

│CCPART │ max. number of partitions / dynamic class
 ├────────┤

│CBPART │ number of static partitions
 ├────────┤

│CSPART │ max. number of partitions
├────────┤ specified by SYS NPARTS=...
│CMAXPART│ max. number of partitions within system

 ├────────┤
 / /
 ├────────┤

|CSTASK | max. number of tasks (as defined with
 ├────────┤ SYSDEF SYSTEM,NTASKS=...
 / /
 └────────┘

Figure 180. Dynamic Class and System Limits (CLIM) Relationship

 Appendix A. Supervisor Data Areas (without I/O) 443

Dynamic Class Table
The dynamic class table contains attributes for dynamic classes and is stored as
the member DTR$DYNC.Z in the VSE/AF Library IJSYSRS.SYSLIB. The member
shows the external representation of the dynamic class table. The VSE/POWER
PLOAD command loads the the dynamic class table from the library, checks the
contents for correctness and translates the member contents into the internal
format. The PLOAD command process calls the DYNCLASS ID=LOAD service to
activate and allocate if not already done the dynamic class table. The service con-
nects one CPCB to each valid dynamic class table entry.

The following figure shows the interrelationship between the internal dynamic class
table and the dynamic class control block (refer to Figure 181).

SYSCOM
┌──────/────────┬──────────┬───────────────
│ │ IJBCLTAB │ ///
└──────/────────┴────┬─────┴───────────────
 │
 ┌─────────────┘
 │

 Dynamic Class Table PCBCTAB
 ┌──────────────────────────┬────────┐ ┌────────┐�──┐

│ Class table entry │CLAPCB │ │ CPCB1 │ │
 ├──────────────────────────┼────────┤ ├────────┤ │

│ Class table entry │CLAPCB │ / / │
 ├──────────────────────────┼────────┤ ├────────┤ │

/ / / ┌────┤ CPCBn │ │
 ├───────────────────────┬──┼────────┤ │ ├────────┤ │
┌───�│ Class table entry │8�│CLAPCB │ │ / / │

 │ └───────────────────────┴──┴───┬────┘ │ ├────────┤ │
│ │ │ │ CPCB1� │ │
│ PCB for dyn. Part. │ │ ├────────┤ │

 │ ┌───�┌────────┐ │ │ │ ├───┘
 │ │ │ │ │ │ └────────┘
 │ │ ├────────┤ │ │
 │ │ / / │ │
 │ │ ├────────┤ │ │
 │ │ │PCBACPCB├───────────�│ │
 │ │ ├────────┤
 CPCB │ PPRTYOWN
 │ │ / / ┌────────┐�───┤ ┌────────┐
│ │ ├────────┤ │ │ │ │SYSPCB │
│ │ │PCECLASS│ ├────────┤ │ ├────────┤
│ │ └────────┘ / / │ / /
│ │ ├────────┤ │ ├────────┤
│ └──────────────────────────┤ │ └────┤ CPCBn │

 │ ├────────┤ ├────────┤
 └───────────────────────────────────┤CPCBCLPT│ / /
 ├────────┤ ├────────┤
 / / │ CPCB9 │
 ├────────┤ ├────────┤

│ │ │ CPCB1� │
 └────────┘ └────────┘

Figure 181. Dynamic Class Table - CPCB Interrelationship

444 VSE/AF Supervisor DRM

Dynamic Class Control Block (CPCBADR)
The dynamic class control block (CPCB) describes the dispatching control informa-
tion and gives access to the attributes of a dynamic class. When the dynamic
class character field (CPCBCLSS) of the CPCB contains X'FF', the CPCB is not
connected to a dynamic class table entry, otherwise this field gives the character of
the allocated dynamic class.

The CPCB contains

� the dynamic partition selection string (CPCPSS),
� CPCBCBPT points to the PCBs of the dynamic partitions in priority order,

CPCBPLOW points to the lowest priority PCB address pointer
� control and CPU timer information.

 ┌────────────┐�──┐
 │ CPCBFLAG │ � │

│ = PCBCLFLG │ │ │
 ├────────────┤ │ │
 / / │ │
 ├────────────┤ │ PCB │

│ CPCBFPCB ├─────┼──�┌────────┐ │
├────────────┤ � │ / / │
/ / │ │ ├────────┤ PCB │
├────────────┤ │ │ │PCBANPCB├────�┌────────┐�────────────────┼──┐
│ CPCPSS │ │ │ ├────────┤ / / │ │
├────────────┤ │ │ / / ├────────┤ PCB │ │
/ / │ │ ├────────┤ │PCBANPCB├────�┌────────┐ │ │

│ └───┤PCBAPPCB│ ├────────┤ / / │ │
│ ├────────┤ / / ├────────┤ │ │
│ / / ├────────┤ │PCBANPCB├──┘ │
│ └────────┘ ┌──┤PCBAPPCB│ ├────────┤ │

 │ � │ ├────────┤ / / │
└──────────┼───────┘ / / ├────────┤ │

 │ └────────┘ │PCBAPPCB├─────┘
 │ � ├────────┤
 ┌────────┘ ┌────────────┘ / /
 │ │ └────────┘
 ┌──────┴─────┬─────┴──────┬────────────┐ �

CPCBCBPT │ │ │ ├──────┘
 └────────────┴────────────┴────────────┘
 �
 / / │
 ├────────────┤ │
 │ CPCBPLOW ├──────────────────────────────┘
 ├────────────┤
 / /

Figure 182. Dynamic Class Control Block - PCB Interrelationship

 Appendix A. Supervisor Data Areas (without I/O) 445

Space Control Block (SCB)
A real/static space is allocated, when the first real/static partition within the space is
allocated and deallocated when the last real/static partition within the space is deal-
located.
Furthermore one dynamic space is allocated for each dynamic partition for which a
POWER job is scheduled. This space is deallocated after the POWER job has fin-
ished.
Additionally there are page manager address spaces that contain the PMR tables
for the allocated spaces (see “Region Third-, Segment-, Page-Table, PTAS and
POSL” on page 198).
There is one shared address space. Within this space only the shared areas are
valid. The private area is invalid.
Each address space is described by a SCB.
The SCBs for the real, the shared and the static spaces, as well as for the first
PMR space are allocated during supervisor generation. SCBs for dynamic spaces
and page manager spaces are allocated dynamically and freed when the space is
deallocated. Currently page manager spaces are never deallocated. The pointers
to the different SCBs, except page manager space SCBs, are contained in
SCBATAB. The length of the SCBATAB is calculated depending on the SYS
NPARTS= ... specification; there is one entry reserved for each dynamic space.
The SCBs of allocated spaces are queued by forward and backward pointers.
There is one queue containing the SCBs of the real and static spaces, one that of
the dynamic spaces and one that of the PMR spaces. The queue headers are
located at begin of SCBATAB. After IPL, the SCBATAB and the queue headers
are initialized as follows:
(n = NPARTS - number of static partitions(12))

SCBATAB
ASCBFSTA ASCBFDYN ASCBFPMR| ASCBR ASCB� ASCBS ────�n�─────
┌────────┬─────────┬────────┬───────┬───────┬───────┬─────┬───────┬───────┬───┬───┬───┐
│A(SCB�) │ A(�) │A(SCBP1)│A(SCBR)│A(SCB�)│A(SCB1)│.....│A(SCBB)│A(SCBS)│ � │...│ � │
└────────┴─────────┴────────┴───────┴───────┴───────┴─────┴───────┴───────┴───┴───┴───┘
static dynamic Page Mgr| real |12 static ------------------>|shared
+ real |
chain chain chain |

ASCBFDYN is set, as long as there are dynamic partitions allocated.

SCB Extension for Extended Area (64-bit virtual)
Each address space is described by an SCB.The SCB contains among others infor-
mation about the size of the address space, and size and location of page manager
tables. Up to z/VSE 4.3, the SCB describes an address space with a maximum size
of 2GB (including shared areas and PASIZE). Starting with z/VSE 5.1, the address
space can be extended beyond 2GB using IARV64 services. The extended area
always starts at 2GB even if the 31-bit address space is less than 2GB.
As far as hardware translation tables are concerned:
Each 2GB portion of an address space is called a region. Each region is desribed
by a segment table and the corresponding page tables. The valid part of a region
can be less than 2GB (for example the 31-bit address space can be less than
2GB). An address space with an area above 2GB requires a region table, where
each region table entry points to a segment table.
z/VSE implementation:

446 VSE/AF Supervisor DRM

Each address space that is allowed to allocate storage beyond 2GB (dynamic
address spaces and static address spaces using default partition allocation) has a
region table. The area between 2GB and 4GB is invalid and will never be
assigned. Each reagon of an address space is described by an SCB. The first
2GB, the 31-bit address space, by the allocation SCB, each 2GB extension is
described by a SCB extension, called SCBX. The SCBX has the same layout as
an SCB, except that not all fields of the SCB are also set in SCBX. SCBX contains
information about the size of the extension and size and location of page manager
tables. Each SCBX has an index (SCBINDX) specifying the 2GB extension
(region) described by this SCBX. The SCBINDX is also the offset in SCBXTAB.
SCB.SCBINDX = 0 (always zero, 31-bit address space)
SCBX.SCBINDX = 1 (first 2GB extension) - never assigned
SCBX.SCBINDX = 2 (second 2GB extension) and so on.
SCBXs are only allocated on an as needed basis, that means when requests for
the extended area (private or shared) are processed. The SCBXs of an address
space are anchored in an address table pointed to by SCB.SCBXTAB.
SCBXTAB for all static address spaces and the shared space is allocated during
IPL (INITSYS) processing. Location is pfixed, 31-bit system getvis and is within
subpool IINIT.
SCBXTAB for dynamic address space is allocated during address space creation
(IJBSSM). The area is 31-bit system getvis and pfixed and is within subpool
IJBP<syslog-id>.
When SCBXTAB has been created the SCB pointer of the address space will be
set as first pointer in the SCBXTAB (for common processing). End indicator of
SCBXTAB is X'FFFFFFFF'.
SCBXTAB may also contain zero entries, since extended shared or private regions
might not exist.
SCBXTAB is not allocated for the real, PMR space and data spaces.
SCBXs are allocated by IARV64 module within subpool IINIT. Attributes are
LOC=ANY, PFIX=YES.
SCBXs are freed by IARV64 when IARV64 is called during maintask termination.

 Appendix A. Supervisor Data Areas (without I/O) 447

In the following figure, two partitions have been allocated in class x, whereas the
first partition X1 has already terminated. Space X2 is the currently active space.

448 VSE/AF Supervisor DRM

Low Core
� 25� 254
┌───────────┬──────────┬──────────┬──────────
│ │ ASCBATAB │ SCBPTR │ � �
└───────────┴────┬─────┴─────┬────┴──────────
 │ │
┌────────────────┼───────────┘
│ ┌───────────┘
│ │
│
 |
│ ┌───────┬────────┬────────┬───────┬─────┬───────┬───────┬───┬────────┬─── //────┐
│ │A(SCB�)│A(SCBX2)│A(SCBP1)│A(SCBR)│ │A(SCBB)│A(SCBS)│ � │A(SCBX2)│ │
│ └───────┴────────┴────────┴───────┴─────┴───────┴───────┴───┴────┬───┴─── //────┘
│ static dyn. PMR | │
│ +real chain chain | │
│ chain │
│�──┘
│�──
│ 6GB ┌─────────────────┐ │
│ │ Extended area │ │
│ 4GB ├─────────────────┤ │
│ │ │ │
│ ├─────────────────┤ │
│ │ SVA (31-Bit) │ │
│ ├─────────────────┤ │
│ │ invalid due to │ │
│ SCB(partial) of space X2 │ allocation │ │

 ├─────────────────┤ │
┌─────────────┐ │ Dynamic Part. X2│ │
│ Space ID=X2 │ │ GETVIS area │ │
├─────────────┤ │ │ ┌─�┌───┴─────┐
│ Size │ │ Program area │ │ │A(SCB) │
├─────────────┤ ┌─────────�├─────────────────┤ │ ├─────────┤
│ SCBSPGVE │─────────┘ │ Dynamic Space │ │ │ � │
├─────────────┤ │ GETVIS Area │ │ ├─────────┤
│ SCBSPGVB │───────────────────�├─────────────────┤ │ ┌┤A(SCBX) │
├─────────────┤ │ Shared │ │ │├─────────┤
│ SCBRRTO / ├─────────┐ │ Partitions │ │ ││ │
│ SCBRSTO │ │ ├─────────────────┤ │ │├─────────┤
├─────────────┤ │ │ SVA (24-Bit) │ │ ││FFFFFFFF │
│ SCBINDX = � │ │ ├─────────────────┤ │ │└─────────┘
├─────────────┤ │ │ supervisor │ │ │
│ SCBXTAB ├─────────┼────┐ └─────────────────┘ │ │
└─────────────┘ │ │ Space X2 │ │
 │ └──────────────────────────┘ │
 ┌──────────────┐

 SCBX
 │ ├───────┴─────────�┌──────────────┐ ┌───────────┐
 └──────────────┘ │ │ │ ID = X2 │

│ Region Table │ ├───────────┤
 Control Register 1 │ of Space X2 │ │ SCBINDX=2 │
 └──────────────┘ ├───────────┤

│ │
 └───────────┘

Figure 183. Space Control Block (SCB) Data Relationship

 Appendix A. Supervisor Data Areas (without I/O) 449

Partition Control Blocks
The PCB, the PCE, the PCBX, the COMREG, the PIB and the PIB2 contain static
and dynamic status information about the system and about partitions.

There exists one set of these control blocks for the system and for each partition.

The control blocks for the system and the static partitions are allocated during
supervisor generation, the ones for dynamic partitions are dynamically allocated
during partition allocation and freed during partition deallocation.

Static Partition Control Blocks Interrelationship
This interface is only valid for static partitions and should no longer be used.

 COMREG
 � 5A 5B 7C 7D
 ┌──── ─────┬─────────┬─── ───┬─────────┬───────
│ ��� | PIBPT | ��������� | PIB2PTR | ����
 └──── ─────┴────┬────┴─── ───┴────┬────┴───────
 │ │
 ┌─────────────────┘ ┌───────────────────┘
 │ │
 │ │
 │ PIBTAB │ PIB2TAB

� F
� 8 F PCB
 ┌───────────┐ ┌──────┬─┬──┐ ┌───────────┐
│ SYS │ │ SYS│─┼──┼─────────────�│ SYS │
 ├───────────┤ ├──────┼─┼──┤ ├───────────┤
│ BG │ │ BG│─┼──┼─────────────�│ BG │
 ├───────────┤ ├──────┼─┼──┤ ├───────────┤
│ FB │ │ FB│─┼──┼─────────────�│ FB │
 ├───────────┤ ├──────┼─┼──┤ ├───────────┤
 � � �
 � � �
 � � �
 ├───────────┤ ├──────┼─┼──┤ ├───────────┤
 │ F1 │ │ F1│ │ │ │ F1 │
 └───────────┘ └──────┴─┴──┘ └───────────┘

Figure 184. Partition Control Blocks Interrelationship (Static Partitions only)

The PIB/PIB2 for a given partition is found by adding the PIK of this partition to the
begin address of the appropriate table.

The COMREG fields PIBPT and PIB2PTR and others (FICLPT, NICLPT,LUBPT,
DIBPT and PDTABB) have a field length of 2 bytes only and are therefore not
suppported for dynamic partitions:

450 VSE/AF Supervisor DRM

Partition Control Blocks Interrelationship
The PCBATAB holds the PCB addresses of all generated static partitions and allo-
cated dynamic partitions in 'PIK divided by 4' order. The APCBATAB field in low
core gives access to the PCBATAB, which points to a dummy PCBATAB during
IPL. This dummy PCBATAB contains only the PCB addresses for system and the
static partitions.

The DYNCLASS ID=INIT service at the end of IPL allocates the PCBATAB for all
possible partitions (defined by SYS NPARTS=..) in the system GETVIS area, initial-
izes the table and updates the APCBATAB pointer. Not allocated dynamic partition
entries of the PCBATAB are zero. X'FFFFFFFF' indicates the end of the
PCBATAB.

 Appendix A. Supervisor Data Areas (without I/O) 451

Low Core x'264'
┌──────/────────┬──────────┬───────────────
│ │ APCBATAB │ ///
└──────/────────┴────┬─────┴───────────────
┌────────────────────┘

PCBATAB
┌──────┬──────┬──────┬──────┬─────┬──────┬──────┬──────┐
│SYSPCB│BGPCB │FBPCB │FAPCB │ /// │F1PCB │ � │ /// │
└──────┴──────┴──────┴──┬───┴─────┴──────┴──────┴──────┘
 ┌────────────────┘ @PCBATAB+PIK/4

 PCB Partition COMREG
 ┌────────┐ ┌───────────────�┌───────────///─────────────────┐
 │ │ │ │ │
 ├────────┤ │ └───────────///─────────────────┘
┌────� / PCE / │
│ ├────────┤ │ Partition LUBTAB
│ │PCECOMRA├────┘ ┌─────────�┌───────────///─────────────────┐
│ ├────────┤ │ │ │
│ │PCEKEY │ │ └───────────///─────────────────┘
│ ├────────┤ │
│ │PCELID │ │ Partition DIB
│ ├────────┤ │ ┌─────�┌───────────///─────────────────┐
│ │PCEPIK │ │ │ │ │
│ ├────────┤ │ │ └───────────///─────────────────┘
│ │PCEALUB ├──────────┘ │
│ ├────────┤ │ Partition PIB
│ │PCEADIB ├──────────────┘ ┌──�┌───────────///─────────────────┐
│ ├────────┤ │ │ │
│ │PCEPIB ├─────────────────┘ └───────────///─────────────────┘
│ ├────────┤
│ │PCEPIB2 ├──────────────┐ Partition PIB2
│ ├────────┤ └─────�┌───────────///─────────────────┐
│ / / │ │
│ └────────┘ └───────────///─────────────────┘
├──────────────────────────────────┐
│ PCEATAB │ @PCEATAB+PIK/4
│ ┌──────┬──────┬──────┬──┴───┬─ ─┬──────┬──────┬─ ──┐
│ │SYSPCE│BGPCE │FBPCE │FAPCE │ /// │F1PCE │ � │ /// │
│ └──────┴──────┴──────┴──────┴─ ─┴──────┴──────┴─ ──┘
│ � �
│ └──GETFLD FIELD=PCEATAB │
└───────────────────────────┐ GETFLD FIELD=PCEPTR
FA COMREG │
┌───────────────── ──┬────┴───┬─
│ /// │IJBPCEPT│///
└───────────────── ──┴────────┴─

Figure 185. How to Address the PCB - PCE

452 VSE/AF Supervisor DRM

Task Control Blocks
The TIB, TCB and TCBX contain static and dynamic status information on system
tasks and user tasks.

One set of these control blocks exists for each system task, for each main task and
for each generated user subtask.

The control blocks for the system tasks and for the main tasks associated with
static partitions are generated at supervisor generation time.

The control blocks for the tasks associated with dynamic partitions are (de-
)allocated during dynamic partition (de-)allocation.

The control blocks for a user subtask are reserved during attach processing. They
are not freed when the subtask is detached.

In order to minimize real storage requirements the TIBs, TCBs and TCBXs for sub-
tasks and dynamic partitions are allocated in the SVA.

The TCBX may be located anywhere in storage whereas the TIB and TCB are
located in the 24-bit area.

The TIBs are addressed via an address table (TIBATAB) with offset TID*4. The
TIB contains all task-related information which has to be kept in fixed storage,
either for logical or for performance reasons.

The TIBATAB is moved from the 24-bit area to the 31-bit area when support for
more tasks is activated (via command SYSDEF SYSTEM,NTASKS=nnn).

The length of a TCB is dependant on the task for which it is generated and is con-
tained in the TCB field TCBLNGTH.

The TCB field TCBATCBE contains a pointer to the TCBX.

 Appendix A. Supervisor Data Areas (without I/O) 453

 PCB
� 2� 23 28 47

 ┌─────────┬─────┬──┬────────┬──────── ────────────────────┐
│ │ TSS │ │ TIDSTR │ ���� │

 └─────────┴─────┴──┴─┬────┬─┴──────── ────────────────────┘
 � │ │
 │ │ └────────────────────────────────┐
 │ └──────────────────────────┐ │
 │ │ │
 │ │ │
│ │ @TIBATAB │
│ │ + 4�TID │

 │ Low Core │ │
│ � 2C�─2C3 │ │

 │ ┌── ───┬────────┬──── │ │
 │ │ ��� │ATIBATAB│ │ │
 │ └── ───┴───┬────┴──── │ │
 │ │ │ │
 │ │ │ │
 │ │ │ │
 │
 TIBATAB │ │
 │ � 4

│ ┌────┬─────────────────────┬────┬─ ─┬────┬─ ──┐
│ │ │ │@TIB│ ��� │@TIB│ ��� │
│ └────┴─────────────────────┴─┬──┴─ ─┴─┬──┴─ ──┘

 │ │ │
 │ ┌──┘ │
 │ │ ┌──────────────────┘
 │ │ │
 │
 TIB
 TIB
│ � 8 B 14 17 � 8 B 14 17

 │ ┌────┬──────┬─ ─┬──────┬─ ┌────┬──────┬─ ─┬──────┬─
 │ │ │TIBTCB│ ��� │TIBPCB│ ��� │ │TIBTCB│ ��� │TIBPCB│ ���
 │ └────┴──┬───┴─ ─┴───┬──┴─ └────┴──┬───┴─ ─┴───┬──┴─
 │ │ │ │ │
 └──────────┼─────────────┴──────────────────────┼─────────────┘
 ┌──────┘ ┌──────┘
 │ │

 TCB �
 TCB �
 � 8 │ B � 8 │ B
 ┌────┬───┴──┬─ ┌────┬───┴──┬─
 │ │TCBTIB│ ��� │ │TCBTIB│ ���
 └────┴──────┴─ └────┴──────┴─

Figure 186. Partition/Task Control Table Relationship

454 VSE/AF Supervisor DRM

 Save Areas
Problem Program (PP) Save Area
User Supplied Save Area (STXIT) described by macro MAPSAVAR
(refer to z/VSE System Macros Reference, SC34-2638).
LTA Save Area
System Save Area
Access Registers Save Area
Logical Transient Area Occupancy and Activity

The addresses of the various save areas allocated by the system can be found in
the appropriate TCB table. The layout of the different Save Areas is shown in
Figure 187 through Figure 190 on page 457.

Problem Program (PP) Save Area

┌───┐
│ Program Name │
│� (�) 7 (7)│
├───┤
│ Program Status Word (PSW) (Note 1) │
├───┤
│16 (1�) General Register save area (Reg. 9 through Reg. 8) 79 (4F)│
├─────────────────────────┬───┤
│8� (5�) Reserved 81 (51)│82 (52) (Note 2) 87 (57)│
├─────────────────────────┴───┤
│88 (58) Floating Point Reg. save a. (Reg. � through Reg. 6) 119 (77)│
└───┘

Notes:

1. EC Mode PSW
2. Bytes 82 - 87

� main task: Date of job begin
� subtask: 82 (52) - 83 (53) : Reserved
� 84 (54) - 85 (55) : Task id
� 86 (56) : Key of ICCF pseudo-partition

 � 87 (57) : Reserved

Figure 187. Problem Program Save Area

 Appendix A. Supervisor Data Areas (without I/O) 455

Where to Find the PP Save Area Pointer in Case of Termination

 ┌────────────────┐
│ PP Save Area │

 │ Pointer │
 └────────┬───────┘
 │
 │
 ┌───────────────┬───────┴───────┬───────────────┐

│ │ │ │
│ │ │ │

┌──────────┐ ┌──────────┐ ┌──────────┐ ┌──────────┐
│ normally │ │ TIBFLAG= │ │ TIBFLAG= │ │ TIBFLAG= │
│ │ │ LTAACT │ │ TERMACT │ │ EOTACT │
└─────┬────┘ └─────┬────┘ └─────┬────┘ └─────┬────┘

│ │ │ │
│ │ │ │

┌──────────┐ ┌──────────┐ ┌──────────┐ ┌──────────┐
│ TCBSAVE │ │ PIBSAV2 │ │ SAAPPSPT │ │ EOTOWNSA │
└──────────┘ └──────────┘ └──────────┘ └──────────┘
 (Note 1) (Note 2) (Note 3) (Note 4)

Notes:

1. Located in Task Control Block (TCB).
2. Located in Partition Information Block (PIB).
3. Located in Dump Communication area (SAACOMM). Address to this

area can be found in PCB at label PCBSAAPT.
4. Identified via "eye catcher" 'EOT SAVE' in the supervisor.

Figure 188. Problem Program (PP) Save Area Pointer in Case of Termination

456 VSE/AF Supervisor DRM

LTA Save Area

┌───┐
│ Logical Transient Phase name │
│� (�) 7 (7)│
├───┤
│ Program Status Word (Note 1) │
├───┤
│16 (1�) General Register save area (Reg. 9 through Reg. 8) 79 (4F)│
├───┤
│8� (5�) Reserved 87 (57)│
├───┤
│88 (58) Floating Point Reg. save a. (Reg. � through Reg. 6) 119 (77)│
└───┘

Note: EC Mode PSW

Figure 189. LTA Save Area

System Save Area

┌───┐
│ Program Status Word (Note 1) │
├───┤
│8(8) General Register save area (Reg. 9 through Reg. 8) 71 (47)│
└───┘

Note: EC Mode PSW

Figure 190. System Save Area

Access Register Save Area
Each task has a first and second AR save area. The pointer to the first AR save
area is contained in the TCB field TCBARSAV, the pointer to the second AR save
area in the TCB field TCBAR2SV. The second AR save area is located within the
TCBX. For system tasks and static partitions, the first AR save area is generated
within the supervisor. For dynamic partitions, the first AR save area is (de-
)allocated during dynamic partition (de-)allocation as it is done for all other control
blocks, too. The the first AR save area for subtasks is allocated during ATTACH
subtask processing.

 Appendix A. Supervisor Data Areas (without I/O) 457

Logical Transient Area Occupancy and Activity

┌───┐
│ Indications of Logical Transient Area Occupancy and Activity │
├───────┬───────────┬──────────┬─────────┬─────────┬────────────────────┤
│ │ │ Attention│ Problem │Condition│ │
│Status │BGCOMREG │ PIB │ PIB │ of LTA │ Notes │
├───────┼───────────┼──────────┼─────────┼─────────┼────────────────────┤
│SVCs │Contents of│Address in│Addr. in │ │ │
│issued │LTK + 1 │ARFLG + 1 │PIBSAVE+1│ │ │
│ │(1 Byte) │(3 Bytes) │(3 Bytes)│ │ │
├───────┼───────────┼──────────┼─────────┼─────────┼────────────────────┤
│ │zero │Logical │ │Free │Initial condition │
│ │ │Transient │ │ │before issuing │
│ │ │Save Area │ │ │SVC─�2 │
│ │ │(LTASAVE) │ │ │ │
├───────┼───────────┼──────────┼─────────┼─────────┼────────────────────┤
│SVC─�2 │Owner's │Problem │Logical │Active │ │
│ │Partition │Program │Transient│ │ │
│ │Identific. │Save Area │Save Area│ │ │
│ │Key │ │(LTASAVE)│ │ │
├───────┼───────────┼──────────┼─────────┼─────────┼────────────────────┤
│SVC─�2 │zero │Logical │Problem │Free │Restored to (1) │
│SVC─�B │ │Transient │Program │ │ │
│ │ │Save Area │Save Area│ │ │
│ │ │(LTASAVE) │ │ │ │
├───────┼───────────┼──────────┼─────────┼─────────┼────────────────────┤
│SVC─�2 │Owner's │Logical │Problem │Occupied │SVC─�8 may be issued│
│SVC─�8 │Partition │Transient │Program │but │only from LTA. │
│ │Identific. │Save Area │Save Area│Inactive │General register 14 │
│ │Key │(LTASAVE) │ │ │contains address of │
│ │ │ │ │ │entry point to the │
│ │ │ │ │ │user routine │
├───────┼───────────┼──────────┼─────────┼─────────┼────────────────────┤
│SVC─�2 │Owner's │Problem │Logical │Active │Restored to (2). │
│SVC─�8 │Partition │Program │Transient│ │SVC─�9 may be issued│
│SVC─�9 │Identific. │Save Area │Save Area│ │only from Problem │
│ │Key │ │(LTASAVE)│ │Program. │
├───────┼───────────┼──────────┼─────────┼─────────┼────────────────────┤
│SVC─�2 │zero │Logical │ │Free │Restored to (1) │
│SVC─�8 │ │Transient │ │ │ │
│SVC─�9 │ │Save Area │ │ │ │
│SVC─�B │ │(LTASAVE) │ │ │ │
└───────┴───────────┴──────────┴─────────┴─────────┴────────────────────┘

Figure 191. Indications of Logical Transient Area Occupancy and Activity

458 VSE/AF Supervisor DRM

Control Blocks related to Lock Management

LOCKTAB Entries Owner Element Entries
 ┌───┬───┐

┌────────┐ ┌───────�│ � │TID│
 │ALOKTABA│ │ └───┴───┘
 └────┬───┘ ┌─┴─┬───┐
 │ ┌───────�│ │TID│
 │ │ └───┴───┘
 │ ┌─┴─┬───┐
 │ ┌────────────────────────�│ │TID│
 │ │ └───┴───┘

│ │ Request Element Entries
 │ │ ┌───┬───┐

│ │ ┌───────�│ � │TID│
 │ │ │ └───┴───┘
 │ │ ┌─┴─┬───┐

│ │ ┌────────────────────�│ │TID│

 │ │ └───┴───┘
 ┌─┴─┬─┴─┬───────┬───┬───┐
LOCKTABA │ │ │ │ │ � │

 └───┴───┴───────┴─┬─┴───┘
 � │
 └─────────────────┼───┐
 ┌─────────────────┘ │
 │ │ ┌───┬───┐

│ ┌───────────────────┼──────�│ � │TID│

 │ │ └───┴───┘
 ┌─┴─┬───┬───────┬───┬─┴─┐

│ │ � │ │ │ │
 └───┴───┴───────┴─┬─┴───┘
 � │
 └─────────────────┼───┐
 ┌─────────────────┘ │
 │ │ ┌───┬───┐

│ ┌───────────────────┼──────�│ � │TID│

 │ │ └───┴───┘
 ┌─┴─┬───┬───────┬───┬─┴─┐

│ │ � │ │ │ │
 └───┴───┴───────┴─┬─┴───┘
 � │
 └─────────────────┼───┐ ┌───┬───┐

│ │ ┌───────�│ � │TID│
 ┌─────────────────┘ │ │ └───┴───┘
 │ │ ┌─┴─┬───┐
 │ ┌───────────────────┼──────�│ │TID│
 │ │ │ └───┴───┘
 │ │ │ ┌───┬───┐

│ │ ┌───────────────┼──────�│ � │TID│

 │ │ │ └───┴───┘
 ┌─┴─┬─┴─┬───────┬───┬─┴─┐
LASTLOCK │ │ │ │ � │ │

 └───┴───┴───────┴───┴───┘

Figure 192. Relationship Between LOCKTAB, Owner Elements and Request Elements

 Appendix A. Supervisor Data Areas (without I/O) 459

Event Control Block (ECB)

┌──────────┬──────────┬──────────┬──────────┐
│ │ │ │ │
│ Reserved │ Reserved │ � │ Reserved │
│ │ │ │ │ │
└──────────┴──────────┴────┼─────┴──────────┘

� 1 2 3
 │

X'8�' Event completed or terminated normally
 X'C�' Abnormal termination

Figure 193. Event Control Block (ECB)

┌───┬───┬───────────────────────────────────┐
│ │ │ │
│ W │ P │ Completion Code │
│ │ │ │
└───┴───┴───────────────────────────────────┘
� 1 2 31

 │ │
 │

 │ Post bit

 Wait bit

Figure 194. OS/390 Event Control Block (ECB)

┌───┬───────────────────────────────┬───┬───┐
│ │ │ │ │
│ 1 │ address of ECBE │ 1 │ 1 │
│ │ │ │ │
└───┴───────────────────────────────┴───┴───┘
 � 3� 31

┌─────────┬─────────┬───────────────────────┐
│ │ │ │
│ value │ mode │ reserved │ word 1
│ │ │ │
├─────────┴─────────┴───────────────────────┤
│ │
│ POST exit address │ word 2
│ │
└───┘
 � 7 8 15 16 31

Figure 195. OS/390 Extended Event Control Block (ECBE)

460 VSE/AF Supervisor DRM

Resource Control Block (RCB)

┌─────┬────────────────┬─┬────────────────────┐
│X'FF'│ │ │ │
│ │ │ │ ECB ADDRESS │
│ or │ RESERVED ├─┴────────────────────┤
│X'��'│ │� 1 31│
└─────┴────────────────┴──────────────────────┘
 � 1 3 4 5 7 (Bytes)

┌────────┬───┐
│ Bytes │ Description │
├────────┼───┤
│ � │ X'FF' resource is in use │
│ │ X'��' resource is not in use │
│ 1 ─ 3 │ Reserved │
│ 4 ─ 7 │ bit 1-31: ECB address of current reource owner │
│ │ bit �=1: another task waiting for this resource│
└────────┴───┘

Figure 196. Resource Control Block (RCB)

 Appendix A. Supervisor Data Areas (without I/O) 461

VIO Control Blocks
VIO Communication Area (VIOCM)
VIO Table Entry (VTABE)

VIO File Identification Entry (VIOTABE)
VIO Block Table Entry (BLKTBE)

 SYSCOM
 � 3C 3F
┌────────── ───────────┬──────────┬─────── ──────────┐
│ ��� │ IJBVIOCM │ ��� │
└────────── ───────────┴─────┬────┴─────── ──────────┘

 │
 ┌─────────────────────────────────┘
 │

� C F 2� 23 3C 3F 44 47 48 4B 4C 4F
┌─ ─┬────────┬ ┬────────┬ ┬────────┬ ┬───────┬───────┬───────┬─
│ �� │VIOBLKTB│��│VIOAVTAB│��│VIOTBCHN│��│VTFRBEG│VTAVBEG│VTAVEND│ ��
└─ ─┴───┬────┴ ┴───┬────┴ ┴───┬────┴ ┴───┬───┴───┬───┴─┬─────┴─

│ │ │ │ │ │
┌────────┘ │ ┌───────┘ │ │ │
│ │ │ │ │ │

 BLKTBE─table │
 VIOTABE─chain │ │ │
┌──┬──┬──┬──┬──┬──┐ │ ┌────┐ │ │ │
│ │ │ │ │ │ │ │ │ │ │ │ │
├──┼──┼──┼──┼──┴──┤ │ │ │ │ │ │
│ │ │ │ │ ��� │ │ └───┬┘ │ │ │
├──┴──┴──┴──┘ │ │ └────�┌────┐ │ │ │
│ ������� │ │ │ │ │ │ │
└─────────────────┘ │ │ │ │ │ │
 │ └───┬┘ │ │ │
 │ ┌─────────────┘ │ │ │
 │
 │ │ │
 │ ┌────┐ │ │ │
 │ │ │ │ │ │
 │ │ │ │ │ │
 ┌───────────────────┘ └────┘ │ │ │
 │ │ │ │
 │ ┌───┘ │ │
 │ │ ┌───────────────┘ │

 │ VIO table │ │
 . │.................................│.....................│.......
 .
 free VTABE chain
 avail. VTABE chain
 .
 . ┌────┐ ┌─�┌────┐ ┌─�┌────┐ ┌────┐ ┌─�┌────┐ ┌─�┌────┐ .
 . │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ .
 . │ ├──┘ │ ├──┘ │ │ │ ├──┘ │ ├──┘ │ │ .
 . └────┘ └────┘ └────┘ └────┘ └────┘ └────┘ .
 ..

Figure 197. VIO Control Block Relationship (after IPL)

462 VSE/AF Supervisor DRM

VIO Communication Area (VIOCM)

┌───────────────────┬────────────┬──────────────────────────────────────┐
│ Bytes │ │ │
│ Dec Hex │ Label │ Description │
├───────────────────┼────────────┼──────────────────────────────────────┤
│.......... Temporary space used during IPL│
│ �─3 �─3 │ VIOARBEG │ Begin of VIO tables (set by IPL) │
│ 4─5 4─5 │ VIOSGM# │ Number of VIO segments (set by IPL) │
│ 6─7 6─7 │ VIOSPSIZ │ Number of bytes allocated per VIO │
│ │ │ segment │
│ 8─9 8─9 │ VIOVPSIZ │ Number of bytes to be allocated per │
│ │ │ page in VPOOL │
│ 1�─11 A─B │ VIOKSGSH │ Shift value: K─bytes and segment no. │
│.......... Normal layout of VIOCM after IPL│
│ �─3 �─3 │ VIOSPBEG │ Begin of VIO allocation string │
│ 4─7 4─7 │ VIOSPEND │ End of VIO allocation string │
│ 8─11 8─B │ VIOSPNXT │ Next segment slot to check │
│ 12─15 C─F │ VIOBLKTB │ Address of VIO Block Table │
│ 16─19 1�─13 │ VIOVPPSZ │ Size of VPOOL in pages │
│ 2�─23 14─17 │ VIOVPSZE │ Size of VPOOL in bytes │
│ 24─27 18─1B │ VIORECN1 │ Record number of 1st VIO block on PDS│
│ 28─31 1C─1F │ VIOVPEPA │ EPA of 1st VPOOL page │
│ 32─35 2�─23 │ VIOAVTAB │ Address of VTAB │
│ 36─39 24─27 │ VIOBLKSZ │ Size of a VIO block │
│ 4�─43 28─2B │ VIOSEGSZ │ Size of a VIO segment │
│ 44─45 2C─2D │ VIOBLKOS │ shift amount to get offset in BLKTAB │
│ │ │ out of block number │
│ 46 2E │ VIOSWTCH │ Flag byte │
│ │ VIOERR25 │ X'8�' don't set 'status saved' flag │
│ 47 2F │ │ Reserved │
│ 48 3� │ VIOBLDSC │ OR─byte for disconnected page/frame │
│ 49─51 31─33 │ │ Reserved │
│ 52─59 34─3B │ VIOPLID │ VIO GETVIS subpool ID │
│ 6�─63 3C─3F │ VIOTBCHN │ VIOTAB chain header │
│ 64─67 4�─43 │ VIOOPCNT │ Number of VIOTAB entries │
│.......... Header for queue of free VTAB entries│
│ 68─71 44─47 │ VTFRBEG │ Address of first element in chain │
│.......... Header for queue of available VTAB entries│
│ 72─75 48─4B │ VTAVBEG │ Address of first element in chain │
│ 76─79 4C─4F │ VTAVEND │ Address of last element in chain │
│...│
│ 8�─83 5�─53 │ AVIOFBLK │ Entry address of VIOFRBLK routine │
│ 84─87 54─57 │ AVIOFPAG │ Entry address of VIOFRPAG routine │
├───────────────────┼────────────┼──────────────────────────────────────┤
│ 88 58 │ │ Length of VIO communication area │
└───────────────────┴────────────┴──────────────────────────────────────┘

Figure 198. VIO Communication Area (VIOCM)

VIO Table Entry (VTABE)

 Appendix A. Supervisor Data Areas (without I/O) 463

┌───────────────────┬────────────┬──────────────────────────────────────┐
│ Bytes │ │ │
│ Dec Hex │ Label │ Description │
├───────────────────┼────────────┼──────────────────────────────────────┤
│ � � │ VTFLG │ Flag byte │
│ │ VTPAGERR │ X'8�' Page in error │
│ 1 1 │ VTUSCNT │ Usage count │
│ 2─3 2─3 │ VTOWNER │ Partition ID of requester │
│ 4─6 4─6 │ VTFRAM │ Frame number belonging to page │
│ 7 7 │ VTPFCNT │ Number of pending page─faults │
│ 8─11 8─B │ VTBLKN │ Total block number of page │
│ 12─15 C─F │ VTFPTR │ Forward pointer │
├───────────────────┼────────────┼──────────────────────────────────────┤
│ 16 1� │ LVTABE │ Length of VTABE │
└───────────────────┴────────────┴──────────────────────────────────────┘

Figure 199. VIO Table Entry (VTABE)

464 VSE/AF Supervisor DRM

VIO File Identification Entry (VIOTABE)

┌───────────────────┬────────────┬──────────────────────────────────────┐
│ Bytes │ │ │
│ Dec Hex │ Label │ Description │
├───────────────────┼────────────┼──────────────────────────────────────┤
│ �─1 �─1 │ │ Reserved │
│ 2 2 │ VIORBCM1 │ Communication byte │
│ │ VIORBTRB │ X'8�' VIO POINT request complete │
│ 3 3 │ VIORBRTC │ Return code │
│ │ VIORBEOF │ X'�4' Requested block outside area│
│ │ VIORBERR │ X'�8' Unrecoverable error │
│ │ VIORBINC │ X'�C' Inconsistent state │
│ 4─7 4─7 │ VIORBASZ │ Actual size of area in bytes │
│ 8─11 8─B │ VIORBBSZ │ Size of a block in bytes │
│ 12─15 C─F │ VIORBPNT │ Virtual address of current block │
│ │ │ = � : No VIO POINT given up to now │
│ │ │ < � : VIO POINT in process │
│ 16─19 1�─13 │ VIORBRBA │ Relative byte addr. of current block │
│ 2�─23 14─17 │ VIORBASR │ Address of service routine │
│ 24─31 18─1F │ VIOTBSID │ Storage ID for validation │
│..................... VIOTIB Pseudo─TIB for VIO│
│ 32─43 2�─2B │ │ 1st three fullwords of TIB │
│ 44 2C │ │ not used in VIO TIB │
│ 45 2D │ VIOTIBFL │ TIBFLAG1 in VIOTIB │
│ │ VIOIND │ X'A�' Indication for VIO TIB │
│ 46-47 2E-2F │ │ not used in VIO TIB │
│ 48─51 3�─33 │ │ Next fullword of TIB │
│ 52─53 34─35 │ VIORTID │ TID of VIO POINT requester │
│ 54─55 36─37 │ VIOOWNER │ PIK of owner partition │
│ 56─59 38─3B │ VIOPCB │ PCB addr of VIO-owner │
│ 6�─63 3C─3F │ │ not used in VIO TIB │
│ 64─67 4�─43 │ VIOPFSCB │ SCB where page I/O req. belongs to │
│ 68─71 44─47 │ │ not used in VIO TIB │
│.......................... End of Pseudo─TIB for VIO│
│ 72─75 48─4B │ AFLSEGTB │ Address of 1st file segment block │
│ 76─79 4C─4F │ VTABEACT │ Address of VTABE belong. to VIORBPNT │
│ 8� 5� │ VIORQKEY │ Storage Key of Requestor │
│ 81-95 51-5F │ │ reserved │
│ 96─99 6�-63 │ VIOBLKN │ Save area for total block number │
│ 1��─1�1 64─65 │ VIOTBOPT │ Option bytes from VIOPL │
│ 1�� 64 │ VIOTBLFT │ Scope option from VIOPL │
│ 1�1 65 │ VIOFLAG │ Flag byte │
│ │ ASYNCH │ X'8�' Asynchronous request │
│ │ VIOSTSAV │ X'4�' Status already saved │
│ 1�2─1�3 66─67 │ │ Reserved │
│ 1�4─1�7 68─6B │ VIOTBNXT │ VIOTABE chain pointer │
├───────────────────┼────────────┼──────────────────────────────────────┤
│ 1�7 6B │ VIOTABLN │ Length of VIOTABE - 1 │
└───────────────────┴────────────┴──────────────────────────────────────┘

Figure 200. VIO File Identification Entry (VIOTABE)

 Appendix A. Supervisor Data Areas (without I/O) 465

VIO Block Table Entry (BLKTBE)
The VIO Block Table Entry layout corresponds to the layout of the Page Table
Entry.

┌───────────────────┬────────────┬──────────────────────────────────────┐
│ Bytes │ │ │
│ Dec Hex │ Label │ Description │
├───────────────────┼────────────┼──────────────────────────────────────┤
│ �─7 �─7 │ BLKPAG64 │ Page / frame addr. belonging to block│
│ � � │ │ Filler │
│ 5 5 │ BLKKEY │ Storage key │
│ 6 6 │ BLKSTAT │ Status indication │
│ │ BLKFRCO │ X'�6' Frame connected to block │
│ │ │ if both bits off, page connected │
│ │ │ to block (PGCON)│
│ │ BLKDISC │ X'�4' Whether page nor frame conn.│
│ │ BLKERR │ X'�2' Error on block │
│ 7 7 │ BLKSTAT2 │ second status byte │
│ │ BLKPDS │ X'�1' Copy on external storage │
├───────────────────┼────────────┼──────────────────────────────────────┤
│ 8 8 │ LBLKTBE │ Length of block table entry │
└───────────────────┴────────────┴──────────────────────────────────────┘

Figure 201. VIO Block Table Entry (BLKTBE)

466 VSE/AF Supervisor DRM

OS/390 Control Blocks
To ship object code compatible to OS/390 macros, VSE supports the OS/390
system function table, which is anchored in the OS/390 communication vector table
(CVT) at label CVTXSFT. The address of the CVT is located in low core at
location X'10'. In VSE the CVT and system function table are allocated within the
supervisor.

Note: The z/VSE (operating system) identificaton in the CVTDCB field is unique
compared to the operating systems z/VM and z/OS. .

Note: In VSE/ESA 1.1.0 and earlier releases the X'10' low storage location is used
for the VTAM vector table (AT CVT) address. Beginning with VTAM 3.4 the
VTAM vector table address can be obtained from X'408' (same location as
in MVS). Because of transparency reasons the new location is freed up.
that is the VTAM vector table address is located in X'10' as well as X'408'.
Beginning with VSE/ESA 1.3.0 only X'408' holds the VTAM vector table
address and X'10' the MVS CVT address.

Beginning with VSE/ESA 2.4.0, VSE supports an OS390 emulation mode. When a
partition runs in OS390 emulation mode, part of the OS/390 control block structure
is built.
z/VSE supports those control blocks(fields) that are either used by CICS or are
required by the OS/390 API macros.
The layout of control blocks that were ported completely to VSE is identical with the
OS/390 layout. But only required fields are set by VSE.
All control blocks are located below 16 MB.
The control block handling is done in phase IJBMCBE.

 Allocation
OS/390 control blocks are allocated when a partition runs in OS/390 emulation
mode, EXEC ...,OS390. Emulation mode is only allowed when default allocation is
used, i.e. shared and real partitions are not supported.
For the maintask, address space and task related control blocks are allocated
during SVC 133 processing.
For the subtasks, task related control blocks are allocated during ATTACH (VSE)
and ATTACHX(OS/390) processing, i.e in an emulated partition, OS/390 control
blocks exist even for subtasks attached by VSE ATTACH.
To allocate OS/390 control blocks, phase IJBMCBE is called by SGAP using the
interface macro
SMCBEM FUNC=ALLOC.

 Deallocation
Maintask control blocks are deallocated during maintask termination called by EOT
processing.
Subtask control blocks are deallocated during subtask termination called by
DETACH processing.
To deallocate OS/390 control blocks, phase IJBMCBE is called by SGAP using the
interface macro
SMCBEM FUNC=DEALL.

 Appendix A. Supervisor Data Areas (without I/O) 467

OS/390 TCB Structure
The job step task (tcb) is the maintask (tcb) in VSE. A tcb is anchored to the
attaching task tcb. At task termination, all underlaying tcbs are detached by the
system.

 ┌───────────┐
TCBOTC ┌──� │ maintask │ �──────────────┐
TCBJSTCB │ │ (job step │ │ TCBOTC

 ┌───────────┼──� │ task) │ ──────────┐ │ TCBJSTCB
 │ │ └───────────┘ │ │
 │ │ � │ │
 │ │ │ TCBOTC TCBLTC │ │
 │ │ │ TCBJSTCB │ │
 │ │ │
 │
┌───────────┐ │ ┌───────────┐ ┌───────────┐
│1.attached │TC│BNTC│2.attached │ TCBNTC│3.attached │
│subtask │�─┼────│subtask │ �──────│subtask │
│ │ │ │ │ │ │
└───────────┘ │ └───────────┘ └───────────┘
 │ │ �

│ TCBLTC │ │ TCBOTC
 │
 │
 TCBJSTCB │ ┌───────────┐

│ │ 1.and last│
 └────│ attached │
 �────────│ subtask │
 TCBNTC=� └───────────┘

Figure 202. OS/390 TCB Structure

� TCBOTC: points to TCB of attaching task
� TCBLTC: points to TCB of last attached task
� TCBNTC: points to TCB of previous attached task
� TCBJSTCB: points to TCB of maintask (job step)

Starting with a task's TCBLTC, one can find all tasks that were attached by this
task by TCBNTC.

RB Structure in VSE
Request Blocks are used to save the status when an interrupt occurs.
VSE does not have the RB structure OS/390 has.
The RB emulation in VSE is done the following way:

� VSE supports RB types PRB and SVRB
� each task has a TCB and PRB
� whenever a task issues the CICS SVC a SVRB (and XSB) is allocated

– the SVRB is only allocated for the CICS SVC
– during CICS SVC processing, the supervisor calls the function

SMCBEM FUNC=UPDATE
to enqueue a SVRB in the RB chain.

– on return from the CICS SVC, the supervisor calls the function
SMCBEM FUNC=UPDATER
to remove the SVRB from the RB chain.

– a nesting level of 4 CICS SVCs is supported
� when the CICS SVC routine gets control, the SVRB is enqueued and all fields

required by CICS are set.

468 VSE/AF Supervisor DRM

RB Structure After Task Initialization

 ┌──┐

 TCB │
 ┌─────────┐ │
 │/////////│ PRB │
 ├─────────┤ -64┌────────────┐ │

│ TCBRBP ─┼─────┐ │ │ │
 ├─────────┤ │ │ │ │
 │/////////│ │ │ │ │
 │/////////│ └─────� �├────────────┤ │
 │/////////│ │ │ │
 │/////////│ │ │ │
 └─────────┘ ├────────────┤ │
 │ RBLINK ──┼────┘
 ├────────────┤
 │ │
 │ │
 └────────────┘

Figure 203. Request Block Structure After Task Initialization

 PRB Contents
� RBLINK points to TCB
� RBSTAB1 set to X'00' (Indicates this is a PRB)
� RBSTAB2 set to X'80' (indicates this RB points to a TCB)

 Appendix A. Supervisor Data Areas (without I/O) 469

RB Structure After First CICS SVC

 ┌───┐
 │ │

 TCB │
 ┌─────────┐ │
 │/////////│ │
 ├─────────┤ │

│ TCBRBP ─┼──┐ SVRB PRB │
 ├─────────┤ │ -64┌─────────────┐ -64┌─────────────┐ │ �
 │/////////│ │ ├─────────────┤ │ │ │ │
 │/////////│ │ ┌─────┼─RBXSB │ │ ┌────────┤ │ │ PREFIX AREA

│/////////│ │ │ ├─────────────┤ │ │RBINTCOD│ │

 │/////////│ └─────┼──� �├─────────────┤ ┌───� �├────┴────────┤ │ ─────────
 └─────────┘ │ │ │ │ │ │ │ �
 │ │ │ │ 1�├─────────────┤ │ │
 │ │ │ │ │ RBOPSW │ │ │
 │ │ │ │ ├─────────────┤ │ │
 │ │ │ │ │ │ │ │
 │ 1D├─────────────┤ │ 1D├─────────────┤ │ │ BASIC AREA
 │ │ RBLINK ────┼──┘ │ RBLINK ────┼──┘ │
 │ ├─────────────┤ ├─────────────┤ │
 │ │ RBGRSAVE(64)│ │ │ │
 │ │ │ │ │ │
 │ ├─────────────┤ └─────────────┘ │
 │ │ │ │
 │ └─────────────┘

 │
 │ XSB
 └────�┌─────────────┐
 │ │
 ├─────────────┤
 │ XSBARS(64) │
 ├─────────────┤
 │ │
 │ │
 └─────────────┘

Figure 204. RB structure on entry to first CICS SVC processing

 SVRB Contents
� RBLINK points to first PRB basic section
� RBSTAB1 set to x'C0' (indicates this is an SVRB)
� RBGRSAVE (RBGRS0-RBGRS15) contains registers at the time of the (first)

CICS SVC interrupt
� Allocated space include RBEXSAVE area
� RBFEPARM area allocated and supported as part of FESTAE processing

PRB Contents/XSB contents
� RBLINK points to TCB
� RBSTAB1 set to X'00' (Indicates this is PRB)
� RBSTAB2 set to X'80' (indicates this points to TCB)
� PRB prefix contains interrupt code (RBINTCOD=CICS SVC no=150)
� RBOPSW contains PSW at time of (first) CICS SVC
� XSBARS contains access registers at the time of the (first) CICS SVC interrrupt

(not used by CICS).

470 VSE/AF Supervisor DRM

RB Structure After Second CICS SVC

 ┌──┐
 │ │

 TCB │
 ┌───────┐ │
 ├───────┤ │
 │TCBRBP │ 2. SVRB 1. SVRB PRB │
 │ ────┼┐ -64┌──────────┐ -64┌───────────┐ -64┌──────────┐ │ �
 ├───────┤│ ├──────────┤ ├───────────┤ │ │ │ │
 │ ││ ┌──┼─RBXSB │ ┌────┼─RBXSB │ │ │ │ │ PREFIX AREA
│ ││ │ ├──────────┤ │ ├───────────┤ ├──────────┤ │ │
│ ││ │ │ │ │ │ RBINTCOD │ │ RBINTCOD │ │

 │ │└──┼��├──────────┤ ┌┼─� �├───────────┤ ┌─� �├──────────┤ │ ─────────
 │ │ │ │ │ ││ ├───────────┤ │ ├──────────┤ │ �
 │ │ │ │ │ ││ │ RBOPSW │ │ │ RBOPSW │ │ │
 │ │ │ │ │ ││ ├───────────┤ │ ├──────────┤ │ │
 └───────┘ │ │ │ ││ │ │ │ │ │ │ │

│ ├──────────┤ ││ ├───────────┤ │ ├──────────┤ │ │
│ │ RBLINK ──┼──┘│ │ RBLINK ───┼─┘ │ RBLINK ──┼─┘ │

 │ ├──────────┤ │ ├───────────┤ ├──────────┤ │
 │ │ │ │ │ │ │ │ │ BASIC AREA
 │ ├──────────┤ │ ├───────────┤ ├──────────┤ │

│ │ RBGRSAVE │ │ │RBGRSAVE │ │ │ │
│ │ (64) │ │ │ (64) │ │ │ │

 │ ├──────────┤ │ ├───────────┤ ├──────────┤ │
 │ │ │ │ │ │ └──────────┘ │
 │ │ │ │ │ │ │
 │ └──────────┘ │ └───────────┘

 │ XSB │ XSB
 └─�┌──────────┐ └───�┌───────────┐
 │ │ │ │
 ├──────────┤ ├───────────┤
 │ XSBARS │ │ XSBARS │
 ├──────────┤ ├───────────┤
 │ │ │ │
 └──────────┘ └───────────┘

Figure 205. RB structure on entry to second CICS SVC processing

 PRB Contents
Unchanged

SVRB Contents Of First SVRB
� RBLINK points to PRB basic section
� RBSTAB1 set to x'C0' (indicates this is an SVRB)
� RBOPSW contains PSW at time of (second) CICS SVC
� RBGRSAVE (RBGRS0-RBGRS15) contains registers at the time of the (first)

CICS SVC interrupt
� RB prefix contains interrupt code (RBINTCODE = CICS SVC number = 150)
� RBXSB pointer to XSB

SVRB Contents Of Second SVRB
� RBLINK points to first SVRB basic section
� RBSTAB1 set to x'C0' (indicates this is an SVRB)
� RBGRSAVE (RBGRS0-RBGRS15) contains registers at the time of the

(second) CICS SVC interrupt
� Allocated space include RBEXSAVE area
� RBFEPARM area allocated and supported as part of FESTAE processing
� RBXSB pointer to XSB

 Appendix A. Supervisor Data Areas (without I/O) 471

Anchor of OS/390 Control Blocks in VSE
� TCBX.TCBXMVST: addr of OS/390 TCB
� SCB.SCBASCB: addr of OS/390 ASCB
� OS/390 TCB.TCBVSETC: addr of VSE TCB

472 VSE/AF Supervisor DRM

Appendix B. I/O Control Blocks

Basic Input/Output Control Words (z/Architecture)
During Input/Output processing on z/Architecture hardware the following control
blocks are used:

 � CCW

 � ORB (Operation-Request Block)

 � IRB (Interruption-Response Block)

� SCHIB (Subchannel Information Block)

For a detailed description of the control blocks refer to the appropriate mapping
Macros and/or to z/Architecture Principles of Operation, SA22-7832.

For compatibility reasons with S/370 architecture the following control words are
also used:

 � CAW

 � CSW

Figure 206 to Figure 207 on page 474 show the layout of the Channel Address
Word (CAW) and the Channel Status Word (CSW). For more information refer to
the appropriate Principles of Operation manual.

Layout of CAW

┌─────┬──────┬─────────────────────────────┐
│ │ │ │
│ KEY │ ���� │ COMMAND ADDRESS │
│ │ │ │
└─────┴──────┴─────────────────────────────┘
 � 4 8 31

┌────────┬────────────────────────────────┐
│ Bits │ Description │
├────────┼────────────────────────────────┤
│ � ─ 3 │ Storage protection key │
│ 4 ─ 7 │ Reserved (must be zero) │
│ 8 ─31 │ Address of first/only CCW │
└────────┴────────────────────────────────┘

Figure 206. Channel Address Word (CAW)

© Copyright IBM Corp. 1985, 2013 473

Layout of CSW

┌────┬────┬──────────────────────┬────────────────┬──────────────────┐
│ │ │ │ │ │
│ KEY│����│ COMMAND ADDRESS │ STATUS BYTES │ BYTE COUNT │
│ │ │ │ │ │
└────┴────┴──────────────────────┴────────────────┴──────────────────┘
� 4 8 32 48 63

┌────────┬─────────┬───────────────────────────────────┐
│ Bits │ Apprev. │ Description │
├────────┼─────────┼───────────────────────────────────┤
│ � ─ 3 │ │ Storage protection key │
│ 4 │ │ Reserved (must be zero) │
│ 5 │ │ Logout pending │
│ 6 ─ 7 │ │ Deferred condition code │
│ 8 ─ 31 │ │ Address+8 of last CCW executed │
│ 32 │ ATTN │ Attention │
│ 33 │ SM │ Status modifier │
│ 34 │ CUE │ Control unit end │
│ 35 │ BSY │ Busy │
│ 36 │ CE │ Channel end │
│ 37 │ DE │ Device end │
│ 38 │ UC │ Unit check │
│ 39 │ UX │ Unit exception │
│ 4� │ PCI │ Program controlled interruption │
│ 41 │ IL │ Incorrect length │
│ 42 │ │ Channel program check │
│ 43 │ │ Channel protection check │
│ 44 │ │ Channel data check │
│ 45 │ │ Channel control check │
│ 46 │ │ Interface control check │
│ 47 │ │ Channel chaining check │
│48 ─ 63 │ │ Residual byte count │
└────────┴─────────┴───────────────────────────────────┘

Figure 207. Channel Status Word (CSW)

474 VSE/AF Supervisor DRM

Input/Output Control Blocks and Areas

Stored Assignment Table (SAT)
 ┌────────────────────────────────┐
 ┌───�│ │
 │ ├────────────────────────────────┤
 │ � �
 │ ├────────────────────────────────┤
 │ │ │
 │ └────────────────────────────────┘
 │ � 15
 │
 └─────────────────┐
 │
 │
 LUBTAB LUBTAB│Extension
 ┌───┬───┐ ┌───┬──┼───┬──────┐

│ │ │ │ │ │ │ │
 ├───├───┤ ├───┼──────┼──────┤

� � � � � � �
� � � � � � �

 ├───┼───┤ ├───┼──────┼──────┤
│ │ │ │ │ │ │

 ├───├───┤ ├───┼──────┼──────┤
 ┌─────────────────────────┼── │ │ │ │ │ ────┼───┐
 │ ├───├───┤ ├───┼──────┼──────┤ │
│ │ │ │ │ │ │ │ │

 │ └───┴───┘ └───┴──────┴──────┘ │
│ � 1 � 1 3 4 7 │

 └───────────────┬──────────────────┐ │
 │ │ │
 │ PUBOWNER │ PUBTAB │

│ ┌───┬───┐ │ ┌───────┐ │
│ │ │ │ │ │ │ │
│ ├───┼───┤ │ ├───────┤ │
└──────� │ │ └──�│ │ │

 ├───┼───┤ ├───────┤ │
� � � � � |
� � � � � |

 │
 ├───┼───┤ ├───────┤ │

│ │ │ │ │ │
 └───┴───┘ └───────┘ │

� 1 (see next page) │
 ┌──────────────────────────┘

 Extent Information Area
 ┌────────────────────────────────┐
 └────────────────────────────────┘
 � �
 ├────────────────────────────────┤
 └────────────────────────────────┘
 � 15
Figure 208 (Part 1 of 4). I/O Table Interrelationship

 Appendix B. I/O Control Blocks 475

 PUBTAB
 ┌──────────────────┐ ┌ ┐

│ ─────┼───────�│ THTAB │ (Optional)
 ├──────────────────┤ └ ┘

| | used by PIOCS
LUBTAB ├──────────────────┤
┌───┬---┐ | |
│ │ │ │ ├──────────────────┤
└─┼─┴───┘ � �
 │ ├───┬───┬──────────┤
└───────────�│ │ │ │ │

 └───┴─┼─┴──────────┘
 � 2│ 8
 │

│ CHANQ (Entry length 32 bytes)
 │ ┌──────────────────────────────────────┐
 └───────�│ │
 ├──────────────────────────────────────┤
 │ │
 ├──────────────────────────────────────┤
 � �
 ┌───────┐ ├──────────────────────────────────────┤

│ FLPTR ├─────�│ │
 └───────┘ └──────────────────────────────────────┘
 � 32
Figure 208 (Part 2 of 4). I/O Table Interrelationship

476 VSE/AF Supervisor DRM

┌─────────────┬───┐
│Label │ Description │
├─────────────┼───┤
│LUBTAB │ Byte � of each entry is the low order byte of an index │
│ │ pointer. Byte 1 of each entry is the high order byte │
│ │ of an index pointer (or X'FF' if IODEV¬>254). Is index │
│(Logical │ in the PUB Table (PUBTAB) and PUB Ext. Area (PUBXAREA) │
│ Unit Block │ as well as to the PUB OWNERSHIP Table (PUBOWNER). │
│ Table) │ X'FFFF' indicates that no logical unit is assigned. │
│ │ X'FEFF' indicates that I/O requests are to be ignored. │
├─────────────┼───┤
│LUBTAB │ Bytes 1─3 point to first STORED ASSIGNMENT TABLE entry. │
│EXTENSION │ Bytes 4─7 point to first EXTENT INFORMATION AREA entry. │
│ │ Zero indicates no extent information available. │
├─────────────┼───┤
│EXTENT │ Bytes 1 ─ 3 point to the next EXTENT INFORMATION ENTRY. │
│INFORMATION │ Zero identifies this entry as the last one in the chain.│
├─────────────┼───┤
│STORED │ Bytes 1 ─ 3 point to the next STORED ASSIGNMENT TABLE │
│ASSIGNMENT │ entry. │
│ENTRY │ │
├─────────────┼───┤
│PUBTAB │ Byte 2 is the LOW index byte into the CHANQ Table │
│(Physical │ X'FF' indicates that no request is queued to the PUB. │
│ Unit │ Byte 3 is the HIGH index byte into the CHANQ (IODEV>254)│
│ Block │ Byte 5 is an index pointer which for: │
│ Table) │ DASD points to the entry in the TRACK HOLD TABLE (THTAB)│
├─────────────┼───┤
│PUBXAREA │ Bytes � ─ 3 contain the address of the │
│(Physical │ associated PUBX entry. │
│ Unit Block │ │
│ Extension │ │
│ Area) │ │
├─────────────┼───┤
│PUBX │ Device specific information used internally. │
│(Physical │ │
│ Unit Block │ │
│ Extension │ │
│ Entry) │ │
└─────────────┴───┘
Figure 208 (Part 3 of 4). I/O Table Interrelationship

 Appendix B. I/O Control Blocks 477

┌─────────────┬───┐
│Key │ Description │
├─────────────┼───┤
│FLPTR │ This one─byte pointer contains the entry index of the │
│(Free List │ next free entry in the Channel Queue Table (CHANQ). │
│ Pointer) │ X'FF' in this field indicates: │
│ │ No more free CHANQ entry │
│ │ More device (IODEV>254) supervisor was IPL'ed │
├─────────────┼───┤
│CHQFLPTR │ This two─byte pointer contains the entry index of the │
│(Free List │ next free entry in the Channel Queue Table (CHANQ). │
│ Pointer) │ │
├─────────────┼───┤
│CHANQ │ Byte 1 to 3 of this field contain the address of the │
│ (Channel │ begin of the Channel Queue Table (CHANQ). │
│ Queue │ │
│ Table) │ │
├─────────────┼───┤
│THTAB │ Byte � on each entry points to the next entry in the │
│(Track Hold │ chain of requests for a track/block to be held on a │
│ Table) │ specific DASD (or the next free entry if in the free │
│ │ list) or it contains X'FF' if the entry is the last in a│
│ │ chain. Byte 12 contains a backward pointer. The backward│
│ │ pointer of the first Track Hold Table entry contains │
│ │ the PUB index. │
└─────────────┴───┘

Figure 208 (Part 4 of 4). I/O Table Interrelationship

478 VSE/AF Supervisor DRM

Logical Unit Block Tables (LUBTAB, LUBX, SAT, Ext.Inf.)
Logical Unit Block Table (LUBTAB)
LUBTAB Extension Table
Stored Assignment Table Entry (SAT)
Extent Information Entry

Logical Unit Block Table (LUBTAB)
The LUB tables for the static partitions are allocated within the supervisor. Label
LUBTAB identifies the first byte of the tables, which begins with the BG system
LUBs, followed by the BG programmer LUBs and the LUB pool for the static parti-
tions F1,..,FB.
The Lub tables for the dynamic partitions are allocated during dynamic partition
allocation.
Label PCEALUB of PCE contains the address of the partition's LUB table.

Logical Unit Block Entry (Note 1):

┌───────────────────┬───┐
│ Bytes │ │
│ Dec Hex │ Description │
├───────────────────┼───┤
│ � � │ Low order byte of PUB index of device assigned │
│ │ to this logical unit or │
│ │ X'FF' if no PUB is assigned or │
│ │ X'FE' if I/O is to be ignored for this log. unit │
│ 1 1 │ High order byte of PUB index of device assigned │
│ │ to this logical unit or │
│ │ X'FF' if IODEV<255, if no PUB is assigned or │
│ │ if I/O is to be ignored for this log. unit │
│ │ │
└───────────────────┴───┘
Figure 209 (Part 1 of 2). Logical Unit Block (LUB) Entry and TABLE

 Appendix B. I/O Control Blocks 479

Logical Unit Block Table:

 (Note 2)
 ┌───┬───┐ ├───┼───┤ ├───┼───┤
SYSRDR �│ │ │ SYSSLB 1�│ │ │ SYSLIB 1E│ │ │
 ├───┼───┤ ├───┼───┤ (Note 3) ├───┼───┤
SYSIPT 2│ │ │ SYSRLB 12│ │ │ � � �

├───┼───┤ ├───┼───┤ � � �
SYSPCH 4│ │ │ SYSUSE 14│ │ │ (Note 4) � � �
 ├───┼───┤ ├───┼───┤ ├───┼───┤
SYSLST 6│ │ │ SYSREC 16│ │ │ SYS��� │ │ │
 ├───┼───┤ ├───┼───┤ ├───┼───┤
SYSLOG 8│ │ │ SYSCLB 18│ │ │ SYS��1 │ │ │
 ├───┼───┤ ├───┼───┤ � ├───┼───┤
SYSLNK A│ │ │ SYSDMP 1A│ │ │ � � � �
 ├───┼───┤ ├───┼───┤ � ├───┼───┤
SYSRES C│ │ │ SYSCAT 1C│ │ │ SYSnnn │ │ │
 ├───┼───┤ ├───┼───┤ └───┴───┘

Notes:

1. Null entries X'FFFF' are generated at supervisor generation time or
during dynamic partition allocation.

2. There are 14 externally known system LUBs and one internally
used for label access method.

3. System LUBs used by dynamic assignments.
4. The total number of system LUBs is a constant.

Figure 209 (Part 2 of 2). Logical Unit Block (LUB) Entry and TABLE

480 VSE/AF Supervisor DRM

LUBTAB Extension Table
The LUB Extension Table for each static partition is allocated and initialized by IPL.
It has as many entries as allocated to the LUB table of that Partition. Each entry is
4 bytes long except the user did specify DASDFP=YES (IPL SYS-command) in
which case each entry is 8 bytes in length.
The LUB Extension Table for a dynamic partition is allocated during dynamic parti-
tion allocation.
The start address of the LUB Extension Table is stored at label LUBEXT of the
Partition Communication Region.

┌───────────────────┬────────────┬──────────────────────────────────────┐
│ Bytes │ │ │
│ Dec Hex │ Label │ Description │
├───────────────────┼────────────┼──────────────────────────────────────┤
│ � � │ LUBXFLG │ Flag Byte │
│ │ LUBXPA │ X'8�' Permanent alternate assignment │
│ │ │ stored │
│ │ LUBXTA │ 4� Temporary alternate assignment │
│ │ │ stored │
│ │ LUBXPE │ 2� Permanent assignment stored │
│ │ │ 1� Reserved │
│ │ │ �8 Reserved │
│ │ │ �4 Reserved │
│ │ │ �2 Reserved │
│ │ │ �1 Reserved │
│...│
│ │ │ (LUBXPA and/or LUBXTA is on) │
│ 1─3 1─3 │ LUBXSPT │ Pointer to first Stored Assignment │
│ │ │ Table entry (SAT) │
│...│
│ │ │ (LUBXPA and LUBXTA both off) │
│ 1 1 │ │ Reserved │
│ 2─3 2─3 │ LUBXPER │ Stored permanent assignment │
│...│
├───────────────────┼────────────┼──────────────────────────────────────┤
│ OPTIONAL │ │ │
│ DASDFP=YES │ │ │
│ 4─7 4─7 │ LUBXEPT │ Pointer to first EXTENT INFORMATION │
│ │ │ chain entry or zero if no EXTENT │
│ │ │ INFORMATION available │
└───────────────────┴────────────┴──────────────────────────────────────┘

Figure 210. Logical Unit Block (LUB) Extension Entry

 Appendix B. I/O Control Blocks 481

Stored Assignment Table Entry (SAT)
The LUB Extension table entry may contain a pointer to a chain of assign entries,
each containing additional information on stored assignments. Each entry is fixed
length and is allocated in the System GETVIS area.

┌───────────────────┬────────────┬──────────────────────────────────────┐
│ Bytes │ │ │
│ Dec Hex │ Label │ Description │
├───────────────────┼────────────┼──────────────────────────────────────┤
│ � � │ SATFLG │ Flag byte │
│ │ │ X'8�' Reserved │
│ │ │ 4� Reserved │
│ │ SATPE │ 2� Permanent Assignment saved │
│ │ │ in this entry │
│ │ │ 1� Reserved │
│ │ │ �8 Reserved │
│ │ │ �4 Reserved │
│ │ │ �2 Reserved │
│ │ │ �1 Reserved │
│ 1─3 1─3 │ SATNEXT │ Pointer to next assign entry in the │
│ │ │ chain │
│ 4 4 │ SATEOCH │ Offset within SATSAV of next free │
│ │ │ entry │
│ 5 5 │ SATEOPCH │ Offset within SATSAV of saved │
│ │ │ permanent assignment │
│ 6─7 6─7 │ SATSAV │ Space for saving permanent │
│ │ │ assignment (max. of 5) │
│ ��� ��� │ │ │
│ 14─15 E─F │ │ │
└───────────────────┴────────────┴──────────────────────────────────────┘

Figure 211. Stored Assignment Table Entry (SAT)

482 VSE/AF Supervisor DRM

Extent Information Entry
The LUB extension table entry contains a pointer to a chain of Extent entries for
DASD File Protection. Each entry is fixed length and is allocated in the System
GETVIS area.

┌───────────────────┬────────────┬──────────────────────────────────────┐
│ Bytes │ │ │
│ Dec Hex │ Label │ Description │
├───────────────────┼────────────┼──────────────────────────────────────┤
│ � � │ EXBFLG │ Flag Byte │
│ │ EXBREAD │ X'8�' Allow READ access only │
│ │ │ (no multi─track operation) │
│ │ EXBSHORT │ 4� Extent information is CC only │
│ │ │ 2� Reserved │
│ │ │ 1� Reserved │
│ │ │ �8 Reserved │
│ │ │ �4 Reserved │
│ │ │ �2 Reserved │
│ │ │ �1 Reserved │
│ 1─3 1─3 │ EXBNXT │ Pointer to next Extent entry in the │
│ │ │ chain or zero if this is the last │
│ │ │ Extent entry │
│ 4─7 4─7 │ EXBHI │ High Extent Limit │
│ │ │ CKD Device Cylinder+Head No. │
│ │ │ FBA Device Physical Block No. │
│ 8─11 8─B │ EXBLOW │ Low Extent Limit │
│ │ │ CKD Device Cylinder+Head No. │
│ │ │ FBA Device Physical Block No. │
│ 12─13 C─D │ EXBCOUNT │ Usage count for this extent │
│ 14─15 E─F │ │ Reserved │
└───────────────────┴────────────┴──────────────────────────────────────┘

Figure 212. Extent Information Entry

Physical Unit Block Tables (PUBTAB, PUBX, PUB2, PUBOWNER)
Physical Unit Block Table (PUBTAB)
Physical Unit Block Extension (PUBX)
Physical Unit Block 2 (PUB2)
PUB Ownership Table (PUBOWNER)

Physical Unit Block Table (PUBTAB)
Bytes 64-65 (X'40'-X'41') of the Partition Communication Region contain the
address of the PUB table. Label PUBTAB identifies the first byte of the table.

 Appendix B. I/O Control Blocks 483

┌───────────────────┬────────────┬──────────────────────────────────────┐
│ Bytes │ │ │
│ Dec Hex │ Label │ Description │
├───────────────────┼────────────┼──────────────────────────────────────┤
│ � � │ PUBCHANN │ Channel number of device (Hex �─F) │
│ │ │ X'FF' indicates end of PUBTAB │
│ 1 1 │ PUBDEVNO │ Unit number │
│ 2 2 │ PUBCHQPT │ Index to first CHANQ entry │
│ │ │ X'FF' indicates no request enqueued │
│ 3 3 │ PUBCHQPH │ High Order CHANQ index or � │
│ 4 4 │ PUBDEVTY │ Device type code │
│ 5 5 │ PUBOPTN │ For TAPE devices: Tape Mode from │
│ │ │ ADD or ASSGN │
│ │ │ For DASD-Devices: Index of TRKHLD │
│ │ │ Table entry or X6 │
│ │ │ For 37�4/37�5: Type of channel │
│ │ │ adapter │
│ │ │ For 38��: │
│ │ │ Bit �-1 │
│ │ │ �� 38�� │
│ │ │ �1 38�� B │
│ │ │ 1� 38�� C │
│ │ │ 11 38�� BC │
│ │ PUBOPTVD │ C'V' Virtual FBA (not operational) │
│ │ PUBOPDMY │ X'8�' Dummy console device │
│ 6 6 │ PUBCSFLG │ Channel Scheduler flags │
│ │ DEVBSY │ X'8�' Device is active │
│ │ │ 4� Reserved │
│ │ │ 2� Reserved │
│ │ QEDERR │ 1� I/O error queued for recovery │
│ │ OPINTV │ �8 Operator intervention required │
│ │ INTPEND │ �4 Interrupt was trapped by SDAID │
│ │ BRSDEV │ �2 Burst or overrunable device │
│ │ │ �1 Reserved │
│ 7 7 │ PUBJCFLG │ Job Control flags │
│ │ │ Bits �─4: TAPE : Standard MODE │
│ │ │ assignment │
│ │ PUBDVCUP │ Not TAPE : All ones if │
│ │ │ device is up │
│ │ │ Device DOWN: All zeros │
│ │ RPSDASD │ 5: Device supports RPS │
│ │ PUBPPD │ 6: Device is not operational │
├───────────────────┴────────────┴──────────────────────────────────────┤
│ Note: A PUB entry must be added during IPL for any device of the │
│ installation │
└───┘

Figure 213. Physical Unit Block (PUB) Entry

484 VSE/AF Supervisor DRM

Physical Unit Block Extension (PUBX)
The PUBX table is a logical extension of the PUB table. There is one PUBX entry
for each device added at IPL. A PUBX entry is addressed via address table
APBXAREA at offset 4*PUB index (see Figure below). The PUBX entries have
variable length and contain device related information.
The PUBX area is preceded by the eye catcher PUBXTAB.

(Label in Supervisor)
 ┌──────────┐
4 � PUB index ───────────� + �────────────┤ APBXAREA │
 │ └──────────┘
 PUBXAREA │
 ┌────────┐ │ ───────────────────

� │ │ │ �
 ├────────┤ │ │

4 │ │ │ │
 ├────────┤ │ │

8 │ │ │
├────────┤ │ PUBX address vector

 ┌───┼──── │�───────┘
 │ ├────────┤ │
 │ │ │ │
 │ ├────────┤ │
 │ │ │

│ ├────────┴─── ────┐ ───────────────────
 │ │ ��� │ �

│ ├──────────── ────┴───┐ │
 └──�│ ��� │ │
 └──────────── ────────┘
 � PUBX table
 �
 � │
 ┌──────────── ──┐ │
 │ ��� │

 └──────────── ──┘ ───────────────────

Figure 214. PUBX Table Interrelationship

 Appendix B. I/O Control Blocks 485

┌───────────────────┬────────────┬──────────────────────────────────────┐
│ Bytes │ │ │
│ Dec Hex │ Label │ Description │
├───────────────────┼────────────┼──────────────────────────────────────┤
│ � � │ PBXFLAG │ Flag byte │
│ │ PBXDASD │ X'8�' DASD device │
│ │ PBXTAPE │ 4� Tape device │
│ │ PBXUR │ 2� Unit record device │
│ │ │ 1� Reserved │
│ │ │ �8 Reserved │
│ │ PBXMSSDV │ �4 Mass storage device │
│ │ PBXFBAVD │ �2 Vitual disk device (FBA) │
│ │ PBXSLOG │ �1 SYSLOG device │
│ 1 1 │ PBXFLAG1 │ Flag byte │
│ │ PBXSHR │ X'8�' Partition sharable device │
│ │ │ DASD, SYSLOG and POWER spool UR│
│ │ │ 4� Reserved │
│ │ PBXBUFFD │ 2� Buffered device │
│ │ │ DASD: Cached controller │
│ │ PBXFEAT1 │ 1� TAPE: Data compaction │
│ │ │ DASD: Dasd fast write │
│ │ PBXFEAT2 │ �8 TAPE: AUTO BLOCKING │
│ │ │ DASD: Cache Fast Write │
│ │ PBXFEAT3 │ �4 TAPE: Library online │
│ │ │ DASD: Dual copy capable │
│ │ │ UR: Reserved │
│ │ PBXNORDB │ �2 TAPE: NO read backward │
│ │ │ DASD/UR: Reserved │
│ │ PBXDBCCW │ �1 Set Mode command with data │
│ 2 2 │ PBXFLAG2 │ Flag byte 2 Device status │
│ │ PBXNOSIO │ X'8�' SIO needs interception │
│ │ PBXMTFLG │ X'4�' Mount request pending │
│ │ PBXNOSVT │ X'2�' Bypass AVR processing │
│ │ PBXNOASS │ X'1�' Bypass (UN)ASSIGN-CCW │
│ │ PBXNOVOL │ X'�8' VOL1 label not yet read │
│ │ │ X'�4' Reserved │
│ │ │ X'�2' Reserved │
│ │ PBXREADY │ X'�1' Device became ready │
│ 3 3 │ PBXFLAG3 │ Flag byte 3 : Processing Flag │
│ 4 ─ 5 4 ─ 5 │ PBXCUU │ CUU address │
│ 6 ─ 7 6 ─ 7 │ PBXSCH │ Subchannel number │
│ 8 ─ 9 8 ─ 9 │ PBXLEN │ Length of PUBX entry │
│ 1� ─ 11 A ─ B │ PBXVTMCQ │ Index of dechained CHANQ entry │
│ 12 ─ 19 C ─ 13 │ PBXCHPID │ Channel path IDs │
│ 2� ─ 36 14 ─ 24 │ PBXDVNED │ Initial device NED │
│ 37 25 │ PBXPIM │ Path Installed Mask │
│ 38 26 │ PBXPAM │ Path Available Mask │
│ 39 27 │ PBXLPM │ Logical Path Mask │
│ 4� 28 │ PBXNOOPR │ Not oper. path mask (due to OFFLINE) │
│ 41 29 │ PBXNOQSD │ Not oper. path mask (due to Quiesce) │
│ 42 2A │ PBXNOPVF │ Not oper. path mask (due to path │
│ │ │ verification) │
│ 43 2B │ PBXNOERP │ Not oper. path mask (due to perm err.│
│ 44 2C │ PBXPVPEN │ Used internally │
│ 45 - 51 2D - 33 │ │ Reserved │
│ 52 34 │ PBXRDCCA │ Channel Connection Address │
│ 53 35 │ PBXRDCDC │ Director Device Connection │
│ 54 - 55 36 - 37 │ │ Reserved │
│ 56 - 63 38 - 3F │ PBXSIMAD │ Used internally │
│ 64 4� │ PBXPUBCD │ VSE device type code │
│ 65 ─ 71 41 ─ 47 │ PBXSNSID │ Sense device type information │
│ 65 41 │ │ X'FF' Entry is valid │
│ │ │ X'FE' Entry is generated │
└───────────────────┴────────────┴──────────────────────────────────────┘

Figure 215 (Part 1 of 2). Physical Unit Block Extension (PUBX)

486 VSE/AF Supervisor DRM

┌───────────────────┬────────────┬──────────────────────────────────────┐
│ Bytes │ │ │
│ Dec Hex │ Label │ Description │
├───────────────────┼────────────┼──────────────────────────────────────┤
│ 66 ─ 67 42 ─ 43 │ PBXCUTYP │ Control unit type number │
│ 68 44 │ PBXCUMOD │ Control unit model number │
│ 69 ─ 7� 45 ─ 46 │ PBXDVTYP │ Device type number │
│ 71 47 │ PBXDVMOD │ Device type model number │
│ 72 - 73 48 - 49 │ │ Reserved │
│ 74 ─ 75 4A ─ 4B │ PBXOBR │ OBR record id │
│ 76 4C │ PBXMDR │ MDR record id │
│ 77 4D │ PBXCUID │ CU model identifier │
│ 78 ─ 79 4E ─ 4F │ PBXOWNER │ PIK of partition owning the device, │
│ │ │ in case of non-sharable device │
│...│
│ │ │ (if PBXSHR OFF) │
│ 8� ─ 83 5� ─ 53 │ PBXUSCNT │ Device usage counter │
│ 84 ─ 87 54 ─ 57 │ PBXJACNT │ Job Accounting SIO counter │
│...│
│ │ │ (if PBXSHR ON) │
│ 8� ─ 83 5� ─ 53 │ PBXUSOFF │ Offset of usage counters within │
│ │ │ partition SIO counter table │
│ 84 ─ 87 54 ─ 57 │ PBXJAOFF │ Offset of SIO counters within │
│ │ │ partition SIO accounting table │
│...│
│ 88 ─ 91 58 ─ 5B │ PBXERBLK │ Address of error block │
│ 92 ─ 95 5C ─ 5F │ PBXDOMID │ Operator Message ID │
│ 96 - 111 6� - 6F │ PBXIRB | IRB information from last I/O │
│ (112) (7�) │ PBXCLNG | Length of common section │
| │
│..................End of section common to all devices.................│
| │
│ 112─ 115 7� ─ 73 │ PBXCCW | Address of prefix CCW's │
│ 116─ 119 74 ─ 77 │ │ Reserved │
│ 12�─ 123 78 ─ 7B │ PBXVCTE │ Address of VCT entry │
│ (124) (7C) │ PBXDLNG | Length of DASD section │
| │
│..................End of section for DASD devices│
| │
│ 124─ 127 7C ─ 7F │ PBXMODE | Mode information for tapes │
│ 124 7C │ PBXACMD │ Currently valid mode set command │
│ 125 7D │ PBXABYT │ Currently valid mode set data byte │
│ 126 7E │ PBXSCMD │ Saved permanent mode set command │
│ 127 7F │ PBXSBYT │ Saved permanent mode set data byte │
│ 128 8� │ PBXTREC │ Special recording information │
│ │ PBXT7TRK │ X'8�' Media is a 7-track tape │
│ │ PBXTCTGK │ 4� Media is a tape cartridge │
│ │ │ 2� - �4: Reserved │
│ │ PBXT2XF │ �2 349� XF-2 Format │
│ │ │ �1 Reserved │
│ 129 81 │ PBXTDEN │ Recording densities capability │
│ │ │ 8� Reserved │
│ │ │ 4� Reserved │
│ │ │ 2� Reserved │
│ │ │ 1� Reserved │
│ │ PBXT625� │ �8 625� BPI │
│ │ PBXT32�� │ �4 32�� BPI │
│ │ PBXT16�� │ �2 16�� BPI │
│ │ PBXT�8�� │ �1 �8�� BPI │
│ 13�- 131 82 - 83 │ PBXTSPEC │ Tape Features │
│ 132- 135 84 - 87 │ PBXLBINF │ Tape Library information or zero │
│ (136) (88) │ PBXTLNG | Length of TAPE section │
| │
│..................End of section for TAPE devices│
└───────────────────┴────────────┴──────────────────────────────────────┘

Figure 215 (Part 2 of 2). Physical Unit Block Extension (PUBX)

 Appendix B. I/O Control Blocks 487

Physical Unit Block Table 2 (PUB2)

(Label in Supervisor)
 ┌──────────┐
4 � PUB index ───────────� + �────────────┤ APB2AREA │
 │ └──────────┘
 PUB2AREA │
 ┌────────┐ │ ───────────────────

� │ │ │ �
 ├────────┤ │ │

4 │ │ │ │
 ├────────┤ │ │

8 │ │ │
├────────┤ │ PUB2 address vector

 ┌───┼──── │�───────┘
 │ ├────────┤ │
 │ │ │ │
 │ ├────────┤ │
 │ │ │

│ ├────────┴─── ────┐ ───────────────────
 │ │ ��� │ �

│ ├──────────── ────┴───┐ │
 └──�│ ��� │ │
 └──────────── ────────┘
 � PUB2 table
 �
 � │
 ┌──────────── ──┐ │
 │ ��� │

 └──────────── ──┘ ───────────────────

Figure 216. PUB2 Relationship

┌───────────────────┬────────────┬──────────────────────────────────────┐
│ Bytes │ │ │
│ Dec Hex │ Label │ Description │
├───────────────────┼────────────┼──────────────────────────────────────┤
│ � ─ 2 � ─ 2 │ P2USAGE │ Usage count (number of non─ERP SIO) │
│ 3 3 │ P2FLAGS │ Flag byte common to all PUB2 entries │
│ │ P2INTSM │ X'8�' Device is in intensive mode │
│ │ P2DIAGM │ 4� Device is in diagnostic mode │
│ │ P2NORCM │ 2� No recording mode │
│ │ P2STAT2 │ 1� Call statistics transient 2 │
│ │ P2NAMEF │ �8 Use PUB2 name completion field │
│ │ P2OPEN │ �4 Volume opened on this device │
│ │ P2NOSIO │ �2 Intercept next SIO │
│ │ P2DOMID │ �1 Delete operator message │
│ 4 4 │ P2LIMIT │ CE mode limit byte │
│ 5 5 │ P2BBMASK │ CE mode byte/bit mask │
│ (6) (6) │ PUB2EXT │ End of fixed part of PUB2 │
│ │ │ Start of PUB2 extension │
└───────────────────┴────────────┴──────────────────────────────────────┘

Figure 217. Physical Unit Block Table 2 (PUB2)

488 VSE/AF Supervisor DRM

PUB Ownership Table (PUBOWNER)
Bytes 120 - 123 (X'78'-X'7B') of the System Communication Region (SYSCOM)
contain the address of the PUB Ownership Table. Label PUBOWNER identifies the
first byte of this table. Each entry consists of a string of 16 bits, with each bit
representing an owner due to the following layout.

B'1000000000000000' device is owned by VTAM

B'010xxxxxxxxxxxxx' device is owned by at least one dynamic partition

B'0x01xxxxxxxxxxxx' device is owned by System.

The other bits correspond to the static partitions in the sequence of:

B'0x0xxxxxxxxxxxx1' BG
B'0x0xxxxxxxxxxx1x' FB
B'0x0xxxxxxxxxx1xx' FA
B'0x0xxxxxxxxx1xxx' F9
B'0x0xxxxxxxx1xxxx' F8
B'0x0xxxxxxx1xxxxx' F7
B'0x0xxxxxx1xxxxxx' F6
B'0x0xxxxx1xxxxxxx' F5
B'0x0xxxx1xxxxxxxx' F4
B'0x0xxx1xxxxxxxxx' F3
B'0x0xx1xxxxxxxxxx' F2
B'0x0x1xxxxxxxxxxx' F1

Note: In case a dynamic partition is owning a device (bit 1 is set), an extention to
the appropriate device owner entry does exist. This extention is allocated
seperately and consists of a bitstring with as many bits as dynamic partitions have
been specified at IPL time. Each bit in this extention represents a single dynamic
partition with the lowest bit (bit 0) being used for that dynamic partition with the
lowest PIK value.

Device Usage Counters (DVCUSCNT)
For devices, which are not partition sharable (PBXSHR=0), the usage and SIO
counters are included in the PUBX, see Figure 215 on page 486. For partition
sharable devices (PBXSHR=1), one set of usage and SIO counters is needed for
every partition. All usage counters belonging to one partition are allocated as a
string. The address of the string can be found in PCB.PCBCNT. The offset of the
usage counters of a given device within the partition string can be found in fields
PUBX.PBXUSOFF and PUBX.PBXJAOFF.
The SIO counter for Job Accounting is a single 4-byte field. For partition sharable
devices, SIO counters are included in the partition string only if SYS JA=YES was
specified at IPL time.
Device usage counters are always allocated. There structure and meaning are
described below.

 Appendix B. I/O Control Blocks 489

┌───────────────────┬────────────┬──────────────────────────────────────┐
│ Bytes │ │ │
│ Dec Hex │ Label │ Description │
├───────────────────┼────────────┼──────────────────────────────────────┤
│...│
│ │ │ (if DVCPWRSP OFF) │
│ �─1 �─1 │ DVCPUCNT │ Physical usage counter │
│ │ │ Gives the number of times a device is│
│ │ │ physically accessed in a partition, │
│ │ │ either via a Logical Unit assignment │
│ │ │ or via physical addressing. │
│...│
│ │ │ (if DVCPWRSP ON) │
│ �─1 �─1 │ DVCPWRTD │ This field contains the TID of the │
│ │ │ task, which has a spooling request │
│ │ │ pending. If no request is pending, │
│ │ │ it contains X'����'. │
│...│
│ 2 2 │ DVCLUFLG │ Flag byte │
│ │ │ X'8�' Reserved │
│ │ DVCPWRSP │ 4� Used as a dummy device for │
│ │ │ POWER │
│ │ │ 2� Reserved │
│ │ │ 1� Reserved │
│ │ │ �8 Reserved │
│ │ │ �4 Reserved │
│ │ │ �2 Reserved │
│ │ │ �1 Reserved │
│ 2─3 2─3 │ DVCLUCNT │ Logical usage counter │
│ │ │ Gives the total number of Logical │
│ │ │ Unit assignments to this device │
│ │ │ within a partition. │
└───────────────────┴────────────┴──────────────────────────────────────┘

Figure 218. Device Usage Counters (DVCUSCNT)

490 VSE/AF Supervisor DRM

Channel Control Table (CHNTAB)
Label CHNTAB identifies the first byte of the Channel Control Table. The Channel
Control Table is just being left for compatibility reasons.

┌───────────────────┬────────────┬──────────────────────────────────────┐
│ Bytes │ │ │
│ Dec Hex │ Label │ Description │
├───────────────────┼────────────┼──────────────────────────────────────┤
│ � � │ CHNTYPE │ Unused │
│ 1 1 │ CHNTERR │ Number of unit checks pending on │
│ │ │ this channel │
│ 2 2 │ CHNTFLG1 │ Processing Flag Byte │
│ │ CHNRSTRT │ X'8�' Channel must be restarted │
│ │ CHNRSDEV │ 4� At least one device not started│
│ │ │ 2� Reserved │
│ │ │ 1� Reserved │
│ │ │ �8 Reserved │
│ │ │ �4 Reserved │
│ │ │ �2 Reserved │
│ │ │ �1 Reserved │
│ 3 3 │ CHNTFLG2 │ Channel ID │
│ 4─7 4─7 │ CHNTPUBF │ Address of first PUB on channel │
│ 8─11 8─B │ CHNTPUBN │ Reserved │
│ 12─15 C─F │ │ Reserved │
└───────────────────┴────────────┴──────────────────────────────────────┘

Figure 219. Channel Control Table (CHNTAB)

 Appendix B. I/O Control Blocks 491

Channel Queue Table (CHANQ)
Bytes 37-39 (X'25'-X'27') of the System Communication Region (SYSCOM) contain
the address of the Channel Queue Table. Label CHANQ identifies the first byte of
the Table. Each entry is fixed length and its layout is as follows:

┌───────────────────┬────────────┬──────────────────────────────────────┐
│ Bytes │ │ │
│ Dec Hex │ Label │ Description │
├───────────────────┼────────────┼──────────────────────────────────────┤
│ � � │ CHQCHAIN │ Index of next entry in free list │
│ │ │ or device queue. │
│ │ │ X'FF' indicates the last entry. │
│ �─3 �─3 │ CHQCCBAD │ Address of CCB/IORB associated │
│ │ │ with I/O request │
│ 4 4 │ │ Reserved │
│ 5 5 │ CHQPROC │ Logical processing flag required │
│ │ CHQDOINT │ X'8�' Interrupt not yet processed │
│ │ CHQDQUNC │ 4� Dequeue unconditional │
│ │ CHQNODEQ │ 2� Do not dequeue entry │
│ │ │ 1� Reserved │
│ │ │ �8 Reserved │
│ │ CHQDASFP │ �4 DASD file protect needed │
│ │ CHQFILE │ �2 SYSFIL on CKD device │
│ │ CHQSFFBA │ �1 SYSFIL on FBA device │
│ 6 6 │ LUBDSP │ System logical unit number │
│ │ │ X'FF' for Programmer logical units │
│ 7 7 │ TKREQID │ Task ID (TID) of request owner │
│ 8 8 │ CHQCCSIO │ SIO flag byte │
│ │ CHQCCACT │ X'8�' Device is active │
│ │ │ 4� Reserved │
│ │ CHQCCPRI │ 2� Primary channel I/O │
│ │ CHQCCLTE │ 1� Long time entry (Missing │
│ │ │ Interrupt Handler) │
│ │ CHQCCRUN │ �8 Condition Code � │
│ │ CHQCCCSW │ �4 Condition Code 1 │
│ │ CHQCCBSY │ �2 Condition Code 2 │
│ │ CHQCCNOP │ �1 Condition Code 3 │
│ 9 9 │ CHQCCBB1 │ Copied from byte 2 of CCB/IORB │
│ 1� A │ CHQCCBB2 │ Copied from byte 3 of CCB/IORB │
│ 11 B │ CHQCCBB3 │ Copied from byte 12 of CCB/IORB │
│ 12 C │ CHQPFIX │ Reserved for page fixing routine. │
│ 13─15 D─F │ CHQPFIXL │ Address of user specified or │
│ │ │ internal fixlist │
└───────────────────┴────────────┴──────────────────────────────────────┘
Figure 220 (Part 1 of 2). Channel Queue Table (CHANQ)

492 VSE/AF Supervisor DRM

┌───────────────────┬────────────┬──────────────────────────────────────┐
│ Bytes │ │ │
│ Dec Hex │ Label │ Description │
├───────────────────┼────────────┼──────────────────────────────────────┤
│ 16 1� │ CHQERRCT │ Error retry count │
│ 17 11 │ CHQCHNHI │ High order byte of next entry in │
│ │ │ chain │
│ 18 12 │ CHQPUBHI │ High order byte of PUB index │
│ 19 13 │ CHQPUBNO │ PUB entry number │
│ 2� 14 │ CHQFLG1 │ Flag byte │
│ │ │ X'8�' Reserved │
│ │ CHQHQA │ 4� Head queue request │
│ │ CHQCSBSY │ 2� Device busy saved from PUB │
│ │ CHQCSQED │ 1� Device queued─in─error from PUB│
│ │ CHQDIDJA │ �8 Request was already accounted │
│ │ │ �4 Reserved │
│ │ │ �2 Reserved │
│ │ CHQFSIO1 │ �1 Start on primary channel only │
│ 21 15 │ CHQGRP │ Requestor flag │
│ │ CHQGROLT │ X'8�' OLTEP request │
│ │ CHQGRBTM │ 4� BTAM request │
│ │ CHQGRVTM │ 2� VTAM request │
│ │ │ 1� Reserved │
│ │ CHQGRRAS │ �8 RAS request │
│ │ CHQGRROK │ �4 Successful retry │
│ │ │ �2 Reserved │
│ │ CHQPVTOK │ �1 PVT has been initiated │
│ 22 16 │ CHQDEV │ Device group indicator │
│ │ CHQDASD │ X'8�' CKD device or diskette │
│ │ CHQFBA │ 4� FBA device │
│ │ CHQTAPE │ 2� TAPE device │
│ │ CHQTP │ 1� TP (teleprocessing) device │
│ │ CHQCRT │ �8 226� or 3277 device │
│ │ CHQURC │ �4 Unit record device │
│ │ │ �2 Reserved │
│ │ │ �1 Reserved │
│ 23 17 │ CHQIOINF │ Delayed interrupt exit indicator │
│ │ │ X'��' Dispatcher │
│ │ │ �4 I/O initiator (INITRG) │
│ │ │ �8 I/O interrupt handler (INTRTRN)│
│ │ │ �C Error ignore routine (IGNORE) │
│ │ │ 1� Cancel with code X'1A' (ERR1A) │
│ │ │ 14 Reserved │
│ │ │ 18 Dequeue routine (DEQUNCON) │
│ │ │ 1C Post routine (PSTRESET) │
│ │ │ 2� Emergency MSG writer │
│ 24─31 18─1F │ CHQCSW │ Accumulated interrupt status │
└───────────────────┴────────────┴──────────────────────────────────────┘

Figure 220 (Part 2 of 2). Channel Queue Table (CHANQ)

 Appendix B. I/O Control Blocks 493

Command Control Block (CCB)
The CCB establishes communication between the problem program and physical
IOCS. The CCB is two double words in length with eight major fields and an
optional field, as shown in Figure 222 on page 499.

┌─────┬────────┬──────┬────────┬───────┬──────┬────────┬───────┬────────┐
│ │Trans─ │ │Type │Used by│ │ │ │ │
│ │mission │CSW │Code and│LIOCS │ │Used by │CCW │Optional│
│Count│Informa─│Status│Logical │or 3895│CCW │Physical│Address│Sense │
│ │tion │Bits │Unit │PIOCS │Addr. │IOCS │in CSW │CCW │
│� 1│2 3│4 5│6 7│ 8 │9 11│ 12 │13 15│16 23│
├─────┴────────┴──┬───┴────────┴───────┴──────┴────────┴───────┴────────┤
│Byte(s) │ Description │
├─────────────────┼───┤
│�─1 RESIDUAL │ Number of bytes that have not been processed │
│ COUNT │ by the channel │
│ │ BTAM: Number of needed copy blocks │
├─────────────────┼──┬──────┤
│2─3 TRANSMITTING │Byte 2 │set on│
│ INFORMATION │ │ by │
│ between ├──┼──────┤
│ PIOCS and │Bit �: Traffic Bit (WAIT). (Note 5) │PIOCS │
│ PROBLEM │Bit 1: End─of─File, (Note 2) │PIOCS │
│ PROGRAM │ PRT1─UCSB Parity Check. │ │
│ (Pr.Pr.) │Bit 2: Permanent I/O error │PIOCS │
│ │Bit 3: Prevent Cancelation on Permanent │ │
│ │ I/O error. │Pr.Pr.│
│ │Bit 4: Return DASD and/or DISKETTE Data │Pr.Pr.│
│ │ Checks │ │
│ │ Indicate action─type messages for DOC.│ │
│ │Bit 5: Post at Device End. (Note 5) │Pr.Pr.│
│ │Bit 6: Return TAPE or DASD Read Data Checks │ │
│ │ (Note 3) │Pr.Pr.│
│ │ Return 252�, 254�, 3881 Equipment Chk.│ │
│ │ Return 35�5, or 3525 perm. error │ │
│ │ (Note 8) │ │
│ │ Return 32�3, PRT1, or 52�3 errors, │ │
│ │ Return 3895 errors. (Note 1�)│ │
│ │Bit 7: User handles I/O errors. (Note 9) │Pr.Pr.│
├─────────────────┼──┴──────┤
│ Note: Pr.Pr. stands for Problem Program │
└───┘
Figure 221 (Part 1 of 4). Command Control Block (CCB)

494 VSE/AF Supervisor DRM

┌─────┬────────┬──────┬────────┬───────┬──────┬────────┬───────┬────────┐
│ │Trans─ │ │Type │Used by│ │ │ │ │
│ │mission │CSW │Code and│LIOCS │ │Used by │CCW │Optional│
│Count│Informa─│Status│Logical │or 3895│CCW │Physical│Address│Sense │
│ │tion │Bits │Unit │PIOCS │Addr. │IOCS │in CSW │CCW │
│� 1│2 3│4 5│6 7│ 8 │9 11│ 12 │13 15│16 23│
├─────┴────────┴──┬───┴────────┴───────┴──────┴────────┴───────┴────────┤
│Byte(s) │ Description │
├─────────────────┼──┬──────┤
│2─3 (cont.) │Byte 3 │set on│
│ │ │ by │
│ ├──┼──────┤
│ │Bit �: DASD Data Check in Count Area, │PIOCS │
│ │ 335� permanent error, │ │
│ │ 32�3, PRT1 or 52�3 Print Check, │ │
│ │ Equipment Check │ │
│ │ 354� Special Record transferred. │ │
│ │Bit 1: DASD Track Overrun, │PIOCS │
│ │ PRT1 Print Quality/Equipment check │ │
│ │Bit 2: DASD End─of─Cylinder, │ │
│ │ PRT1/2245 Line position error.(Note 7)│ │
│ │Bit 3: 252�, 254� or 3881 │PIOCS │
│ │ Equipment Check, │ │
│ │ 32�3, 52�3 Data check, │ │
│ │ Equipment Check │ │
│ │ 35�5 or 3525 Permanent Error, (Note 8)│ │
│ │ TAPE Read Data check, │ │
│ │ DASD Data Check, │ │
│ │ PRT1 Print Check/Data Check, │ │
│ │ Diskette Data Check. │ │
│ │Bit 4: CARD Unusual command sequence, │PIOCS │
│ │ DASD No Record Found, │ │
│ │ PRT1 UCSB, PRT1 UCSB Parity Check │ │
│ │ (Command retry), │ │
│ │Bit 5: User does not expect NO RECORD FOUND │ │
│ │ condition. │Pr.Pr.│
├─────────────────┴──┴──────┤
│ Note: Pr.Pr. stands for Problem Program │
└───┘
Figure 221 (Part 2 of 4). Command Control Block (CCB)

 Appendix B. I/O Control Blocks 495

┌─────┬────────┬──────┬────────┬───────┬──────┬────────┬───────┬────────┐
│ │Trans─ │ │Type │Used by│ │ │ │ │
│ │mission │CSW │Code and│LIOCS │ │Used by │CCW │Optional│
│Count│Informa─│Status│Logical │or 3895│CCW │Physical│Address│Sense │
│ │tion │Bits │Unit │PIOCS │Addr. │IOCS │in CSW │CCW │
│� 1│2 3│4 5│6 7│ 8 │9 11│ 12 │13 15│16 23│
├─────┴────────┴──┬───┴────────┴───────┴──────┴────────┴───────┴────────┤
│Byte(s) │ Description │
├─────────────────┼──┬──────┤
│2─3 (cont.) │Byte 3 │set on│
│ │ │ by │
│ ├──┼──────┤
│ │Bit 6: PRINTER Carriage Channel 9 Overflow, │PIOCS │
│ │ DASD Verify error │ │
│ │Bit 7: Channel Program is not retryable │Pr.Pr.│
│ │ Retry will be started from failing │ │
│ │ CCW if possible. │ │
├─────────────────┼─────────────────────────┬────────────────────┴──────┤
│4─5 CSW STATUS │Byte 4 │Byte 5 (Note 1) │
│ BYTES ├─────────────────────────┼───────────────────────────┤
│ │Bits: │Bits: │
│ │� (32): Attention │� (4�): Program Controlled│
│ │ │ Interruption │
│ │1 (33): Status Modifier │1 (41): Incorrect Length │
│ │2 (34): Control Unit End│2 (42): Program Check │
│ │3 (35): Busy │3 (43): Protection Check │
│ │4 (36): Channel End │4 (44): Channel Data Check│
│ │5 (37): Device End │5 (45): Channel Control │
│ │ │ Check │
│ │6 (38): Unit Check │6 (46): Interface Control │
│ │ │ Check │
│ │7 (39): Unit Exception │7 (47): Chaining Check │
├─────────────────┼─────────────────────────┴───────────────────────────┤
│6─7 TYPE code and│Byte 6 │
│ UNIT ID ├───┤
│ │B'1x�xx�xx' = User─translated CCB │
│ │B'�1x�x��x' = BTAM CCB │
│ │B'�x1xx�xx' = System─translated CCB │
│ │B'x�xx1�yy' = CCB for physical unit (yy is high │
│ order bits of 1� bit PUB index with │
│ byte 7 containing low order bits) │
│ │B'xxxx���1' = CCB for program logical unit │
│ │B'xxxx����' = CCB for system logical unit │
├─────────────────┴───┤
│ Note: Pr.Pr. stands for Problem Program │
└───┘
Figure 221 (Part 3 of 4). Command Control Block (CCB)

496 VSE/AF Supervisor DRM

┌─────┬────────┬──────┬────────┬───────┬──────┬────────┬───────┬────────┐
│ │Trans─ │ │Type │Used by│ │ │ │ │
│ │mission │CSW │Code and│LIOCS │ │Used by │CCW │Optional│
│Count│Informa─│Status│Logical │or 3895│CCW │Physical│Address│Sense │
│ │tion │Bits │Unit │PIOCS │Addr. │IOCS │in CSW │CCW │
│� 1│2 3│4 5│6 7│ 8 │9 11│ 12 │13 15│16 23│
├─────┴────────┴──┬───┴────────┴───────┴──────┴────────┴───────┴────────┤
│Byte(s) │ Description │
├─────────────────┼───┤
│6─7 TYPE code and│Byte 7 │
│ UNIT ID ├─────────────────────────┬────────────┬──────────────┤
│ (cont.) │ Byte 6 │ Byte 6 │ Byte 6 │
│ │ bit 4 off + 7 off │Bit 4 off │ Bit 4 on │
│ │ │ 7 on │ │
│ ├─────────────────────────┼────────────┼──────────────┤
│ │ SYSRDR=�� SYSRLB=�8 │SYS���=�� │PUB entry No. │
│ │ SYSIPT=�1 SYSUSE=�9 │SYS��1=�1 │ ��� │
│ │ SYSPCH=�2 SYSREC=�A │SYS��2=�2 │ . │
│ │ SYSLST=�3 SYSCLB=�B │ . │ . │
│ │ SYSLOG=�4 SYSDMP=�C │ . │ . │
│ │ SYSLNK=�5 SYSCAT=�D │ . │ . │
│ │ SYSRES=�6 SYSLUB=�E─FF│ . │ . │
│ │ SYSSLB=�7 │SYS255=FF │ 3FF │
│ │ │ │ (bits 6-7 of │
│ │ │ │ byte 6 used) │
├─────────────────┼───┤
│8 LIOCS │Buffer Offset: │
│ Information │ASCII Input Tapes X'��' - X'63' │
│ │ASCII Output Tapes Variable X'�4' │
│ │3895 Error information (Note 1�) │
├─────────────────┼───┤
│9─11 CCW ADDRESS │Virtual or real addr. of CCW associated with this CCB│
│ │ (Byte 6 bit � = 1 Address is a REAL address) │
│ │ (Byte 6 bit � = � Address is a VIRTUAL address)│
├─────────────────┼───┤
│12 PIOCS │X'8�' CCB is used by ERP │
│ Information │X'4�' Reserved │
│ │X'2�' Sense Information desired (Note 9)│
│ │X'1�' Reserved │
│ │X'�8' Reserved │
│ │X'�4' OLTEP appendage available │
│ │X'�2' Reserved │
│ │X'�1' Reserved │
│13─15 CCW ADDRESS│Address of CCW pointed to by CSW at Channel End, │
│ from CSW │ (Byte 6 bit � = 1 Address is real) │
│ │ (Byte 6 bit � = � Address is virtual) │
│ │or address of the appendage routine. │
│...│
│ OPTIONAL │ │
│16─23 Sense CCW │8 bytes appended to the CCB when Sense Information │
│ │is desired. │
└─────────────────┴───┘

Figure 221 (Part 4 of 4). Command Control Block (CCB)

Notes:

1. Bytes 4 and 5 contain the status bytes of the CSW (Bits 32-47). If byte 2, bit 5
is ON and Device End occurs as a separate interrupt, bytes 4 and 5 will
contain the accumulated status information. A tape read-backward I/O opera-
tion reading into loadpoint will force the UNIT EXCEPTION (Bit 47) to be turned
on and the unit check bit to be reset (assuming byte 2 bit 7 and byte 12 bit 2
are both off).

 Appendix B. I/O Control Blocks 497

2. Indicates /* or /& statement read on SYSRDR or SYSIPT. byte 4, bit 7 (Unit
Exception) is also on.

3. DASD data checks on count not returned.

4. The traffic bit (Byte 2, bit 0) is normally set on at channel end to signify that the
I/O was completed. If byte 2, bit 5 has been set on, the traffic bit and bits 2
and 6 in byte 3 will be set on at device end. See also Note 1.

5. This error occurs as an equipment check, data check or FCB parity check. For
2245, this error occurs as a data check or FCB parity check.

6. Byte 2, bit 6 must be set on to allow you to accept 3505, 3525 permanent
errors. This bit is forced on by LIOCS if the user specified ERROPT for his
input or output files. Byte 3, bit 3 is set on if a permanent error was encount-
ered.

7. If User Error Routine is specified and the user needs the sense information to
further process the error, byte 12, bit 2 must also be set. Otherwise, the super-
visor error routine will clear off the status on return and the sense information is
not available.

8. 3895 error codes are returned in CCB byte 8. Refer to 3895 Document
Reader/Inscriber Machine and Programming Description for information on
these error codes.

498 VSE/AF Supervisor DRM

Input/Output Request Block (IORB)
The IORB establishes communication between the problem program and physical
IOCS. The IORB consists of a fixed length part (24-bytes) and some optional
extension fields each of it fixed length (4-bytes), which are all appended to each
other.

┌─────────────────┬───┐
│ Bytes │ │
│ Dec Hex │ Description │
├─────────────────┼───┤
│ �─ 1 1─ 1 │ Residual count, │
│ │ Number of bytes which where not transferred by the │
│ │ channel │
│ 2 2 │ Communication Byte 1 │
│ │ Set by Physical IOCS: │
│ │ X'8�' WAIT Bit, Traffic Bit (Note 1)│
│ │ X'4�' End─of─File on SYSRDR or SYSIPT, /� or /& │
│ │ (Note 2)│
│ │ X'2�' Permanent I/O error encountered │
│ │ The following bits can be set by problem program │
│ │ X'1�' Prevent Cancelation in case of │
│ │ permanent I/O Error │
│ │ X'�8' Reserved │
│ │ X'�4' User wants to be posted at device end time │
│ │ (Note 1)│
│ │ X'�2' Reserved │
│ │ X'�1' Skip system error Recovery │
│ │ (no Recovery Action) │
│ 3 3 │ Communication Byte 2 │
│ │ Reserved for ERP return information. │
│ 4 4 │ Device Status Information (Note 3)│
│ │ X'8�' Attention │
│ │ X'4�' Status modifier │
│ │ X'2�' Control unit end │
│ │ X'1�' Busy │
│ │ X'�8' Channel end │
│ │ X'�4' Device end │
│ │ X'�2' Unit check │
│ │ X'�1' Unit exception │
│ 5 5 │ Channel Status Information (Note 3)│
│ │ X'8�' Program controlled Interrupt │
│ │ X'4�' Incorrect length │
│ │ X'2�' Program check │
│ │ X'1�' Protection check │
│ │ X'�8' Channel data check │
│ │ X'�8' Channel control check │
│ │ X'�2' Interface control check │
│ │ X'�1' Channel Chaining check │
└─────────────────┴───┘
Figure 222 (Part 1 of 3). Input/Output Request Block (IORB)

 Appendix B. I/O Control Blocks 499

┌─────────────────┬───┐
│ Bytes │ │
│ Dec Hex │ Description │
├─────────────────┼───┤
│6─7 TYPE code and│Byte 6 │
│ UNIT ID ├───┤
│ │B'1xxxx1xx' = Reserved │
│ │B'�1xxx1xx' = Reserved │
│ │B'��1xx1xx' = System─translated IORB │
│ │B'��xx11yy' = IORB for physical unit (yy is high │
│ | order bits of 1� bit PUB index with │
│ | byte 7 containing low order bits) │
│ │B'��xx�1�1' = IORB for program logical unit |
│ │B'��xx�1��' = IORB for system logical unit |
├─────────────────┴───┤
│6─7 TYPE code and│Byte 7 │
│ UNIT ID ├─────────────────────────┬────────────┬──────────────┤
│ │ Byte 6 │ Byte 6 │ Byte 6 │
│ │ bit 4 off + 7 off │Bit 4 off │ Bit 4 on │
│ │ │ 7 on │ │
│ ├─────────────────────────┼────────────┼──────────────┤
│ │ SYSRDR=�� SYSRLB=�8 │SYS���=�� │PUB entry No. │
│ │ SYSIPT=�1 SYSUSE=�9 │SYS��1=�1 │ ��� │
│ │ SYSPCH=�2 SYSREC=�A │SYS��2=�2 │ . │
│ │ SYSLST=�3 SYSCLB=�B │ . │ . │
│ │ SYSLOG=�4 SYSDMP=�C │ . │ . │
│ │ SYSLNK=�5 SYSCAT=�D │ . │ . │
│ │ SYSRES=�6 SYSLUB=�E─FF│ . │ . │
│ │ SYSSLB=�7 │SYS255=FF │ 3FF │
│ │ │ │ (bits 6-7 of │
│ │ │ │ byte 6 used) │
│ ├─────────────────────────┴────────────┴──────────────┤
│ 8 8 │ Reserved │
│ 9─11 9─ B │ Virtual address of the CCW associated with this IORB│
│ 12 C │ Reserved for physical Input Output Control System │
│ │ (PIOCS) │
│ │ X'8�' IORB is used by Error Recovery Procedure │
│ │ X'4�' Reserved │
│ │ X'2�' This IORB has an extension │
│ │ X'1�' Reserved │
│ │ X'�8' Reserved │
│ │ X'�4' Reserved │
│ │ X'�2' Reserved │
│ │ X'�1' Reserved │
│ 13─15 D─ F │ Address+8 of last CCW that was executed │
└─────────────────┴───┘
Figure 222 (Part 2 of 3). Input/Output Request Block (IORB)

500 VSE/AF Supervisor DRM

┌─────────────────┬───┐
│ Bytes │ │
│ Dec Hex │ Description │
├─────────────────┼───┤
│ 16 1� │ Fix Flag │
│ │ X'8�' Fix List is already in compressed format │
│ │ (Each page to be fixed for Channel Program │
│ │ execution is covered only once │
│ │ within the FIXLIST) │
│ │ X'4�' All pages are FIXED │
│ │ (The user has already fixed all the pages │
│ │ need for channel program execution) │
│ │ X'2�' Reserved │
│ │ X'1�' Reserved │
│ │ X'�8' Reserved │
│ │ X'�4' Reserved │
│ │ X'�2' Reserved │
│ │ X'�1' Reserved │
│ 17─19 11─13 │ Address of FIXLIST │
│ 2�─21 14─15 │ IORB Version identification code │
│ 22─23 16─17 │ Special processing flags set by LIOCS │
│ │ Bit � SYSFIL request for FBA Device │
│ │ Bits 1─15 Reserved │
│...│
│ OPTIONAL │ │
│ 24 18 │ Parameter ID: │
│ │ Bit � IDentifies the last optional Parameter │
│ │ Bits 1─7 Parameter ID │
│ │ │
│ │ B'�������' ECB ID │
│ │ B'xxxxxxX' Reserved │
│ 25─27 19─1B │ Address portion of optional Parameter │
│...│
� � �
� � �
� � �
│ │ Parameter ID: │
│...│
│ │ Parameter ID: │
└─────────────────┴───┘

Notes:

1. The WAIT Bit (byte 2, bit 0) is normally set on at Channel End to
to signify that at least the data transfer is completed.
If byte 2, bit 5, has been set on, the WAIT Bit is set at Device End.

2. Unit Exception (Byte 4, bit 7) is also turned on.

3. Bytes 4 and 5 contain the status bytes of CSW (Bits 32-47)
which is always the accumulated status information received so far.

Figure 222 (Part 3 of 3). Input/Output Request Block (IORB)

 Appendix B. I/O Control Blocks 501

Disk Information Block (DIB) Tables
DIB Table for CKD and DISKETTE
DIB for FBA Device
DIB Extension (DIBX) Table (required by FBA)

There is one DIB table per partition. Its address can be found at label PCEADIB in
the partition's PCE.
The DIB tables for the static partitions are allocated during supervisor generation.
Each DIB table comprises a number of single entries. There is one entry for each,
SYSLNK (open information), SYSIN, SYSPCH and SYSLST.
The DIB entries for dynamic partitions are allocated in the system getvis area
during dynamic partition allocation and consist of a single for SYSLNK only.

Disk Information Block (DIB) Table for CKD and DISKETTE
There are different formats of the DIB entries:

┌──────────────┬─────────┬─────────────┬────────┬────┬────────┬────┬────┐
│ Current │Length of│End of Extent│Head No.│Max │Notify │Flag│ │
│Record Address│Key│Data │ Address │High│Low│Rec.│Rec.No. │ │ │
│ � 6│ 7 │8 9│1� 16│ 17 │ 18│ 19 │2� 21│ 22 │ 23 │
├──────────────┴──┬┴─────┴─────────────┴────┴───┴────┴────────┴────┴────┤
│Byte(s) │ Description │
├─────────────────┼───┤
│ � CURRENT │ Specifies the disk address of the next sequential │
│ RECORD │ record. The format differs slightly depending │
│ ADDRESS │ on the file and the device. │
│ │ For CKD─devices: For DISKETTE─devices:│
│ │ SYSIN : BBCCHHR SYSIN : ����CHR │
│ │ SYSPCH : BBCCHHR SYSPCH : ����CHR │
│ │ SYSLST : BBCCHHR SYSLST : ����CHR │
├─────────────────┼───┤
│ 7 KEY LENGTH│ Always zero │
├─────────────────┼───┤
│ 8 DATA LENGTH│ Data length of record to be processed │
│ │ For CKD─devices: For DISKETTE─devices:│
│ │ SYSIN : X'��5�' or X'��51' SYSIN : X'����' │
│ │ SYSPCH : X'��51' SYSPCH : X'����' │
│ │ SYSLST : X'��78' SYSLST : X'����' │
├─────────────────┼───┤
│ 1� END of │ Specifies the disk address of the last record │
│ EXTENT │ within the given Extent. │
│ ADDRESS │ For CKD─devices: For DISKETTE─devices:│
│ │ SYSIN : BBCCHHR SYSIN : ����CHR │
│ │ SYSPCH : BBCCHHR SYSPCH : ����CHR │
│ │ SYSLST : BBCCHHR SYSLST : ����CHR │
├─────────────────┴───┤
│ Note: The DIB is initialized by Job Control with Extent Info. and │
│ updated by PIOCS on every I/O oper. to the appropriate device. │
└───┘
Figure 223 (Part 1 of 2). Disk Information Block Table (DIB) for CKD Devices and Diskette

502 VSE/AF Supervisor DRM

┌──────────────┬─────────┬─────────────┬────────┬────┬────────┬────┬────┐
│ Current │Length of│End of Extent│Head No.│Max │Notify │Flag│ │
│Record Address│Key│Data │ Address │High│Low│Rec.│Rec.No. │ │ │
│ � 6│ 7 │8 9│1� 16│ 17 │ 18│ 19 │2� 21│ 22 │ 23 │
├──────────────┴──┬┴─────┴─────────────┴────┴───┴────┴────────┴────┴────┤
│Byte(s) │ Description │
├─────────────────┼───┤
│ 17 HIGHEST │ Highest head number accessible on this device │
│ HEAD NO. │ │
├─────────────────┼───┤
│ 18 LOWEST │ Lowest head number accessible on this device │
│ HEAD NO. │ │
├─────────────────┼───┤
│ 19 MAXIMUM NO.│ Maximum number of records that fit on one track │
│ of RECORDS │ │
├─────────────────┼───┤
│ 2� NOTIFY │ This field specifies the number of records that │
│ RECORD │ the user wants to be checked at EOJ time of whether │
│ NUMBER │ they still fit into the specified Extent │
│ │ (applicable for output only). This field is set by │
│ │ the JCL SET statement (RCLST or PCPCH). A warning │
│ │ message will be issued when this minimum number has │
│ │ been reached or exceeded during the previous JOB. │
├─────────────────┼───┤
│ 22 FLAG BYTE │ Flag byte: X'4�' Device with RPS feature │
├─────────────────┼───┤
│ 23 RESERVED │ Not used │
├─────────────────┴───┤
│ Note: The DIB is initialized by Job Control with Extent Info. and │
│ updated by PIOCS on every I/O oper. to the appropriate device. │
└───┘

Figure 223 (Part 2 of 2). Disk Information Block Table (DIB) for CKD Devices and Diskette

 Appendix B. I/O Control Blocks 503

Disk Information Block Table (DIB) for FBA Device

┌───────────────────┬────────────┬──────────────────────────────────────┐
│ Bytes │ │ │
│ Dec Hex │ Label │ Description │
├───────────────────┼────────────┼──────────────────────────────────────┤
│ �─3 �─3 │ ULPBN │ End address of extent. Upper limit │
│ │ │ of physical block number │
│ 4─7 4─7 │ CRPBN │ Current address. Current │
│ │ │ physical block number │
│ 8─9 8─9 │ CIOFF │ Offset of current record within │
│ │ │ control interval │
│ 1�─11 A─B │ LNGCI │ Length of control intervals in bytes │
│ 12 C │ PBPERCI │ Number of physical blocks per │
│ │ │ control interval │
│ 13─15 D─F │ PBUFFER │ Pointer to data buffer │
│ 16 1� │ DIBFLAGS │ X'8�' DIB gate flag │
│ │ │ X'4�' Task waiting for DIB │
│ │ │ X'2�' Reserved │
│ │ │ X'1�' Source begin readjustment │
│ │ │ required │
│ │ │ X'�8' Reserved │
│ │ │ X'�4' Force write out │
│ │ │ X'�2' End of extent reached │
│ │ │ X'�1' Buffer─in─use flag │
│ 17─19 11─13 │ PDIBX │ Pointer to DIB extension (DIBX) │
│ 2�─21 14─15 │ DIBRSCNT │ Residual count for JCL message │
│ 22─23 16─17 │ │ Reserved │
└───────────────────┴────────────┴──────────────────────────────────────┘

Figure 224. Disk Information Block Table (DIB) for FBA Devices

The FBA device also requires a DIB Extension (DIBX) Table.

┌───────────────────┬───┐
│ Bytes │ │
│ Dec Hex │ Description │
├───────────────────┼───┤
│ �─23 �─17 │ Input Output Request Block (IORB) │
│ 24─31 18─1F │ Fixlist first area │
│ 32─39 2�─27 │ Fixlist second area │
│ 4�─47 28─2F │ DEFINE EXTENT CCW │
│ 48─55 3�─37 │ LOCATE CCW │
│ 56─63 38─3F │ READ/WRITE CCW │
│ 64─79 4�─4F │ DEFINE EXTENT Parameter list │
│ 8�─87 5�─57 │ LOCATE Parameter list │
└───────────────────┴───┘

Figure 225. DIB Extension Table (DIBX) for FBA Devices

504 VSE/AF Supervisor DRM

 ERBLOC Area
The ERBLOC is an area in the SGERP part of the supervisor used as an interface
between system components involved in I/O Error- or Recording Request proc-
essing. The AERBLOC field (Bytes 0-3) of the System Communication Region
(SYSCOM) contains a pointer to the ERBLOC area. Internal macro ERBLOC maps
the ERBLOC.

┌───────────────────┬────────────┬──────────────────────────────────────┐
│ Bytes │ │ │
│ Dec Hex │ Label │ Description │
├───────────────────┼────────────┼──────────────────────────────────────┤
│ �- 7 �- 7 │ SVC5NM │ Name of first/next ERP Transient │
│ │ │ to be fetched or used last │
│ 8-11 8- B │ YRETRY │ Continuation address for I/O RETRY │
│ 12-15 C- F │ YIGNORE │ Continuation address for error IGNORE│
│ 16-19 1�-13 │ ACANCEL │ Continuation address for I/O CANCEL │
│ 2�─23 13─17 │ YERPEXIT │ Common DSK/ERP return address │
│................. Begin of Unit Check entry│
│ 24-31 18-1F │ ERQCSW1 │ Channel Status Word at time of error │
│ 32-33 2�-21 │ ERRPUB1 │ PUB pointer of affected device │
│ 34 22 │ ERQFLG1 │ Flag Byte │
│ │ TRUNRF │ X'8�' No record found on DASD │
│ │ │ 4� Set device interv. required │
│ │ │ 2� Pass back error information │
│ │ IGNERR │ 1� Force error IGNORE exit │
│ │ SUCCESS │ �8 Error successfully recovered │
│ │ RTYERR │ �4 Force SIO RETRY exit │
│ │ │ �2 Force Recording only │
│ │ OCCUP │ �1 Error block is in use │
│ 35 23 │ ERQMSG1 │ X'E2' Soft error │
│ │ │ X'AE' Reserved for recording │
│ │ │ X'xx' Message code │
│ 36-39 24-27 │ ERQSEK1 │ Used for disk devices only │
│ │ │ CKD: Failing Seek address │
│ │ │ FBA: OS device type codes │
│ 4� 28 │ ERQCCB1 │ Index of channel queue entry │
│ │ │ X'FF' for unsolicited error │
│ 41-43 29-2B │ │ CCB pointer (� if no CCB available) │
│ 44-75 2C-4B │ ERQSNS1 │ Sense data │
│................. End of UNIT CHECK entry│
│................. Layout of RECORDING entry│
│ 24-27 18-1B │ ERQAEADR │ SD record address │
│ 28 1C │ ERQAELEN │ Length of SD record │
│ 29 1D │ ERQAETYP │ Type of SD record │
│ │ │ X'FF' = Record builder request │
│ 3� 1E │ ERQAESW1 │ Record dependent switch 1 │
│ 31 1F │ ERQAESW2 │ Record dependent switch 2 │
│ 32─33 2�─21 │ ERQAEPUB │ PUB pointer of affected device │
│ 34 22 │ ERQAEFLG │ Flag Byte │
│ │ │ X'8�' SD record is TFIX─ed │
│ │ │ �2 Must be � for recording info. │
│ │ OCCUP │ �1 Error entry is in use │
│ 35 23 │ ERQAEMSG │ Contains X'AE' for Alternate Entry │
│ 36─39 24─27 │ ERQAETIB │ TIB of requesting task │
│ 4� 28 │ ERQAEIND │ Set to FF │
│ 41─43 29─2B │ │ Reserved │
│ 44─75 2C─4B │ ERQAECOM │ Communication information │
│..................End of RECORDING entry...............................│

 Appendix B. I/O Control Blocks 505

│.................ERBLOC continued│
│ 76-79 4C-4F │ ERQPUB21 │ PUB2 pointer │
│ 8�-83 5�-53 │ ERQCAW1 │ CAW for RETRY as prepared by ERP │
│ 84-91 54-5B │ ERQPRIN1 │ ERP processing information │
│ 84 54 │ ERQLSNS1 │ Number of sense bytes │
│ 85 55 │ ERQPRFL1 │ Processing flags │
│ │ ERQPSOV │ X'8�' Multiple unit checks │
│ │ ERQPVT │ X'4�' Path verification required │
│ │ │ X'2�' Reserved │
│ │ ERQV51� │ X'1�' Extended ERBLOC version │
│ │ ERQPMSG │ X'�8' Message processing only │
│ │ │ X'�4' Reserved │
│ │ │ X'�2' Reserved │
│ │ │ X'�1' Reserved │
│ 86 56 │ ERQERPF1 │ ERP communication flags │
│ │ │ X'8�' Reserved │
│ │ ERQPOBR │ X'4�' OBR processing │
│ │ ERQPMDR │ X'2�' MDR processing │
│ │ ERQPSIR │ X'1�' ALERT processing │
│ │ ERQPPER │ X'�8' Permanent error │
│ │ ERQPTEM │ X'�4' Temporary error │
│ │ ERQPSOF │ X'�2' Soft error │
│ │ │ X'�1' Reserved │
│ 87 57 │ ERQPATH1 │ Path failure information │
│ 88-91 58-5B │ ERQCOMM1 │ ERP communication area │
│ 92-95 5C-5F │ ERQPUBX1 │ PUBX pointer │
│ 96 6� │ ERQACPU1 │ Processor ID information │
│ 97 61 │ │ Reserved │
│ 98 62 │ ERQERR1 │ Error count │
│ 99 63 │ ERQCCOD1 │ Command Code set by ERP │
│ 1��-1�3 64-67 │ ERQCHQA1 │ Reserved │
│ 1�4-111 68-6F │ ERQFJOB1 │ Failing job name │
│ 112-115 7�-73 │ ERQSCSW1 │ Subchannel status word � │
│ 116-119 74-77 │ ERQESW1 │ Extended status word � │
│ 12�-123 78-7B │ ERQPUBN1 │ Pub index │
│ 124-125 7C-7D │ ERQTID1 │ Task ID of failing task │
│ 126-127 7E-7F │ ERQRFRL1 │ Lenght of recording area │
│ 128-129 8�-81 │ ERQRFRA1 │ Address of recording area │
│ 13�-3�5 82-131 │ ERQRFRC1 │ RF record area │
│ 3�6-321 132-141 │ ERCHNOFT │ Chain header offset table, used to │
│ │ │ address the following error chains │
│ 322-325 142-145 │ RASERCHN │ Address of first RAS error entry │
│ 326-329 146-149 │ │ Pointer to RAS TIB │
│ 33�-333 14A-14D │ ERPERCHN │ Address of first ERP error entry │
│ 334-337 14E-151 │ │ Pointer to ERP TIB │
│ 338-341 152-155 │ DSKERCHN │ Address of first DSK error entry │
│ 342-345 156-159 │ │ Pointer to DSK TIB │
│ 346-349 15A-15D │ SNSERCHN │ Address of first SNS error entry │
│ 35�-353 15E-161 │ │ Pointer to SNS TIB │
│ 354-389 162-185 │ SNSSDAID │ Sense data saved by SDAID │
└───────────────────┴────────────┴──────────────────────────────────────┘

Note: See Figure 227 on page 507.

Figure 226 (Part 2 of 2). ERBLOC Area

506 VSE/AF Supervisor DRM

I/O Error Entry
There is one I/O error entry for each device. Field PBXERBLK in the PUBX con-
tains a pointer to this entry. An additional error entry exists for some system tasks.
The address of this entry is contained in field TCBERBLK of the system task TCB.

┌───────────────────┬────────────┬──────────────────────────────────────┐
│ Bytes │ │ │
│ Dec Hex │ Label │ Description │
├───────────────────┼────────────┼──────────────────────────────────────┤
│ �-3 �-3 │ ERBLKPTR │ Pointer to next error entry in a │
│ │ │ chain or � │
│ 4 4 │ ERBLKFLG │ Flag byte │
│ │ HQERBLK │ X'8�' System task error entry │
│ │ ALTCHANN │ 4� Error on alternate channel │
│ │ ERSNSDAV │ 2� Sense data available │
│ │ ERACTIVE │ 1� Error entry active │
│ │ ERQUEUED │ �8 Error entry is enqueued in │
│ │ │ some error chain │
│ │ │ �4 Reserved │
│ │ │ �2 Reserved │
│ │ │ �1 Reserved │
│ 5 5 │ ERBLKFLG1 │ Flag byte │
│ │ │ X'8�' Reserved │
│ │ │ 4� Reserved │
│ │ │ 2� Reserved │
│ │ │ 1� Reserved │
│ │ NEEDSNS │ �8 Must be processed by SNS task │
│ │ NEEDDSK │ �4 Must be processed by DSK task │
│ │ NEEDERP │ �2 Must be processed by ERP task │
│ │ NEEDRAS │ �1 Must be processed by RAS task │
│ 6 6 │ │ Reserved │
│ 7 7 │ ERBLKSNL │ Number of sense bytes │
│ 8 - 11 8 - B │ ERRQCHQA │ Address of channel queue entry │
│ 12 - 43 C - 2B │ ERRQE4ID | Extended Sense ID information │
│................. End of error entry header│
Figure 227 (Part 1 of 3). I/O Error Recovery/Recording Entry

 Appendix B. I/O Control Blocks 507

┌───────────────────┬────────────┬──────────────────────────────────────┐
│ Bytes │ │ │
│ Dec Hex │ Label | Description │
│..................... Unit Check error entry│
│ 44 2C │ ERRQLSNS | Number of sense bytes │
│ 45 2D │ ERRQPRFL │ Processing flag │
│ │ ERRQPSOV │ X'8�' Multiple unit checks │
│ │ ERRQPVT │ X'4�' Path verification required │
│ │ │ X'2�' Reserved │
│ │ │ X'1�' Reserved │
│ │ ERRQPMSG │ X'�8' Message processing only │
│ │ ERRQBDPM │ X'�4' Duplex pair suspension message │
│ │ │ X'�2' Reserved │
│ │ │ X'�1' Reserved │
│ 46 2E │ ERRQERPF │ ERP communication flag │
│ │ │ X'8�' Reserved │
│ │ ERRQPOBR │ X'4�' OBR processing │
│ │ ERRQPMDR │ X'2�' MDR processing │
│ │ ERRQPSIR │ X'1�' ALERT processing │
│ │ ERRQPPER │ X'�8' Permanent error │
│ │ ERRQPTEM │ X'�4' Temporary error │
│ │ ERRQPSOF │ X'�2' Soft error │
│ │ ERRQPT91 │ X'�1' Type 91 MDR │
│ 47 2F │ ERRQPATH │ Path failure information │
│ 48 - 51 3� - 33 │ ERRQCOMM │ ERP communication area │
│ 52 - 59 34 - 3B │ ERRQCSW │ CSW indicating error condition │
│ 6� - 61 3C - 3D │ ERRQPUB │ PUB pointer of affected device │
│ 62 3E │ ERRQFLG │ Flag Byte │
│ │ TRUNRF │ X'8�' No record found on DASD │
│ │ │ 4� Reserved │
│ │ PASSBK │ 2� Pass back error │
│ │ IGNERR │ 1� IGNORE is possible │
│ │ SUCCESS │ �8 Error successfully recovered │
│ │ RTYERR │ �4 Channel command RETRY possible │
│ │ RECONLY │ �2 Force recording only │
│ │ OCCUP │ �1 Error entry is in use │
│ 63 3F │ ERRQMSG │ Message Code │
│ │ │ X'E2' Soft error │
│ │ RCVMSG │ X'2�' Initial value in case │
│ │ │ Sense command failed │
│ 64 - 67 4� - 43 │ ERRQSEK │ Used for disk devices only │
│ │ │ CKD: Failing Seek address │
│ │ │ FBA: OS device type codes │
│ 68 44 │ ERRQCQPT │ Index of channel queue entry │
│ │ │ X'FF' for unsolicited error │
│ 68 - 71 44 - 47 │ ERRQCCB │ CCB pointer (� if no CCB available) │
│ 72 - .. 48 - .. │ ERRQSNS │ Sense data │
│................. End of UNIT CHECK entry│
Figure 227 (Part 2 of 3). I/O Error Recovery/Recording Entry

508 VSE/AF Supervisor DRM

│................. Channel Check entry│
│ 44 - 45 2C - 2D │ CCEQNSNS │ Reserved │
│ 46 2E │ CCEQFLG │ channel check handler Flag byte │
│ │ CCSIO │ X'8�' Channel Check on SIO │
│ │ CCDAM │ X'4�' Channel damage │
│ │ │ X'2�' Reserved │
│ │ │ X'1�' Reserved │
│ │ CCREC │ X'�8' Record built or written │
│ │ │ X'�4' Reserved │
│ │ CCDSK │ X'�2' Channel check on DASD devive │
│ │ │ X'�1' Skip message writer │
│ 47 2F │ CCEQDMC │ Channel failure information │
│ 48 3� │ │ Reserved │
│ 49 31 │ CCEQRTC │ Retry counter │
│ 5� 32 │ CCEQTIDN │ Failing task id │
│ 52 - 59 34 - 3B │ CCEQCSW │ CSW at time of error │
│ 6� - 61 3C - 3D │ CCEQPUB │ PUB pointer of affected device │
│ 62 3E │ CCEQSFLG │ Flag Byte │
│ │ │ X'8�' Reserved │
│ │ │ 4� Reserved │
│ │ │ 2� Reserved │
│ │ │ 1� Reserved │
│ │ │ �8 Reserved │
│ │ │ �4 Reserved │
│ │ │ �2 Reserved │
│ │ OCCUP │ �1 Error enrty is in use │
│ 63 3F │ CCEQMSG │ Message Code │
│ 64 - 67 4� - 43 │ CCEQIOEL │ I/O extended logout area address │
│ 68 44 │ CCEQCQP │ Chanq Index of failing request │
│ │ │ X'FF' for unsolicited error │
│ 69 - 71 45 - 47 │ CCEQECSW │ Extended Channel Status Word (ECSW) │
│..................End of CHANNEL CHECK entry│
└───────────────────┴────────────┴──────────────────────────────────────┘

Figure 227 (Part 3 of 3). I/O Error Recovery/Recording Entry

 Appendix B. I/O Control Blocks 509

Recorder File Table (RFTABLE)

 SYSCOM
 � 64 67
┌────────── ───────────┬──────────┬─────── ──────────┐

 │ ��� │ RFTABAD │ ��� │
└────────── ───────────┴─────┬────┴─────── ──────────┘

 │
 │
 │
 │
 │

 RFTABLE
 ┌──────────────────────┐
 │ │
 │ │
 │ │
 │ │
 │ │
 │ │
 │ │
 │ │
 └──────────────────────┘

Figure 228. Recorder File Table Relationship

510 VSE/AF Supervisor DRM

┌───────────────────┬──────────┬──┐
│ Bytes │ │ │
│ Dec Hex │ Label │ Description │
├───────────────────┼──────────┼──┤
│ │ RFTABLE │ Label of Starting Address │
│ � � │ RFFLAGS1 │ Flag byte 1 │
│ │ RFFULL │ X'8�' File full │
│ │ RFRDE │ 4� RDE option included │
│ │ RFIPL │ 2� Initial IPL │
│ │ RFNO │ 1� RF=No option │
│ │ RFCREATE │ �8 File is to be created │
│ │ RFBUILT │ �4 File has been created │
│ │ RFONFBA │ �2 File on FBA device │
│ │ RFREADY │ �1 File ready │
│ 1 1 │ RFFLAGS2 │ Flag byte 2 │
│ │ FFMSG │ X'8�' File full message request │
│ │ LTMSG │ 4� Last track message request │
│ │ IEMSG │ 2� I/O error message request │
│ │ DLMSG │ 1� Data lost message request │
│ │ RFEVA │ �8 EVA message request │
│ │ RFRTAOWN │ �4 File owned by RTA recorder │
│ │ RFPTAOWN │ �2 File owned by PTA recorder │
│ │ RFEREP │ �1 File being accessed by EREP │
│ 2 2 │ RFFLAGS3 │ Flag byte 3 │
│ │ LTMISSUD │ X'8�' Last track msg issued once │
│ │ RECDERR │ 4� Error is to be recorded │
│ │ RECDSF │ 2� Short form record request │
│ │ RFIRULT │ 1� Individual records for │
│ │ │ unlabeled tapes │
│ │ │ �8 Reserved │
│ │ RFHIOERR │ �4 Error in writing RFHEADER │
│ │ RFBOMT�5 │ �2 Exit to $$BOMT�5 │
│ │ │ indicator for $$BOPEN │
│ │ RFBOMT�1 │ �1 Exit to $$BOMT�1 │
│ │ │ indicator for $$BOPEN │
│ 3 3 │ RFFLAGS4 │ Flag byte 4 │
│ │ │ X'8�' ─ X'�2' Reserved │
│ │ RFRNW │ �1 No record written │
│ 4 4 │ RFFLAGS5 │ Flag byte 5 │
│ │ │ X'8�' ─ X'�2' Reserved │
│ │ RFFLG5BD │ �1 BOPEND called by OPEN │
│ 5 5 │ RFNOFN │ N of N for records (low order 4 bits con-│
│ │ │ tain the number of records to be recorded│
│ │ │ and high order 4 bits contain the number │
│ │ │ of the records being recorded) │
│ 6 6 │ RFRECTYP │ Record type code │
│ 7 7 │ RFREL │ Release level code of VSE/Adv.Function │
│ 8 8 │ RFRDSW1 │ Record dependent byte 1 │
│ │ RFTEMP │ X'4�' Temporary error │
└───────────────────┴──────────┴──┘
Figure 229 (Part 1 of 2). Recorder File Table (RFTABLE)

 Appendix B. I/O Control Blocks 511

┌───────────────────┬────────────┬──────────────────────────────────────┐
│ Bytes │ │ │
│ Dec Hex │ Label │ Description │
├───────────────────┼────────────┼──────────────────────────────────────┤
│ 9 9 │ RFRDSW2 │ Record dependent byte 2 │
│ 1� ─ 11 A ─ B │ RFBUFLG │ Length of data buffer (FBA) │
│.............. CKD Device Related Information│
│ 18 ─ 19 12 ─ 13 │ RFRECLEN │ Length of record │
│ 2� 14 │ RFRDSW3 │ Record dependent switch 3 │
│ 21 15 │ │ Reserved │
│ 22 ─ 23 16 ─ 17 │ RFRCLCKD │ CKD Block length │
│ 24 ─ 27 18 ─ 1B │ RFRECADR │ Address of record │
│ 28 ─ 34 1C ─ 22 │ RFSEEK │ Work area for seek addr.BBCCHHR │
│ 28 ─ 29 1C ─ 1D │ RFSEEKBB │ BB portion of seek │
│ 3� ─ 31 1E ─ 1F │ RFSEEKCC │ CC portion of seek │
│ 32 ─ 33 2� ─ 21 │ RFSEEKHH │ HH portion of seek │
│ 34 22 │ RFSEEKR │ R portion of seek │
│ 35 23 │ │ Reserved │
│ 36 ─ 39 24 ─ 27 │ RFHDRCH │ SYSREC cylinder/head │
│ 36 ─ 37 24 ─ 25 │ RFHDRCYL │ Cyl. address of file start │
│ 38 ─ 39 26 ─ 27 │ RFHDRTRK │ Head address of file start │
│.............. End of CKD Device Related Information│
│.............. FBA Device Related Information│
│ 12 ─ 15 C ─ F │ RFBUFAD │ Address of data buffer │
│ 16 ─ 17 1� ─ 11 │ RFNAVR │ Displacement of next available RDF │
│ │ │ in buffer (FBA) │
│ 18 ─ 19 12 ─ 13 │ RFRECLEN │ Length of record │
│ 2� 14 │ RFRDSW3 │ Record dependent switch 3 │
│ 21 ─ 23 15 ─ 17 │ │ Reserved │
│ 24 ─ 27 18 ─ 1B │ RFRECADR │ Address of record │
│ 28 ─ 31 1C ─ 1F │ RFCUBL │ Work area for block number │
│ 32 ─ 35 2� ─ 23 │ │ Reserved │
│ 36 ─ 39 24 ─ 27 │ RFHDRBL │ SYSREC block number of file start │
│.............. End of FBA Device│Related Information│
│ 4� ─ 41 28 ─ 29 │ RFCHMAP │ Map of supported channels │
│ 42 ─ 49 2A ─ 31 │ RFCHIDC │ Channel ID codes │
│ 5� - 51 32 - 33 │ RFEREPID │ EREP Tash ID for EOTSK │
│ 52 ─ 55 34 ─ 37 │ RFEXIT │ Exit phase name or exit address │
│ 56 38 │ RFEVARTH │ EVA read threshold │
│ 57 39 │ RFEVAWTH │ EVA write threshold │
│ 58 ─ 59 3A ─ 3B │ RFP2ENTL │ Length of PUB2 table │
│ 6� ─ 63 3C ─ 3F │ RFP2ENT │ Address of PUB2 table │
│ 64 ─ ... 4� ─ ...│ RFP2ITAB │ PUB2 index table (see Note) │
└───────────────────┴────────────┴──────────────────────────────────────┘

Note: Two bytes are generated for each PUB2 index entry.
See also Figure 216 on page 488.

Figure 229 (Part 2 of 2). Recorder File Table (RFTABLE)

512 VSE/AF Supervisor DRM

Machine and Channel Check Control Blocks
RAS Linkage Area (RASLINK)
RAS Monitor Table (RASTAB)
Error Recovery Procedure Information Block (ERPIB)

 SYSCOM
 � 7� 73
┌────────── ───────────┬──────────┬─────── ──────────┐
│ ��� │ IJBRASLN │ ��� │
└────────── ───────────┴─────┬────┴─────── ──────────┘

 │
 │
 ┌──────────────────────────┘
 │
 │

 RASLINK RASTAB ERPIB
 ┌─────────┐ ┌─────�┌─────────┐ ┌─────�┌─────────┐
 �│ │ │ �│ │ │ �│ │

├─────────┤ │ ├─────────┤ │ ├─────────┤
4│ │ │ │ │ │ │ │
├─────────┤ │ � � │ � �
8│ │ │ � � │ � �
├─────────┤ │ ├─────────┤ │ � �
C│ RASTABA ├───────┘ A4│ ERPIBA ├──────┘ │ │

 ├─────────┤ ├─────────┤ │ │
 � � � � │ │
 � � � � │ │
 │ │ │ │ │ │
 └─────────┘ └─────────┘ └─────────┘

Figure 230. Machine/Channel Check Control Block Relationship

 Appendix B. I/O Control Blocks 513

RAS Linkage Area (RASLINK)

┌───────────────────┬────────────┬──────────────────────────────────────┐
│ Bytes │ │ │
│ Dec Hex │ Label │ Description │
├───────────────────┼────────────┼──────────────────────────────────────┤
│ �─3 �─3 │ CPUIDW1 │ First part of CPUID field │
│ 4─7 4─7 │ CPUIDW2 │ Second part of CPUID field │
│ 5 5 │ CPUID │ Model number in CPUID field │
│ 6 6 │ RASMCELL │ Length of machine check extended │
│ │ │ logout area │
│ 8 8 │ RASDMC │ Damaged channel ID │
│ 9 9 │ RASFLAGS │ RAS flag byte │
│ │ RASACT │ X'8�' RAS task activated │
│ │ RASMCACT │ 4� Machine check handling │
│ │ RASCCACT │ 2� Channel check handling │
│ │ RASCRWAC │ 1� CRW Handling in progress │
│ │ RASEMGEX │ �8 Emergency handling │
│ │ RASSTERM │ �4 System termination │
│ │ │ �2 Reserved │
│ │ RTAIOA │ �1 RAS task I/O active │
│ 1� A │ MCFLAGS │ Machine check flags │
│ │ MCHARD │ X'8�' Hard machine check │
│ │ MCEXTD │ X'�8' External damage to be processed│
│ │ MCCRWP │ X'�4' CRW pending request to process │
│ │ MCEVIP │ X'�2' Event information pending │
│ │ MCDLYP │ X'�1' Delayed MC processing pending │
│ 11 B │ RASRSFLG │ RAS recording status flag │
│ │ RASDEBUG │ X'8�' RAS Debug mode │
│ │ │ 4� Reserved │
│ │ RASNOMSG │ 2� Unrecoverable channel check │
│ │ │ on SYSLOG │
│ │ │ 1� Reserved │
│ │ │ �8 Reserved │
│ │ RASBTDEQ │ �4 BTAM dequeue request │
│ │ RASMSGRT │ �2 Return from RAS message writer │
│ │ RASMSGIO │ �1 RAS message I/O │
│ 12─15 C─F │ RASTABA │ Address of RAS monitor table (RASTAB)│
│ 16─19 1�─13 │ RASBASE │ RAS base address │
│ 2�─21 14─15 │ RASIMOD │ Internal model number │
│ 22─23 16─17 │ RASIOELL │ Length of I/O extended logout area │
│ 24─27 18─1B │ RASMCELA │ Address of machine check extended │
│ │ │ logout area │
│ │ │ X'8�' Indicates field contents │
│ │ │ not valid │
│ 28─31 1C─1F │ RASTAREA │ Address of RAS transient Area │
│ 32─35 2�─23 │ RAS$PUBX │ Address of PUBX area │
│ 36─47 24─2F │ RASPGRID │ Path group ID (IPL) │
│ 48 3� │ RASCPVER │ Real CPU version code (SPDT) │
│ 49-51 31-33 │ │ reserved │
│ 52─55 34-37 │ RASCHSCB │ Channel Subsystem contl.block address│
│ 56─59 38-3B │ RASMCSTK │ Machine Check stack area address │
└───────────────────┴────────────┴──────────────────────────────────────┘

Figure 231. RAS Linkage Area (RASLINK)

514 VSE/AF Supervisor DRM

RAS Monitor Table (RASTAB)

┌───────────────────┬────────────┬──────────────────────────────────────┐
│ Bytes │ │ │
│ Dec Hex │ Label │ Description │
├───────────────────┼────────────┼──────────────────────────────────────┤
│ �─3 �─3 │ RASMCERQ │ Machine Check Error Queue │
│ 4─7 4─7 │ RASCRWNX │ Addr of next CRW to process │
│ 8 8 │ TPAFLAG │ TPA CC Recovery Flag │
│ 9─1�3 9─67 │ │ reserved │
│ 1�4─115 68─77 │ RASCCB │ RAS CCB │
│ 116─147 78─97 │ RASCCWS │ RAS CCW chain │
│ 148─154 98─9E │ RASEEK │ Seek address of RAS seek │
│ 155 9F │ RTAOWN │ R─transient identifier │
│ 156─159 A�─A3 │ │ reserved │
│ 16�─163 A4─A7 │ ERPIBA │ Address of work ERPIB │
│ 164─167 A8─AB │ │ reserved │
│ 168 AC │ RTAID │ Requestor ID for RTA I/O │
│ │ RASRECID │ X'�8' RAS recording request │
│ │ RASRTYID │ X'�4' Channel retry request │
│ │ RASRTYXR │ X'�2' Retry for EXCP REAL (set │
│ │ │ together with RASRTYID) │
│ 169 AD │ ERPID │ Return load index for WTOR │
│ 17�─171 AE─AF │ RASRES │ Device address of SYSRES │
│ 172─173 B�─B1 │ RASREC │ Device address of SYSREC │
│ 174─175 B2─B3 │ RASLOG │ Device address of SYSLOG │
│ 176─243 B4─F3 │ TRANSAV │ RTA register save area, Register � │
│ │ │ to Register 15 │
│ 244─3�7 F4─133 │ SYSREGS │ RAS monitor register save area, │
│ │ │ Register � to Register 15 │
│ 3�8─311 134─137 │ SUPLINK │ Service routine address for RTA │
│ │ │ in RAS monitor │
│ 3�8 134 │ LINKFLAG │ Flag byte indicating │
│ │ │ requested service │
│ │ RASLIO │ X'8�' Perform normal I/O │
│ │ RASLEMIO │ 4� Perform emergency I/O │
│ │ RASLFTCH │ 2� Fetch another transient │
│ │ RASLWAIT │ 1� Perform wait │
│ │ RASLPDEQ │ �8 Dequeue page frame │
│ │ RASLDEQ │ �4 Dequeue CCB/IORB │
│ │ RASLFREE │ �2 Free I/O extended logout area │
│ │ │ �1 reserved │
│ │ RASLEXIT │ �� Exit from RAS transient │
│ 312─323 138─143 │ HIR │ Hardware instr. retry accumulator │
│ 312─313 138─139 │ HIRACNT │ Accumulated HIR count │
│ 314─315 13A─13B │ HIRLCNT │ Threshold value for count │
│ 316─319 13C─13F │ HIR1TME │ Time of day for first error of group │
│ 32�─323 14�─143 │ HIRLTME │ Time threshold value in timer units │
│ 324─335 144─14F │ ECCMAIN │ Main storage error accumulators │
│ 324─325 144─145 │ ECCACNT │ Accumulated ECC count for main stor. │
│ 326─327 146─147 │ ECCLCNT │ Threshold value for count │
│ 328─331 148─14B │ ECC1TME │ Time of day for first error of group │
│ 332─335 14C─14F │ ECCLTME │ Time threshold value in timer units │
└───────────────────┴────────────┴──────────────────────────────────────┘
Figure 232 (Part 1 of 2). RAS Monitor Table (RASTAB)

 Appendix B. I/O Control Blocks 515

┌───────────────────┬────────────┬──────────────────────────────────────┐
│ Bytes │ │ │
│ Dec Hex │ Label │ Description │
├───────────────────┼────────────┼──────────────────────────────────────┤
│ 336─347 15�─15B │ MACHERR │ Machine Check accumulators │
│ 336─337 15�─151 │ MCERRCNT │ Accumulated machine check count │
│ 338─339 152─153 │ MCLCNT │ Threshold for count │
│ 34�─343 154─157 │ MC1TIME │ Time of day for first error │
│ 344─347 158─15B │ MCLTIME │ Time threshold in clock units │
│ 348 15C │ MCMODE │ Hardware operation mode │
│ 349 15D │ BUFDEL │ Count of buffers deleted │
│ 35� 15E │ RASMSG1 │ RAS Message byte 1 │
│ │ MCPR │ X'8�' Power restored - running normal│
│ │ MCPL │ 4� Power lost - running UPS │
│ │ � │ 2� reserved │
│ │ MTICLDMG │ 1� Clock and or timer damage │
│ │ MTIMDMG │ �8 Timer damage │
│ │ � │ �4 reserved │
│ │ MPERFDEG │ �2 System performance degradation │
│ │ MEFLOVFL │ �1 EFL overflow │
│ 351 15F │ RASMSG2 │ RAS Message byte 2 │
│ │ MCLOKDMG │ X'8�' Clock damage, all modes quiet │
│ │ MLASTTR │ 4� Threshold on recorder │
│ │ │ file reached │
│ │ MPAGEDEL │ 2� Buffer pages deleted │
│ │ │ 1� reserved │
│ │ │ �8 reserved │
│ │ MFILEFL │ �4 Recorder file full │
│ │ MUNRCIO │ �2 Error on recorder file │
│ │ MCRECOV │ �1 Successful recovery from │
│ │ │ machine check │
│ 352 16� │ RASMSG3 │ RAS Message byte 3 │
│ │ │ all bits reserved │
│ 353─355 161-163 │ │ reserved │
│ 356─357 164-165 │ RASIND │ RAS indicators │
│ │ RASNODEQ │ X'8�' Page frame not dequeued │
│ 358─363 166─16B │ │ Reserved │
│ 364─383 16C─17F │ INTERSEG │ Interface segment build area │
│ 364─367 16C─16F │ FXDLGADD │ Address of fixed logout area │
│ 368─371 17�─173 │ FXDLGADD │ Address of extended logout area │
│ 372 174 │ INOFN │ Sequence number: record one of n │
│ 373 175 │ ILOGL │ Logout length in record one │
│ 374 176 │ IRECL │ Total length of record one │
│ 375 177 │ NNOFN │ Sequence number record n of n │
│ 376 178 │ NLOGL │ Logout length in record n │
│ 377 179 │ NRECL │ Total length of record n │
│ 378─379 17A─17B │ │ reserved │
│ 38�─384 17C─18� │ MACHIND │ Indicate machine check │
└───────────────────┴────────────┴──────────────────────────────────────┘

Figure 232 (Part 2 of 2). RAS Monitor Table (RASTAB)

516 VSE/AF Supervisor DRM

Error Recovery Procedure Information Block (ERPIB)

┌───────────────────┬────────────┬──────────────────────────────────────┐
│ Bytes │ │ │
│ Dec Hex │ Label │ Description │
├───────────────────┼────────────┼──────────────────────────────────────┤
│ �─7 �─7 │ ERPIBCSW │ Saved channel status word │
│ � � │ ERPIBSTC │ ERPIB status codes │
│ │ ERPIBEND │ X'FF' Indicate end of ERPIB │
│ │ ERPIBFRE │ X'FE' Indicate free ERPIB │
│ │ ERPIBCNC │ X'FD' Indicate task is to be canceled│
│ │ ERPIBCCR │ X'FC' Indicate retry unsuccessful │
│ │ ERPIBCCS │ X'FB' Indicate retry successful │
│ �─3 �─3 │ ERPIBCCW │ Address of failing CCW + 8 │
│ 4 4 │ ERPIBST1 │ First status byte │
│ 5 5 │ ERPIBST2 │ Second status byte │
│ 6─7 6─7 │ ERPIBCNT │ Residual count in CSW │
│ 8─11 8─B │ ERPIBIOE │ Ptr to corresp. I/O ext. logout area │
│ 12 C │ │ Reserved │
│ 13 D │ ERPIBDMC │ Damaged channel ID │
│ 14─15 E─F │ ERPIBPUB │ PUB address of failing device │
│ 16 1� │ ERPIBCQP │ Channel queue present indication │
│ 17 11 │ ERPIBRTC │ RAS retry counter │
│ 18 12 │ ERPIBMSG │ Message indicator │
│ │ ACTMSG │ X'8�' Wait for operator response │
│ │ CCDONE │ 4� Channel check handling complete│
│ │ CCNODEQ │ 2� PUB not queued in error │
│ │ │ 1� Reserved │
│ │ │ �8 Reserved │
│ │ │ �4 Reserved │
│ │ RECCC │ �3 Recovered channel check │
│ │ ERRCC │ �2 Channel check │
│ │ HRDCC │ �1 Unrecoverable channel check │
│ 19 13 │ ERPIBREQ │ Requestor ID │
│ 2� 14 │ ERPIBFLG │ Flag byte │
│ │ CCSIO │ X'8�' Channel check on SIO │
│ │ CCDAM │ 4� Channel damage │
│ │ │ 2� Reserved │
│ │ │ 1� Reserved │
│ │ CCREC │ �8 Record build or written │
│ │ │ �4 Reserved │
│ │ CCDSK │ �2 Channel check on disk device │
│ │ CCSKM │ �1 Skip message writer │
│ 21─23 15─17 │ ERPIBESW │ Extended CSW │
│ 21─22 15─16 │ │ │
│ 23 17 │ ERPIBSC │ ERPIB sequence code │
│ 23 17 │ ERPIBTC │ ERPIB termination code │
│ │ │ X'8�' Reserved │
│ │ │ 4� Reserved │
│ │ CCAREP │ 2� Channel check ancillary report │
│ 24-27 18-1B │ │ reserved │
│ 28-31 1C-1F │ ERPIBCQA │ Channel queue address │
│ 32-39 2�-27 │ ERPIBTOD │ TOD clock │
│ 4�-43 28-2B │ ERPIBQA │ Addr of CC Stack entry (359� TPA) │
│ 44-47 2C-2F │ │ reserved │
│ │ ERPIBWIT │ Length of ERPIB │
└───────────────────┴────────────┴──────────────────────────────────────┘

Figure 233. Error Recovery Procedure Information Block (ERPIB)

 Appendix B. I/O Control Blocks 517

Track Hold Table (THTAB)
Bytes 76-79 (X'4C' - X'4F') of the System Communication Region (SYSCOM)
contain both, the free list pointer and the address of the Track Hold Table. Label
THFLPTR identifies the free list pointer and label THTAB identifies the first byte of
the table.
The halfword at THTAB-2 contains the total number of 16-byte entries comprising
the track hold table.

┌───────────────────┬────────────┬──────────────────────────────────────┐
│ Bytes │ │ │
│ Dec Hex │ Label │ Description │
├───────────────────┼────────────┼──────────────────────────────────────┤
│ � � │ THPTR │ Index of next entry in the chain │
│ │ │ (forward pointer) │
│ │ │ X'FF' indicates last entry │
│ 1─3 1─3 │ THCCB │ Address of CCB/IORB │
│ 4─11 4─B │ THTRK │ CKD devices: Address of track in │
│ │ │ BBCCHH�� format │
│ │ │ FBA devices: Physical block numbers │
│ │ │ of first and │
│ 12 C │ THBWPTR │ Index of previous entry │
│ │ │ in the chain (backward pointer) │
│ 13 D │ THFLG │ Flag and count byte │
│ │ │ X'8�' Another task is waiting for │
│ │ │ this track/block │
│ │ │ 4� First entry within a PUB chain │
│ │ │ 2� Reserved │
│ │ │ 1� Reserved │
│ │ THCTR │ Bits 4─7: NO. of concurrent holds - 1│
│ 14─15 E─F │ THTID │ Task ID of track/block owner │
└───────────────────┴────────────┴──────────────────────────────────────┘

Figure 234. Track Hold Table (THTAB)

518 VSE/AF Supervisor DRM

 Appendix C. Samples

Track Hold Processing

Figure 235 on page 520 shows the initialized significant bytes of the track hold
mechanism.

Figure 236 on page 521 illustrates the pointers and table entries after several track
hold requests have been issued.

Figure 237 on page 522 summarizes the sequence of events leading to the situ-
ations shown in Figure 236 on page 521, Figure 238 on page 523, and
Figure 239 on page 524.

When a task requests a hold on a track/block that is already held by another task,
the high-order bit of the flag-and-counter byte is turned on (for example, entry No. 1
in Figure 236 on page 521). When a task requests a hold on a track/block it holds
itself, the flag-and-counter byte is incremented by one (for example, entry No. 4 in
Figure 236 on page 521).

On release of a track/block by the holding task, and provided the counter is zero
before the release, any task or tasks that are waiting for that track/block are
brought out of the wait state. The supervisor then returns to task selection and, if
the next selected task was waiting for this track/block, its hold request is honored.
Any other task or tasks that were waiting for the track/block now remain
ready-to-run, but if such a task gains control before the track/block has again been
released, that task returns to the wait state.

If the counter is not zero before the release, then only the counter is decremented
by one so that the track/block remains held by the same task. For illustrations of
these operations, compare Figure 236 on page 521 and Figure 238 on page 523,
entries number one and four.

© Copyright IBM Corp. 1985, 2013 519

Track Hold Table Entries
 ────────────────────────
┌───────────┬──────┬──────┬────────┬───────────┬────────┬────────┬──────┐
│Free List │ │ │ │ │ │ │ │
│Pointer │Entry │ Chain│CCB/IORB│BBCCHH�� or│Backward│Flag and│Task │
│THFLPTR │ No. │ Byte │ Addr. │LLPBN+ULPBN│Pointer │Counter │ ID │
├───────────┼──────│──────┼────────┼───────────┼────────┼────────┼──────┤
│ ��────────�� �1 │ zeros │ zeros │ zeros │ zeros │zeros │
│ │ ┌───┘ │ │ │ │ │ │
│ │ 1�──┘ �2 │ zeros │ zeros │ zeros │ zeros │zeros │
│ │ ┌───┘ │ │ │ │ │ │
├───────────┤ 2�──┘ �3 │ zeros │ zeros │ zeros │ zeros │zeros │
│ PUBS │ ┌───┘ │ │ │ │ │ │
│Track Hold │ 3�──┘ �4 │ zeros │ zeros │ zeros │ zeros │zeros │
│Pointers │ ┌───┘ │ │ │ │ │ │
│(PUBOPTN) │ 4�──┘ �5 │ zeros │ zeros │ zeros │ zeros │zeros │
├───────────┤ ┌───┘ │ │ │ │ │ │
│ │ 5�──┘ �6 │ zeros │ zeros │ zeros │ zeros │zeros │
│ FF │ ┌───┘ │ │ │ │ │ │
│ │ 6�──┘ �7 │ zeros │ zeros │ zeros │ zeros │zeros │
│ FF │ ┌───┘ │ │ │ │ │ │
│ │ 7�──┘ �8 │ zeros │ zeros │ zeros │ zeros │zeros │
│ FF │ ┌───┘ │ │ │ │ │ │
│ │ 8�──┘ �9 │ zeros │ zeros │ zeros │ zeros │zeros │
│ FF │ ┌───┘ │ │ │ │ │ │
│ │ 9�──┘ FF │ zeros │ zeros │ zeros │ zeros │zeros │
│ FF │ │ │ │ │ │ │
└───────────┴─────────────┴────────┴───────────┴────────┴────────┴──────┘

Note:

THFLPTR: The track hold free list pointer (1 byte)
contains a pointer to the
first entry in the free list or X'FF'
when the track hold table is full.

BBCCHH00:

 � 00,
 � cylinder cylinder,
 � head head,
 � 00

LLPBN: Low limit physical block number

ULPBN: Upper limit physical block number

Figure 235. Track Hold Table Example. Initial contents of significant bytes used by track
hold requests.

520 VSE/AF Supervisor DRM

Track Hold Table Entries
 ────────────────────────
┌───────────┬──────┬──────┬────────┬───────────┬────────┬────────┬──────┐
│Free List │ │ │ │ │ │ │ │
│Pointer │Entry │ Chain│CCB/IORB│BBCCHH�� or│Backward│Flag and│Task │
│THFLPTR │ No. │ Byte │ Addr. │LLPBN+ULPBN│Pointer │Counter │ ID │
├───────────┼──────┴──────┼────────┼ ──────────┼────────┼────────┼──────┤
│ �5──────┐ � �1 │ xxx │ Track 1A │PUB ptr.│ 4� │ aa │
│ │ � │ │ │ │ │ │ │
│┌──────────┼──┘ ┌───┘ │ │ │ │ │ │
││ │ 1�──┘ �2 │ xxx │ Track 1B │ �� │ 8� │ aa │
││ │ ┌───┘ │ │ │ │ │ │
├│──────────│ 2�──┘ �4 │ xxx │ Track 1C │ �1 │ �� │ bb │
││ PUBS │ ┌───┘ │ │ │ │ │ │
│Track HoldA���3 │ FF │ xxx │ Track 2A │PUB ptr.│ 4� │ aa │
│Pointers A│ │ │ │ │ │ │ │
│(PUBOPTN) A│ 4�──┘ FF │ xxx │ Track 1D │ �2 │ 4� │ aa │
├│─────────A│ │ │ │ │ │ │
││ A└─�5 �6 │ zeros │ zeros │ zeros │ zeros │zeros │
││2nd Dev.�� │ │ │ │ │ │ │
││ �3 │ ┌───┘ │ │ │ │ │ │
││ │ 6�──┘ �7 │ zeros │ zeros │ zeros │ zeros │zeros │
││ FF │ ┌───┘ │ │ │ │ │ │
││ │ 7�──┘ �8 │ zeros │ zeros │ zeros │ zeros │zeros │
││ FF │ ┌───┘ │ │ │ │ │ │
││1st Device│ 8�──┘ �9 │ zeros │ zeros │ zeros │ zeros │zeros │
│└�──�� │ ┌───┘ │ │ │ │ │ │
│ │ 9�──┘ FF │ zeros │ zeros │ zeros │ zeros │zeros │
│ FF │ │ │ │ │ │ │
└───────────┴─────────────┴────────┴───────────┴────────┴────────┴──────┘

Figure 236. Track Hold Table Example. Task aa holding tracks 1A, 1B, and 1D (2 holds)
on 1st device, and track 2A on 2nd device; task bb holding track 1C on first device; a task is
waiting to hold track 1B on first device.

 Appendix C. Samples 521

┌────────────┬──────────────────────────────┬─────────────────────────┐
│ │ Tasks │ │
│ ├─────────┬──────────┬─────────┤ │
│Sequence of │ │ │ │ │
│Requests │ aa │ bb │ cc │ Remarks │
├────────────┼─────────┼──────────┼─────────┼─────────────────────────┤
│ │ Hold 1A │ │ │ Entry queued │
│ │ │ │ │ │ │
│ │ │ Hold 1B │ │ │ Entry queued │
│ │ │ │ │ │ │
│ │ │ │ Hold 1C │ │ Entry queued │
│ │ │ │ │ │ │
│ │ │ Hold 2A │ │ │ Entry queued │
│ │ │ │ │ │ │
│ │ │ Hold 1D │ │ │ Entry queued │
│ │ │ │ │ │ │
│
 │ Hold 1D │ │ │ Counter incremented │
│ │ │ │ │ │
│ │ │ │ Hold 1B │ Entry flagged and │
│ │ │ │ │ requester put into │
│ │ │ │ │ into wait state. │
└────────────┴─────────┴──────────┴─────────┴─────────────────────────┘
The table entries and pointers at this stage are
illustrated by Figure 236.
┌────────────┬─────────┬──────────┬─────────┬─────────────────────────┐
│ │ │ Free 1B │ │ │ Flag turned off, │
│ │ │ │ │ │ waiting task (cc) made │
│ │ │ │ │ │ ready─to─run, and task │
│ │ │ │ │ │ selection entered; if │
│ │ │ │ │ │ task cc is selected, its│
│ │ │ │ │ │ request for track 1B is │
│ │ │ │ │ │ honored │
│ │ │ │ │ │ │
│ │ │ Free 1A │ │ │ Entry dequeued. │
│ │ │ │ │ │ │
│
 │ Free 1D │ │ │ Counter decremented. │
└────────────┴─────────┴──────────┴─────────┴─────────────────────────┘
The table entries and pointers at this stage are
illustrated by Figure 238 on page 523.
┌────────────┬─────────┬──────────┬─────────┬─────────────────────────┐
│ │ │ Free 2A │ │ │ Entry dequeued. │
│ │ │ │ │ │ │
│ │ │ Free 1D │ │ │ Entry dequeued. │
│ │ │ │ │ │ │
│ │ │ │ Free 1C │ │ Entry dequeued. │
│ │ │ │ │ │ │
│
 │ │ │ Free 1B │ Entry dequeued. │
└────────────┴─────────┴──────────┴─────────┴─────────────────────────┘
All tracks have now been freed as shown in Figure 239 on page 524.

Figure 237. Example of Tracks Held and Freed by Three Tasks

522 VSE/AF Supervisor DRM

Track Hold Table Entries
 ────────────────────────
┌───────────┬──────┬──────┬────────┬───────────┬────────┬────────┬──────┐
│Free List │ │ │ │ │ │ │ │
│Pointer │Entry │ Chain│CCB/IORB│BBCCHH�� or│Backward│Flag and│Task │
│THFLPTR │ No. │ Byte │ Addr. │LLPBN+ULPBN│Pointer │Counter │ ID │
├───────────┼──────┴──────┼────────┼ ──────────┼────────┼────────┼──────┤
│ ��────────�� �5 │ xxx │ Track 1A │ zero │ �� │ �� │
│ │ │ │ │ │ │ │
│ ┌──────────┘ │ │ │ │ │ │
│ │ 1�──┐ FF │ xxx │ Track 1B │ �4 │ �� │ cc │
│ │ │ │ │ │ │ │ │
├┌──────────┼─�2 │ �4 │ xxx │ Track 1C │PUB ptr.│ 4� │ bb │
││ PUBS │ │ │ │ │ │ │ │
│Track HoldA���3 │ FF │ xxx │ Track 2A │PUB ptr.│ 4� │ aa │
│Pointers A│ │ │ │ │ │ │ │
│(PUBOPTN) A│ 4 └───�1 │ xxx │ Track 1D │ �2 │ �� │ aa │
├│─────────A│ │ │ │ │ │ │
││2nd A└─�5 �6 │ zeros │ zeros │ zeros │ �� │ �� │
││ device A │ │ │ │ │ │ │
││ �3����� ┌───┘ │ │ │ │ │ │
││ │ 6�──┘ �7 │ zeros │ zeros │ zeros │ �� │ �� │
││ FF │ ┌───┘ │ │ │ │ │ │
││ │ 7�──┘ �8 │ zeros │ zeros │ zeros │ �� │ �� │
││ FF │ ┌───┘ │ │ │ │ │ │
││1st Device│ 8�──┘ �9 │ zeros │ zeros │ zeros │ �� │ �� │
│└�──�2 │ ┌───┘ │ │ │ │ │ │
│ │ 9�──┘ FF │ zeros │ zeros │ zeros │ �� │ �� │
│ FF │ │ │ │ │ │ │
└───────────┴─────────────┴────────┴───────────┴────────┴────────┴──────┘

Figure 238. Track Hold Table Example. Task aa has released holds on tracks 1B and 1A,
and one of the holds on track 1D; task cc has been taken out of the wait state and has been
selected to run, so it now holds track 1B.

 Appendix C. Samples 523

Track Hold Table Entries
 ────────────────────────
┌───────────┬──────┬──────┬────────┬───────────┬────────┬────────┬──────┐
│Free List │ │ │ │ │ │ │ │
│Pointer │Entry │ Chain│CCB/IORB│BBCCHH�� or│Backward│Flag and│Task │
│THFLPTR │ No. │ Byte │ Addr. │LLPBN+ULPBN│Pointer │Counter │ ID │
├───────────┼──────┴──────┼────────┼ ──────────┼────────┼────────┼──────┤
│ �1 ��. �5 │ xxx │ Track 1A │ �� │ �� │ �� │
│ │ ┌────.─────┤ │ │ │ │ │ │
│ │ ├────.───── │ │ │ │ │ │
│ └───────┼─�1 . �2 │ xxx │ Track 1B │ �� │ �� │ �� │
│ │ . ┌───┘ │ │ │ │ │ │
├───────── │ 2�.─┘ �4 │ xxx │ Track 1C │ �� │ �� │ �� │
│ PUBS │ . ┌───┘ │ │ │ │ │ │
│Track HoldA���3�� │ xxx │ Track 2C │ �� │ �� │ �� │
│Pointers A│ │ │ │ │ │ │ │
│(PUBOPTN) A│ 4�──┘ �3 │ xxx │ Track 1D │ �� │ �� │ �� │
├───────── ������������� │ │ │ │ │ │
│ └─�5 �6 │ zeros │ zeros │ �� │ �� │ �� │
│ 2nd Device │ │ │ │ │ │ │
│ FF │ ┌───┘ │ │ │ │ │ │
│ │ 6�──┘ �7 │ zeros │ zeros │ �� │ �� │ �� │
│ FF │ ┌───┘ │ │ │ │ │ │
│ │ 7�──┘ �8 │ zeros │ zeros │ �� │ �� │ �� │
│ FF │ ┌───┘ │ │ │ │ │ │
│ 1st Device│ 8�──┘ �9 │ zeros │ zeros │ �� │ �� │ �� │
│ FF │ ┌───┘ │ │ │ │ │ │
│ │ 9�──┘ FF │ zeros │ zeros │ �� │ �� │ �� │
│ FF │ │ │ │ │ │ │
└───────────┴─────────────┴────────┴───────────┴────────┴────────┴──────┘

Figure 239. Track Hold Table Example. Situation after total release.

524 VSE/AF Supervisor DRM

 Appendix D. XPCC/APPCVM Protocol

 Introduction
XPCC/APPCVM protocol may be used in a VM environment to communicate
between a requestor-application, operating in a VSE virtual machine and a server
application, operating in a CMS virtual machine.
The guest machines may be on different CPUs within one TSAF collection, or
within different TSAF collections being part of an SNA network (see Virtual
Machine/System Product Transparent Services Access Facility Reference,
SC24-5287).

Requestor applications in VSE exchange data with server applications in CMS via
VSE-XPCC. The VSE-XPCC services are extended to XPCC/APPCVM to support
communication from a VSE guest machine to a non-VSE guest machine in a VM
environment.

VSE XPCC/APPCVM is a subset of VSE XPCC. The VSE application is the com-
munication requestor - the User Program in TSAF terms -, and the other VM
machine is the server - the Resource Manager in TSAF terms.

The VSE application that wants to communicate with an application in another VM
machine has to use the limited set of VSE XPCC services listed below.

 � IDENTify
 � CONNECT
� SENDR with/without data to be sent

 � CLEAR
 � DISCONNect
 � DISConnect/PuRGe
 � TERMINate

Internally the VSE-XPCC requests are transformed to APPCVM requests. The data
to be sent have to be placed into the data buffer in APPC logical record format, and
the data received are in APPC logical record format.

The VSE XPCC/APPCVM support is activated at IPL if VSE is initialized as a VM
guest.

© Copyright IBM Corp. 1985, 2013 525

 XPCC/APPCVM Activation
The VSE XPCC/APPCVM support is activated when VSE IPL is performed on a
VM virtual machine. Activation means, that the VSE guest machine is enabled for
APPCVM external interrupts. APPCVM connections are not established, before a
VSE application requests the begin of APPCVM communication.

APPCVM communication can be established in two ways:

� At VSE IPL connection routing information is supplied. The IPL SET command
(described in z/VSE System Control Statements, SC34-2637) maps a
VSE-application name to the APPCVM target (VM resource). The XPCC
CONNECT service uses the VSE to application name as an alias, searches the
mapping information supplied by the IPL SET command, and - if found - it
builds an APPCVM connection using the APPCVM information.

� The XPCCB TOAPPL operand names the APPCVM target (VM resource)
directly. This is indicated by the new parameter FDSCR=APPCVM in the XPCC
CONNECT request.

No VSE IPL connection routing information is required within a TSAF collection.
If the VM resource is linked by a VM gateway, then the SNA network routing infor-
mation has to be supplied by an IPL SET command. The XPCC CONNECT service
searches the information supplied by the IPL SET command, and - if found - it
builds an APPCVM connection using the network routing information.

526 VSE/AF Supervisor DRM

Overview on XPCC Functions Supported as XPCC/APPCVM
Input change to XPCC commands:

 1. Limited protocol.

2. No user data supported.

3. Data in APPC logical record format.

4. Minimum reply buffer length 2 bytes.

Additional output from XPCC commands:

1. Service state indicator.

2. New return information.

Function Restriction

Only a subset of XPCC functions is supported. The application may use the fol-
lowing XPCC functions:

 � IDENTify
 � CONNECT
� SENDR with/without data to be sent

 � CLEAR
 � DISCONNect
 � DISConnect/PuRGe
 � TERMINate

The supported XPCC commands do not have any changed operands. However,
there is a restriction the application has to be aware of. User data is not trans-
ferred to the communication partner. It is ignored.

User data is the data that may be placed by the application (requesting a XPCC
function) into the XPCCB field IJBXSUSR. If the target is within the same VSE
system, the user data is transferred immediately to the partner-application's XPCCB
field IJBXRUSR. The XPCC/APPCVM restriction is introduced, because APPCVM
does not support the transfer of user data.

Data Format

The data placed into the XPCC send buffer has to be in APPC logical record
format, and the data received in the XPCC reply buffer is in APPC logical record
format.
Each APPC logical record has a 2-byte length field followed by a data field. The
application has to insert the 2-byte length field in front of the data field of a record
to be sent, and it has to remove it from data received.
The data field can range from 0 to 32,765 bytes long. The data in an XPCC send
or reply buffer may consist of one or more complete APPC logical records, the
beginning of a record, the middle of a record, the end of a record, or by complete
records preceded by the end of a record and/or followed by the beginning of a
record.

Buffer Length

 Appendix D. XPCC/APPCVM Protocol 527

The length of a reply buffer may not be zero. It has to be at least 2 bytes long to
accomodate the APPC logical record length which also is present for a data field of
length zero.

528 VSE/AF Supervisor DRM

State Indicator

The APPCVM half duplex protocol forces each communication partner to assume a
unique state. The connection requestor is initially in SEND state 'S' at connection
completion. The connection partner (acceptor) is initially in RECEIVE state 'R'.

A SENDR request sending and receiving data may be issued in SEND state only.
The application which is in SEND state loses its state with the SENDR request, and
assumes the RECEIVE 'R' state. Now the communication partner is in SEND state.
The application in RECEIVE state cannot obtain back the SEND state explicitly. It
stays in RECEIVE state, until the communication partner issues a request to
receive new data.

To indicate this internal protocol state to the XPCC application (which may not try
to send data when in RECEIVE state), the internal APPCVM state is passed in
XPCCB field IJBXSTAT.
As long as the link is pending but not yet active, or the link is severed (internally by
APPCVM SEVER), the XPCCB field IJBXSTAT contains a state indicator 'N'(not
active). The only XPCC command that may be issued in the 'N' state is XPCC
DISCONN.

The values may be:

Error Information

Return codes, error codes and reason codes are given back as they are in the
current XPCC services.

� R15 indicates successful or unsuccessful completion.
� XPCCB field IJBXRETC contains the information or error code describing the

specific situation detected, if R15 is not equal zero.
� XPCCB field IJBXREAS contains the reason code describing the specific situ-

ation existing at asynchronous completion.

State When state occurs XPCC function that
may be issued

SEND 'S' After CONNECT completes - IJBXCECB posted.

After SENDR completes - IJBXSECB posted.
Condition: the partner replies, and wants to
receive new data.

After CLEAR completes - IJBXSECB posted.

SENDR with data

CLEAR

DISCONN

DISCPRG

RECEIVE
'R'

After SENDR completes - IJBXSECB posted.
Condition: the partner only replies.

SENDR without data

CLEAR

DISCONN

DISCPRG

Link inac-
tive 'N'

From CONNECT to CONNECT completion.

After a function completes with SEVER, until
DISCONN request.

DISCONN

 Appendix D. XPCC/APPCVM Protocol 529

Additional error codes and additional reason codes are defined because of the
APPCVM support. If errors are raised by the internally used APPCVM protocol,
then the VSE error code or reason code indicates this. For debugging purposes, -
or for applications with sophisticated error recovery routines - , the VM error infor-
mation is also passed to the VSE application. It is copied by the XPCC/APPCVM
service to the XPCCB user area field IJBXRUSR. Detailed explanations about the
error situation can be found in the appropriate VM documentation (e.g. Virtual
Machine/System Product Transparent Services Access Facility Reference,
SC24-5287).

The format of the error information depends on the time when the error is detected.
If it occurs immediately, then R15 and IJBXRETC contain XPCC error codes, and
the immediate APPCVM code is returned in format A.
In case it occurs asynchronously, then IJBXREAS contains the XPCC reason code,
and the APPCVM error information is returned in format B. Examples for asynchro-
nous errors are:

� an APPCVM function completes with an error,
� the partner SEVERs the connection before a APPCVM function is complete,
� the partner SEVERs the connection without an APPCVM function pending,
� the partner violates the protocol with an unsupported APPCVM function.

The general layout of IJBXRUSR is the following:

Format A:

ORG IJBXRUSR
IJBXVMFC DS CL1 APPC/VM FUNCTION CODE
IJBXVMRC DS CL1 THE APPC/VM ERROR CODE

Format B:

ORG IJBXRUSR
IJBXVMFC DS CL1 APPC/VM FUNCTION CODE THE EXTERNAL
* INTERRUPT IS ASSOCIATED WITH
IJBXVMEI DS 0CL7 THE ERROR DATA OF APPC/VM EXTERNAL
* INTERRUPT INFORMATION IN THE EIB
IJBXVTYP DS CL1 VM INTERRUPT INFORMATION IN "IPTYPE"
IJBXVCOD DS CL2 VM INTERRUPT INFORMATION IN "IPCODE"
IJBXVWRC DS CL1 VM INTERRUPT INFORMATION IN "IPWHATRC"
IJBXVAUD DS CL3 VM INTERRUPT INFORMATION IN "IPAUDIT"

� Field IJBXVMFC may contain a X'00' value if the interrupt occurs when no func-
tion is pending.

� Field IJBXVAUD contains X'000000' if the function having failed does not
involve data buffers (e.g. internal SEVER, CLEAR/SENDERR).

� Fields IJBXVCOD, IJBXVWRC, IJBXVAUD contain X'00's if the interrupt type is
SRI (send request interrupt).

� Fields IJBXVCOD, IJBXVWRC, IJBXVAUD contain X'00's if the interrupt is of a
type, which is not expected, and cannot be handled.

Note: Specific values for the error information are described below with the ser-
vices which can cause the errors to be presented.

530 VSE/AF Supervisor DRM

XPCC Functions not Supported with XPCC/APPCVM
Any XPCC function not belonging to the supported subset is rejected. The applica-
tion will receive the following return code:

The XPCC error code that may be set in the XPCCB control block at the same time
with the return code X'08':

Return code Value Meaning

R15 X'08' Request rejected. Specific error information is
provided in the XPCCB field IJBXRETC.

Field Name Value Meaning

IJBXRETC IJBXIVFU Invalid function.

The function requested is not supported by
XPCC/APPCVM.

 Appendix D. XPCC/APPCVM Protocol 531

XPCC IDENTify Function
The IDENTify function does not imply any APPCVM services. However, a new
restriction concerning naming conventions has to be observed.

In case the VSE XPCC/APPCVM support is active, then the subsystem name spec-
ified on the IPL SET XPCC command may not be used as identification name by a
VSE application. This restriction is required, because the XPCC service would not
know which subsystem to connect to, if the same subsystem existed within VSE
and outside VSE. Special handling is performed with names beginning with char-
acter SYSARI, they are restricted for usage by SQL.

If the restriction above is not observed, the XPCC IDENTify request is rejected, and
an error code is returned.

The XPCC IDENTify request is also rejected, if it is for a unique application name,
and another application has identified itself with the same name; or if an application
name is specified, with which an application has identified itself as unique applica-
tion.

The errors are indicated as follows:

The XPCC error code that may be set in the XPCCB control block at the same time
with the return code above:

Return Code Value Meaning

R15 X'08' Request rejected. Specific error information is
provided in the XPCCB field IJBXRETC.

Field Name Value Meaning

IJBXRETC IJBXVMNM VM subsystem name.

Application name is invalid, because it is reserved
as a VM subsystem name.

IJBXRETC IJBXDUP Duplicate application name.

A unique application name is requested, but
another application has already identified itself
with the same name.
Or an application name is requested, which has
already been identified as unique name.

XPCC TERMINate Function
The TERMINate function does not imply any APPCVM services.

532 VSE/AF Supervisor DRM

XPCC CONNECT Function
The CONNECT function implicitly uses the APPCVM CONNECT service. Thus
errors can arise that reflect APPCVM problems. The errors may be indirect
APPCVM problems detected by VSE or APPCVM problems analyzed by the VM
support.

New error codes are:

The XPCC error codes that may be set in the XPCCB control block at the same
time with the return code above:

The APPCVM error information in the XPCCB field IJBXRUSR - set with the error
code IJBAPPC - has format A:

Return Code Value Meaning

R15 X'08' Request rejected. Specific error information is
provided in the XPCCB field IJBXRETC.

Field Name Value Meaning

IJBXRETC IJBXVMNA APPCVM communication not activated.

Communication to VM has not been initialized by
an IUCV DCLBFR. (As noted by IPL message
0I81I.)

IJBXRETC IJBXAPPC APPCVM error.

The internal APPCVM CONNECT request failed.
The error information provided by APPCVM is
stored in the receiving user area IJBXRUSR.

Field Name Value Meaning

IJBXVMFC APPCVM
CONNECT
function code

The APPCVM function which is rejected.

IJBXVMRC APPCVM
IPRCODE
value

An error occurred before the APPCVM
CONNECT was initiated. The VM reason code is
stored in IJBXVMRC.
See APPCVM documentation.

 Appendix D. XPCC/APPCVM Protocol 533

New error codes given back when the CONNECT request was accepted and initi-
ated, but its completion failed:

The XPCC reason code in the XPCCB control block has the following format:

The APPCVM error information in the XPCCB field IJBXRUSR - set with the reason
code IJBXAPRS - has format B:

The APPCVM error information in the XPCCB field IJBXRUSR - set with the reason
code IJBXUEXI - has format B:

The application is in SEND state 'S' when the connection is complete indicated by
posting of IJBXCECB.

Field Name Value Meaning

IJBXREAS IJBXAPRS APPCVM reason code.

The internal APPCVM CONNECT request com-
pleted unsuccessfully. The APPC path is inter-
nally severed.
The interrupt information presented by APPCVM
with the external interrupt is stored in the
receiving user area IJBXRUSR.

IJBXREAS IJBXUEXI APPCVM reason code.

The internal APPCVM CONNECT request termi-
nated with an unexpected interrupt on this path.
The APPC path is internally severed.
The interrupt code presented by APPCVM with
the external interrupt is stored in the receiving
user area IJBXRUSR.

Field Name Value Meaning

IJBXVMFC APPCVM
CONNECT
function code

The APPCVM function for which the interrupt
occurs.

IJBXVMEI
Subfields:
IJBXVTYP,
IJBXVCOD,
IJBXVWRC

APPCVM EIB
fields: IPTYPE,
IPCODE,
IPWHATRC

The APPCVM CONNECT request is rejected by
the target partner (response was IUCV SEVER).
The VM SEVER information contained in the
external interrupt data is stored in IJBXVMEI.
For explanation see APPCVM documentation.

Field Name Value Meaning

IJBXVMFC APPCVM
CONNECT
function code

The APPCVM function for which the interrupt
occurs.

IJBXVMEI
Subfields:
IJBXVTYP

APPCVM EIB
fields: IPTYPE

The APPCVM CONNECT request terminated with
an unexpected interrupt. The VM interrupt code
contained in the external interrupt data is stored
in IJBXVMEI.
For explanation see APPCVM documentation.

534 VSE/AF Supervisor DRM

State When state occurs XPCC function that
may be issued

SEND 'S' After CONNECT completes - IJBXCECB posted. SENDR with data.

DISCONN

Link inac-
tive 'N'

After CONNECT is rejected - IJBXSECB posted.
Condition: the partner responded with IUCV
SEVER.

DISCONN

 Appendix D. XPCC/APPCVM Protocol 535

XPCC DISCONNect/DISCPRG Function
The DISCONNect function implicitly uses the APPCVM SEVER service. Thus
errors can arise that reflect APPCVM problems analyzed by the VM support.

New error codes are:

The XPCC error code that may be set in the XPCCB control block at the same time
with the return code above:

The APPCVM error information in the XPCCB field IJBXRUSR - set with the error
code IJBXAPPC - has format A:

The application's state remains unchanged, but its value is irrelevant.

Return Code Value Meaning

R15 X'08' Request rejected. Specific error information is
provided in the XPCCB field IJBXRETC.

Field Name Value Meaning

IJBXRETC IJBXAPPC APPCVM error.

An internal APPCVM request failed. The error
information provided by APPCVM is stored in the
receiving user area IJBXRUSR.

Field Name Value Meaning

IJBXVMFC APPCVM
SEVER func-
tion code

The APPCVM function which is rejected.

IJBXVMRC APPCVM
IPRCODE
value

An error occurred before the APPCVM SEVER
was initiated. The VM reason code is stored in
IJBXVMRC.
See APPCVM documentation.

536 VSE/AF Supervisor DRM

XPCC SENDR Function
The SENDR function implicitly uses the APPCVM SENDDATA service, and the
APPCVM RECEIVE service. Thus errors can arise that reflect APPCVM problems.
The errors may be indirect APPCVM problems detected by VSE or APPCVM prob-
lems analyzed by the VM support.

New error codes given back when the SENDR request is rejected:

The XPCC error codes that may be set in the XPCCB control block at the same
time with the return code above:

The APPCVM error information in the XPCCB field IJBXRUSR - set with the error
code IJBXAPPC - has format A:

Return Code Value Meaning

R15 X'08' Request rejected. Specific error information is
provided in the XPCCB field IJBXRETC.

Field Name Value Meaning

IJBXRETC IJBXPFIX There is not sufficient real storage to fix the
user's SEND or RECEIVE buffer.

IJBXRETC IJBXINVS Invalid state.

A SENDR request was issued with IJBXBLN¬=0,
but the application is in RECEIVE state 'R'.

Or a SENDR request was issued with
IJBXBLN=0, but the application is in SEND state
'S'.

IJBXRETC IJBXAPPC APPCVM error.

The internal APPCVM SENDDATA or RECEIVE
request failed. The error information provided by
APPCVM is stored in the receiving user area
IJBXRUSR.

Field Name Value Meaning

IJBXVMFC APPCVM
SENDDATA or
APPCVM
RECEIVE
function code

The APPCVM function which was rejected.

IJBXVMRC APPCVM
IPRCODE
value

An error occurred before the APPCVM
SENDDATA or the APPCVM RECEIVE was initi-
ated. The VM reason code is stored in
IJBXVMRC.
For explanation see APPCVM documentation.

 Appendix D. XPCC/APPCVM Protocol 537

New reason codes given back when the SENDR request was accepted and initi-
ated, but its completion failed, or when the SENDR request is terminated because
of path disconnexion.

The XPCC reason code in the XPCCB control block has the following format:

The APPCVM error information in the XPCCB field IJBXRUSR - set with the reason
code IJBXABCP - has format B:

Field Name Value Meaning

IJBXREAS IJBXABCP APPCVM reason code.

The internal APPCVM SENDDATA or RECEIVE
request completed unsuccessfully.
The error information presented by APPCVM with
the external interrupt is stored in the receiving
user area IJBXRUSR.

IJBXREAS IJBXAPRS
+IJBXABDC

APPCVM reason code.

The internal APPCVM SENDDATA and RECEIVE
function was terminated by a SEVER request
from the communication partner. The APPC path
is internally severed.
The information presented by APPCVM with the
external interrupt is stored in the receiving user
area IJBXRUSR.

IJBXREAS IJBXUEXI APPCVM reason code.

The internal APPCVM SENDDATA and RECEIVE
request was terminated by an unexpected inter-
rupt on this path. The APPC path is internally
severed.
The information presented by APPCVM with the
external interrupt is stored in the receiving user
area IJBXRUSR.

IJBXREAS IJBXAPPV APPCVM Protocol violation.

The internal APPVM SENDDATA or RECEIVE
request was completed by an APPCVM request
from the communication partner violating the sup-
ported protocol. The APPC path is internally
severed.
The information presented by APPCVM with the
external interrupt - caused by the unsupported
request - is stored in the receiving user area
IJBXRUSR.

Field Name Value Meaning

IJBXVMFC APPCVM
SENDDATA or
APPCVM
RECEIVE
function code

The APPCVM function for which the interrupt
occurs.

538 VSE/AF Supervisor DRM

Field Name Value Meaning

IJBXVMEI
Subfields:
IJBXVTYP,
IJBXVCOD,
IJBXVWRC,
IJBXVAUD

APPCVM EIB
fields: IPTYPE,
IPCODE,
IPWHATRC,
IPAUDIT

An error occurred when the APPCVM
SENDDATA or APPCVM RECEIVE completed.
The VM error information contained in the
external interrupt data is stored in IJBXVMEI.
For explanation see APPCVM documentation.

 Appendix D. XPCC/APPCVM Protocol 539

The APPCVM error information in the XPCCB field IJBXRUSR - set with the reason
code IJBXAPRS+IJBXABDC - has format B:

The APPCVM error information in the XPCCB field IJBXRUSR - set with the reason
code IJBXUEXI - has format B:

The APPCVM completion information in the XPCCB field IJBXRUSR - set with the
reason code IJBXAPPV - has format B:

Field Name Value Meaning

IJBXVMFC APPCVM
SENDDATA or
APPCVM
RECEIVE
function code

The APPCVM function for which the interrupt
occurs.

IJBXVMEI
Subfields:
IJBXVTYP,
IJBXVCOD,
IJBXVWRC

APPCVM EIB
fields: IPTYPE,
IPCODE,
IPWHATRC

A SEVER occurred when the APPCVM
SENDDATA or APPCVM RECEIVE completed.
The VM information contained in the external
interrupt data is stored in IJBXVMEI.
For explanation see APPCVM documentation.

Field Name Value Meaning

IJBXVMFC APPCVM
SENDDATA or
APPCVM
RECEIVE
function code

The APPCVM function for which the interrupt
occurs.

IJBXVMEI
Subfields:
IJBXVTYP

APPCVM EIB
fields: IPTYPE

An unexpected interrupt occurred before the
APPCVM SENDDATA or APPCVM RECEIVE
completed. The VM interrupt code contained in
the external interrupt data is stored in IJBXVMEI.
For explanation see APPCVM documentation.

Field Name Value Meaning

IJBXVMFC APPCVM
SENDDATA or
APPCVM
RECEIVE
function code

The APPCVM function for which the interrupt
occurs.

IJBXVMEI
Subfields:
IJBXVTYP,
IJBXVCOD,
IJBXVWRC

APPCVM EIB
fields: IPTYPE,
IPCODE,
IPWHATRC

An APPCVM SENDDATA or APPCVM RECEIVE
completed with a protocol violation from the other
side. The VM information contained in the
external interrupt data is stored in IJBXVMEI.
If the external interrupt type is SRI, then IPTYPE
is the only data presented.
For explanation see APPCVM documentation.

540 VSE/AF Supervisor DRM

The application stays in SEND state 'S' until the request is complete indicated by
posting of IJBXSECB. After that the RECEIVE state 'R' is assumed, when the
partner application only sends reply data. The SEND state 'S' is kept, when the
partner application requested sending and receiving data.

State When state occurs XPCC function that
may be issued

SEND 'S' After SENDR completes - IJBXSECB posted.
Condition: the partner replies, and wants to
receive new data.

SENDR with data

CLEAR

DISCONN

DISCPRG

RECEIVE
'R'

After SENDR completes - IJBXSECB posted.
Condition: the partner only sends reply data.

SENDR without data

CLEAR

DISCONN

DISCPRG

Link inac-
tive 'N'

After SENDR completes unsuccessfully -
IJBXSECB posted. Condition: the partner
responded with SEVER.

DISCONN

 Appendix D. XPCC/APPCVM Protocol 541

XPCC CLEAR Function
The CLEAR function implicitly uses the APPCVM SENDERR service. Thus errors
can arise that reflect APPCVM problems. The errors may be indirect APPCVM
problems detected by VSE or APPCVM problems analyzed by the VM support.

The function does not free buffers immediately as it does in a pure VSE environ-
ment. The application will receive the return code RC=4 indicating that the applica-
tion may not yet reuse its data buffers. It has to wait until the XPCCB field
IJBXSECB is posted; then the buffers are available again and the link is ready for
the next XPCC SENDR request (application is in SEND state).

New return code given back when the CLEAR request is initiated:

The XPCC error code that may be set in the XPCCB control block at the same time
with the return code above:

New error codes given back when the CLEAR request is rejected:

The XPCC error code that may be set in the XPCCB control block at the same time
with the return code above:

The APPCVM error information in the XPCCB field IJBXRUSR - set with the error
code IJBXAPPC - has format A:

Return Code Value Meaning

R15 X'04' Request accepted. Specific information is pro-
vided in the XPCCB field IJBXRETC.

Field Name Value Meaning

IJBXRETC IJBXBUFS Buffers not free.

The CLEAR request is accepted and initiated.
The user buffers are still in use by the system,
and they are not available to the application
before the IJBXSECB is posted.

Return Code Value Meaning

R15 X'08' Request rejected. Specific error information is
provided in the XPCCB field IJBXRETC.

Field Name Value Meaning

IJBXRETC IJBXAPPC APPCVM error.

The internal APPCVM SENDERR request failed.
The error information provided by APPCVM is
stored in the receiving user area IJBXRUSR.

Field Name Value Meaning

IJBXVMFC APPCVM
SENDERR
function code

The APPCVM function which was rejected.

542 VSE/AF Supervisor DRM

Field Name Value Meaning

IJBXVMRC APPCVM
IPRCODE
value

An error occurred before APPCVM SENDERR
was initiated. The VM reason code is stored in
IJBXVMRC.
For explanation see APPCVM documentation.

 Appendix D. XPCC/APPCVM Protocol 543

New reason codes given back when the CLEAR request was accepted and initi-
ated, but its completion failed, or when the CLEAR request is terminated because
of path disconnexion.

The XPCC reason code in the XPCCB control block has the following format:

The APPCVM error information in the XPCCB field IJBXRUSR - set with the reason
code IJBXAPRS (and IJBXAPRS+IJBXABDC) - has format B:

Field Name Value Meaning

IJBXREAS IJBXAPRS APPCVM reason code.

The internal APPCVM SENDERR request com-
pleted unsuccessfully.
The error information presented by APPCVM with
the external interrupt is stored in the receiving
user area IJBXRUSR.

IJBXREAS IJBXAPRS
+IJBXABDC

APPCVM reason code.

The internal APPCVM SENDERR request was
terminated by a SEVER request from the commu-
nication partner. The APPC path is internally
severed.
The information presented by APPCVM with the
external interrupt is stored in the receiving user
area IJBXRUSR.

IJBXREAS IJBXUEXI APPCVM reason code.

The internal APPCVM SENDERR request was
terminated by an unexpected interrupt on this
path. The APPC path is internally severed.
The information presented by APPCVM with the
external interrupt is stored in the receiving user
area IJBXRUSR.

IJBXREAS IJBXAPPV APPCVM protocol violation.

The internal APPCVM SENDERR request was
terminated by an APPCVM request from the com-
munication partner violating the supported pro-
tocol. The APPC path is internally severed.
The information presented by APPCVM with the
external interrupt - caused by the unsupported
request - is stored in the receiving user area
IJBXRUSR.

Field Name Value Meaning

IJBXVMFC APPCVM
SENDERR
function code

The APPCVM function for which the interrupt
occurs.

IJBXVMEI
Subfields:
IJBXVTYP,
IJBXVCOD,
IJBXVWRC

APPCVM EIB
fields: IPTYPE,
IPCODE,
IPWHATRC

An error or sever occurred when the APPCVM
SENDERR completed. The VM error information
contained in the external interrupt data is stored
in IJBXVMEI.
For explanation see APPCVM documentation.

544 VSE/AF Supervisor DRM

The APPCVM error information in the XPCCB field IJBXRUSR - set with the reason
code IJBXUEXI - has format B:

The APPCVM completion information in the XPCCB field IJBXRUSR - set with the
reason code IJBXAPPV - has format B:

After successful completion of the CLEAR request the application is in SEND state.
In case the request fails, the state does not change. However, the state will be 'N',
if the path is severed by the partner.

The values may be:

Field Name Value Meaning

IJBXVMFC APPCVM
SENDERR
function code

The APPCVM function for which the interrupt
occurs.

IJBXVMEI
Subfields:
IJBXVTYP

APPCVM EIB
fields: IPTYPE

An unexpected interrupt occurred before the
APPCVM SENDERR completed. The VM inter-
rupt code contained in the external interrupt data
is stored in IJBXVMEI.
For explanation see APPCVM documentation.

Field Name Value Meaning

IJBXVMFC APPCVM
SENDERR
function code

The APPCVM function for which the interrupt
occurs.

IJBXVMEI
Subfields:
IJBXVTYP,
IJBXVCOD,
IJBXVWRC

APPCVM EIB
fields: IPTYPE,
IPCODE,
IPWHATRC

An APPCVM SENDERR completed with a pro-
tocol violation from the other side. The VM infor-
mation contained in the external interrupt data is
stored in IJBXVMEI.
If the external interrupt type is SRI, then IPTYPE
is the only data presented.
For explanation see APPCVM documentation.

State When state occurs XPCC function that
may be issued

SEND
'S'

When CLEAR completes successfully - IJBXSECB
posted.

SENDR with/without
data

DISCONN

DISCPRG

Link
inac-
tive 'N'

After CLEAR completes unsuccessfully because the
partner responded with SEVER - IJBXSECB posted.

DISCONN

 Appendix D. XPCC/APPCVM Protocol 545

Mapping of XPCC Functions to APPC/VM Functions
CONNECT

An XPCC CONNECT request is internally transformed to an APPCVM CONNECT
function.

The APPCVM macro is issued with the following operands depending on the
release of the VM host system.

For VM/SP release 5:

[name] APPCVM CONNECT,
 PRMLIST=pointer_to_parameter_list,
 CONTROL=NO,
 RESID=pointer_to_SQL/DS_data_base_name,
 SYNCLVL=NONE,
 WAIT=NO

For VM/SP release 6, in case VTAM gateway information is supplied:

[name] APPCVM CONNECT,
 PRMLIST=pointer_to_parameter_list,
 CONTROL=NO,
 RESID=pointer_to_SQL/DS_data_base_name,
 SYNCLVL=NONE,
 WAIT=NO,
 BUFFER=pointer_to_parameter_list_extension,
 BUFLEN=pointer_to_length_of_parameter_list_extension,
 FMH5=NO

Layout of CONNECT parameter list extension:

� 1 2 3 4 5 6 7
 � ┌───────────────────────────────┐
 │ �'s │ CE1
 8 ├───────────────────────────────┤

│ Mode name or �'s │ CE2
 16 ├───────────────────────────────┤

│ Gateway LU name or �'s │ CE3
│ Locally known Lu name or �'s │

 32 ├───┬───┬───────────────────────┤
 │ �3│L'T│ �'s │ CE4/CE5
 4� ├───┴───┴───────────────────────┤
 │ │

│ �'s │ CE6
 │ │
 56 ├───────────────────────────────┤
 │ │
 │ │
 │ TPN (=RESID) │

│ padded with �'s │ CE7
 │ │
 │ │
 │ │
 │ │
 12� └───────────────────────────────┘

546 VSE/AF Supervisor DRM

� CE1 - Reserved
� CE2 - Mode name of target LU if externally specified
� CE3 - Gateway LU name and target LU name if externally specified
� CE4 - 03 = security(PGM); CP extracts USERID/PASSWD from APPCPASS

directory statement
� CE5 - Length of Transaction Program Name has the value 1 to 8
� CE6 - Zero for 03 security(PGM); (CP extracts security information from

APPCPASS)
� CE7 - Transaction Program Name is the VM RESID.

SENDR with Data

An XPCC SENDR request with data to be sent (IJBXBLN¬=0) is internally trans-
formed to an APPCVM SENDDATA function. The length of the reply buffer may
not be zero; it has to be at least four bytes long.

The APPCVM macro is issued with the following operands:

[name] APPCVM SENDDATA,
 PRMLIST=pointer_to_parameter_list,
 RECEIVE=YES,
 PATHID=pointer_to_path_identifier,
 BUFLIST=YES,
 BUFFER=pointer_to_send_buffer_address_list,
 BUFLEN=pointer_to_sum_of_send_buffer_lengths,
 ANSLIST=YES,
 ANSBUF=pointer_to_receive_buffer_address_list,
 ANSLEN=pointer_to_sum_of_receive_buffer_lengths,
 WAIT=NO

� The send buffer supplied to XPCC has to contain the APPC logical record
length in the first 2 bytes (LL), and the SNA GDS ID (general data stream iden-
tifier X'12FF') in the following two bytes.

� The XPCC reply buffer has to be at least 4 bytes long.

� The XPCC reply buffer will contain the original APPC/VM data. The application
has to remove LL fields and X'12FF' fields from the APPC logical records.

SENDR without Data

An XPCC SENDR request without data to be sent (IJBXBLN=0) is internally trans-
formed to an APPCVM RECEIVE function.

The APPCVM macro is issued with the following operands:

[name] APPCVM RECEIVE,
 PRMLIST=pointer_to_parameter_list,
 PATHID=pointer_to_path_identifier,
 BUFLIST=YES,
 BUFFER=pointer_to_send_buffer_address_list,
 BUFLEN=pointer_to_sum_of_send_buffer_lengths,
 WAIT=NO

 Appendix D. XPCC/APPCVM Protocol 547

CLEAR

An XPCC CLEAR request is internally transformed to an APPCVM SENDERR func-
tion.

The APPCVM macro is issued with the following operands:

[name] APPCVM SENDERR,
 PRMLIST=pointer_to_parameter_list,
 PATHID=pointer_to_path_identifier,
 WAIT=NO

DISCONNect

An XPCC DISCONNect request is internally transformed to an APPCVM
SEVER,TYPE=NORMAL function, if the requesting side is in SEND state 'S'.

The APPCVM macro is issued with the following operands:

[name] APPCVM SEVER,
 PRMLIST=pointer_to_parameter_list,
 TYPE=NORMAL,
 PATHID=pointer_to_path_identifier

An XPCC DISCONNect request is internally transformed to an APPCVM
SEVER,TYPE=ABEND function, if the requesting side is in RECEIVE state 'R'.

The APPCVM macro is issued with the following operands:

[name] APPCVM SEVER,
 PRMLIST=pointer_to_parameter_list,
 TYPE=ABEND,
 PATHID=pointer_to_path_identifier

DISConnect/PuRGe

An XPCC DISConnect/PuRGe request is internally transformed to an APPCVM
SEVER,TYPE=ABEND function.

The APPCVM macro is issued with the following operands:

[name] APPCVM SEVER,
 PRMLIST=pointer_to_parameter_list,
 TYPE=ABEND,
 PATHID=pointer_to_path_identifier

548 VSE/AF Supervisor DRM

VSE XPCC/APPCVM Sample Protocols as Used by SQL/DS

APPC VM APPC VSE XPCC VSE
VM SQL DB STATE APPC/VM STATE XPCC/APPC/VM STATE SQL APPL

┌───────────────────┐ ┌───────────────────┐ ┌───────────────────┐ ┌───────────────────┐
 │ │ │ │ │ │ │ │
 │ │ │ │ │ �─┼──┼── XPCC IDENTIFY │
 │ │ │ │ │ Perform request │ │ wth APPL=appl_name│
│ │ │ │ │ ──┼──┼─� │
 │ │ │ │ │ │ │ │
 │ │ │ │ │ │ │ │
 │ │ │ │ │ │ │ │
 │ │ │ │ │ │ │ │
└───────────────────┘ └───────────────────┘ └───────────────────┘ └───────────────────┘

┌───────────────────┐ ┌───────────────────┐ ┌───────────────────┐ ┌───────────────────┐
 │ │ │ │ │ │ │ │
 │ │ │ │ │ �─┼──┼── XPCC CONNECT │
 │ │ │ �─┼──┼── APPCVM CONNECT │ │ with TOAPPL= │
 │ │ │ Initiate request │ │ RESID─�SQL_DB_name│ │ subsystem_name │
│ │ │ ──┼──┼─� │ │ │
 │ │ │ │ C│Transfer ret code──┼──┼─� │
 │ �─┼──┼── Raise CPI │ │ │ N│ │ │
 │ IUCV ACCEPT │ │ │ │ │ │ │ │
│ ──┼──┼─� │ │ │ │ │ │
 │ │R │ Raise CCI ──┼──┼─� │ │ WAIT on IJBXCECB │
 │ │ │ │ S│ POST IJBXCECB ──┼──┼─� │
 │ │ │ │ │ │ S│ │
└───────────────────┘ └───────────────────┘ └───────────────────┘ └───────────────────┘

Figure 240. Successful XPCC CONNECT

APPC VM APPC VSE XPCC VSE
VM SQL DB STATE APPC/VM STATE XPCC/APPC/VM STATE SQL APPL

┌───────────────────┐ ┌───────────────────┐ ┌───────────────────┐ ┌───────────────────┐
 │ │ │ │ │ │ │ │
 │ │ │ │ │ �─┼──┼── XPCC CONNECT │
 │ │ │ �─┼──┼── APPCVM CONNECT │ │ with TOAPPL= │
 │ │ │ Initiate request │ │ RESID─�SQL_DB_name│ │ subsystem_name │
│ │ │ ──┼──┼─� │ │ │
 │ │ │ │ C│Transfer ret code──┼──┼─� │
 │ �─┼──┼── Raise CPI │ │ │ N│ │ │
 │ IUCV SEVER │ │ │ │ │ │ │ │
│ ──┼──┼─� │ C│ │ │ │ │
│ │ │ Raise SVI ──┼──┼─� │ │ │ │
 │ │ │ �─┼──┼── IUCV SEVER │ │ │ │
│ │ │ Perform request │ │ │ │ │ │
│ │ │ ──┼──┼─� │ N│ WAIT on IJBXCECB │
 │ │ │ │ │ POST IJBXCECB ──┼──┼─� │
 │ │ │ │ │ with error ind. │ N│ │ │
│ │ │ │ │ │ │ │ │
 │ │ │ │ │ │ N│ │ │
 │ │ │ │ │ �─┼──┼── XPCC DISCONN │
 │ │ │ │ │ Perform request │ │ │
│ │ │ │ │ ──┼──┼─� │
 │ │ │ │ │ │ │ │
└───────────────────┘ └───────────────────┘ └───────────────────┘ └───────────────────┘

Figure 241. Rejected XPCC CONNECT

 Appendix D. XPCC/APPCVM Protocol 549

APPC VM APPC VSE XPCC VSE
VM SQL DB STATE APPC/VM STATE XPCC/APPC/VM STATE SQL APPL

┌───────────────────┐ ┌───────────────────┐ ┌───────────────────┐ ┌───────────────────┐
 │ │R │ │ S│ │ S│ │
 │ │ │ │ │ �─┼──┼── XPCC SENDR │
 │ │ │ �─┼──┼── APPCVM SENDDATA │ │ with send data │
 │ │ │ Initiate request │ │ with RECEIVE=YES │ │ │
│ │ │ ──┼──┼─� │ │ │
 │ │ │ │ │ Transfer ret code,│ │ │
│ │R │ Transfer data, │ │set RECEIVE state──┼──┼─� │
 │ �─┼──┼── raise MPI │ │ │ │ │ │
 │ APPCVM RECEIVE ──┼──┼─� │ │ │ │ │ │
 │ │ │ Initiate request │ │ │ │ │ │
 │ �─┼──┼── FC (CC=2) │ │ │ │ │ │
│ │S │ │ │ │ │ │ │
 │ APPCVM SENDDATA │ │ │ │ │ │ │ │
 │ with RECEIVE=NO ──┼──┼─� │ │ │ │ │ │
 │ │ │ Initiate request │ │ │ │ │ │
│ �─┼──┼── │ │ │ │ │ │
│ │ │ │ │ │ │ │ │
 │ │ │ Transfer data, │ │ │ │ │ │
 │ │ │ raise FCI ──┼──┼─� │ │ │ │
 │ �─┼──┼── Raise FCI │ R│ Transfer ret code │ │ │ │
 │ │S │ │ │ and RECEIVE state,│ │ WAIT on IJBXSECB │
 │ │ │ │ │ POST IJBXSECB ──┼──┼─� │
 │ │ │ │ │ │ R│ │ │
│ │ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │
 │ │ │ │ │ �─┼──┼── XPCC SENDR │
 │ │ │ �─┼──┼── APPCVM RECEIVE │ │ without send data │
 │ │ │ Initiate request │ │ │ │ │
│ │ │ ──┼──┼─� │ │ │
 │ │ │ │ │ Transfer ret code │ │ │
│ │ │ │ │ ──┼──┼─� │
 │ APPCVM SENDATA │ │ │ │ │ │ │ │
 │ with RECEIVE=YES──┼──┼─� │ │ │ │ │ │
 │ │ │ Initiate request │ │ │ │ │ │
│ �─┼──┼── │ │ │ │ │ │
│ │ │ │ │ │ │ │ │
 │ │ │ Transfer data, │ │ │ │ │ │
 │ │ │ raise FCI ──┼──┼─� │ │ │ │
 │ │ │ │ S│ Transfer ret code │ │ │ │
 │ │ │ │ │ and SEND state, │ │ WAIT on IJBXSECB │
 │ │ │ │ │ POST IJBXSECB ──┼──┼─� │
 │ │ │ │ │ │ S│ │
└───────────────────┘ └───────────────────┘ └───────────────────┘ └───────────────────┘

Figure 242. Normal XPCC SENDR

550 VSE/AF Supervisor DRM

APPC VM APPC VSE XPCC VSE
VM SQL DB STATE APPC/VM STATE XPCC/APPC/VM STATE SQL APPL

┌───────────────────┐ ┌───────────────────┐ ┌───────────────────┐ ┌───────────────────┐
 │ │R │ │ S│ │ S│ │
 │ │ │ │ │ �─┼──┼── XPCC SENDR │
 │ │ │ �─┼──┼── APPCVM SENDDATA │ │ with send data │
 │ │ │ Initiate request │ │ with RECEIVE=YES │ │ │
│ │ │ ──┼──┼─� │ │ │
 │ │ │ │ │ Transfer ret code,│ │ │
│ │R │ Transfer data, │ │set RECEIVE state──┼──┼─� │
 │ �─┼──┼── raise MPI │ │ │ │ │ │
 │ APPCVM RECEIVE ──┼──┼─� │ │ │ │ │ │
 │ │ │ Initiate request │ │ │ │ │ │
 │ �─┼──┼── FC (CC=2) │ │ │ │ │ │
│ │S │ │ │ │ │ │ │
 │ APPCVM SENDDATA │ │ │ │ │ │ │ │
 │ with RECEIVE=NO ──┼──┼─� │ │ │ │ │ │
 │ │ │ Initiate request │ │ │ │ │ │
│ �─┼──┼── │ │ │ │ │ │
│ │ │ │ │ │ │ │ │
 │ │ │ Transfer data, │ │ │ │ │ │
 │ │ │ raise FCI ──┼──┼─� │ │ │ │
 │ �─┼──┼── Raise FCI │ R│ Transfer ret code │ │ │ │
 │ │S │ │ │ and RECEIVE state,│ │ WAIT on IJBXSECB │
 │ │ │ │ │ POST IJBXSECB ──┼──┼─� │
 │ │ │ │ │ │ R│ │ │
 │ APPCVM SENDATA │ │ │ │ │ │ │ │
 │ with RECEIVE=YES──┼──┼─� │ │ │ │ │ │
 │ │ │ Initiate request │ │ │ │ │ │
│ �─┼──┼── │ │ │ │ │ │
│ │ │ │ │ │ │ │ │
 │ │ │ raise MPI ──┼──┼─� │ │ │ │
│ │ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │
 │ │ │ │ │ �─┼──┼── XPCC SENDR │
 │ │ │ �─┼──┼── APPCVM RECEIVE │ │ without send data │
│ │ │ Perform request │ │ │ │ │
 │ │ │ Transfer data, │ │ │ │ │
 │ │ │ FC (cc=2) ──┼──┼─� │ │ │
 │ │ │ │ S│ Transfer ret code │ │ │
 │ �─┼──┼── Raise FCI │ │ and SEND state, │ │ │
 │ │R │ │ │ POST IJBXSECB ──┼──┼─� │
 │ │ │ │ │ │ S│ │
└───────────────────┘ └───────────────────┘ └───────────────────┘ └───────────────────┘

Figure 243. Normal XPCC SENDR

APPC VM APPC VSE XPCC VSE
VM SQL DB STATE APPC/VM STATE XPCC/APPC/VM STATE SQL APPL

┌───────────────────┐ ┌───────────────────┐ ┌───────────────────┐ ┌───────────────────┐
 │ │ │ │ R│ │ R│ │
 │ │ │ │ │ �─┼──┼── XPCC SENDR │
 │ │ │ │ │ Reject request │ │ with send data │
 │ │ │ │ │ because of RECEIVE│ │ │
 │ │ │ │ │ state ─ No send │ │ │
 │ │ │ │ │ data allowed. │ │ │
 │ │ │ │ │ Return err code ──┼──┼─� │
 │ │ │ │ │ │ R│ │
└───────────────────┘ └───────────────────┘ └───────────────────┘ └───────────────────┘

Figure 244. Rejected XPCC SENDR (Invalid State)

 Appendix D. XPCC/APPCVM Protocol 551

APPC VM APPC VSE XPCC VSE
VM SQL DB STATE APPC/VM STATE XPCC/APPC/VM STATE SQL APPL

┌───────────────────┐ ┌───────────────────┐ ┌───────────────────┐ ┌───────────────────┐
 │ │ │ │ S│ │ S│ │
 │ │ │ │ │ �─┼──┼── XPCC SENDR │
 │ │ │ │ │ Reject request │ │ without send data │
 │ │ │ │ │ because of SEND │ │ │
 │ │ │ │ │ state - Send data │ │ │
 │ │ │ │ │ expected. │ │ │
 │ │ │ │ │ Return err code ──┼──┼─� │
 │ │ │ │ │ │ S│ │
└───────────────────┘ └───────────────────┘ └───────────────────┘ └───────────────────┘

Figure 245. Rejected XPCC SENDR (Invalid State)

APPC VM APPC VSE XPCC VSE
VM SQL DB STATE APPC/VM STATE XPCC/APPC/VM STATE SQL APPL

┌───────────────────┐ ┌───────────────────┐ ┌───────────────────┐ ┌───────────────────┐
 │ │R │ │ S│ │ S│ │
 │ │ │ │ │ �─┼──┼── XPCC SENDR │
 │ │ │ �─┼──┼── APPCVM SENDDATA │ │ with send data │
 │ │ │ Initiate request │ │ with RECEIVE=YES │ │ │
│ │ │ ──┼──┼─� │ │ │
 │ │ │ │ │ Transfer ret code │ │ │
│ │ │ │ │ ──┼──┼─� │
 │ �─┼──┼── Raise MPI │ │ │ │ │ │
│ APPCVM SEVER │ │ │ │ │ │ │ │
│ TYPE=ABEND │ │ │ │ │ │ │ │
│ ──┼──┼─� │ │ │ │ │ │
 │ │ │ Raise SVI ──┼──┼─� │ │ │ │
│ │ │ �─┼──┼── IUCV SEVER │ │ │ │
│ │ │ Perform request │ │ │ │ │ │
│ │ │ ──┼──┼─� │ │ WAIT on IJBXSECB │
 │ │ │ │ │ POST IJBXSECB ──┼──┼─� │
 │ │ │ │ │ with disconn flag │ N│ │ │
│ │ │ │ │ │ │ │ │
 │ │ │ │ │ │ N│ │ │
 │ │ │ │ │ �─┼──┼── XPCC DISCONN │
 │ │ │ │ │ Perform request │ │ │
│ │ │ │ │ ──┼──┼─� │
 │ │ │ │ │ │ │ │
└───────────────────┘ └───────────────────┘ └───────────────────┘ └───────────────────┘

Figure 246. Rejected XPCC SENDR (Path Disconnected by APPCVM SEVER)

552 VSE/AF Supervisor DRM

APPC VM APPC VSE XPCC VSE
VM SQL DB STATE APPC/VM STATE XPCC/APPC/VM STATE SQL APPL

┌───────────────────┐ ┌───────────────────┐ ┌───────────────────┐ ┌───────────────────┐
 │ │R │ │ S│ │ S│ │
 │ │ │ │ │ �─┼──┼── XPCC SENDR │
 │ │ │ �─┼──┼── APPCVM SENDDATA │ │ with send data │
 │ │ │ Initiate request │ │ with RECEIVE=YES │ │ │
│ │ │ ──┼──┼─� │ │ │
 │ │ │ │ │ Transfer ret code │ │ │
│ │ │ │ │ ──┼──┼─� │
 │ �─┼──┼── Raise MPI │ │ │ │ │ │
│ APPCVM RECEIVE │ │ │ │ │ │ │ │
│ ──┼──┼─� │ │ │ │ │ │
 │ │ │ Initiate request │ │ │ │ │ │
 │ �─┼──┼── FC (CC=2) │ │ │ │ │ │
│ │S │ │ │ │ │ │ │
│ APPCVM SEVER │ │ │ │ │ │ │ │
│ TYPE=NORMAL ──┼──┼─� │ │ │ │ │ │
 │ │ │ Perform request │ │ │ │ │ │
 │ �─┼──┼── FC (CC=2) │ │ │ │ │ │
│ │ │ Raise SVI ──┼──┼─� │ │ │ │
│ │ │ �─┼──┼── IUCV SEVER │ │ │ │
│ │ │ Perform request │ │ │ │ │ │
│ │ │ ──┼──┼─� │ │ WAIT on IJBXSECB │
 │ │ │ │ │ POST IJBXSECB ──┼──┼─� │
 │ │ │ │ │ with disconn flag │ N│ │ │
│ │ │ │ │ │ │ │ │
 │ │ │ │ │ │ N│ │ │
 │ │ │ │ │ �─┼──┼── XPCC DISCONN │
 │ │ │ │ │ Perform request │ │ │
│ │ │ │ │ ──┼──┼─� │
 │ │ │ │ │ │ │ │
└───────────────────┘ └───────────────────┘ └───────────────────┘ └───────────────────┘

Figure 247. Rejected XPCC SENDR (Path Disconnected by APPCVM SEVER)

 Appendix D. XPCC/APPCVM Protocol 553

APPC VM APPC VSE XPCC VSE
VM SQL DB STATE APPC/VM STATE XPCC/APPC/VM STATE SQL APPL

┌───────────────────┐ ┌───────────────────┐ ┌───────────────────┐ ┌───────────────────┐
 │ │R │ │ S│ │ S│ │
 │ │ │ │ │ �─┼──┼── XPCC SENDR │
 │ │ │ �─┼──┼── APPCVM SENDDATA │ │ with send data │
 │ │ │ Initiate request │ │ with RECEIVE=YES │ │ │
│ │ │ ──┼──┼─� │ │ │
 │ │ │ │ │ Transfer ret code │ │ │
│ │ │ Transfer data, │ │ ──┼──┼─� │
 │ �─┼──┼── raise MPI │ │ │ │ │ │
 │ APPCVM RECEIVE ──┼──┼─� │ │ │ │ │ │
 │ │ │ Initiate request │ │ │ │ │ │
 │ �─┼──┼── FC (CC=2) │ │ │ │ │ │
 │ │S │ │ │ �─┼──┼── XPCC CLEAR │
 │ │ │ │ │ Set delay SENDERR │ │ │
 │ APPCVM SENDDATA │ │ │ │ ──┼──┼─� │
 │ with RECEIVE=NO ──┼──┼─� │ │ │ │ │ │
 │ │ │ Initiate request │ │ │ │ │ │
│ �─┼──┼── │ │ │ │ │ │
│ │ │ Raise FCI ─┼──┼─� │ │ │ │
 │ �─┼──┼── Raise FCI │ R│ │ │ │ │
│ │S │ │ │ │ │ │ │
 │ │ │ �─┼──┼── APPCVM SENDERR │ │ │ │
 │ │ │ Initiate request │ │ │ │ │ │
 │ APPCVM SENDDATA │ │ ──┼──┼─� │ │ │ │
 │ with RECEIVE=YES──┼──┼─� │ │ │ │ │ │
│ │ │ Complete with │ │ │ │ │ │
│ │ │ IPWHATRC=IPERROR │ │ │ │ │ │
│ �─┼──┼── │ │ │ │ │ │
│ │R │ Raise FCI ─┼──┼─� │ │ │ │
 │ │ │ │ S│ Transfer ret code,│ │ WAIT on IJBXSECB │
 │ │ │ │ │ POST IJBXSECB ──┼──┼─� │
 │ │ │ │ │ │ S│ │
└───────────────────┘ └───────────────────┘ └───────────────────┘ └───────────────────┘

Figure 248. XPCC CLEAR (Simulated by APPCVM SENDERR)

554 VSE/AF Supervisor DRM

APPC VM APPC VSE XPCC VSE
VM SQL DB STATE APPC/VM STATE XPCC/APPC/VM STATE SQL APPL

┌───────────────────┐ ┌───────────────────┐ ┌───────────────────┐ ┌───────────────────┐
 │ │R │ │ S│ │ S│ │
 │ │ │ │ │ �─┼──┼── XPCC SENDR │
 │ │ │ �─┼──┼── APPCVM SENDDATA │ │ with send data │
 │ │ │ Initiate request │ │ with RECEIVE=YES │ │ │
│ │ │ ──┼──┼─� │ │ │
 │ │ │ │ │ Transfer ret code │ │ │
│ │ │ Transfer data, │ │ ──┼──┼─� │
 │ �─┼──┼── raise MPI │ │ │ │ │ │
 │ APPCVM SENDERR ──┼──┼─� │ │ │ │ │ │
 │ │ │ Initiate request │ │ │ │ │ │
│ �─┼──┼── │ │ │ │ │ │
│ │ │ │ │ │ │ │ │
 │ │ │ Initiate request │ │ │ │ │ │
│ │ │ raise FCI with ──┼──┼─� │ │ │ │
│ │ │ IPWHATRC=IPERROR │ R│ Set PURGE pending│ │ │ │
│ │ │ │ │ │ │ │ │
 │ �─┼──┼── Raise FCI │ │ │ │ │ │
│ │S │ │ │ │ │ │ │
 │ APPCVM RECEIVE ──┼──┼─� │ │ │ │ │ │
 │ │ │ Initiate request │ │ │ │ │ │
│ �─┼──┼── │ │ │ │ │ │
│ │ │ │ │ │ │ │ │
 │ │ │ Raise MPI ──┼──┼─� │ │ │ │
 │ │ │ �─┼──┼── APPCVM RECEIVE │ │ │ │
│ │ │ Perform request │ │ │ │ │ │
 │ │ │ FC (CC=2) ──┼──┼─� │ │ │ │
 │ �─┼──┼── Raise FCI │ S│ │ │ WAIT on IJBXSECB │
 │ │R │ │ │ POST IJBXSECB ──┼──┼─� │
 │ │ │ │ │ with PURGE │ S│ │
 │ │ │ │ │ indication │ │ │
└───────────────────┘ └───────────────────┘ └───────────────────┘ └───────────────────┘

Figure 249. PURGEd XPCC SENDR (Simulated by APPCVM SENDERR from Partner)

 Appendix D. XPCC/APPCVM Protocol 555

APPC VM APPC VSE XPCC VSE
VM SQL DB STATE APPC/VM STATE XPCC/APPC/VM STATE SQL APPL

┌───────────────────┐ ┌───────────────────┐ ┌───────────────────┐ ┌───────────────────┐
 │ │S │ │ R│ │ R│ │
│ │ │ │ │ No APPC │ │ No │
 │ APPCVM SENDERR ──┼──┼─� │ │ function │ │ XPCC │
 │ │ │ Initiate request │ │ pending │ │ function │
│ �─┼──┼── │ │ │ │ pending │
│ │ │ Raise MPI ──┼──┼─� │ │ on │
 │ │ │ �─┼──┼── APPCVM RECEIVE │ │ path │
│ │ │ Perform request │ │ │ │ │
│ │ │ with cc=2 ──┼──┼─� │ │ │
│ │ │ IPWHATRC=IPERROR │ R│ Set PURGE pending│ │ │
 │ │ │ │ │ │ │ │
 │ �─┼──┼── Raise FCI │ │ │ │ │
 │ │S │ │ │ │ │ │
 │ │ │ │ │ │ │ │
 │ APPCVM RECEIVE ──┼──┼─� │ │ │ │ │
 │ │ │ Initiate request │ │ │ │ │
│ �─┼──┼── │ │ │ │ │
 │ │ │ │ │ │ │ │
 │ │ │ Raise MPI ──┼──┼─� │ │ │
 │ │ │ �─┼──┼── APPCVM RECEIVE │ │ │
│ │ │ Perform request │ │ │ │ │
 │ │ │ FC (CC=2) ──┼──┼─� │ │ Next XPCC │
 │ �─┼──┼── Raise FCI │ S│ │ │ function │
│ │R │ │ │ │ │ purged │
 │ │ │ │ │ │ │ │
└───────────────────┘ └───────────────────┘ └───────────────────┘ └───────────────────┘

Figure 250. APPCVM SENDERR from Partner (Handled like XPCC PURGE-State R)

APPC VM APPC VSE XPCC VSE
VM SQL DB STATE APPC/VM STATE XPCC/APPC/VM STATE SQL APPL

┌───────────────────┐ ┌───────────────────┐ ┌───────────────────┐ ┌───────────────────┐
 │ │R │ │ S│ │ S│ │
│ │ │ │ │ No │ │ No │
 │ APPCVM SENDERR ──┼──┼─� │ │ APPC │ │ XPCC │
 │ │ │ Initiate request │ │ function │ │ function │
│ �─┼──┼── │ │ pending │ │ pending │
│ │ │ │ │ on │ │ on │
 │ │ │ SENDERR info │ │ path │ │ path │
 │ │ │ raised with next │ │ │ │ │
 │ │ │ incoming APPC │ │ │ │ │
│ │ │ request ─────� │ │ │ │ │
│ │ │ │ │ │ │ Next │
│ │ │ Protocol │ │ │ │ XPCC │
│ │ │ as on figure │ │ │ │ function │
│ │ │ PURGEd SENDR │ │ │ │ purged │
 │ │ │ │ │ │ │ │
└───────────────────┘ └───────────────────┘ └───────────────────┘ └───────────────────┘

Figure 251. APPCVM SENDERR from Partner (Handled like XPCC PURGE-State S)

556 VSE/AF Supervisor DRM

APPC VM APPC VSE XPCC VSE
VM SQL DB STATE APPC/VM STATE XPCC/APPC/VM STATE SQL APPL

┌───────────────────┐ ┌───────────────────┐ ┌───────────────────┐ ┌───────────────────┐
 │ │R │ │ S│ │ S│ │
 │ │ │ │ │ �─┼──┼── XPCC SENDR │
 │ │ │ �─┼──┼── APPCVM SENDDATA │ │ with send data │
 │ │ │ Initiate request │ │ with RECEIVE=YES │ │ │
│ │ │ ──┼──┼─� │ │ │
 │ │ │ │ │ Transfer ret code │ │ │
│ │ │ Transfer data, │ │ ──┼──┼─� │
 │ �─┼──┼── raise MPI │ │ │ │ │ │
 │ APPCVM SENDREQ ──┼──┼─� │ │ │ │ │ │
 │ │ │ Perform request │ │ │ │ │ │
│ �─┼──┼── │ │ │ │ │ │
│ │ │ Raise SRI ──┼──┼─� │ │ │ │
│ │ │ �─┼──┼── IUCV SEVER │ │ │ │
│ │ │ Perform request │ │ │ │ │ │
│ │ │ ──┼──┼─� │ │ WAIT on IJBXSECB │
 │ │ │ │ │ POST IJBXSECB ──┼──┼─� │
 │ │ │ │ │ with disconn flag │ N│ │ │
 │ �─┼──┼── Raise SVI │ │ │ │ │ │
│ IUCV SEVER ──┼──┼─� │ │ │ │ │ │
 │ │ │ │ │ │ N│ │ │
 │ │ │ │ │ �─┼──┼── XPCC DISCONN │
 │ │ │ │ │ Perform request │ │ │
│ │ │ │ │ ──┼──┼─� │
 │ │ │ │ │ │ │ │
 │ │ │ │ │ │ │ │
└───────────────────┘ └───────────────────┘ └───────────────────┘ └───────────────────┘

Figure 252. Invalid Response from Partner

APPC VM APPC VSE XPCC VSE
VM SQL DB STATE APPC/VM STATE XPCC/APPC/VM STATE SQL APPL

┌───────────────────┐ ┌───────────────────┐ ┌───────────────────┐ ┌───────────────────┐
 │ │R │ │ S│ │ S│ │
 │ │ │ │ │ �─┼──┼── XPCC DISCONN │
 │ │ │ �─┼──┼── APPCVM SEVER │ N│ │
 │ │ │ Initiate request │ │ TYPE=NORMAL │ │ │
 │ │ │ │ │ │ │ │
│ │ │ ──┼──┼─� │ N│ │
 │ │ │ │ │Transfer ret code──┼──┼─� │
 │ �─┼──┼── Raise SVI │ │ │ │ │ │
│ APPCVM SEVER │ │ │ │ │ │ │ │
│ TYPE=NORMAL ──┼──┼─� │ │ │ │ │ │
│ │ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │
 │ │ │ │ │ �─┼──┼── XPCC TERMIN │
 │ │ │ │ │ Perform request │ │ │
│ │ │ │ │ ──┼──┼─� │
 │ │ │ │ │ │ │ │
└───────────────────┘ └───────────────────┘ └───────────────────┘ └───────────────────┘

Figure 253. XPCC DISCONNect (APPCVM SEND State)

 Appendix D. XPCC/APPCVM Protocol 557

APPC VM APPC VSE XPCC VSE
VM SQL DB STATE APPC/VM STATE XPCC/APPC/VM STATE SQL APPL

┌───────────────────┐ ┌───────────────────┐ ┌───────────────────┐ ┌───────────────────┐
 │ │S │ │ R│ │ R│ │
 │ │ │ │ │ �─┼──┼── XPCC DISCONN │
 │ │ │ �─┼──┼── APPCVM SEVER │ N│ │
 │ │ │ Initiate request │ │ TYPE=ABEND │ │ │
 │ │ │ │ │ │ │ │
│ │ │ ──┼──┼─� │ N│ │
 │ │ │ │ │Transfer ret code──┼──┼─� │
 │ �─┼──┼── Raise SVI │ │ │ │ │ │
│ APPCVM SEVER │ │ │ │ │ │ │ │
│ TYPE=NORMAL ──┼──┼─� │ │ │ │ │ │
│ │ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │
 │ │ │ │ │ �─┼──┼── XPCC TERMIN │
 │ │ │ │ │ Perform request │ │ │
│ │ │ │ │ ──┼──┼─� │
 │ │ │ │ │ │ │ │
└───────────────────┘ └───────────────────┘ └───────────────────┘ └───────────────────┘

Figure 254. XPCC DISCONNect (APPCVM RECEIVE State)

APPC VM APPC VSE XPCC VSE
VM SQL DB STATE APPC/VM STATE XPCC/APPC/VM STATE SQL APPL

┌───────────────────┐ ┌───────────────────┐ ┌───────────────────┐ ┌───────────────────┐
│ │S││ │ R│ │ R│ │
│ │R │ ││S│ ││S│ │
 │ │ │ │ │ �─┼──┼── XPCC DISCPRG │
 │ │ │ �─┼──┼── APPCVM SEVER │ N│ │
 │ │ │ Initiate request │ │ TYPE=ABEND │ │ │
 │ │ │ │ │ │ │ │
│ │ │ ──┼──┼─� │ N│ │
 │ │ │ │ │Transfer ret code──┼──┼─� │
 │ �─┼──┼── Raise SVI │ │ │ │ │ │
│ APPCVM SEVER │ │ │ │ │ │ │ │
│ TYPE=NORMAL ──┼──┼─� │ │ │ │ │ │
│ │ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │
 │ │ │ │ │ �─┼──┼── XPCC TERMIN │
 │ │ │ │ │ Perform request │ │ │
│ │ │ │ │ ──┼──┼─� │
 │ │ │ │ │ │ │ │
└───────────────────┘ └───────────────────┘ └───────────────────┘ └───────────────────┘

Figure 255. XPCC DISConnect/PuRGe

558 VSE/AF Supervisor DRM

 Acronyms

APPC/VM External Interrupt Codes
Interrupt Meaning Caused by:

CCI Connection complete
interrupt

Own application issued a CONNECT request
with WAIT=NO, and partner ACCEPTs con-
nection.

CPI Connection pending
interrupt

After partner issued a CONNECT request.

FCI Function complete inter-
rupt

Own application issued a RECEIVE,
SENDDATA, or SENDERR request with
WAIT=NO, and partner responded appropri-
ately.

MPI Message pending inter-
rupt

Partner issued a RECEIVE, SENDDATA, or
SENDERR request, and own status is R and
no function pending.

SRI SENDREQ interrupt Partner issued a SENDREQ request.

SVI SEVER interrupt When the partner terminates the communi-
cation by issuing a SEVER request. May
occur when function pending.

 Appendix D. XPCC/APPCVM Protocol 559

APPC/VM - XPCC/APPCVM States
APPCVM
State

XPCC/APPCVM
State

Meaning

C Connection pending - intermediate state

N Link not active - intermediate state

(Connection pending or connection severed)

R R RECEIVE state

S S SEND state

SV SEVER state

(Set only by FCI because of path severed by
partner)

560 VSE/AF Supervisor DRM

Appendix E. Performance Monitoring Interface

The interface for the VSE Performance Monitor, VSE/PT, used to be the Monitor
Call Class 3. This interface had 2 major disadvantages:

1. the MC has a negative performance impact for a VSE Guest on VM, and

2. it was not supported by the VSE Program Check Handler, that means, VSE/PT
needed to modify the New PSW for Program Checks to get control.

VSE/PT will not run on VSE/ESA anymore and the Monitor Calls have been
removed from the Supervisor Code.
The new performance monitoring interface is described in the following section.

 Interactions
� A performance monitor can get control through a Branch Interface, that means,

basically the MCs are replaced by Branches.

� The code which will get control via the Branch must reside in the SVA, the
address of its entry point must be stored at label PTAIFCOD in area
VSEPTCOM (DSECT generated by MAPPTCOM) which is anchored off
SYSCOM (label IJBPTCOM).

This code gets control in Supervisor State with interrupts disabled, that means,
that code must not generate any interrupt (for example, Page Fault).
If it does, the system goes into a Hard Wait.
This code must be PFIXed.

Control is transferred in Primary Space Mode.
The Addressing Mode, in which the monitor gets control, can be defined by the
monitor's code itself:

– If the high-order bit (bit 0) in field PTAIFCOD is set (=1) then control is
transferred in AMODE(31),

– else control is passed in AMODE(24).

Upon return to the supervisor the task must be in the same state
(registers(except Reg. 15), PSW, etc.) as it was at time of entry.
The AMODE must be reset to what it was before control was given to the
monitor.

� The following sequence of steps must be implemented by a performance
monitor for initialization:

– A performance monitor must identify itself to VSE via
SUBSID NOTIFY,NAME=<VSPT>,

– The same task then must load the interface code into the system GETVIS
(PFIXed) and store the entry point address of that code into field
PTAIFCOD.

� Thereafter, any task of the performance monitor can activate monitoring.

– A monitoring period is initiated via
MODFLD FIELD=VSPTFLG,NEWVAL=(r1)or<LABEL>
if the label notation is used, LABEL must identify a field containing
X'00000001'

© Copyright IBM Corp. 1985, 2013 561

if register notation is used, the register must contain the value X'00000001'.

– The task which issues the MODFLD must have identified itself to VSE via
SUBSID NOTIFY,NAME=<VSPT>, before.

From now on, control will be passed from the various points in the super-
visor to the performance monitor code as described above.

� Thereafter, any task of the performance monitor can deactivate monitoring.

– A monitoring period is deactivated via
MODFLD FIELD=VSPTFLG,NEWVAL=(r1)or<LABEL>
if the label notation is used, LABEL must identify a field containing
X'00000000'
if register notation is used, the register must contain the value X'00000000'.

– The task which issues the MODFLD must have identified itself to VSE via
SUBSID NOTIFY,NAME=<VSPT>, before.

� Finally a performance monitor must inform VSE about its termination via
SUBSID REMOVE,NAME=<VSPT>.

� With the branch also a function code is passed which allows the performance
monitor to decide which monitor point has passed control. In addition, following
registers are used as interface between the supervisor and a performance
monitor when control is passed:

R14 = A(2-byte function code)

R15 = Entry point address (that means, base register for the code of the
performance monitor)

BR 2(R14) allows return from the performance monitor to supervisor

There are 17 function codes defined at the moment.

 – FC=1;
replaces MC(4). Event: I/O interrupt

 – FC=2;
replaces MC(8). Event: Start I/O

 – FC=3;
replaces MC(12). Event: System goes into allbound state

 – FC=4;
replaces MC(16). Event: SVC interrupt (not for SVC 107)

 – FC=5;
replaces MC(20). Event: I/O request put into channel queue

 – FC=6;
replaces MC(24). Event: Process set time request

 – FC=7;
replaces MC(28). Event: Interrupt from clock comparator

 – FC=8;
replaces MC(32). Event: Fetch for LTA phase

 – FC=9;
replaces MC(36). Event: Free LTA

 – FC=10;
new. Event: Program check interrupt

562 VSE/AF Supervisor DRM

 – FC=11;
new. Event: External interrupt

 – FC=12;
new. Event: Phase loaded from SVA

 – FC=13;
new. Event: Phase loaded from a library

 – FC=14;
replaces MC(44). Event: Interval timer interrupt

 – FC=15;
new. Event: Set CPU timer (caused by user task)

 – FC=16;
new. Event: Set CPU timer (caused by external interrupt)

 – FC=17;
new. Event: GETVIS updates counter of used pages

 – FC=18;
new. Event: Phase not found

� VSEPTCOM is moved above the 64KB line in supervisor. It is extended by
several fullwords.

PTASVCTB DC A(SVCTAB)

 PTACTAB DC A(CHNTAB)

PTCPYTOT DC F(# of totally available copy blocks), set by IPL

PTCPYAVL DC F(# of currently free copy blocks), set by IPL and modi-
fied by CCW translation

PTCPYHWM DC F(# of so far unused copy blocks), set by IPL and modi-
fied by CCW translation

PTAIFCOD DC A(Entry point of monitor for supervisor)

PTAINITT DC A(field INITTIME)

PTACMSAV DC A(field COMMSAV)

 PTARID DC A(field VSEPTRID)

 PTAPTSA DC A(field VSEPTSA)

PTAIDCB DC A(anchor of chain of XPCC ID control blocks)

Field PTAPFT has been removed.

� A new macro, SGVSEPT, handles the branch interface to the performance
monitor, it must be coded in the supervisor wherever control is to be passed.
The interface is
SGVSEPT PROBE=,SAVE=
POBE is a mandatory parameter, it defines the function code passed to the
monitor,
SAVE is optional, the default is YES; it indicates whether the caller wants regis-
ters 14 and 15 saved.

 Appendix E. Performance Monitoring Interface 563

564 VSE/AF Supervisor DRM

 Index

Numerics
64-bit page frames 223

A
Access Register

Access Register Translation 314
Access Register Save Area 457
Access Register Translation 309, 314
Access Registers 309

Access Register Translation 309
Primary-List Bit 310
Save Area 457

Access-List Entries 310
Access-Register (AR) Mode 314
ACCTCOMN (Job Accounting Table) 440
address space control element (ASCE) 201
Address Spaces 319
Address spaces, size of 195
address table

partition control block 451
ALD (Access-List Designation) 312
ALESERV Macro 323
ALESN (Access-List-Entry Sequence Number) 310
ALET 309
anchor table 287
Anchor table (ANCHTAB) 287
appendixes 437
area

ERBLOC 505
supervisor patch 403

ART 309
Assign

Stored Assignment Table entry 482
ASTE (ASN-Second-Table-Entry) 312
AT CVT 467
attention

task 350
automatic volume recognition (AVR) 105
AVR (automatic volume recognition) 105

B
B-tree (index set) 337
balanced group 68
BLKTBE (VIO Block Table Entry) 466
block protection 100
blocked page-out 230
blocked paging

concepts 229
page-in 196, 229, 240, 241, 242
pre-page-out 196, 229, 230, 231

blocked paging (continued)
tuning considerations for page-out 238
unconditional page-out 196, 229, 234, 236

bound state
table 61

bound state setting
I/O 120
resource 127

Breaking-Event-Address 28

C
cancel

codes 413
routine 78

CAW (Channel Address Word) 473
CCB

copy blocks 163, 164
special notes 497

CCB (command control block) 494
CCH (channel check handler) 372
CCW

copy block 163, 165, 167
CCWTCB (translation control block) 163
channel

address word (CAW) 473
check entry

device 509
check handler (CCH) 372
check handling 372
check severity detect routine 372, 374
Control Table (CHNTAB) 491
queue table (CHANQ) 99, 492
status word (CSW) 474

channel program
copying 170
translation 163, 170

CHANQ (Channel queue table) 99, 492
CHNTAB (Channel Control Table) 491
CLASSADR (dynamic class table entry) 444
CLIMADR (Dynamic Class and System Limts

Table) 443
CMT 331
code-fix area, temporary 403
command control block (CCB) 494
Companion Manuals x
COMREG (partition communications region) 452
control block

Command (CCB) 494
ECB 460
IORB 499
partition 450

© Copyright IBM Corp. 1985, 2013 565

control block (continued)
partition (PCB) 452
PIB 452
PIB2 452
RCB 461
SAACOMM 79
SCB 450
system (PCB) 452
task 453

control blocks 47
CPU 48
page 0 47
Ported from OS/390 467
prefix page 47
task selection 48
TD address table 48
TD communication region 48
TD CPU control block 48

Control Unit Initiated Reconfiguration 107
control word

channel (CAW) 473
copy blocks

CCB 164
CCW 165, 167

CPCBADR (dynamic class control block) 444, 445
CPU activation 47
CPU control blocks 48
CPU initialization 47
CPU management 47

activation 47
initialization 47
termination 47

CPU termination 47
Cross Memory Communication
CRW (channel report word) 371
CRW handling
CSW (channel status word) 474
CUIR 107
CVT

OS/390 467
VTAM 467

D
DASD sharing

FETCH 135, 362
lock management 131
second level directory - SLD 362

Data Space 195, 309
Data Spaces

compared to address spaces 321
Control Block Structure 324
Introduction To 320

data structures
PGQSYS 241
POSL 236

data structures (continued)
PREPGENT 236
PREPGOTB 236

Data-Only Space
definition of 321
illustration of 321

DCT (device characteristics table) 107
Debug commands

Debug ON 428
Debug Select 431
Debug Show 432
Debug Stop 433
Debug Trace 429

Debugging Facilities
Features 415

Address Compare Stop 417
Event tracing 417

How to find it 418
Locate command 434
Overview 415
SHOW command 436
Trace Areas 419
Trace Entries 420

All Register 421
Cancel 425
Data 426
Dispatcher Exit 422
External Interrupt 424
I/O Interrupt 423
MC Debug entries 427
Program Check 420
Start I/O 423
Supervisor Call 425
Switch 426
Task Selection 424
User Data 427

DEVCB (device control block) 213
device

characteristics table (DCT) 107
control block (DEVCB) 213
scheduling 99
Usage Counters (DVCUSCNT) 489

DEVTAB 351
DIB (Disk Information Block Table) 502
DIBX (disk information block extension table) 504
directory

entry 346
list support 346
search 350

disk
information block

(DIB) table, CKD 502
(DIB) table, FBA 504
extension (DIBX) table 504

Disk Error Recovery 115

566 VSE/AF Supervisor DRM

dispatcher 49
partition cleanup 90
partition preparation 90
system dump interfaces 79
VSE/ICCF support 88

DPDTAB (Page Data Set Table) 211
DSPSERV Macro 322
DSRCHNx (first level chain control blocks) 351
DU-AL 315
DUCT (Dispatchable-Unit Control Table) 310
DVCUSCNT (Device Usage Counters) 489
dynamic class 34, 444

CLASSADR 444
control block (CPCBADR) 445
CPCBADR 444
information 444
limits table (CLIMADR) 443
table entry (CLASSADR) 444

dynamic class table 34, 444
dynamic partition 33
dynamic space GETVIS area 33
DYNCLASS ID=LOAD 444

E
ECB (Event Control Block) 460
ERBLOC Area 505
ERP Message Writer 117
ERPIB (error recovery procedure information

block) 372, 517
error

bytes (fixed storage) 408
entries 112, 113
entry

device 507
hard wait codes 405, 408
I/O

Block (ERBLOC) 505
processing

I/O 112
Recovery

Disk 115
Message Writer 117
Tape 116

recovery entry
device 508

recovery procedure information block (ERPIB) 372,
517

ESA 309
ESA/390 309
Event Control Block (ECB) 460
exponential average

for partition deactivation 254
extended addressability

introduction to 320

Extended Page Address (EPA) 194
SCBXTAB 194

Extended Page Number (EPA#) 194
Extended Private Area 193
Extended Shared Area 193
extent

information entry 483
external interrupt 29

F
FCEPGOUT request 251
FCHWORK area 352
fetch

control flow 335
DASD sharing 362
second level directory 362
service task 363

FETCH/LOAD processing 350
first level chain control blocks (DSRCHNx) 351
first level interrupt handler 23

VSE/ICCF support 88
fix information block 164, 170
fixed storage

error bytes 408
fixed storage locations 402
fixing

pages
permanently (PFIX) 247
temporarily (TFIX) 246

FLPTR (Free List Pointer) 478
Free List Pointer (FLPTR) 478
FREEREAL requests 250
FRPL (FETCH request parameter list) 358

G
gates

permanently closed 60
permanently opened 60
switchable 60
type and value 61

gating mechanism
internal 57

GETPRTY 69
GETREAL request 245
GETVIS

area
control information 265

Control information 280
PFIX processing 276
subpool 268

 Index 567

H
hard wait error codes 405, 408
high priority dispatching 51
Home-Space Mode 314

I
I/O

error processing 112
interrupt 23
interrupt handler 103
request enqueuer 99
table interrelationship 475

I/O device
channel check entry 509
error entry 507
error recovery entry 508

I/O Request Block (IORB) 499
ICCF pseudo partition 51
IDAL (indirect data address list) 164
IDAL blocks 168
IDAWs (indirect data address words) 168
identification

of a partition 96
II

VM/VSE Interface Routines 388
indirect data address

list (IDAL) 164
words (IDAWs) 168

information blocks
fix 170

Input/Output Request Block (IORB) 499
interfaces

partition cleanup 90
partition preparation 90
system dump 79
VSE/ICCF 88

interrupt
external 29
first level interrupt handler 23
handler 103
I/O 23
machine check 29
missing 118
page fault 25
processors 23
program check 24
second level interrupt handler 23
supervisor call (SVC) 29

interrupt process
clock comparator 46
I/O 46
SVC 44

introduction to extended addressability 320

Invalid Page Frame Queue (IPFQ) 205
INVPAGE requests 251
IORB (Input/Output Request Block) 499
IORE 214, 231, 234, 241, 242
IPFQ (Invalid Page Frame Queue) 205, 207, 208, 219,

222, 226, 227, 228, 240, 247
IPFQ64 (Invalid Page Frame Queue) 219, 223

J
job accounting

Device SIO accounting 489
general information 377
initialization

tables 377
updating account information 378
updating SIO counters 378
user interface 379

job accounting partition table (ACCTABLE) 440
job accounting table (ACCTCOMN) 440

L
LB (library block) 337
LDT (Library Definition Table) 351
library

sublibrary 337
virtual 344

library (NLIB) 337
library block (LB) 337
library offset table (LOT) 351
Linkage Stack 327
load point

phase 358
Locate command 434
LOCK

dead lock detection (logic) 127
function 119
logic 120, 122
macro 119

lock file 131
block capacity 133
CPU N flag 132
data blocks 132, 133
entry 132
format 133
header 131
record id 132

lock management 119
control blocks 459
DASD sharing 131
flags 125
internals 124
lock options 121
return codes 126
SVC 110 119

568 VSE/AF Supervisor DRM

logical transient
area occupancy and activity 458

Logical Transient Area (LTA) 1
Logical Transient Key (LTK) 98
Logical Transient Owner (LTID) 98
logical transient save area 457
Logical Unit Block

Extension table 481
table (LUBTAB) 479

LOT (Library Offset Table) 351
LRA special operation exception handling 228
LTA

occupancy and activity 458
save area 457

LTA (Logical Transient Area) 1
LTID (Logical Transient Owner) 98
LTK (Logical Transient Key) 98
LUB

Extension table 481
LUBTAB (Logical Unit Block table) 479

M
machine check

analysis 369
handling 369
recording 369

machine check interrupt 29
macros

ALESERV 323
DSPSERV 322
FETCH 346
GENL 346
LOAD 346
LOCK 119
UNLOCK 119
UNLOCK ALL 123
UNLOCK ALL,JC=EOJ 123
UNLOCK SYSTEM=sys-id 123

MCAR 369
Memory Object 193
missing interrupt handler 118
MODE=ESA 309

N
NLIB (library) 337
NPARTS

number of partitions 95
number of partitions

NPARTS 95

O
OS/390 467

OS/390 ECB (OS/390 Event Control Block) 460
OS/390 Event Control Block (ECB) 460
OS/390 Extended ECB (OS/390 Extended Event

Control Block) 460
OS/390 Extended Event Control Block (ECBE) 460

P
page 0 47
page data set (PDS) 191
Page Data Set Table (DPDTAB) 211
page fault

handler 25
handling overlap 243
interrupt 25
pseudo 26

page fault processing 218
page frame 191

table entry (PFTE) 206
table/(PFT) 205

page frames above 2GB 223
page handling routines 224
page I/O request element (IORE) 214
page management 191

Data Space 195
Page management tables

device control block (DEVCB) 213
initialization of PTE 204
IORE 214
page data set table (DPDTAB) 211
page frame table (PFT) 205
page frame table (PFTE) 205
page I/O request element (IORE) 214
page table 203
Page table assignment string (PTAS) 209
page table entry (PTE) 203
Page to disk assignment string (PDAS) 209
PAGEINTB 210
PGINENT 210
PISL 209, 240, 241
POSL 209, 230
PREPGENT 210
PREPGOTB 210
segment table entry 202

Page Manager Address Space (PMRAS) 198
Page Selection Queue (PSQ) 205
page table 199, 203
Page Table assignment string (PTAS) 200, 209
page table entry (PTE) 203
Page to disk assignment string (PDAS) 209
page-in 241, 242

queue entry 225
request 227, 249

Page-In queue entry 225
page-out 234, 236

 Index 569

page-out queue entry 225
PAGEINTB 210
partition

communications region (COMREG) 452
control block (PCB) 452
control block address table (PCBATAB) 451
control block interrelationship 450
dynamic 33
dynamic class control block (CPCB) 445
identification 96
information block

(PIB) 452
extension (PIB2) 452

key definitions 95
static 32

partition balancing 68, 70
partition cleanup 90
Partition Identification Key (PIK) 96
Partition Identifier (PID) 96
partition preparation 90
PASN-AL 315
patch areas 403
PCB (partition control block) 452
PCBATAB (PCB address table) 451
PDAS (Page to disk assignment string) 209
Performance Monitoring 561
PFIX request 247
PFREE request 250
PFT (Page Frame Table) 205
PFTE (Page Frame Table Entry) 206
PGINENT 210
PGQI (page-in queue) 218, 225, 226, 228
PGQO (page-out queue) 225, 227, 231, 232, 233, 235
PGQSYS (system queue) 227, 235, 237
PGQSYS(system queue) 226, 234, 237, 240, 241, 242
phase

relocatable 358
Phase Load Trace Table 404
physical

Input/Output Control System (PIOCS) 99
Physical Transient Area (PTA) 1
Physical Unit Block

extension (PUBX) 486
extension area 485
Ownership Table (PUBOWNER) 489
PUB2 488
table (PUBTAB) 483

PIB (partition information block) 452
PIB2 (partition information block extension) 452
PID (Partition Identifier) 96
PIK (Partition Identification Key) 96
PIOCS (Physical Input/Output Control System) 99
PISL 209, 240, 241, 242
POSL 200, 209, 230, 234, 236
POST Routine 57, 64, 65

prefix page 47
PREPGENT 210, 236
PREPGOTB 210, 236
Primary-List Bit 310
Primary-Space Mode 314
problem program (PP) save area 455
procedures

pgotunig 239
processing of interrupts 23
program

retrieval 333
Program Call (PC-ss)
program check

handling of a normal 24
interrupt 24

PRTY command 68
pseudo page fault 26, 244
PSL (Page State List)

PISL 209, 240, 241, 242
POSL 209, 230, 234, 236

PSQ (Page Selection Queue) 205, 207, 208, 219, 222,
227, 228, 247

PSQ64 (Page Selection Queue) 219, 223
PTA (Physical Transient Area) 1
PTAS (Page table assignment string) 209
PTE (page table entry) 203
PUB 483

extension area 477
Ownership Table (PUBOWNER) 489
PUB2 488

PUB2 488
PUBOWNER (PUB Ownership Table) 489
PUBTAB (Physical Unit Block Table) 483
PUBX

accessing a PUBX entry 485
PUBX (Physical Unit Block Extension) 486
PUBXAREA (PUB Extension Area) 477, 485

R
RAS

monitor 374
transient 374

RAS Linkage Area (RASLINK) 514
RAS Monitor Table (RASTAB) 515
RAS Transient Area (RTA) 1
RASLINK (RAS Linkage Area) 514
RASTAB (RAS Monitor Table) 515
RCB (Resource Control Block) 461
Re-IPL 381

II Console 387
recorder file

table 510
reentry rate 254
region table 199

570 VSE/AF Supervisor DRM

relocatable phase 358
relocation dictionary read request (RLD) 358
RELPAG request 251
Request queues

PGQSYS 241
Resident Tape Error Recovery 116
resource

descriptor entry 59
descriptor table addressing 58

Resource Control Block (RCB) 461
RFTABLE 510
RID (Routine Identifiers) 28
RLD (relocation dictionary read request) 358
RLD read request 361
RMODE 344
routine

POST 57, 64, 65
RPOST 64
UNPOST 64, 65
WAIT 57

Routine Identifiers (RID) 28
RPOST Routine 64
RTA (RAS Transient Area) 1

S
SAACOMM 79
save areas 455

LTA 457
problem program 455
system 457

SCB (space control block) 450
SCB Extension (SCBX) 194
scheduler 102

device 102
SDL (system directory list) 344
SDT (Sublibrary Definition Table) 351
second level interrupt handler 23
Secondary-Space Mode 314
segment table 199, 202
selection 219

pool 219
pool queues 219

SETPRTY 69
shared virtual area (SVA) 344
SHOW command 436
SIGP 47
SMCB (Storage Management Control Block) 263
space control block (SCB) 202, 450
static partition 32
status flags

task 61
status word

channel 474
storage

allocation
dynamic 265

storage (continued)
allocation (continued)

dynamic partition support 261
page manager tables 262
segment table handling 262

management 263
management control block (SMCB) 263
protection key 95

Storage Protection Override
stored assignment table entry 482
subpool

chain table entry 283
GETVIS 268
index table entry 283

Subsystem Storage Protection
supervisor

areas allocated by IPL 15
call interrupt 29
patch areas 403

SVA (shared virtual area) 344
SVC

110 (X'6E') 119
(LOCK) 119
(UNLOCK) 119

65 (X'41' - CDDELETE) 286
65 (X'41' - CDLOAD) 285
call description 29
interrupt 29

SVC 43 (DYNCLASS) 90
SYSDEF 47
SYSFIL processing 101
SYSLIB sublibrary 344
SYSRES 344
system

directory list (SDL) 344
limits table (CLIMADR) 443
save area 457

system console attention processing 111
system dump interfaces 79
system files 101

FBA 101
system resource owner 51
system task

activation 371, 373
LCK 131
RAS 371, 373, 374
selection 31

system/partition 31

T
table

Channel Control Table 491
CHANQ 492
CLASSADR 444
CLIMADR 443

 Index 571

table (continued)
COMREG 452
CPCBADR 444, 445
DIB 502
DIBX 504
LUB Extension 481
LUBTAB 479
of Bound States 61
PCBATAB 451
PUB 483
PUB2 488
PUBOWNER 489
PUBX 486
RFTABLE 510
SRQTAB addressing 58
Stored Assignment Information 482
THTAB 518
TIBATAB 52

tape fetch
task

and partition key definitions 95
cancel
cancel exit routine 78
identification 96
information block (TIB) 214
status flags 57, 61
termination 75

task selection 50
task selection control blocks 48
task termination 75
tasking service

DYNCLASS - SVC 43 90
TCPU 48
TD address table 48
TD communication region 48
TD CPU control block 48
TDATAB 48
TDCOMREG 48
Teleprocessing Balancing (TPBAL) 258
temporary code-fix area 403
TFIX request 246
TFREE request 250
THTAB (Track Hold Table) 518
TIB (Task Information Block)

IORE 231, 234, 241, 242
TIB Address Table (TIBATAB) 52
TIBATAB (TIB Address Table) 52
time slicing 68
TP Balancing 258
track hold processing 100

sample 519
Track Hold Table (THTAB) 518
track protection 100
translation control block (CCWTCB) 163
TSC 48, 49

TSCT queue 50

TSCC 49, 50
TSCP 49, 50
TSCT 49, 50
TSCT queue 50
tuning for page-out 238
turbo dispatcher

design 39
dispatcher 49
Example 40
IPL 39
ready-to-run queue 50
virtual storage layout 43

TXT read request 358, 361

U
unconditional page-out 234, 236
UNLOCK

function 119
macro 119

UNPOST routine 64, 65
user task

selection 31

V
VCT (volume characteristics)

table 107
update 107

VIO Block Table Entry (BLKTBE) 466
VIO Communication Area (VIOCM) 463
VIO File Identification Entry (VIOTABE) 465
VIO POINT request 251
VIO Table Entry (VTABE) 463
VIOCM (VIO Communication Area) 463
VIOTABE (VIO File Identification Entry) 465
virtual library 344
virtual storage layout 43
VM

VM/VSE Interface Routines 388
volume characteristics table (VCT) 107
VSE/ICCF

dispatcher support 88
first level interrupt handler support 88

VTABE (VIO Table Entry) 463
VTAM Vector Table Address (AT CVT) 467

W
wait queue 57, 59
WAIT Routine 57

X
XMOVE 319

Introduction To Data Spaces 320

572 VSE/AF Supervisor DRM

XPCC/APPCVM Protocol 525
overview 525

VSE XPCC/APPCVM Sample Protocols as used
by SQL/DS 549

Z
z/Architecture 309

 Index 573

IBM®

Program Number: 5686-CF9

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

XXXX-XXXX-XX

	Contents
	Notices
	Programming Interface Information
	Trademarks

	Preface
	Related Publications

	Chapter 1: System Layout
	z/Architecture Mode and 64-bit Addressing
	64-Bit Real Addressing
	64-Bit Virtual Addressing
	What does z/Architecture mode mean?
	Emulation of ESA/390 Interrupt Information
	Translation Tables
	Control Registers - Usage and Save Areas
	General Purpose Registers - Usage and Save Areas
	Executing in 64-bit Addressing Mode
	LRA Consideration
	64-bit Address Space Layout
	Storage Layout (Real and Virtual Address Spaces)
	Real Storage Layout
	Setting of Boundaries
	Partition Layout (31-bit)
	SVA (Shared Virtual Area) Layout
	Minimum System GETVIS Requirements as Calculated by IPL
	System GETVIS Requirements when Vendor Exits are Enabled

	Chapter 2: Design Information
	Interrupt Processors
	I/O Interrupt
	Program Check Interrupt
	Handling of a Normal Program Check
	Handling of Special-Operation Exceptions from an LRA
	Handling of Page Fault Interrupts
	Handling of Pseudo Page Faults
	Breaking-Event-Address

	External Interrupt
	Machine Check Interrupt
	Supervisor Call Interrupt (SVC)

	Dispatcher
	z/VSE (Turbo) Dispatcher - Introduction
	Comparison System Task / User Task
	System Partition
	Static Partitions
	Dynamic Partitions
	Dynamic Partitions and Ease of Use

	Dynamic Partition Concept
	Maintain the Dynamic Class Table (Create, Store and Load)
	How to Change the Priority
	Job Execution
	Advantages of the Concept

	Turbo Dispatcher
	Turbo Dispatcher Design
	Advantages on Uni-Processors
	Partition Balancing Enhancements
	Relative CPU Shares

	Quiesce CPUs
	z/VSE Turbo Dispatcher Considerations
	More Information
	z/VSE Turbo Dispatcher - Details
	z/VSE Turbo Dispatcher - CPU Management
	Activation and Initialization of CPUs
	Termination of Multiprocessing

	z/VSE Turbo Dispatcher - Data Areas, Control Blocks and Structure
	System Areas (Control Blocks)
	CPU Control Blocks
	Task Selection Control Blocks (TSCx)

	z/VSE Turbo Dispatcher - Task Selection
	Partition Selection
	Task Selection (TSCT Queue)
	System Resource Owners
	ICCF Pseudo Partitions

	Steps to Task Selection
	How to Identify the Control Block Structure for a given Task ?
	Relating Control Blocks to Tasks
	Processing of Task Selection Exit Routines
	Initialize Task's Processing and Give Control to it

	VSE/AF Dispatcher - Internal Gating Mechanism
	Addressing Resource Descriptors
	Resource Descriptors
	Task Status Flags
	Gating Methods
	Setting a Task Ready-to-Run
	Setting a Task Not Ready-to-Run
	UNPOST Routine
	RPOST Routine
	POST Routine
	Processing of Conditionally Ready State (CONDRDY)
	Description of Routines

	VSE/AF Dispatcher - Time Slicing (Partition Balancing)
	Definition
	GETPRTY / SETPRTY (SVC 57)
	Partition Balancing
	Interrupt Processing and Dispatching
	Time Slice Exhausted (Priority Change Processing)
	Example

	z/VSE Dispatcher - Task Termination
	z/VSE Dispatcher - System Dump Interfaces
	Overview
	Flow of Control (Normal and Abnormal Termination)
	Flow of Control (System Dump Routine Initialization / Termination)
	System Dump Phase Structure
	Activation of the System Dump Routine
	System Dump Initialization Routine

	Return from (Termination of) System Dump Routine
	Return from System Dump Routine (GETVIS Error)
	System Dump Abnormal Termination Routine
	System Dump Normal Termination Routine

	Synchronous and Asynchronous Cancel
	Synchronous Cancel Conditions
	Asynchronous Cancel Conditions

	System Dump Services (TERMSERV)
	Function Code 0: Check if System Dump to be Canceled
	Function Code 4: Set System Dump Owner to its Dispatching Priority
	Register Conventions for System Dump Activation

	z/VSE Dispatcher - VSE/ICCF Support
	VSE/ICCF Pseudo Partition: Dispatching
	VSE/ICCF Pseudo Partition: ICCF Screening

	z/VSE Dispatcher - Partition Preparation and Cleanup
	Static Partition Preparation and Cleanup
	Normal Processing

	Dynamic Partition Preparation and Cleanup
	Normal Processing
	Cancel Conditions

	VSE/AF Dispatcher - Identifiers and Limits
	Number of Partitions, Task and Partition Key Definitions
	Number of Partitions
	Storage Protection Key
	Partition Identification
	Task Identification
	Identification of Current Partition and of Current Service Owner
	Identification of Current Task
	LTID (Logical Transient Owner)
	LTK (Logical Transient Key)

	Physical Input/Output Control System (PIOCS)
	I/O Request Enqueuer
	Block Protection (SVC 35)
	System Files

	Scheduler
	I/O Interrupt Handler
	Automatic Volume Recognition (AVR)
	Updating the VCT Table

	Control Unit Initiated Reconfiguration (Quiesce/Resume support)
	System Console Attention Processing

	I/O Error Processing
	ERBLOC Area
	Error Entries
	Loading an ERP Transient

	Disk Error Recovery
	Resident Tape Error Recovery
	ERP Message Writer
	Missing Interrupt Handler

	Lock Management
	Required Control Information
	LOCK and UNLOCK (SVC 110 - X'6E')
	Locking a Resource
	Lock Options

	Unlocking a Resource
	UNLOCK SYSTEM=sys-id (AR-Command)
	UNLOCK ALL
	UNLOCK ALL,JC=EOJ

	Lock Manager Internals
	Entry Points
	LOCK / UNLOCK Input Registers
	Exit
	Permanent Usings
	Lock Manager Flags
	Return Codes
	Lock Return Codes
	Unlock Return Codes

	Deadlock Detection
	Deadlock Test via Deadlock Test Table (DLTT)
	Internal Interface to Deadlock Test
	Possible Deadlock Situations
	External Deadlock Checking

	DASD Sharing (Lock Manager)
	External Locking
	Lock File Format
	Header Record Format
	Lock File Data Blocks
	Lock File Block Capacity

	Mapping of Locks into Disk Blocks
	Hashing Algorithm
	Lock File Size
	Lock Entry - Storing and Retrieval
	Fetch in a DASD Sharing Environment

	Service and Debugging Information
	Overview
	Basics
	Lock Manager Macros
	DTL Mapping

	LOCK Function
	UNLOCK Function
	Data Lock File (DLF)
	Sharing Systems
	UNLOCK SYSTEM
	Data Structures
	Lock File Header Format
	Lock File Data Format
	Lock Table Format

	Algorithms
	Lock Algorithm
	Lock Algorithm cont...
	Unlock Algorithm
	Unlock Algorithm cont...
	Unlock All Algorithm
	Unlock All Algorithm cont...
	IPL Algorithm

	Check Waiting for Locked Resource
	Lock Manager Trace Area
	Statistic Counters
	Error on Lock File
	Example
	Analysis of the Example

	Display Facility
	Example

	Trace Facility
	Examples

	Channel Program Translation
	Translation Control and Copy Blocks
	The Translation Control Block (CCWTCB)
	CCB Copy Blocks
	CCW Copy Blocks
	IDAL Blocks
	Fix Information Blocks
	Copying and Translating Channel Programs
	Copying Channel Programs without TIC or Status Modifier Commands
	Copying Programs Containing TIC Commands but no Status Modifier Commands
	Copying Status Modifier Commands
	Translating Data Addresses and Page Fixing

	Page Management
	General
	Introduction into Page Management
	Support of Processor Storage above 2GB.
	64-bit Page Frame Queues
	64-bit Page I/O
	64-bit Addressing

	Description of Parallel Page I/O
	Handling of Address Spaces
	Size of an address space

	Handling of Data Spaces
	Distribution of Virtual Storage to Page-Data-Set
	Blocked Page I/O
	System without Page Data Set
	General assumptions

	Control Block Allocations
	Page Frame Table, PDAS, Reentry-Rate Tables
	Region Third-, Segment-, Page-Table, PTAS and POSL
	Handling of Space R (Real Address Space)

	PMRAS space layout
	Data Structures of Page Management
	Region Third Table
	Segment Table
	Page Table and Page Frame Table Entries
	Page Table Initialization

	Page Frame Table (PFT)
	Status of a Page Frame Table Entry (PFTE)

	NPSQE
	Page Table Assignment String (PTAS)
	Page to Disk Assignment String (PDAS)
	Page State Lists (PSLs)
	Pre-Page-Out Control Table (PREPGOTB)
	Page-In Control Table (PAGEINTB)
	Storage Management Control Block (SMCB)
	Page Data Set Table
	Device Control Block (DEVCB)
	Page I/O Request Element (IORE)
	Relationships between Control Blocks (31-bit addressing)

	Page Faults and Page Frame Selection
	Page Fault Processing
	Selection Pool
	Selection Pool Queues
	 Selection Algorithm
	Decision Tables Used for Page Selection
	Rearranging of Page Selection Queues
	Selecting Page Frames above 2GB

	Page Handling Routines
	Page Manager Processing
	Handling of a Page-In Request
	Handling of a Page-Out Request
	Emergency Handling
	LRA Exception Appendage

	Blocked Paging
	Blocked Paging Concepts
	Blocked Page-Out
	Page-Out Scenario
	Tuning of Pre-Page-Out
	Blocked Page-In
	Page-In Scenario

	Page Fault Handling Overlap
	Pseudo-Page Fault
	GETREAL Request
	TFIX Request
	PFIX Request
	PFIX Requests for RSTRT

	PAGE-IN Request
	TFREE Request
	FREEREAL and PFREE Requests
	RELPAG and FCEPGOUT Requests
	INVPAGE Requests
	VIO POINT Request

	Load Leveling
	Load Leveling Parameters
	Considerations to the Parameters
	Exponential Average of Page-Ins per Second (for Deactivation)
	Reentry Rate

	Deactivation Algorithm
	Reactivation Algorithm
	Exponential Average of Page-Ins per Second (for Reactivation)

	Teleprocessing Balancing (TP Balancing)

	Storage Management
	General
	Static Storage Allocation - Static Partition Support
	Static Storage Allocation - Dynamic Partition Support
	Dynamic Partition Allocation - Control Block Handling
	Interface IJBSSM - VSE/POWER

	Static Storage Allocation - (De-)Allocation of Page Manager Tables
	Static Storage Allocation - Size Processing
	Static Storage Allocation - SETPFIX Processing
	Static Storage Allocation - Partition Information

	Dynamic Storage Allocation
	Address Space Layout and GETVIS Areas
	GETVIS Processing
	Mapping between GETVIS Area and Control Information
	Subpool Concept
	Subpool properties

	GETVIS Algorithm
	31-Bit Addressing
	Control Information

	Location of the Control Information
	Mirroring
	Boundary Crossing (Partition Requests only)
	GETVIS (SVA) PFIX Processing
	Gating

	GETVIS/FREEVIS Options
	I/F GETVIS - IPL
	GETVIS Control Blocks
	MAPGVCTL

	Subpool Chain Table Entry
	Subpool Index Table Entry
	CDLOAD Support (SVC X'41')
	CDDELETE Support (SVC X'41')

	z/OS (OS/390) Storage Management Services
	Overview
	Mapping of OS/390 Storage Areas to VSE
	OS/390 Subpool Concept
	Subpool Owner (Lifetime)
	Sharability
	Storage Key/Protection

	Implementation Approach
	Subpool Description
	OS/390 Request Processing

	The OS/390 Subpool Table
	Storage Keys for Selectable Key Subpools

	z/Architecture Cross Memory Communication
	Description
	The Cross Memory Environment
	Entry Table (ETDEF, ETCRE service)
	Linkage Index LX (LXRES)
	Linkage Table (ETCON)
	PC Number
	Program Authorization (PKM)
	Authorization Tables

	Cross Memory Services
	AXRES - Reserve authorization index
	AXFRE - Free authorization index
	AXEXT - Extract authorization index
	ATSET - Set authorization table
	ETDEF - Create an entry table descriptor (ETD)
	ETCRE - Create Entry Table
	ETCON - Connect Entry Table
	ETDIS - Disconnect Entry Table
	ETDES - Destroy entry table
	LXRES - Reserve a Linkage Index
	LXFRE - Free a Linkage Index
	Cross Memory Resources

	Cross Memory Terminology
	Termination Processing - Service User
	Termination Processing - Service Provider
	Control Register Save Area
	Control Register Save Area Initialization
	Task Interrupt Handling

	z/Architecture Subsystem Storage Protection
	Description

	z/Architecture Access Registers
	Introduction
	Access Register Translation (ART)
	z/VSE Implementation

	Address Spaces
	Data Spaces
	Introduction
	Invocation.
	DSPSERV Macro
	ALESERV Macro

	Control Block Structure.

	z/Architecture Linkage Stack
	Introduction
	Linkage Stack - z/Architecture implementation
	$IJBLSTK - Create/Modify/Delete linkage stack
	Function code 0 - create/extend linkage stack
	Function code 4 - Delete Recovery Linkage Stack, Empty Linkage
	Function code 8 - Initialize Linkage Stack Values
	Function code 12 - Free storage for both linkage stacks

	Capacity Measurement Tool (CMT) in z/VSE 4.1
	Introduction
	Characteristics of the CMT system task
	System Resources
	New Macro

	Program Retrieval
	External and Internal Interface
	RMODE Considerations
	31-Bit Considerations
	Structure of the FETCH Environment
	Fetch Concept in Librarian
	Librarian Structure
	Shared Virtual Area (SVA)
	Directory List Support
	Fetch Initialization
	FETCH/LOAD Processing
	 Directory Searching Sequence and Directory Entry Processing
	Functions and Algorithms
	Program Fetch Service
	Program Fetch Interface
	RLD Processing
	I/O Processing
	Directory Read Algorithm
	TXT and RLD Processing
	RLD Read
	DASD Sharing Environment
	The Second Level Directory (SLD), General Remarks
	Initiation of a SLD Update
	SLD Update / Algorithm
	The SLD Queue
	The Activation / Deactivation of the Service Task
	The UPDSLD Routine

	Program Retrieval - Tape Fetch
	General

	OS/390 Program Retrieval Services
	BLDL Macro
	LOAD Macro
	DELETE Macro
	DCB Parameter in VSE
	Directory Searching Sequence
	Implementation

	Machine Check, Channel Check and CRW Handling
	Machine Check Analysis and Recording
	Hardware actions
	Software (VSE) actions
	Channel Report Word (CRW) Handler
	Channel Check Handler (CCH)
	Recovery Transients and RAS Monitor
	Queues for Machine Checks, Channel Checks and CRWs
	Queue control

	Job Accounting
	Initialization
	Maintenance
	User Interface

	Software Re-IPL
	Execution
	Invocation
	SVC 31

	Console Support
	Overview
	IPL Processing
	Console Router
	Integrated Console
	CRT/Line Mode Console
	II Consoles
	VM/VSE Interface Routines
	OCCF And NetView Console
	HCF Task
	Attention Routine
	Supervisor Interfaces
	SYSLOG I/O Interfaces
	Rules For SYSLOG Channel Programs
	Assigning Routing and Descriptor Codes
	Message Presentation
	HCF System Task
	CST System Task

	Chapter 3: Diagnostic and Debugging Aids
	Diagnostic Aids
	Fixed Storage Locations in Processor Storage (Low Core)
	Supervisor Patch Area
	Phase Load Trace Table
	Hard Wait Codes
	Machine Check / Channel Check Wait Codes
	Device Error Recovery Wait Codes
	SDAID Soft Wait Codes
	IPL Hard Wait Codes
	 Hardwait Originator Codes for IPL
	Supervisor Hard Wait Codes
	 Hardwait Originator Codes for the Supervisor

	Cancel Code to Message Code Cross-Reference
	Debugging Facilities
	DEBUG Overview
	Features
	Feature 1 - Event Tracing:
	Feature 2 - Address Compare Stop:

	How to Find and Read the Debug Trace Area
	Format of the Debug Trace Entries
	Program Check Entry (Param.: PCK - EEEE00ic)
	Display All Registers (Param.: REGS - EEEE0200)
	Dispatcher Exit (Param.: TASK - EEEE0300)
	I/O Interrupt (Param.: INT - EEEE0400)
	Start I/O (Param.: SIO - EEEE0500)
	External Interrupt (Param.: EXT - EEEE0600)
	Task Selection (Param.: DISP - EEEE0700)
	Supervisor Call (Param.: SVC - EEEE0800)
	Cancel Entry (Param.: TERM - EEEE0900)
	Switch Debug Trace Area (Param.: SWCH - EEEE0A00)
	Display Data (Param.: DATA - EEEE0B00)
	Display User Data (Param.: USER - EEEE0C00)
	Monitor Call Entries (Param.: EEEE0Fnn)

	DEBUG ON Command
	Command Description

	DEBUG TRACE Command
	Command Description

	DEBUG SELECT Command
	Command Description

	DEBUG SHOW Command
	Command Description

	DEBUG STOP Command
	Command Description

	LOCATE Command
	Command Description

	SHOW Command
	Command Description

	Appendices
	Appendix A. Supervisor Data Areas (without I/O)
	Dynamic Class and System Limits Table (CLIMADR)
	Dynamic Class Table
	Dynamic Class Control Block (CPCBADR)

	Space Control Block (SCB)
	 SCB Extension for Extended Area (64-bit virtual)

	Partition Control Blocks
	Static Partition Control Blocks Interrelationship
	Partition Control Blocks Interrelationship

	Task Control Blocks
	Save Areas
	Problem Program (PP) Save Area
	Where to Find the PP Save Area Pointer in Case of Termination

	LTA Save Area
	System Save Area
	Access Register Save Area
	Logical Transient Area Occupancy and Activity

	Control Blocks related to Lock Management
	Event Control Block (ECB)
	Resource Control Block (RCB)
	VIO Control Blocks
	VIO Communication Area (VIOCM)
	VIO Table Entry (VTABE)
	VIO File Identification Entry (VIOTABE)
	VIO Block Table Entry (BLKTBE)

	OS/390 Control Blocks
	Allocation
	Deallocation
	OS/390 TCB Structure
	RB Structure in VSE
	RB Structure After Task Initialization
	PRB Contents

	RB Structure After First CICS SVC
	SVRB Contents
	PRB Contents/XSB contents

	RB Structure After Second CICS SVC
	PRB Contents
	SVRB Contents Of First SVRB
	SVRB Contents Of Second SVRB

	Anchor of OS/390 Control Blocks in VSE

	Appendix B. I/O Control Blocks
	Basic Input/Output Control Words (z/Architecture)
	Layout of CAW
	Layout of CSW

	Input/Output Control Blocks and Areas
	Logical Unit Block Tables (LUBTAB, LUBX, SAT, Ext.Inf.)
	Logical Unit Block Table (LUBTAB)
	LUBTAB Extension Table
	Stored Assignment Table Entry (SAT)
	Extent Information Entry

	Physical Unit Block Tables (PUBTAB, PUBX, PUB2, PUBOWNER)
	Physical Unit Block Table (PUBTAB)
	Physical Unit Block Extension (PUBX)
	Physical Unit Block Table 2 (PUB2)
	PUB Ownership Table (PUBOWNER)

	Device Usage Counters (DVCUSCNT)
	Channel Control Table (CHNTAB)
	Channel Queue Table (CHANQ)
	Command Control Block (CCB)
	Input/Output Request Block (IORB)
	Disk Information Block (DIB) Tables
	Disk Information Block (DIB) Table for CKD and DISKETTE
	Disk Information Block Table (DIB) for FBA Device

	ERBLOC Area
	I/O Error Entry

	Recorder File Table (RFTABLE)

	Machine and Channel Check Control Blocks
	RAS Linkage Area (RASLINK)
	RAS Monitor Table (RASTAB)
	Error Recovery Procedure Information Block (ERPIB)

	Track Hold Table (THTAB)

	Appendix C. Samples
	Appendix D. XPCC/APPCVM Protocol
	Introduction
	XPCC/APPCVM Activation
	 Overview on XPCC Functions Supported as XPCC/APPCVM
	XPCC Functions not Supported with XPCC/APPCVM
	XPCC IDENTify Function
	XPCC TERMINate Function
	XPCC CONNECT Function
	XPCC DISCONNect/DISCPRG Function
	XPCC SENDR Function
	 XPCC CLEAR Function
	Mapping of XPCC Functions to APPC/VM Functions
	VSE XPCC/APPCVM Sample Protocols as Used by SQL/DS
	Acronyms
	APPC/VM External Interrupt Codes
	APPC/VM - XPCC/APPCVM States

	Appendix E. Performance Monitoring Interface
	Interactions

	Index

