IBM z/VSE
VSE Central Functions

Supervisor
Diagnosis Reterence

z/VSE4.2

XXXX-XXXX-XX

IBM z/VSE
VSE Central Functions

Supervisor
Diagnosis Reterence

z/VSE4.2

XXXX-XXXX-XX

— Note!

Before using this information and the product it supports, be sure to read the general information under “Notices”
on page Vii.

First Edition 07/11/07

© Copyright International Business Machines Corporation 1985, 2008. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Contents

Notices Vi
Programming Interface Information Vil
Trademarks and Service Marks Vil
Preface iX
Related Publications X
Chapter 1. System Layout 1
z/Architecture Mode and 64-Bit Real Addressing 3
Address Space Layout 5
Storage Layout (Real and Virtual Address Spaces) 7
Real Storage Layout 9
Partition Layout 11
SVA (Shared Virtual Area) Layout 12
Minimum System GETVIS Requirements as Calculated by IPL 14
System GETVIS Requirements when Vendor Exits are Enabled 17
Chapter 2: Design Information 19
Interrupt Processors 21
/O Interrupt 21
Program Check Interrupt 22
External Interrupt 27
Machine Check Interrupt 27
Supervisor Call Interrupt (SVC) 27
Dispatcher 29
z/IVSE (Turbo) Dispatcher - Introduction 29
Turbo Dispatcher 37
Steps to Task Selection 50
VSE/AF Dispatcher - Internal Gating Mechanism 55
VSE/AF Dispatcher - Time Slicing (Partition Balancing) 66
z/VSE Dispatcher - Task Termination 73
z/VSE Dispatcher - System Dump Interfaces 77
zIVSE Dispatcher - VSE/ICCF Support 86
z/VSE Dispatcher - Partition Preparation and Cleanup 88
VSE/AF Dispatcher - Identifiers and Limits 93
Physical Input/Output Control System (PIOCS) 97
I/O Request Enqueuer 97
Scheduler 100
I/O Interrupt Handler 101
I/O Error Processing 110
Disk Error Recovery 113
Resident Tape Error Recovery 114
ERP Message Writer 115
Missing Interrupt Handler 116
Lock Management 117

© Copyright IBM Corp. 1985, 2008 i

iv

LOCK and UNLOCK (SVC 110 - X'6E") 118

Lock Manager Internals 122
Deadlock Detection 125
DASD Sharing (Lock Manager) 129
Service and Debugging Information 134
Channel Program Translation 161
Page Management 189
General 189
Control Block Allocations 195
PMRAS space layout 199
Data Structures of Page Management 199
Page Faults and Page Frame Selection 215
Page Handling Routines 221
Load Leveling 250
Storage Management 257
General . .. 257
Dynamic Storage Allocation 263
Address Space Layout and GETVIS Areas 263
GETVIS Processing 264
z/OS (0S/390) Storage Management Services 287
z/Architecture Cross Memory Communication 297
Description 297
The Cross Memory Environment 297
Cross Memory SEerviCes 299
Cross Memory Terminology 300
Termination Processing - Service User 301
Termination Processing - Service Provider 301
Control Register Save Area 301
Control Register Save Area Initialization 302
Task Interrupt Handling 302
z/Architecture Subsystem Storage Protection 305
Description 305
z/Architecture Access Registers L 307
Introduction 307
Address Spaces 317
Data Spaces 318
z/Architecture Linkage Stack 325
Introduction 325
Linkage Stack - z/Architecture implementation 325
$IIBLSTK - Create/Modify/Delete linkage stack 326
Capacity Measurement Tool (CMT) in z/VSE 4.1 329
Introduction 329
Characteristics of the CMT systemtask 329
System ReSOUrces 329
New Macro 329

z/VSE 4.2 Supervisor Diagnosis Reference

Program Retrieval 331

DASD Sharing Environment 360
Program Retrieval - Tape Fetch 363
0S/390 Program Retrieval Services 364
Machine Check, Channel Check and CRW Handling 367
Job Accounting 375
Software Re-IPL 379
Console Support 383
Chapter 3: Diagnostic and Debugging Aids 397
Diagnostic Aids 399
Fixed Storage Locations in Processor Storage (Low Core) 400
Supervisor Patch Area 401
Phase Load Trace Table 402
Hard Wait Codes 403
Cancel Code to Message Code Cross-Reference 409
Debugging Facilities 411
Features 411
How to Find and Read the Debug Trace Area 414
Format of the Debug Trace Entries 416
DEBUG ON Command 424
DEBUG TRACE Command 425
DEBUG SELECT Command 427
DEBUG SHOW Command 428
DEBUG STOP Command 429
LOCATE Command 430
SHOW Command 432
AppendiCes 433
Appendix A. Supervisor Data Areas (without I/O) 435
Dynamic Class and System Limits Table (CLIMADR) 439
Dynamic Class Table 440
Space Control Block (SCB) 442
Partition Control Blocks 444
Task Control Blocks 447
Save Areas 449
Control Blocks related to Lock Management 453
Event Control Block (ECB) 454
Resource Control Block (RCB) 455
VIO Control Blocks 456
0S/390 Control Blocks 461
Appendix B. I/O Control Blocks 467
Basic Input/Output Control Words (z/Architecture) 467

Contents V

Vi

Input/Output Control Blocks and Areas
Machine and Channel Check Control Blocks
Track Hold Table (THTAB)
Appendix C. Samples
Appendix D. XPCC/APPCVM Protocol

Appendix E. Performance Monitoring Interface
Interactions

z/VSE 4.2 Supervisor Diagnosis Reference

Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any func-
tionally equivalent product, program, or service that does not infringe any of the
intellectual property rights of IBM may be used instead of the IBM product,
program, or service. The evaluation and verification of operation in conjunction with
other products, except those expressly designated by IBM, are the responsibility of
the user.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, New York 10594,
U.S.A.

Any pointers in this publication to non-IBM Web sites are provided for convenience
only and do not in any manner serve as an endorsement. IBM accepts no responsi-
bility for the content or use of non-IBM Web sites specifically mentioned in this pub-
lication or accessed through an IBM Web site that is mentioned in this publication.

Programming Interface Information

This book documents information that is NOT intended to be used as a Program-
ming Interface of z/VSE.

Trademarks and Service Marks

The following terms, denoted by an asterisk (*) in this publication, are trademarks of
the IBM Corporation in certain countries:

ACF/VTAM I1BM

AFP MVS/ESA

AT NetView
CICS PR/SM
CICS/VSE SQL/DS

CUA System/370
ECKD System/390

Enterprise Systems Architecture/370 VM/ESA re-branded to z/VM
Enterprise Systems Architecture/390 VSE/ESA re-branded to z/VSE

ESA/370 VTAM

ESA/390 z/Architecture

ES/9000 0S/390 re-branded to z/0S
ESCON400 z/VSE

IBM System z z/M

z/0S

© Copyright IBM Corp. 1985, 2008 Vil

viii z/VSE 4.2 Supervisor Diagnosis Reference

Preface

This manual is intended primarily for use by IBM personnel responsible for program
service. It is one of three publications that describe the design and the internal
control flow of the VSE/Advanced Functions Supervisor. The manual supplements
the program listings by providing text and charts as follows:

e Chapter 1: System Layout

Provides general information about the VSE supervisor, its basic functions and
modes, storage organization and storage allocations.

e Chapter 2: Design Information

Contains a detailed description of the various supervisor functions and compo-
nents. These descriptions provide information necessary to become familiar
with the internal logic of the supervisor.

e Chapter 3: Diagnostic and Debugging Aids

In this chapter information is provided which may be especially helpful in diag-
nosing program errors.

e Appendices:

. Layout of commonly used supervisor data areas
Layout of commonly used 1/O control blocks
Contains samples of track hold processing.
Contains the XPCC / APPCVM protocol.

Describes the interface for performance monitoring.

moows>

© Copyright IBM Corp. 1985, 2008 iX

Related Publications

X

The other two publications describing supervisor functions are:

e 7z/VSE Supervisor Diagnosis Reference Error Recovery and Recording Tran-
sients, SC33-6326

e z/VSE Supervisor Diagnosis Reference Logical Transients and $I1IJBSxxx
Phases, SC33-6324.
For overall system logic, the following manuals are to be used in addition:

e 7/VSE Supervisor Diagnosis Reference Initial Program Load and Job Control,
SC33-6325

» 7/VSE Supervisor Diagnosis Reference Librarian, SC33-6330

e z/VSE Supervisor Diagnosis Reference Linkage Editor, SC33-6328.
For efficient use of Diagnosis Reference publications, the reader should be familiar
with the information contained in:

» z/Architecture Principles of Operation, SA22-7832

e z/VSE Guide to System Functions, SC33-8312

¢ High Level Assembler Language Reference, SC26-8265.

Procedures for isolating problems and analyzing storage dumps are contained in:
e z/VSE Planning, SC33-8301
e z/VSE Diagnosis Tools, SC33-8313
* VSE/ESA Extended Addressability, SC33-6724.

z/VSE 4.2 Supervisor Diagnosis Reference

Chapter 1. System Layout

The SUPERVISOR is that part of the VSE system which controls the execution of
programs and which provides common services for them. The supervisor consists
of:

e The Supervisor nucleus (fixed)
e The Supervisor transients
e Several SVA resident phases

The supervisor nucleus and the SVA resident phases are loaded at IPL time,
whereas transients, unless they execute from the SVA, are loaded as needed from
the sublibrary IJSYSRS.SYSLIB.

The following labels define the supervisor storage locations which are preserved for
the different types of transient routines:

LTA (Logical Transient Area)
($$B..... Phases)
Eyecatcher: 'B-TRANSIENT AREA'

PTA (Physical Transient Area)
($$A..... Phases)
Eyecatcher: 'A-TRANSIENT AREA'

RTA (Ras Transient Area)
($$R..... Phases)

© Copyright IBM Corp. 1985, 2008 1

The major functions performed by the supervisor are:

 Interrupt processing

e Task dispatching

e Physical input/output control (PIOCS)
e Channel program translation

e Page management

e Storage management

e Program Call support

e Subsystem Storage Protection support
e Resource management

e Job accounting

* Program retrieval (FETCH or LOAD)
e Error recovery and recording

e Operator communication

e Common Supervisor Services (SVCs)
* Access Register support

e Data Space support

e Linkage Stack support

Notes:

1. z/VSE V4 is delivered with one supervisor, $$A$SUPI, only.

¢ It executes in z/Architecture mode.
e |t provides support for 1024 devices.

z/VSE V4 does no longer provide supervisor generation options. You can still
generate a supervisor to get a listing of the $$A$UPI supervisor.

2 zIVSE 4.2 Supervisor Diagnosis Reference

z/Architecture Mode and 64-Bit Real Addressing

z/VSE V4 supports more than 2GB processor storage (up to 8GB in z/VSE 4.1).
The size of a virtual address/data space is still restricted to 2GB. The real storage
beyond 2 GB is managed by the page manager. It will be used as page frames
backing virtual pages. The page manager will execute in 64-bit addressing mode
whenever page frames are addressed that may be allocated above 2GB.

The 64-bit addressing mode may also be required for those system program that
deal with real addresses beyond 2 GB (e.g. the machine check handle and initial-
ization routines). All other programs, system programs as well as vendor and appli-
cation programs, will continue to execute in 31-bit or 24-bit addressing mode only.

z/Architecture mode is a prerequisite to execute in 64-bit addresssing mode.

IPL starts its execution in ESA/390 architecture mode, since this is the mode ini-

tially set by the hardware. It switches to z/Architecture mode after the supervisor
and dispatcher are loaded. Once the supervisor receives control of the system, it
executes in z/Architecture mode only.

What does z/Architecture mode mean?
In z/Architecture mode the hardware works with

e 16-bytes PSWs
» 8-bytes general purpose registers
e 8-bytes control registers
» 4-bytes access registers
» prefix area that comprises two pages (8K)
» the layout and contents of the first page of the prefix area has changed, e.g.
— the location of new and old PSWs
— the location of addresses like
- translation-exception identification
- failing storage address
— the store status save areas are now in the second prefix page

Translation Tables

In ESA/390 architecture mode the hardware uses segment tables and page tables
for address translation. In z/Architecture mode, the hardware uses region tables,
segment tables and page tables to translate 64-bit addresses. In z/VSE, virtual
address and data spaces are restricted to 2GB. Therefore, a space can still be
mapped by a segment and page tables. No region tables are used.

Emulation of ESA/390 Interrupt Information

All interrupts handled by the supervisor occur in z/Architecture mode, since the
architecture mode is permanently changed to z before the supervisor is invoked the
very first time. When executing in z/Architecture mode, the hardware uses the
z/Architecture new / old PSWSs and interrrupt locations to handle interrupts. These
are

e External Interrupt

e |/O Interrupt

e SVC Interrupt

e Machine Check Interrupt

Chapter 1: System Layout 3

e Program Check Interrupt

When the first level interrupt handlers get control, the interrupt information is avail-
able at the z/Architecture locations. However, throughout the supervisor (and
related system / vendor phases), ESA/390 locations, especially ESA/390 old PSWs,
are referenced. To avoid, that all these programs have to be changed, the first
level interrupt handlers, pointed to by the z/Architecture new PSWs, emulate the
ESA/390 old PSWs locations. This is possible, since the ESA/390 old and new
PSW locations are not used by the hardware. Additionally, the program check
handler emulates the Translation-Exception Identification at location x'90'. Since a
program check or machine check can occur in 64-bit addressing mode and / or with
a 64-bit address the machine check and program check handlers have been
adapted accordingly.

General Purpose Registers - Usage and Save Areas

z/VSE continues to work with 4-byte registers and 4-byte addresses -apart from a
few strictly internal exceptions. This is true for real and virtual addresses.

* Virtual storage never exceeds 2GB.

¢ Virtual storage is PFIXed / TFIXed below 2GB. That means, the real address of
a PFIXed/TFIXed storage location will always be a 31-bit address.

» z/VSE does not allow 64-bit mode and/or the use of 8-bytes registers for user
applications.

The ESA/390 PSWs are emulated, so the existing save areas in z/VSE (8-byte
PSW, 4-byte registers) are sufficient and have not been extended.

Whenever the system uses 8-bytes registers it has to ensure that no interrupt
occurs.

Control Registers - Usage and Save Areas

z/VSE only uses 4-byte control registers. Since storage is PFIXed below 2GB, the
high order 4-bytes of a control register containing a real address are always zero.

So the existing 4-byte control register save areas are sufficient and have not been
extended.

LRA Consideration

4

LRA for a PFIXED/TFIXED page will always return a 31-bit address. If LRA in
24-bit or 31-bit addressing mode returns a 64-bit address a special-operation
exception is recognized. This can happen for pages that are not fixed and that are
backed by page frames above 2GB. This special-operation exception is intercepted
by the program check handler and passed to the page manager. The page
manager provides a page frame below 2GB and returns a 31-bit address, which is
passed to the issuer of the LRA.

z/VSE 4.2 Supervisor Diagnosis Reference

Address Space Layout
The following figure shows the standard address space layout.

¢ the shared area below 16MB (starting at '0") is named 'shared area (24-bit)'".

» the shared area at the end of the address space (may start below or above
16MB) is named 'shared area (31-bit)".

» the shared area (31-bit) does always exist. The start is determined by the size
of the private area.

The ESA hardware supports a segment size of 1 Megabyte. Since the hardware
requires the boundaries between shared and private areas to be on a segment
boundary, alignment takes place for both the shared area (24-bit) and the shared
area (31-bit). The size for the private area (SYS PASIZE) as well as the size for
shared partition allocation (SYS SPSIZE) has to be specified during IPL. This
keeps the boundaries between shared and private areas static after IPL. Addi-
tionally the size for real partition allocation (SYS RSIZE) has to be specified during
IPL, too. Therefore allocation of private, shared and real partitions can only be
done within the fixed boundaries.

min(2 GB,PASIZE + shared areas)

SVA (31-Bit) shared area (31-Bit)
16MB —>» private area
(PASIZE)
Shared Partitions I SPSIZE
shared area
SVA (24-Bit) (24-Bit)
Supervisor
0 —»

Figure 1. Address Space Layout(Address Space Size>16MB)

Notes:

1. Even if there is no private area above 16MB (depending on PASIZE), the
shared area (31-Bit) does exist.

2. The SMCOM control block and an EXTRACT service describe the storage
layout.

Chapter 1: System Layout 5

Shared Area (24-Bit)
The shared area (24-Bit) comprises the following areas

e Supervisor

— including the SDAID trace area
e Shared virtual area (SVA) (24-Bit)
¢ Area for shared partition allocation

Shared Area (31-Bit)
The shared area (31-Bit) consists of the

e Shared virtual area (SVA) (31-Bit) only

6 zIVSE 4.2 Supervisor Diagnosis Reference

Storage Layout (Real and Virtual Address Spaces)

R(3) 0(2) 2 3 B(4) X1 Y3 Z1 S(7)
SVA (31-Bit) (8)
4 NN/ AV VAR S WV YAV VAR A A
NN R (1T AV VAR A
NN/ (5)/ /(6)/| FB 117771\
NN/ 1111/ Y3 |////7)\N A\
NN/ 1111/ 11777\
PASIZE ——F—— .o eennilvnai]oneni]eneei]oenee]ennns
l_ 11111077777 11777 17777 VA
1111/ 1111/ 117177\
RSIZE(3)|/////| F1 /1111 ATAWA
1111/ Z1 [\
F2R VAT
F3 VAP
A APAVAY
APAVAY F4 VAT
\.\.\| BG VLA
VA APAVAY
v VA VA
l___ LILLILLLEEI000000000000000007000001001111111111117
SPSIZE(7)
T___ F9 (shared)
SVA (24-Bit) (8)
Supervisor (9)
PASIZE = size of private area
RSIZE = size available for ALLOC R (may be zero)
SPSIZE = size available for ALLOC S (may be zero)
///// = invalid due to allocation
\.\.\ = always invalid

16MB

Figure 2. Storage Layout

Chapter 1: System Layout

7

8

10.

. The organization of a system with 6 static and 3 dynamic partitions is shown.

The static partitions are allocated in the (static) virtual spaces 0, 2, 3 and B.
There are 12 static spaces, 0,1,...,A and B where static partitions can be allo-
cated.

Each static partition may or may not have a contiguous area of processor
storage allocated for program execution in REAL mode.

The dynamic partitions are allocated in the dynamic spaces X1, Y3 and Z1.

An active virtual partition comprises at least 128KB in the virtual address area.
The virtual partition size is always an integer multiple of

e 64KB for static partitions
e 1MB for dynamic partitions

A patrtition may be allocated totally below 16MB or may cross the 16MB line.
Note, that only one partition in an address space may cross the 16MB line.
The virtual background partition (BG) is always active and is allocated in space
0.

The address area of an inactive virtual partition may be reduced to zero.

. Space 0 does always exist. It is initialized by IPL with an initial BG size of

1MB, which can be changed explicitly later on by an ALLOC command.

. Space R is used to allocate real partitions for real execution. Real allocation is

restricted to an area below 16MB and the size for it must be reserved during
IPL (SYS RSIZE). No addressability exists between real and private virtual par-
titions.

Allocations for real partitions must be an integer multiple of 4KB. Note, that
real partitions are not required for PFIX processing. Instead the SETPFIX
command can be used to reserve frames for PFIX processing.

. The space id must be specified explicitly in an ALLOC request if more than one

partition shall be allocated in one address space.

. The area marked as 'invalid due to allocation' can be used to increase the

existing partitions provided that the VSIZE is not exceeded. This is possible

because the space has been created by specifying the space id explicitly and
therefore page tables exist for PASIZE. Since the last partition (FB) crosses

the 16MB line, no further partition can be allocated in the space.

. If the space id was not specified, the area marked as 'invalid due to allocation’

cannot be used, because page tables are allocated only for the initial allocation
value. Otherwise, the area can be used to increase the existing partition or to
allocate new ones, provided that VSIZE is not exeeded.

. Shared partitions are allocated in a contiguous area following the SVA

(24-Bit).The area available for shared partition allocation must be determined
by SPSIZE (may be zero) and is restricted by VSIZE, too.
Tasks in shared partitions are dispatched in the shared space S.

. For the layout of the Shared Virtual Area (SVA) see Figure 5 on page 12.

. The supervisor area consists of the supervisor phase and areas dynamically

allocated during IPL.

For the layout of a virtual and real partition see Figure 4 on page 11.

z/VSE 4.2 Supervisor Diagnosis Reference

Real Storage Layout

Processor
Storage
Area 4 PMR Tables
e i o ——— Virtual
Real Space Space
Area 5 shared area|shared area
(31-Bit) (31-Bit)
2 GB
Area 4 SCCB
IJBEOR --
Area 3
PFIX (31)
— - 16MB
T PFIX (24)
Area 2 F4R F4R
F2R F2R
Area 1
shared area|shared area
(24-Bit) (24-Bit)
Supervisor| Supervisor
EOR - Min(2GB,end of processor storage)

Area 5 - Used for paging

Area 4 - reserved for system use

Area 3 - available for PFIX (31-Bit) (both user and system requests)
Area 2 - defined by RSIZE (available for ALLOC R and PFIX (24-Bit))
Area 1 - available for PFIX (24-Bit) (both user and system requests)

Figure 3. Real Storage Layout

Note: Frames in area 4 are never assigned to virtual addresses, whereas the real
storage from address 0 up to IJBEOR is used for paging.

Chapter 1: System Layout 9

Setting of Boundaries

The boundaries of area x, x=1,..,3, are described by the labels SMCOM.SMCRBGx
and SMCOM.SMCRNDx. Area 2 does not exist if RSIZE=0 has been specified.
Area 3 does always exist, however it may be used totally by the system, e.g. if it
starts below 16MB. The boundaries are set as follows:

Area 1

e SMCRBG1 = SMCSSEND+1

« SMCRND1 = MAX{SMCSPEND,
SMCRBG1+SMINSVPX(in bytes)-1,
SMCRBG3-RSIZE(in bytes)}

— SMINSVPX - Minimum requirement for system PFIX in area 1
Area 2
¢ SMCRBG2 = SMCRND1+1
e SMCRND2 = SMCRBG3-1
e Final RSIZE: SIZE(SMCRBG2,SMCRND2)
Area 3

e SMCRBG3 = MIN{16MB,
IJBEOR+1
-MAX{area PFIXed by $INTVIRT,
SMINSPX3(in bytes)},
SMCSVA31}

e SMCRND3 = IJBEOR - SIZE(minimum page pool)
— SMINSPX3 - Minimum requirement for system PFIX in area 3

Area 3 is always available and contains at least data PFIXed by $INTVIRT (PMR
tables for the shared area and for the first PMR address space).

Area 5

Area 5 is only present with more than 2GB of processor storage.

e SMCRBG64 = 2GB
e SMCRND64 = SMCPEOR (end of processor storage)

10 z/VSE 4.2 Supervisor Diagnosis Reference

Partition Layout

_____ Partition end address

?
GETVIS(3) LOC=ANY (4)
area B --- 16MB

l I LOC=BELOW (4) I >= 48KB (3)

Program area (>= 80KB) (2)

Partition Save Area (5)

--- Partition begin address

Figure 4. Partition Layout

1.

Job start time, for the time stamp, is stored in the last 6 bytes of this area
(bytes 82-87) when specified.

. A partition always starts below the 16MB line with the program area, the size of

which can be changed by the SIZE command or the EXEC ..,SIZE parameter.
The program area is located totally below the 16MB line. If a partition crosses
the 16MB line, the 31-bit area of the partition belongs to the partition GETVIS
area.

. A virtual partition always has a GETVIS area (minimum and default is 48KB).

The minimum GETVIS area of 48KB is required below the 16MB line.

In real mode the minimum/default value is OKB; if the user wants to have a
GETVIS area he must specify it implicitly by using the SIZE parameter in the
EXEC statement.

. GETVIS below the 16MB line can be requested with the GETVIS LOC=BELOW

parameter. It is allocated bottom-up up to the 16MB line. GETVIS, that can be
located anywhere in storage, can be requested with the LOC=ANY parameter.
Storage is then allocated top-down. For partitions, that are located totally
below the 16MB line, LOC=ANY is treated as LOC=BELOW.

. In the partition save area the following information is stored:

¢ Program Name (8 bytes)

e Program Status Word (8 bytes)

* General Registers 9-8 (64 bytes)
e Job Start Time (1) (8 bytes)

* Floating-point Registers (32 bytes)

Chapter 1: System Layout 11

SVA (Shared Virtual Area) Layout

12

SVA (24-Bit) SVA (31-Bit)
end end
VPOOL (6) System GETVIS Area (4)
(31-Bit)
SLA (5)
System GETVIS Area (4)
(24-Bit)
Virtual Library Area (3)
(24-Bit)
System Directory List (2) Virtual Library Area (3)
(SDL) (31-Bit)
begin begin

Figure 5. SVA Layout

1.

Shared Virtual Area (SVA): An area where heavily used reentrant programs are
loaded; they can be shared between partitions, and also parts of the system
(e.g. End-of-Job processing routines). The SVA (31-Bit) consists of the VLA
(31-Bit) and the system GETVIS area (31-Bit).

. System Directory List (SDL): In-core directory of highly used programs

(phases). For further information refer to “Shared Virtual Area (SVA)” on
page 342. It is located in the SVA (24-Bit) and contains the entries for both the
(24-Bit) and the (31-Bit) VLA.

. Virtual Library (Phase Area): Contains highly used programs (phases) which

can be shared between partitions and the system. For further information refer
to “Shared Virtual Area (SVA)” on page 342. Depending on the RMODE of a
phase, a phase is loaded in the VLA (31-Bit) (RMODE=ANY) or in the VLA
(24-Bit) (RMODE=24).

. The GETVIS area for the system can only be used by requestors with a

storage protection key of zero. LOC=ANY users are served preferred from the
system GETVIS area (31-Bit), whereas LOC=BELOW users are served from
the system GETVIS area (24-Bit).

. This area is allocated during IPL and used by Label Processing (SLA).

. This area is allocated during IPL depending on the VPOOL parameter and is

used as a buffer pool for VIO.

z/VSE 4.2 Supervisor Diagnosis Reference

The following table shows the supervisor tables and buffers which are allocated at
IPL time.

Copy buffers

Channel queue

CCW chains for DASD file protection

CCW chains for TAPE set mode

PUB2 areas

PUBX area

LUB extension

Pubscan tables

AVR table

Reentry rate table

Page frame table

Page to Disk Assignment String (PDAS)

Page table (1)

Segment table (1)

Page Table Assignment String (PTAS) (1)
Page-Out State List (POSL) (2)

Save areas for Access Registers

Console buffer

Hardcopy buffer

SYSREC buffer

PAGEIN table

Extended logout areas: IOEL, MCEL

Phase load lists for static partitions
VIO/VPOOL area

Device control blocks

External interrupt buffer for IUCV/APPC/VM
Path ID table for IUCV/APPC/VM

Job accounting tables for static partitions
SAACOMM (supervisor/system dump communication area) (3)
Tasks data space control block (3)

Default job accounting table used during dyn. partition allocation
PCBATAB, PCEATAB, SMCBTAB, SCBATAB, PUBOWNER extension
SCBATAB, CPCBATAB

Linkage stack for static partitions except BG
PCB extension for static partitions except BG
Cross memory resource tables

Figure 6. Supervisor Areas, Allocated at IPL Time
1. Allocated for space 0, the shared space and the first page manager space.

2. Allocated for space 0 and the shared space.
3. Allocated for static partitions and AR.

Chapter 1: System Layout 13

Minimum System GETVIS Requirements as Calculated by IPL
The size of the System GETVIS areas is the sum of three parts:
1. AF space requirements determined from supervisor generation parameters.

2. AF space requirements determined from IPL options, including Librarian
requirements from $INITCON.

3. Size specification from the GETVIS parameter of the SVA command. Thisis a
user specification.

These sizes are used to calculate the total space allocated to the System GETVIS
area. There is no space reservation before explicitely requested.

The system assumptions 1. and 2. are listed in Figure 7 to Figure 11 on page 16.

Acronyms:

dev -- I/0 devices

part -- partitions

sdev -- shared I/0 devices

vdisk -- virtual disk(s)

/ -- per
Figure 7. 24-Bit System GETVIS - Systemwide
Item PFIX Size
Algorithm
SDAID buffers no
(SYS SDSIZE>0) 90K
(SYS SDSIZE=0) 0K
Reentrant dump work area no 72K
SLA work areat no 12K
Hard copy support no 5K
User save area no
(SYS JA=YES) 1K
(SYS JA=NO) 0K
Librarian control blocks?2 no ca. 60K

+7K/12 part

14 z/vSE 4.2 Supervisor Diagnosis Reference

Figure 8. 24-Bit System GETVIS - Static Partition Subpools

Item Subpool PFIX Size
Algorithm

System control block address tables IINIT 24-bit 8K
(PCBATAB, SMCBTAB, ...)

Class table IIBSSP 24-bit 4K
Subtask control blocks IPTIB 24-bit 60K
6 subtasks per partition,

5 control blocks per page)

Subtask save areas IPSAV no 12K
(save area length 120 bytes,

6 subtasks per patrtition,

34 save areas per page)

XECB subpool ISXECB no 4K
LOCK subpool ILCKSP no 12K
(10 resources per partition,

3 owner elements per resource)

XTENT subpool SPXTNT no 4K
MSAT subpool SPMSAT no 4K
VIO subpool ISPVIO no 4K
Partition subpool 1IBBG, no 48K
(1 page per partition) IIBFn

Guaranteed DUMP subpool 1IJBDMP no 20K
Parameterized procedures IJBPRC no 96K
(2 pages per partition)

SIO counter string IJBFCB 24-bit 4K
(SYS JA=YES: |IJBNSDEV*8*12) /42 sdev
(SYS JA=NO: IJBNSDEV*4*12) /85 sdev
Figure 9. 24-Bit System GETVIS - Static Partitions (12)

Iltem PFIX Size
Algorithm

Security/Logging no 4K
SYSFIL on FBA no 4K
FETCH/LOAD trace tables no 4K
(&AGPHLSL*12)

LUBX for MSAT no 16K
(4*(pgr_LUBs+system_LUBs*12))

Job Control work areas! no 96K
(2 pages per partition)

Job Accounting tables no 19K
(SYS JA=YES: (IIBNDEV*6+ACCTALEN)*12) /254 dev
(SYS JA=NO) 0K

Chapter 1: System Layout

15

Figure 10. 24-Bit System GETVIS - Dynamic Partitions

Item Subpool PFIX Size

Algorithm

Dynamic partition control blocks 1IBPxy 31-bit (NPARTS-12)*4K

(4K per dynamic partition)

(xy = LOGID)

PUB ownership table no 1K

(1 bit per device and partition) /32 part, 254 dev

Figure 11. 31-Bit System GETVIS

Iltem Subpool PFIX Size

Algorithm

GETVIS control information no no 4K

(minimum)

XPCC buffers no 31-bit 20K

Access lists IJBALE 31-bit 8K

(DUAL, PASENAL,

0,5K per partition,

8 lists per page)

Access module save areas no no 12K

(1K per partition)

Data space control blocks 1IIBDSP 31-bit 4K

(SCB, DSCB, ASTE, /16 vdisk

256 bytes per vdisk,

16 blocks per page)

Virtual disk control blocks 1IBVDI 31-bit 4K

(128 + (352 bytes per vdisk), /11 vdisk

11 blocks per page)

Attention Routine buffers ARCHSMON 31-bit 32K
ARCHPID

Attention Routine DEBUG buffers SPDBUG 31-bit 64K

Console router fixed queue space 1IJBCSM 31-bit 48K
IIBCSC

Console router pageable queue 1IJBCSM no 124K

space IJBCSC

System control blocks IINIT 31-BIT 32K

Dynamic partition control blocks 1IBPxy 31-bit (NPARTS-12)*4K

(4K per dynamic partition)

(xy=LOGID)

1 These areas are part of the 24-bit System GETVIS area, but their size is not reflected in the displayed values of the GETVIS

command, because they are reserved from IPL to shut-down.
2 The size of this area is calculated by the librarian phase $INITCON.

16 z/VSE 4.2 Supervisor Diagnosis Reference

System GETVIS Requirements when Vendor Exits are Enabled

Since these system Getvis requirements cannot be considered by IPL, they have to
be specified in the SVA command by the user.

Figure 12. 31-Bit Pfixed System GETVIS

Iltem Subpool Size

TASKPROD/per task PEXITM (maintask) X'3A8'
PEXITS (subtask)

IJBVEND control blocks PEXITP X'1A08'

PRODEXCB/1 per exit PEXITP X'98'

vendor information (fixed) plus IPVEN x'800'

per vendor product x'136'

Chapter 1: System Layout 17

18 z/VSE 4.2 Supervisor Diagnosis Reference

Chapter 2. Design Information

This chapter presents the design information by functions.

Interrupt Processors
The different interrupt types and supervisor routines to handle these interrupts.

Dispatcher, Task Selection
A description of the dispatching of system and user tasks.

Physical Input/Output Control System (PIOCS)
A description of device scheduling and I/O interrupt processing.

Lock Management
A description of the lock/unlock mechanism.

CCW Translation and Retranslation
A description of CCW-translation, retranslation and CCW fixing.

Page Management
Page fault handling, page manager services.

Storage Management
Short description of storage management routine.

z/Architecture PC-ss support
z/Architecture Subsystem Storage Protection Facility

z/Architecture Access Register (translation and use)
including

— Data Space Support
z/Architecture Linkage Stack

Program Retrieval
FETCH/LOAD operations including SVA usage.

Machine- and Channel Check Recovery and Recording
Types of machine checks, channel checks and resulting actions.

Job Accounting
Short description of job accounting routines.

Software Re-IPL
Short description of the Software Re-IPL routine.

Console Support

© Copyright IBM Corp. 1985, 2008 19

20 z/VSE 4.2 Supervisor Diagnosis Reference

Interrupt Processors

The supervisor is designed to operate in z/Architecture mode on an IBM System z
processor.

In the z/Architecture Program Status Word (PSW) bit 12 must be OFF.

Bit 12 of the PSW is the former Extended Control (EC) mode bit, which must
always be ON in an ESA/390 PSW.

When the ESA/390 emulation code prepares the ESA/390 old PSW, bit 12 must be
set ON, since the interrupted task is dispatched with an LPSW form the ESA/390
old PSW.

Processing may be interrupted by any of the following conditions:

e Input/Output Interruption
Program Interruption
Machine-Check Interruption
Supervisor-Call Interruption
External Interruption

An interruption condition consists in storing the current PSW as an old PSW,
storing further detail information identifying the cause of the interruption, and
fetching a new PSW (Refer to IBM z/Architecture Principles of Operation). Proc-
essing resumes with the ESA/390 emulation as specified by the new PSW prior to
invoking the first level interrupt handler as specfied in the former ESA/390 new
PSW.

The first level interrupt handler saves all the information which is necessary to
resume the interrupted processing at a later point in time. After initialization control
is passed to the second level interrupt handler.

The second level interrupt handler which will be described in detail below performs
the actual interrupt processing and after completion returns to the task selection
routine.

I/O Interrupt

Refer to Physical Input/Output Control System (PIOCS) later in this chapter.

© Copyright IBM Corp. 1985, 2008 21

Program Check Interrupt

Like the other interrupt handlers on VSE, the program check handler gets control
with a z/Architecture new PSW. As its first action, it emulates the ESA/390 PC old
PSW at the ESA/390 PC old PSW location (storage location x'28"), and (if appro-
priate) the ESA/390 PER address at location x'98', the ESA/390 Translation Excep-
tion address at location x'90', and the Monitor Code at location x'9C'.

SDAID is called right after this prolog. SDAID will display only the rightmost 4 bytes
of a register.

The program check handler inspects the program interruption code and passes
control to the appropriate processing routine. It mainly differentiates between pro-
gramming exceptions and translation exceptions. The program check handler is
entered in real mode which means that the DAT-bit in the PSW is off.

Handling of a Normal Program Check

22

If a normal program check is to be handled, the DAT bit in the current PSW is first
turned on.

If the program check occurs in the supervisor code the system enters a hard wait,
unless one of the following conditions is fulfilled:

* The supervisor failed due to incorrect input parameters passed by the user
program. A list of addresses in the Supervisor is scanned to see if the program
check occurred at any of these addresses. If so, the user program is canceled.

e A check is made to see if ACF/VTAM is active and executing an SVC 49 (X'31")
or 53 (X'35") or one of its appendage routines. If so, that partition is canceled.

e A check is made to see if ICCF (SVC 82 - X'52") or an ICCF intercept routine is
active. If so the ICCF patrtition is canceled.

If the system goes into a Hard Wait, SYSCOM bytes 4 through 7 and low-storage
bytes 0 through 3 contain the appropriate hard wait code. The hardwait state is
entered by means of the hardwait routine (label SYSERRROR). (see Chapter 5,
Figure 169 on page 403).

If the program check occured while the program check handler was active, the
program check handler loads a hardwait PSW (X'000A0000 00001122") without
modifying SYSCOM and low-storage 0-3. Furthermore an indicator is set to force
other CPUs to enter hardwait whenever the program check handler is entered in a
MP environment.

If the program check handler is entered due to a 'stack-full' exception, phase
IJBLSTK is called to extend the linkage stack of the current task.

If the program check handler is entered due to a 'ALEN-translation-exception'
because of an ALET 2, phase IJBLSTK is called to create a DUAL (if not available)
and to initialize the third entry of the DUAL to address the home space of the cur-
rently active task.

If the program check occurs in a page handling overlap (PHO) appendage routine
or in an I/O appendage routine, the interrupt status and general registers are saved
in a separate save area (label SVPCSAVE) and the users program is canceled.

z/VSE 4.2 Supervisor Diagnosis Reference

If the program check occurs in the problem Program, it will be canceled, unless a
program check exit routine was specified. In this case the Program Check Handler
passes control to a special routine at label PCROUT which saves the interrupt
status information and general registers in the save area specified by the user's
STXIT (PC) macro for the following purposes:

e To restore for continuation.
e To enable the user's PC routine to analyze the status.

* To facilitate analysis of a dump, should a dump be requested (the dump then
contains all interrupt information).

To enter the user's PC exit routine, the PSW saved in SVEPSW is modified to point
to the users PC exit routine and a special bit in the TCB is turned on, indicating
that the PC exit routine is active. A program check encountered at a time while this
bit is still on, causes the task to be canceled.

The user's PC exit routine must end with an SVC 17 (X'11' - EXIT PC) to resume
processing at the point where it was disrupted. In this case the interrupt status
information and general registers are restored to the program save area and the
PC routine active bit in the TCB is reset.

Address-space-control element (ASCE) type exceptions as well as Region-First-
Translation, Region-Second-Translation and Region-Third-Translation exceptions
are handled like Segment-Translation exceptions: Depending on the RID either the
user is cancelled or the system enters a hardwait with hard wait code xX'FFA'.

Handling of Special-Operation Exceptions from an LRA

A Special-Operation-Exception is raised when a LOAD REAL ADDRESS (LRA)
instruction is executed in 24-bit or 31-bit addressing mode, and when bits 0-32 of
the resulting real address are not all zeroes. This may happen when a virtual
address of a page that is not PFIXED or TFIXED, but assigned to a page frame,
has a corresponding 64-bit real address.

When this happens the program check handler calls the page manager to assign a
page frame below 2 GB thus providing a real address below 2 GB. The program
check handler then returns to the interrupted program and passes a real address
which is below 2 GB.

For details on page manager processing please refer to description of the LRA
Exception Appendage in chapter -- Heading 'LRAAPP' unknown --.

Handling of Page Fault Interrupts

Page faults are a special type of program checks and are handled by an extension
to the program check handler, the page fault first level interrupt handler (PFFLIH).
By means of the RID (Routine identifier, label RID in the supervisor) it is deter-
mined what action is to be taken. Figure 13 on page 25 shows the various RIDs
along with the actions taken if one of the appropriate routines causes a page fault.

The page fault handler also sets the TIBFLAG. This flag tells the dispatcher how to
dispatch the task after the page fault has been handled. The TIBFLAG indicates
that control is to be passed to SVRETURN if a supervisor service is to be reacti-
vated.

Interrupt Processors 23

If no page-fault appendage is provided for the interrupted task, a page fault request
is queued for handling by the page management routines and the interrupted task
is set not dispatchable (PMRBND).

If an appendage is present for the task, control is passed to the appendage, and
the task causing a page fault remains dispatchable unless the page fault occurred
during a supervisor service for the task. (Refer to z/VSE System Macros User's
Guide, SC33-8236 for a more detailed explanation of Page Fault appendages.)

If, for a task owning an appendage, a page-fault-handling request has been queued
previously, the pending request is not queued.

Handling of Pseudo Page Faults

24

Pseudo-page-faults are a special type of program checks, that can occur in
systems running under VM.

Pseudo-page-faults are page faults detected while processing on a virtual machine
with 1/O interrupts enabled and for which the SET PAGEX ON command has been
issued. When these conditions are satisfied, VM causes a pseudo-page-fault
exception by storing the virtual machine address that caused the page fault,
reflecting a program interrupt to the virtual machine, and removing the virtual
machine from page and execution wait. When VM has satisfied the page request
for the virtual machine, it reflects a pseudo-page completion.

For both pseudo-page-fault exception and pseudo-page-fault completion, the VSE
virtual machine is removed from the wait state by VM and given control by a
program check interrupt.

A pseudo-page-fault is first tested to see if it is a completion. If this is the case and
the page brought in is the same as the previous completion with no faults in
between, control is returned to the problem program.

If the pseudo-page-fault was a completion, interrupt status is not saved. For com-
pletions the waiting task is found in the page wait queue and posted dispatchable.
The previous completion address is set equal to the current one for the duplicate
test and control is returned to the dispatcher.

If the pseudo-page-fault is an exception it is tested to see if it occurred in the dis-
patcher. If this is the case control is returned to the dispatcher with disabled PSW.
If the fault is not in the dispatcher the page fault address is saved in the TIB, the
TIB is enqueued in the page wait queue and the task is set to the WAIT state.

z/VSE 4.2 Supervisor Diagnosis Reference

NAME 1D MEANING ACTION
SYSTEMID| 00 System error condition, Hard wait.
for example, page fault in (see Note)
the 1/0 interrupt handler
REENTRID| 04 Page fault or GETREAL request |Save PSW and registers
in a reentrant routine (general purpose + AR)
in user task's second
save areas.
USERTID 08 Page fault from a user task Hard wait X'FFB'
or from a system task. if this is a system
task and the TCB shows
that the task does not
expect page faults;
else registers (general
purpose and floating
point) and interrupt
status are saved in the
user's save area, AR in
task's 1lst AR save area
If the task operated
in disabled mode, the
task is canceled with
cancel code X'15';
otherwise the page
request is enqueued.
APPENDID| 0C Page fault in I/0 appendage Task is canceled with
routine cancel code X'36'.
RESVCID 10 Page fault in SVC 7 (X'07') |Set RETRYSVC bit in TIB
in SVC 13 (X'OD') |save interrupt status
and registers in user
save area;
enqueue page request.
DISPID 14 Page fault in a routine which |Enqueue page request.
does not require any
information to be saved, e.g.
page fault in the dispatcher.

Figure 13 (Part 1 of 2). Routine Identifiers (RID) as Used by the Page Fault Handler

(PFFLIH)

Interrupt Processors

25

26

NAME

1D

MEANING

ACTION

PFARID

18

Page fault in page fault
appendage routine

Save interrupt status
and registers in an
internal save area and
cancel user task with
cancel code x'OE'.

ETSSID
SUBSYSID

1C

Page fault in subsystem

Save interrupt status
and registers in an
internal save area.

MICRID

20

Page fault in MICR or
subsystem appendage.

Save interrupt status
and registers in an
internal save area and
cancel user task

with cancel code X'OE'.

40

FF

Page fault in a gated
Supervisor service.

Close gate to routine
(routine cannot be used
until gate is opened).
Save PSW and registers
(general purpose + AR)
in the user task's
second save area; set
TIBFLAG to return to
SVRETURN. Enqueue page
request.

(Any task accessing a
gated resource is put
in a wait state and is
marked resource bound.
It is released from the
wait state when the
resource is ungated
after the page request
has been completed.)

Note:

Refer to “Hard Wait Codes” on page 403.

Figure 13 (Part 2 of 2). Routine Identifiers (RID) as Used by the Page Fault Handler

(PFFLIH)

z/VSE 4.2 Supervisor Diagnosis Reference

External Interrupt

The external interruption provides a means by which the CPU responds to various
signals originating either from within or from outside the system. The sources that
may present a request for an external interrupt are:

e Clock comparator

e CPU timer

e External interrupt key
e External signal

e VM/IUCV

e APPC/VM

Machine Check Interrupt

The resident machine check handler (MCH) analyzes the machine check inter-
ruption code and tests the problem state bit (Old PSW bit 15). The action taken
depends on the conditions detected. For a more detailed description refer to
“Machine Check, Channel Check and CRW Handling” on page 367 later in this
chapter .

Supervisor Call Interrupt (SVC)

The different processing routines are entered by the First Level Interrupt Handler
(FLIH). Some SVCs are optional and cause a CANCEL (ERR21) if the supervisor
was generated without the appropriate option.

After completion of the requested service (SVC), control is generally passed to the
task selection routine. The only exception is SVC 107 (X'6B' - FASTSVC) which
may return directly to the issuing program.

If the execution mode of a SVC differs from that defined in the table SVCMODT,
the SVC is cancelled with 'execution mode violation', (ERR45).
Execution mode comprises

e addressing/residency mode
e access register mode
e Cross memory mode

When a SVC processing routine gets control, it can find the execution mode of the
caller in the flag TCB.TCBEXFLG.

Normally, a SVC processing routine will get control in AMODE 24 and switch to
AMODE 31 by itself whenever necessary.

With a few exceptions, SVCs are not allowed in cross memory mode.

Interrupt Processors 27

28 z/VSE 4.2 Supervisor Diagnosis Reference

Dispatcher

z/VSE (Turbo) Dispatcher - Introduction

This paragraph gives an introduction to the Turbo Dispatcher. First we will discuss
the VSE partition and VSE task concept. VSE tasks are split into system tasks,
maintasks and subtasks, VSE patrtitions into one system patrtition, static and
dynamic partitions.

Comparison System Task / User Task

For better understanding of system tasks processing it is important to distinguish
between server and service owner.

1. Normally a system task is performing the service which has been requested by
a user task.
In this case

e the system task is the server and
e the user task is the requester and owner of the service.

2. A system task may request participation of another system task on the same
service.
In this case, the service owner will remain the original service requester
whereas the first system task will be the immediate service requester to the
second one.

3. System tasks (for example, attention task) may perform processing which is not
connected to any kind of user task.
In this case (similar to user task) a system task is server and service owner of
its own.

System Partition

In order to allow system and user task selection by the same mechanism identical
control blocks are used with both kinds of tasks. In addition to the user partitions a
pseudo partition (system partition) is used, which is the home of all system tasks
including attention. Task selection differentiates between two control blocks which
are related to partitions. These are

e Partition Control Block (PCB)
¢ Partition Information Block extension (PIB2)
e Partition Communication Region (COMREG)

A PCB represents a partition as the server whereas the PIB2 and COMREG are
representing the service owner. This means that in case of system task processing
the system PCB is involved in a combination with a user PIB2 and COMREG
whereas in the case of user task processing the PCB, PIB2 and COMREG belong
to the same user partition. If a system task has no service owner, the system PCB,
attention routine PIB2 and BG COMREG represent the selected environment.

© Copyright IBM Corp. 1985, 2008 29

Static Partitions

30

Supervisor generation defines control information for 12 partitions, called static
partitions. Static partitions are compatible to the partitions in prior releases, that is
they support the old control block structure (defined by the partition COMREG
(SYSIR) interface) as well as the new control block structure defined by the PCE
(Partition Control block Extension). VSE allows to allocate 12 static partitions in up
to 12 address spaces. An address space contains a shared area and a private
area. The shared area is for all address spaces the same. The private area differs
dependent on the allocation. It is possible to allocate more than one partition in one
private area. Static partitions have the following predefined IDs:

F1, F2, F3, F4, F5, F6, F7, F8, F9, FA, FB, BG.

The following storage layout shows partitions BG, F1, F2, F3 and F4 allocated in
address spaces 0 to 3; one address space has a maximum size of 2 GigaByte
(GB).

address spaces

0 1 2 3
up to 2GB _—
SVA (31-Bit) Shared Area
(31-Bit)
/11117 F1 A 4
111111 Yraayavar
1111117 v
11111/ 11111117
1111117 /111111 F4
1I6MB | .eeeie]eeneni]vnennee]eennnn.
111111 Private Area
111111 F2
11111/
BG F3
v
SVA (24 Bit)
Shared Area
(24-Bit)
Supervisor
0 -

Figure 14. Storage Layout (Static Partitions)

An operator or ASI procedure may allocate and start the partitions and give an exe-
cution priority to every partition. Static partitions may get JCL statements from a
physical reader or the job scheduler. In VSE the job scheduling, execution and
output spooling of a job is done by VSE/POWER, that is a job is VSE/POWER
controlled. VSE/POWER may also start the static partitions and run jobs in them,
that is VSE/POWER feeds JCL statements and data to the partition. The jobs are
located in the reader queue. The list or punch output may be directed to the corre-
sponding queues. The static partition is available for more than one job.
VSE/POWER allows to execute jobs in classes, the so called VSE/POWER
classes, where one or more static partitions may be assigned to.

z/VSE 4.2 Supervisor Diagnosis Reference

Dynamic Partitions
Dynamic partitions (PCEDYNP in PCEFLAG) have a few incompatibilities com-
pared to static partitions. Two byte control block interfaces accessed via the
COMREG (SYSIR interface) are not supported, for example, PIBTAB, PIB2TAB,
DIB, NICL, FICL, etc., because partition related control blocks are allocated in the
SVA (24-bit, for example, PIB, PIB2, PCB, COMREG, SCB, TIB, TCB). That is for
dynamic partitions the supervisor only supports the new control block structure
defined by the PCE (Partition Control block Extension).

Also a few supervisor services are not available in a dynamic partition, for example,
PFIX, XECB, EXEC REAL, SYSFILE support. In the following you will find a
description of the dynamic partition characteristics.

VSE/POWER allocates and starts a dynamic partition for one job. VSE/POWER
controls the execution of the job and deallocates the dynamic partition after end of
job. The freed storage is available for another job.

Each dynamic partition has its own address space, that is only one dynamic parti-
tion is allocated in the private area of such an address space. Multiple dynamic
partitions may be allocated at a time.

To reduce the size of the shared areas a new (private) system area is introduced
for dynamic partition address spaces called dynamic space GETVIS area. The
dynamic space GETVIS area belongs to the private area. Figure 15 on page 32
shows a comparison of static and dynamic Partition address space layouts.

The dynamic space GETVIS area is allocated together with the dynamic partition
and contains system data for the address space.

Dispatcher 31

16MB

0

Static Partition
Address Space Layout

SVA
(31-Bit)

T
/1111/invalid////1]
1111117

Static Partition

(GETVIS area)

(program area)

SVA
(24-Bit)

Supervisor

Shared Area
(31-Bit)
v

Private
Area

Shared Area
(24-Bit)

0

Dynamic Partition
Address Space Layout

SVA
(31-Bit)

oy
/11111invalid// 1]/
T

Dynamic Partition

(GETVIS area)

(program area)

Dynamic Space
GETVIS area

SVA
(24-Bit)

Supervisor

Figure 15. Address Space Layout for Static and Dynamic Partitions

32

Dynamic partitions are grouped into classes corresponding to the VSE/POWER
classes, where jobs can be executed. These classes are called dynamic classes.

Only the priority of the dynamic class can be specified. The dynamic partitions
within the class are time sliced.

Static and dynamic partitions may be grouped in one VSE/POWER class.
A table, the so called dynamic class table, contains the attributes of the dynamic

classes. The dynamic class table may be cataloged in the library, from where it
can be loaded.

Some dynamic class table attribute examples:

e Storage allocation:

specifies the storage requirements of a dynamic partition (Dynamic Space

GETVIS and patrtition allocation) of the given class,
e Partition SIZE:

defines the amount of contiguous virtual storage in a partition reserved for
program execution; the rest of the partition is available as partition GETVIS
area,

z/VSE 4.2 Supervisor Diagnosis Reference

e Dynamic Space GETVIS size:
defines the amount of contiguous virtual storage for the Dynamic Space
GETVIS area (refer to Figure 15 on page 32),

¢ Profile(procedure):
will be executed in the partition prior to the job (corresponds to ASI procedure
of static partitions),

e Max. number of dynamic partitions within class:
specifies the maximum number of partitions that can be allocated in parallel
within the given class, when enough virtual storage and dynamic partitions are
available;

e Disable indication:
allows to disable a dynamic class, that is no job can be executed within this
class;

e Spooled I/O devices:
specifies the spooled devices, for example, reader, printers and punches which
interfaces to VSE/POWER.

Dynamic partition IDs are built as follows:

<class><pno>

dynamic class (one character, defined by user)
partition number within dynamic class

where <class>
<pno>

Examples
1. The first dynamic partition allocated in a dynamic class P receives ID P1.

2. The following example shows a storage layout with partitions BG, F1 - F7 in
address spaces 0 to 3, 2 dynamic partitions of dynamic class N in address
spaces N1 and N2, one dynamic partition in address space P2 and one
dynamic partition in address space 04.

address spaces
0 1 2 3 NI N2 P2 04

SVA (31-Bit)

F2 /717 F6 |/1111/111\/111] P2 |//]]
/1117 i /1117
/1117 F7 (111111111 /1117
/117 i /117 free
/117 avai storage
16MB |.... R I| 04 pool
F1 N1 | N2
Fa4
F5
BG F3

SVA (24-Bit)

Supervisor
)y J

Figure 16. Storage Layout with Dynamic Partitions

Dispatcher 33

Dynamic Partitions and Ease of Use
The following items show how easy it is to process jobs in dynamic partitions:

1. Definition:
The dynamic class table allows to define the attributes of dynamic partitions in
only a few statements.

2. Dynamic partitions allocated when needed:
Dynamic partitions are only allocated, when a job is to be executed in a
dynamic class. This saves system resources. If a VSE/POWER class contains
static and dynamic partitions, static partitions will be used first for job execution
(default, may be changed by VSE/POWER startup parameter).

3. Automatic allocation, initialization and deactivation:
The job's environment and resources are allocated and released automatically
without user intervention.

4. Identical resource allocation within one dynamic class:
Resources needed for the job are allocated prior to job execution.

5. Time slicing:
There is no need to control CPU intensive jobs, because after the time slice of
a job is exhausted, the job is moved to lowest priority position within the
dynamic class.

6. Migration from static to dynamic partitions:
It is easy to migrate jobs to dynamic partitions, because the design avoids
incompatibilities.

Dynamic Partition Concept
The concept shows, how dynamic classes can be defined and how dynamic parti-
tions are created and released, when the system resources are available (for
example, virtual storage).

The following paragraphs describe

1. dynamic class table maintenance,
2. dynamic partition dispatching,
3. job execution.

1) Submit Job to be executed in a dynamic class
2) VSE/POWER requests dynamic partition allocation
— create dynamic partition
3) VSE/POWER starts the dynamic partition
— make dynamic partition dispatchable
4) dynamic partition initialization
— initialize address space
— run dynamic class profile
) job execution
) end of job process
) dynamic partition deactivation
— free system resources
— stop partition
— make dynamic partition undispatchable
8) deallocate the dynamic partition
— remove partition from dispatching queue

~N o o

Figure 17. Job Execution - Overview

34 z/VSE 4.2 Supervisor Diagnosis Reference

Maintain the Dynamic Class Table (Create, Store and Load)

Any editor or the VSE dialog may create and change the dynamic class table. Ser-
vices are available to store the table into the library from where the operator or the
VSE/POWER ASI procedure may load the table.

The load process validates the dynamic class table values and translates the infor-
mation into an internal representation. Invalid entries are shown on the console.
Only valid entries can be activated, that is the dynamic class table is stored into
system storage (addressable by system routines). The dynamic classes receive a
predefined dispatching priority. An operator may change the priority by the priority
command.

A following load request may change or remove dynamic class table entries. A load
request is rejected, when a dynamic class to be removed has allocated dynamic
partitions.

How to Change the Priority

The operator or a startup procedure may change the priority of static partitions and
dynamic classes. To avoid that a CPU intensive partition/class can stop the dis-
patching of lower priority partitions/classes VSE allows to define a time sliced (bal-
anced) group. The member of the group (static partition or dynamic class) that
looses its time slice receives the lowest priority position within the group. If more
than one dynamic partition is allocated within a dynamic class the same algorithm
is used.

Job Execution

Job selection for execution in a dynamic class is only possible, if the dynamic class
is enabled. This is indicated in the loaded (active) dynamic class table and can be
changed by a VSE/POWER command. This paragraph describes the processing
after a job for an enabled dynamic class is found.

Dynamic Partition Allocation and Start

VSE/POWER requests allocation of a dynamic partition. The allocation service
builds a partition 1D, allocates and initializes control blocks and creates an address
space. The dynamic partition is included into the dynamic class dispatcher queue.
The partition start service makes the dynamic partition dispatchable (ready to run)
and starts initialization.

If a second dynamic partition is allocated within the same dynamic class, time
slicing for the dynamic class is started.

Dynamic Partition Initialization

During dynamic partition initialization the address space is validated, job control is
loaded and the dynamic partition prepared. A few system routines may be exe-
cuted during preparation. Job control executes the profile.

If the initialization cannot complete, the partition will be canceled, deactivated, deal-
located and the dynamic class disabled to avoid execution of other jobs.

After successful initialization the job is executed, that is VSE/POWER passes JCL
and data to the dynamic partition. VSE/POWER requests deactivation, when the
end of the job is reached.

Dispatcher 35

Dynamic Partition Deactivation

System routines called during preparation are notified that deactivation is
requested. The system frees resources, stops the dynamic partition and makes the
partition undispatchable. VSE/POWER deallocates the partition.

Dynamic Partition Deallocation

The deallocation service frees the partition ID and system space allocated for
control information (for example, control blocks). It removes the dynamic partition
from the dynamic class dispatching queue. If only one dynamic partition remains in
the dynamic class, time slicing for the dynamic class will be reset.

Advantages of the Concept

The customer has only to define system resources available for dynamic partitions
(for example, virtual storage size, dynamic class table). The job execution including
partition allocation and deallocation is done by the system, that is system resources
are only used when needed. It is easy to migrate jobs from static to dynamic parti-
tions, because the incompatibilities (control blocks, services,etc.) are kept as low
as possible. Only system software should be affected. The dynamic partition
concept is open for follow on development.

36 z/VSE 4.2 Supervisor Diagnosis Reference

Turbo Dispatcher

Turbo Dispatcher Design

A z/VSE system with the Turbo Dispatcher (TD) active can run on any supported
uni- or multiprocessor. The Turbo Dispatcher can utilize multiprocessors by distrib-
uting the workload across several processors (CPUs) of one Central Electronic
Complex (CEC), enabling them to work in parallel and thus increase the overall
throughput of a z/VSE system.

At Initial Program Load (IPL) the Turbo Dispatcher ($IJBDSPT) phase will be
loaded just after the z/VSE Supervisor.

The z/VSE Turbo Dispatcher works on a partition (job) basis, that is, it dispatches
an entire partition to a CPU waiting for work, instead of dispatching at a subtask
level like OS/390 does. Subsequently "jobs" is used as a synonym for partitions.
One job consists of many work units. A work unit is defined as a set of
instructions that are executed from the selection by the z/VSE Turbo Dispatcher
until the next interrupt. Only one work unit of a job can be processed at a time,
that is, no other work unit of the same job can run on a different CPU. This means
for jobs with multitasking applications (applications with attached VSE subtasks),
that no other task of the same job can execute on a different CPU, when one task
of that job is already active.

There are two different work unit types:

1. parallel work units (P)
Most customer applications in batch as well as the online (CICS/VSE or CICS
Transaction Server) environment are processed as parallel work units.
However, when an application calls a supervisor service, it has to process a
non-parallel work unit in most cases.

2. non-parallel work units (N)
Most system services and key O applications (such as supervisor-,
VSE/POWER and ACF/VTAM services) will be processed as non-parallel work
units.

Only one CPU within the CEC may process a non-parallel work unit at a time,
that is as long as this work unit type is active, no other CPU can execute a
non-parallel work unit. Any other job, that wants to process a non-parallel work
unit, has to wait until no other CPU processes a non-parallel work unit.

However, other CPUs may process parallel work units of other jobs.
Notes:

a. Work units of the VSE/POWER maintask can be processed in parallel, if
the VSE/POWER autostart statement

SET WORKUNIT=PA
is specified in the VSE/POWER startup procedure.

b. Some vendors adapted their applications to run parallel work units even if
they are executing in key zero.

The following simplified example (no interrupts are considered, all work units have
the same length) should give you an impression, how the z/VSE Turbo Dispatcher

Dispatcher 37

processes a given workload (see Figure 18 on page 38). Job A, B and C are
ready for selection, job A has highest, job C lowest priority. Each job consists of 3
work units, e.g. job A consists of work units Al, A2, and A3. Work unit A1 has to
be processed before work unit A2 (of the same job) can be selected. Work units
are either parallel (P) or non-parallel (N). On a uni-processor the three jobs would
need 9 process steps (3 jobs times 3 work units), the z/VSE Turbo Dispatcher
would need only 5 steps on a 2-way (dyadic) CEC as shown in the example (with
CPU 0 and CPU 1):

PRTY
high

v
Tow

(P)
(N)

Work units of Job A, B, C: | Jobs A, B, C executing in a two-way processor:

JOB A

JOB B

JoB C

Step 1 Step 2 Step 3 Step 4 Step 5

CPU O|AL(N)| [CL(P)| |B2(N)| |C2(P)

AL(N)| [A2(N)| [A3(P)
BI(P)| |B2(N)| |B3(P)
C1(P)| [C2(P)| [C3(P)

CPU 1(B1(P)| [A2(N)| |A3(P)| |B3(P)| [C3(P)

parallel work unit
non-parallel work unit

Figure 18. Processing Steps for Jobs A, B and C

e Step 1:
CPU 0 selects non-parallel work unit A1, at the same time CPU 1 selects par-
allel work unit B1, because job A and B have a higher priority than job C.

e Step 2:
The next two highest priority work units are A2 and B2. However, both work
units are non-parallel and therefore cannot run at the same time. So the next
lower priority parallel work unit C1 will be selected, that is this step is made of
work unit A2 and C1. A2 may be selected by CPU 0 or CPU 1, in the example
it executes on CPU 1.

e Step 3:
Now non-parallel work unit B2 and parallel work unit A3 will be processed, as
given by their priority.

e Step 4:
Job A terminated. C2 and B3 are both parallel work units and will be proc-
essed by CPU 0 and CPU 1.

e Step 5:
Now also job B terminated. In our example CPU 1 processes the last available
work unit C3 of job C.

38 z/VSE 4.2 Supervisor Diagnosis Reference

Advantages on Uni-Processors

The Turbo Dispatcher provides advantages not only for multiprocessors but also for
uni-processors in terms of

e multiprocessor exploitation prediction,
e measurement tools (SIR command),
e partition balancing enhancements and

» performance improvements for some environments (e.g. when VSE/ICCF is
active).

Partition Balancing Enhancements

Quiesce CPUs

The Turbo Dispatcher provides an improved partition balancing algorithm, which
gives each partition, be it static or dynamic, equal weight within a balanced group.
The PRTY command defines the balanced group, e.g.

PRTY F4,C=BG=F5,F3,F2,f1

In our example we have dynamic class C (which may hold up to 32 dynamic parti-
tions), static partitions BG and F5 as balanced group members.

Balanced group members are time sliced. The calculation of a time slice size is
based on the MSECS interval. The MSECS command may change this MSECS
interval (default is about 1000 milliseconds).

With the Turbo Dispatcher active all dynamic and static partitions of the balanced
group will receive the same time slice. That is when a dynamic partition's time slice
expires, only this partition will be moved to a lower priority, all other dynamic parti-
tions of the same class will not change their priority.

Relative CPU Shares

The PRTY SHARE command allows to specify a relative share of CPU time for
each static partition and dynamic class belonging to the balanced group. With this
enhancement it is much easier, for example, to balance a CICS partition with batch
partitions in a way that ensures acceptable throughput for the batch partitions and
acceptable response times for the CICS transactions.

This support was especially implemented for VSE/ESA systems running as guests
under VM/ESA. Before VSE/ESA 2.3 not active (stopped) CPUs excluded the
VM/ESA guest from I/O assist, which caused performance degradation. With the
STOPQ parameter of the SYSDEF command it is possible to quiesce a CPU, that
is a CPU will be suspended from task selection, however the CPU is still active (not
in stopped state). A quiesced CPU which is not needed during a certain period of
time (for example during off-shift) helps to minimize the overhead caused by idle
additional CPUs.

Dispatcher 39

z/VSE Turbo Dispatcher Considerations

The z/VSE Turbo Dispatcher support is transparent to most programs as well as
IBM's subsystems such as the CICS Transaction Server, CICS/VSE and
ACF/VTAM. Apart from few exceptions, application programs can run functionally
unchanged with the z/VSE Turbo Dispatcher. However, there may be the need to
adapt applications for better multiprocessor exploitation (e.g. by implementing
larger 1/O buffers or using data spaces).

A few system applications run in key zero, have interfaces with the dispatcher or
supervisor areas or update the first 4 KB page. These applications may have the
need for adaptations. Examples for such applications are performance monitors,
accounting and scheduler routines.

Note: The traditional replacement of the SVC new PSW (Program-Status Word)
e.g. by vendors cause performance degradations in the multiprocessor envi-
ronment. z/VSE provides vendor exits to get rid of that replacement.

Most vendor products adapted their applications to the Turbo Dispatcher
environment and improved performance (compared to the standard dis-
patcher) by exploiting vendor exits.

Most user applications are written in high level languages (such as COBOL) and do
not access internal system areas.

More Information

40

You will find further details about the Turbo Dispatcher in the following publications:
e VSE/ESA Turbo Dispatcher Guide and Reference, VSE/ESA 2.4.0,
e |TSO VSE/ESA 2.1 Turbo Dispatcher, SG24-4674,
e Hints and Tips for VSE/ESA, available on Internet (http://www.ibm.com/vse/),

e 7z/VSE Turbo Dispatcher Performance document, available on Internet
(http://www.ibm.com/vse/).

z/VSE 4.2 Supervisor Diagnosis Reference

z/VSE Turbo Dispatcher - Details

up to 2 GB

4K

0

In zZ/VSE each CPU shares real memory and has also access to the shared areas
(supervisor, SVA, etc.). The first page, call prefix page, is an expection to that
rule, it is unigue to each CPU. In z/VSE the prefix pages are allocated in virtual
storage accessible by all CPUs. Each CPU has its own work area, which is also
located in shared virtual storage. The supervisor code is available for all CPUs,
that is the supervisor services, that are not reentrant, have to lock code.

The following figure shows the virtual storage accessible by two CPUs, where the
CICS partition is assigned to CPU 0 and the VTAM partition to CPU 1 at one
instant.

Virtual Storage Virtual Storage
of CPU 0 of CPU 1

SVA (31 Bit)

Serviced Private Serviced Private
Area of CPU 0O Area of CPU 1
CICS Partition VTAM Partition

Shared Partitions

SVA (24 Bit)

Supervisor

CPU 0 Prefix Page CPU 1 Prefix Page

Figure 19. Sharing of Virtual Storage for one CEC (e.g. 2 CPUs)

IPL is processed on a single CPU. The z/VSE operator or VSE/AF ASI procedure
may start other CPUs via a new command. The supervisor use the Signal
Processor (SIGP) instruction to initialize and start a different CPU and to communi-
cate in between CPUs, which is used in rare cases. In general defined interfaces
located in the shared area are used for communication.

One VSE/POWER job consists of multiple work units. One work unit is defined as
the dispatchable entity of the partition, which can be processed on one CPU until
the next (SVC, I/O, external, etc.) interrupt.

All CPUs within one CEC have equivalent rights as long as no work unit is
assigned to a specific CPU. One job consists of parallel and non-parallel work
units.

Dispatcher 41

42

Parallel work units (P) are defind as application code like CICS transactions
(running in problem state and non-key zero). Non-parallel work units (N) are
defined as system code like supervisor services, VSE/POWER, or ACF/VTAM (key
0, disabled and/or supervisor state work units).

Whenever (N) code is executing on one CPU (lets say CPU X), all other CPUs that
request execution of (N) code have to delay these work units or wait for the (N)
state, that is no other (N) code can run on a different CPU when active on CPU X.
However, any other CPU may process (P) code. When the (N) work unit has to be
delayed, a CPU may select another (P) work unit of a different partition, if available.
After CPU X has processed a (N) work unit, it looks for other enqueued (N) work
units. If no such (N) work units are available, any other CPU may run a (N) work
unit; CPU X will select the highest priority (N) or (P) work unit, if any.

Examples: The following examples show the assignments of two partitions to two
CPUs (CPU 0, CPU1), all ready-to-run, where the following abbreviations are used:

P1 = Partition 1

P2 = Partition 2

(P) = executing parallel work units

(N) = executing non-parallel work units

The examples also show the transition from (P) work units to (N) work units.

Example 1: Supervisor Call (SVC) Interrupt Process: The first example uses SVCs
to switch from (P) work units to (N) work units. The z/VSE TD decides, if the CPU
has to wait (using spin loops) until it can process the (N) work unit for the corre-
sponding job (partition) or delay the SVC and select another ready-to-run job.

z/VSE 4.2 Supervisor Diagnosis Reference

CPU O

select P1

Y

SV

P1 (P)

A

P1 (N)
SVC code

v
dispatcher

P1 (P)

interrupt

dispa

Figure 20. SVC Interrupt Process

(P)

tcher

P2 (P)

CPU 1

select P2

P2 (P)

YV
SvC

wait for (N) = spin
or delay

P2 (N)
SVC code

v
dispatcher

P1 (P)

Dispatcher

43

Example 2: Clock Comparator and 1/O Interrupt Process: The second example
shows how I/O and clock comparator (external) interrupts are processed. The CPU
that receives an 1/O or external interrupt tries to get the N state. If this is not pos-
sible, it enqueues the interrupt to the CPU that runs (N) work units and continues
with interrupted (P) work unit (partition) or frees the work unit and continues with
the next higher priority work unit.

CPU © CPU 1
select P1 select P2
P1 (P) P2 (P)
v
interrupt
(N) enqueue vy
« interrupt
to CPU O
dispatcher
v
dispatcher
(N) P1 (P)
process enqueued
interrupt
v
dispatcher
P2 (P) vy
interrupt
v enqueue (N)
interrupt >
to CPU 1
dispatcher
v
dispatcher
P1 (P)
process enqueued
interrupt
\4

Figure 21. External and I/O Interrupt Process

44

Parallel work units are enabled for I/0 and external interrupts like in prior VSE/ESA
releases. So any CPU may receive interrupts.

Note: With a few exceptions, e.g. IUCV and VMCF interrupts are enabled only on
that CPU, where IPL was performed.
Work units are selected dependent on the z/VSE priority scheme.

Note: The z/VSE Turbo Dispatcher will be implemented in separate module, which
is OCO (Object Code Only). Therefore you will find more details about the
Turbo Dispatcher in an internal document.

z/VSE 4.2 Supervisor Diagnosis Reference

z/VSE Turbo Dispatcher - CPU Management

The SYSDEF AR and JCL command allows to start and terminate all available or
selected CPUs.

The following paragraphs describe
e Activation and initialization of CPUs (Multiprocessing)
e Termination of CPUs (Multiprocessing)

e CPU Recovery

Activation and Initialization of CPUs
A new AR/JCL SYSDEF operand will be introduced to activate z/VSE multiproc-
essing capabilities. All or one additional CPU can be activated.

The initialization process determines the number of CPUs available in the CEC
configuration (no supervisor generation is required) and allocates prefix pages
(page 0) and work areas for each CPU in system GETVIS (31 bit) storage. SIGP
instructions are used to initialize and start the CPUs. A CPU vector table (TDATAB)
will be allocated in virtual storage (outside page 0). The vector table holds an
address for each CPU pointing to the CPU control block (TCPU) of the corre-
sponding CPU. TCPU points to the CPU's work area. Each CPU has access to the
other CPUs page 0 and work areas.

Termination of Multiprocessing

A new AR/JCL SYSDEF operand will be introduced to terminate z/VSE multiproc-
essing capabilities. One specific CPU or all active CPUs are stopped using SIGP
instructions. When all additional CPUs are to be stopped, z/VSE continues to run
in uniprocessor mode on the 'IPLed' CPU.

z/VSE Turbo Dispatcher - Data Areas, Control Blocks and Structure

System Areas (Control Blocks)

Updates to system control blocks are only possible by tasks running with key zero,
which means in z/VSE's TD approach, can be changed from one CPU at a time.
Control blocks and areas that are changed dependent on the status of the system
should be removed from page 0 (low core).

The following control blocks and areas will be moved from page 0:

* Resource descriptor table

e TIBATAB (Task Information Block Address Table)
will be located at the 4K boundary, the static part will stay in page 0, the
remaining part in page 1.

¢ RASLINK area

* whenever possible: move areas out of page 0

Most critical control blocks that are committed to applications are the SYSCOM and
the BG COMREG, because they are allocated in the page 0. These control block
will remain in page 0. When the task, running a non-parallel work unit, updates
these control blocks, the update will become active on the other CPUs, when the
(N) work unit is completed ((N) state is freed - in dispatcher or by service).

It may also be necessary to lock critical sections of code across all CPUs.

Dispatcher 45

46

Note: Locking facilities will be provided to allow synchronization of control block
updates.

CPU Control Blocks

This Paragraph gives an overview of the CPU control blocks in z/VSE:

e TD Address Table (TDATAB)
e TD Communication Region (TDCOMREG)
e TD CPU Control Block (TCPU)

TD Address Table (TDATAB): The TDATAB holds addresses to all z/VSE CPU
control blocks. The first entry points to the TDCOMREG, the following up to 10
entries point to the TCPU control blocks of the corresponding activated CPUs. The
first entry with the high order byte set gives the first unused TDATAB entry.

The SYSCOM holds the address of the TDATAB at label [JBTDATB.

TD Communication Region (TDCOMREG): The TDCOMREG holds system infor-
mation, e.g.

e started CPUs

e control information

e delayed I/0O and external interrupts

¢ global spin (compare-and-swap) locks

The TDCOMREG is allocated in the supervisor.

TD CPU Control Block (TCPU): The TCPU holds information specific for the cor-
responding CPU: such as:

e CPUId
e active work unit type ((N) or (P))
e status of CPU
e process requests like

— process PALB

— reset CPU time counters

— set default space
e CPU's PREFIX page (virtual and real)
e CPU's work area address
e accounting information
total CPU time since last IPL or reset
total (N) time since last IPL or reset
total spin time since last IPL or reset
total allbound time since last IPL or reset
dispatcher cycles since last IPL or reset

The TCPU for the IPLed CPU is allocated in the supervisor. The TCPUs for the
other CPUs are allocated in system GETVIS (31 bit) storage, when active.

Task Selection Control Blocks (TSCx)
Note: Task Selection Control blocks (TSC) are described in more detail in an
internal document.

The TSC holds the control information for a partition or task and is used by dis-
patcher services and task (work unit) selection. Dynamic Class related control infor-

z/VSE 4.2 Supervisor Diagnosis Reference

mation is located in the TSCC. Partition related control information is located in the
TSCP. Task related control information is located in the TSCT.

Information located in TSCC:

e dynamic class character

e CPCB address

e partition status (active on CPU, ready-to-run)
 the priority chain forward and backward pointers
e priority figures

The TSCC which is part of the priority chain will be replaced by a dynamic partition
TSCP, when the corresponding dynamic partition is allocated.

Information located in TSCP:

 partition identification key (PIK)

e PCB address

e partition status (active on CPU, ready-to-run)

e address of ready-to-run TSCP with next lower priority
* the priority chain forward and backward pointers

¢ address of highest priority ready-to-run TSCT

e priority figures

e address of TSCT active on any CPU

* page fault device information

The Partition Control Block (PCB) holds the address of the corresponding TSCP.
The system task and BG TSCPs are located in the supervisor, all other TSCPs are
allocated in system GETVIS (31 bit) storage.

Information located in TSCT:

* task identification (TID)

e TIB address

e TSCP address

e task status (active on CPU, ready-to-run)

e address of ready-to-run TSCT with next lower priority
* the priority chain forward and backward pointers

¢ priority figures

e address of TCPU, where task is active

The Task Information Block (TIB) holds the address of the corresponding TSCT.
The system task and BG maintask TSCTs are located in the Turbo Dispatcher
phase, all other TSCTs are allocated in system GETVIS (31 bit) storage, when pos-
sible.

z/VSE Turbo Dispatcher - Task Selection

The z/VSE Turbo Dispatcher introduced a new task selection algorithm working on
gueues of work units. One work unit is described by a task selection control block,
TSC. The queue elements (TSCs) are chained in priority order via forward pointer
and backward pointers. Each queue element holds a priority number (highest
number has highest priority).

VSE/AF has two TSC states:

1. TSC elements for non-parallel work units - TSC(N)

Dispatcher 47

48

TSC(N) elements can be processed by only one CPU at a time, no other
TSC(N) element can be selected.

2. TSC elements describing parallel work units - TSC(P)

TSC(P) elements can be processed by any CPU, other CPUs may select
remaining ready-to-run TSC(P) elements.

VSE/AF has three TSC types:

1. the dynamic class TSC (TSCC), which is also part of the partition queue as
long as no dynamic partition within the dynamic class is active,

2. the partition TSC (TSCP), which is part of the partition queue, and
3. the task TSC (TSCT), which is part of the task queue.

TSCs of Ready-to-run partitions form the partition ready-to-run queue and TSCs
of ready-to-run tasks within a specific partition the task ready-to-run queue.

The system TSCP holds the anchor for the partition ready-to-run queue.

The TSCP holds the anchor for the task ready-to-run queue, which consists of
ready-to-run sub- or main-tasks.

Partition Selection

Partition/task selection will be coded reentrant, that is any CPU may scan the TSC
ready-to-run queue to find a selectable element. When a CPU selects a TSCP, the
TSCP will be locked and is no longer available for other CPUs.

A VSE/AF partition is uniquely assigned to a TSCP.

When no task within the partition is ready-to-run, the corresponding TSCP will be
removed from the queue or is marked for deletion. The system TSCP (pointing to
the system PCB) will always be part of the TSCP ready-to-run queue, it is also
called the ready-to-run queue header.

If a partition with a newly readied task is not yet on the ready-to-run queue, it will
be added. To ensure that partitions are dispatched in priority order and in the order
in which the partitions became ready (in case of equal priority partitions - see parti-
tion balancing), the dispatcher will add a partition to the ready-to-run queue after all
partitions with equal or greater priority.

Task Selection (TSCT Queue)

Because tasks of a partition are not allowed to run concurrently on different CPUs,
the TSCT queue will only be locked on the partition TSCP. A ready-to-run task with
the highest priority will be selected by scanning the TSCT ready-to-run chain. A
new TSCT will be enqueued into the TSCT ready-to-run queue during the ATTACH
or post processing and deleted from the queue during unpost or DETACH process.
An application may change the priority of a subtask by issuing the CHAP macro.
Subtasks will always have a higher priority as the maintask, except the ICCF
pseudo partitions. They will have always a lower priority as the maintask. The
current priority of the task is formed by the partition's priority and the task priority.

When a ready-to-run task is selected, task selection process continues as
described in “Relating Control Blocks to Tasks” on page 51 and “Processing of
Task Selection Exit Routines” on page 52.

z/VSE 4.2 Supervisor Diagnosis Reference

The dispatcher services, system task as well as the balancing routine will be imple-
mented in an RMODE ANY module, which is located behind the supervisor phase.

System Resource Owners

System resource owners are known as End-Of-Task, Terminator or LTA owners.
The tasks that occupies one of these resources will receive the highest user task
priority, that is the corresponding TSCT will be enqueued just behind the system
TSCP as long as the resource is occupied and the TSCT is ready-to-run. All other
tasks of the corresponding TSCP will run with their defined priority. When a
resource owner TSCT is selected, no other task of the corresponding partition can
run concurrently.

ICCF Pseudo Partitions

TSCTs of ICCF pseudo partitions will always be queued to a lower priority as the
CICS maintask TSCT.

Dispatcher 49

Steps to Task Selection

50

One VSE partition consists of one maintask and attached subtasks, where the
maintask has always the lowest priority within the partition.There is one exception:
ICCF pseudo (interactive) partitions have a lower priority as the maintask.

The current VSE system has a two level dispatching algorithm.

1. The highest priority partition ready to run is selected from the dispatcher queue.
2. The corresponding highest priority (sub)task ready to run is selected and dis-
patched. The task id (TID) is used to identify the control block structure.

How to Identify the Control Block Structure for a given Task ?
With a given task id (TID) the task's TIB pointer can be found via the TIB address
table (TIBATAB), the layout of which is shown in Figure 22.

TIBATAB

<«—System Tasks—>» | ¢——User Tasks———»

06 4 8 128

O |TIB|TIB| eee (TIB|TIB|TIB| eee |TIB| eee |TIB| eee

— SNS DSK AR BG F1 Fn—1 S1 Sm

<+«—Main tasks——» | <«Subtasks—>
—»4«TID (offset within TIBATAB)

Where:
n number of partitions (static and dynamic)
m number of subtasks

TIB Address of TIB
Figure 22. TIB Address Table (TIBATAB)

Once a TIB pointer is known, all related control blocks and areas can be accessed
as shown in Figure 23 on page 51.

z/VSE 4.2 Supervisor Diagnosis Reference

+++

DmM<XOmMmwm

SCB

v

SCBPTR | +—

TID
l
eee | TIBPTR| TIBPTR| TIBPTR| eee TIBATAB
l
PCBPTR | +— TIBPTR — | TCBPTR
v
PCB TIB TCB

i L S B BE

PCBPTR| eee PCBATAB

N PIK |«
S

]
R

v

I eee | PCBPTR| PCBPTR
C

E

0

W |CRADDR PIBPTR2
N

E

R v
[PCB

+

| HHH

—| TID

l

I S T S S S S S e e T T T T S S S S S

TIBPTR| TIBPTR| eee
l TIBATAB

TIBPTR

TIB

service owner «———» service requestor
task

partition

+

Figure 23. Task Selection Control Block Interrelationship

Relating Control Blocks to Tasks

Control block connection is done by setting up the TID, PIK, TIBPTR, TCBPTR,

PIBPTR2, PCBPTR, and CRADDR fields in such a way that they correspond to a
task which has to be made active. Figure 23 shows that a control block connection

can be done by assuming a given task identifier. In case of task selection, some

pointers (for example, PCB pointer) are already known as a result of the first three
steps of task selection.

Dispatcher

51

In case of user task processing the service owner and the server are the same,
that is the partition's COMREG, the PCB, the PIB2 and the PIK (CRADDR,
PCBPTR, PIBPTR2 and PIK in low core) belong to the same patrtition. A system
task may have a service owner, then the service owner's COMREG, PIB2 and PIK,
but the server's PCB is used to set up the low core fields.

Once the control block connections have been established a task is active. An
address space switch may be initiated by loading control register one and 7
dependent on the addressability scope of the selected task (TIBSCB in TIB). Corre-
sponding control registers must be set in addition to support access register mode.
The task's linkage stack entry address will be loaded into control register 15. But
prior to returning to task processing it might be necessary to perform some super-
visor services for these tasks. This is done by step 6 of task selection.

Processing of Task Selection Exit Routines
Before a user task is activated the task selection routine tests whether control has
to be transferred to any task selection exit routine.

Bits 0 to 7 of the TIBFLAG byte are associated with specific routines. They are
scanned left to right and, if the bit is set to one, the corresponding routines are
entered. After entry to a routine the corresponding bit is reset to zero.

There are the following exit routines:

e SVRETURN (Bit 0: X'80' - CSVRET in TIBFLAG)
Return to an interrupted (reentrant or gated) supervisor service routine. When
partition balancing and/or job accounting support is active and and the new
accounting owner is not the old one the current accounting interval is deter-
mined and added to the old owners time counter field (system overhead or user
CPU time) and a new accounting interval is initialized. The routine identifier is
moved from the TCB into the RID field.

In case of a gated routine the resource (which is given by the RID) is freed and
any waiting tasks are posted. The general registers of the interrupted routine
are loaded from the task's system save area and control is returned to the
routine loading its program status word.

e REENTSVC (Bit 1: X'40' - RETRYSVC in TIBFLAG)
Reenters the SVC first level interrupt handler routine without issuing an SVC. It
is used for performance purposes. It allows a short path when the entry to an
SVC routine should be retried.

 DELMOVE (Bit 2: X'20' - TIBDELMV in TIBFLAG)
Enters the general delayed move routine. Bits 0 to 7 of the TIBDMFLG byte are
associated with the delayed move routines. The routine address is determined
via a left to right scan of TIBDMFLG.

One of the following routines will be activated:

— MOVECCB (Bit 0: X'80' - TIBCMVEX in TIBDMFLG)
This exit routine has two different functions:
1. Move a CCB which could not be copied back after completion of
channel program translation because the page containing the virtual
CCB was not in processor storage. Return to task selection entry.
2. Return to SVC 119 (X'77") processing after the FBA I/O operation has
been completed.
— XPCCEXIT (Bit 1: X'40' - TIBXPCEX in TIBDMFLG)

52 z/VSE 4.2 Supervisor Diagnosis Reference

If a XPCC request is executed, where the destination is not in the same
space than the originator, the control information to be stored into destina-
tion XPCCB (such as traffic bits, user data, etc.) will be saved into a
supervisor control block (CRCB) and transferred to the destination XPCCB,
if the associated path is dispatched.

— SVI103RET (Bit 2: X'20' - TIBSFLEX in TIBDMFLG)
If 1/O is made by the SVC 103 routine, the SV103RET flag will be set in
order to return to the SVC 103 routine after I/O processing.

— TINFMOPD (Bit 3: X'10' - TIBPERST in TIBDMFLG)
Modifies the PER active indication in the partition control block (PCB) and
the save area PSW of the specified partition.

— DISPEXRI (Bit 3: X'08' - TIBGENEX in TIBDMFLG)
Activates the general dispatcher exit.

— TERMSRES (Bit 3: X'04' - TIBTERMX in TIBDMFLG)
Resets the task owning the message writer routine to its original priority, if
the task is running as 'system resource owner'.

— DISPTSTP (Bit 3: X'04' - TIBSTOPR in TIBDMFLG)
Stops the current task (task waiting to be restarted), which was requested
by the TDSERV FUNC=TASKSTOP service.

e CNCLEXIT (Bit 3: X'10' - FETCHEOQOJ in TIBFLAG)
There is no save area available to be used by the resident part of the termi-
nator routines. This exit is used to activate the terminator and to return control
to it after an interruption.

e ICCFEXIT (Bit 4: X'08' - ROLLOUT in TIBFLAG)
It supports synchronization between an ICCF 'Pseudo Partition' task and the
ICCF High Priority Task.

e EXTRETRN (Bit 5: X'04' - CDELEX in TIBFLAG)
This activates the user timer exit routine or posts the timer ECB after a timer
interrupt for this task. Since timer interrupts are asynchronous to user task
processing, activation and posting is delayed in order to have the system save
area available. This is necessary because a page fault may occur when
accessing the save areas or the timer ECB.

e OCEXIT (Bit 6: X'02' - OCPEND in TIBFLAG)
Provides delayed activation of a user OC exit routine. This is necessary
because an MSG command is asynchronous to the corresponding maintask
processing and the save areas involved may be paged-out.

e APSEXIT (Bit 7: X'01' - APSEXFLG in TIBFLAG)
Gives control to the ACF/VTAM dispatcher appendage routines (APS SWAP or
ISTAPCKU routine). After returning from an appendage routine a test is made
whether any OC or timer interrupts are unprocessed yet. If so, the corre-
sponding TIBFLAG bit is set. In addition to this CNCLEXIT may be reactivated
when the APSEXIT was called during EOJ processing. After processing, the
APSEXIT routine returns to the entry of the task selection routine.

Initialize Task's Processing and Give Control to it

Before control is given to a task a test is made whether tasks program status word
(PSW) is in a disabled state. If so, an interrupt window is opened, allowing for any
pending interrupt to occur. The interrupt window is closed immediately. This inter-
rupt window prevents any task from running fully disabled (that means over a
boundary of supervisor services). When partition balancing and/or job accounting
support is active and the new accounting owner is not the old one the current

Dispatcher 53

accounting interval is determined and added to the old owners time counter field
(system overhead or user CPU time) and a new accounting interval is initialized.
For a maintask which is task timer owner the remaining time slice is set. At the
end of task selection the Routine Identifier (RID) field is set to the value USERTID.
This indicates that normal tasks processing is active. The task's floating point,
access registers and general registers are loaded and control is given to the task
loading its Program Status Word (PSW).

54 z/VSE 4.2 Supervisor Diagnosis Reference

VSE/AF Dispatcher - Internal Gating Mechanism

The internal gating mechanism controls the usage of internal resources.

Its function is to

e Post/unpost Tasks and Partitions
* Free/occupy Resources
¢ Maintain Wait Queues

Flags, fields, tables involved in internal resource handling are:

e Partition and Task Selection String (PSS, TSS)

» Task Status Flags (located in TIB, label TIBRQID in the supervisor - Figure 26
on page 59)

¢ Resource descriptors (located in SRQTAB and in PCBs) including a header for
building wait queues

e Wait Queues (chains of TIBs enqueued on a resource)

For the Turbo Dispatcher all ready-to-run partitions and tasks have to be on the

TSCP/TSCT ready to run queues. A more exact description of a task's status is
given by its task status byte (TIBRQID) and the corresponding resource descriptor.

Dispatcher 55

Addressing Resource Descriptors

TIBRQID
f
f < X'90' f >= X'90'
SRQTAB PCB
(8-byte 8xf (8-byte 8% (f-X'90"')+c
entries) entries)
v v
f= X'81' x'82! X'83' X'8F' X'90' X'91!
l v l l v
eee|SRQLTA |SRQWAIT |SRQREADY |eee|SRQEXNT SRQGTV | SRQCDL
<> |
L >3 L b
f = Value in TIBRQID byte (task status flag)
c = Displacement of first descriptor (SRQGTV) within PCB
a =8+« f (displacement to an entry in SRQTAB)
b =8 (f-X'90') + ¢ (displacement to an entry in PCB)

Figure 24. Addressing Resource Descriptors

56 z/VSE 4.2 Supervisor Diagnosis Reference

Resource Descriptors

For compatibility and performance reasons there are different gating concepts
implemented. The method which has to be used with a given resource is specified
via a resource descriptor entry, shown in Figure 25.

L T—Owner‘ ID (RQOWNER)
Resource byte (RBYTE)

Flag byte (RQFLAG)
Resource ID (RQID)
(= task status flag)
4 byte queue header (RQCHAIN)

Figure 25. Resource Descriptor Entry

Description of Entries

e ACCC: Queue header

In combination with specific resources the queue header is used for building
wait queues.

— A = X'80' (first byte of a queue pointer)
indicates end of a wait queue. In this case pointer ACCC points to the first
byte of the corresponding resource descriptor.

— A = X'00' (first byte of a queue pointer)
indicates a (or another) waiter is enqueued on a resource. In this case
pointer ACCC points to the first byte of the waiters TIB.

A = X'80" in a queue header indicates that there are no waiters enqueued on
the resource. A task is enqueued on a resource inserting its TIB to the front of
a wait queue.

Note: The symbolic names of gates, their types and displacements (flag
values) are shown in Figure 26 on page 59.

e |: Resource ID:
For identification purposes, byte 4 of each entry contains the corresponding
task status flag value. For example, in the entry SRQREADY, | = X'83".

e F: Flag byte (Resource Queue ID):
specifies the gating method to be used.

Dispatcher 57

58

Flag

Labels |Apprev.|Type Description

X'80

X'40

X'20

X'10

X'08

X'04

X'01

"[SYSTQ S system queue,

priority posting,

switchable gate

" PARTQ P partition queue,

priority posting,

switchable gate

"IWAITCHN| T TIB chain,

selective posting,
permanently closed gate

' TOCHN I 1/0 chain,

selective or direct posting,
permanently closed gate

"| PGATE C no queue,

direct posting,

permanently closed gate

' |PREADY 0 ready to run state,
permanently opened gate
"NORDY N do not ready task for cancel

e G:

Resource byte (Gate):

The most significant element of internal resource handling is a resource byte,
known as a gate. The content of the resource byte is used as a switch:

1.

e O:

G = X'00' : a resource is occupied (NOTFREE)
G = X'80' : a resource is free (FREE)

Switchable gates: (P or S)

The content of a switchable gate may be changed. It may represent a
single item resource (routine, system task, etc.) or multiple items of a
resource (channel queue, copy buffers, etc.). Services are provided to
close/open the gate, dequeue/enqueue waiters.

. Permanently opened gates: (O)

They are used in combination with the ready to run status of tasks. When-
ever a task is ready to run its TSS bit is turned on and its status flag points
to a permanently opened gate.

. Permanently closed gates: (C, | or T)

They are used in combination with the not ready to run status of tasks
when switchable gates cannot be used. They are assigned to fixed
owners. Tasks pointing to permanent gates are posted/unposted individ-
ually by the resource owners upon completion of a service (I/O, program
fetch, etc.).

Owner ID:

ID of resource owner (Task ID).

z/VSE 4.2 Supervisor Diagnosis Reference

Task Status Flags

Type | Value | Name Usage
S 47 XMSBND Gate for cross memory services
S 48 DOCABND Gate for router automatic storage
S 49 DOCBBND Gate for router buffer space
S 4A G122BND Gate for SYSDEF SVC
S 4B PMSBND Gate for SPMRSERV services
S 4C PXBHIBND | Gate for TFREE in PFIX 31-bit area
S 4D PXBLOBND | Gate for TFREE in PFIX 24-bit area
S 4E DYNCBND Gate for dyn. class services
I 4F SPDTBND Gate for SPDT task
S 50 DSPBND Gate for data space support
S 51 TDWBND Gate for TD
S 52 Reserved
S 53 Reserved
S 54 SV3BND Gate for SVC 3 to wait on SYSIO
W 55 PSPFBND Gate for Pseudo page fault processing
S 56 SPFIXBND | Gate for PFIX in SVA processing
W 57 PWSRVBND | Gate for usage of POWER service
S 58 GQMGBND Gate for usage of LOG queue manager
S 59 UNUSBND Gate reserved for future use
S 5A NPGRBND Gate for usage of LUB allocation services
S 5B VIOBND Gate for virtual I/0 support
0 5C CONDRDY Flag for conditional ready state
S 5D IUCVBND Gate for IUCV support for VCNA
S 5E G108BND Gate for usage of SVC-6C
S 5F SATBND Gate for usage of stored assign.table
S 60 Reserved
S 61 Reserved
S 62 ERQBND Gate for error queue entry
S 63 G133BND Gate for XPCC processing
S 64 reserved
S 65 reserved
S 66 EOTBND Gate for EOT routine
Type: 0 = permanently opened gate
C = permanently closed gate
I = 1/0 chain with permanently closed gate
W = wait chain with permanently closed gate
P = partition chain with switchable gate,
P gates Tocated in Partition Control Block (PCB)
S = system chain with switchable gate

Figure 26 (Part

1 of 3). Task Status Flags and Resource Gates

Dispatcher

59

60

Type | Value | Name Usage
S 67 DOCQBND Gate for router queue access
C 68 LCKBND Gate for LOCK file I/0
C 69 PGFXBND Gate for page to be freed
S 6A GSMBND Gate for ALLOCATE processing
S 6B THTABBND | Gate for track hold table
C 6C SFILBND Gate for SYSFIL I/0
S 6D SGTVSBND | Gate for GETVIS SVA
S 6E LQBND Gate for security logger queue
S 6F reserved
o 70 MICRBND Gate for MICR I/0
S 71 GETRBND Gate for GETREAL processing
S 72 FDIRBND Gate for program fetch directory
S 73 SEIZEBND | Gate for SEIZE to be freed
S 74 CILBND Gate for CIL update
S 75 BUFBND Gate for copy blocks
C 76 ICCFBND Gate for ICCF high priority task
S 77 PFRBND Gate for page frames
S 78 PFGBND Gate for page frames (occupied by TFIX)
S 79 CHQBND Gate for channel queue entry
S 7A DIBBND Gate for DIB access
S 7B CCWBND Gate for CCW translation
W 7C TRKBND Gate for track to be freed
W 7D AVRBND Gate for AVR processing
S 7E G41BND Gate for ENQ/DEQ processing
S 7F G92BND Gate for XECB processing
C 80 NOTACT Flag for inactive tasks
C 80 SYSBND Flag for inactive system tasks
S 81 LTABND Gate for LTA use
I 82 WAITBND Gate for ECB/XECB (I/0 or TIMER or POST)
0 83 READY Flag for ready to run state
S 84 IDRABND Gate for program fetch IDRA (old gate)
S 84 FPGMBND Gate for program fetch IDRA (new gate)
C 85 FETCHBND | Gate for program fetch processing
W 86 PGIOBND Gate for page I/0
C 87 PMRBND Gate for page fault processing
I 88 ENQBND Gate for RCB to be freed
S 89 TERMBND Gate for terminator processing
C 8A PGINBND Gate for page—in
Type: 0 = permanently opened gate
C = permanently closed gate
I = 1/0 chain with permanently closed gate
W = wait chain with permanently closed gate
P = partition chain with switchable gate,
P gates Tocated in Partition Control Block (PCB)
S = system chain with switchable gate

Figure 26 (Part 2 of 3). Task Status Flags and Resource Gates

z/VSE 4.2 Supervisor Diagnosis Reference

Type | Value | Name Usage

8B USEBND Gate for LOCK/UNLOCK processing
8C CNCLBND Gate for subtask to be cancelled
8D SSIDBND Gate for subsystem id processing
8E RURBND Gate for LOCK to be freed

8F EXNTBND Gate for EXTENT processing
GTVBND Gate for partition GETVIS

91 CDLBND Gate for CDLOAD

92 PFXBND Gate for PFIX

93 IVMTSBND | Gate for IMR data collection

94 DYSGVBND | Gate for dyn. space GETVIS

95 PTERMBND | Gate for dump handling

WU U U U UOWL=ZuUnVOwm
(Ye)
(<)

permanently opened gate

permanently closed gate

I/0 chain with permanently closed gate

wait chain with permanently closed gate
partition chain with switchable gate,

P gates Tocated in Partition Control Block (PCB)
= system chain with switchable gate

Type:

oT=—= OO0
nm mw uw non

wn
|

Figure 26 (Part 3 of 3). Task Status Flags and Resource Gates

Dispatcher 61

Gating Methods

62

The different gating methods are described in the following, also the range of appli-
cation of the different kinds of gates and the function of the
POST/RPOST/UNPOST routines in connection with the gate types.

POST/RPOST/UNPOST routines are designed to be called in AMODE 31.

Setting a Task Ready-to-Run

Tasks selection bit in TSS is turned on.

When a task of a dynamic partition is to be posted, the partition selection bit of the
dynamic class (CPCPSS in CPCB) is turned on.

Partitions selection bit in PSS is turned on.

Tasks status flag (TIBRQID) is setup to point to a permanently opened gate (either
READY or CONDRDY).

Setting a Task Not Ready-to-Run
Tasks selection bit in TSS is turned off.
TSS is tested, when it is a zero string:

e When a task of a dynamic patrtition is to be unposted, the partition selection bit
of the dynamic class (CPCPSS in CPCB) is turned off.
» Partitions selection bit in PSS is turned off too.

Tasks status flag (TIBRQID) is setup to point to a closed gate.

UNPOST Routine
Note: The UNPOST routine is always called by a task setting itself to wait.

The parameter to the UNPOST routine is a pointer to the corresponding resource
descriptor. In some cases an ECB (or any other) address is in the caller's register
R1 which will be passed from the UNPOST to the RPOST routine. For this purpose
the last three bytes of R1 are stored to the three bytes at label TIBSTATE+1
(located in the TIB).

RPOST Routine

The RPOST routine is called in order to post one or more tasks enqueued on a
resource. Parameter to the RPOST routine is a pointer to the corresponding
resource descriptor. In some cases an ECB (or any other) address is in the caller's
register R1 which will be used to identify a wait condition: the last three bytes of R1
are compared with the content of the three bytes at TIBSTATE+1.

POST Routine

POST routine is called to post a special task, which must be waiting for a perma-
nently closed resource with no central wait queue support. It provides a fast post
service for example, for 1/O bound tasks. The parameter is a TIB pointer instead of
a pointer to a resource descriptor. Note that calls to POST and RPOST are not
interchangeable. It is necessary to call the right one in order to get a correct result.

Processing of Conditionally Ready State (CONDRDY)

In combination with resource types PS (Partition wait queue with Switchable gate)
and SS (System wait queue with Switchable gate) tasks are posted one at a time.
When there are any other tasks enqueued on the resource the posted one
becomes the CONDRDY state, which means that it has been posted in order to
take a resource. In order to allow later identification the old resource pointer is

z/VSE 4.2 Supervisor Diagnosis Reference

saved to tasks TIB. In some situations the task is not able to take the reserved
resource and tries to enter any new wait state. When the UNPOST routine detects
a task which is conditionally ready and the corresponding resource is not occupied
yet it sets up an implicit call to RPOST using the saved resource pointer. Such a
way the next waiter from the reserved queue is posted, allowing current task to
enter the new wait state.

Description of Routines
1. Using a Permanently Closed Gate with no Wait Queue Implemented

(Type P).

This method is used when the waiting routines are known to the posting routine
and can, therefore, be posted directly.

UNPOST routine:

When the task has a reserved resource RPOST is called. After this tasks status
byte is set up to point to the given gate and the task is set not ready to run.

POST routine:
Tasks status byte is changed to READY (X'83’) and the task is set ready to run.

Note: A call to RPOST would not be correct, since there is no possibility
implemented to find a waiting routine using the resource descriptor.

2. Processing of a Partition Wait Queue with Switchable Gate
(Type PS).

This mechanism is used in combination with the partition internal gates (located
in the PCBs). It is assumed that the waiting and the posting tasks belong to
the same patrtition.

UNPOST routine:

When the task has a reserved resource RPOST is called. After this the gate is
closed (if not closed already) and tasks status byte is setup to point to the
closed gate. Tasks TIB is inserted to the front of the wait queue. The task is
set not ready to run.

RPOST routine:

The gate is opened by the posting routine. The queue is scanned and the
oldest waiter (when any) is dequeued. Status byte of the task is set to
CONDRDY (respectively READY when it was the only task enqueued on the
resource). The dequeued task is set ready to run.

3. Using a Common Wait Queue and a Permanently Closed Gate
(Type CP).

This mechanism is an extension to 1. A wait queue is maintained which
gueues the TIBs of the waiting routines together. In addition the contents of
the waiting routine's and the posting routine's register 1 is used for wait identifi-
cation.

UNPOST routine:

When the task has a reserved resource RPOST is called. After this tasks status
byte is setup to point to the given gate. The waiting routine's register 1 is
stored to the TIBSTATE field. The task’s TIB is inserted at the beginning of the
corresponding wait queue. (The header of the wait queue can be addressed
via the resource descriptor entry.) The task is set not ready to run.

RPOST routine:
A scan of the wait queue is performed. All tasks whose TIBSTATE match the
passed contents of the posting routine's register 1 are removed from the queue.

Dispatcher 63

64

Status bytes of the tasks are changed to READY. The tasks are set ready to
run.

. Using a System Wait Queue and a Switchable Gate (Type SS).

This is an extension to 2. By maintaining a common wait queue, tasks of mul-
tiple partitions can be handled.

UNPOST routine:

When the task has a reserved resource RPOST is called. After this the gate is
closed (if not closed already) and the task's status byte is set up to point to the
given gate. The task's TIB is inserted at the beginning of the corresponding
wait queue. The task is set not ready to run.

RPOST routine:

The gate is opened by the posting routine. The queue is scanned and the
partition priorities of all tasks compared. The oldest waiter (when any) from the
highest priority partition is dequeued. Status byte of the task is set to
CONDRDY (respectively READY when it was the only task enqueued on the
resource). The dequeued task is set ready to run.

z/VSE 4.2 Supervisor Diagnosis Reference

5. Gating Via a Permanently Closed Gate With the Additional Possibility to Scan
for Waiting Routine (Type FP).

This is an extension to 1. It allows fast direct posting as well as a scan for
tasks waiting for a specific ECB. It is implemented for two resources: RBWAIT
and RBENQ.

UNPOST routine:

When the task has a reserved resource RPOST is called. After this task's
status byte is set up to point to the given gate. The last three bytes of the
caller's register 1 (ECB pointer) are saved into the TIBSTATE field. The task is
set not ready to run.

POST routine:

Direct posting is supported in order to allow fast posting for example, from 1/O
bound state. The task's status byte is set to 'ready' with no regard to the con-
tents of TIBSTATE. The dequeued task is set ready to run.

RPOST routine:

The task identifier string of the presently active partition (label TIDSTR, located
in the PCB) is scanned for a task with the requested status flag. Each task
with the given status flag is posted if

» the contents of the posting routine's register 1 is zero or

* the contents of the waiting routine's TIBSTATE is zero or

e the posting routine's register 1 is equal to the contents of the waiting rou-
tine's TIBSTATE field.

Dispatcher 65

VSE/AF Dispatcher - Time Slicing (Partition Balancing)

66

The priority of the partition/dynamic classes can be changed by the z/VSE Job
Control or AR PRTY command. The command is extended to specify dynamic
classes also, for example,

PRTY F9,F6,N,P,S=F2,F3,F1

where N, P, S are dynamic classes and S is balanced with F2. It is not necessary
anymore to specify all partitions/dynamic classes in the PRTY command.
Partitions/dynamic classes not specified receive a system defined lower priority.
The PRTY command allows to specify one balanced group (via separator '=").

The partition balancing routine as known in VSE/SP is extended to support bal-
anced partitions within dynamic classes in addition to the balanced group that may
be given by the PRTY command.

When a dynamic class contains more than one allocated dynamic patrtition, the par-
titions within the dynamic class are balanced (time sliced). The time slice value can
be modified via the MSECS command.

The following paragraphs describe the balancing algorithm.

Definition

balanced group A balanced group is a number of partitions and/or dynamic
classes with a given time slice (entered by the MSECS
command). After the time slice is exhausted a partition may
be moved to the lowest priority in that group (described
later). The members of the balanced group (only one group
in the system) are determined by

1. the PRTY command, for example,
PRTY ...,BG,F1=S=F3,F4,F5,...
In the example F1, S and F3 are members of the bal-
anced group.

CPUTX CPU time used by partition/dynamic class x

HTIME high time value for job accounting (8 hours)

MSECS user-specified limit for changing priorities (entered by the
MSECS command)

MAXMSECS 10*MSECS, max. possible CPU timer value

PBALTIME partition balancing time

RUNTIME partition time counter (reset during update of job accounting
counters)

SUMCPUT CPU time used by a balanced group

TSLICE time set into CPU timer

z/VSE 4.2 Supervisor Diagnosis Reference

GETPRTY / SETPRTY (SVC 57)

The PRTY command process calls the GETPRTY and SETPRTY services. The
priority processing routines (GETPRTY and SETPRTY) are extended to support
dynamic classes, too.

The external interface of the SETPRTY routine is not changed. Only the internal
processing is adapted.

The GETPRTY macro is extended to get the total priority string (static partitions
and dynamic classes) in addition to the string of static partition priorities.

SETPRTY - Internal Processing

1. No balanced Group Specified
The TSCP queues are rearranged dependent on the given priority list
(PRTYLIST). Balancing indications of a former PRTY command are reset and a
basic time slice value is set, when no more balanced groups are active.

2. One Balanced Group Specified

a. The following is done for all members of the group:
¢ the partition/dynamic class is marked as balanced (BALANCED set in
PCBFLAG)
e accounting on partition/dynamic class base, not on system base (parti-
tion PCB pointer moved to PCBJAPTR) is indicated
e reset partition/dynamic class time counter (RUNTIME in PCB),
¢ reset partition/dynamic class balancing time (PBALTIME in PCB),

b. rearrange selection strings,

. save lowest balanced partition/dynamic class (ALBALPCB)

d. when the priority of a partition/dynamic class has changed, set PCEPRTYC
in PCEFLAG. This interface is used for communication with the
VSE/POWER partition. VSE/POWER resets the flag.

e. when no balanced group was active up to now,

e set CPU timer with time slice specified via MSECS command
e set time slicing active (PBALACT in SUPVFLAG)

Note: The first part of the CPCB (dynamic class PCB) is an overlay of the PCB,
therefore only PCB fields are shown to describe the balancing algorithm.

(9]

Dispatcher 67

68

SETPRTY — SVC 57
no
called by JCL or R ———» illegal SVC

l yes
no

user area valid ? |————| invalid address

l yes

update job accounting counters

;

—| Do for all TSCPs / TSCCs

.

move priority list entry to PRTYLIST

!

partition balancing required ?

all CBs processed

A

l yes

— set BALANCED indication in PCBFLAG
— set initial part.balancing time
PBALTIME=RUNTIME

TD selection queues
— account time
if partition balancing active,
— set time slice
— PBALACT in SUPVFLAG

!

return to dispatcher

Figure 27. SETPRTY Overview

GETPRTY
See also the GETPRTY macro description.

Partition Balancing

The dispatcher (DSP) system task sets up clock comparator time intervals to
inspect the partitions of the balancing group. The time interval can be modified via
the AR and JCL MSECS command.

The partition balancing routine inspects the CPU time for each partition of the bal-
ancing group and decides how to rearrange the priority of the partitions.

If partition balancing is specified for static and dynamic classes (via equal signs in
the PRTY command), static and dynamic partitions will receive the same time slice.

z/VSE 4.2 Supervisor Diagnosis Reference

In the past the dynamic class (with all its partitions) got the same time slice as a
static partition. When the priorities are to be rearranged, the whole TSCP
ready-to-run queue will be locked, that is no other CPU can select elements from
the TSCP ready-to-run queue.

Interrupt Processing and Dispatching

The accounting interval is marked via the ARUNTIME pointer (PCB pointer of the
balanced partition), that is accounting will be done only, if accounting interval is
switched. That may occur before dispatching of a task or for example, after an
external, I/O interrupt, etc. If time accounting has to be done, the used CPU time
of a balanced partition is determined and added to the partition time counter
(RUNTIME in PCB). For dynamic partitions the dynamic class CPU time is also
updated (CPCBRUNT in CPCB).

Time Slice Exhausted (Priority Change Processing)
When the time slice is exhausted, the CPU timer will present an external inter-
rupt. The external interrupt handler calls the CPU timer interrupt routine
(EXTCPUT).

e Turbo Dispatcher

When the time slice is exhausted, the clock comparator will present an external
interrupt. The external interrupt handler posts the dispatcher (DSP) system
task.

Partition Balancing Not Active

When partition balancing is not active (PBALACT not set), the DSP system task
checks if any service is requested, sets up the basic time slice (MAXMSECS) and
waits for expiration of the clock comparator.

Partition Balancing Active
When partition balancing is active, the CHNGPRTY routine (for the Turbo Dis-
patcher located in the TD module $IJBDSPT) continues as follows:

1. When total time used for balancing (TOTTIME) is exhausted,
TOTTIME >= HTIME

reset TOTTIME and indicate job accounting update necessary,
2. First process the balanced group specified by PRTY command:
When it is necessary to rearrange the priorities,
a. update TSCP queues,
b. set new basic balancing value (PBALTIME),
c. update priority figures.
3. Do for all dynamic classes, where balancing is active:
When it is necessary to rearrange the priorities,
a. update TSCP queues,
b. set new basic balancing value (PBALTIME),
c. update priority figures.
4. Account used time and set new time slice,
5. Call UPDJA routine, if job accounting update is necessary.

How to Determine the Partition/Dynamic Class to Be Rearranged

1. Look for the highest priority partition/dynamic class within group
(=partition/dynamic class to be removed), such that

Dispatcher 69

CPUTX >= SUMCPUT
where CPUX=used time of partition/dynamic class=RUNTIME-PBALTIME

2. Do not rearrange partition priorities, when
MSECS > SUMCPUT

3. Rearrange partition priorities, when
MSECS <= SUMCPUT

70 z/VSE 4.2 Supervisor Diagnosis Reference

How to Determine a New Time Slice

TSLICE (new)=
minimum(MAXMSECS, TSLICE (new) ,MSECS+TSLICE(o1d)-SUMCPUT)
where MAXMSECS=10*MSECS

Example
members of balanced group: F1,F2,S,F4,F5

Priority command: PRTY ...,F1=F2=S=F4=F5,...

CPU intensive dynamic class to be removed: S

priority before move: (Tow — high)

F1 | F2 | S F4 | F5

priority before move: (Tow — high)

S F1 | F2 | F4 | F5

Dispatcher

71

72

no

Turbo Dispatcher —»| Post DSP system task

Clock Comp.interrupt

'

Dispatcher

DSP system task

!

Partition balancing active ?
SUPVFLAG = PBALACT

no

Balancing of Basic Group active?
CHNGFLAG = CHNGBASE

CHNGPRTY: necessary to rearrange
priorities of basic group ?

PCB.PBALTIME, if necessary
Update TSCP queues

-

l yes

no
l yes

no
l yes

no

Balancing of Dynamic Partitions
active ? CHNGFLAG = CHNGCLSS

l yes

Do for all Dynamic Classes

!

A

CHNGPRTY: necessary to rearrange
priorities of basic group ?

l yes

PCB.PBALTIME, if necessary
TD: Update TSCP queues

set new time slice
update accounting pointers,
if necessary

\ 4

A

}

DSP system task waits for
time slice expiration

Figure 28. Partition Balancing Routine Overview

z/VSE 4.2 Supervisor Diagnosis Reference

z/VSE Dispatcher - Task Termination

DISP

CNCLEXIT

Cancel Exit —»| 5

e If dynamic partition initialization in
process, initialize partition

e When reentered after processing of first > 2
part, goto process second part
e If cancel of terminator or EOT, free it >| 4

e If VTAM process active, request VTAM —t>
scheduling

e Reset PHO, PAGEIN, ASYNOC entries, etc. DISP

e If task is seizing system, CRT or HC file
owner, post any waiter

e If system dump to be called —t>
(not EOJ/DETACH or skip msg.)

SETEQJSW l

e Propagate cancel for "
- maintask termination,
- cancel all request, or
- cancel of a subtask running in 0S/390
emulation mode.

e Indicate to cancel exit part 1 has been
processed

2

Figure 29 (Part 1 of 3). Supervisor General Exit, Cancel Exit

Dispatcher 73

74

2

CONTTERM l

e If LTA is occupied, quiesce LTA I/0s

then free LTA

e If maintask with subtasks, or subtask

running in 0S/390 emulation mode with
subtasks, wait for subtask's termination

e Unless it is self—termination, activate

task's ABEND routine (if any)

e Unless it is self-termination, post

abnormal termination bit in tasks
attachment ECB (if any)

e Reset flags, resources, exit routine

entries, etc.

ENDTERM

DISP

* Process EQOJ transients, if necessary

EOT routines

¢ Process SVA resident EOT routines,

if necessary

—

INITEOT

EOT Initialization Routine

e If the SVA resident EOT routine is

occupied, setup task to wait for

e Setup EOT save area,

activate EOT routine

»

svcoz

DISP

1]

z/VSE 4.2 Supervisor Diagnosis Reference

Figure 29 (Part 2 of 3). Supervisor General Exit, Cancel Exit

DISP

(o1d interface)

(new interface)

EOTRTRN

EOT Terminator Routine

e Reset vendor interfaces for this task

e Reset access register related information
(e.g. control registers, delete data
spaces and data space tables)

e Free EOT routine

e If entry was made from detach (SVC39),

return to this routine

e If dynamic partition preparation to be
processed, prepare dynamic partition

e If VSE/POWER is in termination,
free dynamic class table and update
related information.

e Continue with job control

DISP

Figure 29 (Part 3 of 3). Supervisor General Exit, Cancel Exit

Return to
caller

Dispatcher

75

76

Entry point
if an error
has been

detected or
EOJ (SvC 14)

ERRxx

Cancel Routine

e Calculate the cancel code

e If I/0 related cancel code

ERRGO

Activate any Termination Routine

e |oad TIB pointer
e Store cancel code

e If any system task active,
load TCB pointer and
activate error exit routine

e Set cancel in progress

The next time the program to
be canceled is selected, the
terminator (CNCLEXIT) will be
entered to initialize program
cancelation

e Pointers are set to the
Channel Queue Entry,
PUB and CCB, and exit
is taken via routines
in the 1/0 Interrupt
Handler which dequeues
the channel queue entry
and attempt to reschedule
the channel.

e If system task request —

e If program error or
user does not accept

I/0 errors

Figure 30. Cancel Routine

z/VSE 4.2 Supervisor Diagnosis Reference

post/dequeue
after cancel

PSTPUB

z/VSE Dispatcher - System Dump Interfaces

Overview

The System Dump routine (phase $IJBSDMP) consists of two parts

1. the message writer for abnormal termination messages and
2. the storage dump routine.

The System Dump routine will be called

* to process a dump service; the dump services use either SVC 2 (DUMP,
JDUMP, PDUMP macros) or SVC 123 (SDUMP, SDUMPX macros) to request
a call of the System Dump routine,

e during abnormal task termination.

This paragraph describes the supervisor interfaces implemented for System Dump
routine initialization and termination.

Since VSE/ESA 1.3.0 the System Dump routine can execute in parallel. Only tasks
within the same partition will be gated, that is tasks have to wait, if another task of
the same partition occupies the System Dump routine. Only in very rare cases,
when no GETVIS space is available the System Dump routine is gated system
wide.

The following interfaces are used:

* a resource descriptor (gate) in Partition Control Block (PCB)

e a supervisor / System Dump routine communication area (SAACOMM) per par-
tition, which will be allocated during the partition allocation process, and deallo-
cated during partition deallocation. The mapping macro MAPSAACM describes
the layout of SAACOMM.

e a pointer in PCB (PCBSAAPT), that holds the address of the SAACOMM.

e one master SAACOMM as part of $IIBSDMP, that is used when the GETVIS
space is exhausted

e the System Dump routine will return to the supervisor via SVC 14 (and no
longer via SVC 11)

The System Dump routine ($1IIBSDMP) will be loaded during IPL. The supervisor
gets the address of $IIBSDMP from the supervisor subdirectory (SVASVDL).

Note: The Partition Debug Facility will also use the system dump initialization and
termination routines.

Dispatcher 77

Flow of Control (Normal and Abnormal Termination)

Cancel Routine in DISP

ERRxx Tabels

determine cancel code

indicate termination to be started
return to dispatcher

cancel —
requestor

CNCLEXIT

Dispatch Cancel Exit (Terminator) Routine

'

Cancel Exit Routine Part 1

!

EARLY AB exit set

lno

Dump/message yes Call
required —— | System Dump

yes

v Routine
no
Call AB Exit

for maintasks or subtasks «—
running in 0S/390 emulation mode:
propagate cancel of its subtasks

!

AB exit set

yes

no
CONTTERM

Cancel Exit Routine Part 2

ENDTERM l

Process EOT Transients and SVA Routines
(Subsystem clean—up routines)

!

SVA Resident End—of-Task Routine

Figure 31. Flow of Control for Normal and Abnormal Termination

78 z/VSE 4.2 Supervisor Diagnosis Reference

Flow of Control (System Dump Routine Initialization / Termination)

Part. Debug| or | Abnormal or |IDUMP/PDUMP| or [SDUMP/SDUMPX
Facility Terminat. SVC 2 SvC 123
—> System Dump Initialization Routine 4—————————J

e If SVA System Dump routine occupied

by a task of the same partition > WAIT
e Protect dump against concurrent access

of tasks from the same partition
e Access SAACOMM area
e Setup parameters, save areas and

activate System Dump routine

System
»| Dispatcher » Dump routine

In case of abnormal termination

TERMCNCL l (synchronous cancel)

System Dump Abnormal Term. Routine

* Quiesce dump routines I/0
e Indicate dump to terminate
e Activate System Dump routine again

TERMRETB l

System Dump Normal Term. Routine

e Clear superv./dump communication flags
Restore task's interrupt information
(for AB exit routine) and save area ptr.

End of dump routine

Free SAACOMM area and post any waiter —p—— | POST

v
SVC 14

A

If not PDUMP / SDUMP

If abnormal termination of P/SDUMP
Continue task's processing

Continue l
termination
processing Dispatcher

Figure 32. Dump Routine Initialization and Termination

v

Initiate
cancel
processing

Dispatcher

79

System Dump Phase Structure
A System Dump SAACOMM area is located at offset 0 of $IIBSDMP. This com-
munication area is called master SAACOMM, indicated in SAAMCB of SAAFLAG2.
The address of the first instruction of $IJBSDMP is located at SAADSTRT. The
master SAACOMM will be used,

e if a GETVIS request fails.
Then the System Dump routine is gated system wide (SRQTERM).

$IJBSDMP phase
ATERM of SVASVDL >

SAACOMM
SAADSTRT

first instruction —»

Figure 33. System Dump Phase Structure

Activation of the System Dump Routine
The System Dump initialization routine will be activated

1. during abnormal termination, if message output (for example, cancel messages)
or dump output is wanted.

2. by a DUMP, JDUMP or PDUMP request via SVC 2. This will be indicated in
the flag byte SAAFLAG,

3. by a SDUMP or SDUMPX request via SVC 123. This will be indicated in the
flag byte SAAFLAG.

4. by a the Partition Debug Facility (e.g. for initialization of the facility or when
active after a PER interrupt). This will be indicated in the flag byte SAATFLAG.
The Partition Debug Facility will be processed like a PDUMP request, the
process will not be contained in the following paragraph.

System Dump Initialization Routine
This paragraph describes the steps necessary before activation of the System
Dump Routine.

1. identify the initialization routine as reentrable routine (RID = REENTRID)

2. protect the System Dump routine against concurrent access of tasks belonging
to the same partition, that is the System Dump routine has to be gated on parti-

80 z/VSE 4.2 Supervisor Diagnosis Reference

tion base. Therefore it was necessary to introduce a new partition gate
(PCBRBTRM) within resource SRQPTERM.

 If this gate is free,
— the task has to set the gate to "notfree" and can proceed.
e |f the gate is not free,
— the task has to wait until it is posted by “System Dump Normal Termi-
nation Routine” on page 83. For PDUMP, SDUMP and SDUMPX
requests RESVCX has to be called, for abend dumps UNPOST.

Access the Supervisor/System Dump Communication Area (SAACOMM): The
pointer to this area (PCBSAAPT) can be obtained from the PCB. The SAACOMM
will be allocated in pageable system GETVIS area (24 bit) during partition allo-
cation.

SAACOMM Update

1. Indicate the task as terminator owner (TERMACT in TIBFLAG1) and make the
SAACOMM addressable.

The SAACOMM area is pageable, therefore page faults may occur.

2. Update SAACOMM
The fields are not cleared. Which fields are valid in SAACOMM, can be
obtained by the flag bytes SAAFLAG and SAAFLAGI.

The following fields may be updated:

e Set in use indication (SAAIUSE in SAAFLAGL1) and initialize SAANAME.
e |f LTA active for this task (LTAACT+LTAOWNER in TIBFLAGL1),
— store the LTA save area pointer (TCBSAVE) to SAALTAPT,
— store the problem program save area (PIBSAV2 of ARPIB) to
SAAPPSPT,
— set SAALTA and SAAPPA in SAAFLAG,
e If not (LTAACT+LTAOWNER in TIBFLAG1),
— move TCBSAVE (actual problem program save area) to SAAPPSPT,
— set SAAPPA in SAAFLAG,
* Move first cancel code (TIBCNCL) to SAACCL1,
¢ Move second cancel code (TIBCNCL2) to SAACCLZ2,
e Move interrupt information (INTINFO of TCB) to SAAINTC,
 If abend dump, move additional message information to SAADMSGI (if
available) and set corresponding flag (SAAMSGI in SAAFLAG1)
e |If PDUMP, SDUMP or SDUMPX,
— set SAAPDUMP for PDUMP in SAAFLAG,
— set SAASDUMP for SDUMP and SDUMPX in SAAFLAG,
* Move access registers to SAAARSAYV and set corresponding flag SAAARA
in SAAFLAG1, if available.

Note: SAAARSAV will be restored after return from System Dump routine.
3. TCBSAVE:=pointer to SAARSAVE, make the System Dump save area (at
SAARSAVE) to current save area.
4. If abnormal termination is caused by supervisor,

* move supervisor special save area to SAASSAVE,and
* set SAAPCA in SAAFLAG,

Dispatcher 81

5. Set System Dump cancel ECB (part of TIBFLAG4) address to SAACNECB.
The System Dump may wait for this ECB during dump process and will be
posted, if for example, the operator cancels the partition.

6. continue with “Make System Dump Dispatchable.”

Make System Dump Dispatchable

1. Move a new PSW to the System Dump save area. The new PSW contains the
start address of the System Dump routine (SAADSTRT).

2. Move SAACOMM pointer to dump routines register 0.
3. Move TERMSERYV pointer to dump routines register 1.
4. If message to be printed only (PRTMSG in TCBABFL1),
e set SAANODMP in SAAFLAG1
5. If PERACT in PCBFLAG,
e Enable program event recording,

6. Dispatch System Dump

Return from (Termination of) System Dump Routine

This chapter describes the return from / termination of the System Dump Routine.
Three cases may occur:

1. Return from System Dump routine because of GETVIS error (via SVC 14 -
EQJ).

2. Abnormal termination (System Dump routine cancelled).

3. Normal termination (via SVC 14 - EQJ).

Return from System Dump Routine (GETVIS Error)
When the System Dump routine detects a GETVIS error,

1. it sets flag SAANGETV in SAAFLAG1 to indicate GETVIS error,

2. returns to the supervisor via SVC 14,

Now the supervisor processes the following steps:
1. Use system gating and master SAACOMM
. Partition's SAACOMM address is saved in field TERMSCSA,
. Set SAASYS in partition's SAACOMM,
. PCBSAAPT and PCBMSAAE is set,
. Set task's dispatching priority to highest user task priority,
. Move partition's SAACOMM to master SAACOMM,

N o g b~ WN

. Continue with “Make System Dump Dispatchable.”

82 z/VSE 4.2 Supervisor Diagnosis Reference

System Dump Abnormal Termination Routine
The System Dump abnormal termination routine is called, whenever the System
Dump cancels, the processing continues with the following steps:

1. Quiesce LTA's I/0 (SVCO3LTA) of System Dump routine,
2. Set RID to REENTRID (allow page faults)
3. If multiple cancel (SAACNCL already set),

¢ indicate ' TERMINATOR ROUTINE CANCELLED' message has to be
written by end-of-task routine,
e continue with “System Dump Normal Termination Routine,”

4. Move cancel code (TIBCNCL2 for abend dump, TIBCNCL for PDUMP /
SDUMP/ SDUMPX) into SAACNCL3,

5. Set SAACNCL flag in SAAFLAG,

6. Move current status (PSW and registers to SAASSAVE) and set SAAPCA flag
in SAAFLAG,

7. If master SAACOMM used,
e set task's dispatching priority to highest user task priority,

8. Continue with “Make System Dump Dispatchable” on page 82.

System Dump Normal Termination Routine
This paragraph describes the steps necessary after normal termination of the
System Dump routine via SVC 14.

Note: The former return from System Dump routine via SVC 11 is replaced by
SVC 14 (EOJ macro).

1. Set RID to REENTRID (allow page faults)
2. Restore current save area pointer

e |f SAALTA in SAAFLAG,
— move SAALTAPT to TCBSAVE,
e Otherwise move SAAPPSPT to TCBSAVE,

3. If master SAACOMM allocated to partition (PCBMSAAE in PCBSAAPT)

e post any system gate waiters

* restore partitions SAACOMM address (TERMSCSA -> PCBSAAPT)
e clear TERMSCSA

e reset SAAFLAG and SAAFLAGI flags of current SAACOMM,

¢ reset high priority indication

. Post any partition gate waiters

. Reset dump routine active (TERMACT in TIBFLAG1)

. Restore interruption code (for AB exit routines) SAAINTC to INTINFO of TCB,
. Restore access registers from SAAARSAV,

. Check for VTAM application processing

. If system abend request (SAAABEND in SAAFLAG1),

e reset partition's SAAFLAG and SAAFLAGI flags
e continue with task's termination

10. For PDUMP/SDUMP/SDUMPX processing continues as follows:

© 0 N o o b

Dispatcher 83

e Reset partition's SAAFLAG and SAAFLAG1 flags
If PDUMP/SDUMP/SDUMPX cancelled (TIBCNCL not zero),

— set TIBDMPCN flag in TIBFLAG4 to avoid call of System Dump routine

TIBDMPCN will be reset during the termination process,
— initiate cancel processing
- set FETCHEQJ in TIBFLAG,

Check for delayed IT and OC (maintasks only) interrupts
e Return to dispatcher

Synchronous and Asynchronous Cancel

In the past no difference was made between synchronous and asynchronous
cancel.

First the difference between these two cancel situations:

synchronous all cancel conditions caused by the dump routine itself, for
example, program check.

asynchronous all cancel conditions caused by another task or partition, for
example, AR CANCEL logid .

Synchronous Cancel Conditions

All cancel conditions caused by the dump routine itself are so called synchronous
events. For more information see “System Dump Abnormal Termination Routine” on
page 83.

Note: In case of synchronous cancel the communication - supervisor to dump - is
done via the current SAACOMM area.

Asynchronous Cancel Conditions

All cancel conditions caused by other tasks or partitions are so called asynchronous
events. To avoid inconsistent states of the System Dump routine the cancel
process has to be delayed until the System Dump routine detects the request. The
cancel propagation routine (RDYCNCL) in the dispatcher will delay cancel requests
whenever the System Dump routine (TERMACT in TIBFLAGL1) is active. The fol-
lowing actions have to be taken:

1. Request dump to terminate,

¢ indicate cancel request pending (TIBDMPCN of TIBFLAG4),

e move requestors cancel code into TIBCNCLS, if abend dump is taken. This
causes the end-of-task routine to write the TERMINATOR ROUTINE CAN-
CELED' message, if System Dump is not able to write the corresponding
message. If the System Dump routine was called because of a PDUMP,
SDUMP or SDUMPX request, TIBCNCL is set.

e post the System Dump routine, TIBDMPCN is used as ECB traffic bit.

2. The System Dump routine checks from time to time the TIBDMPCN field via
the new terminator service TERMSERYV (see “System Dump Services
(TERMSERV)” on page 85). If a cancel condition is returned, the dump routine
terminates its processing (may be with a cancel message) with SVC 14 (normal
return to cancel exit).

Note: In case of asynchronous cancel the communication - supervisor to dump -
is done via the new TERMSERYV services.

84 z/VSE 4.2 Supervisor Diagnosis Reference

System Dump Services (TERMSERYV)

Currently two services are available
¢ check, if cancel of System Dump is requested
* reset task's dispatching priority to its original priority,

The address of the TERMSERYV entry point will be passed in register 1 during
System Dump activation. When TERMSERYV is to be called, a function code has to
be set in register 0.

Input Registers:
Register 0 function code

Register 15 TERMSERYV routine address = base address

Output Registers:

Register 15 may contain a return code
Work Registers:

Register 0 and 1

Function Code 0: Check if System Dump to be Canceled
When System Dump cancel is requested, TIBDMPCN in TIBFLAG4 will be set in
RDYCNCL routine. The TERMSERYV service checks this flag and if set,

¢ resets TIBDMPCN,

e sets SAACNCL in SAAFLAGL,

* moves the cancel code into SAACNCL3

¢ clears TIBCNCL3 to avoid the end-of-task message,
e set return code of 4 in register 15.

TERMSERYV returns with return code 0 otherwise.

Function Code 4: Set System Dump Owner to its Dispatching
Priority

The service schedules the dispatcher exit (TERMSRES). The exit sets the System
Dump Owner to its original dispatching priority.

Register Conventions for System Dump Activation
The System Dump initialization routine initializes the System Dump save area
(located in SAACOMM at label SAARSAVE), that is

e the PSW of System Dump start address (SAADSTRT)

e register conventions at activation:
Register 0 address of current SAACOMM
Register 1 address of terminator service routines
Registers 2 - 15 unpredictable.

Dispatcher 85

z/VSE Dispatcher - VSE/ICCF Support

86

Since VSE/ESA 1.3.0 VSE/ICCF runs in VSE/AF subtasks, that is CICS will occupy
the VSE/AF maintask, even if VSE/ICCF is active within the CICS patrtition.

This section describes how the VSE/AF supervisor supports VSE/ICCF running in
subtasks.

VSE/ICCF Pseudo Partition: Dispatching

The ICCF pseudo partitions have to be dispatched with the lowest priority within the
CICS partition, where VSE/ICCF is activated. The priority has to be lower than the
priority of the CICS maintask and all other subtasks. When VSE/ICCF identifies a
VSE/AF subtask as a pseudo partition (via MODFLD service), the VSE/ICCF
pseudo partition is removed from the TSCT ready-to-run chain and is enqueued to
a lower priority than the maintask (behind the maintask TSCT).

VSE/ICCF Pseudo Partition: ICCF Screening

VSE/ICCF allocates a 256 byte screening table in PFIXed system GETVIS storage
(RMODE 24). A byte of the screening table is called SVC screening byte. Each
byte corresponds to a SVC number. VSE/ICCF has to initialize the SVC screening
bytes and to establish addressability to the table before ICCF screening is acti-
vated. The address of the table has to be stored into a new field of the VSE/ICCF
vector table:

SYSCOM
X'80' — ’——-‘
/ /
DTSVECDS
IJBETSS — ’—’
/ /
/ /
| ‘ DTSCNTFA
/ /
| I

v VSE/ICCF Screening Table

//
/1

xx = ICSVCIGN, ICSVC or ICSVCERR
(see “Contents of VSE/ICCF Screening Byte:” on page 87)

Figure 34. VSE/ICCF Screening Table - Control Block Relationship

XX

z/VSE 4.2 Supervisor Diagnosis Reference

IJBETSS in SYSCOM holds address of the VSE/ICCF vector table

(DTSVECDS)
DTSVECDS mapping of VSE/ICCF vector table
DTSCNTFA address of VSE/ICCF screening table,

initialized by ICCF, removed during
VSE/ICCF shutdown.

Contents of VSE/ICCF Screening Byte:

ICSVCIGN (=0) VSE/ICCF interrupt handler will not handle the SVC,
ICSVC (=4) VSE/ICCF interrupt handler wants to handle the SVC,
ICSVCERR (=8) illegal SVC in the VSE/ICCF environment

The VSE/AF supervisor first level SVC interrupt handler will pass control to the
VSE/ICCEF first level interrupt only, if the SVC screening byte contains value ICSVC
(=4) and the VSE/ICCF task's screening flag (ICCFSVC in TCBFLAGS) is set.

Dispatcher 87

z/VSE Dispatcher - Partition Preparation and Cleanup

Before a VSE/POWER job is executed, partition preparation will be started within
the partition. When VSE/POWER job ends, partition cleanup will be called. The
following paragraphs describe the process for static and dynamic partitions.

Static Partition Preparation and Cleanup

Normal Processing

* Preparation (DYNCLASS ID=PREPARE) will execute at the beginning of a
VSE/POWER job, Cleanup will execute at the end of each VSE/POWER job for
which preparation was done.

e Preparation/cleanup (P/C) will not execute in the VSE/POWER partition instead
it will run in the VSE/POWER-controlled partition being prepared/cleaned up.
Prepare will be called by Job Control before processing of the first Job Control
statement. Job Control calls cleanup. P/C is considered to be part of the
user's job.

e VSE/POWER posts Job Control for preparation and cleanup. "Do prepare" and
"Do cleanup" will be indicated in the PCE control block. The "Do prepare" indi-
cation will be reset by the DYNCLASS ID=PREPARE service. The "Do
cleanup” indication must not be reset.

e Job Control sets up a new read request after cleanup.

Action to be taken Initiated| Function to
by be called
1) Job submission to VSE/POWER II
2) Request preparation VSE/POWER
3) Schedule the job in VSE/POWER
this partition

4) Initiate preparation Job Cont.| DYNCLASS ID=PREPARE
5) Process preparation superv.

6) VSE/POWER job is in execution

7) = $$ EOJ reached

8) Request partition cleanup VSE/POWER
9) Initiate cleanup Job Cont.| DYNCLASS ID=CLEANUP
10) Process cleanup superv.

11) Wait for next VSE/POWER job Job Cont.

Figure 35. Scenario: Static Partition Preparation and Cleanup

88 z/VSE 4.2 Supervisor Diagnosis Reference

VSE/POWER Supervisor Job Control

waiting for work

— feed first job

statement and

request static

partition preparation

set PCEDOPR » — do preparation
DYNCLASS

ID=PREPARE

— do preparation
— reset PCEDOPR — — process stmt.
— start job proc.

v
* $$ EOJ (on reader)
- ?et PCEDOCL

v
» — do clean—-up
clean—up processing «—— DYNCLASS

- post ECBs ID=CLEANUP
- VSE/POWER master ECB
- PCEPWECB
— SVC 0 on SYSRDR
— WAIT
"waiting for work"

Figure 36. Internals - Static Partition Preparation and Cleanup

Dynamic Partition Preparation and Cleanup

Before the first z/VSE Job Control statement will be processed, partition initializa-
tion is done, that is

* the profile (procedure) specified for the dynamic class (defined in dynamic class
table) will be executed by z/VSE Job Control,

¢ assignments to VSE/POWER spooled devices will be established (as defined
by profile).

The preparation is part of the partition initialization. At end of a VSE/POWER job
partition deactivation is done, that is VSE/AF Job Control calls:

1. The cleanup service, which undoes assignments, drops LIBDEFs, etc.
2. Unbatch process (including TSTOP).

Normal Processing
1. Preparation will execute at the beginning of a VSE/POWER job, cleanup will
execute at the end of each VSE/POWER job for which preparation was done.
2. Preparation/cleanup (P/C) will not execute in the VSE/POWER partition instead
it will run in the VSE/POWER-controlled partition being prepared/cleaned up.
Preparation will be called after start of the partition before Job Control is

Dispatcher 89

90

8.

9.

loaded. Job Control will call Cleanup. P/C is considered to be part of the
user's job.

. VSE/POWER posts Job Control for cleanup. "Do cleanup” will be indicated in

the PCE control block. The indication must not be reset.

. For dynamic partitions no ASI procedure will be executed, instead a profile

(procedure) has to run after preparation. The same mechanism as for ASI
processing will be used.

. For dynamic partitions the profile has to contain assignments for SYSIN,

SYSPCH and SYSLST. Initially SYSLST and SYSPCH are assigned IGN.

. When VSE/POWER receives control after the first SVC 0 to a VSE/POWER

spooled reader, VSE/POWER resets PCEINIT in PCEFLAG.

. From VSE/POWER's point of view, deactivation for dynamic partitions will

include the UNBATCH logic with respect to freeing resources held by the parti-
tion (for example, GETVIS, assigns, LIBDEFs, etc.).

After deactivation is complete the ECB in the PCE control block is posted to
inform VSE/POWER.

VSE/POWER deallocates (ALLOC) the dynamic partition.

Cancel Conditions

For the first read request (to get the first job statement) during initialization
(PCEINIT in PCEFLAG) SYSIN has to be assigned, otherwise Job Control
cancels the partition.

IJBSINP calls the service routine TSRICNCL, when no dynamic space GETVIS
area is available for the first call of IIBSINP (in end-of-task processing) during
initialization.

When a dynamic partition is canceled during Initialization,

. the cleanup routine is called during end-of-task processing,

. PCEDOCL and PCEICNCL flag is set,

. job control is loaded and because PCEDOCL is set, processes unbatch,
. TSTOP processing posts the VSE/POWER partition (PCEPWECB),

. the whole VSE/POWER job stream is flushed (up to * $$ EQJ),

. VSE/POWER deallocates the partition.

O A WNLPE

When a VSE/POWER job executing in a dynamic partition is canceled after
profile processing, the system behaves the same as if a static partition was
canceled.

If VSE/POWER has to cancel (TREADY) a controlled partition due to
VSE/POWER problems (for example, Data File I/O error or cancel of
VSE/POWER itself), cleanup will be done automatically during maintask EOT
processing of the canceled partition. Thereafter a dynamic partition is deacti-
vated by job control (see above) and deallocated (ALLOC) by VSE/POWER.
Note that VSE/POWER is posted via the PCE control block ECB.

z/VSE 4.2 Supervisor Diagnosis Reference

Action to be taken Initiated Function to

by be called

1) Job submission to VSE/POWER II

2) Request a partition VSE/POWER

— Allocation of dynamic ALLOC
partition

3) PSTART the partition VSE/POWER

4) Partition initialization Superv.

5) Schedule the job 1in VSE/POWER

this partition
6) VSE/POWER job is in execution
7) * $$ EOJ reached
8) Request partition deactivation [VSE/POWER
9) Free all allocated resources Job Cont.
of this VSE/POWER job
— initiate clean up DYNCLASS ID=CLEANUP

— include logic of the
JC UNBATCH statement,

do deactivation (TSTOP), TSTOP COND=UNBATCH
post VSE/POWER) superv.
10) Reset spool indications VSE/POWER

11) Request partition deallocation |VSE/POWER| ALLOC

Figure 37. Scenario: Dynamic Partition Preparation and Cleanup

Dispatcher 91

VSE/POWER Supervisor Job Control

— request dynamic

partition allocation = allocation routine
— allocate c.blocks
— do allocation
set PCEINIT
— set PCEPREP

— TREADY COND=START — start processing
— do start process.
— partition init.
- — do preparation
- prepare processing
— reset PCEPREP — — execute profile
— start job proc.
— reset PCEINIT « — first SVC 0

* $$ EOJ (on reader)
- ?et PCEDOCL

» — do cleanup
cleanup processing <—— DYNCLASS
— set PCEINIT ID=CLEANUP
— set PCECLEAN
do unbatch
— TSTOP
deactivate partition «— COND=UNBATCH
— reset PCECLEAN
— do deactivation
— post ECBs
— VSE/POWER master ECB
— PCEPWECB

— reset spool indication

— request deallocation dealTlocation
— do deallocation
— free c.blocks

Figure 38. Internals - Dynamic Allocation, Initialization, Deactivation and Deallocation

92 z/VSE 4.2 Supervisor Diagnosis Reference

VSE/AF Dispatcher - Identifiers and Limits

Number of Partitions, Task and Partition Key Definitions

Number of Partitions

The current design limit for z/VSE is 212 partitions, which results from the 255 VSE
tasks. Each VSE partition occupies at least one VSE task (maintask). 32 VSE tasks
are reserved for system use (system tasks including attention routine task). 11 VSE
tasks are reserved for system functions and VSE/POWER basic subtask require-
ments.

===> Design Limit 212 = 255 - 32 - 11

which allows a maximum of 200 dynamic partitions
and 12 static partitions.

The maximum number of partitions in a system can be calculated as follows:

Maximum Number of Partitions = 255
- 32 system tasks (incl. AR task)
- subtasks for z/VSE components
- subtasks for user applications

However the maximum reasonable number of concurrent allocated partitions is
dependent on:

e the CPU,

» the system configuration,

e the customer environment and
¢ the job profile.

Notes:

1. The maximum number of partitions within the system can be specified via the
z/VSE IPL SYS command (NPARTS parameter). The generated default is 12
static partitions (no dynamic partitions).

2. Maintasks for the specified partitions (via NPARTS parameter) are reserved
during IPL.

Storage Protection Key

Each static partition in VSE is assigned a unique storage protection key, dynamic
partitions have always the same storage protection key. A storage protection key is
the hexadecimal representation of the value 16*n, where

n is the partition id of static partition

Dynamic partitions use the storage key 16*13 (may be changed in future). Storage
protection keys are assigned according to the scheme shown in Figure 39 on

page 94, where partition IDs X'0D' to X'11' show allocated dynamic partitions of
dynamic class X (X1, X2, X3) and Y (Y1).

Dispatcher 93

94

Part. |Part. PIK Value | Storage Part. [Part. PIK Value | Storage
id |name in COMREG Key id |name in COMREG Key
00 SYS 0000 00 0B F2 00BO BO
01 BG 0010 10 oc F1 00Co co
02 FB 0020 20 0D X1 06D0 DO
03 FA 0030 30 0]3 X2 00EO DO
04 F9 0040 40 OF Y1 00F0 DO
05 F8 0050 50 10 X3 0100 DO
06 F7 0060 60 11 Y2 0110 DO
07 F6 0070 70 12 * 0120 DO
08 F5 0080 80
09 F4 0090 90
0A F3 00A0 AO D4 *k 0D40 DO

Figure 39. Partition Identification and Storage Protection Key

Notes:

* No dynamic partition is allocated to the PIK value of X'0120', therefore no
partition name (SYSLOG id) is available.

** Shows the highest possible entry in the PIK table which can be defined
via the z/VSE IPL SYS command, NPARTS parameter. In our example
the entry is unused, that is no dynamic partition is allocated to this entry.

Partition Identification

A patrtition is identified by its unique 2 byte Partition Identification Key (PIK). In
some cases a partition is identified by a 'Partition Identifier' (PID) value which is just
the value PIK/16.

Task Identification

Tasks are identified by a 2-byte hexadecimal number.

When "support for more tasks" is not activated on z/VSE 4.2 (using the SYSDEF
SYSTEM command), the first byte of this 2-byte number is always x00. This is the
same as with z/VSE 4.1 and below. The task identifiers (task-ids) are in the
hexadecimal range from x'0001' to X'00FF', which means that 255 concurrently
active tasks are supported.

With z/VSE 4.2 the user may request (using the SYSDEF SYSTEM command) that
more than 255 tasks can be activated at the same time. The maximum number of
concurrently active tasks is 512. The task-ids are in the range from x'0001' to
x'0200'.

The following table shows the task identifier (TID) values and their assignments to
particular tasks:

z/VSE 4.2 Supervisor Diagnosis Reference

System Task Main Sub
Task Task

TID TID TID

00 — Reserved 20 | AR n *k
01 | SNS — Unit check processing 21 | BG n+l *%k
02 | DSK — Resident disk error handler 22 | F1 n+2 *%
03 | RAS — Channel/machine check handler 23 | F2 n+3 *%
04 | PMR — Page manager 24 | F3 n+4 *%
05 — Reserved 25 | F4 n+5 *k
06 | PGN — Page—in processing 26 | F5 ee

07 | SUP - Program Fetch processing 27 | F6 ntm-1 | **
08 | DIR — Directory read processing 28 | F7

09 | VTA - Virtual Tape Processing 29 | F8

0A | AOM - Asynchronous Operations Proc. 2A | F9

OB | ERP — Transient error recovery 2B | FA

0C | LCK — Lock-UnTock processing 2C | FB

0D | CMT - Capacity Measurement Task cee *

OE | LOG - Access control processing *

OF | SVT - Special service processing *

10 | DSP — Dispatcher system task *

11 | SPT - Service processor

12 | CST - Console support task

13 | HCF Hard copy file task

14 | FCP SCSI processing

cen up to 10 vendor system tasks

1F ces

20 | AR - Operator communication

Figure 40. Task Identifier (TID) Values

Notes:

* Depending on the number of partitions up to 212 maintask TIDs may be
used.

** A pool of subtasks is created and maintained by the supervisor. The size
of this pool is given by the maximum number of subtasks active at the
same time, where

Xx = highest maintask TID = X'20' + number of partitions (SYS NPARTS=...

n = max.(X'30', x + 1)

m = MTASKS - n = maximum number of subtasks

where MTASKS is either 256 (if the support for more tasks is not
active) or the NTASKS value from the SYSDEF SYSTEM command.

Identification of Current Partition and of Current Service Owner
Before control is given to a task the dispatcher sets up the PIK field (bytes 46-47 of
the background communication region - BG-COMREG) by a partition identifier key
value.

In case of a system task it is the PIK value of the service owner partition (in special
situations it may be the system partition key). In case of a user task it is the PIK
value of the task's home partition.

Note: Whenever a task of the BG partition is active, the PIK field is set to the
partition identifier key of the BG partition. Since bytes 46-47 of the other
communication regions are generated with the corresponding foreground
partition identification keys, any active user task may find its own partition
identification key via its own COMREG.

Dispatcher 95

96

Identification of Current Task

Before the dispatcher gives control to a task, it puts the task identifier into the TID
field at displacement 90-91 in the system communication regions (SYSCOM). The
TID value in the TID field identifies the task which is currently active. This may be
any system or user task.

LTID (Logical Transient Owner)

The LTID, a halfword (LIK) at displacement 88 in the system communication region
(SYSCOM) contains the same value as the TID when the Logical Transient Area
(LTA) is in use and, therefore, identifies the owner of the LTA. When the LTA is
free, the LTID is zero. The SVC 2 (X'02") routine sets the LTID, and the SVC 11
(X'0B") routine resets it to zero.

Notes:
1. Do not use this interface anymore.

2. Any logical transient routine may find its own task identifier by using the TID
field.

LTK (Logical Transient Key)

The logical transient key, a halfword (LTK) at displacement 110 in each partition
communication region (COMREG). In a foreground communication, the key value
in the LTK is not significant. The LTK in the background communication region
(BG-COMREG) has the same value as the PIK of the partition of the task that owns
the LTA, or contains zeros when the LTA is free. When the LTA is occupied by the
task, therefore, the BG-COMREG has the same value in its LTK as in its PIK when
the owning task is active.

Note: This LTK interface should not be used anymore.

z/VSE 4.2 Supervisor Diagnosis Reference

Physical Input/Output Control System (PIOCS)

Physical IOCS is that portion of the resident supervisor that:

» Builds a schedule of I/O operations for all devices on the system (CHANQ
Table).

e Starts the actual I/O operations on a device (SSCH Instruction).
e Monitors all events associated with I/O operations.

e Performs error recovery actions. Refer also to z/VSE Supervisor Diagnosis
Reference Error Recovery and Recording Transients, SC33-6326 and z/VSE
Supervisor Diagnosis Reference Logical Transients and $IJBSxxx Phases,
SC33-6324.

I/O Request Enqueuer

When a channel program is to be executed for a user, the 1/0 Request Enqueuer
routine first checks to see if a channel queue entry is available.

If the channel queue is full, the issuer is set CHANQ-BOUND until a channel queue
entry is available again, which is normally the case after completion of 1/O interrupt
processing.

Note: The occurrence of this bound condition is an indication that the number of
CHANQ entries, either the default value or the value specified at IPL time,
is less than the number of concurrent 1/0O requests. Low performance may
be the result. This situation could have been prevented by either speci-
fying, or increasing the specified CHANQ value of the SYS-command at IPL
time or by inactivating some of the TP-devices assuming that the maximum
number of CHANQ entries had already been specified.

If an entry is available in the channel queue, the GETPUB routine first validates the
users parameters and checks them for correctness (Error Exits: ERR21, ERR25,
ERR26, ERR27). In case the users input has been proven to be correct, the I/O
request enqueuer does some special work for special devices and/or components.

e For all I/O requests directed to a device which is logically assigned IGN
(Ignore):
It ensures that these types of request are immediately posted I/O complete
without having actually been started.

e For all /0 requests being issued from within a VSE/POWER controlled partition
and directed to an UR device which the user did define as 'spooled' device or
directed to the operator console:

It ensures that these type of requests are being passed to the VSE/POWER
SVC 0 appendage, and will be further processed due to the information
returned from that routine.

e For I/O requests directed to the system operator console (SYSOCDEV):

It ensures that these requests are passed to the Console Router (described in
the Console Functions DRM) for further processing.

© Copyright IBM Corp. 1985, 2008 97

e For DASD and Diskette 1/0 requests issued from user tasks:

It ensures that the associated channel program starts with a command consid-
ered valid by the VSE system (ERR33).
(Refer also to system files described later in this section.)

It ensures proper DASD file protection in case the user specified
DASDFP=YES (ERR42).

Special processing information is saved in general register 5 until a CHANQ entry
has been allocated (after CCW Translation).

If the I/O request needs to be translated control is passed to the CCW-Translation
Routine (described later in this chapter) to get the virtual channel program copied
into the copy blocks within the supervisor and to get all virtual addresses translated
to their correct real addresses.

The CCW-Fixing Routine is used to get all referenced I/O areas TFIXed, if they are
not already PFIXed, thus making sure, that this page will not be paged out by the
PAGE MANAGER routine.

In the next steps, all the information which is needed to further process any 1/0
operation is saved in the CHANQ entry which is then enqueued into the chain of
I/0O requests that might already be waiting for this device. The request is enqueued
due to its 1/O priority retrieved from the I/O priority table (HQUPRI and HQUPPRI).
(For a sample of SYSIO request enqueuing refer to Appendix C, “Samples” on
page 513.

If the just enqueued I/O request is NOT THE FIRST one in the device chain,
control goes directly back to task selection.

If the request IS THE FIRST one in the device chain, the CPU time is charged to
the partition which issued the I/O request (refer to Job Accounting described later in
this chapter) and control is passed to the Device Scheduler Routine.

Special processing support provided by the 1/0O scheduler or related SVC-routines
will be described on the following pages.

Block Protection (SVC 35)

98

Block protection ensures that a 'block’ on a disk device which is being held by one
task is not accessed by another task unless the holding task has released the
‘block’ again.

CKD Devices (BBCCHH): The unit of protection is one track. The track address is
retrieved from the users SEEK CCW, which must be the first CCW. The whole
track is always protected against access by another task.

FBA Devices: The unit of protection is always the range of FBA blocks as speci-
fied in the DEFINE EXTENT CCW which must be the first CCW. The whole range
of blocks is protected against access by another task.

If the first CCW is not a SEEK or a DEFINE EXTENT CCW, block protection is
simply ignored and normal SVC 0 processing is done. All requests to protect a
track on a CKD device or a range of FBA blocks against simultaneous use will be
entered into the Track Hold Table before the 1/O Request Enqueuer gains control.
The block protection routine forces the issuing task to be set TRK-bound if the
given block is already held by another task. It will be reactivated as soon as the
requested block becomes available which is normally the case after the holding
task has released the track.

z/VSE 4.2 Supervisor Diagnosis Reference

System Files

Multiple 1/0O requests for tracks or ranges of FBA blocks which are to be held are
chained in a device chain with forward and backward pointers, and the appropriate
PUB contains the index to the first Track Hold Table ENTRY. For the format of the
Track Hold Table (THTAB) see Figure 233 on page 512.

The SYSFIL support of the supervisor allows to have system files (SYSRDR,
SYSIPT, SYSPCH and SYSLST) on CKD and/or on FBA disk devices. The sched-
uler turns on a special bit in the CHANQ entry to ensure proper program flow within
the 1/0O supervisor. Special processing however, is required for system files
residing on FBA devices.

System Files on FBA Devices: SVC 103 (X'67") performs the input/output oper-
ations for system files on FBA devices. The code of the SVC 103 (X'67) consists
of:

e The resident part, performing supervisor functions.
¢ The pageable part, loaded into the SVA, performing data management
(blocking/deblocking) functions.

For details see description of SVC 103 (X'67").

Physical Input/Output Control System (PIOCS) 99

Scheduler

The Scheduler is entered from either the /0O Request Enqueuer to drive a single
device, or it is entered from the 1/O Interrupt Handler (described later in this
section) to get the next request in a queue (if any) started. The Scheduler ensure
that all requests which have been enqueued by the 1/0 Request Enqueuer are
started in FIFO order as soon as the resource (Channel, Subchannel or Device) is,
or becomes available. The Scheduler ensures the accessibility of a device. In case
the device is gated, control is directly passed to task selection.

If the device is available, the Scheduler does some SIO-preprocessing for special
devices.

e For SYSIN I/O requests:
It ensures not reading past /& (ERR30)

e For Tape I/O requests:
It ensures control to be passed to the Tape ERP whenever Tape ERP has pre-
viously requested that the next SIO attempt is to be routed to Tape ERP. The
actual user request will be delayed until Tape ERP has completed its pre-
processing function.

In case of an I/O error on a previously initiated 1/O operation it ensures the
recovery channel program, as specified by the ERP System Task and not the
channel program as specified in the user's CCB to be initiated.

It ensures that Tape I/O operations which do not meet the above criteria are
being suspended for normal processing until the service (SVT) task has com-
pleted its eventually ongoing Tape volume recognition process.

All other tape requests, not meeting one of the conditions described above are
ensured to be started with the assigned (PUB) Mode setting.

e For Advanced Function Printer (AFP) 1/O requests:
It ensures control to be passed to the AFP-ERP whenever AFP-ERP has previ-
ously requested that the next SIO attempt is to be routed to Tape ERP.

e For DASD-Devices:

The 1/0O Scheduler ensures that the user can only access those Records or
EXTENTS on a volume, that he is authorized to access (ERR30, ERR32).

Following the SIO-preprocessing the 1/0 Scheduler actually carries out the
requested I/O operation by means of a

SSCH

instruction. Depending on the resulting condition code the Scheduler either enters
the /0 INTERRUPT PROCESSOR to further process condition codes 1 (CSW
STORED) and 3 (DEVICE NOT OPERATIONAL) or it completes its Device Sched-
uling process by updating the appropriate SIO processing and SIO accounting infor-
mation and passing control to the task selection routine.

100 z/VSE 4.2 Supervisor Diagnosis Reference

I/O Interrupt Handler

The 1/O interrupt handler is entered when an 1/O interrupt occurs, or whenever the
I/O New PSW (FIXED STORAGE LOCATION X'78") is being loaded. The code to
handle I/O interruptions is in the IOINTER part of the supervisor. The I/O interupt
handler will first issue a TSCH (Test SubCHannel) instruction to retrieve the status
information into an IRB (Interrupt Response Block). The information will then be
re-mapped into the /370 fixed storage locations (CSW, ECSW and X'BA') to main-
tain subsytem compatibility.

An /O interruption occurs when an I/O operation terminates or the operator inter-
venes on the device. The interrupt parameter from low storage location X'BC' is
used to allocate the PUB entry and to set up the related 1/O pointers. It should be
noted here, that, in order to prevent system hangs, a PUB must have been defined
for any device of the installation, regardless of whether this device is being used or
not. Before an I/O interrupt for a known PUB is actually processed, privileged com-
ponents (VTAM, POWER) are given the ability to inspect the Channel Status Word
(CSW) via a BAL-type interface (Channel End Appendage (CEA)).

If none of the above conditions exists, the CSW is examined and action is taken
according to the table in Figure 41 on page 102.

Physical Input/Output Control System (Plocs) 101

102

Bit On

CSW Status

Status Condition

Action

45
46

Channel Control Check
Interface Control Check

Branch to the Channel Check Handler
to interrogate the bits attempting
recovery.

38

Unit Check

Retrieve the sense information from
the device and if user wants sense
data, provide it.

If user did provide its own error
routine, or if the issuing task was
a system task, post I/0 request
complete with error.

42

43

Program Check

Protection Check

If user did provide its own error
routine, or if the issuing task was
a system task, post I/0 request
complete with error.

44

47

Channel Data Check

Channel Chaining Check

Retry the I/0 operation several
times and if still persisting, treat
as error.

32

Attention

For attention from the operator
console (SYSOCDEV) activate the
CST-System task to further process
this request.

Branch to task selection routine.

Attention interruptions from other
devices are not processed directly.

35

Busy

Indicate that the device 1is to be
restarted.

Branch to General Exit routine.

36

Channel End

Post user

37

34

Device End

Control Unit End

Post user and/or reschedule the
device.
Restart the device.

Figure 41. CSW Testing in I/O Interrupt Handler

z/VSE 4.2 Supervisor Diagnosis Reference

If the device status indicates that the channel program has been completed, the
appropriate information is posted in the CCB/IORB.

If the CCB/IORB indicates that this is a copied CCB/IORB (X'20' in byte 6) control
is given to a special routine (CSWTRANS) which,

e Frees all pages fixed for I/O areas.

* Retranslates the CCW address placed in the copied CCB/IORB to the correct
virtual address.

* Releases the CCW copy blocks and IDAL blocks.

* Moves changed parts of the CCB to the virtual-mode program and release the
CCB copy block. If the virtual CCB is not in real storage, the end of channel
information is not copied to the virtual CCB by CSWTRANS. Instead,
CSWTRANS posts a bit in the corresponding task information block (TIB) indi-
cating to the dispatcher that the CCB should be moved before the task is dis-
patched. This is necessary because no page faults are accepted during the
IOINTER process and the page fault will thus be delayed and handled under
users task id, next time he is dispatched.

¢ Activate tasks waiting for copy blocks or waiting for page frames.

CSWTRANS returns control to the interrupt handler when it has finished proc-
essing. The I/O Interrupt Handler will then dequeue the CHANQ entry from the
channel queue, assuming this was the final interrupt for a specific request and pass
control to the Channel Scheduler to get another or the same device started again.

Automatic Volume Recognition (AVR)
This facility keeps track of device-specific information of each DASD and TAPE
device in the system. The supervisor maintains a table, the volume characteristics
table (VCT), which contains the specific information for each device (see “Layout of
the VCT and DCT Tables” on page 105).

SVC 99 (GETVCE macro, see also Appendix B) retrieves data from this table for
the user. The Service System Task (SVT) facility interrogates the device when
requested, and updates the table. Requests for updating the table are made by the
I/O Interrupt Handler whenever the device becomes 'READY'and by SVC 101
(MODVCE macro, see also Appendix B), which can be issued by any user, but
especially IPL, utility programs when a change to the device is suspected and by
command processors (e.g. ONLINE and VOLUME command). The request flow is
shown in Figure 42 on page 104.

Physical Input/Output Control System (Plocs) 103

104

I/0 Interrupt
'"READY'
Device Not Busy

PIOCS
(IOINTER)
R v
Q C
T T
E E
User
l v v
RQTE
GETVCE > Service
SvC Request Task
| or
v
User Wake up user
v
RESVC

Overflow of RQT Only

IPL Utilities
RQTE
<«<—— MODVCE
Request SvC
Dispatcher

(user set in
bound state)

Figure 42. General Flow of Volume Characteristic Table Entry Update

z/VSE 4.2 Supervisor Diagnosis Reference

Updating the VCT Table
The update request may come from two sources:

1. From the I1/O INTERRUPT PROCESSOR whenever a DASD- or TAPE-Device
became 'READY"

2. From SVC 101 (MODVCE).

The first category must issue the request immediately, since it cannot save the
status. The second category, however, requires that the requesting task is readied
not before the VCT-Table has been updated. Also, more than one task can
request an update for a given device at a time, and if an entry is in the process of
being updated, any GETVCE request must be queued in order to wake up the
requesting task after the update. This results in two request queues:

* Device-related only.
e Task- and device-related.

The first queue is the VCT table itself. Each entry (VCTE) has a work-to-do and
work-in-progress flag.

The second queue is the RQT request table, a simple vector of task IDs, PUB
indexes, and function flags. The address of the RQT table can be found at label
RQTTAB. If the RQT overflows, the SVC can be retried at a later time using
RESVC.

Layout of the VCT and DCT Tables

The Volume Characteristics Table (VCT) entry contains mainly the information that
is defined by the AVRLIST macro (see Appendix B). The Device Characteristics
Table (DCT) entry is described by the DCTENTRY macro. Each entry is fixed
length and describes the device characteristics of a CKD, FBA DASD or TAPE
device. The DCT entry is immediately appended to the end of each AVR entry of
the appropriate device.

Usage of the two macros (AVRLIST and DCTENTRY) is discussed under
"GETVCE Macro" in Appendix B. The start address of the VCT table can be found
at label AAVRTAB.

Control Unit Initiated Reconfiguration (Quiesce/Resume support)
This part of the supervisor supports control unit initiated reconfiguration.

The CUIR Architecture: Basicly the processing of a request is done in the fol-
lowing steps:
e The control unit sends an attention interrupt to the host system.

e The system sets up CCWs to read all pending attention messages. It then
checks if the attention message is for quiesce resume purposes. VSE does not
interpret any other kind of attention messages.

* The system identifies the scope of the request. This scope is the set of
device/path (subchannel/chpid) pairs that are affected by the request.

e The system tries to apply the requested operation to the devices/paths in the
scope (i.e. either quiesce or resume).

* |t sends back a response code to the Control unit indicating success or reason
of failure.

Physical Input/Output Control System (Plocs) 105

106

This processing is accomplished by the VSE service task. The service task is
informed about any incoming attention interrupt from a device that could support
quiesce resume. It then enters phase $IJBCUIR in the SVA to do the processing. If
no further processing is required it unposts itself again.

The phase $IJBCUIR All the processing of quiesce resume takes place in the
phase $IJBCUIR in amode 31. The phase consists of three parts, the code, a stack
area and a wrap around debug buffer. All the data required in the processing are
kept in an area named QRSGLOB, which is generated in the system task code in
the supervisor. Both the supervisor part and the code in $IJBCUIR are generated
by macro SGCUIR. Processing starts in routine QRBASE, which is basicly a loop
scanning all PUBX entries of the system for attention interrupts. Whenever an
attention interrupt is found it reads the attention message. If the attention message
is a quiesce resume request, routine QRMAIN is called to do the processing.
QRBASE will continue reading attention messages until the device indicates "no
more messages available". Scanning for new attention interrupts will only stop, if
the PUBX was scanned completely and no indication of an attention interrupt was
left.

QRMAIN first calls a subroutine to determine the scope of the request. This scope
is encoded in the reconfiguration request record and can not be seen directly from
it. The system has to read a so called configuration data record from every chpid in
every subchannel that could be connected to the same control unit. The reconfig-
uration request record contains an NED-map, an NEQ-map and a
SELECTORBYTE identifying the set of configuration data records that come from
the subchannel/ chpid pairs making up the scope of the request. Each configura-
tion data record consists of 32 byte entries. There is three different types of
entries:

* NEDs, node element descriptors. Each NED represents one separately identifi-
able component in a subsystem and contains its serial number and further
information. Only those NEDs that are flagged as "reconfiguration NEDs" are
requrired for the CUIR processing. One of the NEDs of a configuration data
record is flagged as so called "token NED".

¢ NEQs, node element qualifiers. These entries are not used for reconfiguration
request processing.

* GNEQ, the general node element qualifier. It should be the last entry in a con-
figuration data record. It contains a 24 byte area which is required in quiesce
resume processing.

The system first needs to find the so called base configuration data record. In order
to do this, the system first reads the configuration data record from the same
subchannel/chpid pair that it received the attention interrupt from. If the selector
byte in the reconfiguration request record is zero, this configuration data record is
the base configuration data record. If it is not zero, the system has to scan all
configuration data records that have the same token NED as the one that was read
from the same subchannel/chpid pair that it received the attention interrupt from.
The first configuration data record having the same selector byte value in its GNEQ
is the base configuration data record.

When the base configuration data record is found the system will determine the set
of related configuration data records. For this it will check each configuration data

record having the same token NED as the base configuration data record. If those

parts of a configuration data record, that are indicated in the NED map and the

z/VSE 4.2 Supervisor Diagnosis Reference

NEQ map of the reconfiguration request record, are equal to the corresponding
parts in the base configuration data record, the record is a related one.

Each bit in the NED map identifies one of the so called reconfiguration NEDs of a
configuration data record. Bit O the first one, bit 1 the second and so forth. The
configuration data record needs to be scanned, to find the NEDs in question and
compare them to the corresponding ones in the base configuration data record.
Each of the bits in the NEQ map refers to a byte in a 24 byte area in the GNEQ of
the base configuration data record. The contents of these bytes must be similar to
the contents in the GNEQ of the examined configuration data record to make it a
related one. All the subchannel/chpid pairs that have been used to read the related
configuration data records make up the scope of the request.

When the scope is determined it is handed back to the main routine in a list. This
list is processed from the first to the last entry. If processing stops due to some
error condition being found there is no recovery for the actions already taken. If for
example a list of paths is presented, that need to be quiesced and the list contains
five entries and processing encounters an error in the third entry, the first two paths
will remain quiesced, whereas entry three to five are not processed.

Messages issued by CUIR processing: Since the quiesce resume processing is
an infrequently used part of the system, there are messages issued for almost
every step the system takes. The messages range from 1H40I to 1H60I. The
normal sequence of messages on the console should be as follows:

1H40I quiesce resume message was received. The message is dis-
played for every reconfiguration request record that was read.
The data displayed are the first part of the record.

1H4xI indicating an action. Either a device or path was quiesced, or a
device or path was resumed. In case of a 1H52| a system identifi-
cation was sent to the requesting control unit.

1H541 indicating the response that was sent back to the control unit. If
the response was positive or not can either be seen from the
sequence of messages 1H4xl, or from the first byte of the
response data. The following values are defined by the architec-

ture:

x01 Request was completed successfully

x02 Request rejected. Quiesce resume processing
not supported.

x03 Invalid reconfiguration request.

x04 Operator denied request.

x05 Reject of quiesce path request, last path
affected.

x06 Reject of quiesce device, device is in use.

x07 Reconfiguration failed during vary processing

x08 Reconfiguration failed due to program failure.

x09 Unknown request type received.

Aside from these messages, there is a number of messages for unusual conditions
found by the system. These messages contain data that are intended for debugging

Physical Input/Output Control System (Plocs) 107

purposes by an IBM support team. All quiesce resume messages are produced by
the message writing routine QRMSGWRT in macro (SGCUIR). The following list
gives a description of the data that are just indicated by x..xx in the message
manual. xn(a-b) refers to the bytes a-b of the printed variable number n in the
message. If the message reads 1H551 QRES RESPONSE x..xx REJECT DATA
X..Xx , the part behind the word RESPONSE is referred to as x1 and the x..xx data
behind the word DATA as x2.

1H55I

1H561

1H57I1

1H58I

1H59I
1H60I

The service task received a disaster error on the attempt to send
an answer back to the requesting control unit. x1(0-9) is the
answer that should be sent to the control unit, beginning with the
return code. x2(0-1) is the cuu, x2(3) the chpid, x2(3-11) the ccb,
x2(12-20) sense bytes 0-8 and x2(21-26) sense bytes 22-27 of
the failing operation.

An io error occured during read of the attention message. x1(0-1)
is the cuu, x1(3) the chpid, x1(3-11) the ccb, x1(12-20) sense
bytes 0-8 and x1(21-26) sense hytes 22-27 of the failing opera-
tion.

System received an attention interrupt on a path, on which we
cannot issue a read for the attention message since the 10 on
this path is prohibited by some disabling path mask. x1 is the
path mask x2 the cuu we received the attention interrupt on.
x3(0-7) are the PUBX fields PBXNOERP, PBXNOPVF,
PBXNOOPR, PBXNOQSD, PBXPIM, PBXPAM and PBXLPM.
x3(8-15) are the chpids in PBXCHPID.

System received an invalid configuration data record. x1 is the
path mask, x2 the cuu on which we received the record. x3(0) is
set to 6 if the cdr does not contain a token NED and 7 if the last
32 byte entry in the cdr is not a GENERAL NEQ. x3(1-4) is the
storage address of where the cdr is kept in storage and the rest
of the data is the beginning of the CDR. This last part can only be
used to see if these data make sense as a cdr at all.

We received a bad return code from a getvis invocation.

System has encountered an internal processing error. x1 is the
field QRERRIND in the SGCUIR code. It should have one of the
following values:

1 System could not identify a base configuration
data record. None of the records tested had
the required selector byte in its GNEQ. Set by
subroutine QRGSCOPE.

2 There is a bit in the NED map set to on, but the
configuration data record currently scanned
does not have a corresponding reconfiguration
NED. Set by subroutine QRGSCOPE.

3 We could not obtain sufficient GETVIS storage
to build the scope list which is scanned by
QRMAIN. Issued by QRGSCOPE.

4 Same as 2, just detected in a different place in
the code.

108 z/VSE 4.2 Supervisor Diagnosis Reference

5 Could not obtain GETVIS for a cdr. Issued by
QRGETCDR.

Debugging Aids.: There is a number of debugging aids incorporated in the
SGCUIR code. First the data area QRSGLOB can be located by the eyecatcher
preceeding it. The first 3 pointers in it help in finding the $IJBCUIR phase in
storage. Part of that code is a wrap around debug area, the format of the entries of
which is described in the QRSTRACE subroutine in SGCUIR. It contains an entry
for each vital processing step of a reconfiguration request.

If the code encounters a severe logic error, it does not hardwait the system but
leaves to the SGSER service task code. In addition it zeroes the pointer to
$IIBCUIR in the SVA address vector table. This ensures that the code is not
entered any more. A dump can be taken any time from then on and should still
contain all the data from the time the logic error was detected. One possible reason
for this exit could be a stack overflow for example. There is no message given on
the console to indicate quiesce resume processing was terminated. The fact that it
was done can be seen from the fourth pointer in the QRSGLOB area, which is
either zero or points to the position in the code where we decided to leave, using
BAL R5,QRHARDWT.

For some logic errors that should not occur but are not due to coding errors in
SGCUIR an internal error message 1H60I is issued. If the system issues an
internal error message, quiesce resume processing is not switched off, but only the
current request is terminated.

System Console Attention Processing

Attention interrupts from the system console device (SYSOCDEV) cause an
appendage routine to called, that posts the CST system task.

Physical Input/Output Control System (Plocs) 109

I/O Error Processing

110

When the I/O interrupt handler detecs an error condition, it builds an error entry
containing information about the error condition and queues it on one of the four
chains to further process this error. This section is about the error processing that
the four system task error processing tasks do.

Error Entries: There is one error entry for each device added at IPL time. This

error entry is used for errors related to non-system task requests or to unsolicited
interrupts. There is one additional error entry for each system task (except SNS
and PGN), which is used for errors related to requests by this system task.

Error Chains: One chain of error entries is maintained for each of the four error
recovery system tasks: Sense Task (SNS), Disk Error Recovery Task (DSK), Error
Recovery Task (ERP) and Machine and Channel Check Handler (RAS). Each error
chain consists of an error chain header pointing to the first (if any) error entry in the
chain. System task error entries are enqueued on top of the chain, device error
entries at the bottom. Any error entry can be in only one error chain at a time.

General Procedure: The I/O error processing routine locates the appropriate error
entry and removes it, if necessary, from any error chain. After setting the error
information, it enqueues the error entry in one of the error chains, depending on the
type of error and on the available information. The chain owner is posted, if not
already active.

Each chain owner processes its chain in FIFO order. The first entry is dequeued, a
recovery action is carried out and the error entry is then passed to another chain, if
additional processing is needed; or freed, if the error recovery is completed. Error
recovery system tasks always exit to the 1/O Interrupt Handler, before resuming
operation with the next entry in the chain. When an error recovery task has fin-
ished processing the last error entry on the chain, it deactivates itself.

Sense Task (SNS): The main function of the sense task is to read the sense data
related to a unit check error and to save them, if needed, in the error entry. The
error entry is then passed to the disk resident error recovery task (DSK) or to the
error recovery task (ERP).

Disk Error Recovery Task (DSK): The function of the DSK task is to analyze the
sense data related to a unit check error from a disk device and to initiate retries or
other recovery actions if appropriate. The error entry is passed to the error
recovery task for operator communication and/or error logging, if necessary.

Error Recovery Task (ERP): Four distinct functions are assigned to the ERP task:

* Recovery operations for all I/O errors on non-disk devices

e Handling of all operator messages related to I/O errors

e Logging of I/O error information on the recorder file

* Processing of recording requests which are being passed to the ERP via the
SVC 44 service.

The activity of the ERP task is monitored by resident code (SGERP). The resident
ERP logic decides upon the device type of the failing device whether further proc-
essing will be done by the resident tape ERP (SGTAP) or by the transient ERP.

The resident tape ERP is managing error recovery for cartridge tape devices. The
error entry is passed to SGTAP who performs the necessary recovery actions and

z/VSE 4.2 Supervisor Diagnosis Reference

ERBLOC Area

Error Entries

handling of operator messages but not the logging of I/O error information on the
recorder file. When error logging is necessary resident tape ERP passes the error
entry to the transient ERP.

If transient ERP will do the processing the first error entry from the ERP chain is
dequeued and the contents of the error entry are moved into a fixed area (ERQ1),
which is accessible to the transient phases (ERBLOC) and which is the only means
to get error and process related information from there. The monitor next decides
which transient should run first and calls it and passes control to it. The transient
(A-transient) may call other A-transients, but will eventually return to the monitor at
label ERPEXIT providing information about the action that is to be taken by the
monitor.

Other system functions (SVC 44 and the Missing Interrupt Handler) also move
information to be recorded directly into the ERQ1 area, when it is not already occu-
pied. In this case, the ERP task first handles the information already available in
the ERQL area, before processing the next error entry from the ERP chain.

Machine and Channel Check Handler (RAS): Functions assigned to the Channel
Check RAS task are:

e Logging of I/O error information on the recorder file
e Handling of all operator messages related to 1/O errors
* Recovery operations for all I/O errors on non-disk devices

The activity of the RAS task is monitored by resident code. The resident RAS logic
dequeues the first error entry from the RAS chain and moves the contents of the
error entry into a fixed area (ERPIB), which is accessible to the RAS transients.

The ERBLOC area is used as interface between the transients involved in 1/O error
processing and/or Error Recording. The AERBLOC field in the SYSCOM contains

a pointer to this area. The layout of the ERBLOC area is shown in Figure 225 on

page 499.

There is one error entry of each device added at IPL time. The pointer to this entry
can be found in the PUB extension (PUBX). The device-related error entries varies
in its length depending on the number of sense bytes.

There is one additional error entry per system task, except PGN and SNS task. The
address to that error entry is contained in the appropriate system task TCB.

Error entries are chained together and enqueued to the appropriate processing
task. There is a separate chain for each, the SNS, DSK ERP and RAS task. A bit
combination of outstanding recovery operations is used to address the appropriate
chain. The anchor address of any of these chains is contained within the ERBLOC
area (see Figure 225 on page 499). For the format of the error entries as proc-
essed by SNS, DSK, RAS and the ERP see Figure 226 on page 501.

Physical Input/Output Control System (Plocs) 111

Loading an ERP Transient
When exit is to be taken to a physical transient ERP system task issues an SVC 5
to get the transient phase loaded into the physical transient area which is then sub-
sequently entered.
To fetch another ERP transient, the active transient phase issues an SVC 5.

112 z/VSE 4.2 Supervisor Diagnosis Reference

Disk Error Recovery

Disk error recovery routines are resident device error recovery routines. They are
described below. A-transients ($$A) are only fetched when the error is to be
recorded, or when an operator message is to be issued.

A-transients are fully described in the z/VSE Supervisor Diagnosis Reference Error
Recovery and Recording Transients, SC33-6326.

The error recovery actions done by SGDSK are oriented after the actions pre-
scribed in the controller manuals of the DASD devices. For FBA and CKD devices
the recovery procedure can be derived from sense bytes 0, 1, 2 and 7. ECKD
devices indicate the recovery action in sense byte 25 (Program action code) and
messaging and recording needs in sense byte 24.

The messaging and recording actions initiated by SGDSK may in some cases differ
from these recommendations. In case a recovery action is prescribed that would
exceed the device support normally provided by VSE, this action will not be exe-
cuted. Instead the error will be treated as unrecoverable.

SGDSK retries failing IO operations on a path selective basis. If an error can not
be recovered on a certain path recovery may be done on another path.

SGDSK may be instructed by sense data to fence a path, a storage director or a
controller and will do so, using the required diagnostic control commands.
SGDSK will break a duplex pair if the error recovery is exhausted on all paths of
the primary device and the nature of the error indicates, that it may be overcome
on the secondary device.

SGDSK keeps track of the last recovery actions it performed in a wrap-around
debug area (DERDEBUG).

Physical Input/Output Control System (Plocs) 113

Resident Tape Error Recovery

There are two different tape error recovery routines:

114

Resident error recovery routine SGTAP for cartridge tape devices which is
described below.

Transient error recovery for all other tape devices. The A-transients are fully
described in the z/VSE Supervisor Diagnosis Reference Error Recovery and
Recording Transients, SC33-6326.

SGTAP is processing on the ERP chain of error entries that may contain several
error entries for one or more devices. These error entries either belong to a PUBX
or to a TCB of a system task. SGTAP always dequeues the next error entry from
the chain and starts following error recovery procedure for that error condition:

1.
2.

Analyze the presented sense data.

Assign recovery attributes like recovery action, messaging and recording needs
to the error condition. The recovery attributes are leaned upon the actions pre-
scribed in the controller manuals of the tape devices.

. Perform the recovery action. When recovery I/O has to be done SGTAP is not

waiting for 1/O completion but initiates messaging for this error condition and
starts processing the next error entry queued in the ERP error entry chain.

. When the recovery 1/O request has been completed messaging is done, if still

applicable.

. Recording, if necessary, is initiated by enqueuing an error entry containing all

information to be recorded into the ERP error entry chain. Transient tape ERP
will later process this error entry asynchronously.

. If recovery could be completed, SGTAP is left to the ERP monitor SGERP and

the next error entry can be processed or a recovery procedure already started
can be completed.

. If a new error condition is presented on a recovery I/O request the old error

condition is considered overcome and the new error condition is processed
from now on as if it had been the original one.

SGTAP keeps track of the last recovery actions it performed in a wrap-around
debug area (TERDEBUG).

z/VSE 4.2 Supervisor Diagnosis Reference

ERP Message Writer

The ERP message writer SGEMSG writes all recovery messages with prefix OP.
This is done in following steps:

e Set up message output lines

¢ |ssue message using macro WTO/WTOR

e Analyze operator reply in case of decision-type messages

» Select the proper exit
Usually, the ERP message writer gets either control from the resident tape error
recovery routine SGTAP or from the transient error recovery routines. They provide

the operator action and target codes by setting up a flag byte in the error entry or
ERBLOC area, respectively. The action code may be:

e A (action-type message, operator intervention required)

e D (decision-type message, operator reply required)

¢ | (information-type message, no operator action or reply required)
For decision-type messages the target code may be:

| (decide between cancel or ignore)

* IR (decide between cancel, ignore, or retry)

¢ R (decide between cancel or retry)
For information-type messages the target code may be:

e C (I/O operation will be cancelled)

e | (the task could not be notified about the error)

¢ R (I/O operation is retried)

e P (the task was notified about the error)

For action-type messages, there is no target code.

Physical Input/Output Control System (Plocs) 115

Missing Interrupt Handler

116

The Missing Interrupt Handler (MIH) is a resident supervisor routine that interro-
gates all entries in the channel queue on an interrupt driven time slice basis. The
MIH is entered whenever an ATTENTION interrupt from the system operator
console (SYSLOG) is recognized, or whenever the system is going to enter an
ENABLED WAIT state.

The MIH will first ensure that a defined time interval has elapsed, otherwise it will
immediately return via the linkage register. If the defined interrupt has elapsed, all
channel queue entries will be examined to determine whether they have been
flagged as long-term entry. If the entry is not a long-term entry, it will be flagged as
such if the associated 1/0 operation has been successfully initiated and if it is a
device to be handled (see below). All entries which are already flagged will be
further investigated in order to determine why these entries are still in the channel
gueue, for example, a channel end or device end is outstanding.

For this purpose, any associated I/O interrupt information as well as the current
device status, retrieved by means of a TIO instruction, will be used to set up the
appropriate message. The result of the TSCH determines whether an information-
type message or a decision-type message is provided. For both types of mes-
sages, the final action performed by the MIH depends on the communication bytes
in the CCB and on the task which issued the I/O operation. All missing interrupts
that can be uniquely identified as device errors will result in a record being written
to the recorder file in a standard format.

Certain TP devices cannot be supported since the supervisor cannot distinguish
between an endless polling loop or a subchannel hanging due to a missing inter-
rupt. These conditions are handled by the individual components, usually by timer
interrupts.

z/VSE 4.2 Supervisor Diagnosis Reference

Lock Management

Locks a resource against simultaneous use by other tasks.
Unlocks a given resource that was previously locked.
The SVC 110 (X'6E") is invoked by the LOCK and UNLOCK macros.

Resources that may be locked/unlocked are:

e Data sets
e Libraries
e Catalogs

e Program routines
e Control blocks, etc.

In a DASD sharing environment the SVC 110 (X'6E") may be used:

e To lock resources against simultaneous use by other tasks of the own system
(internal locking), or

e To lock resources against simultaneous use by tracks of another VSE system
(cross-system locking).

The SVC 110 (X'6E") routine (the lock manager), including the SVC 63 (X'3F") and
SVC 64 (X'40" routines and the associated tables, is contained in the pageable
part of the supervisor.

The lock manager is a serially reusable routine. Only one LOCK or UNLOCK
request may be executed by the system at a time. If the lock manager is already
active, the issuing task will be set to USEBND (X'8B') and afterwards into WAIT
state (RESVCX).

Required Control Information
The resource to be locked/unlocked is described by the control block DTL (Define
The Lock), the address of which is passed to the SVC 110 (X'6E') routine in reg-
ister 1. Register 0 is used as a parameter passing register. The contents of reg-
ister O is used to differentiate between LOCK and UNLOCK.

DEC Description

0 -2 Zero
3 Option Flag Byte
X'80' FAIL=WAITECB
X'40' UNLOCK JC=SYSID
X'20' UNLOCK ALL
X'10' UNLOCK ALL,JC=EO0J
X'08' FAIL=WAITC
X'o4' FAIL=WAIT
X'02' LOCK (USE) request
X'01' SVC 110 (X'6E') request

Notes:

1. LOCK - Option flag byte contains: X'03'
2. UNLOCK - Option flag byte contains: X'01'

Figure 43. Contents of Parameter Passing Register 0

© Copyright IBM Corp. 1985, 2008 117

LOCK and UNLOCK (SVC 110 - X'6E’)

Locking a Resource

118

If a requested resource is available, it is assigned to the requesting task by building
an entry for this resource in LOCKTAB and chaining an owner element to the
LOCKTAB entry.

If the permanent LOCKTAB resp. owner element space (following the lock manager
code) is exhausted, SVA space for LOCKTAB resp. owner element entries will be
allocated.

If cross-system locking is requested an entry is placed into the external lock file,
too. For the relationship between LOCKTAB and owner elements refer to
Figure 191 on page 453.

The SVC 110 (X'6E") routine cannot issue an 1/O request to the external lock file.
When access to the external lock file is requested, the SVC X'6E' routine changes
its status to that of a system task.

If a requested resource is locked by another task of the same system and
FAIL=WAIT or FAIL=WAITC or FAIL=WAITECB is specified in the LOCK macro, a
deadlock test is performed to avoid a soft wait condition. If the system is deadlock
free, the requesting task is set into WAIT state (RESVCX) for FAIL=WAIT and
FAIL=WAITC. If FAIL=WAITECB the lock request of the issuing task is queued to
this resource but control is given back to the caller. It's then the caller's decision
where and when he wants to wait until the resource is allocated to him.

A deadlock test is also performed if FAIL=WAIT is specified and the supervisor
runs out of LOCKTAB space or of owner element space.

For external locks a deadlock test is performed, if the disk block where an external
lock entry should be entered is full and all entries of that block are in use by tasks
of the own system.

Note: Deadlocks, where tasks of different systems lock resources in reversed
order, will not be detected.

If a task wants to lock a resource which is locked by a task of another system, the
LCK system task sets up a time interval (SVC 10 - X'0A") and sets the requesting
task to the "RURBND (X'8E')" state (RESVCX). When the time interval elapses,
the timer interrupt handler takes all tasks waiting for externally locked resources out
of the WAIT state.

z/VSE 4.2 Supervisor Diagnosis Reference

Lock Options

LOCKOPT | CONTROL Description

1 E No other user is allowed to use the resource
concurrently.

S Other 'S' users are allowed concurrent access, but
no concurrent 'E' user is allowed. (Note 1)

2 E No other 'E' user gets concurrent access, however,

other 'S' users can have access to the resource(Note 2
S Other 'S' users can have concurrent access and,
in addition, one 'E' user is allowed.

4 E No other 'E' user from another system is allowed.
However, other 'S' users from other systems may use
the resource concurrently (LOCKOPT=2 support across
systems).

S Other 'S' users and in addition one 'E' user from
another system is allowed.
Notes:

1. Either one 'E' user or n 'S' users are allowed
(n = number of 'S' users).
2. One 'E' user and n 'S' users are allowed.

3.
CONTROL=E
CONTROL=S
LOCKOPT=4

Resource is enqueued in exclusive mode.
Resource is enqueued in shared mode.

Defines a system action, which treats the lock request
across systems as a LOCKOPT=2 request.

Figure 44. Lock Option and Control Parameter

Lock Management

119

Current LOCK Status of Resource
Incoming LOCKOPT=1 LOCKOPT=2 LOCKOPT=4
LOCK Request
CONTROL= CONTROL= CONTROL=
LOCKOPT|CONTROL| E S E S E S
E W W W W W W
1
S W G I I I I
E W I W G I I
2
S W I G G I I
E W I I I G/W G
4
S W I I I G G
G = The LOCK request is granted (ret. code = 0).
I = Incoming LOCK request is inconsistent with
current LOCK status (ret. code = 12).
W = Access to resource cannot be granted
(ret. code = 4 or 16).
G/W = The access is granted, if the resource is already
exclusively owned by the own system.
The access is denied (ret. code = 4), if the
resource is exclusively held by the other system.

Figure 45. System Actions Depending on Control Definition in DTLs

Unlocking a Resource

When a resource is to be unlocked, the appropriate LOCKTAB entry is cleared to
zeros or, if there is more than one user of this resource, the unlocking task is
removed from the owner chain of the entry.

If a LOCKTAB entry is cleared to zero, or if the locking status of the particular
resource is changed to a lower control level (i. e. from exclusive to shared control),
all tasks of the own CPU waiting for this resource are activated so that they retry
their lock request. If there is a requestor chain for this locktab entry, the lock
manager retries allocation for those tasks after completion of the UNLOCK function.

If a resource is locked ‘cross-system' and the locking status is changed, the entry
on the external lock file is updated; as a result tasks of another CPU will find the
resource available when they retry their lock request.

120 z/VSE 4.2 Supervisor Diagnosis Reference

UNLOCK SYSTEM=sys-id (AR-Command)

All resources, which are held by another sharing system, will be freed (unlocked)
and the corresponding entries will be removed from the external lock file. 'sys-id'
specifies the CPU-id of the other system.

This service can be used only by the Attention task. Any other task issuing this
macro, will be canceled with 'illegal SVC'.

Return Codes in register 15

0 (X'00Y Successful request. All locks held by the other system have been
unlocked.

4 (X'04" The specified sys-id has not been found in the external Lock file
(the operator specified probably a wrong system-ID).

8 (X'08" External Lock file damaged.

12 (X'0C) Irrecoverable 1/O error on the Lock file.

UNLOCK ALL

All resources, which were locked by the task with 'KEEP=NO' will be freed
(unlocked).

The SVA space of owner elements and LOCKTAB entries (if no more owner ele-
ments chained) is released.

UNLOCK ALL will be automatically called at task detach time and EOQJ step.
When UNLOCK ALL is called during EOT processing and the partition runs in
0S/390 emulation mode, additionally the OS/390 ENQ resources obtained by the
0S/390 ENQ macro are released.

UNLOCK ALL,JC=EOJ

All resources, which were locked by the issuing task including those with
'KEEP=YES', will be freed (unlocked).

The SVA space of owner elements and LOCKTAB entries (if no more owner ele-
ments chained) is released.

At EQJ time (/& or // JOB statement processing) all resources still owned by the
partition are freed via UNLOCK ALL,JC=EQJ.

Lock Management 121

Lock Manager Internals

Entry Points

SVC110 LOCK / UNLOCK
SVC63 USE
SvC64 RELEASE

LOCK / UNLOCK Input Registers

Reg. 0 any parameter flags (stored to LOCKPARM)
Reg. 1 DTL address

Exit

DISP exit to dispatcher

ERR1E I/O error on lock file

ERR21 invalid parameter list format

ERR25 invalid parameter list limits

ERR2E possible deadlock

RESVC or RESVCX if lock manager in use or resource already locked

Permanent Usings

Reg. 1 DTL address (DTLADR)

Reg. 2 LOCKTAB entry pointer (LOCKADR)

Reg. 6 dispatcher (DISP)

Reg. A save area pointer (SVEARA)

Reg. B base register

Reg. C owner element pointer (LOKOADR)
request element pointer (LOKOADR)

Reg. D base register

Note: Refer to “Control Blocks related to Lock Management” on page 453.

122 z/VSE 4.2 Supervisor Diagnosis Reference

Lock Manager Flags

Label Flag Description Value
LOCKPARM Flag — lock/unlock parameters
(in register 0)
WAITEFLG| FAIL=WAITECB (request/queue) | X'80'
CHECKFLG| if only deadlock check active| X'40'
UNLSYS UNLOCK JC+SYSID is specified | X'40'
UNLALL UNLOCK ALL is specified X'20'
UNLEOJ Request from EOJ routine X'10'
WAITCFLG| FAIL=WAITC (conditional) X'08'
WAITUFLG| FAIL=WAIT (unconditional) X'04'
LOCKSVC | LOCK (SvC110) or USE (SvC63) | x'02'
NEWLOCK | LOCK/UNLOCK (SvC110) X'o1'
UNLCKFLG Flag — unlock SVC (UNLOCK)
BLKMODF | External block modified X'10'
(write back)
WAKEUPE1| Activate E1 requestors X'oe8'
FREELE Give up a LOCKTAB entry X'o4'
FREEOE Give up an owner element X'ez2'
WAKEUP Activate waiting tasks X'01'
DSHRFLG Flag — for lock system task
LCKSYS System task is active X'80'
LCKTIM Timer request is already set | X'40'
LCKREQ Update on ext. file required | X'20'
LCKRESVD| Disk drive reserved X'10'
(Tock file)

Figure 46. Lock Manager Flags

Lock Management

123

Return Codes

Lock Return Codes

Return Code| Flag Description
Dec | Hex
0 0 Request executed successfully
4 4 Resource owned by other task
8 8 |ERRINTSP| LOCKTAB space exhausted
12 C |ERRINCON| Resource request inconsistent
with present lock status
16 10 |ERRDELO1| Deadlock
20 14 |ERRDTLFO| DTL format error
24 18 |ERRDELO2| Already Tocked by issuing task
(deadlock)
28 1C [ERREXTSP| Space exhausted on external
lock file
32 20 [ERRNOVOL| Volume not mounted
36 24 |ERREXTIO| Irrecoverable error on external
lock file
Figure 47. Lock Manager Return Codes (LOCK Macro)
Unlock Return Codes
Return Code| Flag Description
Dec | Hex
0 0 Request executed successfully
4 4 Resource is not locked for the
issuing task/partition
8 8 DTL format error

Figure 48. Lock Manager Return Codes (UNLOCK Macro)

124

z/VSE 4.2 Supervisor Diagnosis Reference

Deadlock Detection

Assume that task T1 requests a resource, say RES1, which is already locked.

The owner chain of RES1 is scanned for owners who prevent T1 from locking this
resource. If T1 itself is an owner of RES1 then a dead lock is detected.

The RESOURCE-BOUND owners (Task Status Byte, see Figure 26 on page 59)
are entered into the dead lock test table (DLTT) and processed the same way as
T1, owners that are not RESOURCE-BOUND are ignored.

This test is repeated for all entries of the DLTT (if there are any). Let's assume T2
is the first/next entry in the DLTT waiting for resource RES2. If T1 is an owner of
RES2 then a dead lock is detected. The RESOURCE-BOUND owners are entered
into the DLTT.

This testing is repeated until there are no more DLTT entries to be checked or until
a dead lock is detected.

Deadlock Test via Deadlock Test Table (DLTT)

The DLTT contains as many 2-byte entries as the maximum number of tasks speci-
fied for supervisor generation. If deadlock test is performed, the DLTT entries will
contain the TIDs of the lock-bound (RURBND - x'8E') tasks. The pointer to the
resource (LOCKTAB) on which a lock-bound task is waiting, will be found in the
TIBSTATE. If the last bit of TIBSTATE is on, the task will lock the resource exclu-
sively (E1 request).

Notes:

E1l request: CONTROL=E, LOCKOPT=1
E2 request: CONTROL=E, LOCKOPT=2

Internal Interface to Deadlock Test

If FETCH has to set a task into wait because the LTA is in use the deadlock test is
called before. The deadlock test checks if a specific task (in this case LTA owner)
is waiting for a resource which is owned by the actual running task (here the LTA
requesting task).

A deadlock situation is indicated by setting the deadlock return code before leaving
the deadlock test.

Lock Management 125

Start with the resource
which wants the issuing
task to Tock

Scan owner element

l

Owner not E user and Yes
E2 resource and
requestor not E1 ?
l No
Yes
TID of owner (LOKOTID) —» Deadlock found
= TID of actual task ?
l No
Yes Put LOKOTID of owner
Owner Tock—bound ? ——| element into deadlock
test table (DLTT)
lNo
No l
- A1l owners scanned ? |«
l Yes
Yes
A11 DLTT entries —> No deadlock

processed 7

situation found

lNo

Scan next TID from DLTT
and select resource
which this task is
waiting for via
TIBSTATE

Figure 49. Deadlock Test

126

z/VSE 4.2 Supervisor Diagnosis Reference

Possible Deadlock Situations
1. External space is exhausted:

¢ All resources of this block are owned by the issuing task or by a resource-
bound task of this CPU (only deadlocks are detected which are caused by
actions of one system).

2. Supervisor space is exhausted:

¢ Waiting for a free owner element:
— No owner element of this resource found, whose owning task is not
resource bound (owner element has the TID of the requesting task).
e Waiting for LOCKTAB space:
— No LOCKTAB entry found, whose owners are all running (no owner is
resource bound). Every LOCKTAB entry has just one owner element
where its owning task is waiting for.

3. Resource is already locked:

e Locked by the issuing task itself:
— Deadlock if E1 request.
— Deadlock if resource already locked with E1 by the issuing task.
— Deadlock if resource already locked with E2 by the issuing task.
¢ Not locked by the issuing task:
— Find deadlock situation via deadlock test table (DLTT). (See para-
graph: Deadlock Test)

Lock Management 127

External Deadlock Checking

The described deadlock check routine can also be called by other supervisor rou-
tines. The entry point for external deadlock checking is SGLOCKCK. The calling
function wants to set a task into wait state. By running the deadlock check routine it
can be detected if this would lead to a deadlock situation with tasks waiting for
locked resources.

The interface is described with:

INPUT R9 task id of deadlock candidate (actual task id)
INPUT R6 dispatcher address

INPUT R14 return address

OUTPUT R15 return code:

0 = no deadlock
16 = deadlock will occur

EXIT R6 in case of lockgate is not free
EXIT R14 normal return to caller

128 z/VSE 4.2 Supervisor Diagnosis Reference

DASD Sharing (Lock Manager)

When resources are locked across systems, the resource name and some control
information are entered into the external lock file to assign the resource to this
CPU.

When an externally locked resource is unlocked, the lock entry is removed from the
external lock file, to allow other CPUs to lock the resource.

Within the SVC 110 (X'6E") processing routine it is not possible to issue SVC
instructions. Therefore, the external lock file processing is done by a special
system task, the Lock-System-Task (LCK). The LCK-Task is activated when the
SVC X'6E' processing routine wants to read from or write to the external lock file.
For additional information see description of “LOCK and UNLOCK (SVC 110 -
X'6E")” on page 118.

External Locking

An external communication area, the external lock file, reflects at any time to all the
sharing systems the system-wide locking status.

The external lock file is a system file which is shared among all sharing systems.
Any resource to be locked across systems is contained in this external lock file.

The communication between the sharing systems is established during IPL via the
DLF (Define Lock File) command. The VSE system which is IPLed first creates the
external lock file. The other systems refer to this already created lock file, when
they join the sharing environment.

Lock File Format

The external lock file consists of a header block and data blocks. The header block
contains a file description of the external lock file and information about the sharing
CPUs. The data blocks contain the lock entries (resource name plus control infor-
mation).

/ / [/— / [—/
lock file header data block 1 data block 2
min. 52 bytes 512 bytes 512 bytes
(20 + N = 8)
—/ [———/ [————/ [———/
0 512 1024 1536
Notes:

1. N = Number of CPUs
2. default 4 CPUs, max. 31 CPUs

Figure 50. Lock File Format

Header Record Format

The lock file header record starts with a 20 byte file description of the lock file. The
fields of this file description are identical with the first 20 bytes of the DLF Table in
the supervisor.

Lock Management 129

This file description is followed by a list of the CPU IDs of the sharing systems. For
any sharing CPU there is an 8-byte field containing two flag bytes and a 6-byte

CPU identification.

/ .
Identical with CPU 1
first 20 bytes 2 flag + CPU
of DLF DSECT bytes ident.
(at DLFADR) (at DLFCPUS)
/ .
0 20 28

Figure 51. Lock File Header Format

Lock File Data Blocks

CPU 4
2 flag + CPU
bytes ident.

(at DLFCPUS)

44

52

The physical block length is 512 bytes for CKD devices. For FBA devices the
physical block length equals the physical block length of the FBA device (presently

always 512 bytes).

Each block contains a 2-byte identification field, a 2-byte count field and lock

entries.

The identification field contains the characters 'LF' (Lock File) The count field con-
tains the number of lock entries stored in this data block. The lock entries contain
the 12-byte resource name and one lock byte for any sharing CPU (a minimum of 4
and a maximum of 31 bytes).

/-.
LF|{c1|Tock entry 1 lock entry 2
/-.
0 2 4
cl = Count of lock entries

in this data block
Maximum possible number
of Tock entries

Figure 52. Lock File Data Block Format

/ .
resource name |cpu |cpu [cpu [cpu
1 2 3 4
flag|flag|flag|flag
/ .
0 12 13 14 15 16

Figure 53. Lock File Entry Format

130

z/VSE 4.2 Supervisor Diagnosis Reference

lock entry E

cpu
N
flag

12+(N-1)

512

Flag |[Appr.| Description

x'00' no Tocking

x'01' | S1 CONTROL=S LOCKOPT=1
x"11' | El CONTROL=E LOCKOPT=1
x'02"' | S2 CONTROL=S LOCKOPT=2
x'12" | E2 CONTROL=E LOCKOPT=2
x'04' | S4 CONTROL=S LOCKOPT=4
x'14" | E4 CONTROL=E LOCKOPT=4

Figure 54. CPU N Flag

Lock File Block Capacity

The length of one lock entry depends on the number of sharing CPUs. The
maximum number of lock entries which may be stored into one disk block is
dependent on the number of sharing CPUs (max. 31) and on the data block length
(presently always 512 bytes).

The number of sharing CPUs is restricted to 31.

Example:
Number of sharing CPU: 4
Length of one Tock entry
(resource name length + no. of CPUs): 16
Length of available space in one data block
(512 - (2 byte ID + 2 byte count)): 508

Number of Tock entries per data block
(Tength of avail. space DIV Tength of Tock entry): 31

Figure 55. Maximum Number of Lock Entries in One Data Block (ex. 4 CPUs)

Mapping of Locks into Disk Blocks

Locked resources are stored into the external lock file at random. A hashing algo-
rithm maps the resource name into the disk block number. This is done to spread
the lock entries evenly over the external lock file. Within the disk block, lock entries
are stored on the next free place.

When a lock entry is deleted, the last lock entry is moved to the free place.

Hashing Algorithm
1. Compress the 12-byte resource name by two EXCLUSIVE OR instructions into
a full word.
2. Divide this full word by the number of blocks in the lock file.
3. You will get the relative block number within the external lock file, if you use the
remainder of this division and add one block (for the header record block).

Lock Management 131

Example

Ex.: Look for resource "LOCKFILEOO1" and compute disk
block number.

Number of blocks in our example: X'25' (=DLFNBLK)

Resource name (12 bytes):

D3| D6| C3| D2| C6| C9| D3| C5| FO| FO| F1| 40

L o ¢ K F I L E 0 0 1

| «—part 1—»|<«—part 2—>|<«—part 3—>|

Part 1: Part 2: Result 1:
D3| D6| C3| D2| XOR C6| C9| D3| C5| = 15| 1F| 10| 17
L 0 C K F oI L E
Result 1: Part 3: Result 2:
15(1F| 10| 17| XOR FO| FO| F1| 40| = E5| EF| E1| 57
0o 0 1
Result 2: Number of blocks: Remainder:
E5| EF| E1| 57 MOD 00| 00| 00| 25| = 00| 00 00| 23
1 header record block + 1
Disk block number of lock entry (=DLFHBLK) 24

Figure 56. Mapping of Locks into Disk Blocks

Lock File Size
During IPL the lock file size is determined.

Lock Entry - Storing and Retrieval

Record insertion: New lock entries are entered into the first free place of the
selected block (selected via hashing). Records within one block are not ordered.

132 z/VSE 4.2 Supervisor Diagnosis Reference

3 REC1| REC2| REC3| RECx| RECy| eee before
Number
of rec.
4 REC1| REC2| REC3| REC4 soo after
Number
of rec.
Record retrieval: Scan the whole block to find the required lock entry.
Record deletion: When a lock entry is deleted, the last lock entry is moved to the
free place (to keep the block 'dense’)
Example: REC2 is deleted, REC4 is moved to the free place.
4 REC1| REC2| REC3| REC4| RECx| eee before
Number
of rec.
3 REC1| REC4| REC3| REC4| RECx| eee after
Number
of rec.

Fetch in a DASD Sharing Environment

For FETCH (Program Retrieval) in a DASD Sharing Environment see “DASD

Sharing Environment” on page 360.

Lock Management

133

Service and Debugging Information

The here described data areas can be changed at any time by IBM if necessary
and cannot be considered as an interface. Any interpretation, dependency or con-
clusion is only valid for the shown environment.

Overview
Basics
LOCK Protects resources against simultaneous access by other tasks.
UNLOCK Frees locked resources.
VSE SVC LOCK/UNLOCK is SVC 110 (X'6E).

USE/RELEASE (SVC 63/64) are still supported without interface macro.
LOCK Gate The SVCs are serialized with system gate SRQUSE (X'8B).
Resources

e Libraries

e Catalogs

e Data sets

e Data (e.g. control blocks)

Protection Scope

Internal Locking Protects resources against
other tasks or partitions.

External Locking (DASD Sharing) Protects resources in the
present system and all
sharing systems.

Lock Manager Macros
Define the Lock (DTL) Parameter List for LOCK/UNLOCK, generated at compile

time
GENDTL DTL, generated at run time
MODDTL Modifies the DTL contents
LOCK Own a resource
UNLOCK (ALL) Free a resource or all held resources by this task/partition

134 z/VSE 4.2 Supervisor Diagnosis Reference

LOCK Function

DTL Mapping

MAPDTL
DTLLENG
DTLFLG1
DTLEXC
DTLOPT1
DTLOPT2
DTLOPT4
DTLFLG2
DTLKEEP
DTLPART
DTLREDC
DTLEXTR
DTLVOL
DTLNAME
DTLVOLID
DTLECB
DTLRC
DTLPOST
DTLECB3

DTLLEN

DSECT

DS
DS
EQU
EQU
EQU
EQU
DC
EQU
EQU
EQU
EQU
EQU
DS
DS
DS
DS
DS
DS
DS
EQU

AL2 (DTLLEN)
XLl '10°
X'10"

1

2

4

XL1 '00"
X'80"
X'40"
X'20"
X'10"

8

CL12 'DUMMYMAPDTL

CL6 ' '
XLl 'O

XL1 '0'

XLl '0'

XL1 '0'

XL4 '0!
*-MAPDTL

DSECT FOR DEFINE THE LOCK

LENGTH OF DTL

CONTROL AND LOCKOPT SPECIFICATION
CONTROL=E

LOCKOPT=1

LOCKOPT=2

LOCKOPT=4

JC & VSAM FLAGS

KEEP UNTIL EOJ

OWNER=PARTITION

REDUCE STRENGTH OF LOCK (UNLOCK ONLY)
SCOPE=EXTERNAL

VOLID SPECIFIED

' RESOURCE NAME

VOLUME IDENTIFICATION

ECB OF REQUESTING TASK

RETURN CODE OF THE REQUEST

FLAG TO POST THE TASK

BYTE 3 OF ECB

RESERVED

LENGTH OF DTL

Request the usage of a resource. Beside the DTL a FAIL parameter defines the
system action in case of unsuccessful completion.

FAIL=RETURN

FAIL=WAITC

FAIL=WAIT

The requesting task always gets control back and has to check
the return code for the SVC's response.

The system places the task in a wait state (state X'8E, waiting
for locked resource), if the resource cannot be obtained cur-

rently.

all other cases the task gets control back and has to check the

return code.

case a resource cannot be obtained because it is in use by
another system, the lock system task retries the lock request
every second (there is no other way to recognize that the
resource becomes free).

The requesting task gets control back, when it's owning the

resource.

If the resource is locked by another task or if lock file or DLF
space is exhausted then the task is set into a wait state (X'8E).

In case a resource cannot be obtained because it is in use by
another system, the lock system task retries the lock request

every second.

In all other unsuccessful cases the task is cancelled.

135

Lock Management

FAIL=WAITECB The requesting task always gets control back and has to check
the return code.

If the resource is currently locked by another task, then the
request is queued to the resource.

As soon as the resource is UNLOCKed the lock system task
repeats this lock request and tries to lock it for this task.

In case a resource cannot be obtained because it is in use by
another system, the lock system task retries the lock request
every second.

If the task becomes owner of the resource the ECB in the DTL
is posted to indicate completion of the former lock request.

UNLOCK Function

Free a resource. All tasks waiting for this resource are posted (FAIL=WAIT/WAITC)
and retries for existing requests from tasks with FAIL=WAITECB are performed.

IF parameter 'ALL' is specified, all resources held by that task are released (except

KEEP=YES). In this case FREEVIS of the no longer used control blocks is per-
formed.

UNLOCK ALL does not provide a return code.

Data Lock File (DLF)

136

e The lock file resides on a DASD which must be ADDed with the option SHR.
* The lock file contains all external locks from all sharing systems.

* The access to the lock file is established with the IPL DLF statement. Either
CUU or VOLSER must be specified and further parameters specify extent and
size of the lock file and the number of sharing systems.

e Lock file /O is protected via channel commands reserve/release (X'B4/94).
Therefore it's not recommended to place performance critical data on that CUU.

e The lock file format is the same for all VSE releases.
* The lock file can only be formatted while all sharing systems are down.
e Formatting of the lock file can be done by any sharing system.
e Formatting of the lock file is necessary if
— A new storage medium is used

— The number of sharing systems is increased

z/VSE 4.2 Supervisor Diagnosis Reference

Sharing Systems

e Each sharing system needs a unique CPU ID.

e |f all VSE systems are guests of the same VM system, then the lock file can be
defined on a VM virtual disk.

¢ In all other cases, like VSE native, VSE native in LPAR, VSE guests in more
than one VM or a combination of the above, the lock file has to reside on a
FBA, CKD or ECKD DASD with sharing capability.

UNLOCK SYSTEM

¢ |f one of the sharing systems ends up in hardwait or softwait it may block all
other systems because of held locks.

e The AR command UNLOCK SYSTEM=cpuid performs an UNLOCK ALL on the
lock file for the specified system. The header entry for this system is also
cleared.

Data Structures
The following examples are taken from dumped storage.

Lock File Header Format
The lock file header's length is 20 + ncpu*8 bytes.

Lock Management 137

Example for a lock file header:

D3C60004 020002B1 001F0010 0001002E 06 *LF £
000FO30C 80OOFFFF 10009221 00000000 06 = 0 k
00000000 00000000 000000 OOOOOO0O 06 *

00000000 00000000 000000 0OOOOO00 06 *

* % F X

block indicator

number of sharing systems (cpu fields)

physical block Tength

number of data blocks in lock file
number of entries per block

th of one entry (12+ncpu)

nder address of lock file

leng
11
i
L1
M

cyli
1]
||| |number of blocks per track

VVVVVVVV VVVVVVVV VVVVVVVV VVVVVVVV
D3C60004 020002B1 001F0010 0001002E 06 *LF £ *

number of tracks per cylinder

device type = rps ckd (fba=1, ckd=2, eckd=4)
device type code = ckd dasd

agl 80 = this cpu field is in use, else 00

fl
[
||f1ag2 not used

[|]]

[|]|cpu id (sharing system identification)
(LCCLEE UL

[LLLETTT THTTT] currently only 1 system
VVVVVVVV VVVVVVVV VVVVVVVV

000FO30C 80OOFFFF 10009221 00000000 06 * 0 k
00000000 00000000 0OOOOOOO OOOOOOOO 06 =

00000000 00000000 00000000 0OOOOOOO 06 =*

138 z/VSE 4.2 Supervisor Diagnosis Reference

Lock File Data Format

A data block is always 512 bytes long

Example for a lock file data block:

D3C60001 D9C5E2D6 E4DIC3C5 60C5F1F7 06 *=LF RESOURCE-E17+

11000000 00000000 00000000 0OOOOOOO 06 * *
00000000 00000000 0OOOOOOO COOOOOOO 06 * *
k indicator

ocC
[
[
I
[

umber of entries in this block
|1
|1

n
|
| resource name

VVVVVVVV VVVVVVVV VVVVVVVV VVVVVVVV
D3C60001 D9C5E2D6 E4DIC3C5 60C5F1F7 06 *LF RESOURCE-E17+

in use by slot 0, exclusive = 1x option 1l =yl
shared = O0x option 2 = y2
option 4 = y4

not used = 00

other slots

1

||| not yet used

VVVVVVVYV

11000000 00000000 00OOOOOO 0OOOOOEO 06 *
00000000 0OOOOOOO OOOOOOOO 0OOOOOOO 06 *

Lock Management 139

Lock Table Format
e The Lock table contains all locks of one VSE system.

» All entries are chained in a double linked list, the anchor point to the table is at
label ALOKTABA in the supervisor. ALOKTABA is the first fullword after eye
catcher ILCKSP.

¢ The control block, containing the resource name and the locking status is called
LOCKTAB ENTRY. Pointers refer to

— OWNER ELEMENTS (owner's task ID) and

— REQUEST ELEMENTS (tasks which previously issued LOCK with
FAIL=WAITECB and resource was in use).

e A locktab entry is 32 bytes long, owner and request element's length is 16
bytes.

140 z/VSE 4.2 Supervisor Diagnosis Reference

Example for a locktab entry with owner and requestors:

VO0O4FID4 00311080 003110CO DIC5E2D6 E4DIC3C5 * @ {RESOURCE=*
VOOO4F9E4 60C5F1FO 11800001 0004F9F4 00000000 *-E10 @ 94 *

V00311080 00000000 00250000 00011000 00000000 =* *
V003110C0 0004FA74 00240000 00000000 00600ABE * %4E - %
VOOO4FA74 00000000 00230000 00000000 OO6O0ABE = - 7%

LOCKTAB ENTRY:
p
|
|
|
|
|

to first owner element

pointer to first request element

e —

| resource name

VVVVVVVV VVVVVVVV VVVVVVVV VVVVVVVV
VO004F9D4 00311080 003110CO DIC5E2D6 EADIC3CH

*

@ {RESOURCEx

resource name (contd.)

locking status: exclusive = 1x option 1 =yl
shared = 0x option 2 = y2
option 4 = y4
not used = 00
flag: 80 = entry in use, 40 = owner=partition
20 = s user waits, 10 = entry in Tock file
08 = e user waits
1 number of exclusive users

pointer to next entry

tota
1]
1]
1]
1]

[I|111]] pointer to previous entry

VVVVVVVV VVVVVVVV VVVVVVVV VVVVVVVV
VOOO4F9E4 60C5F1FO 11800001 0004FI9F4 00000000 *-E10 @ 94 *

Lock Management 141

OWNER ELEMENT:

pointer to next owner element
owner's task id
number of shared users

er of exclusive users

ag: 80 = keep until end of job

exclusive usage

—
(<)
I

numb
11
[]]f1
LT
L
[1]I| reserved

VVVVVVVV VVVVVVVV VVVVVV
V00311080 00000000 00250000 00011000 00000000 =* *

REQUEST ELEMENT 1:

pointer to next request element

T

[1[11]]] requestor's task id

e

(LT T user's dtl address

[TTHTTEE T] reserved LT

VVVVVVVV VYV VVVVVVVY
V003110CO 0004FA74 00240000 00000000 OO600ABE * 4E - 7%
REQUEST ELEMENT 2:
VOOO4FA74 00000000 00230000 00000000 OO600ABE * - 7%

142 z/VSE 4.2 Supervisor Diagnosis Reference

Algorithms

Lock Algorithm

| START
|validate input parms
|search in locktab for resource

| RESOURCE FOUND | | RESOURCE NOT FOUND
|check consistency | |get space for control blocks]|
|check Tocking status| |check Tocking scope |

|RESOURCE FREE| |RESOURCE LOCKED| |INTERNAL LOCK | |EXTERNAL LOCK|

|>>> | |>>> | |write locktab entry| |>>> |

-------------------------------- |chain owner R
|end |

| RESOURCE FREE |
|get space for owner element|
|check Tocking scope |

| INTERNAL LOCK]| | EXTERNAL LOCK]|
|chain owner | |>>> |
|end U

Lock Management

143

Lock Algorithm cont...

|RESOURCE LOCKED |
|check FAIL option|

|WAIT or WAITC | | RETURN | |WAITECB |
|do deadlock check| lend | |chain request|
--------------------------- |end |
| _______________
| |
DEADLOCK		NO DEADLOCK
WAIT - cancel		[set user RURBND (X'8E)
WAITC - end		(waiting for locked resource)
--------------- |end |

| EXTERNAL LOCK |
|check locking status]|

| RESOURCE FREE | | RESOURCE LOCKED |
|update Tock file entry]| |check FAIL option|
|write Tocktab entry | = emmmmmmmemmeeeeo
|chain owner |
|end |

|RETURN| |WAITECB |WAIT or WAITC

| |

lend | |start timer | |start timer
-------- |write locktab entry| |set user LCKBND|
|chain request | |(x'68) |
|end | |end |

144 z/vSE 4.2 Supervisor Diagnosis Reference

Unlock Algorithm

| START
|validate input parms
|search in locktab for resource

| RESOURCE FOUND | | RESOURCE NOT FOUND |
|check ownership| |end

| TASK IS OWNER | TASK IS NOT OWNER |
|chain next owner |check request chainl|
|free owner element | — cmmmmmeemoos
|check Tocking status

| TASK HAS REQUEST | |TASK HAS NO REQUEST]|
|chain next request | |end

|free request element| =--------cmmmmmmmaao-
|end |

| STATUS CHANGED| |STATUS NOT CHANGED|
|>>> | lend |

Lock Management 145

146

Unlock Algorithm cont...

| STATUS CHANGED |
|check Tocking scope]|

| INTERNAL LOCK| | EXTERNAL LOCK |
--------------- |update Tock file entry |

| |reserve cuu with first update|
| |release cuu with Tast update |
|
|

[NO OWNERS OR REQUESTS QUEUED| | OWNERS or REQUESTS QUEUED|
|end | |check request chain

[NO REQUESTS| |REQUESTS FOUND |

|end | |at completion of unlock

------------- |Toop with lock algorithm |
|thru all requests till |
|return code <>0

z/VSE 4.2 Supervisor Diagnosis Reference

Unlock All Algorithm

| START |
|Toop thru all Tocktab entries|

| TASK IS OWNER | |TASK HAS REQUEST | [NOT OWNER /NO REQUEST|

|chain next owner | |chain next request | |next locktab entry

|FREEVIS owner element| |FREEVIS request element| =------e-emomomomamaao-
|

|check Tocking status | |next locktab entry |

|STATUS NOT CHANGED | |STATUS CHANGED |
[NEXT LOCKTAB ENTRY | [>>>

Lock Management 147

Unlock All Algorithm cont...

| STATUS CHANGED |
|check Tocking scope]|

| INTERNAL LOCK]| | EXTERNAL LOCK |
--------------- |update Tock file entry |

| |reserve cuu with first update|
| |release cuu with last update |
|
|

[NO OWNERS OR REQUESTS QUEUED| | OWNERS or REQUESTS QUEUED|
| FREEVIS Tocktab entry | |check request chain
|end | s

[NO REQUESTS| |REQUESTS FOUND

|end | |at completion of unlock all

------------- |1oop with Tock algorithm
|[thru all requests till
|return code <>0
|and thru all such resources

IPL Algorithm

148 z/VSE 4.2 Supervisor Diagnosis Reference

| START
|get own cpu slot

[Toop thru all entries in each data block

|reserve cuu

|CPU IS OWNER |
|free own entry |
| (count,slot,move) |

|release cuul
[next entry |

Check Waiting for Locked Resource

|
[Toop thru all lock file data blocks |
|
|

The task is in state X'8E and in TIBSTATE (TIB, offset 4) is:

e The address of the locktab entry, that contains the resource and current

owner(s).

e X'0000000C if task waits for the lock system task (= task id OC) to complete.
This is the case when the lock manager retries for external locking. The
resource con be found via register 1 in the user save area.

Lock Management

149

Lock Manager Trace Area

Eye catcher is LCKT in SGLOCK. A trace entry is 64 bytes long. The first 3
fullwords specify start, end and actual position in the wrap around area.

150

Example for trace entries:

VOOO4FADO
VOOO4FAEO 000504E7
VOOO4FAFO 11000000
VOOO04FBOO 40404040
VOO04FB10 5BD1D6C2
VO004FB20 0004FA14
VOOO4FB30 11000024
VOOO4FB40 40404040
VOOO4FB50 00000000
VOOO4FB6O 0004FA14

0004FB68
01000000
0004FA34
C1C3C3E3
00000000
01000F00
0004FA34
00000000
00000000

D3C3D2E3
24240700
5BD1D6C2
0004FA74
40404040
24240100
5BD1D6C2
00000000
00000000

0004FAES8
006092C4
CI1C3C3E3
00000000
11800001
006092C4
C1C3C3E3
00000000
00000000

06
06
06
06
06
06
06
06
06

Fovinns LCKT %Y=
x X Uy -kD*
* $JOBACCT*
* ¥ i *
*$JOBACCT g =
* % -kD=*
* $JOBACCT*
* }8 *
* *
* *

pointer to first byte of area

VVVVVVVV
VOOO4FADOcvv civennn. D3C3D2E3 OOO4FAE8 06 *........ LCKT %Y*
pointer to last byte of area
pointer to next free entry in area
LAST BUT ONE ENTRY:
task id as used for owner
actual running task (Tow core)
lock/unlock req.: 00 release
01 unlock
03 lock fail=return
06 use
07 lock fail=wait
0B Tlock fail=waitc
21 unlock all
31 unlock all eoj
41 unlock sysid
43 deadlock check
83 lock fail=waitech
return code (see return codes)
|
|| user's dt1 address
LTI
VVVVVVVV VVVVVVVV VVVVVVVV VVVVVVVV
VOOO4FAEQ 000504E7 0004FB68 24240700 006092C4 06 X Uy -kD*

z/VSE 4.2 Supervisor Diagnosis Reference

VOOO4FAFO

VO004FB0OO

VOOO4FB10

VO004FB20
VOO04FB30
VO004FB40
VOO04FB50
VO004FB60

user's dt1 flagl (see dtl, here: exclusive, option 1)

user's

lock

if

VVVVVVVV
11000000

resource
[T
[T
[T
T
[T

VVVVVVVYV
40404040

contents
LT
VVVVVVVV
5BD1D6C2

VVVVVVVV
0004FA14
11000024
40404040
00000000
0004FA14

dt1 flag2 (see dtl, here: default)

manager SERVFLG, see source for expl.

an owner exists then first owner's tid

lock manager LOKOWORK, see source for expl.
lock manager REQWORK, see source for expl.

ck manager UNLCKFLG, see source for expl.

ck manager DSHRFLG, see source for expl.

lo
|
|
|
|

To
||
|| resource name

VVVVVVVV VVVVVVVV VVVVVVVV
01000000 5BD1D6C2 C1C3C3E3 06 * $JOBACCT*

name (contd.)

address of current locktab entry

| contents of current locktab entry

VVVVVVVV VVVVVVVV VVVVVVVV
0004FA34 0004FA74 00000000 06 = %

o
(nall
*

of current Tocktab entry (contd.)

VVVVVVVV VVVVVVVV VVVVVVVV
C1C3C3E3 40404040 11800001 06 *$JOBACCT g *

nt Tocktab entry (contd.)

|
| LAST ENTRY:
| see previous entry

VVVVVVVV VVVVVVVV VVVVVVVV

of curre
L]
]
]
|

00000000 24240100 006092C4 06 * % -kD=
01000F00 5BD1D6C2 C1C3C3E3 06 = $JOBACCT*
0004FA34 00000000 00000000 06 = % *
00000000 00000000 00000000 06 =* *
00000000vvvh iiinann 06 * *

Lock Management

151

Statistic Counters

At eye catcher COUNTERS in SGLOCK there are fields for LOCK/UNLOCK
request return code tracking:

e Internal requests
e External requests
 Internal LOCKs
e External LOCKs
e UNLOCKs

e deadlock checks
e Lock file gets

e Lock file puts

LOCKCNTS DC CL8'COUNTERS'

SVC110IN DC A(0) INTERNAL LOCKING COUNTER
SVC110EX DC A(0) EXTERNAL LOCKING COUNTER
LOCKRCOO DC A(0) LOCK COUNTER FOR RC = 0
ELCKRCOO DC A(0) LOCK COUNTER FOR RC =
LOCKRCO4 DC A(0) LOCK COUNTER FOR RC = 4
ELCKRCO4 DC A(0) LOCK COUNTER FOR RC = 4
LOCKRCO8 DC A(0) LOCK COUNTER FOR RC = 8
ELCKRCO8 DC A(0) LOCK COUNTER FOR RC = 8
LOCKRCOC DC A(0) LOCK COUNTER FOR RC = 12
ELCKRCOC DC A(0) LOCK COUNTER FOR RC = 12
LOCKRC10 DC A(0) LOCK COUNTER FOR RC = 16
ELCKRC10 DC A(0) LOCK COUNTER FOR RC = 16
LOCKRC14 DC A(0) LOCK COUNTER FOR RC = 20
ELCKRC14 DC A(0) LOCK COUNTER FOR RC = 20
LOCKRC18 DC A(0) LOCK COUNTER FOR RC = 24
ELCKRC18 DC A(0) LOCK COUNTER FOR RC = 24
LOCKRC1C DC A(0) LOCK COUNTER FOR RC = 28
ELCKRC1C DC A(0) LOCK COUNTER FOR RC = 28
LOCKRC20 DC A(0) LOCK COUNTER FOR RC = 32
ELCKRC20 DC A(0) LOCK COUNTER FOR RC = 32
LOCKRC24 DC A(0) LOCK COUNTER FOR RC = 36
ELCKRC24 DC A(0) LOCK COUNTER FOR RC = 36
ULOCKRCO DC A(0) UNLOCK COUNTER FOR RC =
ULOCKRC4 DC A(0) UNLOCK COUNTER FOR RC =
ULOCKRC8 DC A(0) UNLOCK COUNTER FOR RC =
ULOCKRCC DC A(0) UNLOCK COUNTER FOR RC =
DEADRCOO DC A(0) DEADLOCKCHECK WITH RC =
DEADRCO4 DC A(0) DEADLOCKCHECK WITH RC =
IOGET DC A(0) READ I/0'S TO LOCKFILE
IOPUT DC A(0) WRITE I/0'S TO LOCKFILE

(<]

PO L OB~ O

152 z/VSE 4.2 Supervisor Diagnosis Reference

Error on Lock File

Message 0TO1E ERROR ON LOCK FILE indicates one of these situations:

user error in DLF statement
an unrecoverable I/O error

lock file format error

0w Dp P

lock file logical error

The investigation of type 1, 2 and 3 errors does not necessarily require a stand-
alone dump. Type 4, which is the most frequent one, however needs analysis of
the current lock manager data at the point of failure. The system does not stop
processing after issuing the message and therefore a dump at a later point might
not show the reason of the problem. In order to speed up the error analysis of such
situations a method to circumvent the standard procedure

e take standalone dump
e mail to IBM

e analyze a dump

has to be established.

The lock manager writes together with the message 0TOLE ERROR ON LOCK
FILE additional data that describes the error situation. This information can be sent
in for analysis via FAX.

Lock Management 153

154

Example

this example shows an inconsistency between lock table and Tock file

when an UNLOCK function was performed.

F4 0025 OTO1E ERROR ON LOCK FILE
F4 0025 LOCK MANAGER EMERGENCY DATA

V00051138
V00051148

000C0025 0101000F
E2D6E4D9 C3C560C5

F4 0025 LOCKTAB ENTRY

VOOO4FE70
VOOO4FE80

00000000 00000000
00000000 00000000

F4 0025 LOCK FILE DISK BLOCK

V00086198
VO00861A8
V000861B8
V000861C8

D3C60000 DIC5E2D6
11000000 00000000
00000000 00000000
00000000 00000000

80000000
F1FO1110

00000000
0004FE90

E4DI9C3C5
00000000
00000000
00000000

0025D9C5
00051148

00000000
00000000

60C5F1F0
00000000
00000000
00000000

RO0051138
RO0051148

ROOOAFE70
ROOO4FESO

RO0086198
ROO0861A8
ROOO861B8
RO00861C8

F4 0025

V00086358
V00086368
V00086378
V00086388

00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000

00000000
00000000
00000000
00000000

F4 0025 LOCK MANAGER TRACE AREA
VOOO4FF78 D3C3D2E3 0004FF88 00050987
F4 0025 LOCK MANAGER TRACE AREA

VOOO4FF88
VOOO4FF98
VOOO4FFA8
VOOO4FFB8

3F3F0B0OO
E5C3E3E2
0033B140
D7D30000

00902D80
F2F2FOE4
00000000
01800000

01080000
D7D30000
E5C3E3E2
0033B180

00000000
00000000
00000000
00000000

00050788

01000000
0033B160
F2F2FOE4
0033B120

RO0086358
R0O0086368
RO0086378
R0O0086388

ROOO4FF78

ROOO4FF88
ROOO4FF98
ROOO4FFA8
ROOO4FFB8

.....................................

F4 0025

V00050748
V00050758
V00050768
V00050778

25250B00
D9C5E2D6
0033B510
60C5F1F7

00600890
E4DI9C3Ch
00000000
01900000

01100000
60C5F1F7
D9C5E2D6
00000000

01000000
0033B520
E4D9C3C5
0033B4EO

R0O0050748
RO0050758
R0O0050768
RO0050778

F4 0025

V00050948
V00050958
V00050968
V00050978

3F3F0104
E5F24000
000A0000
00007480

00902D80
9042CCC3
00000000
00003F00

z/VSE 4.2 Supervisor Diagnosis Reference

11000000
C1E70000
00000000
070C0000

01000000
00000000
00000000
8007146A

* 2 RE*
*SOURCE-E10 o
*

* 0e
*LF RESOURCE-E10=
* *
* *
* *
* *
* *
* *
* *
«LCKT h g h=
* ° Q9 *
VCTS220UPL £-
* £ VCTS220U~*
*PL 0 £0 £ *
* - ° *
*RESOURCE-E17 § =
* § RESOURCE =
-E17 ° fl
* ° 9 *
*V2 °36CAX *
* *
* E0 g 1=

RO0050948
R0O0050958
RO0050968
R0O0050978

Lock file emergency data contains:

bytes:
bytes:
byte :
byte :
byte
byte :
byte :

= === NN

1 byte :

2 bytes:
2 bytes:
12bytes:
1 byte :
1 byte :
4 byte :

TID (Tow core)

LCKUTID (Tock manager TID, for which the service runs)
LOCKPARM (already explained)

LOKOWORK (work area to compare DTL info)

: REQWORK (work flag for deadlock test)

UNLCKFLG (flag for unlock service)
UNLCKFLG (flag for unlock service: 01 activate waiting tasks
02 free owner element
04 free locktab entry
08 activate E1 requestors
10 Tock file block modified
DSHRFLG (flag for system task: 80 system task is active
40 timer request already set
20 update on lock file required
10 disk drive reserved
LCKCNT (count locked tasks, deadlock check)
TRCOTID (first owner's TID, if the resource is in use)
TRCRESN (current resource name)
TRCFLG1 (user's DTL option byte 1)
TRCFLG2 (user's DTL option byte 2)
reserved (ignore contents)

Analysis of the Example
The UNLOCK request came for resource RESOURCE-E10 from task 25(F4).
Current task is lock task C.

The UNLOCK was performed sucessfully in the lock table since the locktab entry
was cleared.

However this resource was an external one. TRCFLG2 (DTLFLG2) shows X'10',
scope=external.

The corresponding lock file block shows 0 as number of entries. It still can be seen
that RESOURCE-E10 has been placed in this block before.

The lock manager detects the mismatch between local lock table and lock file and
issues the error message.

The cause of such a type of error can be

e There are several VSE systems under one VM and 2 of them are running with
the same CPUID.

* The reservelrelease mechanism did not work. Software caching did suppress
the lock manager's CCW's but did not provide a proper exclusive access han-
dling. Software caching is not done in VSE. VM or vendor products (on VM or
VSE) are candidates.

Lock Management

155

Display Facility

156

To allow faster diagnosis in case of resources being in use or deadlock situations it
is possible to display the actual locking status of

the entire lock table

e a given resource name

all locks held by a specified partition (PIK)

* a set of resource names, specified with name*

» a set of resource names held by a given partition

This feature is available via Attention Routine command LOCK SHOW. Examples

for the usage of the command are

LOCK SHOW

LOCK SHOW=F4

LOCK SHOW,RESOURCE-E10

LOCK SHOW,VSYSOPEN'00000001

LOCK SHOW,RESOURC*

LOCK SHOW=F6,RES*

shows all currently held locks (resources) of
this VSE system.

shows all currently held locks (resources) of
partition F4.

shows who is currently holding resource
RESOURCE-E10 (if held at all).

shows who is currently holding resource
VSYSOPENO0000001 (if held at all), where
VSYSOPEN is interpreted as characters and
00000001 as hex value.

shows who is currently holding resources,
starting with the character string RESOURC.

shows, if partition F6 is currently holding
resources, starting with the character string
RES.

For interpretation of the output please refer to the lock table description.

z/VSE 4.2 Supervisor Diagnosis Reference

Example

lock show

AR 0025 LOCKTAB ENTRY

VOO04F344 003245A0 00000000 D9C5E2D6 E4D9C3C5 = aff RESOURCE* RO004F344
VOO04F354 60C5F1FO 11900001 0004F364 00000000 *-E10 ° 3A * ROOO4F354
AR 0025 OWNER ELEMENT

V003245A0 00000000 002C0000 00011000 0OOOOOOO
AR 0025 LOCKTAB ENTRY

VOO04F364 0004F3E4 00000000 C4E3E2E5 C5C3E3C2 * 3U DTSVECTB* ROO0Q4F364
VOO04F374 40404040 11800001 0004F384 0004F344 3d 3a* RO004F374
AR 0025 OWNER ELEMENT

VOOO4F3E4 00000000 00400000 00011000 00000000 * * ROOO4F3E4
AR 0025 LOCKTAB ENTRY

VOO04F384 0004F3F4 00000000 E5C3E3E2 F2F2F000 * 34 VCTS220 = RO0O04F384
VOO04F394 00000000 04C00000 0004F3A4 0004F364 3u 3A* RO0OO4F394
AR 0025 OWNER ELEMENT

VOOO4F3F4 00000000 00230001 00000000 00000000 * * ROOO4F3F4
AR 0025 LOCKTAB ENTRY

VOOO4F3A4 0004F414 00000000 E5C3E3E2 F2F2F000 * 4 VCTS220 = ROO04F3A4
VOOO4F3B4 00000001 04C00000 00324020 0004F384 3d* ROO04F3B4
AR 0025 OWNER ELEMENT

VOO04F414 00000000 00230001 00000000 0000000 * * RO0O4F414
AR 0025 LOCKTAB ENTRY

V00324440 003245E0 00000000 D9C5E2D6 EADIC3C5 * a\ RESOURCE* RO087F440

*
*

ROO87F5A0

*
[}

S
—_

*
—_

V00324450 60C5F1F7 01900000 00000000 00324420 *-E17 ° a = ROO87F450
AR 0025 OWNER ELEMENT
VO03245E0 00000000 002CO001 00000000 00000000 =* * ROO87F5E0

AR 0015 1I40I READY

Lock Management 157

Trace Facility

158

A trace facility for unsuccessful locks (RC<>0) and unlocks is provided. Trace con-
tents can be specified according to the display facility from above. Besides that a
command for trace deactivation is available. Traces can be done for

all tasks and resources

« all resources belonging to a specified partition (PIK)

e a set of resource names, starting with name* for all tasks

* a set of resource names and a specified partition

The Attention Routine command LOCK TRACE controls the various trace options.
Examples for the usage of the command are

LOCK TRACE

LOCK TRACE=0OFF
LOCK TRACE=F4

LOCK TRACE,RESOURCE-E10

traces all unsuccessful locks and unlocks of
all partitions.

sets the trace facility off.

traces all unsuccessful locks and unlocks of
partition F4.

traces all unsuccessful locks and unlocks of
RESOURCE-E10 of all partitions.

LOCK TRACE,VSYSOPEN'00000001 traces all unsuccessful locks and unlocks of

LOCK TRACE,RESOURC*

LOCK TRACE=F6,RES*

VSYSOPENO0000001, where VSYSOPEN is
interpreted as characters and 00000001 as
hex value, of all partitions.

traces all unsuccessful locks and unlocks of
resources, starting with the character string
RESOURC of all partitions.

traces all unsuccessful locks and unlocks of
resources, starting with the character string
RES of partition F4.

For interpretation of the output please refer to the lock table description.

z/VSE 4.2 Supervisor Diagnosis Reference

Examples

lock trace=f4
AR 0015 11401

F4 0025 LOCKTAB ENTRY
VOO04F344 00324440 00000000
VO004F354 60C5F1FO 11900001
F4 0025 OWNER ELEMENT
V00324440 00000000 002CO000
F4 0025 LOCKTAB ENTRY
V00324160 00324490 00000000
V00324170 60C5F1F1 11900001
F4 0025 OWNER ELEMENT
V00324490 00000000 002CO000
F4 0025 LOCKTAB ENTRY
V00324450 00324480 00324440
V00324460 60C5F1F3 01900000
F4 0025 OWNER ELEMENT
V00324480 00000000 002C0001
F4 0025 REQUEST ELEMENT
V00324440 00000000 00250000

AR 0015 11401
lock trace=off
AR 0015 11401

lock trace=f4,resource-el0

AR 0015 11401

F4 0025 LOCKTAB ENTRY
VOO004F344 003245C0 00000000
VO004F354 60C5F1FO 11900001
F4 0025 OWNER ELEMENT
V003245C0 00000000 002CO000
F4 0025 LOCKTAB ENTRY
VOO04F344 0004F404 003245E0
VO004F354 60C5F1FO 11900001
F4 0025 OWNER ELEMENT
VO004F404 00000000 002C0000
F4 0025 REQUEST ELEMENT
V003245E0 00000000 00250000

AR 0015 11401
lock trace=off
AR 0015 11401

READY

READY

READY

READY

READY

READY

D9C5E2D6
0004F364

00011000

D9C5E2D6
00324420

00011000

D9C5E2D6
003244A0

00000000

00000000

D9C5E2D6
0004F364

00011000

D9C5E2D6
0004F364

00011000

00000000

E4D9C3C5
00000000

00000000

E4D9C3C5
00324400

00000000

E4D9C3C5
00324420

00000000

00600818

E4D9C3C5
00000000

00000000

E4D9C3C5
00000000

00000000

00600ABE

*

a RESOURCE~*

*-E10 ° 3A *

*

*

a° RESOURCE~

*-E11 ° a a=

*

*

ad a RESOURCE~

*-E13 ° aff a *

*

*

af RESOURCE~*

*-E10 ° 3A *

*

*

*

4 3\RESOURCE*

*-E10 ° 3A *

*

RO004F344
ROO04F354

ROO87F440

ROO87F160
ROO87F170

ROO87F490

ROO87F450
ROO87F460

ROO87F480

ROO87F440

RO004F344
ROO04F354

ROO87F5CO

RO004F344
ROO04F354

RO004F404

ROO87F5E0

Lock Management 159

160 z/VSE 4.2 Supervisor Diagnosis Reference

Channel Program Translation

Note: Whenever in this section (Channel Program Translation) a reference is
made to a CCB (Channel Command Block), it also includes the IORB
(Input/Output Request Block).

The supervisor must do the following before initiating an 1/0 operation (if not EXCP
real):

¢ Translate format 1 CCWs into format 0 CCWSs.

e Copy the CCB and the entire channel program into copy blocks in the super-
visor.

» Translate the addresses used by the CCB and the channel program into real
storage addresses and place these addresses into the copied CCB and
channel program.

e Build IDALs (Indirect Data Address Lists) for all I/O areas which cross one or
more page boundaries.

e Build IDALs for all /O areas with a real address larger than 16MB.

» Fix all pages containing I/O areas in real storage for the duration of the I/O
operation.

These functions are performed by the routine CCWTRANS. CCWTRANS is called
by the channel scheduler every time a virtual-mode 1/O request is made. For 1/O
requests from BTAM channel appendages this routine is entered at its entry point
CCWTRBT?2 (for further information, refer to -- Heading 'BTAMC' unknown --).

At the completion of an 1/O operation, the routine CSWTRANS is called by the I/O
interrupt handler. It must do the following:

* Retranslate the address of the last CCW pointed to by the CSW at channel end
to its correct virtual address. This address is placed in the copied CCB.

* Free the data areas.
* Release the copy blocks used for the translation except the CCB copy block.

¢ Transfer the CCB information which has changed to the original CCB. If this is
not possible (because the original CCB is not in real storage) indicate to the
dispatcher that this must be done before the user task is given control again. In
this case, the dispatcher calls a special routine (MOVECCB) to transfer the end
of channel information from the copied CCB to the CCB in the user program.

Translation Control and Copy Blocks
The following control and copy blocks are used to copy and translate a CCB and
channel program for a virtual-mode I/O request:

¢ A translation control block (CCWTCB). This is a work and save area, located
in the task control block (TCB) and used during translation.

e A CCB copy block. The user CCB and sense CCW (if any) are copied into this
block. The CCB copy block also contains information about the copied and
translated channel program.

e CCW copy blocks. Each block contains copy locations for up to 7 contiguous
CCWs and queuing information.

© Copyright IBM Corp. 1985, 2008 161

162

e |IDAL blocks used for building Indirect Data Address Lists for data areas which
cross-page boundaries.

» Fix information blocks containing the page frame numbers of pages fixed for
this request.

The Translation Control Block (CCWTCB)

Because a translation request may be interrupted (by a page fault, wait), it is nec-
essary that the translation routine be partially reenterable so that several requests
may be handled simultaneously.

The CCWTCB is located in the work area of the task control block (TCB) of the
requesting task. The other blocks are 72-byte blocks located at the end of the
supervisor. They are dequeued from the free copy block queue (pointed to by
AFCB) as needed, and enqueued again when they are no longer needed by the
requesting task.

If the queue of free copy blocks is empty when a request for a copy block is made,
one of the following actions will be taken:

 |If the requesting task is the only one using the CCW translation routines, it will
be canceled (not enough copy blocks available to ever satisfy the request).

 If the request is for a CCB copy block or if at least one request has been
handled successfully, the requesting task is set copy block bound.

If no other task is complete, and if the request is not for a CCB copy block, the
used copy blocks are freed and the task is set translation bound. When another
translation has been successfully completed, the request will be started again from
the beginning.

CCB Copy Blocks

For each virtual-mode request one copy block is used to contain the copied CCB
and its sense CCW, if any. The rest of the block contains control information about
the translated program. Figure 57 on page 163 shows the layout of the CCB copy
block.

If an Input/Output Request Block (IORB) is used for the request, bytes 0-15 (iden-
tical to a CCB) are set into the CCB copy block.

All the CCB copy blocks in use are queued in the queue pointed to by ACCBB.
Each CCB copy block is also individually pointed to by a field in the request's TCB.
After translation, the address of the copied CCB is placed in the channel queue.
Figure 57 on page 163 shows the mutual and external relationships of the CCB
copy blocks.

z/VSE 4.2 Supervisor Diagnosis Reference

16

24

32

40

64

0 1 2 3 4 5 6 7
CCBCNT CCB res- |[CCB CCB CCB CCB
COM1 |erved [STA1 |[STA2 |CLS* |LNO Copied
CCB
CCBCCW CCBBY3|CCBCSWW
Address of first CCW

CCBSENS
Sense CCW if any

TID CCB Unused [CCBVA
TASKID Flag*= Virtual address of CCB
CCBACB CCBICB

Address of first CCW copy |Address of first IDAL block
block in channel program |[in channel program
with Towest VBA

CCBXINF (Fix information)
Real page numbers of TFIXed pages

CCBXPTR **%%x [CCBNEXT Address of
Address of additional next CCB copy block
fix information block X'AQ'

Figure 57. CCB Copy Block

e * - Bit 2 is set (X'20") to indicate copied CCB
e **_ | egend CCBFLAG:

o KRk _

Bits Description

0:

5:
6:

7:

Indicates that CCW-translation of this request is complete; indicator is set
before I/O request is enqueued in channel queue.

Indicates that control has been transferred to TFIX routine at least once
during CCW translation; if 0, scan through CCBXINF for freeing pages is
skipped; indicator is set immediately before control is passed to TFIX
routine.

Reserved.

Reserved (former BTAM request)

Indicates that the channel program is valid for fast CCW translation
(CCWs are contiguous, not a system task request with an I/O area in the
SVA).

Indicates that this CCB copy block is on the saved CCB queue.

Indicates that the pages containing I/O areas for this channel program
require fixing.

Reserved.

‘Block in use' indicator

CCW Copy Blocks

Each CCW copy block consists of 7 copy locations and 16 bytes for pointers and
inserted TIC commands. The layout of a CCW copy block is shown in Figure 59
on page 165.

Channel Program Translaton 163

(Pointer in Low Core)

ACCWT
CCB Copy Blocks
CCWTADR >
ACCBB 4
CCWTCB in TCB
(only if CCW Trans. active)
X'AOQ' [CCBNEXT
+68
TCBPTR TCBACCB
(Pointer to current TCB

in Low Core X'260')

Channel Queue Entry +68 [X'AO'|CCBNEXT

v

+68 |X'AQ' 000000

Figure 58. Locating CCB Copy Blocks

164 z/VSE 4.2 Supervisor Diagnosis Reference

0 1 2 3 4 5 6 7

0| 1st Copy location for CCW

8| 2nd Copy location for CCW

16| 3rd Copy location for CCW

24| 4th Copy location for CCW

32| 5th Copy location for CCW

40| 6th Copy location for CCW

48| 7th Copy location for CCW

56(X'A0" | X'000000' Virtual address of first
* CCW in copy block (VBA)

64|X'A8' | X'000000' *x% |Addr. of next CCW
*% copy block in chain

X'AO' (ANB)
Figure 59. CCW Copy Block
Notes:

1. * X'A0' indicates the end of the CCW copy locations in the block. It is replaced

3. *** X'AQ' 'Copy block in use' indicator.

by a TIC (Transfer in channel command) if the 7th copy location contains a

copied CCW with data- or command chaining. Bytes 57-59 will then point to the

copy location of the CCW following the CCW in the 7th copy location. Bytes

56-59 will not be changed if the CCW in the 7th copy location is a TIC.

. ** X'A8' indicates the last 8-byte entry in the block. It is replaced by a TIC if the

CCW in the 7th copy location is a status modifier CCW. Bytes 65-67 will then

point to the copy location of the second CCW following the status modifier

CCw.

The CCW copy blocks for a translation are queued in order of increasing VBAs
(see Figure 59) with the lowest one being pointed to by the field CCBACB in

the CCB copy block. Figure 60 on page 166 shows the relation of CCW copy
blocks to one another.

Channel Program Translation

165

166

IDAL Blocks

CCWs whose data areas cross 4K boundaries must have an IDAL (Indirect Data
Address List) in the copied channel program. If a ESA supervisor operates on a
machine with more than 16MB real storage, CCWs will have always IDALs in the
copied channel program.

In both cases, the CCW is changed to show that an IDAL is used (bit 37 of the
copied CCW is set) and the address of the IDAL is placed in the data address of
the CCW. The IDAL pointed to contains one entry for the beginning of the data
area and one entry for each 2K boundary crossed.

CCB Copy Blocks CCW Copy Blocks
—> >
CCBACB Block 1
+68 | X'AQ' | CCBNEXT X'AO' ANB

: !

more CCB copy blocks, if any

Block 2

X'AO'| ANB

The blocks are queued such that:
Block 3
VBA(Block 1) < VBA(Block 2) < VBA(Block 3)

X'AO' [000000

Figure 60. Locating CCW Copy Blocks

An IDAL must be located in consecutive copy block locations, so that if an IDAL
cannot fit into the last block in the queue (the count in IDALCNT is less than the
number required) a new block must be enqueued. For I/O areas with a length of
less than 32KB a single copy block is dechained as IDAL block with 17 locations
for Indirect Data Address Words (IDAWS). If the area is larger than 32KB two con-
secutive copy blocks are dechained from the free copy block queue. This double
block has 33 locations for IDAWS.

z/VSE 4.2 Supervisor Diagnosis Reference

After an 1/O area has been TFIXed in real storage, the addresses in the IDAL are

translated to point to the correct real storage locations (the begin address of the 1/10
area and the begin address of the page frames for the rest of the 1/O area, or for a
read-backward command, the end address of the I/O area, and the end address of

the page frames).

Each IDAL is pointed to by the CCW which references it. In addition, the IDAL

blocks are queued with the first one being pointed to by the field CCBICB in the
CCB copy block. Figure 61 shows the relation between the IDAL blocks and the

other blocks.

CCB Copy Blocks IDAL Blocks
—>

IDAL1 IDAL1

IDAL1 IDAL1
_’

IDAL2 IDAL2

IDAL2 IDAL2

CCBACB CCBICB > IDAL2 IDAL2

90
Note 1

v

CCW1 (no IDAL)

CCwW2 (IDAL1)

CCW3 (no IDAL)

CCW4 (IDAL2)

VBA

X'AO' |ANB

CCW Copy Blocks
Figure 61. Relation of IDAL Blocks to other Blocks

Channel Program Translation

167

Notes:

Single IDAL block

+68 |[X'AO']
—— Address of next IDAL block for this
Double IDAL block request or zero
|
+140|X'EQ" —

the contents of X'CO' being:
X'AQ' Block in use
X'40' Double copy block

2. The X'90 in the first byte of the 11th IDAW indicates the end of the IDAWSs for

the block. In this case, the IDALCNT field in the CCWTCB would show seven
free copy locations.

3. The data area of CCW2 crosses three 2K boundaries (may be up to 8KB) and

the data area of CCW4 crosses five 2K boundaries (may be up to 12KB).

Fix Information Blocks
In order to keep track of which page frames have been TFIXed for a request, the
real page frame numbers of the pages fixed are kept in the copied CCB at label

CCBXINF. If more than six pages have to be TFIXed for the 1/0O request, additional

copy blocks are used. They are queued with the first one being pointed to by
CCBXPTR in the copied CCB.

A page used more than once by a request is only TFIXed once.

Copying and Translating Channel Programs

168

User channel programs are copied into the copy blocks described in the previous
section by the routine CCWTRANS (entered at CCWTRBT2 for BTAM channel
appendage 1/O request).

By way of initialization, the following is done before the actual copying and trans-
lation is begun:

e The CCWTCB for the requesting task is initialized. As part of the initialization
procedure, the TCB pointers to the two special command lists for the device
are filled in (see Figure 62 on page 169).

e Two copy blocks are dequeued from the free copy block queue for the CCB
copy block and the first CCW copy block.

e The CCB is copied and initialized so that the CCW address points to the first
location in the first CCW block. The VBA in the first CCW copy block is set to
the virtual address of the CCW the virtual CCB is pointing to (which is the
virtual address of the first CCW to be executed).

e |If a sense CCW was present, it is also copied into the CCB copy block and its
data areas are TFIXed in real storage (unless it crosses a 2K boundary, in
which case an IDAL is built), and the address is translated.

z/VSE 4.2 Supervisor Diagnosis Reference

The channel program is then copied and any necessary IDALs are built. The
channel programs translated can be divided into three classes according to the
types of commands they contain. They are described in the following order:

1. Channel Programs without TIC or Status Modifier Commands.
2. Channel Programs with TIC Commands.
3. Channel Programs with Status Modifier Commands.

A schematic representation of channel program translation is shown in Figure 63
on page 171.

DEVTRTAB
(256 bytes) DEVLIST
DEVTYPE 4 X'FE' 4 DEVL1ST
(from PUB) X'FF!
X'nn'
DEVL2ST
v
—>
DEVTYPE ADDR1 —— [DEVL3ST
ADDR2 —
v
> DEVLNnST
X'nn'
DEVL1CD
1 byte <«—4 bytes—» DEVL2CD
— | DEVL3CD
DEVLnCD
Figure 62. Initializing Special Command List Pointers in CCWTCB
DEVTYPE: Device type code from PUB
DEVTRTAB: Entries:
X'FF' = Unsupported device.
X'FE'= Device does not support status modifier commands or
control commands with data area.
X'nn' = Displacement to entry in DEVLIST if device supports

status modifier commands and/or control commands
with data area.

Channel Program Translaton 169

170

DEVLIST: List of pointers to the special command lists. The two entries (if
any) for the device on which the 1/O is requested are moved to the
TCB when this is initialized.

DEVLNST: Status modifier command list for device type n.
DEVLNCD: Control command with data area list for device type n (see note
below).

Note: DEVLNnST and DEVLNCD are bit strings. When a CCW is copied, the
command code is used to refer to a bit in these strings. By testing this
referred bit it is determined whether a CCW is a status modifier command
or a control command with data area, or does not belong to these catego-
ries.

Copying Channel Programs without TIC or Status Modifier
Commands

The first CCW in a channel program is always copied into the first copy location
pointed to by the copied CCB. If command chaining or data chaining is specified in
the CCW the following chained CCWs are copied into successive copy locations.

If a program of chained CCWs should contain 8 or more commands, a new CCW
copy block must be used. The eighth copy location of the first copy block is then
converted into a TIC command pointing to the first location of the next copy block.
The VBA of the next copy block is set to the virtual address of the eighth chained
CCw.

Figure 64 on page 173 is an example of a copied channel program containing 11
chained CCWs.

z/VSE 4.2 Supervisor Diagnosis Reference

Virtual Storage Virtual Storage
User l Partition l Supervisor Area
Original CCB Channel Queue Entry
Original v CCB Copy Block
CCWs
Copied CCB
CCW1 |-
— CCW2
IDAL Block
CCW3
B
_>
(1st part) CCW Copy Block
_A— L—p
(2nd part) CCw1
CCW2 >
CCW3 —
2K Page Pool
Boundary I/0 Areas
_’
A(1. part)
< >
CCW Copy Block B
L—»
A(2. part) |«
(Additional)

Figure 63. Schematic Representation of Channel Program Translation

Copying Programs Containing TIC Commands but no Status
Modifier Commands

A TIC command (transfer in channel) command is, when encountered, copied into
the next copy location just as any other chained command is. Although a TIC is 8
bytes long, only the first 4 bytes have any meaning (the command code and
transfer address). The second four bytes of the copied TIC are set to zero. These
bytes are used as a chain pointer for TICs which follow status modifier commands
(refer to the section "Copying Status Modifier Commands"). The command code of
a copied TIC is set to X'08' (standard user TIC).

Channel Program Translaton 171

172

The virtual storage location pointed to by the TIC command must be mapped into a
location in the copied channel program. This mapped location is then placed in the
copied TIC (unless the copied TIC is the first location of a copy block, in which
case the address is placed in the end-of-block TIC (eighth copy location of the pre-
vious copy block) and used as the copy location for the CCW pointed to by the
TIC. The mapped location is determined in the following way:

e |f the CCW pointed to by the TIC command has a copy location in an existing
copy block (that is, there is a block such that the virtual CCW address lies
between the block's VBA and the block's VBA+56), place the location thus
found in the TIC and copy the CCW in the location if it is free. If the location is
not free, go to the translation termination routines. Figure 65 on page 174 is
an example of a TIC which points to an already existing copy location.

 |If there is no existing copy location, a new CCW copy block must be enqueued.
The new block is enqueued at either end of the existing queue or between two
existing blocks, depending upon where the virtual address in the TIC is in
relation to the VBAs of the existing blocks. Figure 60 on page 166 shows how
a new CCW copy block is queued to provide a copy location for a CCW pointed
to by a TIC. Once enqueued, the VBA of the new copy block must be deter-
mined. If at all possible, the new block will be aligned to the one either above
or below it (the VBA is 56 greater than the VBA of the lower block or 56 less
than the VBA of the upper block). This is only possible if the address pointed to
by the TIC lies within one of the ranges (that is, is less than 56 below the VBA
of the above block or less than 112 above the VBA of the block chained
below). If possible to align to both blocks the alignment is made to the lower
block. Considering the example in Figure 66 on page 175 again it is copied in
the fourth copy location.

e If it is possible to align the new block to both the upper and lower blocks but
not to both at the same time (the difference between the VBAs of the two
blocks is less than 112), a short block must be created by moving the end-of-
block indicators to the copy location following the last logical copy locations.
Figure 67 on page 176 shows how a short block is enqueued.

¢ If no alignment of the new block with either of its neighbors is possible, the
VBA of the new block is made equal to the virtual address pointed to by the
TIC and the first copy location in the block is used. Figure 68 on page 177
shows such a copy block being enqueued.

z/VSE 4.2 Supervisor Diagnosis Reference

Virtual Storage

Processor Storage

Virtual
Channel Program

CCW Copy Blocks

CCW1 CCW
CCw2 CCW
CCW3 CCW
CCW4 CCW
CCW5 CCW
CCw6 CCW
CCW7 CCW

—>CCW8 CCW
CCW9 CCW
CCW10 CCW

CCW1l CCW

CCW1 CCW
CCW2 CCW
CCW3 CCW
CCW4 CCW
CCW5 CCW
CCW6 CCW
CCW7 CCW
TIC | Address | Virtual Address
of CCW8 | of CCW1
A8 | 000000 X'AQ' [Address of next
CCW Copy Block
CCW8 CCW
CCW9 CCW
CCW1O0 CCW
CCW11 CCW
AO | 000000 Virtual Address
CCws
A8 | 000000 A0000000

Figure 64. CCW Translation for a Channel Program. Without TIC or Status Modifier Commands.

Channel Program Translation

173

Virtual
Storage

User
Partition

Processor Supervisor
Storage Area

User Channel Program

—>CCW1
CCh2
CCW3
CCwa

CCW5

CCW
CCW
TIC CCW5
CCW

CCW

Copied Program

CCW Copy Blocks

CCW1' CCW
CCW2' CCW
CCW3' TIC

— (Copy Tocation for CCW5)

X'AO' 0

X'A8' 0 X'AO' 0-0

Figure 65. Copy Location for a CCW Pointed to by a TIC. If location is in already used copy block.

174 z/VSE 4.2 Supervisor Diagnosis Reference

Virtual User
Storage Partition

Processo
Storage

r

Supervisor
Area

User Channel Program

Copied Channel Program

Free Copy Block Queue

CCB CCB Copy Block
< +8 CCBCCW AFCB
]
/ /
+32 CCBACB
/ / /
l CCW Copy Blocks l
CCW1 CCW
CCW1 CCW
CCW2 CCW CCW2 CCW
CCW3 TIC CCW1l
CCW4 CCW CCW3 TIC
CCW5 CCW
CCW6 CCW / /
CCW7 CCW
CCW8 CCW VBA
CCW9 CCW
CCW10 CCW X'AO' —
CCW11 CCW
CCW12 CCW
CCW13 CCW <
CCW14 CCW l l:
—»CCW15 CCW >
CCW16 TIC CCW1 CCW15 CCW
CCW16 TIC >
« / /
VBA
X'AQ'| 0-0

/] —

Figure 66. Enqueuing a New Copy Block. To the correct location in the CCW copy block

chain to handle a CCW pointed to by a TIC (see Note 1).

Channel Program Translation

175

Virtual User Processor Supervisor
Storage Partition Storage Area
User Channel Program| Copied Channel Program
CCB CCB Copy Block
< +8 CCBCCW
]
/
+32 CCBACB
/ / /
l CCW Copy Blocks New Block
CCW1 CCw
CCW1 CCW
CCW2 CCW CCW2 CCW / /
CCW3 TIC CCw11
CCW4 CCW CCW3 TIC »Copy location
CCW5 CCW of CCW11
CCWe CCW /
CCW7 CCW
CCW8 CCWe—
CCW9 CCW X'AO'
CCW10 CCW X'AO'
CCW11 CCW X'A8'
CCW12 CCW
—»>CCW13 CCW
CCW14 CCW >
CCW15 CCW CCW13 CCW X'AO'
CCW16 TIC CCW1
CCW14 CCW
X'"A@' and X'A8'
CCW15 CCW End of block
indicators
CCW16 TIC >
/
X'AD'| 0-0

Figure 67. CCW Copy Block Queuing. Requiring the creation of a "short" block to maintain
alignment (see Note 2).

176 z/VSE 4.2 Supervisor Diagnosis Reference

Virtual
Storage

User

Partition

Processor
Storage

Supervisor
Area

User Channel Program

Copied Channel Program

CCB CCB Copy Block
/ / /
/ / /
v Copied CCWs
CCW1 CCw
—»CCW1 CCW CCW2 CCWw
CCW2 CCW
CCW3 TIC CCW15 CCW3 TIC
CCW4 CCW
CCW5 CCW
CCWe CCW
CCW7 CCW
CCW8 CCW
CCW9 CCW X'AO'
CCW10 CCW
CCW11 CCW
CCW12 CCW
CCW13 CCW l New Copy Block
CCW14 CCW
CCW15 CCW
CCW16 CCW Copy location
for CCW15
X'AQ'| 0-0
Figure 68. Enqueuing New Copy Block to Existing Block. Because the copy block cannot
be aligned. CCW is too far removed from VBA of any existing block (see Note 3).

Channel Program Translaton 177

178

Notes:

Problem

Solution

Problem

Solution

Problem

Solution

CCW3 has just been copied. The problem is to find the copy
location for CCW11.

Free copy block is queued between A and B because the address
used by the TIC at CCW3 lies between the VBA for A and the
VBA for B. The solid line shows the condition before the new
block is enqueued and the dotted lines the condition afterwards.

Once enqueued the VBA in the newly enqueued block will point to
CCWS8 (the block is aligned to the next lower block) and the TIC in
CCWa3 will point to the fourth copy location in the new block.
Copying will then continue with CCW11 being copied into that
location.

CCWa3 has just been copied and the copy block for CCW11 has
been enqueued. The problem is to align the block.

Make the new block a 'short' block in that the end of block indica-
tors are moved to the copy position following that for CCW12.

CCWa3 has just been copied and it is necessary to find a copy
location for CCW16, the next CCW copied.

Enqueue a new copy block behind the first one and use the first
copy location for CCW16 because it is impossible to align the new
block to an existing block.

z/VSE 4.2 Supervisor Diagnosis Reference

Copying Status Modifier Commands

Status modifier commands may transfer control to either of the next two following
CCWs depending upon the result of the status modifier's operation. If, for example,
a SEARCH command is unsuccessful, control is transferred to following CCW. If it
is successful, on the other hand, the following CCW is skipped and control is
passed to the second following command.

Consider the following chain of commands:

READ
READ
SEEK
SEARCH
TIC A
READ
READ

A WRITE
WRITE
SEARCH
TIC B
READ
READ

B READ
READ

If the first SEARCH in this program is successful, no branch is taken as the TIC
command is skipped. If the SEARCH is not successful the chained commands
beginning at A are executed. The same is true when the second SEARCH is
encountered. This can be done any number of times in a program. Since a program
is copied as it is executed, the presence of status modifier commands makes it
necessary to take several passes through a program in order to cover all the pos-
sible branches.

In the first pass through a program, a TIC following a status modifier command is
copied but otherwise ignored (unless the status modifier is copied into the last copy
location of a copy block). The TICs thus encountered are queued in a line pointed
to by LINEPTR in the TCB (the queuing addresses are in the second 4 bytes of the
copied TICs). Figure 69 on page 181 shows a program with status modifier com-
mands after the first pass has been made a copying it.

If a status modifier command happens to be copied into the last copy location of
the block, an entry in a different queue is made. This contains as entries the last
locations of blocks where a status modifier command is copied into the last copy
location. The first entry in the queue is pointed to by BENDPTR in the TCB. The
gueuing addresses are in bytes 1-3 of the queue elements (last location of the
CCW copy blocks concerned). Copying continues with the first CCW following the
status modifier command being copied into the first location of the next queued
copy block, and, if chained, copying continues with the following command. If, as is
usually the case, the first command after the status modifier command is a TIC, the
branch taken by the TIC command is copied. Figure 70 on page 182 shows a
program with a status modifier command in the last copy position.

As soon as an end is reached in copying a program (a command without data or

command chaining is copied or a copy location for a command is already filled) the
program checks to see if there are any members in the queue pointed to by

Channel Program Translaton 179

180

LINEPTR or BENDPTR. The members of these queues are handled one at a time.
See Figure 70 on page 182 to Figure 72 on page 184.

Note: LINEPTR and BENDPTR entries can be created while others are being
handled. Translation is complete when both LINEPTR and BENDPTR are
zero (that is, no more entries in either queue).

Translating Data Addresses and Page Fixing

Parallel to the copying of a channel program, the pages containing the data areas
for the various CCWs are TFIXed in real storage and the virtual addresses of the
data areas are translated into real addresses.

IDALs are first built using the virtual addresses of the beginning of the data area
and the 2K boundaries. When the individual pages are TFIXed in real storage these
addresses are replaced with the correct real addresses. Figure 73 on page 185
shows an IDAL built for a data area both before and after the pages have been
TFIXed. Figure 74 on page 186 shows how the IDAL looks if the command is a
read backward command.

z/VSE 4.2 Supervisor Diagnosis Reference

Virtual User Processor Supervisor
Storage Partition Storage Area

User Channel Program| Copied Channel Program

LINEPTR (in TCB)

CCW1 SEEK
CCW2 SEARCH CCB Copy Blocks
CCW3 TIC CCW9
CCW4 CCW CCW1 SEEK
CCW5 CCW
CCW6 SEARCH CCW2 SEARCH
CCW7 TIC CCW12 L—»
—>CCW8 CCW CCW3 TIC CCW9 0

CCW9 CCW =
CCW10 CCW
CCW11 CCW CCWa CCW
CCW12 CCW

CCW5 CCW

CCW6 SEARCH

e

CCW7 TIC CCW12

TIC VBA
It is assumed
that the user's X'A8' X'AQ'
original CCB
points to CCWL.
Translation starts
with this CCW.
CCW8 and CCW9

<«
A

are not chained. CCW8 CCW
/ /
X'A0' VBA
X'A8' X'AO'| 0

Status of copied channel

program after first pass.
First pass ends with CCW8
because it is not chained.

Figure 69. Channel Program. Containing status modifier commands after its first copying
path has been made.

Channel Program Translation 181

Virtual User Processor Supervisor
Storage Partition Storage Area

User Channel Program| Copied Channel Program

<
<

CCB CCB Copy Block l CCW Copy Blocks
CCW1 CCW
< < CCW2 CCW
. . . CCW3 CCW
< CCW4 CCW
. . o CCW5 CCW

X'BO' in byte 4 of the
last entry in CCW copy CCWé CCW
block indicates that
this entry is in block CCW7 SEARCH
end chain.

\ 4

(in TCB) TIC | VBA
“—»CCW1 CCW LINEPTR BENDPTR
CCW2 CCW |
CCW3 CCW 0 —— | A8| 000000 (BO| -
CCW4 CCW ' i
CCW5 CCW
CCW6 CCW l
CCH7 SEARCH '
CCW8 TIC CCW15+ —>
CCW9 CCW CCW8 TIC CCW15 CCW15 CCW
CCW10 SEARCH
CCW11 TIC CCW16 | . . .
CCW12 CCW |
CCW13 CCW A0 (000000| VBA - A0 (000000 | VBA
CCW14 CCW
CCW15 CCW A8|000000 (A0 —— |A8|000000|AO 0
’—>ccw16 CCW |
It is assumed that That status modifier command CCW7 is copied into

CCW14, CCW15 and the 7th copy position necessitating an entry into
CCW16 are not the BENDPTR queue. The first pass ends when CCW15
chained. is copied, because this CCW is not chained.

Figure 70. Channel Program. Containing status modifier commands after its first copying
path has been completed.

182 z/VSE 4.2 Supervisor Diagnosis Reference

Virtual User Processor Supervisor
Storage Partition Storage Area
User Channel Program| Copied Channel Program
CCB CCB Copy Block l CCW Copy Blocks
CCW1 CCw
< « CCW2 CCw
/ / / CCW3 CCW
< CCW4 CCw
/ / / CCW5 CCW
(in TCB)
LINEPTR BENDPTR CCW6 CCW
0 CCW7 SEARCH
TIC VBA >
“—»CCW1 CCW l
CCW2 CCW TIC A0
CCW3 CCW |CCN8 TIC CCW15
CCW4 CCW |
CCW5 CCW <
CCW6 CCW CCW9 CCW
CCH7 SEARCH '
—>CCW8 TIC CCW15 CCW10 SEARCH
CCW9 CCW CCW15 CCW
CCW10 SEARCH CCW11 TIC CCW16| O
CCW11 TIC CCW16< | / /
CCW12 CCW |
CCW13 CCW CCW12 CCW A0 (000000 | VBA
CCW14 CCW |
CCW15 CCW «—— CCW13 CCW A8 (000000 |A0 0
CCW16 CCW '
CCW14 CCW to virtual CCW15
|
| The only BENDPTR entry
AO|{000000| VBA - has been resolved. Note
It is assumed that that a LINEPTR entry has
CCW14, CCW15 and A8{000000|A0 been created,

CCW16 are not

chained.

necessitating at Teast

one more pass to complete the copying of the program.

Figure 71. Channel Program. Containing status modifier commands after completion of the
second path.

Channel Program Translation

183

184

Virt.Stor. User Part

Processor Storage

Supervisor Area

User Channel Program

<

Copied Channel Program

CCW Copy Blocks
CCB CCB Copy Block L——»
CCW1 CCw
CCW2 CCW
CCW3 CCW
/ / /
CCW4 CCw
CCW5 CCW
/ / /
(in TCB) CCW6 CCW
LINEPTR BENDPTR
CCW7 SEARCH
0 0
TIC VBA >
—»CCW1 CCW TIC 80
CCW2 CCW |CCN8 TIC CCW15
CCW3 CCW ! -
CCW4 CCW <
CCW5 CCW CCW9 CCW
CCW6 CCW l
CCW7 SEARCH CCW10 SEARCH >
—>CCW8 TIC CCW15 CCW15 CCW
CCW9 CCW CCW11 TIC 0
CCW10 SEARCH »(CCW16 CCW
CCW11 TIC CCW16
CCW12 CCW CCW12 CCW / /
CCW13 CCW |
CCW14 CCW CCW13 CCW AO|000000| VBA
CCW15 CCW +— |
CCW16 CCW CCW14 CCW A8|000000|A0 0
T
| to virtual CCW15
It is assumed that AO|000000| VBA - Translation terminates

CCW14, CCW15 and
CCW16 are not
chained.

A8|000000 |AO

because a command without
chaining, CCW16, has been
copied.

Figure 72. Channel Program. Containing status modifier commands after completion of

translation.

z/VSE 4.2 Supervisor Diagnosis Reference

Virtual
Storage

User
Partition

Processor

Storage

Supervisor and Page

Area

Pool

User Channel Program

CCB Copy Block

l CCW Copy Block

<« +8
CCW data
address / / /
<« 32 [+36 / /
/ / /
l IDAL Block
< Copied Channel Program
Al before data area pages
1— 90 are TFIXed.
A2 { Note: IDAL entries
/ / / point to begin
of a 2K block.
l————
A3
CCB Copy Block l CCW Copy Block
/ /
—1- 2K boundary
<« +8
Page Pool
/ / / / /
1— <+«
A2 <« +32 |+36 / /
/ / /
1_
/ / <
1— < l IDAL Block
A3
Copied Channel Program
after data area pages
1— 90 are TFIXed.
i Note: IDAL entries
< / / / point to begin
Al of a 2K block.
1_
/ /

Figure 73. Copied CCW. Requiring an IDAL to be Built (normal READ or WRITE
command)

Channel Program Translation

185

Virtual User Processor Supervisor and Page

Storage Partition Storage Area Pool
User Channel Program
CCB Copy Block l CCW Copy Block
- <t +8
CCW data address
—_— / / /
<« 32 [+36 / /
/ / /
l IDAL Block
/ /
Copied Channel Program
Al ‘ before data area pages
11— 90 are TFIXed.
A2 {
/ / /
1— -
A3
‘_
/ / CCB Copy Block l CCW Copy Block
—1- 2K boundary
< +8
Page Pool
/ / / / /
1_
A2 <« +32 |+36 / /
/ / /
1— -
/ / <
1— l IDAL Block
A3
< Copied Channel Program
after data area pages
1— | 90 are TFIXed.
|
/ / /
Al
l——

/ /
Figure 74. Copied CCW. Requiring an IDAL to be Built (READ Backward Command)

186 z/VSE 4.2 Supervisor Diagnosis Reference

Channel Program Translaton 187

188 z/vSE 4.2 Supervisor Diagnosis Reference

Page Management

General

Introduction into Page Management

The page management is responsible for the management of the data set con-
taining the virtual address and data space(s), for the allocation of the processor real
storage to parts of the virtual space being requested and for the related replace-
ment strategy. The unit of logical storage is the PAGE, the data set is called PAGE
DATA SET (PDS). The real storage area containing a page is called a PAGE
FRAME.

A page management function satisfies those processor requests created by
addressing a valid logical area not yet assigned to and located in real storage
(PAGE FAULTS). The related page is in disconnected state and its copy - if valid -
has to be read from the PDS into a selected page frame. The page has thereafter
addressable state. However, if there is no free page frame, at first the page cur-
rently located in the selected page frame has to be saved onto the PDS before the
frame can be used by the new page. The state of the saved page is changed from
addressable into disconnected.

A further function provides the capability to FIX a page in the real storage. This
function is required for the 1/0O subsystem which operates on real storage (page
frames) only. Because of performance considerations the fixing can be also desir-
able for frequently used address ranges.

Another function allows the user to control the paging environment by its own ser-
vices. These services are implemented for the various subsystems to allow an opti-
mization of the 'page' resources.

As seen, the total page management can be subdivided into the following main
parts:

e Page handling support
— Page fault handling together with the page selection algorithm
Page out handling
Pseudo-Page Fault handling
— SVC services concerning page state (SVC106, SVC109/121)
— Subroutine service concerning page state (INVPAGE)
FIX / FREE support
— TFIX / TFREE services for the 1/0O subsystem, FETCH and SVC44
— SVC services for user PFIX / PFREE (SVC67/121, SVC68/121)
subroutine service for SVA PFIX / PFREE (SVAFX2ND)
SVC services for allocation of real storage with SVC54 and SVC55
SVC service for CHECKPOINT / RESTART (SVC74)
* Page handling by user
— PHO capability (Page Fault Overlap) with SVC71/121
— SVC services concerning page-in, release page and forced page out
(SVC85/121, SVC86/121, SVC87/121)
— VIO (Virtual 1/0) support.
Load-Levelling:

© Copyright IBM Corp. 1985, 2008 189

— Deactivation, Reactivation routines
— Teleprocessing Balancing (SVC88/89)

All page management services are called and executed in AMODE(31), with the
following exceptions:

e Parameter list handling routines of PFIX, PFREE, RELPAG, FCEPGOUT and
PAGEIN, which are executed in AMODE(requestor)

» Deactivation, Reactivation routines are called and executed in AMODE(24)
e SCANPGT service is called and executed in AMODE(24)

e All SVC services are invoked with AMODE(24)

* All SVC services are executed in AMODE(31) with the following exceptions:

— SVC 71 (SETPFA)
— SVC 88 (TPIN)
— SVC 89 (TPOUT)

Support of Processor Storage above 2GB.

190

Processor storage above 2 BG is used by the page manager for paging purposes.
These page frames cannot be used tranparently, though. There are a few
restrictions.

Page frames must be assigned below 2 GB to
e PFIXed pages
e TFIXed pages
¢ Real partition pages
e Prefix area
A real address below 2 GB must be returned for
* LRA

64-bit Page Frame Queues

The page frames below and above 2GB are organized in separate PFTE queues
because of their selective use. A PFTE - page frame table entry - represents a
page frame. There are two queues, IPFQ and IPFQ64 for invalid 31-bit page
frames, repectively invalid 64-bit page frames. There are two page frame selection
gueues PSQ and PSQ64. The main reason is: To keep search loops for available
31-bit page frames short after a PFIX or TFIX request. Also page selection after a
page fault is faster with separate PFTE queues.

64-bit Page 1/0

Page /O for page-out and page-in can be done with 64-bit page frames. The page
manager builds Format 1 CCW chains. I0S does not modify the channel programs
and executes the Format 1 CCWSs.

64-bit Addressing

64-bit addressing mode is required for managing storage above 2GB. Since the
Page Frame Table is allocated at the high end of processor storage this mode is
needed when the page frame table entries or the page frames are manipulated or
inspected. Therefore most of the page manager code executes in 64-bit
addressing mode. Also services like PFIX/TFIX have to execute partly in 64-bit
mode.

z/VSE 4.2 Supervisor Diagnosis Reference

Affected are routines and subroutines of

e Page fault handler (SGPMR),

e General page management routines (SGPDATA),

» Prefix allocation (SGPPMT),

¢ Page fixing services (SGPFIX),

¢ Allocation and fixing of real space areas (SGPREAL),
e VIO services (SGPSVC),

» Page fault optimization services (SGPOPT).

Increased Storage Requirement for PMR Tables

The size of segment tables and page tables have doubled in z/Architecture. About
2.4 MB are required now for page manager control blocks to support a private area
of 1 GB.

The page frame table has doubled in size because of the 64-bit chaining pointers
for the page frame table entries. The page frame table needs 16 MB of processor
storage for 1 GB of processor storage.

Description of Parallel Page 1/0

Parallel page /O is done by overlapping the page I/O operations for separate page-
data-set devices. Therefore, parallel page 1/0O requires a multiple extent
page-data-set, at best each extent distributed on a separate device but at least two
extents on two devices.

For every page-data-set device, there is one page-in queue per static partition
(inclusive system partition), one page-in queue per dynamic class (that means,
page faults for dynamic partitions belonging to the same class are queued in one
gueue) and one page-out queue.

The 1/O operations are controlled by a system task, the so called PMR-task. The
page-data-set devices are serviced in wrap-around mode. The PMR-task tries to
start an 1/O request on each device as long as requests are pending and not yet
started. Thereafter, the PMR-task waits for completion of at least one 1/O.

However, before the page-fault request is enqueued it is checked whether the
request can be serviced without any I/O. If so, the request is handled under the
requesting task without any activation of the PMR-task.

Handling of Address Spaces

VSE/AF supports n virtual address spaces, each up to 2GB. Each address space
is separated into a private addressable area and a shared addressable area. The
shared area is unique in the system. Programs and data used in any address
space must be located in the shared area (for example, supervisor routines, SVA
programs, control blocks in the system GETVIS area). The sum of all private
areas and the shared area is restricted to 90GB, an arbitrary limitation. (The real
limit is the size of the maximal 15 page-data-set extents/devices).

The address translation, as defined by the z/Architecture (see Principles of Opera-
tion, SA22-7832) is done via Segment Table Entry (STE) and Page Table Entry
(PTE). Each STE addresses a list of contiguous PTEs which describe a logical
address range of 1MB, one segment. The architectured page size is 4KB. The
STE points to a page table of 256 entries.

Page Management 191

192

Region tables are not needed by z/VSE, because the virtual address spaces are
restricted to 2 GB in size.

The different address spaces are represented by different segment tables (SGT)
and are managed by Space Control Blocks (SCB). The shared area is addressable
via any valid segment table (that means: it is part of any address space), but never-
theless the shared area is represented by an extra segment table with an invalid
private area (partitions allocated in shared area are dispatched with this segment
table). Each private address area is only addressable via one unique segment
table.

The virtual address range of one addressable area (private or shared) can be
thought as one contiguous and linear area. This area is represented by a list of
Page Table Entries (PTE). Each entry is associated to an unique virtual address
range (page) within the private/shared area and to a unique block on an external
storage medium (these blocks build the Page Data Set (PDS), consisting of a set of
data extents on one or more disk devices). The index in the list of Page Table
Entries for a specific page is called the Extended Page Number (EPA#) of this
page and the Extended Page Number multiplied by the pagesize (4KB) is called the
Extended Page Address (EPA).

The Page Table describing one private area is anchored in the corresponding SCB
of the space, the private area belongs to. The Page Table for the shared area is
anchored in the SCB_S (SCB of shared area).

During page handling (PMR-task), each page of virtual storage is represented by its
EPA and its SCB.
Virtual address to EPA translation:
virtual address in 24-bit shared area
EPA = virt. address
virtual address in 31-bit shared area
EPA := virt. address - (size of private area)
virtual address in private area
EPA = virt. address - (size of 24-bit shared area)
The concept of real partitions is separately implemented. There is a real address

space with own space control block (SCB_R), segment table and page tables. In
opposition to the virtual address spaces there is no PTAS and no POSL.

Size of an address space

During IPL (in routine $INTVIRT), the size of an address space is determined and
used for all address spaces (COMREG.EOCADR contains the value). The minimal
address space size is MIN(32M,VSIZE) and the maximal address space size is
MIN(VSIZE,2G), both values rounded up to the next multiple of the segment size.

Note: In a non-PDS system VSIZE is calculated out of the real storage usable by
page management and the specified VIO size.

The actual size of an address space is determined by the size of the shared areas
and the user specified size of the private area (PASIZE). If the actual size would be
above the allowed maximal value, PASIZE is decreased, and if the actual size

z/VSE 4.2 Supervisor Diagnosis Reference

would be below the allowed minimal value, PASIZE is increased, to fit into the
address space limits.

In case the resulting PASIZE is below the allowed minimal value (1M if VSIZE is
smaller than 256M and 6M if VSIZE is 256M or larger) a message is given to the
user.

Handling of Data Spaces

Data spaces are handled in page management the same way as address spaces.
A data space is represented by a SCB too, therefore a page fault in a data space is
represented by an EPA and its corresponding SCB, the same way as a page fault
in an address space (only the way to get the SCB address for a data space is
different).

Besides page fault handling, page management is involved in data space support in
the following areas:

e Page fault handling overlap
¢ Release page

INVPAGE service
create/delete PMR tables
PAGESTAT service

Distribution of Virtual Storage to Page-Data-Set

The supported virtual storage (VSIZE) is distributed in blocks of 32KB on the page
data set devices. To do this, two types of tables are used.

Every block of 32KB (8 page-table entries) is associated an entry in the Page Table
Assignment String (PTAS), containing mainly the relative record number of the 1st
page of the block on the PDS. The entry is abbreviated as PTASE and contains
zero if unused. The PTAS is used to get from the EPA the corresponding disk
address. There exists one PTAS per address area, which is anchored in the SCB
of this area.

The corresponding 32KB area of virtual storage is also called allocation unit.

A second table, the Page to Disk Assignment String (PDAS) is used to indicate
whether a block of 32KB on PDS is allocated or not. The relative record number of
the 1st page of the block divided by 8 is the index in this table. The allocation
algorithm provides both minimal SEEK time and an uniform distribution over the
extents and devices.

Blocked Page 1/O

Whenever feasible, the page 1/O activities are done in blocks up to eight pages
(part or total of an allocation unit) to avoid single page I/O in a multi partition and
multi space environment; the aspects are both the seek overhead for each 1/0 and
the resulting I/O contention. Blocked paging exploits the high data transfer rate
capability of disks. Blocked paging is done for the following operations:

* pre-page-out,
¢ unconditional page-out and
e page-in (triggered by PAGEIN-macro)

Page Management 193

System without Page Data Set

If enough real storage is available to hold the required VSIZE and VIO, no page
data set is required. The user indicates this to the system via the option NOPDS on
the supervisor parameters IPL command. In this case the VSIZE parameter is not
allowed and the system calculates the VSIZE (in multiples of 64K) out of the avail-
able real storage and the requested VIO space (in routine $INTVIRT).

In a non-PDS system no page selection takes place, if a page fault occurs, there
has to be at least one entry in the invalid page frame queue.
In addition, the following page-management functions result in a null operation:

FCEPGOUT - return code zero is provided in register 15.
PAGEIN - ECB, if present, is posted.

TPIN

TPOUT

General assumptions

Due to the fact, that part of the PMR-tables can only be accessed with DAT off,
part of the page management routines run in real mode. To do this the following
assumptions are done:

1. Control blocks residing in an area "Virtual=Real":
BLKTBE
VTABESs (one entry per VPOOL page)
DEVCBSs (device control blocks, one per PDS device)
Entry in Page-out queue (pseudo TIBs)
PGTPCB (PCB for page-out)
System PCB, PIB
SMCB
SRQPFG, SRQPGFX, SRQPGIO, SRQPFR

2. Control blocks not crossing page-boundary and being in real storage if the
system is working for the corresponding partition/task.

PCB and PIB
3. Control blocks residing in 24-bit virtual:
PCB, PIB, TCB, TIB, VIOTABE and PAGETAB

194 z/vSE 4.2 Supervisor Diagnosis Reference

Control Block Allocations

With increasing address space size, the storage requirements for the page man-
agement tables increase dramatically (about 2.4 MB are required to support a
private area of 1GB). Therefore the page management tables (Page Frame Table,
Reentry tables, Page to Disk Assignment String, Page Table Assignment String,
Page Out State List, Page Tables and Segment Tables) are allocated in one or
more page manager address spaces instead of shared areas.

Page management control blocks unique in the system, like Page Frame Table,
Reentry tables and Page to Disk Assignment String, are allocated in real processor
storage and are addressable with DAT bit off only. They are allocated at the top of
the processor storage, or below 2GB if the storage is larger than 2GB. IJBEOR
(end of real storage) points to the last byte of the highest real storage frame not
containing these tables. IJBEOR may be addressed by applications and therefore
remains a 31-bit address. The actual physical end address of processor storage is
an 64-bit value internally kept in SMCOM.SMCPEOR.

Page management control blocks not unique in the system are allocated in the
private area of extra address spaces, the page management address spaces. The
size of these private areas is a multiple of 64K.

Page Frame Table, PDAS, Reentry-Rate Tables
These tables are allocated at IPL time ($INTVIRT) from top of real storage. The
sequence from the top is as follows: PDAS, RTAB, RTABX, PFT.
PDAS, RTAB, and RTABX are set on fullword boundary. The PFT will be set on
page boundary.
IJBEOR is set to APFT-1.

Page to Disk Assignment String (PDAS)
The PDAS is allocated for the total VSIZE. It requires 64KB per 2GB (one byte per
32KB)

Reentry Rate Tables (RTAB, RTABX)
These tables are allocated adjacent to the PDAS for the total VSIZE. Access to
these tables is via the record number on PDS.

Page Frame Table (PFT)

In $INTVIRT (during IPL) the page frame table entries belonging to the supervisor
and IPL, as well as the PFTE's belonging to the area containing the PMR-tables for
the 1st page manager address space and the shared address space are marked as
PFIXed. All other entries are enqueued in the invalid page frame queues (IPFQ and
IPFQ64). After this is done PFTE's are handled only by page-management (via
INVPAGE service or page faults).

Page Management 195

<=326GB
PFT, RTABX, RTAB,
PDAS

<=2GB
SCCB
IJBEOR+1

min. page-pool

SMCRND3
SGT, PT, PTAS, POSL | 4
for shared area

SGT, SMPFIX3(system)
PT,

PTAS

for PMRAS1 v

SMCRBG1

SUPVR

0
Figure 75. Real Storage Layout after $INTVIRT

Segment-, Page-Table, PTAS and POSL

196

At space creation time, these tables will be allocated and PFIXed (done in
SGPPMT).

For spaces containing static partitions (not in default space), allocation is done for
maximum PASIZE (Private Area Size), to ensure that the tables for one space are
contiguous. Only those parts of the tables are PFIXed, which describe the actual
allocated partitions.

The tables are allocated in the private area of extra address spaces (the Page
Manager Address Spaces, PMRASN). Each SCB contains a pointer
(SCB.SCBAPMRA) to the SCB of the PMRAS containing the tables. The 1st
PMRAS (PMRAS1) is allocated at IPL time ($INTVIRT).
The PMRAS is an address space with nearly the total private area consisting of
GETVIS space. At the beginning of the private area the tables for the PMRAS itself
are allocated, which don't belong to the GETVIS space.
The size of the private area of a PMRAS is calculated at IPL time to:

MIN((VSIZE in Meg.)*4KB,Max. private area size)

The PT, PTAS and POSL for private area, together with the SGT for the space are
allocated in one contiguous area in PMRAS.
Allocation procedure for SGT, PT and PTAS:

e SGT on 4K boundary

z/VSE 4.2 Supervisor Diagnosis Reference

e PT, PTAS and POSL each contiguous for total private area:

— PT of private area at 1K boundary after SGT (SCB.SCBAPT contains
address)

— PTAS of private area after PT, at 1K boundary (length of page table for one
segment is 1K). (SCB.SCBAPTAS contains address)

— POSL of private area after PTAS (SCB.SCBAPOSL contains address)

Notes:

1. The space 0 containing the BG-partition is created at IPL time ($INTVIRT), by
issuing a ALLOCATE request for BG and running in PMRAS1

2. The shared space containing the shared area is created at IPL time
(BINTVIRT).

Segment-tables

At creation time of an space the segment table will be created (at 4K boundary)
with invalid entries for the private area of the space (STEINV=ON). The Segment
table will be allocated in the PMRAS and PFIXed. The length of the segment table
for an address space is determined during IPL and a multiple of 4096 bytes (512
entries).

The length of the segment table of a data space is calculated at allocation time and
a multiple 4096 bytes (512 entries).

The Segment-table is freed up at space termination time.
Note: The private area of a data space is the whole space.

Page-tables
Page tables will be allocated at 1K boundary for all usable segments.

The page-tables for the shared areas are allocated and PFIXed at IPL time
(BINTVIRT).

The page-tables for the private segments of an address-space are allocated in a
PMRAS during creation of the space, they will be freed up at space termination
time.

Page-table Assignment String (PTAS)

The PTAS for a segment is allocated in the same area and together with the Page-
table (at 8-byte boundary).

Page-Out State List (POSL)
The POSL for a segment is allocated in the same area and together with the Page-
table (at 8-byte boundary).

Page Management 197

GETPT

l

switch to lst/next

PMRiS —l

get frame(s) for

SGETVIS area req. segment-table
for PMR-tables l
YES assign SGT page(s) | =)
RC=0 ? to frame(s)
NO l l
get next PMRAS SPFIX actual req.
PMR tables
YES
PMRAS initialize SGT
avail.? (private area inv.)
NO
**)
return with RC=4 return with RC=0

x) Can't be done via SPFIX, since Segment table must be contiguous even
in real storage and may require more than 4KB.
*x%x) Results in an allocation request for a new PMRAS.

Figure 76. Allocation of PMR Tables

Since the PMR tables for a PMRAS are allocated in the PMRAS itself, SGETVIS
and SPFIX can't be used in this case. The frames for the PMR tables have to be
obtained "manually" (using GETREAL) and the pages containing the tables have to
be assigned to the frames while running in real mode.

Handling of Space R (Real Address Space)

The segment and page tables for space R will be allocated and PFIXed in a
PMRAS during 1st ALLOC of a real partition. If there are no more real partitions
allocated, the segment table and page tables are freed up again.

198 z/VSE 4.2 Supervisor Diagnosis Reference

PMRAS space layout

<= 2GB

shared high

SMCSVA31

1111111111111
// invalid //
1111111111117

PMPRPEND

16MB

space
GETVIS
area

PMRAS1

PMPRPBEG

SMCPRPBG

SGT, PT, PTAS,
POSL shared
(PMRAS1 only)

SGT, PT, PTAS
for PMRAS

space
GETVIS
area
other
PMRAS

PASIZE
of
PMR
address
spaces

A

shared Tow

SUPVR

0

Figure 77. Layout of Page Manager Address Space (PMRAS)

SMCPRPND

max. PASIZE

Data Structures of Page Management

The Segment Table (ST) with its Segment Table Entries (STE-s) describes an
address space or a data space. Each STE represents a 1MB address range and
points to the related Page Table (PT) if the STE is valid.

Segment Table

The virtual storage is organized in logical spaces up to 2GB. There are:

e address spaces

e data sp

aces

Each logical space (virtual memory) is identified by its segment table. At IPL time
the complete segment table is generated for the shared address space and the first
private address space. This table contains one entry for each segment of virtual

storage (segment size: 1MB).

The segment tables for the other address spaces are allocated and initialized
whenever the first partition of this address space is activated and the related Space
Control Blocks (SCB) are built. The SCB provides a pointer to the associated

segment ta

ble origin.

The segment table entry is defined by the z/Architecture (see Principles of Opera-
tion, SA22-7832), as shown in the following Figure 78 on page 200:

Page Management

199

/
Page-Table origin P I|C|TT
/

0 53 55 58 60 63
Figure 78. Segment Table Entry z-Mode

page table origin:
with 11 zeroes appended on the right, forms the
address of the page table for this segment.
For 2GB address spaces the address fits in 31-bits.

P: Page-Protection Bit

I: invalid segment bit (= 0 - the segment is valid)
(=1 - the segment is invalid)

C: common segment bit

TT: identifies the level of the table.

00 means segment table.
(Non-zero identifies region tables, not applicable for VSE)

Page Table and Page Frame Table Entries

The unit of virtual storage is the page of the size of 4KB. It is represented by the
associated PTE which describes the state of a page.

A page is addressable, if it is located in a page frame; it is disconnected, if it is not
in a page frame; it is connected if it is located in a frame but not addressable (con-
nected state only used for page management purposes, during page 1/0) and it is
invalid, if the page does not exist (doesn't belong to any address space).

The PTE is given by the z/Architecture (see Principles of Operation, SA22-7832) if
the invalid bit is off. If the invalid bit is on the PTE is interpreted by the VSE/AF
software as shown in Figure 80 on page 201.

Bits| Label Description
0-63| PTE Page addressable
0-51| PTEFRA64 Page frame number
32-51| PTRFRA 31-bit page frame number
52 X'08 Architected = 0
53 | PTEIBIT X'04' 1Invalid bit =0
54 X'02' Protect.bit =0
55 X'01' Architected = 0
56-62 unassigned
63 | PTEPDS X'0l' copy on page data set

Figure 79. Page Table Entry (PTE) for Addressable Page

200 z/VSE 4.2 Supervisor Diagnosis Reference

Bits| Label Description
0-63| PTE Page not addressable
0-39 Filler
40-43| PTEKEY Storage key of page
44 X'08' fetch protection bit
45-47 reserved
48 | PTEERR X'80' Erroneous page:
PTEERR=PTEIBIT=1
49 | PTENASS X'40' Page not assigned:
PTENASS=PTEIBIT=1
50 | PTEINVAD X'20' Invalid state:
PTEINVAD=PTEIBIT=1
51 | PTEPGCO X'10' Connected state:
PTEPGCO=PTEIBIT=1
52 reserved
53 | PTEIBIT X'04' Invalid bit =1
54-62 reserved
63 | PTEPDS X'01' Valid copy on PDS =1
no copy on PDS = 0

Figure 80. Page Table Entry (PTE) for not Addressable Page

The pag

That means the page is currently in real storage and the frame is given by the

e has addressable state: PTEIBIT = 0.

PTEFRA value.

P

TEFRA = frame-address * 2**(-12)

The page has invalid state: PTEIBIT = PTEINVAD = 1 and PTEPGCO = 0.

That means the page is not in the address range of the memory, for example, a

referenc

The page has connected state: PTEIBIT = PTEPGCO = 1 AND PTEINVAD = 0.

e to the real partition if the virtual partition is active.

That means page /O is running for this page.

The page has disconnected state: PTEIBIT = 1 and PTEINVAD=PTEPGCO = 0.

That means the page is not in real storage.

The page is not assigned: PTEIBIT = PTENASS = 1 AND PTEPGCO = 0.
That means no slot on the Page Data Set device is assigned to this page.

A data invariant is given as: PTEINVAD=PTEPGCO=1 not possible.

Page Table Initialization
1. During IPL, page table entries for shared space and for space 0 are initialized
as follows:

e All page table entries belonging to the supervisor area (nucleus and tran-

sient areas):

PTEFRA Number of the corresponding page frame
PTEIBIT=PTEPDS = 0

A11 other bits = 0

that means, the pages are addressable.

* Page table entries belonging to VIRTUAL BG patrtition:

Page Management

201

PTEKEY Storage key of corresponding partition

PTEINVAD =0
PTENASS =0
PTEPGCO =0
PTEIBIT =1
A1l other bits = 0

that means, the pages are disconnected.
» Page table entries belonging to SVA-24 and SVA-31:

PTEKEY Storage key of SVA

PTEINVAD =0
PTENASS =0
PTEPGCO =0
PTEIBIT =1
A1l other bits = 0

that means, the pages are disconnected.
e All remaining page table entries:

PTEKEY =0
PTEINVAD =1
PTENASS =1
PTEPGCO =0
PTEIBIT =1

A1l other bits

0

that means, the pages are invalid and not assigned.

The storage key is part of frame and must be saved in the PTE whenever the page
is disconnected.

Page Frame Table (PFT)

The real storage is subdivided into page frames of the size of 4KB. Each frame is
uniguely associated to an entry in the PFT describing the status of the frame. This
entry is abbreviated as PFTE.

The page selection queue (PSQ) contains all PFTEs of frames occupied by pages
and usable for page replacement (essentially pages which are not FIXed). The
number of PFTEs in PSQ is given by len(PSQ).

The invalid page frame queue (IPFQ) contains all free PFTEs. The number of
PFTEs in IPFQ is given by len(IPFQ).

Page frames below 2GB are organized in the IPFQ and PSQ as described above.
The page frames above 2GB are managed in two separate PFTE queues, the
IPFQ64 and the PSQ64. They have the same format queuing free 64-bit page
frames and 64-bit page frames available for replacement. This is done because
31-bit page frames and 64-bit page frames cannot be used transparently. There are
restrictions for the use of 64-bit page frames: They cannot be PFIXed or TFIXed.
The seperation helps to keep searches for fixable page frames short, and to make
explicit selection of 31-bit page frames and 64-bit page frames easier and faster.

Since only 31-bit page frames can be used for loading programs or fixing data
areas, 64-bit frames have a relief function for the area below 2GB. Active 31-bit
page frames may be replaced by 64-bit frames before being reused.

The PFT is built at IPL time and contains one 32-byte entry for each real storage
block of 4KB. Field APFT (in SUPAVT) contains the begin address of the table.

202 z/VSE 4.2 Supervisor Diagnosis Reference

Figure 81 on page 203 shows the layout of a page frame table entry (PFTE).

PFTE|Extended |S370|PFTE|PFTE-|PFIX |TFIX |PFTE- |PFTE- |PFTE- PFTE- |PFTE-
FLG |page # |FLG |[FLG3|[PIK |Count|Count| DVCB | TIB SCB FPTR BPTR
PFTEEPA#
0 1 4 5 6 8 10 12 16 20 48 56 63
Figure 81. Page Frame Table Entry (PFTE)
Page Management 203

Byte(s) | Label Description

0 PFTEFLG | PFTE flag
X'80' Reserved
POEBIT 40 The PFTE is enqueued for page—out.
20 Reserved
POABIT 10 I/0 for a page—out has been started for
this PFTE.
PCBIT 08 The page which belongs to the page frame

has connected state. Either a page—in or
an unconditional page—out request is in

progress.
POSYSBIT 04 A page—out request is in a system queue.
PIOERR 02 1/0 error on frame

PFTEQBIT 01 PFTE in enqueued (only used with DEBUG)
1- 3 PFTEEPA#| If a page belongs to the page frame,

these bytes contain the Extended Page Number
(index in page table pointed to by PFTESCB.SCBAPT)
If a block of VIO storage belongs to the frame,
these bytes contain the block number.

4 S370FLG | 370 mode flag

NFRP X'80' Frame is reserved for PFIX or GETREAL.

If the TFIX counter is zero, the page must
no more be TFIXED. If the frame is in IPFQ
or in PSQ, NPSQE is decreased by one.

NFVP 40 Page belonging to this frame is requested
by PFIX. The frame is not in the PSQ.

The PFIX request cannot be satisfied
immediately.

DRAP 20 The address space belonging to the PFTE is
failing storage.

PFTEBLK 10 Only block of VIO-storage connected to frame
PNRINV 08 Page frame is unused. The content of the
PFTE in invalid, except NFRP, PFTERES and
DRAP bits in S370FLG.

PFTEREAL 04 Frame is used by real partition.

PFTERES 02 Frame is reserved, don't PFIX

01 Reserved

5 PFTEFLG3| 3rd PFTE flag

POSLISON 80 marked for page-out

40..20 reserved

CURSELCT 10 current selection

08 reserved

PFTEXCH 04 A(PFTE)/chaining inconsistent (31/64 Q)
USPGBIT 02 used for internal statistics only

RCLBIT 01 wused for internal statistics only

6 - 7 PFTEPIK | PIK of waiting partition, requesting PFIX.

The page frame of the page to be PFIXed does not
belong to the corresponding real area.

8- 9 PFIXC Indicates how often the page is PFIXed.

10 - 11 TFIXC Indicates how often the page is TFIXed.

12 - 15 PFTEDVCB| Addr. of DEVCB, waiting for this frame.

16 — 19 PFTETIB | Addr. of page out TIB

20 — 23 PFTESCB | Addr. of SCB the EPA belongs to

24 — 47 Reserved

48 — 55 PFTEFPTR| Pointer to the next PFTE.

56 — 63 PFTEBPTR| Pointer to the preceding PFTE.

Figure 82. PFT Entry Byte Description

Note: The pointers in bytes 24-31 are only valid if the PFTE is in the PSQ or
IPFQ.

204 z/VSE 4.2 Supervisor Diagnosis Reference

NPSQE

Status of a Page Frame Table Entry (PFTE)
1. If a PFTE is not assigned to a page:

* If no block of VIO-storage is connected to the frame, the PFTE is enqueued
to the Invalid Page Frame Queue (IPFQ), the PNRINV bit is set, and the
NFRP, PFTERES bits may be set, and the remaining contents of the PFTE
is undefined.

If only a block of VIO-storage is connected to the frame, the PFTE is
enqueued to PSQ, the TFIX and PFIX counters are zero and PFTEBLK bit
is set.

2. If a PFTE is assigned to a connected page:

e The PFTE is neither enqueued to the PSQ nor to the IPFQ. The contents
of the PFTE is valid. The PCBIT is set, PFTEEPA# indicates a connected
page, PFTESCB contains the SCB of the corresponding space and the
PFIX and TFIX counters are zero.

3. If a PFTE is assigned to an addressable page, the contents of the PFTE is
valid:

e |f the NFVP bit is set, the PFTE is neither enqueued to the PSQ, nor to the
IPFQ. If the NFVP bit is reset, and the PFIX and the TFIX counter are zero,
the PFTE is enqueued to the PSQ. If the NFVP bit is reset, and the PFIX
or the TFIX counter is not zero, the PFTE is neither enqueued to the PSQ
nor to the IPFQ.

NPSQE represents the actual value of 31-bit page frames available for replace-
ment. That means:

NPSQE = len (PSQ) + len (IPFQ)

In order to prevent excessive page fixing and thus guarantee program execution
under all conditions, the number of available page frames must not be lower than a
specific limit MINPSQE. That means there is data invariant:

NPSQE >= MINPSQE

The reservation of MINPSQE, or if it is a request from the Fetch routine, of
MINPSQE-2 page frames for page replacement ensures that a page fault can
always be handled by the PMR task.

If the PFIXPGE or GETREAL routine is executed, the counter NPSQE does not
reflect all the time the actual number of PFT entries in the PSQ. The actual
number of entries in the PSQ can be greater than the number indicated in NPSQE.
Those additional entries are reserved by the PFIXPGE or GETREAL routine and
cannot be used for other requests. Please see sections Page Frame Table and
Selection Pool Queues.

NPSQE monitors only the availibitity of 31-bit page frames. 64-bit page frames
cannot be fixed and therefore are not taken into account.

Page Management 205

Page Table Assignment String (PTAS)

Every block of 8 page table entries, describing a contiguous address range of 32KB
is associated to an entry in the Page Table Assignment String (PTAS). It indicates
whether the related block is already in use or not. The entry is abbreviated as
PTASE and contains zero if unused. Field SCBAPTAS in SCB contains the begin
address of the table describing the area belonging to the SCB.

Bytes | Label Description
0 -7 | PTASE Entry length 8 bytes
0-1 Reserved
2 PTASFLG1 Flag byte 1
PTASUSED X'80' entry in use
40..01 Reserved
3 Reserved
4 - 7 | PTASRECN Record# on PDS of 1st
page of this block

Figure 83. Page Table Assignment String Entry (PTASE)

Page to Disk Assignment String (PDAS)

Every block of 8 pages on the page data set (PDS) describing a contiguous area of
32 KB (the so called allocation unit) is associated to an one byte entry in the Page
to Disk Assignment String (PDAS). It indicates whether the related block is already
in use or not. The entry is abbreviated as PDASE and contains zero if unused, and
X'FF'if it is used. Field APDAS in PMCOM contains the begin address of the
table.

Note: The PDAS is only addressable with DAT off.

Page State Lists (PSLs)

206

The Page State List (PSL) describes the states of the pages of an allocation unit.

The state descriptor of the PSL is implemented as a bitstring, indicating whether
the condition is satisfied or not.

Bytes Label Description
0 - 15 PSL Header of PSL
0- 3 PSLASCB Address of SCB the PSL

belongs to (PISL only)
4 - 7 PSLABEGP EPA number of 1lst page..
...of related page set
8 - 11 PSLAENDP EPA number of last page.
12 - 15 PSLSTLEN length of PSLSTATE

16 - PSLSTATE array of Boolean values
. describing the
. states of page set

Figure 84. Page State List (PSL)

Currently there are two PSLs:
e POSL (Page-Out State List)

z/VSE 4.2 Supervisor Diagnosis Reference

e PISL (Page-In State List)

The POSL is provided by the page selection algorithm and is addressed via

SCBAPOSL in the related SCBs.

The PISL is set up by the page-in SVC routine and is located in the page manager

data area.

The space requirements of a PSL is 1KB per 32MB address space (or 32KB per

1GB).

Pre-Page-Out Control Table (PREPGOTB)

The Pre-Page-Out Control Table (PREPGOTB) provides information to manage

pre-page-out processing via the current POSL.pslistate. PREPGOTB consists of
256 PREPGENT entries.

Bytes Label Description
0- 7 PREPGENT | PREPGENT entry
0- 1 PREPGBLK | nbr of contiguous blocks
2 PREPGPTE | relative EPA nbr of 1st
...page in allocation unit
3 PREPGVAL | blocking value mask
4 - 7 PREPGOFF | offset of first page in
. TIBAPFT

Figure 85. PREPGENT Entry

Page-In Control Table (PAGEINTB)

The Page-In Control Table (PAGEINTB) provides information to manage blocked
page-in processing via the current PISL.pslistate. PAGEINTB consists of 256
PGINENT entries.

Bytes Label Description
0- 7 PGINENT PGINENT entry
0- 1 PGINBLK nbr of contiguous blocks
PGINPFR number of required frames
...to satisfy page-in
3 PGINVAL blocking value mask
4 - 7 PREPGOFF | offset of first page in
. TIBAPFT

Figure 86. PGINENT Entry

Page Management

207

Storage Management Control Block (SMCB)

The SMCB - being part of the partition control block (PCB) - contains the neces-
sary control information for the storage allocation. The page management is con-

cerned by:
SMAXPFIX
SMPFIX
SMAXPFX3
SMPFIX3

Moreover, the virtual and real partition boundaries are considered by the page man-

agement.

Page Data Set Table

208

Page Management uses the Page Data Set Table (DPDTAB) to calculate the
correct address for a given page on the Page Data Set, if a read or write operation
is necessary. Bytes 224-227 (X'E0'-X'E3') of the System Communication Region
(SYSCOM.IJBDPDTB) contain the address of the DPDTAB. The DPDTAB consists
of a header and 15 extent definitions. Label DPDTAB identifies the first byte of the

partition/SVA PFIX limit in pages (24-bit)
actual PFIX count (24-bit)
partition/SVA PFIX limit in pages (31-bit)
actual PFIX count (31-bit)

table. The table has the following layout:

Dec | Hex | Label Description

0-15| 0— F| DPDADR Header

0— 1| 0— 1| DPDEXT# Number of possible
extents

2— 3| 2— 3| DPDAEXT# Number of actual extents

4- 7| 4-7 Reserved

8-11| 8 B| DPDLLCON Address of load leveling
constants

12-13| C- D Reserved

14-15| E— F| DPDLEN Length of one DPDENTR

Figure 87. Page Data Set Table Header

z/VSE 4.2 Supervisor Diagnosis Reference

Dec | Hex | Label Description
0-39| 0-27| DPDENTR Extent definition
0— 1| 0— 1| DPDUNT CUU of PDS device
2 2| DPDDEVT Device type:FBA, CKD, RPS
3 3| DPDDEVC Device code (DTF)
4— 5| 4— 5| DPDREC# CKD: # records/track
4— 5| 4— 5| DPDBLKLG FBA: block Tength
6— 7| 6— 7| DPDTRCK# CKD: # tracks/cylinder
6— 7| 6— 7| DPDBLKPG FBA: # blocks/page
8-11| 8- B| DPDRTLL CKD: track# of Tower
extent limit
8-11| 8- B| DPDBLKLL FBA: block# of lower
extent 1imit
12-15| C- F| DPDTRCKU CKD: # of used tracks
12-15| C- F| DPDBLKU FBA: # of used blocks
16-17|10-11| DPDPUB PUB index
18-23|12-17| DPDVOLID Volume id of PDS
24-27|18-1B| DPDPGUL Page # of upper limit
28-31|1C—1F| DPDXNTLL ECKD, ext. lower limit
32-35|20-23| DPDXNTUL ECKD, ext. upper limit
36—39|24-27| DPDDEVCB Addr. of DEVCB for extent
40-41|28-29| DPDFCP SCSI: CUU of FCP
42 2A DPDDFLG SCSI: Dump flags
DPDDOP 80 - SCSI extent open
DPDXERR 40 - error on SCSI extent
43 2B Reserved
44-5112C-33| DPDWWPN SCSI: Port number
52-59|34-3B| DPDLUN SCSI: LUN number

Figure 88. Page Data Set Extent Definition

Page Management

209

Device Control Block (DEVCB)
Every PDS device is described by its associated Device Control Block (DEVCB).

Bytes
Dec Hex | Label Description
0 0| DEVCB Device control block
0— 3 0— 3| DEVCBNXT Addr. of next DEVCB if any, addr. of
first DEVCB in chain for last DEVCB
4 4| DEVSTAT Status byte
DEVSTRT X'80' I/0 request started
DEVEMPTY X'40' no I/0 request enqueued
DEVPGWO X'20"' request waits for
unconditional page out
5 5| DEVCBTYP Device type: FBA,CKD,RPS,ECKD
6 6| DEVEXT# Number of extents on device
7 7| DEVCPSL PSLSTATE of active CCW-s (blocked I/0)
8- 11 8 B| DEVACT Address of IORE (TIB)
12— 15 C- F| DEVDPD Addr. of 1st DPD entry for device
16— 19 10— 13| DEVRELO Relocation for 1st DPD entry on device
20— 23 14— 17| DEVAPDAS Addr. of 1st PDASE for device
24— 27 18- 1B| DEVPDASA Highest offset of PDASE already occup.
27— 31 1C— 1F| DEVPDASB Number of PDASEs to be scanned
32— 35 20— 23| DEVPCB Address of related Class PCB
36— 39 24— 27| DEVCBMSK Device mask for dispatching (turbo)
40- 41 28- 29| DEVERIN number of failing blocked page-in
42- 43 2A- 2B| DEVEROUT number of failing blocked page-out
44— 47 2C— 2F| APFPSS Address of PFPSS for device
48— 63 30— 3F| DEVCCB CCB for device
64— 71 40— 47| DEVCCW CCW program area
72-471 48-1D7 Device specific information
472-475 1D8-1DB| PFRQBEG Begin addr. of system page fault queue
476—479 1DC-1DF| PFRQEND End addr. of system page fault queue
480—-655 1E0-28F Partition queue headers in the
sequence BG, FB, ... , F1,Classes..
Tength = (12+NCLASS)*2%4
NCLASS = number of dynamic classes
656—659 290-293| PORQBEG Begin address of page—out queue
560-663 294-297| PORQEND End address of page—out queue

Figure 89. Device Control Block (DEVCB)

210 z/VSE 4.2 Supervisor Diagnosis Reference

Page I/0O Request Element (IORE)

The IORE is part of Task Information Block (TIB). The following fields are relevant
for page management.

Dec | Hex | Label Description
0 0| TIBADR Task information block
0— 3| 0— 3| TIBCHAIN
4— 7| 4— 7| TIBSTATE Bound state information
page-in: ext. page addr. of page-fault
bTlocked page-in: address of PGIN-TIB
unc. page-out: addr. of PFTE triggering
the page-out
pre page-out: binary zeros
8-11| 8- B| TIBPFAPP Address of PHO appendage (PHO-TIB)
8-11| 8- B| TIBVIOTB Address of VIOTAB entry (VIO-TIB)
12 C| PGQTYP Request type
PGPMRSP ~ X'80'|page-out for page-manager address space
PGNCNT X'40' |[Page—=in: counting done
PGIN X'20' |Page-In req. by PGIN task
PGO X'10' [Page—out request
PGIOERR X'80'|Page I/0 error occured
PGDELO X'04'|page-out: deactivate request
PGVIORQ X'02'|VIO request
PGBLK X'01' [Blocked Page I/0 request
13 D TIBFLAGL Flag byte
PHOIND X'80' [indicates PHO/VIO TIB
PHOACT X'40' |PHOIND=0: PHO initialized
for this task
PHOREQ X'40' |PHOIND=1: Req. enqueued
VIOREQ X'20' |PHOIND=VIOREQ=1 indicates
VIO TIB
14 E TIBFLAG4 Flag byte
TIBPFDSP X'40'|PHO for page-fault in data spaces active
16-19|10-13| PGINF Information for page I/0 handling
page-in: addr. of PFTE
blocked page-in: binary zeros
page-out: binary zeros / ...
/ address of waiting DEVCB
20 | 14 PGOEQPSL psistate at ENQUEUE time
21 | 15 PGOIOPSL blocked part of pslstate at SVC-15-time
22 | 16 PGOCYPSL blocked part of pslstate if end-of-
cylinder has been detected
24 | 18 TIBPCB Pointer to PCB the task belongs to
. further TIB
28-31|1C-1F| TIBAALU page-out: addr. of allocation unit
in current PSL
32-35|20-23| TIBPFSCB SCB the TIBSTATE belongs to
36-39|24-27| TIBPFARA Addr. of PHO interface area
36-39(24-27| TIBERPFT offset of failing CCW (blocked 1/0)
40-71|28-47| TIBAPFT array of addr to PFTE-s (blocked I/0)

Figure 90. Page I/O Request Element (IORE)

Page Management 211

Relationships between Control Blocks

SCBPTR (X'254') Address of Actual SCB (Virtual Address Range)
curr SCB PMCOM. APDAS
l SCB_1 SGT_1 PT_1
Space_ID —| shared
one
. segment .
@(SGT) Ist priv.
PTAS 1 vPDAS
@(PT) — one [——> u |mr—> u
@(PTAS) u f
segment
u —t f
PT_S f —>| u
SCB S (PT shared area) one
. . > u
Space_ID —| 1lst segm . segment . -—-
A
: : -
one f
@ (PT) — . segment . > u
u
SCB_2 SGT_2 PT 2
Space_ID —| shared PTAS_2
one
. . —| u
. segment . ---
@(SGT) Ist priv. f
.f.‘
@(PT) — one f
@(PTAS) .
segment ---| u=used block
f=free block

Figure 91. Relations between SCB, Segment Table, Page Table, PTAS and PDAS

212 z/VSE 4.2 Supervisor Diagnosis Referenc

e

L'PDAS | L'PDAS=Length of PDAS

DEVCB PDAS
u
u

—>
A u
f
@(PDAS) |— u
L(PDAS) |——» u
S(PDAS) |— f
u
v u
f

_>

f
DEVCB f

—
u
u

@(PDAS) |—

L(PDAS) u
S(PDAS) f
f

Figure 92. Relations between DEVCB and PDAS

Page Management 213

real address

v

Figure 93. Relations between PFTE, SCB and PT

214

(/4K)
(%32)

APFT

+|
[J Page Frame Table

(PFT)
T SCB
L»|..PFTEEPA#|...|PFTESCB|.. belonging
' | to EPA
@(PT)
(*L'PTE)

z/VSE 4.2 Supervisor Diagnosis Reference

Page Table

PTEFRA

Page Faults and Page Frame Selection
Page Fault Processing

page fault

set up page mgr
address space
select page frame

enqueue IORE
?pagel/0? —— in PGQI
yes set causing task
no in wait (PMRBND)
make ? pmr
page addressable active?
no

exit dispatcher

activate
page manager

exit | pmr

Figure 94. Page Fault Processing

Page fault handling is done under the causing task as long as possible. But when-
ever page I/O processing is needed the page manager task is concerned. Page
fault handling is done synchronously and the task causing causing the page fault is
set into wait (PMRBND condition). After successful completion of the page 1/O the
page is made addressable and the task causing the page fault is posted. Page 1/0
for pre-page-out and page-in SVC is done asynchronously.

Page Management 215

Selection Pool

Selection Pool

The selection pool consists of all page frames which can be selected by the Page
Management routines for paging. The selection pool contains all those pages
which do not belong to the supervisor or to active real partitions and which are not
fixed in some way (either by TFIX or PFIX).

Queues

The PFTEs that are not fixed (TFIX and PFIX counter zero) and have a page
assigned are queued in the Page Selection Queues (PSQ/PSQ64). The PFTEs
that have no page assigned are queued in the Invalid Page Frame Queues
(IPFQ/IPFQ64). One of each queues is for page frames below 2GB and the other
(...64) for page frames above 2GB.

Each queue has a queue header, which is 32 bytes long. Bytes 24 through 27
point to the first queue entry and bytes 28 through 31 to the last queue entry. How
the selection pool page frame entries are queued is explained in the following
section and in the section on the page frame selection.

Selection Algorithm

Note: The reference (R) bit and the change (C) bit are located in the page frame.
Whenever they are mentioned in this paragraph they refer to the page
frame or the page belonging to the entry presently handled.

Unused page frames are available if the IPFQ64 or IPFQ are not empty and they
are selected by using the first one in the queue. First the the page frames from
IPFQ64 are taken, then the page frames from IPFQ.

To ensure that pages newly paged-in are not paged-out immediately, they are
enqueued at the end of the PSQ, the R-bit=OFF and C-bit=OFF.

To overlap the page-in and page-out functions and to avoid the necessity of exe-
cuting a page-out immediately before a page-in, a pre-page-out is implemented. It
ensures that a minimum number of page frames is available (that means, the page
belonging to a frame has its R-bit=OFF and C-bit=OFF). The pre-page-out is only
active if IPFQ is empty.

The two functions of the page selection algorithm are:

e To select a page to be replaced.
¢ To ensure that a pre-page-out is executed if necessary.

To achieve this, the PSQ is scanned and the state of the R- and C-bit is checked.

Note: The following algorithm applies to the PSQ only. Page selection from the
PSQ64 has not been implemented. The PSQ is scanned till a minimum number of
entries with the R-bit=OFF has been found. If all these entries have their
C-bit=OFF, too, the selection is finished, and the first PFTE found in the PSQ with
the R-bit=OFF and the C-bit=OFF is used for replacement.

The first PFTE in the PSQ with the R-bit=OFF and the C-bit=OFF is used for
replacement. If no such entry is found, the first PFTE with the R-bit=OFF is used.

For each PFTE found during the scan and with the R-bit=OFF and the C-bit=ON,
routine ENQUOBLK is called to mark the frame for pre-page-out and schedule pre-

216 z/VSE 4.2 Supervisor Diagnosis Reference

page-out if necessary. Each PFTE found with the R-bit=ON is enqueued at the
end of the PSQ with the R-bit=OFF.

Page Management 217

Decision Tables Used for Page Selection

Conditions:
R-bit 1 111060010
C-bit 110011 11110
SELCTFLG
=NEWSTRT - -] =-1110]-11
SELCTFLG
=REPLFND -l -1 -1-1-1-11
POABIT - 110060 |1]-

Actions:
SELCTFLG

=X (NEWSTRT) X
SELCTFLG
=REPLFND
PSQRPTR X
PSQ=

t1(PSQ)+hd(PSQ) X X
PFTEPOSL

(reset) X X

ENQUOBLK X | x
incr CNT1 X X | x X
reset R-bit X | x| x| x| x| x| x
next PFTE X X | x| X X | x| X

Figure 95. Decision Table for Inspection of a Frame

218 z/VSE 4.2 Supervisor Diagnosis Reference

Conditions:

PSQRPTR nly |y

SELECTFLG
=REPLFND -1 0|1

Actions:

PMRIOWT X

PAGDISCA X

ENQUOUNC X

Figure 96. Decision Table for Page Frame Replacement

Rearranging of Page Selection Queues
Page frames below 2GB are organised in the PSQ and IPFQ.

1. The PFTE of a page frame below 2 GB is dequeued from the PSQ:

e |f a TFIX or PFIX is requested for a page assigned to a page frame.

» |f the page assigned to a page frame has to be disconnected next
(SELECTPG, INVPAGE, RELPAG).

e If GETREAL is requested for the page frame.

2. The PFTE of a page frame below 2GB is enqueued to the PSQ:

e |f a page has been TFREEed and is otherwise not fixed, and the NFVP bit
is reset (if TFREE is from Fetch, the PFTE is enqueued at the beginning of
the PSQ; if it is not from FETCH, the PFTE is enqueued at the end of the
PSQ).

e |f a page has been PFREEed and is otherwise not fixed (the PFTE is
enqueued at the end of the PSQ).

e |If a page-in has been completed (the PFTE of the page frame assigned to
the page is enqueued at the end of the PSQ).

3. The PFTE of a page frame below 2 GB is moved within the PSQ:

e |f during page selection a page is found with the R-bit on (PFTE is
enqueued at the end of the PSQ).

» |f a PAGEIN request is for a page that is already in storage (the PFTE is
enqueued at the end of the PSQ).

e |f a FCEPGOUT request is for a page that is in storage (the PFTE is
enqueued at the beginning of the PSQ).

4. The PFTE of a page frame below 2GB is enqueued at the beginning of the
IPFQ:

* If no page is assigned to the page frame (after disconnect, INVPAGE
RELPAG, FREEREAL).

5. The PFTE of a page frame below 2GB is dequeued from the IPFQ:

Page Management 219

» If an unfixed page frame is needed and the IPFQ is not empty during page
selection, and in case of TFIX, PFIX and GETREAL to exchange page
frames.

Page frames above 2GB are organised in the PSQ64 and IPFQ64.
1. The PFTE of a page frame above 2GB is dequeued from the PSQ64:

¢ |f the page assigned to a page frame has to be disconnected next
(INVPAGE, RELPAG).

2. The PFTE of a page frame above 2GB is enqueued to the PSQ64:

e |f a page-in has been completed (the PFTE of the page frame assigned to
the page is enqueued at the end of the PSQ64).

3. The PFTE of a page frame above 2 GB is moved within the PSQ64:

» |f a PAGEIN request is for a page that is already in storage (the PFTE is
enqueued at the end of the PSQ64).

e |f a FCEPGOUT request is for a page that is in storage (the PFTE is
enqueued at the beginning of the PSQ64).

4. The PFTE of a page frame above 2GB is enqueued at the beginning of the
IPFQ64:

* If no page is assigned to the page frame (after disconnect, INVPAGE
RELPAG, FREEREAL).

5. The PFTE of a page frame above 2GB is dequeued from the IPFQ64:

¢ |f an unfixed page frame is needed and the IPFQ64 is not empty during
page selection, and in case of page-out for a page frame below 2GB to
exchange page frames.

Selecting Page Frames above 2GB

Page faults that are reported via interrupt usually occur in applications, that are not
interested in the real address of the page. Therefore preferrably page frames
above 2GB (64-bit page frames) are assigned to the page.

Internal page faults are queued by system functions like Fetch, TFIX or PFIX which
will refer to the real address of the page and therefore need a page frame below 2
GB. For that reason page frames below 2 GB are assighed to pages whose page
fault is raised internally.

The following shows the logic how page manager selects page frames above and
below 2GB.
Type of page fault:
1. External page fault (program exception x'11"): select a 64-bit page frame
e Search IPFQ64

— Page frame found -> queue its PFTE at end of PSQ64 and use
selected page frame.

e |IPFQ64 empty: search IPFQ

— Page frame found -> queue its PFTE at end of PSQ and use selected
page frame.

e |IPFQ empty: search PSQ64

220 z/VSE 4.2 Supervisor Diagnosis Reference

Scan PSQ64 for a certain number of elements.

R-bit on: requeue PFTE to end of PSQ64, reset R-bit.
C-bit on: enqueue PFTE for pre-page-out.

Use first page frame with R-bit off and C-bit off.

Page frame found -> queue its PFTE at end of PSQ64 and use
selected page frame.

* No free 64-bit page frame found: search PSQ

— Scan PSQ for a certain number of elements.

R-bit on: requeue PFTE to end of PSQ, reset R-bit.
C-bit on: enqueue PFTE for pre-page-out.

Use first page frame with R-bit off and C-bit off.

Page frame found -> queue its PFTE at end of PSQ and reuse
selected page frame.

¢ None found: start unconditional page-out request.
¢ NOPDS: system error if no page frame is available in IPFQ64 or IPFQ

2. Internally queued page fault (e.g. from TFIX): select a 31-bit or 24-bit
page frame

e Search IPFQ

— Page frame found -> queue its PFTE at end of PSQ and use selected
page frame.

* IPFQ empty: search PSQ

— Scan PSQ for a certain number of elements.
— R-bit on: requeue PFTE to end of PSQ, reset R-bit.
— C-bit on and IPFQ64 not empty: exchange page frame below 2GB with
64-bit page frame.
- Chain PFTE of 64-bit page frame at bottom of PSQ64.
— C-bit on and IPFQ64 empty: enqueue PFTE for pre-page-out.
— Use first page frame with R-bit off and C-bit off.

— Page frame found -> queue its PFTE at end of PSQ and reuse
selected page frame.

e None found: start unconditional page-out request.

¢ NOPDS: system error if no page frame is available in IPFQ or in IPFQ64
for 'page-out’

Page Handling Routines

The following conditions result in some form of page movement or reassignment of
page frames and may require activity by the page manager (PMR) system task:

* Page Fault

e GETREAL request

e TFIX request

e PFIX request

e PAGEIN request

e VIO POINT request

* LRA special operation exception

However, the PMR system task is not activated for the following requests:

Page Management 221

222

e FREEREAL request

* TFREE request

e PFREE request

e RELPAG/FCEPGOUT request
¢ INVPAGE request

The requests that require the activity of the PMR system task are queued in the
page-in queues or the page-out queue for the device on which the page to be
handled resides.

For each device on which the page-data-set resides, control information is main-
tained in a Device Control block (DEVCB). The page-data-set devices are serviced
in wrap around mode. The PMR system task tries to start an I/O-request on each
device as long as requests are pending and not yet started.

One page-in queue exists for each partition/class and one for the system. In addi-
tion one page-out queue exists on each device. 'User-page-faults' (that means,
page faults in the user area) are queued in the corresponding partition/class page
fault queue; 'system-page-faults' (that means, all other page faults) are queued in
the system page fault queue. Each queue consists of a forward chain of IOREs.
For page-in requests the IOREs are the normal TIBs of the tasks waiting for com-
pletion of the page-fault handling and TIBSTATE (in TIB) contains the Extended
Page Fault address of the page to be handled. For page-out requests pseudo TIBs
are used which don't belong to any specific task and TIBAALU contains the
address of the related allocation unit in the POSL. In case of unconditional
page-out, TIBSTATE contains the address of the PFTE to be handled. Begin and
end of chain are maintained per device in the DEVCB to allow for enqueue at the
bottom and dequeue at the top of the queue. PFRQBEG indicates the header of
the 1st page-in queue (PGQI), PORQBEG indicates the header of the page-out
queue (PGQO).

The requests that require writing pages onto the page data set (it may be
requested by GETREAL and for the handling of a page-fault) are queued in the
page-out queue , and handled on a FIFO (first-in-first-out) basis.

There exist twenty-three pseudo TIBs (IOREs) for page-out (each 72 bytes long)
which are allocated in the page management data area.

z/VSE 4.2 Supervisor Diagnosis Reference

Page Manager Processing

!

get next request
(priority driven)
get pmr addr space

l

<+— ?page-in?

no
l yes

select page frame

l make frame
unaddressable
2unc.pgo? ——— | enqueue page-out [—>»

yes in PGQSYS
l o

(highest priority)

disconnect frame

—

build CCW program
SVC 15

|

get pmr addr space
do I/0 completion

l

?page-in? ——— | 7unc.pgo? ———»

no no
l yes l yes

make page addr-able eng pfte in IPFQ

get req. addr space clear frame —>
deq IORE from PGQI post tasks waiting
post requestor on pfte

Figure 97. Page Manager Processing

As long as a PMR request is handled, the following fields in SGPDATA are set:

 PFDEVCB - address of actual device control block

e PFPGQE - address of actual request element (IORE)

e PFSCB - address of SCB of area, the handled page(s) belong to

e PFVTABE - address of VTAB entry if page belongs to VPOOL, otherwise the
field is negative

Page Management 223

224

Handling of a Page-In Request

A page-in request is enqueued to the proper page-in queue by the routine ENQUI.
The PMR system task handles the page request queues in the priority order of the
corresponding partitions. The system queue (PGQSYS) has the highest priority,
the page-out queue (PGQO) has the lowest priority. Within each queue the entries
are handled on a FIFO (first-in-first-out) basis.

The page manager (PMR) system task does the following steps when handling a
page-in request.

¢ Select a page frame for the requested page (see Page Frame Selection and
Pre-Page-Out) and remove it from the PSQ or the IPFQ.

e |f the page frame selected is in use and its contents are not the same as that
of the copy on the page data set (PDS) (that means, the change-bit is on) the
page is set to the connected state and enqueued for page-out. If the selected
page frame is in use and its contents are the same as that of the copy on the
PDS, the page is disconnected.

¢ Read the requested page from the PDS, if a valid copy exists on the PDS (that
means, PTEPDS bit is on in PTE) If not, the page is cleared to zero.

* Make the page addressable, that means: reset the reference and change bits,
initialize the corresponding PFTE and enqueue it at the end of the PSQ.

Handling of a Page-Out Request

Before a page-out request is actually enqueued for page frames below 2 GB the
page manager checks the IPFQ64 for an available page frame. If there is an
unused page frame the pages are swapped, and the page frame below 2 GB
becomes available without page-out I/O.

A pre-page-out request is enqueued to the PGQO (page-out queue), by the routine
ENQUOBLK, an unconditional page-out request on top of the PGQSYS (system
page i/o queue) by the routines ENQUOUNC or ENQUOW.

The page manager (PMR) system task performs the following steps when handling
an entry:

* Reset the change bit and set the PDS bit of the requested page.

¢ Indicate page-out as active in the PFTE and write the page onto the PDS.
* Reset the reference bit.

* If posting is required, post the tasks that are waiting for the page frame.

¢ Reset the PGQO indication in the PFTE.

Pre-page-out is done via blocked page I/O. That means the number of contiguous
pages of the affected allocation unit is sufficient high. Whenever feasible uncondi-
tional page-out is combined with pre-page-out to do blocked page 1/0 whenever
feasible.

Note: The handling of a pre-page-out request does not change the status of a
page. After the completion of an unconditional page-out request the page or
block is disconnected.

z/VSE 4.2 Supervisor Diagnosis Reference

Emergency Handling
Emergency handling is required if

IPFQ = <>
& <pfteePSQ|pfteflg=POABIT & R-bit(Page-frame(pfte))=OFF> = <>

that means, a page fault can't be handled immediately. This state is indicated by
PMRFLAG.PMRIOWT and results in waiting on completion of some already started
page-out requests. As long as PMRFLAG.PMRIOWT is ON, any page fault is
gueued into the related PGQI-queue but not yet processed (that means the page
manager is not activated).

LRA Exception Appendage

An LRA instruction will cause a special operation exception, when a page frame
above 2 GB has been assigned to the referred page, and a 64-bit real address
would have to be passed to the program which is in 31-bit addressing mode.
When a special operation exception occurs for an LRA instruction, the program
check handler calls the page manager appendage routine PMLRAG4. The page
manager then replaces the 64-bit page frame by a page frame below 2GB. Its real
address is returned to the program instead of the 64-bit real address which caused
the exception.

The routine PMLRAG4
» searches for a page frame below 2 GB that is available for exchange,

* invalidates the page table entries of the virtual address (LRA operand) and
target page frame,

* exchanges the data of the page frames,

e exchanges the storage keys including C-bit and R-bit of the page frames,

e restores the page table entries with the new page frame addresses.
The routine will always find a page frame below 2GB for exchange. If no available
page frame is found below 2GB, the page I/O request queues are scanned for a
request with a data area below 2GB which has not yet been started. That page

frame is then exchanged with the 64-bit page frame that caused the exception. The
number of unfixed pages will not be reduced by this action.

Page Management 225

Blocked Paging

226

Blocked Paging Concepts

Blocked page /O is triggered by the value of the actual allocation unit in the PISL
and the POSL respectively. For page out the value is determined by the states of
change bits of the addressable pages of the unit. For page in the value is deter-
mined by the states of pages of the unit to be read in. In any case, the value speci-
fies the current blocking factor.

Usually pre-page-out will be started, if at least the minimal blocking factor is
reached. This factor is dependent on the relation between the amounts of uncondi-
tional- and pre-page-outs. Both items are measured dynamically.

For any unconditional page-out request the related POSL state is inspected to
check whether pre-page-out can be combined with the unconditional page-out
request, even if the minimal blocking factor is not satisfied.

When servicing a PAGEIN SVC the page-in task supplies a PISL later be applied
by the page I/O routines to do blocked page-in.

The POSL is managed by page selection and related routines.

If an I/O error occurs in a blocked page /O request, the request is ignored or will
be replaced by a sequence of unblocked 1/O requests, which are handled as
current.

Request Type Actions

pre-page-out increase error count
undo (pte,change bit,pos]

for failing pages)
ignore error

blocked page-in increase error count
undo (pfte,pte)

for failing pages
reset IORE unblocked
adjust pisl
ignore error

blocked uncondit] increase error count
page-out undo (pte,change bit,posl)
for all pages)
reset IORE unblocked
(inc1 PGQDELO-s)
restart IORE

Figure 98. Handling of I/O Errors
PMR 1/O errors related to data spaces result in canceling of the affected user task.

After establishing the related page manager address space, the requested proc-
essing routine - pginsio for page-in requests, pgoutsio for page-out requests
respectively - gets control. Accordingly, at I/O completion time, the related page

z/VSE 4.2 Supervisor Diagnosis Reference

manager address space is established and the processing routine - PGICIMPL for
page-in, PGOCOMPL for page-out- gets control.

I/O error detection is done in the subroutine PMRIOERR.

Blocked Page-Out
Pre-page-out activities are delayed until a complete block of pages (not a neces-
sarily complete allocation unit) can be written onto the PDS.

The POSL is used to trigger pre-page-out of a block. If a page with change-bit
equal to ON is detected at page frame selection time, the corresponding bit in the
related POSL is set to ON. The POSL is addressed via the SCB, the bit in the
POSL.PSLSTATE is identified by the EPA number of the affected page, the
resulting byte describes the allocation unit. A POSL is provided for each private and
the shared address areas and each data space. A PSL is not supported for the real
address area (EXEC pgmname,REAL) and the private page manager address
areas.

In the time delay between enqueueing blocked pre-page-out and starting the
related CCW program one or more pages of this allocation unit might be invalidated
or changed. Therefore, it is verified whether the blocking factor is still high enough
to do the page-out. In case of page-out, the affected bhit(s) in the POSL are reset
before starting 1/0 otherwise the request is dequeued and the POSL remains
unchanged.

Note: Whenever the change bit is reset the related POSL indication must be reset

too.
SCB
/
SCBAPOSL

/ /

|
POSL
PSLASCB address of SCB

PSLABEGP EPA-nr of 1st page .
. in POSL
PSLAENDP EPA-nr of last page...

PSLSTLEN Tength of page state Tist

page state list

10101011 PSLSTATE: page states of one
. allocation unit
..... (8 pages)

Figure 99. POSL

Page Management 227

228

Check and Control Blocked Page-Out

The value of POSL.PSLSTATE is applied as index in the table PREPGOTB to get
the related PREPGENT entry. This entry provides all information necessary to
check whether blocked page-out can be performed: to create the CCW-s at
SVC-15 TIME. the number of contiguous pages in the current allocation unit is
shown by PREPGENT.PREPGBLK and is compared with the actual minimal
blocking value in SGPDATA.PPOBLCUR. If PREPGENT.PREPGBLK is equal to or
or greater than SGPDATA.PPOBLCUR, blocked pre-page-out is done and
PREPGENT.PREPGVAL represents the "blocked" part.

SCB
/ / POSL
/ /
SCBAPOSLF——>
/ /
/ / PSLSTATE
 — of one allocation unit
describing those pages
to be paged-out
PREPGOTB
APREPGTB »>
PSLSTATE*1en (PREPGENT)
/ [l /
v
/ [/

Figure 100. Relationship between POSL and PREPGOTB

The current value of the POSL.PSLSTATE is the index in PREPGOTB and deter-
mines the related PREPGENT entry:

Page-Out Scenario

There are two different scenarios, one for blocked pre-page-out dependent on the
minimal blocking factor and the other for unconditional page-out trying to do
blocked page-out in any case.

Enqueuing Pre-Page-Out Request

The blocking factor in the allocation unit is sufficient high and the allocation unit is
not yet enqueued, an IORE is enqueued in PGQO. So far, no PFTE is affected.

DEVCB.DEVACT contains the address of the IORE with running I/O. If there is no
active 1/O at all for the DEVCB the field DEVCB.DEVACT is set to X'0". The
current value of POSL.PSLSTATE is saved into IORE.PGOEQPSL.

z/VSE 4.2 Supervisor Diagnosis Reference

SCB

N

/ / POSL PSLSTATE
SCBAPOSLF——» ! 37 !
] ! / " /
 — corresponding PREPGENT
< 0003|05|07|00000014
DEVCB
DEVACT addr (IORE with 1/0)
/ /
DEVCPSL
/ /
IORE
PGQO —//—>
TIBSTATE TIBSTATE = X'0'
PGQTYP PGQTYP = PGBLK+PGO
PGOEQPSL PGOEQPSL = X'37'
TIBPFSCB—
TIBAALU
/ /
TIBAPFT
/ /

Figure 101. Enqueuing Pre-Page-Out Request
Starting Pre-Page-Out Request

In the time interval between enqueueing the IORE and starting I/O some pages
might be released. Accordingly, POSL.PSLSTATE of the allocation unit has been
changed (for example, from X'37' to X'9D").

The value is used to get the corresponding PREPGENT entry, which contains the
actual number of contiguous pages - equal to the actual blocking humber - and the
resulting blocking value applied to create the CCWs.

The affected pfte-s are connected to the SCB and to the IORE and are flagged in
PFTEFLG with POEBIT=ON and POABIT=0ON.

The resulting blocking value is saved in DEVCB.DEVCPSL and IORE.PGOIOPSL.

Page Management 229

POSL.PSLSTATE is updated accordingly (for example, the DEVCPSL value X'1C'
applied on POSL.PSLSTATE X'9D' results in X'81").

_,l———‘ SCB

/ / POSL PSLSTATE
/
SCBAPOSL|——» 9D
/ /
/ / A
T corresponding PREPGENT
< 0003|063 |1C|0000000C
DEVCB
DEVACT
/ /
CCW(pftl)
CCW(pft2)
CCW(pft3)
1C
/ / I0RE PFTE-Table
v
PGQO —
A
TIBSTATE / /
PGQTYP
PGOEQPSL / /
TIBPFSCB—
TIBAALU — IORE| SCB
/ / / /
0 TIBAPFT IORE| SCB
/ . /
pftl / /
pft2
pft3 F———» IORE| SCB
0
/A / /
 — | | |

Figure 102. Starting Pre-Page-Out Request

230 z/VSE 4.2 Supervisor Diagnosis Reference

The POSL.PSLSTATE is updated accordingly (for example, the DEVCPSL value
X'1C' applied on the POSL.PSLSTATE X'9D' results in X'81").

SCB
/ / POSL PSLSTATE
/
SCBAPOSL|——> 81
/ /
/ /

Figure 103. State of POSL after Starting the Request
End of Cylinder Condition for CKD

If the CCW program would cross a cylinder boundary on a CKD device the CCW
program will be cut on this cylinder boundary. The other pages will be handled by
another 1/0O request at later time.

POSL.PSLSTATE and DEVCB.DEVCPSL must be adjusted accordingly (for
example, EOC is detected for the third page with the POSL mask X'40',
DEVCB.DEVCPSL is adjusted to X'18' and POSL.PSLSTATE to X'85'). Moreover,
POEBIT and POABIT in PFTEFLG of not yet considered pfte-s must be reset.

SCB
/ / POSL PSLSTATE
/ /
SCBAPOSL ————> 85
/ /
/ /
L 1

Figure 104. State of POSL after Adjusting for CKD

Enqueuing Unconditional Page-Out Request

If the page selection algorithm has identified a frame containing page with
change-bit=0N, this page must be written on the PDS before the frame can be

used. POSL.PSLSTATE of the related allocation unit is set accordingly.

The request gets highest priority and the IORE is enqueued at top of PGQSYS of
the corresponding DEVCB.

IORE.PGOEQPSL contains the related pslstate of the page to be page-out and
POSL.PSLSTATE of the related allocation unit contains the current value including
the posimask of the unconditional page-out.

The selected PFTE is removed from the PSQ and PFTEFLG.POEBIT = ON.

The page to be page-out is set into disconnected state.

Page Management 231

—»l—‘ SCB

<

/ / POSL PSLSTATE
/ /
SCBAPOSL ——> 97
/
/ / 4 psistate includes related
B value for uncond. pageout
DEVCB
DEVACT
/ / PGQTYP = PGO
PGOEQPSL = X'10'
DEVCPSL
/ / IORE PFTE-Table
PGQSYS —//—
A
/ / TIBSTATE
 I— |
PGQTYP
PGOEQPSL
TIBPFSCB—
TIBAALU
/ /
0 TIBAPFT
/ . /
0 / /
pfte >
0 IORE| SCB
0
0 4 !

<

Figure 105. Enqueuing Unconditional Page-Out Request

Special Consideration for PFTE with Active I1/O (POABIT=0ON)

Page-out runs concurrently to page frame replacement. As result a PFTE with
active I/O might be selected. There are two possibilities:

e PFTE is part of a pre-page-out request
as a consequence, the pre-page-out is modified to an unconditional page-out
by updating IORE.TIBSTATE; the IORE remains in PGQO.

e PFTE is part of blocked unconditional page-out
as a consequence, an new IORE is created with PGDELO indication and
enqueued into the PGQSYS just behind the running page-out request.
The IORE is needed in case of I/O error only.

Determination of Blocking Value for Unconditional Page-Out

232 zIVSE 4.2 Supervisor Diagnosis Reference

Special Consideration for PFTE with active 1/0 (POABIT=0N)

Page-out runs concurrently to page frame replacement. As result a PFTE with
active I/O might be selected. There are two possibilities:

e PFTE is part of a pre-page-out request
as a consequence, the pre-page-out is modified to an unconditional page-out
by updating IORE.TIBSTATE; the IORE remains in PGQO.

e PFTE is part of blocked unconditional page-out
as a consequence, a hew IORE is created with PGDELO indication and
enqueued into the PGQSYS just behind the running page-out request.
The IORE is needed only if an I/O error occurs.

Determination of Blocking Value for Unconditional Page-Out

It is most effective to combine the unconditional page-out request with other
page-out requests for the same allocation unit. Analogously to pre-page-out, the
POSL of the related allocation unit might be changed between enqueueing and
starting the 1/0O request. Therefore, the determination of the blocking factor and the
creation of the CCW-program is done at SVC-15 time. The new POSL.pslstate
value of the allocation unit is inspected by means of the POSL mask of the uncon-
ditional page-out. The resulting blocking value is determined as follows: every
POSL mask of an allocation unit is related to a special control table (UNCPTBxx).
Accordingly to the POSL mask of the unconditional page-out the corresponding
control table is selected. By the way, there are eigth special control tables. The
current POSL value is applied as index in this control table UNCPHOXxx to get the
effective POSL value which is used as index in the page-out control table
(PREPGOTB) to get the actual PREPGENT entry.

Now all information is available to create the CCW program.

Page Management 233

234

SCB

/ / POSL PSLSTATE
/ /
SCBAPOSLF———> 9B
/ /
/ /
 I— |
POSL-mask
for uncond. page-out UNCPGOX UNCPGOTB
0o
posL| / / | / /
mask
—|nn — |A(PGPSLi)
/ /
—
address table
[/
L index table
UNCPGOO1 lUNCPGOlO UNPGO80
1
Il ﬂ H
posL | / / i
pslstate
> — 18| ——
/[[/
[— [—

corresponding PREPGENT

— (000203 |18|0000000C

Figure 106. Determination of Blocking Value for Unconditional Page-Out
Starting Unconditional Page-Out Request

In the time interval between enqueueing the IORE and starting I/O some pages
might be changed. Accordingly, the state of the allocation unit has been changed
(for example, from X'97' to X'9B"). Whenever possible, blocked page-out will be
done, even if the current blocking value does not satisfy the value in
SGPDATA.PPOBLCUR.

Special Considerations for Combined Unconditional Page-Out

A blocked unconditional page-out might contain the PFTE-s of other unconditional
page-outs also enqueued in the PGQSYS of the same DEVCB.

Because every unconditional page-out is represented by its IORE, the not yet
started IORE(-s) are indicated by PGQTYP.PGDELO.

(The IORE is needed in case of I/O error incl. end-of-cylinder).

z/VSE 4.2 Supervisor Diagnosis Reference

—»l—‘ SCB

/ / POSL PSLSTATE
/ /
SCBAPOSLF————> 9B
/ /
/ / A
DEVCB corresponding PREPGENT
—>|0002|03|18|0000000C
DEVACT
/ /
CCW(pftl)
CCW(pft2)
18
/ / I0RE PFTE-Table
PGQSYS e
A
/ / TIBSTATE
 — |
PGQTYP
PGOEQPSL |«
TIBPFSCB—
TIBAALU
/ / / /
0 > IORE| SCB
/ . /
0 / /
pftl >
pft2 — IORE| SCB
0
0 { 4

<
<

Figure 107. Starting Unconditional Page-Out Request

Tuning of Pre-Page-Out
The objectives are: minimize the number total page-outs and minimize the number
of unconditional page-outs. There are two threshold values:

1. No pre-page-out at all, that means only unconditional page-out
2. No unconditional-page-out at all, that means only pre-page-out

The number of pre-page-out is a function of both the blocking factor b and the
searching depth k in the PSQ (performed by page selection). An increasing value
of k or a decreasing value of b does result in an increasing humber of pre-page-
outs. A high rate of pre-page-outs results in a low rate of unconditional page-outs;
but it might be a high rate of useless pre-page-outs.

Page Management 235

236

The tuning algorithm applies these dependencies: pre-page-out and unconditional

page-out rates must be balanced; additional parameter is the number of PDS

devices.

procedure pgotunig(k : inout N, b : inout N) :=

—_

- v u

“

-

-

— > o c s3I a0
MMMIMMMMM
2222222 2

-

dclend;

if (u=0) & (b<m)
=bh +

then b
else do;

1;

if (2%xu > d)
then do;

if k < h then h =

if b >n then b =

end;

else do;

if (0o <u) & (b >n)

then b = b - 1;
else do;

if (o > d)

end
end;
end pgotunig;

z/VSE 4.2 Supervisor Diagnosis Reference

then do;

if k > 1 then k
if b <m then b

end;

/*
/*

/*
/*
/*
/*
/*
/*
/*
/*

[* ...

k : cur searching depth */
b : cur blocking factor =/

no of PDS devices */
maximal blocking factor x/
minimal blocking factor x/
exp.average of unc-pgout=/
exp.average of pre-pgout=/
constant */
maximal value for searchx/
minimal value for searchx/
ing depth */

/* decrease pre-page-out

/* increase pre-page-out

k + 1;
b - 1;

/* increase pre-page-out

/* decrease pre-page-out
k - 1;
b+ 1;

Blocked Page-In
Applicable for the supervisor services (SVC X'57' and SVC X'121").

During the first scan of the parameter list in procedure PAGEIN (supervisor gener-
ation macro SGPOPT) all affected pages in the PSQ are removed to bottom of the
PSQ. A further scan creates a PISL for those pages not currently addressable and
with a valid copy on PDS. For each allocation unit, blocked page-in will be tried. A
third scan is necessary if blocked page-in was not successful and page-in is pro-
vided via normal page fault processing.

Blocked page-in is done per allocation unit if:
» there are contiguous pages in the allocation unit with ptepds=ON and
e len(IPFQ) = (number of pages with PDSBIT=0ON).

In more detalil this is:
1. The PISL is initialized for each allocation unit.

2. If the page is not addressable and there is a valid copy on PDS the related
PISL.pslstate is set to ON.

3. The procedure PGINENQI checks whether blocked page-in can be performed
and if so, enqueues the IORE in the PGQSYS of the related DEVCB and sets
the Page-in system task into wait (PMRBND).

4. At SVC-15 time the CCW program for blocked page-in will be generated by the
procedure PGINBLK.

5. 1/0O completion is done in the procedure PGICOMPL and the waiting Page-in
system task is posted.

Page In State List (PISL)

The page-in system task owns the PISL located in SGPDATA and describing the
page states of one allocation unit. Each bit in PISL.PSLSTATE identifies one page.
The bit is set to ON if the related page must be read in.

SGPDATA SCB
—>
/
APGIPISL
/ /
[
PISL
PSLASCB address of related SCB

PSLABEGP EPA-nr of 1st page ...
. in PISL
PSLAENDP) EPA-nr of last page...

PSLSTLEN length of pslstate (=1)

10101011 page states of one
. allocation unit

Figure 108. PISL

Page Management 237

238

Check and Control Blocked Page-In

SGPDATA

/ /
PISL pslstate

APGIPISL ——»

APGINTAB

/ /
L

PAGEINTB

PSLSTATE*Ten (PGINENT)

Figure 109. Relationship between PISL and PAGEINTB

The value of PISL.PSLSTATE is applied as index in the table PAGEINTB to get the
corresponding PGINENT entry.

Page-In Scenario
Enqueuing Page-In Request

Blocked page-in is done for the allocation units one after the other. For each allo-
cation unit the prerequisites are:

» there are valid pages on the PDS and
» there are sufficient free frames to satisfy the page-in request.

During the page-in service the PISL is built and initialized for each allocation unit.
Every page of the current allocation unit is inspected to decide whether a page-in
must be done. If so, the related PISL mask is activated in the PISL and the page is
connected to a free frame. After inspection of the allocation unit, the page-in
request is initiated by enqueueing the IORE in the PGQSYS of the corresponding
DEVCB.

The field DEVCB.DEVACT contains the address of the IORE with not yet com-
pleted I/O. If there is no I/O running for this DEVCB, DEVCB.DEVACT contains
X'0'.

z/VSE 4.2 Supervisor Diagnosis Reference

SGPDATA

/ / PISL PSLSTATE
APGIPISL——»| SCB 54
/ / A
| related PGINENT
0005|03|7c|00000004
DEVCB
SCB
DEVACT >
A / /
/ /
DEVCPSL
/ /
I0RE PFTE-Table
PGQSYS —//—>
A
/ / PGQTYP / /
I
TIBPFSCB
TIBAALU — IORE| SCBH
/ / / /
0 |TIBAPFT IORE| SCB
pftl
0
pft2 / /
0
pft3 P————» IORE| SCB
0
0 { {

Figure 110. Enqueuing Page-In Request

Starting Page-In Request

Between enqueue and SVC-15 time no change of the PISL value is possible. The
pages are connected and the frames are reserved.

At SVC 15 time the request is set up accordingly to the PISL value. Analogously to

blocked page-out the control table PAGEINTC provides information about the
blocking factor and the effective blocking etc which is used to create the CCW

program. All affected pages of an allocation unit are paged-in via one
CCW-program, any gap between affected pages are handled by one or more Read
CCW(-s) with data transfer suppression.

The field PISL.PSLSTATE is reset to zero.

The corresponding pte-s are still in connected state.

Page Management

239

SGPDATA

/ / PISL PSLSTATE
APGIPISLF———> 54
/ / A
 — related PGINENT
0005({03|7c|00000004
DEVCB
SCB
DEVACT >
A / /
/ /
CCW(pftl)
CCW(xsup)
CCW(pft2)
CCW(xsup)
CCW(pft3) <
54
/ / I0RE PFTE-Table
\4
PGQSYS >
A
/ / PGQTYP / /
I
TIBPFSCB
TIBAALU —> IORE| SCBH
/ / / /
0 TIBAPFT IORE| SCB
pftl
0
pft2 / /
0
pft3 ——» IORE| SCB
0
: 4 /

Figure 111. Starting Page-In Request

Page Fault Handling Overlap

240

Programs that execute in virtual mode and do their own multi-tasking can use the
page fault handling overlap facility. This gives the user the opportunity to control
the page-in queue entry for the page fault caused by its own task. This is done by
a user-written page fault appendage routine.

Whenever a page-fault occurs, page management first checks if a page fault
appendage has been initiated for the task and the type of the page fault (the user
can specify, that he doesn't want to overlap page-faults due to access to a data-
space).

If the task has an appendage for the actual page-fault, control is first passed to that
appendage, unless the task is using a supervisor service, the LTA, or an
ACF/VTAM function. The request is then enqueued in the page fault queue using a

z/VSE 4.2 Supervisor Diagnosis Reference

special TIB (PHOTIB) located in the PCB, or it gives an indication that a page fault
is already pending for that task. The task causing the page fault is not set into the
wait state.

When pseudo-page faults occur (running under VM and 'SET PAGEX ON' issued),
the page fault overlap handling appendages are not entered.

If the page fault was caused by a supervisor service or logical transient, or if an
ACF/VTAM function is outstanding, or if the user doesn't want to overlap page-
faults in data-spaces, no overlap is performed. The page fault is handled like any
normal page fault condition and the task is set into the wait state.

When an asynchronous page fault has been handled, the appendage is entered
again to see if there are any more page faults to be processed. If so, the page-in
request returned from the appendage is enqueued in the correct device queue.

Pseudo-Page Fault

Pseudo page faults are a special type of program check used when running under
VM. There are two different types of pseudo page faults:

e Pseudo page fault exception (whenever VM gets a page fault and must do I/O
operations)

e Pseudo page fault completion (whenever the 1/0O operation of VM is completed)

For both exceptions VM passes control to VSE by means of program check inter-
ruption.

Page Management 241

Pseudo Page Fault

Completion yes Same
—| as last one
interrupt
no l no
Interrupt yes Completion
in o
dispatcher interrupt
no l yes
Save
status
l v
Completion yes RPOST
—| (condition =
interrupt SRQPSPF)
no l
ICCF high no Indicate
priority —> page
task fault
yesl l
Exit UNPOST
to (condition =
ALLBOUND SRQPSPF)

Figure 112. Pseudo Page Fault Handling

GETREAL Request

242

A GETREAL request is issued by SVC X'37' (request for SDAID area), SVC X'3A
(if initialization of a real partition is requested) and GETPT service, to reserve an

area of real storage.

On entry, register 2 contains the beginning, and register 3 the end address of the
area requested. All PFT entries of the page frames in this area are posted as not
fixable (NFRP-bit is set on), and the TFIX counter of each entry is checked for zero
(page is not TFIXed). If a page frame is found to be TFIXed, the requesting task is
set to PGFX bound. If the area requested is free of TFIXed pages, the following

steps are executed:

1. If the page frame is unused:

z/VSE 4.2 Supervisor Diagnosis Reference

yes

no

Exit via
LPSW to inter—
rupted task

Exit
to
DISP

TFIX Request

Remove the PFTE from IPFQ. Increase PFIX counter in PFTE by 1. If it is not
a special GETREAL request from GETPT (GTRSBIT not on in PCB.FIXTYPE)
the following is done in addition:

a. Make page with same address as page frame addressable.
b. Reset the NFRP bit, and increase the partition PFIX counter by 1.

2. If the page is connected to a page frame:
Wait for end of page connected state and take actions depending on the new
state of the page frame.

3. If the page frame contains a valid page that is requested by PFIX:
Get an unfixed page frame and exchange the contents of the two page frames.
Take actions according to the new state of the page frame.

4. If the page frame contains a valid page which is not in connected state and
which is not requested by PFIX:
Remove the PFTE from the PSQ. If the change bit for the page frame is set,
call ENQUOW to write the page onto the PDS. On return, take actions
depending on the new state of the page frame.
If the change bit for the page frame is not set, the page is disconnected using
routine PAGDISCA and the actions described in 1. are taken (except for the
removing of the PFTE from its queue).

5. If a page frame is found to be unusable because of a hardware error (DRAP bit
in PFT entry on):
No area is allocated when this condition is detected in the first page frame. If
the page frame in error is not the first one, the allocated area ends at the start
address of the failing page frame, if it is a SVC X'37' request, otherwise no
area is allocated.

The following return codes are passed by GETREAL.:

0 = The requested area is reserved (PFIXed).

4 = The page frame belongs to failing storage and is not the first page of the real
partition.

8 = The page frame belongs to failing storage and is the first page of the real
partition.

The TFIX routine fixes pages temporarily, that is, a page is fixed in a page frame
for the duration of an I/O operation. This routine is called by the CCW translation
routines, the Fetch routine, the SVC X'2C' routine, and others.

The caller provides in register 1 an address that points to a parameter list of the
following format:
Parmlist := list(Parm)

Parm := (addr. in first page to be handled BIN FIXED(31), addr. in last page to
be handled BIN FIXED(31))
Parm := (A(0), NIL) indicates end of list.

A TFIX request for p pages which are not already TFIXed or PFIXed can be satis-
fied as long as the condition

p <= NPSQE - MINPSQE

Page Management 243

PFIX Request

is satisfied. Otherwise the requesting task is set into wait. NPSQE is reduced by p
pages:

NPSQE' = NPSQE - p

Note: Here and in the following formulas the new value of the variable xxxx is
noted as xxxx', the original value is noted as xxxx.

The length of PSQ is reduced by g page frames:
len(PSQ)' = len(PSQ) - q

where g = p - r with r = min(len(IPFQ),p).
Analogously yields:

len(IPFQ)' = len(IPFQ) - r
The TFIX counter of all PFTEs is increased in any case:
PFTE.TFIXC' = PFTE.TFIXC + 1

The following return codes are passed by the TFIX routine:

0 = If the request is issued by the fetch routine and the number of available page
frames in the PSQ reaches a minimum, and no page can be TFIXed; or

if the request is not from the Fetch routine and the number of available page
frames in the PSQ reaches a minimum, and no page can be TFIXed.

4 = The TFIX counter has reached the maximum value for a page and the page
cannot be TFIXed.

8 = All requested pages are TFIXed.

A special interface is established for a TFIX request from the Fetch routine. It has
to be ensured that at least 2 pages can be fixed. As long as NPSQE >
MINPSQE-2, the Fetch request is satisfied. If not all requested pages can be fixed,
control is given back to the Fetch routine without freeing the pages already fixed for
this request.

A PFIX request may be issued by a user task or by the restart (RSTRT) statement
processor (Job Control). Actually it is called by SVC X'43', SVC X'4A', SVC X'79',
GETPT service, XPCC service, FETCH and storage management.

Register 1 points to a parameter list that defines the pages to be PFIXed. If the
page is not in storage the request is enqueued to the page queue and the PMR
system task is activated.

A PFIX request for p pages can be performed immediately, as long as the condi-
tions

e p+ SMPFIX < SMAXPFIX + 1

e p <NPSQE - MINPSQE + 1

e PFTE.PFIXC < MAXPFIX for all PFTEs associated to the PFIXed pages
e the pages occupy frames belonging to the correct area (1, 2 or 3).

are satisfied. Otherwise the requesting task is set into wait or is posted with a
return code indicating no PFIX possible.

244 z/VSE 4.2 Supervisor Diagnosis Reference

Before a page can be fixed it must be determined whether this can be done imme-
diately or not. If the page occupies a page frame in the PFIX area_1 or PFIX
area_2 respectively, the page can be fixed at once. If the page occupies a page
frame in PFIX area_3 and the PFIX macro is specified with RLOC=ANY, the page
can be fixed at once. If the page occupies a page frame outside the areas or if the
page is not yet addressable, a page frame out of the related PFIX area must be
selected.

The page frame table entry address of this reserved page frame is stored in the
partition control block (label PFTERSVD) by the PFIX routine, or by the PFREE
routine or by the TFREE routine, if a page has to be freed before the page frame
can be reserved.

If there is no page frame for a PFIX request in PFIX area_2 but there are pages
only TFIXed, all page frames in the related PFIX area are set to 'not temporarily
fixable' and the task is put into the wait state; processing of the request continues
as soon as a page has been freed by either a TFREE or by a PFREE request.

If there are no page frames for a PFIX requests in PFIX area_1 or area_3 the
requesting tasks are put into wait state of the related area. There are frames occu-
pied by TFIXed pages and the processing is resumed as soon as a page has been
freed by either a TFREE or by a PFREE request.

If the page was neither PFIXed nor TFIXed, the corresponding page frame table
entry is removed from the page selection queue, NPSQE is decreased by 1, and
the partition PFIX counter is increased by 1.

The state changes for NPSQE etc. are the same as for TFIX. The PFIX counter of
all PFTEs is increased:

PFTE.PFIXC' = PFTE.PFIXC + 1

The pages are PFIXed one after each other and if during this process the free
frames are exhausted, all pages which have just been PFIXed are freed again. A
special return code, is passed to the requesting task, indicating that the PFIX
request cannot be performed under the actual system conditions.

The page will be fixed immediately, if the page is in real storage and if the following
conditions are true:

e The page frame is in the correct real partition. In that case, it is only necessary
to increase the PFIX counter by 1 and to remove the page frame from the
selection pool if it has not already been removed.

¢ The page is not TFIXed and the page frame is not in the correct real partition,
but a page frame in the real partition is available for PFIXing. The two pages
are then exchanged and the page is PFIXed.

The following return codes are passed by the PFIX routine:

0
4

Function successfully completed.

Maximum number of allowed PFIXed pages for the partition is exceeded by

this request only.

8 = Maximum number of allowed PFIXed pages for the partition is exceeded
because of previous PFIX requests.

12 = Negative length of area or invalid address.

Page Management 245

16 = PFIXed page above 16MB found, but current request with RLOC=BELOW.

20 = Invalid function code or option (not possible if macro interface is used).

24 = Wait for TFREE required, but caller requested return instead of WAIT. Only
possible on subroutine interface.

28 = PFIX counter overflow. Only possible on subroutine interface.

PFIX Requests for RSTRT

Handling PFIX requests for the RSTRT routine (Job Control) requires special action
because each PFIXed page must be returned to the page frame in which it was
located at the time the program was checkpointed. When a page is PFIXed by the
RSTRT processor, not only the page address but also the page frame address and
the value of the PFIX counter are passed. The address of the reserved page frame
is placed in the field PCB.PFTERSVD for the task; the page is PFIXed in the
reserved page frame and thereafter the PFIX counter of the page is set to its value
at checkpoint time.

PAGE-IN Request

246

A valid page-in request is handled by the PGIN system task, which is activated
when the SVC X'57' routine has received such a request. The task's dispatching
priority is higher than that of the Fetch (SUPVR) task, but lower than that of the
page manager (PMR) system task.

The PGIN task runs asynchronously with the requesting user task.

For a page in real storage, the task determines (by looking at the corresponding
PFT entry) whether this page is fixed.

» |If the page is fixed, the request for the page is ignored.
 If the page is not fixed, its reference bit is set and the associated page frame is
enqueued at the end of the Page Selection Queue (PSQ).

For a page not in real storage, the PGIN system task uses the ENQUI routine to
have this page enqueued to the page-in queue. The request is then handled like a
page-in request that resulted from a normal page fault; however, no exit is taken to
a private routine that may be specified in a SETPFA macro in the program which
issued the page-in request.

The PGIN system task detects the following error conditions and takes the actions
indicated:

e |f a page is outside the partition in which the requesting program is executing,
the request for that page is ignored.

e |f an area specification contains a negative length, the request for that area is
ignored.

The task posts an ECB (if one is specified) as shown for SVC X'57" in “Supervisor
Call Interrupt (SVC)” on page 27. The ECB's address is obtained from the cur-
rently processed PAGETAB entry.

Whenever a task is terminated, the scan routine SCANPGT scans table PAGETAB
and deletes all entries that carry the task's TID. If the PGIN system task is proc-
essing a page-in request of a task which is being terminated, the PGIN system task
stops processing of that page-in request.

z/VSE 4.2 Supervisor Diagnosis Reference

TFREE Request

A TFREE request is issued by routines such as CCW translation, SVC X'2C' or
Fetch, to release TFIXed pages.

Register 1 points to a parameter list that defines the pages to be freed (see
description of TFIX).

The TFREE request frees p page frames and the TFIX counter of all affected
PFTEs is decreased:

PFTE.TFIXC' = PFTE.TFIXC - 1
Only if the conditions

PFTE.TFIXC'=0
PFTE.PFIXC =0

are satisfied for q < p + 1 PFTESs, the g related page frames can be used by the
page replacement algorithm or for PFIX / GETREAL requests. The page frames are
inserted in the PSQ; that means:

NPSQE' = NPSQE + q
len(PSQ)' = len(PSQ) + q

Additionally, the tasks waiting for free page frames must be posted if
NPSQE' > MINPSQE.

Depending on the setting of bits NFRP and NFVP in the PFTE, additional actions
may be taken when returning the PFTE to the PSQ:

NFVP=ON:

The freed page is requested by PFIX but the page frame does not belong to the
real partition. The task registered in the PCB (FIXTIB) of the partition that is identi-
fied by the PFTEPIK field in the PFTE is posted ready to run.

NFRP=ON:

The freed page frame is requested by PFIX. The address of the PFTE of the freed
page frame is inserted in PFTERSVD of PCB (see SVC X'43") and thus reserved
for the PFIX request. The task issuing the PFIX request is posted ready to run. All
page frames in the partition, except the reserved one, are set to temporarily fixable
(NFRP=OFF) before the next request is processed.

FREEREAL and PFREE Requests

The PFREE request frees p page frames and the PFIX counter of all affected
PFTEs is decreased:

PFTE.PFIXC' = PFTE.PFIXC - 1

The conditions for further processing and the processing itself is analogous to that
one of TFREE.

For handling of FREEREAL and PFREE requests see SVC X'36' (FREEREAL) and
SVC X'44' (PFREE) in “Supervisor Call Interrupt (SVC)” on page 27.

Page Management 247

RELPAG and FCEPGOUT Requests

For the handling of RELPAG and FCEPGOUT requests see SVC X'55' (RELPAG)
and SVC X'56' (FCEPGOUT), in “Supervisor Call Interrupt (SVC)” on page 27.

INVPAGE Requests

The INVPAGE service is used to set a number of virtual pages to disconnected
with no copy on page-data set (for R5>=0) or to invalid (for R5<0). In addition for
R5>=0, the storage key provided in R5 is set for the area. The page table and
page frame table entries belonging to specific pages are initialized and the allo-
cation and deallocation of blocks on page-data set is done (using PTASG and
PTUSG routines).

The following parameters are passed to this routine:

RD: Address located in the first page of the area to be invalidated.
R1: Address located in the last page of the area to be invalidated.
R5:
positive or zero: storage key for disconnected pages.
negative: area to be deactivated.
RE: Return address
RB: Address of data space SCB (only if entered for data spaces)

If the area to be invalidated belongs to an active virtual partition or data space (i.e.
R5>=0) the corresponding page table entries (PTE) are set to X'00KP0400' where
K corresponds to storage key and where P indicates whether the page is fetch-
protected (P=8) or not (P=0). If the area to be invalidated belongs to a inactive part
of an virtual partition or data space (i.e. R5<0) the corresponding PTE's are set to
X'00002400'. Each PTE within the area defined by RD and R1 is initialized in that
way. If the page referred to by an entry is in processor storage, the page frame
table entry of the corresponding page frame is initialized as follows:

e The page frame is marked as unused (the PNRINV bit in S370FLG is set), and
the PFIX counter is set to zero.

* The page frame is removed from the page selection queue and enqueued to
the top of the invalid page frame queue.

e The page frame is cleared.

VIO POINT Request

248

The VIO storage is considered as an extension of the page data set. The size of a
VIO storage block is equal to the size of a page. To control the VIO storage a
number of pages in the address space is reserved for system usage. This area is
named V-POOL and is located at the end of the SVA (24-bit) area.

As a result of a VIO point request, the user gets access to a page out of V-POOL,
which contains the requested block of his VIO-file. The next VIO POINT request
frees implicitly the block obtained by the previous request (that means, the user is
no more allowed to access it directly).

The system tries to keep as much VIO-blocks as possible in real storage. There-
fore, if a block is freed it is not immediately written to page data set but the page
representing the block is set in connected state instead. If a page is requested by
a VIO POINT request and no free page exists in V-POOL, an available V-POOL
page is freed by disconnecting the page and setting the frame in 'block-connected'
state (i.e. the PFTEBLK bit is set on in the corresponding PFTE).

z/VSE 4.2 Supervisor Diagnosis Reference

The page frames occupied by VIO storage blocks are written on the PDS due to
paging.

VIO storage is allocated in units of 64K. The total VIO storage is represented by an
allocation string pointed to by VIOCM.VIOSPBEG. One byte in this string repres-
ents 64K of VIO storage (X'FF' indicates an occupied segment of 64K and X'00'
indicates a free segment). VIOCM.VIOSPEND points to the last byte of the allo-
cation string.

The VIO storage is managed using the following tables:

e VTAB (V-POOL table) which contains one entry per page in V-POOL, see
Figure 198 on page 458.

e BLKTAB (block table) which contains one entry per block of VIO storage, see
Figure 200 on page 460.

e VIOTAB (vio identification block) one VIOTAB entry exists per open VIO-file,
see Figure 199 on page 459.

e FLSEGTBE (file segment-table) contains up to 8 segment table entries for a
VIO file.

One segment table entry is 2 bytes long and contains the total blocknumber
of the first block belonging to this segment. If more than 8 segments are
required, a new FLSEGTBE is queued to the existing one.

Handling of VTAB-entries (VTABES):

Two queues are maintained to handle the VTAB-entries. One, the free queue, con-
tains all VTABEs which are not connected to a VIO storage block (VTUSCNT < 0).
The other, the available queue, contains all VTABEs which are connected to a VIO
storage block, but the user is not allowed to access it directly (VTUSCNT=0).
VTABESs which are active that means, the user is allowed to access the page
represented by the entry (VTUSCNT > 0) are not queued.

To allow enqueue at the bottom and dequeue at the top of the available queue,
begin and end of this queue is maintained. For the free queue only begin of queue
is maintained.

If due to a free the VTUSCNT reaches zero, the VTABE is enqueued on the bottom
of the available queue. If a free VTABE is requested and the free queue is empty
the first entry in the available queue is freed.

Note: As long as VTUSCNT>=0, the PTE belonging to the VPOOL-page of the
VTAB entry represents the status of the block (i.e. BLKSTAT=PGCON); or as long
as BLKSTAT=PGCON, the PTE represents the status of the block.

Valid states in VIO:

Page Management 249

IF BLKSTAT=PGCON /* page connected to block */
THEN VTBLKN (BLKPAG)=BLKN
VTUSCNT>=0
BLKPAG el. VPOOL
IF VTUSCNT=0
THEN PAGSTAT=CON|DISC
IF PAGSTAT=CON THEN PFSTAT=(ADDR or CON)
IF VTUSCNT>0
THEN PAGSTAT el. (ADDR,CON,DISC)
IF PAGSTAT=ADDR
THEN PFSTAT=ADDR
IF PAGSTAT=CON
THEN PFSTAT=CON

IF BLKSTAT=FRCON /* only frame connected to block =*/
THEN BLKPAG = addr of frame connected to block
PFTEEPA#(BLKPAG) = total block number of connected block
PFSTAT (BLKPAG) = (ADDR and PFTEBLK) or (CON and PFTEBLK)

IF VTUSCNT>0 /* VPOOL page in use */
THEN BLKSTAT (VTBLKN)=PGCON

BLKPAG (VTBLKN) =VPAG

IF PAGSTAT=ADDR
THEN PFTEEPA#(PTEFRA)=VPAG

PFSTAT(PTEFRA) =ADDR

IF PAGSTAT=CON

THEN PFSTAT(PTEFRA)=CON

IF VTUSCNT=0 /* VPOOL page not in use, but still connected to block */
THEN BLKSTAT(VTBLKN)=PGCON

BLKPAG (VTBLKN) =VPAG

PAGSTAT=CON|DISC

IF PAGSTAT=ADDR THEN #** ERROR ***

IF PAGSTAT=CON

THEN PFSTAT()=(CON or ADDR)
* PFSTAT=CON if page-out in process
* PFSTAT=ADDR if PAGSTAT=CON due to VIOFREE, no page I/0
in process

IF VTUSCNT<0O /* VPOOL page is free */
THEN VTBLKN=NIL
PAGSTAT=DISC

Load Leveling

In regard to unnecessarily high paging activities in the system - that is thrashing -
the page management provides algorithms to measure and to reduce high paging
activities. This is done by the deactivation of one or more partitions/classes. Deac-
tivation means, that no paging requests are satisfied for the partition/class;
however, the patrtition/class is still in the dispatching queues and may be dis-
patched.

Note: Dynamic partitions are deactivated/reactivated by deactivating/reactivating
the whole class. Whenever partition is mentioned in this paragraph, static
partition or dynamic class is meant.

250 z/VSE 4.2 Supervisor Diagnosis Reference

When thereafter the paging activities are dropped under an acceptable level, the
deactivated partition(s) can be reactivated.

Load Leveling Parameters

The load leveling algorithm is managed by so called load leveling constants which
are determined by size and speed of the processor type.

NPI Maximum number of page-ins during measurement interval
ACONST Maximum number of page-ins per second
MINTIME Minimum time interval for reactivation measurement

There are some further variables indicating actual values of the paging environ-
ment. They are listed below:

PIDCTR No. of page-ins for deactivation measurement interval
PIRCTR No. of page-ins for reactivation measurement interval
TIME1 Begin of reactivation interval

TIME2 Actual time at reactivation measurement

TIMEA Begin of deactivation interval

TIMEB Actual time at deactivation measurement

RRCTR Reentry rate during deactivation interval

RRCTRX Reentry rate during reactivation interval

EXPAVD Exponential average of NPI/(TIMEB-TIMEA)

EXPAVE Exponential average of PIRCTR/(TIME2-TIME1)

EXPAVR Exponential average of RRCTR/(TIMEB-TIMEA)

EXPAVX Exponential average of RRCTRX/(TIME2-TIMEL1)

REACTECB ECB set up for a timer interval; after posting the reactivation can take
place.

As system parameters the following variables are used by the load leveling rou-
tines:

IJBAPNO Number of active static virtual partitions plus number of active
dynamic classes

NDEACTP Number of deactivated static partitions plus number of deactivated
dynamic classes

Considerations to the Parameters

Exponential Average of Page-Ins per Second (for Deactivation)
The exponential average is a value which is calculated periodically (every time NPI
page-ins have occurred). The old exponential average is used to calculate the new
exponential average:

New exp. av. = EXPAVD'=(EXPAVD + (NPI/measurement period))/2

The measurement period is the time between the time when PIDCTR reached NPI
(and was reset to zero) and the moment when it reaches this value again.

When NPI page-ins have occurred for the first time after IPL, the old exponential
average does not exist. It is, therefore, set equal to NPI/measurement period and
then the above formula is applied. Analogously, the exponential average EXPAVR
is defined as the reentry rate RRCTR per second during the deactivation measure-
ment interval.

Page Management 251

Reentry Rate

The reentry rate is equal to the number of page-ins of pages that were paged-out
earlier in the same measurement period. To establish this value, a reentry rate
counters RRCTR and RRCTRX are maintained. This counter is set to zero at the
start of each measurement period. If the page manager determines that a page
which is to be paged-in was paged-out earlier in the same measurement period, it
increases the reentry rate counter by one. This procedure makes use of the
reentry rate tables RTAB and RTABX, which are bit strings containing a bit for each
page in the virtual storage. At the beginning of a measurement period, all bits of
RTAB respectively RTABX are set to zero.

When the page manager determines that a page is to be read in from the page
data set, the bits in RTAB respectively RTABX corresponding to the page is tested.
If this bit is on, reentry is detected, and the reentry rate counter RRCTR respec-
tively RRCTRX is increased by one.

Deactivation Algorithm

After completion of a page-in request the variable PIDCTR is increased by one and
tested if it is got equal to the constant NPI. If so, control is passed to the DEACT
routines and further condition for deactivation are checked:

if RTAB(page) = ON (page previously paged out)
then RRCTR' RRCTR + 1
else RRCTR' RRCTR

if RTABX(page)
then RRCTRX'
else RRCTRX'

ON (page previously paged out)
RRCTRX + 1
RRCTRX

Note: Here and in the following formulas the new value of the variable xxxx is
noted as xxxx', the original value is noted as xxxx.

if PIDCTR + 1 < NPI
then PIDCTR' = PIDCTR + 1

else PIDCTR' = 0
RTAB' =0
RRCTR' =10
TIMEB' = actual time
TIMEA' = TIMEB'
EXPAVD' = (EXPAVD + NPI/(TIMEB'-TIMEA))/2

EXPAVR' = (EXPAVR+RRCTR/(TIMEB'-TIMEA))/2
if EXPAVD' >= DCONST
then free page frames kept by FAST_CCW_X
if EXPAVD' >= ACONST and 2+EXPAVR' > EXPAVD'
then deactivate

If the deactivation conditions are satisfied, the virtual partition with the currently
lowest dispatching priority is selected for deactivation. The set of these partitions
is given by the formula:

(part (deactivation)) =

(part | part = not(POWER or VTAM or ICCF or CICS or OCCF)
& part = virtual
& part = not(deactivated or TPIN or inactive)
& part = not(open ACBs))

252 z/VSE 4.2 Supervisor Diagnosis Reference

if number (part(deactivation)) > 1

then DEACT P' = min_disp priority(part(deactivation))
REACTECB' = 4 sec
NDEACT' = NDEACT + 1

IJBAPNO' = IJBAPNO - 1
else DEACT_P' not determined
REACTECB' = REACTECB
NDEACT' NDEACT
IJBAPNO' IJBAPNO

Deactivation means that no user page fault will be handled anymore. However, if
the deactivated partition owns the LTA or other system resources the deactivation
is delayed until the resources are released.

Reactivation Algorithm

Whenever the dispatcher algorithm doesn't find a task ready to run the system
enters into ALLBOUND state. During this cycle a load leveling routine checks the
criteria for reactivation of partitions - if there are any. There are two different types
of reactivation:

e the unconditionaland
e the conditional reactivation.

Unconditional reactivation is done if:

e there is no active virtual partition or
* no I/O is queued to any PUBS other than CRT or TP devices

Conditional reactivation is done if:

e exponential average of page-ins not greater than CCONST and
* measurement interval not lower than MINTIME

After completion of a page-in request the variable PIRCTR is increased by one.
PIRCTR' = PIRCTR + 1

The conditions and actions are :

if IJBAPNO = 0 (no active virtual partition)
then unconditional reactivation
else if NDEACTP = 0 (no deactivated partition)
then (no action)

else if (PUB(I/0) pending & not(CRT or TP device) &
not(U/R device under POWER))
then conditional reactivation
else unconditional reactivation

Page Management 253

254

TIME2' = actual time
if TIME2'-TIME1 < MINTIME
then if unconditional reactivation
then reactivate highest priority partition

else (no reactivation)
else TIME1l' = TIME2'

EXPAVE' = (EXPAVE + PIRCTR/(TIME2'-TIME1))/2

EXPAVX' = (EXPAVX + RRCTRX/(TIME2'-TIME1))/2

PIRCTR' = 0

RRCTRX' = 0

RTABX' =0

if conditional activation
then if 4*EXPAVX' < EXPAVE'
then reactivate highest priority partition
else (no reactivation)
else reactivate highest priority partition

Reactivation means:

if reactivation
then REACT_P'

max_disp_priority(deactivated partitions)

DEACT_P' = not determined
DEACTP' = DEACTP - 1
IJBAPNO' = IJBAPNO + 1
REACTECB' = 4 sec
else (no action)

After successful reactivation all PDS devices are set to NONEMPTY in order to
continue with the possibly already queued page requests for the reactivated
partition(s).

The page manager will be activated if it is not yet active and gets control in any
case.

Exponential Average of Page-Ins per Second (for Reactivation)
The exponential average of page-ins per second for reactivation is calculated for
both conditional and unconditional requests. The calculation is similar to the calcu-
lation of the exponential average for deactivation:

New exp. av. = EXPAVE'=(EXPAVE + (PIRCTR/time interval))/2

Note that two other quantities are used. PIRCTR is the page-in counter for reacti-
vation. It is reset to zero after calculation of the new exponential average, and is
increased by one each time a page-in occurs. Time interval is the elapsed time
between the previous call of the reactivation routines and this call.

The highest priority partition which is deactivated is selected for reactivation. This
is done by scanning STATPOWN from left to right (decreasing priorities). When
the partition is found, it is reactivated. The byte for the partition in DEACTPSS is
posted X'FF' (was X'00"), and the entry in the system communications region indi-
cating the number of active virtual partitions is increased by one.

z/VSE 4.2 Supervisor Diagnosis Reference

Teleprocessing Balancing (TP Balancing)
Teleprocessing balancing is a special way of load leveling which is triggered by:

1. The TBAL command (see z/VSE Operation, SC33-8309)
2. The combined use of SVC X'58' (TPIN) and SVC X'59' (TPOUT)
3. The occurrence of page faults.

In a system with both teleprocessing and concurrent batch processing the teleproc-
essing subsystem may, at certain times, monopolize system resources in order to
improve its response time. The performance of batch processing is decreased. TP
balancing works via the deactivation string DEACTPSS by deactivating one or more
of the batch partitions on request. SVC X'58' represents the request for TP Bal-
ancing, and is issued by the teleprocessing subsystem. After a certain amount of
processing has been completed, SVC X'59' must be issued in order to reset TP
balancing.

The TPBAL command allows the operator to turn this special load leveling on or
off. If it is off, SVC X'58' and SVC X'59' have no effect. The same is true if there is
no page traffic in the system, since a page fault may trigger deactivation. The oper-
ator may turn on TP Balancing by specifying the number of partitions in which
delayed processing can be tolerated. This number is stored in the TPBAL param-
eter in the SYSCOM.

Only as many lowest-priority partitions as indicated by the TPBAL parameter are

deactivated. The partition that issued the SVC X'58' is always protected from being
deactivated.

Page Management 255

256 z/VSE 4.2 Supervisor Diagnosis Reference

Storage Management

General
The storage management part of the supervisor consists of the areas
e Static Storage Allocation

e Dynamic Storage Allocation

Static storage allocation consists of the following routines:

ALLOCATE (SVC 83 - X'53")
This routine (de)allocate and reallocate partitions (virtual and real).
SETLIMIT (SVC 84 - X'54")
This routine changes patrtition sizes and/or sets the PFIX limits for a parti-
tion.

The ALLOCATE routine is located in the SVA(24-bit)-module IJBSSM, the
SETLIMIT routine in the SVA(24-bit)-module 1IJBSSM1. The interface between
[JBSSM/IIBSSM1 and the supervisor is established via various communication
areas and control blocks, especially the Storage Management Communication Area
(SMCOM) which is accessible via SYSCOM.IJBSMCOM and the Storage Manage-
ment Control Block (SMCB see Figure 113 on page 262) as part of the PCB.

Dynamic storage allocation provides work space for (reentrant) programs as well as
a dynamic load facility.

It comprises the z/VSE services

GETVIS (SVC 61 - X'3D')
FREEVIS (SVC 62 - X'3E)
CDLOAD (SVC 65 - X'41")
CDDELETE (SVC 65 - X'41))

and the services ported from OS/390

GETMAIN (allocate virtual storage)

expands in OS/390 SVC 4, SVC 10, SVC 120 depending on the chosen format
FREEMAIN (free virtual storage)

expands in OS/390 SVC 5, SVC 10, SVC 120 depending on the chosen format
STORAGE OBTAIN (allocate virtual storage)

expands in PC X'30B'

STORAGE RELEASE (free virtual storage) expands in PC X'311'

These services have been ported to VSE with VSE/ESA 2.4.

They are available both in the OS390 emulation mode and in the VSE native envi-
ronment. OS/390 services and VSE services can be mixed in any combination.

Note: Storage obtained by VSE services (GETVIS) can only be freed by VSE ser-
vices (FREEVIS) and vice versa. The reason is the different subpool concept in
0S/390 and VSE.

The OS390 requests are mapped to the GETVIS/FREEVIS interface and then proc-
essed the same way as a GETVIS/FREEVIS request (see “z/OS (0S/390) Storage
Management Services” on page 287).

© Copyright IBM Corp. 1985, 2008 257

Static Storage Allocation - Static Partition Support

The external interface for static partition allocation (virtual/real) are the commands
ALLOC/ALLOC S/ALLOC R. These commands invoke the ALLOCATE macro which
expands into SVC X'53'.

There are 12 static spaces supported (additionally to the real ('R ') space and the
shared area ('S ")), so that each static partition can be allocated within its own
address space.

The space identifiers for the static spacesare'0','1',..'9'/A", 'B".

For each static partition there is a corresponding default space id, which is taken if
no space id has been specified in the ALLOC command.

Partition Default Space Id
BG 0
F1 1
FA A
FB B

258 z/VSE 4.2 Supervisor Diagnosis Reference

Static Storage Allocation - Dynamic Partition Support
There is no external command interface for dynamic partition allocation. Dynamic
partition allocation is requested internally by VSE/POWER with SVC X'53' when a
(POWER) job is scheduled for a dynamic partition.
Allocation values as well as the permanent SIZE value are taken from the class

table.
The SIZE parameter in the EXEC statement has the same meaning as for static
partitions.
During (De)Allocation various supervisor services are called. These are:
e TSRALLOC
to check the class and to reserve a dynamic partition.
e TSRALLER
to free the reserved partition in case an error occurred during allocation.
e TSRACT
to activate the dynamic partition.
e TSRDEALL

to check the PIK and to deactivate the dynamic partition.

Dynamic Partition Allocation - Control Block Handling

The control blocks for a dynamic partition are allocated in a special subpool in the
system GETVIS area during allocation processing and freed during deallocation
processing. The subpool has a part in the system GETVIS area (24-bit) for control
blocks which must be located below 16 MB and a part in the system GETVIS area
(31-hit) for control blocks which may be located anywhere in storage.

To reduce calculation of storage requirements the requirement for the fixed length
control blocks (PCB, COMREG,..) is calculated during supervisor generation.
During IPL, the requirements for machine dependant and IPL dependant (for
example, number of added devices) control blocks are added.

During allocation processing only the class dependant parts need to be calculated.
This is done during the first allocation request for a class. The length is then stored
in the class PCB. After a PLOAD request the length is cleared and must be calcu-
lated again.

Normally three GETVIS requests are done: One for fixed control blocks (24-bit) one
for fixed control blocks (31-bit) and one for the non fixed ones. The fixed control
blocks are located in the partition-related subpool 1IJBP<syslog id>, the non fixed
ones in the system-related subpool IJBNFC.

Since an allocation unit for a subpool is one page it is calculated whether the non
fixed part and the fixed part (31-bit) fits in the already needed pages for the fixed
request (24-bit). In this case only one subpool request is done.

During deallocation processing of a partition the whole subpool IJBP<syslog id> is
freed. In the subpool IIBNFC only the area reserved for the partition is freed.

Note: The PCB and SCB may not cross a page boundary (Page Manager
dependency).

Interface [JBSSM - VSE/POWER
POWER does not use the ALLOCATE macro.

Input: Register 1

Register 1 = x'800000'<class> (Allocation Request)
Register 1 = x'0000< pik > (Deallocation Request)

Storage Management 259

Output: Register 15 (Return Code)
Register 1 (only for allocation request)

Register 1 = PCEPTR (Return Code 0)
Register 1 = x'....'<syslog id> (Return Code 28)
Register 1 = undefined for all other return codes

The following return codes apply only for dynamic partition (de)allocation. They are
completely handled by VSE/POWER (messages, etc.).
* Register 15 = 0 (De)Allocation completed successfully

* Register 15 = 8 Invalid Class (Allocation request)
Invalid PIK (Deallocation request)
The following return codes apply only for an allocation request.

e Register 15 =12 Class disabled for dynamic partitions

e Register 15 =16 No free partition within class available

* Register 15 =20 No free partition available in the system

¢ Register 15 =24 Not enough virtual storage available

* Register 15 =28 Subpool 1JBPxx does already exist

* Register 15 =32 Not enough system GETVIS storage available
* Register 15 =36 Not enough PFIX storage available

e Register 15 =60 Not enough storage for vendor control blocks

Static Storage Allocation - (De-)Allocation of Page Manager Tables

260

The following applies for non-shared partitions only, since the page manager tables
for the shared areas are allocated during IPL.

The interface between IJBSSM and the supervisor is the macro SPMRSERV
whereas the page manager itself is invoked by using the macro GETPMT. When
the first partition within a space (virtual/real) is allocated (SCB.SCBVSTO=0), the
page manager is called to allocate the tables for this space (SPMRSERYV
ID=ALLPMRT). They are allocated within a page manager address space.

Since the page tables for the private area must be contiguous, the maximum allo-
cation value for the private area must be determined during space creation. This
value is passed to the page manager in SCB.SCBPASZ and would normally be
PASIZE. To avoid a waste of storage in case of smaller partitions the following
rules apply:

e static (virtual) partitions

— SCBPASZ = PASIZE if space id is specified explictly

— SCBPASZ = ALLOC value if space id is omitted (defaults used)
 static (real) partitions

— SCBPASZ = RSIZE
e dynamic partitions

— SCBPASZ = allocation value as specified in the class table

For that reason, it is not possible to increase the initial allocation value of a partition
that was allocated by using defaults.

Exception:

For space '0', page tables are allocated for PASIZE. Therefore it is possible to
increase the size of the BG partition even it is a default space.

z/VSE 4.2 Supervisor Diagnosis Reference

When the last partition within a space is deallocated, the page manager tables are
freed by using the macro SPMRSERV ID=FREPMRT.
They are not freed when the allocation value decreases but the space still exists.

Static Storage Allocation - Size Processing

With the SIZE command, the area within the partition, that is available for program
execution, is changed. This change is permanent. The permanent start address of
the GETVIS area (SMCB.SMVGVIS) is set. The command is available for static
partitions only. For dynamic partitions the permanent SIZE value is taken from the
class table.

The SIZE parameter of the EXEC statement has the same function but the change
is temporary (only for the current job step). The temporary end of the program area
is set (COMREG.PPEND). Temporary start of the GETVIS area is PPEND + 1.
Both the SIZE command and the SIZE operand invoke the SETLIMIT macro which
expands into SVC X'54',

A SIZE value, that does not leave the minimum GETVIS area of 48KB below 16MB
is rejected.

Static Storage Allocation - SETPFIX Processing

With the SETPFIX command the PFIX limits for a partition are set
(partSMCB.SMAXPFIX, partSMCB.SMAXPFX3). These limits determine how many
frames are available for PFIX processing. All frames, that are not reserved for parti-
tion PFIX processing are made available for system use (added to
SysSMCB.SMAXPFIX, sysSMCB.SMAXPFX3).

Static Storage Allocation - Partition Information

The actual boundary between the partition and its GETVIS area can be found in the
corresponding partition communication region at label PPEND (PPEND + 1 = begin
of partition GETVIS area). All information about permanent partition boundaries
can be found in the Storage Management Control Block (SMCB), (see Figure 113
on page 262), which is part of the Partition Control Block (PCB). An address table,
pointed to by SYSCOM.IJBASMCB (SYSCOM.ASMCB) provides addressability to
the specific SMCB entries.

Storage Management 261

SMCB Address Table Format:

Address Address | Address Address Reserved Reserved
of System| of BG of FB of F1 for dyn. for dyn.
Entry Entry Entry Entry part. part.

0 4 8 12 52 52+(n-1)*4

n = NPARTS(SYS NPARTS=

) - no of static partitions (12)

SMCB Entry Format (SMCB)
DEC | HEX Label Description
0 0 | SMAXPFIX | Partition: PFIX (24-bit) Timit in pages
System : SVA(24-bit) PFIX limit in pages
4 4 | SMPFIX Partition: PFIX (24-bit) PFIX count in pages
System : SVA (24-bit) PFIX count in pages
8 8 | SMAXPFX3 Partition: PFIX (31-bit) Tlimit in pages
System : SVA(31-bit) PFIX limit in pages
12 C | SMPFIX3 Partition: PFIX (31-bit) PFIX count in pages
System : SVA (31-bit) PFIX count in pages
16 10 | SMPSAVE Partition: Save area address
System : Reserved
20 14 | SMVGVIS Partition: permanent start of GETVIS area
24 18 | SMVPBEG Virtual Partition Begin Address
28 1C | SMVPEND Virtual Partition End Address + 1
32 20 | SMRPBEG Real Begin Address
36 24 | SMRPEND Real End Address + 1
40 28 | «—— Length of SMCB

Figure 113. Format of Storage Management Control Block (SMCB) and SMCB Address Table

262

z/VSE 4.2 Supervisor Diagnosis Reference

Dynamic Storage Allocation

Dynamic storage allocation performs the management of the various GETVIS
areas. Furthermore it includes a dynamic load facility.

Address Space Layout and GETVIS Areas

There are 3 different GETVIS areas within an address space

e Partition GETVIS area
The partition GETVIS area may cross the 16MB line depending on the allo-
cation value. The partition GETVIS control information (PCI) is located at the
high end of the partition.

e System GETVIS area
There is a (24-bit) and a (31-bit) system GETVIS area, whereas the (31-hit)
area may not exist or may reside partly or totally below 16MB. The system
GETVIS control information (SCI) is located at the begin of the (31-bit) area for
both the (31-bit) and the (24-bit) area. It is located at the begin of the (24-bit)
area, if the (31-bit) area does not exist or is to small to hold the control informa-
tion.

e Dynamic Space GETVIS area (only for dynamic partitions)
There is only a (24-bit) Space GETVIS area. The control information (DCI) is
located at the begin of the area. The Space GETVIS area is an extension to
the System GETVIS area (with similar properties) and has been introduced to
reduce System GETVIS requirements.

up to
2GB system GETVIS area SCI = system GETVIS control
(31-Bit) information
LOC=ANY SCI
shared area (31-Bit)
/1111 /invalid/ /111111
G PCI PCI = partition GETVIS control
E [LOC=ANY information
T
I6MB |..vei]evenrnnnnnnnn.
v
I LOC=BELOW »= 48KB
S v
..................... partition start + size
program area
partition start
dynamic space
GETVIS DCI DCI = dynamic space GETVIS control
information
system GETVIS area shared area (24-Bit)
(24-bit)
LOC=BELOW (ANY)
0

Figure 114. Dynamic Space/Partition Layout (with System GETVIS Area(31-Bit) Located
Above 16MB)

Storage Management 263

up to

2GB system GETVIS area SCI = system GETVIS control
(31-Bit) information

I6MB [|eeeeerernennnnnnnnns
LOC=ANY SCI

shared area (31-bit)

T
/11111invalid///]1111]
I

G PCI PCI = partition GETVIS control
E information
T LOC = ANY
v LOC = BELOW
I
S
..................... partition start + size
F2
partition start
F1

(24-Bit)

system GETVIS area shared area (24-bit)
LOC=BELOW (ANY)

Figure 115. Static Space/Partition Layout (System GETVIS Area(31-Bit) Located Partly
below 16MB)

GETVIS Processing

From the internal point of view, a GETVIS area is divided in 2 parts:
1. Storage available for the user (from now on called GETVIS area)

2. Control information (CI), which reflects this storage and shows free/occupied
areas

GETVIS/FREEVIS processing is mainly done in the Cl, that means:

e GETVIS request
It is checked whether the Cl shows enough free storage to satisfy the request.
If yes, the free storage is marked as occupied in the Cl and the address within
the GETVIS area, that is reflected by the free storage in the Cl, is calculated.
e FREEVIS request

The GETVIS area to be freed is mapped to the Cl and the occupied storage in
the Cl is shown as free.

264 z/VSE 4.2 Supervisor Diagnosis Reference

Mapping between GETVIS Area and Control Information

The GETVIS area is managed on a page base, that means, it is logically divided
into pages (4KB). Each page is described by a page descriptor, called subpool
chain table entry (see Figure 123 on page 281). All chain table entries build the
subpool chain table. They are chained in ascending order. BSUBPCHN is the begin
of the subpool chain table.

Since a page is a too rough unit, each page (and therefore the GETVIS area) is
sub-divided in allocation units (which is 128 byte in the partition and 16 byte in the
SVA/SPACE GETVIS area). The allocation units of the GETVIS area are mapped
by a bit string called VISTAB (virtual storage table) pointed to by BVISTAB. Each
bit in the VISTAB represents an allocation unit (128(16) byte).

A GETVIS request can be done in multiple of allocation units (it is always rounded
to the next higher multiple of an allocation unit).

Relation between GETVIS Area, page descriptor and VISTAB

The following Figure 116 shows a GETVIS area which is divided in n pages
P1,..,Pn. Each page is sub-divided in m allocation units (m=32(4096/128) for parti-
tion, m=256(4096/16) for SVA/Space). Since each allocation unit is represented by
a bit in the VISTAB, a page is represented by m (m/8) VISTAB bits (bytes).

Vistab bit Bxy represents allocation unit Pxy, x=1,..,n, y=1,..,m
Bxy = 1: allocation unit Pxy is occupied
Bxy = 0: allocation unit Pxy is free

The mapping between page descriptor and VISTAB is done by SPCHVSTB, which
is the byte offset of the page in the VISTAB.

GETVIS Area Page Descriptors Vistab
Desc. Pn Bnm
byte offset=
SPCHVSTB
Pn (n-1)+*m/8 Bnl
—
Pnl|..|Pnm
Desc. P2 B2m
byte offset=
SPCHVSTB
P2 1*m/8 B21
L
P21|..|P2m| |Desc. P1 B1M
P1 byte offset=
SPCHVSTB
P11|..|PIm 0*m/8 B11 BVISTAB
"

Figure 116. Relation Page Descriptor - VISTAB

Storage Management 265

Subpool Concept

266

A subpool is identified by a name and consists of a number of pages belonging to
that subpool. The number depends on the GETVIS/FREEVIS requests given for
that subpool. A page cannot be shared between different subpools. If a page does
not belong to a subpool it is enqueued to the pool of empty pages (free queue).
GETVIS works on a subpool base, that means, each GETVIS request is done for a
certain subpool, either specified explicitly by the user through the GETVIS SPID
operand or for the general subpool O if the SPID operand has been ommitted.
Each subpool is described by an entry in the subpool index table (see Figure 124
on page 281). The entry is built when the first request for a subpool is done.

The pointer to the page descriptor of the first subpool page (SPITFRST) is part of
the subpool index table entry. The page descriptors of all pages belonging to a
subpool are chained together by forward (SPCHFORW) and backward
(SPCHBACK) pointers contained in the page descriptor. Therefore with SPITFIRST
all other page descriptors of a subpool can be accessed. They are chained in
ascending order.

After initialization of the GETVIS area all page descriptors are chained together in
ascending order and build the subpool chain table. All pages belong to the pool of
empty pages. This pool is not represented by an entry in the subpool index table
but by a pointer (FIRSTPNT) to the first free page (page descriptor). After initializa-
tion this is the begin of the subpool chain table (BSUBPCHN). A page is free if all
VISTAB bits representing this page are zero. The page descriptor of this page is
then enqueued to the pool of empty pages. If at least one allocation unit within a
page is used (corresponding VISTAB bit set), the page descriptor of this page is
enqueued to a subpool.

When the first request for a subpool is done an entry is built in the subpool index
table and the number of pages necessary to satisfy the request are taken from the
free queue and enqueued to the subpool. Enqueue/dequeue means that the
forward and backward pointers of the affected page descriptors are updated. Note,
that the ascending order is always kept. As many bits as allocation units are
requested, are set in the VISTAB. If the request is not a multiple of a page there is
free storage within the pages enqueued for the subpool. For this storage the corre-
sponding VISTAB bits are not set.

Figure Figure 117 on page 267 shows the subpool chain table with 3 pages
enqueued to subpool S1 and one page enqueued to subpool S2. All other pages
belong to the pool of empty pages (free queue).

z/VSE 4.2 Supervisor Diagnosis Reference

S2
SPITFRST

Subpool chain table (page descriptors)

Page n
SPCHFORW
SPCHBACK

Page n-1
SPCHFORW
SPCHBACK

—

Page 6
SPCHFORW
SPCHBACK

v

v

Page 5
SPCHFORW
SPCHBACK

[]
vl

Page 4
SPCHFORW

FIRSTPNT

SPCHBACK

v

v

Page 3
“—| SPCHFORW
SPCHBACK

S1
SPITFRST

!

v

Page 2
——| SPCHFORW
—>| SPCHBACK

v

Page 1
SPCHFORW

BSUBPCHN

—| SPCHBACK

Figure 117. Subpool Concept

Subpool properties
Within each GETVIS area there may be one or more subpools, which are managed
separately. Each of the subpools has the following properties:

| t

| 1

A

page belongs
free queue

to

page belons to

free queue

page belongs
free queue

page belongs
subpool S2

page belongs
subpool S1

page belongs
free queue

page belongs
subpool S1

page belongs
subpool S1

to

to

to

to

to

to

* A subpool may be created within the partition, system or space GETVIS area.

¢ The maximum number of subpools for each partition/space GETVIS area is
128. For the system GETVIS area it is 128 + (4 * number of dynamic parti-

tions).

e Each subpool consists of a number of pages which are allocated dynamically.
¢ All GETVIS requests which do not specify a specific subpool are satisfied within
a general subpool.

Storage Management

267

» Subpool pages are only contiguous if they are requested contiguous, that
means, when requesting more than one page.

e Empty pages are automatically deallocated from the subpool.

e Each task may own one subpool within a partition for exclusive use.

e Each subpool, except the general and the exclusive subpool, is defined by
means of a 8-byte name which consists of a 6-byte user supplied hame and a
concatenated 2-byte system supplied identifier.

¢ All subpools, except the exclusive one, may be accessed by each task of the
corresponding partition.

* Single SVA subpool pages may be PFIXed if requested by the caller.

e SVA subpools may be fetch protected (only for internal GETVIS calls).

e SPACE subpools may be fetch protected or protected with the key of the parti-
tion.

e Subpools may be created controlled, that means, subpool access is only
allowed with the correct index.

e an entry in the subpool index table is deleted by a FREEVIS subpool request. It
is not deleted when the last page of the subpool is freed.

GETVIS Algorithm

268

First Fit Algorithm

Since at least one allocation unit is occupied within a page belonging to a subpool,
a request of at most 2 pages minus 2 allocation units can be fulfilled within an
existing subpool. The GETVIS algorithm for this kind of requests is implemented
as a first fit algorithm, meaning that the first gap within the subpool, that meets the
requirements, is taken to satisfy the request. To avoid an unnecessary search from
the begin of the subpool, a current pointer (see Figure 118 on page 269) is main-
tained, saying that there is no gap in the subpool before the current pointer. If the
current pointer is set optimally it points to the first gap in the subpool. The search
is done from the current pointer till the end of the subpool until the requested
number of contiguous free VISTAB bits is found. If there is not enough free space
within the subpool MIN1,MIN2 processing takes place.

MIN1,MIN2 Processing

If the request can not be satisfied within the existing subpool, pages from the free
gueue must be taken. It is tried to get along with n-2 (n-1) pages from the free
gueue by involving the existing subpool pages, where n is the requested length
rounded on the next multiple of a page (length =x.y pages => n=x+1).

This is basically how GETVIS works.

Definition of the Current Pointer (CUR_POINT)

The current pointer points to the first free storage in the subpool. Since a page is
represented by an entry in the subpool chain table and m (m/8) VISTAB bits (bytes)
the CUR_POINT is a triple consisting of

e SPITCURP
— pointer to the chain table entry of the first page in the subpool with a pos-
sible gap. SPCHVSTB gives the offset of this page in the VISTAB.
e SPITRLVB
— SPITRLVB is the first byte within the page's VISTAB representation where
not all bits are set. (SPITRLVB = 0,,,,m/8-1).
e SPITBITO
— mask for bits set in byte SPITRLVB

z/VSE 4.2 Supervisor Diagnosis Reference

The following figure shows a subpool whose first page is page x-1 (page 1 till page
x-2 belong to other subpools/empty queue), and whose second page is page X,
which has free storage.

subpool index page descriptors VISTAB
table entry of subpool
1/0
1/0
0 byte 2 of page x
SPITBITO SPITBITO = x'CO' 1
1
SPITRLVB B—»
SPITCURP |——— 1
SPITFRST |— . byte 1 of page x
1
page xty
1
. byte 0 of page x
1
— >
_>
page X
SPCHVSTB |—
—>
page x-1
SPCHVSTB BVISTAB
GETVIS area
Page x-1 Page x
Px1 |Px2 |Px3 Pxm
not |not |free
free|free

Figure 118. Definition of the Current Pointer

Storage Management 269

31-Bit Addressing

270

With the introduction of an address space size of up to 2GB a GETVIS area may
have a part below 16MB (GETVIS area 24-bit) and a part above 16MB (GETVIS
area 31-bit) from now on called below and above area (see Figure 114 on

page 263).

It must be distinguished between the two areas, since programs which cannot
process 31-bit addresses (LOC=BELOW request) must be served from the below
area, whereas programs that can handle 31-bit addresses (LOC=ANY request) are
served preferred from the above area (see Figure 114 on page 263).

* the above area may not exist

— partition is totally below 16MB
— Space GETVIS area (24-bit area only)

 if both areas exist, they may be contiguous (partition GETVIS area) or not
(system GETVIS area (24-bit) and system GETVIS area (31-bit)).

External point of view

Allocation of GETVIS for LOC=BELOW requests is done bottom-up, following the
first-fit algorithm.

Allocation of GETVIS for LOC=ANY requests is done top-down, following the first-fit
algorithm.

Internal point of view

From the internal point of view, the below and above area are considered as two
independent GETVIS areas, each of one is described by some control information.
Since the GETVIS algorithm works on the control information and passes the
address in the GETVIS area, that maps the found location in the control informa-
tion, the GETVIS algorithm works basically the same for both LOC=BELOW and
LOC=ANY requests. The only change is in the address calculation. This means:

e for LOC=BELOW request, search is done in the control information that
describes the below area.

e for LOC=ANY requests, search is done in the control information that describes
the above area following the same algorithm as for LOC=BELOW requests. If
a free area is found, the address is calculated as for below and 'mirrored’ at the
end of storage.
If the above area is exhausted, GETVIS searches in the control information
describing the below area.

Exception

If it is a partition request, boundary crossing is tried (see “Boundary Crossing
(Partition Requests only)” on page 274).

Control Information

Although the GETVIS area is atrtificially split in two separate areas, there is only
one control information.

The control information (described by macro MAPGVCTL) contains general infor-
mation valid for both the below and above area, and data describing either the
below or the above area (area 2 and 3 in Figure 119 on page 271). Within the
mapping structure both areas can be accessed by labels. Depending on the LOC
request GETVIS works either with the data describing the below or the one
describing the above area. If GETVIS would work either with area 2 or area 3, most
routines would have to be duplicated using the different labels. To avoid this and to
allow that both requests can be treated basically the same way there is a so-called

z/VSE 4.2 Supervisor Diagnosis Reference

active area (area 2) (see Figure 119 on page 271) with which GETVIS works.
Since area 2 contains normally the below data, this means, that for a LOC=ANY
request the above data have to be moved from area 3 to area 2. A third area (area
1) is needed to save the below data. So the above data can be accessed by using
the labels for below. There is no need to distinguish in the GETVIS code between
the different requests. Of course, if a LOC=ANY request is followed by a
LOC=BELOW request, area 2 has to be set up again for below.

So, depending on the LOC request, the active area has to be set up. Flag
GVFVFLGS.GVFVABVE shows whether the active area is set up for below or
above.

GVFVFLGS.GVFVABVE=0ON : area 2 contains above data
GVFVFLGS.GVFVABVE=O0OFF: area 2 contains below data

CI, as set up during CI, as set up
initialization or for LOC=ANY
for LOC=BELOW

general general
information information
area 1 area 1

(data not (saved below data)
meaningful)

area 2 (active) area 2 (active)
data for below data for above
area area

area 3 area 3

data for above (data not

area meaningful)
general general
information information

Figure 119. Control Information (MAPGVCTL) - Global Structure

A subpool can contain pages both from the below and the above area.

Therefore, subpool information like first/current pointer must be available twice.
Following the same principle as for the ClI, the subpool CI (subpool index table
entry) contains an active area, which has to be set up for below or above according
to the set up of the Cl. SPITFLG1.SPSWABVE shows whether the subpool is set
up for below or above. The area to save the subpool fields during rotation is not
part of the subpool index table entry, since it must be available only once. Note,
that the same is true for the free queue, where FIRSTPNT/AFRSTPNT points to the
first page descriptor within the free queue for the below/above area.

Storage Management 271

Subpool index Page Descriptors VISTAB
table entry of subpool S1

Last |<+—

—>|page |/
S1 >
ASPTCURP R S
ASPTFRST —
SPITCURP —
SPITFRST — —|2nd |«
—>|page |—
; First|<-
> Above Part
Ny,
—|Last |<+—
—>|page |—
—|2nd |«
—>|page |—
—V First |«
> Below Part

Figure 120. Relation CI - Subpool CI

Duplicated Fields

In order to divide the GETVIS

Area into the two distinct parts, the Control Information must duplicate the following
fields contained in area 2 and area 3 during initialization.

BVIRTMEM, ABVRTMEM (begin of below/above GETVIS area)
EVIRTMEM, AEVRTMEM (end of below/above GETVIS area)

BVISTAB, ABVISTAB (begin of VISTAB for the below/above area)
EVISTAB, AEVISTAB (end of VISTAB for the below/above area)
BSUBPCHN,ABSUBCHN (begin of page descriptor chain for below/above)
ESUBPCHN,AESUBCHN (end of page descriptor chain for below/above)
GTVSHIGH,AGTVSHI (high water mark for below/above)

272 zIVSE 4.2 Supervisor Diagnosis Reference

FIRSTPNT,AFRSTPNT (pointer to first page descriptor in free queue
below/above)

CURPOINT,ACURPNT (pointer to current page descriptor in free queue
below/above)

NBRGVPG,ANBRGVPG (no of pages in below/above area)
GTVSPGCT,AGTVSPCT (no of used pages in below/above area)
GTVSMXCT,AGTVSMCT (no of pages to be used in below/above area)

Following fields are duplicated in the subpool index table entry:
SPITFRST,ASPTFRST (pointer to first page descriptor below/above)

(SPITCURP,SPITRLVB,SPITBITO0),(ASPTCURP,ASPTRLVB,ASPTBITO)
(current pointer below/above)

Notes:
1. If the above area does not exist, the above fields are not set.

2. During initialization of the GETVIS area, area 2 contains the below data and
area 3 the above ones.

Location of the Control Information

Partition GETVIS Area

The ClI, pointed to by COMREG.IJBGVCTL, is located at the high end of the parti-
tion.

If the area above 16MB holds only the CI, the above fields are not set (LOC=ANY
treated as LOC=BELOW).

System GETVIS Area

The CI, pointed to by SMCOM.SMCSGV31, is located at the begin of the above
area. If the above area holds only the CI, the above fields are not set (LOC=ANY
treated as LOC=BELOW).

Space GETVIS Area

The CI, pointed to by PCB.PCBDYSPC, is located at the begin of the below area
(above area does not exist).

Mirroring
From the user point of view, the space in the above part is allocated top-down,
although the search algorithm works bottom-up. This problem is solved by imple-
menting a mirroring function for addresses in the above part.
GETVIS requests
The address, calculated by the search algorithm in the above part, is mirrored at
the end of storage line (AEVRTMEM) before it is returned to the user.

ADDR : address calculated by the search algorithm
LENGTH: length of requested area

M_ADDR: mirrored address (as passed to the user)
M _ADDR = AEVRTMEM- (ADDR-ABVRTMEM+LENGTH)

FREEVIS requests
If the address passed by the caller belongs to the above part it is re-mirrored
before it is fed into the algorithm.

Storage Management 273

M_ADDRR: address passed by the caller
LENGTH: length of area to be freed

ADDR : address to be fed in the algorithm
ADDR = AEVRTMEM-(M_ADDR-ABVRTMEM+LENGTH)

Boundary Crossing (Partition Requests only)
If a LOC=ANY cannot be served totally from the above area, it is tried to include
the boundary in the search, that means, take storage that is adjacent to the 16MB
line both from the above (as much as possible) and the below part to fulfil the

request.
LOC=ANY
GETVIS Area —— > GETVIS Area
request
AEVRTMEM
LOC=ANY
(occupied occupied
storage)
LOC=ANY
free with
16MB [------mmmm - - request
boundary
free returned crossing
address free
LOC=BELOW
(occupied occupied
storage)
BVIRTMEM

Figure 121. Boundary Crossing

GETVIS (SVA) PFIX Processing
A GETVIS PFIX request can be devided into 3 parts:

1. Handle GETVIS request (including update of the control information)
2. PFIX GETVISed area

3. Set PFIX indication in the control information, respectively do an internal
FREEVIS of the area if the PFIX request fails.

For point 1 and 3 the GETVIS gate must be closed. To avoid a deadlock, that can
occur, if a task owning the GETVIS gate, is set into 'waiting for TFREE', the
GETVIS gate is opened before the PFIX routine is called and closed again after the
PFIX processing is done.

When the GETVIS gate is opened, further system GETVIS requests, especially to
the subpool for which a PFIX is pending, must be handled:

e Before the GETVIS gate is opened and the PFIX routine is called, a PFIX
pending indication is set for the subpool. If this indication is set, FREEVIS of
this subpool is not allowed (RC = 'x'28")

» |f the subpool is created by this request (SPITFLAG.SPCREATE set) and the
PFIX request fails, an internal FREEVIS of the subpool is done.

274 z/VSE 4.2 Supervisor Diagnosis Reference

» |f the PFIX request fails and the 'subpool create' indication is not set, only the
reserved GETVIS area is freed.

Flow of control of a GETVIS PFIX request:

e Gating

e Handle GETVIS request

e Open GETVIS gate

e Do PFIX storage

e Close GETVIS gate

e Open PFIX gate

e Update control information

e Do cleanup processing if PFIX failed
e Open GETVIS gate

Gating
¢ Close PFIX gate and gate GETVIS (close gate or set RID).
This is only done if both gates are free. Otherwise GETVIS waits until both
gates are free. The PFIX gate is closed by the GETVIS processing and no
longer by the PFIX routine. This is done for several reasons:

— The save area for the registers destroyed by the PMR is available only
once.

— In case of a PFIX request, the subpool offset and the address of the
subpool name in the users are are saved. They are necessary for
FREEVIS processing if the PFIX request fails. These areas are located in
the GETVIS control information, therefore only one PFIX request at a time
is allowed to enter the GETVIS code.

e Open GETVIS gate before calling PFIX
— avoid deadlock

Close GETVIS gate after PFIX
By the same reason as described above, the GETVIS gate is closed again after
PFIX processing before opening the PFIX gate.

open PFIX gate
e open GETVIS gate

GETVIS/FREEVIS Options
Input for GETVIS service (SVC X'3D"):

RO: Length of requested area

R1:
¢ Not required or
» Pointer to area to start search (if POOL specified) or
* Pointer to subpool name field (if SPID specified)

R15: Option in low order byte:

X'01": Page boundary requested (2K/4K boundary depending on length)
X'02": POOL specified

X'04": SVA space requested

X'08": Subpool specified

X'10": PFIX requested

X'20": Exclusive subpool wanted

X'40": Fetch protection requested

Storage Management 275

X'80": Prevent page boundary crossing (only for internal calls)
R15: Option in byte 2:
X'01": Excessive requestor (only internal call)
X'02": SPACE request
X'04": SPACE request with partition key protection
X'08": Controlled subpool
X'10: LOC=BELOW request
X'20": LOC=ANY request
X'40": request for pmr space (only for internal calls)
X'80": IPL request (only for internal use)
R15: Option in byte 3:
X'01: STATUS=SIZE request (only internal call)
X'02: STATUS=ALL request (only internal call)
X'04" PREFIX=YES request (only internal call, 8K prefix area)

Output for GETVIS service (SVC X'3D":

R1: Pointer to found area
R15: Return code in low order byte:
e See GETVIS Macro description

Input for FREEVIS service (SVC X'3E"):

RO: Length of area to be freed
R1:
¢ Pointer to area to be freed or
¢ Pointer to subpool name field (if SPID specified)

R15: Option in byte two and three
X'0002": Subpool specified
X'0004': SVA space to be freed
X'0008": FREEVIS ALL specified
EOJ: Invalidate the corresp. partition GETVIS area.
EOT: Free the task related exclusive subpool.
X'0010": ROUTED space to be freed (only for internal call)
e called during UNBATCH processing
X'0200": SPACE request
X'4000": PMR space request

Output for FREEVIS service (SVC X'3E):

R15: Return code in low order byte:
e See FREEVIS Macro description

I/F GETVIS - IPL

276

Before allocating the SVA, IPL calls Getvis to calculate the size of the control infor-
mation. At this point in time, IPL knows all system and user requirements for the
system Getvis area. IPL passes this information to Getvis. Getvis returns the size
of the control information.

IPL then increases the size of the 31-bit system Getvis area by this value.

Getvis initializes the control information with the first Getvis request. However, the
24-bit system Getvis area may not yet be usable, because the 31-bit system Getvis
area is validated some time before the 24-bit system Getvis area. As long as the
24-bit system Getvis area is not validated, only LOC=ANY requests can be satis-
fied. When bit SMCGVBEL in SMCOM.SMCFLGL1 is set, both areas are valid.

z/VSE 4.2 Supervisor Diagnosis Reference

When Getvis is called by IPL to calculate the size of ClI

¢ RO contains the number of dynamic partitions
e R1 contains the size of system getvis area (24-bit and 31-bit) in bytes.

On return to IPL

¢ RO contains the size of the control information in bytes.
¢ RF contains the return code (always 0)

Storage Management 277

GETVIS Control Blocks

MAPGVCTL
Figure 122 (Page 1 of 3). Layout of GETVIS Area Control Information (MAPGVCTL)
Offsets
Dec Hex Type Len Name (Dim) Description
0 ©) SIGNED 4 ANCHDIR (0) ANCHOR TABLE
MOVECIL "52" LENGTH FOR MOVING THE DATA
MOVESPTL "10" LENGTH FOR MOVING THE DATA
OFVRTMEM "16" OFFSET OF BVIRTMEM
1024 (400) SIGNED 4 BSUBPIND BEGIN OF SUBPOOL INDEX TABLE
1028 (404) SIGNED 4 ESUBPIND END OF SUBPOOL INDEX TABLE
1032 (408) SIGNED 4 EGVCTLB LAST BYTE OF CONTROL INFORM.
1036 (40C) SIGNED 4 ENDGVCTL END OF CONTROL AREA
1040 (410) BITSTRING 1 DUPCILSV (0) SAVE AREA FOR DUPLICATED FLD
1056 (420) SIGNED 4 BBVRTMEM
1060 (424) SIGNED 4 BEVRTMEM
1092 (444) SIGNED 4 NBRGVPG NBR OF AVAILABLE PAGES
1096 (448) SIGNED 4 GTVSPGCT NBR OF CURRENT USED PAGES
1100 (44C) SIGNED 4 GTVSMXCT MAX NBR OF PAGES TO BE USED
1104 (450) SIGNED 4 GTVSEXCT MAX NBR OF PAGES TO BE USED BY EXCESSIVE
SUBPOOLS
1108 (454) SIGNED 4 BVIRTMEM BEGIN OF GETVIS AREA
1112 (458) SIGNED 4 EVIRTMEM END OF GETVIS AREA
1116 (45C) SIGNED 4 BVISTAB BEGIN OF VISTAB
1120 (460) SIGNED 4 EVISTAB END OF VISTAB
1124 (464) SIGNED 4 BSUBPCHN BEGIN OF SUBPOOL CHAIN TAB.
1128 (468) SIGNED 4 ESUBPCHN END OF SUBPOOL CHAIN TABLE
1132 (46C) SIGNED 4 GTVSHIGH PAGE CHAIN HIGH WATER MARK
1136 (470) SIGNED 4 FIRSTPNT FIRST PAGE WITHIN EMPTY POOL
1140 (474) SIGNED 4 CURPOINT START SEARCH ADDRESS
THE FOLLOWING FIELDS ARE DUPLICATED FOR THE ABOVE PART
OF THE GETVIS AREA (UP TO MOVECIL)
1144 (478) SIGNED 4 ANBRGVPG NBR OF AVAILABLE PAGES
1148 (47C) SIGNED 4 AGTVSPCT NBR OF CURRENT USED PAGES
1152 (480) SIGNED 4 AGTVSMCT MAX NBR OF PAGES TO BE USED
1156 (484) SIGNED 4 AGTVSXCT MAX NBR OF PAGES TO BE USED BY EXCESSIVE
SUBPOOLS
1160 (488) SIGNED 4 ABVRTMEM BEGIN OF GETVIS AREA
1164 (48C) SIGNED 4 AEVRTMEM END OF GETVIS AREA
1168 (490) SIGNED 4 ABVISTAB BEGIN OF VISTAB
1172 (494) SIGNED 4 AEVISTAB END OF VISTAB
1176 (498) SIGNED 4 ABSUBCHN BEGIN OF SUBPOOL CHAIN TAB.
1180 (49C) SIGNED 4 AESUBCHN END OF SUBPOOL CHAIN TABLE
1184 (4A0) SIGNED 4 AGTVSHI PAGE CHAIN HIGH WATER MARK
1188 (4A4) SIGNED 4 AFRSTPNT FIRST PAGE WITHIN EMPTY POOL

278 z/VSE 4.2 Supervisor Diagnosis Reference

Figure 122 (Page 2 of 3). Layout of GETVIS Area Control Information (MAPGVCTL)

Offsets
Dec Hex Type Len Name (Dim) Description
1192 (4A8) SIGNED 4 ACURPNT START SEARCH ADDRESS
1196 (4AC) SIGNED 4 ADDRSAV SAVE AREA FOR USER ADDRESS
1200 (4B0) SIGNED 4 LGTHSAV SAVE AREA FOR REQUEST LENGTH
1204 (4B4) SIGNED 4 SPIDSAV (0) ABS. ADDR(SUBPOOL NA.) IN CI
1208 (4B8) SIGNED 4 SSEARCH NEW START SEARCH ADDRESS
1212 (4BC) SIGNED 4 SVWORK1 SAVE WORK REG 1
1216 (4C0) SIGNED 4 RESERVED
1220 (4C4) SIGNED 4 SSPPTRCI SAVE PTR TO SP IN BSUBPIND
1224 (4C8) SIGNED 4 SSPNPTR SAVE PTR TO USERS SUBPOOL N.
1228 (4cc) SIGNED 4 SAVR2ND (0) SECOND SAVE AREA FOR SUBR
1228 (4CC) SIGNED 4 SAVR2ND6 SAVE AREA FOR REG6
1232 (4D0) SIGNED 4 SAVR2ND7 SAVE AREA FOR REG7
1236 (4D4) SIGNED 4 SAVR2NDF SAVE AREA FOR REGF
1240 (4D8) SIGNED 4 SAVR3RD (0) SECOND SAVE AREA FOR SUBR
1240 (4D8) SIGNED 4 SAVR3RD7 SAVE AREA FOR REG7
1244 (4DC) SIGNED 4 SAVR3RD8 SAVE AREA FOR REGS8
1248 (4E0) SIGNED 4 SAVR3RDF SAVE AREA FOR REGF
1252 (4E4) SIGNED 4 SAVREGS REG. SAVE AREA F. SUBROUTS
(16)
1316 (524) SIGNED 4 SVPFSPID SAVE USER'S SUBPOOL ADDR
1320 (528) SIGNED 4 SVPFR1 SAVE USER'S REGISTER 1
1324 (52C) SIGNED 4 SVPFLIST (2) PFIX/PFREE PARM LIST
1332 (534) BITSTRING 1 SVPFEND PFIX/PFREE PARM LIST END
1333 (535) BITSTRING 1 GVFVFLGS NEW FLAG BYTE
.1 GVMIN2 "X'01" INDICATE MIN_2 PROCESSING
o1 GVFVABVE "X'02™ INDICATE PROCESSING ABOVE
I GVvCIMOV "X'04" CI MOVED TO BELOW PART
1.. GVFVINT "X'08™ INTERNAL FREEVIS PROCESSING
..1 GVUPDCP "X'10" UPDATE CURRENT POINTER
L1 GVFIRSTT "X'20" SUBPOOL'S FIRST CONT. AREA SCANNED.
R GVCHKPRO "X'40™ PAGES ENQUEUED, CHECK PROTECTION.
1... GVLNGORQ "X'80" REMEMBER LENGTH 0 REQUEST
1334 (536) SIGNED 2 MXSUBPLH MAX NBR OF SUBPOOLS AVAIL.
1336 (538) BITSTRING 1 GVFVFLG2 FLAG BYTE
1337 (539) BITSTRING 3 RESERVED
1340 (53C) SIGNED 4 SCURPSAV SAVE AREA FOR SPITCURP
1344 (540) BITSTRING 1 SRLVBSAV SAVE AREA FOR SPITRLVB
1345 (541) BITSTRING 1 SBITOSAV SAVE AREA FOR SPITBITO
1346 (542) BITSTRING A DUPSBPSV SAVE AREA FOR DUPLICATED FLD
1356 (54C) SIGNED 4 FPAGEPRO FIRST PAGE TO BE PROTECTED
1360 (550) SIGNED 4 LPAGEPRO LAST PAGE TO BE PROTECTED
1364 (554) SIGNED 4 GVFVGATE ADDRESS OF AREA GATE
1368 (558) SIGNED 8 GMFMSPNM 0S/390 SUBPOOL NAME

Storage Management

279

Figure 122 (Page 3 of 3). Layout of GETVIS Area Control Information (MAPGVCTL)

Offsets
Dec Hex Type Len Name (Dim) Description
1376 (560) | SIGNED 4 MAXGAP NO OF CONT.PAGES BELOW
1380 (564) | SIGNED 4 MAXGAP_ABV | NO OF CONT.PAGES ABOVE
1384 (568) | SIGNED 4 MAXGAP_BDY | NO OF CONT.PAGES ACROSS BDY
1388 (56C) | SIGNED 4 SMAXGAP SAVED ..
1392 (570) | SIGNED 4 SMAXGAP_ABV | MAXGAP ..
1396 (574) | SIGNED 4 SMAXGAP_BDY | VALUES
1400 (578) | SIGNED 4 GVFVGATE_SAV| SAVED DURING PFIX
1404 (57C) | SIGNED 4 GMFMSPLE
1408 (580) | SIGNED 4 SPITMVSP ADDR OF CURRENT SPLE
1412 (584) | BITSTRING 1 SAVSHIFT
1413 (585) | BITSTRING 1 SAVRQST
1414 (586) | SIGNED 2 SPIDSAVH
1416 (588) 64 SAVE AREA
1480 (5C8) | SIGNED 4 GMFMWRK1_EX
1484 | (5CC) | SIGNED 20C GMFMWRK?2 IJBSSM2 WORK AREA
2008 (7D8) VISTAB " BEGIN OF BIT PATTERN

Note: Due to compatibility reasons, the VSAM control information remains at the

same location within the GETVIS area, that means, it has the same offsets
relative to PPEND as in former releases. The mapping macro for the VSAM
control information is still MAPANCH and contains only this information.

280

z/VSE 4.2 Supervisor Diagnosis Reference

Subpool Chain Table Entry

Figure 123. Layout of Subpool Chain Table Entry (SUBPCHN)

Offsets
Dec Hex Type Len Name (Dim) Description
0 0) SIGNED 4 SPCHFORW SUBPOOL FORWARD POINTER
4 (4) SIGNED 4 SPCHBACK SUBPOOL BACKWARD POINTER
(8) SIGNED 4 SPCHVSTB RELATIVE PAGE VISTAB PTR
12 © SIGNED 2 SPCHNMBR SUBPOOL ID (NUMBER)
14 (E) BITSTRING 1 SPCHFLAG SUBPOOL PAGE FLAGS
.1 SPPGCONC "X'01" CONCATENATION FLAG
P SPPGPFIX "X'10™ PAGE IS PFIXED (ONLY SVA)

15 (F) BITSTRING 1 RESERVED FOR FUTURE USE

Subpool Index Table Entry

Figure 124 (Page 1 of 2). Subpool Index Table Entry (SUBPINT)

Offsets
Dec Hex Type Len Name (Dim) Description
0 0) CHAR- 6 SPITNAME SUBPOOL NAME FIELD
ACTER
6 (6) BITSTRING 2 SPITNMBR SUBPOOL NUMBER
8 (8) BITSTRING 1 SPITKEY KEY FOR PAGE PROTECTION
9 9) BITSTRING 1 SPITFLAG SUBPOOL FLAG
.1 SPFTCHPR "X'01™ SUBPOOL IS FETCH PROTECTED
1... SPPKEYPR "X'08" SUPOOL IS PROTECTED WITH PARTITION KEY
P SPCNTRLD "X'10™ SUBPOOL IS CONTROLLED
B SPCREATE "X'20" SUBP. CREATED BY CURR. REQ
T SPPFXPND "X'40™ SUBPOOL WITH PENDING PFIX
10 (A) SIGNED 1 SPITPIK PIK OF OWNING PARTITION
12 ©) BITSTRING 1 RESERVED
13 (D) BITSTRING 1 SPITFLG1 SUBPOOL FLAG BYTE 2
oo ... SPFPEMTY "X'80" FIRST PAGE EMPTY
N SPLPEMTY "X'40" LAST PAGE EMPTY
T SPCLPMR "X'20™ CALL PAGE MANAGER
P SPBTHPRT "X'10" BOTH PARTS FREED
.1 SPSWABVE "X'01™ SUBPOOL SWITCHED TO ABOVE
14 (E) SIGNED 2 SPITTASK TASK THAT CREATED SUBPOOL
16 (20) SIGNED 4 SPITPUSC PAGE USAGE COUNT
20 (14) SIGNED 4 SPITFIRST PTR TO FIRST CHAIN TABLE ENTRY OF SUBPOOL
24 (18) SIGNED 4 SPITCURP PTR TO CURRENT CHAIN TABLE ENTRY
28 (10) BITSTRING 1 SPITRLVB REL. CURRENT PTR WITHIN CURRENT PAGE
29 (1D) BITSTRING 1 SPITBITO OR MASK FOR SPITRLVB (IMPLICIT CURRENT BIT
PTR)
30 (1E) SIGNED 2 RESERVED

THE FOLLOWING FIELDS ARE DUPLICATED FOR THE ABOVE PART
OF THE GETVIS AREA (UP TO MOVESPTL)

Storage Management 281

Figure 124 (Page 2 of 2). Subpool Index Table Entry (SUBPINT)

Offsets
Dec Hex Type Len Name (Dim) Description
32 (20) SIGNED 4 ASPTFRST PTR TO FIRST CHAIN TABLE ENTRY OF SUBPOOL
36 (24) SIGNED 4 ASPTCURP PTR TO CURRENT CHAIN TABLE ENTRY
40 (28) BITSTRING 1 ASPTRLVB REL. CURRENT PTR WITHIN CURRENT PAGE
41 (29) BITSTRING 1 ASPTBITO OR MASK FOR SPITRLVB (IMPLICIT CURRENT BIT
PTR)
42 (2A) SIGNED 2 RESERVED
SUBPINTL "*-SUBPINT" LENGTH OF SUBPOOL INDEX TAB.

282

z/VSE 4.2 Supervisor Diagnosis Reference

CDLOAD Support (SVC X'41")

This function loads a phase dynamically into the partition GETVIS area when called
by the macro CDLOAD.

Exception: The phase is found in the SVA and the requesting program is not
running in real mode (real mode checked by Fetch/Load processing).

For each phase, that is loaded into the partition GETVIS area, and entry in the
anchor table, which is part of the GETVIS control information, is built.

Before the SVC X'41' routine is invoked, the name of the phase to be loaded (spec-
ified by the first operand of the CDLOAD macro) must be pointed to by general
register 1.

CDLOAD first checks to see if the GETVIS area control table is already initialized; if
so, the anchor table is searched for an entry for the requested phase. If an entry is
found, the return parameters are retrieved from the entry and control is returned to
the caller.

If the anchor table does not exist or does not have an entry for the requested
phase, a LOAD is issued with the parameters DE=YES and TXT=NO. The FETCH
routine moves only the directory entry for the requested phase into an area speci-
fied by CDLOAD (an area at DFWKNAME in the TCB). The CDLOAD routine then
checks the directory entry: if the phase is not found, control is passed to ERR22,
or the return code is passed. If the phase resides in the SVA, the required parame-
ters are retrieved from the directory entry and passed in registers 0, 1, and 14. In
addition, return code X'00' (successful completion) is passed in register 15.

A phase residing in the SVA is not added to the anchor table. If the requesting
task runs in a real partition, a SVA phase is loaded into the corresponding real
partition GETVIS area.

The phase name is inserted in the first free entry in the anchor table (see

Figure 126 on page 285 and Figure 125 on page 285). If there is no free entry,
storage for a new anchor table is obtained in the dynamic space GETVIS (system
GETVIS) area. If there is no free space for a new anchor table return code X'10' is
passed. SVC X'41' then obtains the length of the phase to be loaded from the
directory entry and passes this information to the GETVIS routine. Depending on
the RMODE of the phase a LOC=ANY respectively a LOC=BELOW request is
done.

The GETVIS routine reserves the required storage and returns the load address of
the phase to SVC X'41'. SVC X'41' then loads the phase by issuing a LOAD with
the parameters TXT=YES and DE=YES. After completion of the load operation, the
load point, the entry point, the length and the attributes of the phase are stored in
the anchor table and the load count of the phase is incremented by one. If the load
count is at the maximum (X'FFFF") it is not increased. Instead an indication is set to
prevent a CDDELETE of the phase.

Successful completion is indicated by passing the return code X'00' in register 15.
The layout of the anchor table is shown in Figure 126 on page 285. The layout of
an anchor table entry is shown in Figure 125 on page 285.

Input for CDLOAD service (SVC X'41"):

R1: Pointer to phase name

Storage Management 283

R15: Option in low order byte:
X'01": Page boundary requested (2K/4K depending on length)
X'04": Consider only SVA phases
If the phase is not in the SVA, it is not loaded.
X'10: Return if phase not found

Output for CDLOAD service (SVC X'41"):

RO: Load address of phase

R1: Entry point of phase
CDLOAD set the high-order bit in register 1 to indicate the phase's AMODE
(0 for AMODE 24, 1 for AMODE 31). If the phase's AMODE is ANY the high-
order bit is set corresponding to the caller's AMODE.

R14: Length of phase

R15: Return code in low order byte:

e See CDLOAD Macro description

CDDELETE Support (SVC X'41")

284

This function deletes a phase previously loaded by a CDLOAD request.

Since both the CDLOAD and the CDDELETE macro expand into SVC X'41' an
option in register 15 indicates which function is required.

On entry to the SVC X'41' routine, the name of the phase to be deleted must be
pointed to by general register 1.

If the GETVIS control information is not initialized or if there is no entry for the
requested phase a return code is passed.

If the load count was exceeded by a previous CDLOAD request
(ATPHFLAG.ATLOADCE set), the phase is not deleted but a return code is passed.
Otherwise the load count is decremented by one. If the load count is zero, the entry
in the anchor table is cleared and the storage occupied by the phase is freed (by
use of the FREEVIS routine). Successful completion is indicated by return code O.

The anchor table is freed after the last entry is cleared. Only the first anchor table
which is part of the GETVIS control information is never freed.

Input for CDDELETE service (SVC X'41"):

R1: Pointer to phase name
R15: Option in low order byte:
X'02": CDDELETE request

Output for CDDELETE service (SVC X'41'):

R15: Return code in low order byte:
e See CDDELETE Macro description

Anchor Table Handling Each anchor table consits of header information followed
by storage to hold the phase entries. The first anchor table is located at the begin
of the partition GETVIS control information which is pointed to by
COMREG.IJBGVCTL. Whenever a phase is loaded, an entry in the anchor table is
built and the use count (ANCHNOUE) is incremented by one. If the anchor table is
full, a new one is allocated by using the SGETVIS SPACE function. The forward
(ANCHFWP) and backward (ANCHBWRP) pointer is updated. The backward pointer
of the first and the forward pointer of the last anchor table is set to zero. Whenever
the load count of a phase is zero the entry in the anchor table is cleared and the
use count of the anchor table (ANCHNOUE) is decremented by one. If the anchor

z/VSE 4.2 Supervisor Diagnosis Reference

table is empty, it is freed by means of the SFREEVIS SPACE function. The forward
and backward pointer of the previous and following anchor table is update accord-

ingly.
Anchor Table Entry Layout (ATENTRY)

DEC | HEX Label Description

0 © | ATPHSNME | Phase Name Field

8 8 | ATLOADP Load Point in GETVIS Area

12 C | ATENTP Entry Point in GETVIS Area

16 10 | ATPHSLEN | Length of loaded Phase

20 14 | ATLDCNT No of CDLOAD requests (maximum is X'FFFF')
22 16 | ATPHATT Flag moved from TCB.DFWKEMVS (AMODE,RMODE)
23 17 | ATPHFLAG | Flag byte

ATLOADCE | X'80' phase Toad count exceeded

24 18 | ATLDSYS No of system load requests

26 1A | ATPHFLG2 | Flag hyte

27 1B | ATSUBPOL | Subpool id of GETMAIN

28 1C | «—— Length of Anchor Table Entry (ATENTRY)

Figure 125. Format of Anchor Table Entry

Anchor Table Layout
DEC | HEX Label Description
0 0 | ANCHFWP Ptr to next anchor table (0 if not existing)
4 4 | ANCHBWP Ptr to previous anchor table(0 if not exist.)
8 8 | ANCHNOUE | Number of used entries
10 A | ANCHNUME | Number of total directory entries
12 C | ANCHDIRF | First phase entry (described by ATENTRY)
40 28 Second phase entry
992 | 3EO Last phase entry
1020 | 3FC Reserved
1024 | 400 | «<—— Length of Anchor Table

Figure 126. Layout of an Anchor Table

Storage Management

285

286

COMREG

IJBGVCTL

/11

l

'

ANCHFWP

'

|_> ANCHFWP

ANCHBWP=0

/11

—— | ANCHBWP

ANCHFWP=0

ANCHBWP

Figure 127. Example of Three Anchor Tables Allocated

z/VSE 4.2 Supervisor Diagnosis Reference

z/OS (0S/390) Storage Management Services

Overview

e (0S/390 requests are mapped directly to VSE requests and are then processed
the same way as VSE requests. Hence, the GETMAIN/FREEMAIN/STORAGE
requests and GETVIS/FREEVIS requests can be used in any combination
within an application.

 Since the subpool concept of OS/390 differs from that of VSE, OS/390 sub-
pools can only be addressed by OS/390 requests and vice versa.

e On 0OS/390, the allocation unit is 8 bytes.
On VSE, the allocation unit is the same for OS/390 requests and VSE
requests.

— 16 bytes for system/space getvis
— 128 bytes for partition getvis

¢ FREEMAIN and STORAGE RELEASE will always clear the storage

e Storage areas in OS/390 are the CSA, the SQA, the LSQA, and the PVT.
These areas are mapped to VSE's storage areas.

* In a VSE partition, there is one Job Step Task per job, the maintask, i.e. the
main task is the related job step task for all of its subtasks.

Implementation is done by new code in the macros SGAM and SGAMSUBR and in
a new module, IJBSSM2(phase name = $IJBSSM2).

» dependencies on GETVIS/FREEVIS are put into SGAM(SUBR),

* dependencies on GETMAIN/FREEMAIN/STORAGE are put into IJBSSM2.
The mapping of an OS/390 request into a VSE request is mainly done in
module IJBSSM2.

Mapping of OS/390 Storage Areas to VSE

e SQA/ESQA, CSA/ECSA
system queue area, common service area
-> mapped to system Getvis area

* LSQA/ELSQA
local system queue area
-> mapped to space Getvis area

e PVT
-> mapped to partition Getvis area
On 0S/390 the PVT is divided into a private low and private high area. This
distinction is not done in VSE.

0S/390 Subpool Concept

* In OS/390, subpools are identified by a number and not by a name. The range
is 0-255. Not all numbers are used by OS/390 and only a subset is supported
by VSE. Valid nhumbers in VSE are

— 0-127,129-132,226-231,239-241,245,250-255

 the subpool number defines attributes which are associated with the subpool's
pages such as

Storage Management 287

288

— location (storage area)
— fetch protection

— type (pageablelfixed)
— owner (lifetime)

— storage key

¢ the subpool number defines whether it's an authorized subpool.
These subpools can be used by authorized programs only. A program is
authorized when it runs in supervisor state, key 0 or is a CICS or vendor sub-
system.

Subpool Owner (Lifetime)

A subpool is created during the first GETMAIN/STORAGE request for the subpool.
The subpool owner defines the lifetime of the subpool. Owner of a subpool can be
a task, the maintask (job step task in OS/390), the address space or the system.

e task related storage
The storage is owned by a task and anchored to the task's TCB. Normally it's
the task, that issued the request.
An exception is the TCBADDR parameter. The storage is owned by the TCB
specfied in the TCBADDR parameter.
Task related storage can be in the partition or space getvis area.
A subpool which is task related is discarded during task termination. During
task termination, FREEVIS ALL is called. FREEVIS ALL will loop through all
subpools owned by the task and do

— discard the control block which describe the OS/390 subpool (SPLE)
— freevis all subpools belonging to the task
— clear the chain pointer in the VSE TCB

¢ maintask (job step) related storage
The storage is owned by the maintask. It is anchored to the maintask's TCB,
independent which task in the partition issues the request. A job step related
subpool exists only once in the partition. The storage can be in the partition or
space getvis area. The subpool is discarded during maintask termination.
Cleanup is done the same way as for subtasks, except that partition getvis sub-
pools are not freed explicitly, since the partition getvis area is invalidated.

e address space related storage
The storage is owned by the address space and anchored to the SCB. The
storage is in the space getvis area. The subpool is discarded during address
space termination. Address space termination means UNBATCH for static par-
titions and de-allocation for dynamic partitions. During UNBATCH processing
for static partitions FREEVIS ROUTED will loop through all subpools owned by
the address space and do

— discard the control block which describe the OS/390 subpool (SPLE)
— freevis all LSQA subpools (space getvis area) subpools
— clear the chain pointer in the SCB.

For dynamic partitions the SPLE, the SCB as well as the whole Space Getvis
Area are freed during de-allocation.

» system related storage
The storage is owned by the system, not by a task. The subpool is only dis-
carded when explicitly specified. The storage is in the system getvis area.

z/VSE 4.2 Supervisor Diagnosis Reference

Sharability
e System related subpools are shared by all tasks of the system

* Address space related subpools are shared by all tasks of the address space

* Maintask related subpools are shared between the maintask and all subtasks of
the partition.

» Task related subpools cannot be shared.
Exception: Subpool 0 is shared by the maintask and all subtasks.

Storage Key/Protection

Subpools can be store and fetch protected with any key in any area. A subpool
with multiple keys will be implemented as multiple subpools.

For some subpools the storage key is selectable. All other subpools have a default
key, which is either key 0 or the

e (0S/390 TCB key when running in emulation mode or
¢ PCEKEY when running in native mode.

Implementation Approach

A VSE request (SVC x'3D' and SVC x'3E’) is described by the options in register
15, the length in register 0 and the address of the subpool name in register 1. The
registers of an OS/390 request are not set the same way and differ depending on
the SVC/PC. So the 0OS/390 requests have to be mapped to the VSE interface.

e There is one entry point in the supervisor for each of the OS/390 storage man-
agement SVCs and PC.

e These entry points map the OS/390 request to the GETVIS/FREEVIS interface
(RO,R1,R15) assisted by new functions incapsulated in the new module
[JBSSM2. An artificial save area within the Getvis Cl is used.

¢ BALR to the GETVIS/FREEVIS main paths
This is done multiple times for subpool release or for variable or list request

types.

* map the GETVIS/FREEVIS return codes back to the OS/390 interface via
[IBSSM2

Subpool Description

In VSE each subpool is described by an entry in the subpool index table (dsect
subpint). This table cannot be extended to hold all 0S/390 subpools, since it is not
known in advance how many subpools are needed and the maximum number is
too high.

Therefore each subpool is described by a so-called SPLE. The subpint information
is part of the SPLE. The SPLE are chained together. The SPLEs are anchored to
the

e TCB for task and maintask owned subpools
TCBSPL = addr(first SPLE of task)

e SCB for address space owned subpools
SCBSPL = addr(first SPLE of address space)

e SMCOM for system owned subpools
SMCSYSPL = addr(first SPLE of system)

Storage Management 289

The subpool index table is extended by two entries, one to hold the current OS/390
request and one entry used for initialization.

When the first GETMAIN request is processed for a subpool during the scope of its
lifetime, the subpool control block (SPLE) is created and hooked into the respective
chain. This control block remains in the chain until the end of the subpool's lifetime.

As the last entry of the Subpool Index Table, at entry number MXSUBPLH+2, an
additional slot is added to hold the OS/390 subpool being processed by the current
request. The control block for VSE subpools is extended as shown below, to
account for the characteristics of an OS/390 subpool.

At the beginning of request processing this slot is filled with the respective subpool
characteristics of the MVS subpool(ACTIVATE).

At the end of request processing this slot is copied back to the respective control
block describing the 0OS/390 subpool(UPDATE), and the slot is re-initialized.

SPITMVSP
SUBPINT Table TCB
\ (SPLE)
1 >
SPTTTYPE
2 SUBPINT
NEXT
. v
MXSUBPLH+1 (ACTIVATE) —_—
[S SPTTTYPE
MXSUBPLH+2 L—— oo Je - SUBPINT
-» |NEXT
Lol I
(UPDATE)

Figure 128. Control Blocks for OS/390 subpools.

0OS/390 Request Processing
e Determine area (sva,space,partition) and pfix

» Close gate(s)
e Build and anchor SPLE
e Build a 'Getvis' request (with RO,R1,RF) in artificial save area

— let RD point to artificial save area
— the save area is locatad within the Getvis Cl

e copy SPLE in subpool index table slot

e call GETVIS/FREEVIS to process request

e update SPLE

e map VSE output to OS/390 output and pass result to user

290 z/VSE 4.2 Supervisor Diagnosis Reference

1JBSSM2

STORAGE macro
GETMAIN macro

GETSTYPE «—
ANALIZE -«
»| ACTIVATE SIMSVC
LOCATE_NKY 1
OUTPUT 1
UPDATE
DISCARD
MAPRC
GETVIS GETMAIN/STORAGE
GETVISMR SVC4
L— several times, for SVC10 —
variable and SvVC120
list type requests PC 30B
GVRET.. “|—Common <
Exit

Figure 129. Code Structure for GETMAIN/STORAGE OBTAIN

1. GETSTYPE

GETSTYPE determines the area (system, space..) and whether pfix or not.

. Gating

With the result of GETSTYPE, gating is done. The gating routine returns the
ptr to the CI. The CI contains an additional save area, which is pointed to by
register RD. This area must look like the VSE save area which is used during
getvis processing (Getvis uses the area pointed to by RD).
e GETMAIN and PFIX
During PFIX processing the GETVIS gate is opened. But only one
GETMAIN request at a time may be executed, even if it is no PFIX request.
The reason is that too much information would have to be saved.

. ANALYZE

At the end of the CI there will be as much as possible SPLEs. During
ANALYZE, it is checked whether there is space for one more SPLE. If not, a
return code is passed and the getmain mainpath must do a space getvis
request for the SPLE.

. With the output of the ANALYZE, a 'Getvis' request is built in the save area

pointed to by register D, (RO, RF, R1(ptr to subpool name in save area)).

5. ACTIVATE

201

Storage Management

Subpool index table

SUBPINT
" sple
1
L
copy
(2) <
(3)

a. (1) part of subpool index table containing VSE subpools
b. (2) slot for current MVS request
c. (3) used to init subpool index table entry
SUBPINT, pointed to by SPLE is copied. If it does not yet exist, the slot in the
subpool index table is initialized.
6. OUTPUT
1. pass result to user
2. determine if list request or not
7. UPDATE

subpool index table

SPLE

(2) l SUBPINT
—> ‘ copy (1)

——| init

After the GETMAIN request is finished, the GETMAIN subpool index table entry
is copied back in SUBPINT pointed to by SPLE and the element in the subpool
index table is initialized by copying the init element in the subpool index table.

Note: When the first request of a list type request fails, all storage obtained up to
now is freed again.

292 z/VSE 4.2 Supervisor Diagnosis Reference

1JBSSM2

FREEVIS

GETSTYPE —

ANALIZE —
»| ACTIVATE

LOCATE_NKY |<+——

UPDATE «—

DISCARD

MAPRC —

FREEVSMO |«
— several times, for
subpool release or
1ist type requests

FVRET..

FREEMAIN

STORAGE macro
FREEMAIN macro

SIMSVC

SVC5
SvC10
SvC120
PC 311

—Common

v

Figure 130. Code Structure for FREEMAIN.

Exit

A

«

A

It is assumed that a Getvis Area is initialized via a GETVIS request before the first
GETMAIN/FREEMAIN request is issued (reason: GETMAIN needs initialized Cl,

including save area).

System Getvis : OK, done by IPL

Space Getvis : OK, done by allocation (JCL workarea)

Partition Getvis : OK, done by JCL except when partition Getvis size for EXEC

REAL is zero.

If the GETVIS area does not exist, the GETMAIN request is terminated.

GETSTYPE and MAPRC do not need a save area.

Note: Subpool release for a subpool is the same as FREEVIS subpool except that
SUBPINT is not thrown away.
FREEVISMO may be called several times for a subpool that exist several times
because it has different keys.
List type request: The first request that fails terminates the list type processing.
Areas freed up to now are not getmained again.

The OS/390 Subpool Table

Storage Management 293

294

Figure 131 (Page 1 of 2). Storage Subpools and Their Attributes.

Legend:

FP Fetch Protection

Subpool Location FP Type Owner Storage Key

0 Partiton Getvis Yes Pageable Maintask Same as TCB
key at time of
first storage
request

1-127 Partiton Getvis Yes Pageable Task Same as TCB
key at time of
first storage
request

129 Partiton Getvis Yes Pageable Maintask Selectable
See note 1

130 Partiton Getvis No Pageable Maintask Selectable
See note 1

131 Partiton Getvis Yes Pageable Maintask Selectable
See note 1

132 Partiton Getvis No Pageable Maintask Selectable
See note 1

226 System Getvis No Fixed System 0

24-bit

227 System Getvis Yes Fixed System Selectable
See note 1

228 System Getvis No Fixed System Selectable
See note 1

229 Partition Getvis Yes Pageable Task Selectable
See note 1

229 Partition Getvis No Pageable Task Selectable
See note 1

230 Partition Getvis No Pageable Task Selectable
See note 1

231 System Getvis Yes Pageable System Selectable
See note 1

239 System Getvis Yes Fixed System 0

240 Partition Getvis Yes Pageable Task Same as TCB
key at time of
first storage
request

241 System Getvis No Pageable System Selectable
See note 1

245 System Getvis No Fixed System 0

250 Partition Getvis Yes Pageable Task Same as TCB

z/VSE 4.2 Supervisor Diagnosis Reference

key at time of
first storage
request

Figure 131 (Page 2 of 2). Storage Subpools and Their Attributes.

Legend:
FP Fetch Protection
Subpool Location FP Type Owner Storage Key
251 Partition Getvis Yes Pageable Maintask Same as TCB
key at time of
first storage
request
252 Partition Getvis No Pageable Maintask 0
253 Dynamic Space No Fixed Task 0
Getvis
254 Dynamic Space No Fixed Maintask 0
Getvis
255 Dynamic Space No Fixed Address 0
Getvis space
Notes:

1. Possible storage keys are described in “Storage Keys for Selectable Key
Subpools”

Storage Keys for Selectable Key Subpools
Figure 132 (Page 1 of 2). Possible Storage Keys

Subpool Macros and Parameters Storage Key
129-132 e GETMAIN with LC,LU,VC,VU,EC or R. The storage key is
e FREEMAIN with LC,LU,L,VC,VU,V,EC,EU equals the caller's PSW
or R. key. (The KEY param-
e STORAGE with OBTAIN or RELEASE; eter is not allowed.
CALLRKY=YES is specified.
¢ GETMAIN with RC,RU,VRC,VRU. The storage key is the
e FREEMAIN with RC,RU. key the caller specifies
on the KEY parameter.
If KEY is not specified,
the default equals the
caller's PSW key.
e STORAGE with OBTAIN or RELEASE; The storage key is the
CALLRKY=YES is omitted or CALLRKY=NO key the caller specifies
is specified. on the KEY parameter.
If KEY is not specified,
the default is 0.
227-231, e All GETMAIN/FREEMAIN requests The storage key equals
241 ¢ STORAGE with OBTAIN or RELEASE; the caller's PSW key.

CALLRKY=YES specified

Storage Management

(For RC, RU, VRC and
VRU, the KEY param-
eter is ignored. For
other GETMAIN and
FREEMAIN requests,
the KEY parameter is
not allowed.)

295

296

Figure 132 (Page 2 of 2). Possible Storage Keys

Subpool Macros and Parameters

Storage Key

e STORAGE with OBTAIN or RELEASE;
CALLRKY=YES omitted or CALLRKY=NO
specified.

z/VSE 4.2 Supervisor Diagnosis Reference

The storage key is the
key the caller specifies
on the KEY parameter.
If KEY is not specified,
the default is 0.

z/Architecture Cross Memory Communication

z/VSE supports the stacking space switching Program Call.
For a detailed description of the PC-ss instruction refer to z/Architecture Principles
of Operation, SA22-7832.

The PC-ss instruction enables programs to use cross memory communication.

Description

Cross memory communication enables one program to transfer control to another
program. This is done by means of the PC instruction. The program that receives
control is called PC routine. The PC routine returns to the user with the PR instruc-
tion.

The PC routine is provided by the so-called service provider. Before the PC
instruction can be used, the necessary control block structure (environment) has to
be established. This is also done by the service provider. The control block struc-
ture connects the service provider's address space to the user's address space.
Part of the PC instruction is the PC number. This number determines which PC
routine is selected.

The user program and the PC routine can execute in the same or in different
address spaces. To transfer control to a different address space, the space-
switching PC (PC-ss) must be used. However, the PC routine executes always
under the same task as the user program.

A PC routine can access data in the user's address space by using access regis-
ters or by an ALET of two. With the proper authority it can also access data in
other address or data spaces.

user service provider

PC-ss PC routine

»
|

PR

A

The Cross Memory Environment

The cross memory environment consists of
e entry tables
* linkage tables
e PC number
e authorization tables
e program authorization - PKM (PSW Key Mask)

The services to establish the cross memory environment have been ported from
0S/390. The services itself are PC based. They are available both in VSE native
and OS390 emulation mode. To use the services default allocation is required, i.e

© Copyright IBM Corp. 1985, 2008 297

only one partition per space is allowed. The user must either execute in supervisor
state or with a PKM O.

Entry Table (ETDEF, ETCRE service)

contains one entry for each PC routine
ETDEF macro to define
— PC routine (name or address)
— problem/supervisor state
— space switch
— ARR (name or address of recovery routine)
— EAX (EAX authority for PC routine)
— PKM

ETCRE macro to create entry table
— owned by service provider's partition
— must be connected to linkage table of user's partition

Linkage Index LX (LXRES)

Index in linkage table (unique within system)
obtained by service provider through LXRES macro
non-system LX
— connect an entry table to selected partitions (LT) in system
system LX (not supported in VSE)
— connect entry table to all partitions (LT) in system
— i.e user can not connect ETs to system linkage table in VSE

Linkage Table (ETCON)

PC Number

each partition has a linkage table, which is the system linkage table as long as
no ETCON done

points to one or more entry tables

entry table connected to linkage table by ETCON macro

created by service provider
consists of LX and EX (index in entry table)

Program Authorization (PKM)

each program (task) runs with a PSW key mask (PKM)
16 bit string, each bit represents storage protection key valid for a problem
state program to use
used for SPKA instruction
defines which PC routine can be invoked
programs are initially dispatched with a PKM equal to the partition's storage
protection key
— plus key 9 if SSP and OS390 emulation mode
PC and PR instructions can change the the PKM

298 z/VSE 4.2 Supervisor Diagnosis Reference

Authorization Tables

e each partition owns an authority table
e each table entry consists of two bits
— P-bit (PT authority)
— S-bit (SSAR authority,EAX authority)
e each table entry corresponds to an AX (auth. index)
AX = 0 : neither PT nor SSAR authority
AX = 1: both PT and SSAR authority
a partition is dispatched with an AX value of O
in VSE, the AX value can not be changed
e ETDEF with SASN=NEW only, i.e. neither PT nor SSAR authority needed

Cross Memory Services

AXRES - Reserve authorization index

The AX is owned by the issuing partition. The AX is used as an EAX for PC rou-
tines.

AXFRE - Free authorization index
The AXFRE service returns an AX value to the system.

AXEXT - Extract authorization index
The AXEXT service returns the AX of the partition. AX is always 0 in VSE.

ATSET - Set authorization table

The service sets PT and SSAR(EAX) authority bits in the authority table for use
during EAX authority checking.

ETDEF - Create an entry table descriptor (ETD)

e ETD used as input for ETCRE to create an entry table
e defines PC routines
— name, space switch, problem/supervisor state,EAX
— ARR(recovery routine if PC routine abends),...

ETCRE - Create Entry Table

e output : entry table token

ETCON - Connect Entry Table

e connects entry table(s) to specified linkage index(es) in the linkage table of the
current partition
— pair (LX,entry table token) is used
e must run under task of service user
e connection exists until
— ETDIS removes the connection
— the entry table owner terminates
— the partition that owns the linkage table terminates

z/Architecture Cross Memory Communication 299

ETDIS - Disconnect Entry Table

e disconnects entry tables from the partition's linkage table
* input: entry table token(s)

ETDES - Destroy entry table

Only the partition that owns the ET can destroy it.
e ET must no be connected to any linkage table unless PURGE=YES is coded
e PURGE=YES disconnects the ET from all LTs of the system.
e input : ET token

LXRES - Reserve a Linkage Index
* reserves linkage index(es).
e LX(s) owned by current partition
e LX remains reserved until
— LXFRE frees a reserved linkage index
— the maintask terminates

LXFRE - Free a Linkage Index
e LX(s) must be owned by current partition
¢ no ET must be connected to the LX unless FORCE=YES is coded.
e FORCE=YES disconnects ET

Cross Memory Resources
Cross Memory Resources are owned by the maintask, even if the service was
given by a subtask. The resources are freed explicitly by a service or by the system
at maintask termination. This is a deviation from OS/390.

Cross Memory Terminology

e ASN: address space number
— each partition has it's own ASN. In VSE the ASN is PIK/16
¢ Home Address Space (partition)
— allocation space (partition), in which the task is initially dispatched.
— CR D points to segment table of home address space
— HASN = ASN of home space
— during execution of a task, the home address space does not change
— low core is set up for the home space (scbptr, pcbptr) independent of the
space in which a task is currently executing
— ALET 2 denotes the home space
e Primary Address Space
— address space whose segment table is used to fetch instructions
— CR 1 points to segment table of primary address space
— PASN = ASN of primary space
e Secondary Address Space
— used in secondary ASC mode. Not supported in VSE
— CR 7 points to segment table of secondary address space
— SASN = ASN of secondary space
e Cross Memory Mode
— atask executes in cross memory mode, when the primary and home
address space are different address spaces, i.e. HASN /= PASN
e Switch to home space means

300 z/VSE 4.2 Supervisor Diagnosis Reference

— set HASN = PASN = SASN
— it does not mean home space mode in PSW
Space switch
— primary address space changes
— VSE supports SASN=NEW only, i.e. SASN changes during PC-ss
— nested PC-ss is not supported in VSE

user provider
task x
PC-ss
> PC-ss
(1) /1l >
(2)

HASN=PASN=SASN
(1) HASN (CR D) PASN=SASN (CR 1= CR 7)
(2) HASN PASN=SASN

Termination Processing - Service User

When the user partition (maintask) terminates, either normally or abnormally and all
ESTAE-TYPE recovery exits and the early STXIT AB exits have been processed
and did not recover the following happens:

all subtasks are canceled due to maintask termination. When the subtask is
executing in another partition by PC-ss the recovery exits (including ARR) get
control. The exits must percolate (retry is not allowed).

all entry tables connected to the LT are disconnected.

the linkage table is freed.

Termination Processing - Service Provider

The service provider partition (maintask) terminates (normally or abnormally). All
AB exits have been processed and all subtasks have been terminated.

prevent further connects to the terminating partition
prevent further PC-ss to the terminating partition by disconnecting the provider's
ETs from all LT of the system
cancel all tasks executing in the terminating partition by PC-ss

— an ARR will not get control
free resources owned by terminating partition, such as ET(s), LXs, AXs.
invalidate partition, since it is ensured that no task will access failing partition.

Control Register Save Area

control registers are partly task related and need to be saved when a task is
interrupted.

each task has two control register save areas, TCBX1CRS, TCBX2CRS in
TCBXADR

when a task is interrupted/dispatched, CRs are saved/restored depending on
the RID

— rid=x'08' or x'10": CR first save area is used

z/Architecture Cross Memory Communication 301

— rid=x'04' or gated: CR second save area is used

¢ when a task is dispatched for the first time, CRs are loaded from the CR first
save area

Control Register Save Area Initialization
The CR save area needs to be initialized/updated several times.
e During supervisor generation for

— static partition maintasks and system tasks for use during IPL

During IPL processing for

— BG maintask and system tasks after segment table for space 0O is allocated

During SVC 43 processing for

— BG maintask and system tasks after ASN second table is allocated and to
enable ASN translation

During IIJBLSTK processing

— called during attach subtask processing

— SVC 133 processing

— TREADY COND=START processing

— called for user tasks assigned to another partition
— called for vendor system tasks

Activation of system tasks
— SGSETUP services

Task Interrupt Handling
e SVC Interrupt

— is only allowed when HASN=PASN=SASN
exception: SVC x'79' (leave ESTAE-type exit routine)
— otherwise the task is cancelled. During cancellation the system
- switches to home (set PASN=HASN=SASN)
- saves the CRs
- dumps area around SVC

e |/O - External - Machine Check Interrupt

— may occur in cross memory mode (PASN/=HASN)
— is processed if non parallel state is available
— 1/O data must be in the home address space

e Page Fault Interrupt

— when a page fault occurs, the SCB of the space where the page fault
occured is needed. Since the supervisor does not get control during a
PC-ss, the SCBPTR and TIBSCB are not pointing to the active space SCB
if a page fault occurs in a routine called via PC-ss (SCBPTR not changed
during PC-ss). Therefore, the PMR can't use SCBPTR,

— SCBPTR in low core can't be taken. It is not changed during PC-ss

— SCB obtained by means of ASN translation which

- denotes entry in ASN 2nd table (ASTE)
- ASTE contains SCB pointer

302 z/VSE 4.2 Supervisor Diagnosis Reference

- If the page-fault is due to usage of the 1st STD, ASN in CR4 is used.

- If the page-fault is due to usage of the 2nd STD, ASN in CR3 is used.

- The ASN 1st table origin is taken from CR14.

- The control registers used for ASN translation are taken from 1st level
control register save area in TCB-extension.

- The above change requires that the following has to be true:

e ASTE exists even for system-space (ASN=0).

e ASN 1st table and ASTE for BG has to be allocated during ALLO-
CATE request for BG, to allow pagefaults in BG during INITVIRT
and later on.

* ASNSs have to be given for PMR address spaces and ASTE allo-
cated for 1st PMR address space (in $INTVIRT), to allow
ASN-translation even for PMR address spaces.

e Program Check Interrupt

— call vendor hook (maybe in cross memory mode)
— save status
— set HASN=PASN=SASN
— initiate task termination
- if an ARR is defined, it gets control in cross memory mode

z/Architecture Cross Memory Communication 303

304 z/VSE 4.2 Supervisor Diagnosis Reference

z/Architecture Subsystem Storage Protection

Description

When subsystem storage protection is active, key-controlled storage protection is
ignored for storage locations having an associated storage-key value of 9 (see also
IBM Enterprise Systems Architecture/390 Principles of Operation, SA22-7201.).
Subsystem storage protection is set active, when the storage protection facility is
installed and bit 7 of control register 0 is set. The subsystem storage protection
facility can be used to protect subsystems from erroneous applications running in
the same partition.

The technique for doing this is as follows. The storage accessed by the application
program is given storage key 9. The storage accessed by the subsystem only is
given some other non-zero key, the partition key. The application is executed with
PSW key 9. The subsystem is executed with a PSW key equal to the partition key.
As a result, the subsystem can access both the key-9 and the partition key storage,
while the application program can access only the key-9 storage.

Subsystem storage protection

When the subsystem storage protection facility is installed, it is activated by VSE by
setting the corresponding bit (bit 7) in control register O.

Furthermore bit CVTOVER in the CVT is set: This bit can be used by programs to
check whether subsystem storage protection is active.

Key 9 storage can be obtained by means of the GETMAIN/STORAGE macro. To
do so, the program must have associated with it a PSW key mask (PKM), that indi-
cates, that the program is authorized to use key 9.

Only programs running in OS390 emulation mode, are dispatched with a PKM that
allows to request key 9 storage. (Of course, the PKM is only set when subsystem
storage protection is active).

So programs, running in native VSE mode, cannot use the subsystem storage pro-
tection facility.

EXEC ...,0S390 is rejected if there is more than one partition per space.

So only one partition within one address space can have key 9 storage.

Within a partition, it is now possible to have different keys:
e partition key storage
* key 9 storage
* key O storage

Note: Partition F4 has partition key 9. Therefore subsystem storage protection
cannot be used in partition F4.

© Copyright IBM Corp. 1985, 2008 305

306 z/VSE 4.2 Supervisor Diagnosis Reference

z/Architecture Access Registers

Introduction
Access register support will be used

e for cross memory services by authorized programs
e to increase the addressing capability of programs

Note: Access registers were introduced with ESA/390. Only minor changes in
z/VSE's access register support were necessary to support z/Architecture mode.
These changes are:

e CRO0.47 (CRO0.15 in ESA/390) is no longer used. The only format supported is
the one, that was set in ESA/390 with CR0.15 = 1.
When running in ESA mode, VSE always had set CR0.15=1, thus using the
format (e.g. 64-bytes ASTE), which is now the only one supported. CR0.47 is
no longer set by z/VSE.

e The layout of DU-AL and ASTE has changed in z/Architecture.

Access Register Translation (ART)
Reference: z/Architecture Principles of Operation, SA22-7832.

z/Architecture provides a set of registers known as the Access Registers. There
are 16 32-bit Access Registers (numbered 0-15) and their usage is paired with the
General Purpose Registers.

The Access Registers are used to provide Dynamic Address Translation (DAT) with
a different Segment Table Origin (STO) during address translation. The contents of
the Access Register do not contain the STO, but contain a Access List Entry Token
(ALET). This ALET is used by the ART to verify authorization to the space and to
complete the address translation. As with DAT, a look-aside buffer is provided to
improve the performance of the address translation.

Once a program has obtained the proper ALET from the z/VSE supervisor, the
program itself controls when it is to be in Access-Register mode and which Access
Register(s) are to be used.

Only data references through a base register are affected by Access Registers.
Instructions are always fetched from the primary address space. Access Registers
do not apply to index registers. Since General Purpose Register zero can never be
used as a base register, Access Register zero is never used for ART.

Access Register Translation (ART) uses the following control blocks and fields:

Access-List Entry Token (ALET): The ALET has the following format:

0000000|P [ALESN |ALEN

0 78 16 31 (bits)

© Copyright IBM Corp. 1985, 2008 307

308

A DSECT (MAPALET) is provided to map the ALET.

Primary-List Bit (P) specifies which Access List contains the designated Access List
Entry:

e 0 - Dispatchable-Unit Access List
e 1 - Primary-Space Access List

The specified list is called the Effective Access List.
Access-List-Entry Sequence Number (ALESN) is described on page 310.

Access-List-Entry Number (ALEN) when multiplied by 16 is the number of bytes
from the beginning of the effective access list to the designated Access-List Entry.

The ALET is placed into the appropriate Access Register by the program prior to
placing itself into Access-Register Mode.

Dispatchable-Unit Control Table (DUCT): The DUCT is pointed to by Control
Register 2 and must be on a 64-byte boundary. The format of the DUCT is:

000 |DUALD| 000 | // | 00000

0 16 20 28 32 63 (bytes)

Bytes 0-15, 20-27 and 32-63 of the DUCT are reserved for possible future expan-
sions and should contain all zeros. Bytes 28-31 are available for use by program-
ming.

A DSECT (MAPDUCT) is provided to map the DUCT.

Dispatchable Unit Access-LIST Designation (DUALD) contains the Access-List Des-
ignation (ALD). The dispatchable-unit and primary-space access-list designations
both have the same format:

Format—0 Access—List Designation

Access—-List Origin | ALL

01 25 31 (bits)

Bit O is reserved for a possible future expansion and should be zero.

The Access-List must be aligned on a 128-byte boundary. The Access-List Length
(ALL) specifies the length of the Access-List in units of 128 bytes (making the
length of the Access-List variable in multiples of eight 16-byte entries. The length of
the Access-List, in unit of 128 bytes, is one more than the value in bit positions
25-31.

Access-List Entries: The effective Access List is the Dispatchable-Unit Access
List if bit 7 of the ALET being translated is zero, or is the Primary-Space Access
List if bit 7 is one. The entry fetched from the effective list is 16 bytes in length and
has the following format:

z/VSE 4.2 Supervisor Diagnosis Reference

I P| ALESN ALEAX

01 78 16 31 (bits)

32 63

ASTE Address

64 90 95

ASTESN

96 127

A DSECT (MAPALE) is provided to map the ALE.

Bits 1-6, 32-64 and 90-95 are reserved for possible future expansions and should
be zeros.

In both the Dispatchable-Unit Access List and the Primary-Space Access List,
Access-List entries 0 and 1 are intended not to be used in Access-Register Trans-
lation (ART). Bits 1-127 of Access-List Entry 0 and bits 1-63 of Access-List Entry 1
are reserved for possible future expansion and should be zeros. Bit 0 of Access-
List Entries 0 and 1, and bits 64-127 of Access-List Entry 1, are available for use
by programming. However, bit O of Access-List Entries O and 1 should be set to
one in order to prevent the use of these entries in which the ALEN is O or 1.

z/Architecture Access Registers 309

310

The fields in the Access-List Entry are:

ALEN-Invalid Bit (I): Bit 0, when zero, indicates that the Access-List Entry specifies
an address/data space.

Private Bit (P): Bit 7, when zero, specifies that any program is authorized to use
the access-list entry in access-register translation. When bit 7 is one, this indicates
that further authorization is required and described below.

Access-List-Entry Sequence Number (ALESN): These bits are compared against
the ALESN in the ALET during ART. They must be equal for ART to continue.

Access-List-Entry Authorization Index (ALEAX): Used to determine whether or not
a program using access-register translation is authorized to use the Access-List
entry. The program is authorized if any of the following conditions are met:

1. Bit 7 is zero (indicating public)

2. ALEAX matches Extended Authorization Index (EAX) in Control Register 8.

3. The EAX selects a secondary bit that is one in the authority table for the speci-
fied address space.

ASN-Second-Table-Entry (ASTE) Address: Points to the ASTE for the specified
address space. ART obtains the STO for the address space from the ASTE.

ASTE Sequence Number (ASTESN): Compared against the ASTESN in the desig-
nated ASTE during ART. An inequality halts ART.

ASN-Second-Table Entries (ASTE): The ASTE begins on a 64 byte boundary.
Each entry is 64 bytes in length. The layout is described in z/Architecture Principles
of Operation, SA22-7832 ASN-Second-Table Entries. Since z/VSE works with
segment tables only (no region table), ASCE part 1 is zero. ASCE part 2 contains
the address of the segment table (as in CR 1).

A DSECT (MAPASTE) is provided to map the ASTE.

ASX-Invalid Bit (I): Bit O controls whether the address/data space associated with
the ASTE is available. When bit 0 is one, ART is halted.

Authority-Table Origin (ATO): Designates the beginning of the authority table. This
is used only if the private bit in the access-list entry is one and the access-list-entry
authorization index (ALEAX) in the access-list entry is not equal to the EAX in CR8.

Authorization Index (AX): Not used during ART.

Authority-Table Length (ATL): Specifies the length of the authority table in units of
four bytes. If the EAX is greater than the ATL, then ART is halted if extended
authority must be checked.

Segment-Table Designation (STD): Used by DAT to translate the logical address
for the storage-operand reference being made during ART.

Linkage-Table Designation (LTD): Not used during ART.

Access-List Designation (ALD): When this ASTE is designated as the Primary
ASTE Origin in Control Register 5, this field becomes the Primary Access-List des-
ignation (PSALD).

z/VSE 4.2 Supervisor Diagnosis Reference

ASN-Second-Table Entry Sequence Number (ASTESN): Compared against the
ASTESN in the Access-List Entry. An inequality halts ART.

Bits 224-255 (bytes 28-31) are available for use by programming.

The second 32 bytes of the 64-byte ASTE are reserved for possible future exten-
sions and should contain all zeros.

Access-Register-Translation (ART) Process: ART operates on the access reg-
ister designated in a storage-operand reference in order to obtain a segment-table
designation for use by DAT. When one of the access registers 1-15 is designated,
the Access-List-Entry Token (ALET) that is in the Access Register is used to obtain
the Segment-Table designation. When access register 0 is designated, an ALET
having the value of 00000000 hex is used.

When the ALET is 00000000 or 00000001 hex, the Primary or Secondary
Segment-Table designation, respectively, is obtained.

When the ALET is other than 00000000 or 00000001 hex, the Primary-List bit in
the ALET is used and the contents of Control Register 2 or 5 are used to obtain the
effective Access-List designation and the Access-List Entry Number (ALEN) in the
ALET is used to select an entry in the effective Access List.

The Access-List Entry is checked for validity and for containing the correct Access-
List-Entry Sequence Number (ALESN).

The ASN-Second-Table Entry (ASTE) addressed by the access-list entry is
checked for validity and for containing the correct ASN-Second-Table-Entry
sequence number (ASTESN).

Whether the program is authorized to use the Access-List Entry is determined
through the use of one or more of:

1. The private bit and Access-List-Entry Authorization Index (ALEAX) in the
Access-List Entry

2. The Extended Authorization Index (EAX) in Control Register 8, and

3. An entry in the Authority Table addressed by the ASN-Second-Table Entry.

When no exceptions are recognized, the Segment-Table designation in the
ASN-Second-Table Entry is obtained.

To improve the performance of ART, an ART-Lookaside Buffer (ALB) is provided.

Access Register Indication on Page Fault: When a segment- or page-
translations exception occurs on an System z processor, the processor must indi-
cate to the software how the virtual address was translated (using the primary STD,
secondary STD, home STD, or in access-register mode). This is indicated in the
last two bits of the 8-bytes Translation-Exception Identification field at location 168
(X'A8") (in z/VSE, bytes 168-171 are zeros, since z/VSE supports virtual addresses
up to 2GB only).

e 00 - Primary STD used

e 01 - Access register mode
e 10 - Secondary STD used
e 11 - Home STD used

z/Architecture Access Registers 311

312

Note: z/VSE maintains the ESA/390 location x'90' - x'93".

When access-register mode is indicated and the translation exception was caused
by a storage-operand reference that used an AR-specified STD, then the specific
access register being used is indicated in low storage field called Exception Access
Identification at location 160 (x'AQ"). Location 160 (X'AQ") contains zeros is the
processor was in access-register mode and the translation exception was caused
by an instruction fetch.

0000 | xxxx| — Access Register Number

x'AO'

Translation Modes: z/Architecture offers four modes of operation:

e Primary-Space Mode

e Secondary-Space Mode

* Access-Register (AR) Mode
¢ Home-Space Mode

Home-Space Mode can only be set in supervisor state. The other translation
modes can be set by the user. The design in z/VSE is such that effectively only
Primary-Space Mode and Access-Register Mode are used. To avoid use of
Secondary-Space Mode, z/VSE will always insure that Control Registers 1 and 7
are always equal. A program using the Set Address Control (SAC) instruction to
set itself in Secondary-Space Mode will not fail, but will always be addressing data
in its own address space.

z/VSE 4.2 Supervisor Diagnosis Reference

AR - Translation AR - Translation

with P=1 in ALET with P=0 in ALET
CR5 ALET CR2
PASTEO P|ALESN|ALEN DUCTO
l DUCT
ASN second table
DUALD
R '
ALD
<
|
Access List
R
— ASTE addr
ASN Second Table Entry
R
— STD
» (STO STL

v

Segment table

R - real addresses

Figure 133. Access Register Translation

z/VSE Implementation
Two types of Access Lists are supported in z/Architecture

e A primary address space access list (PASN-AL) - addressed through CR 5.
» A dispatchable unit access list (DU-AL) - addressed through CR 2

z/VSE has a dummy DUCT, pointing to a dummy DU-AL, where all entries are
invalid.

z/Architecture Access Registers 313

314

In z/VSE, each dispatchable work unit (that means, a VSE task) has a DU-AL.
When the task is initialized, it gets the dummy DU-AL. When the task adds the first
entry to the DU-AL, a DU-AL for the task is created. This DU-AL is deleted when
the task is terminated. If the task is created with the ATTACH macro using the
ALCOPY=YES parameter the DU-AL is a copy of the DU-AL of the attaching task,
in all other cases an empty DU-AL is created. The DU-AL can contain entries for
data spaces TYPE=SINGLE|ALL and address spaces.

When the system allocates a partition, it gives that partition a PASN-AL that con-
tains entries for all currently defined common data spaces (that means, data
spaces created with parameter SCOPE=COMMON).

The PASN-AL is divided into two parts. The first part is designed to contain entries
for data spaces defined with TYPE=COMMON. The number of entries in this
‘common’ part of the PASN-AL is the sum of

e three reserved entries for hardware purpose

¢ five entries default value for data spaces TYPE=COMMON. This value can be
modified with the SYSDEF AR command or the SYDEF JCL statement.

e number of VDISKs added at IPL time.

The second part (private part) of the PASN-AL is designed to contain entries for
data spaces TYPE=SINGLE|ALL and address spaces.

If a program needs access to data in another address space or data in a data
space, a connection between the program and the address/data space must be
established that means, an entry in either the DU-AL or the PASN-AL must be
created and the program has to know the ALET that indexes the entry in the AL.

The entry in the AL and the related ALET may be obtained either through a
GETFLD FIELD=ALET macro call in case of an address space or through an
ALESERYV macro call in case of address space and data space.

When the first request after IPL for an ALET is issued in the system (either
ALESERYV or GETFLD) a 'Model PASN-AL' is created. This Model will be given to
partitions at allocation time. As long as the partition does not add entries to the
private part of the PASN-AL it will stay with the Model PASN-AL.

When a partition is deallocated the related PASN-AL is invalidated (if it is not the
Model PASN-AL) and all entries pointing to the partition in all ALs are invalidated.

The Access Registers will be saved/restored at entry/exit to the supervisor. The
proper EAX value will be loaded into CR 8 when the task is dispatched.

The page fault address will be handled properly if Access Register Mode was in
effect when the page fault occurred.

The partition's ASTE is updated to point to the proper address space's SCB when
the partition switches modes (REAL|VIRTUAL).

The partition's Access List Entries are invalidated when the partition is unbatched.
For dynamic partitions, this occurs at end of VSE/POWER job. For static partitions,
this occurs only when the partition is explicitly unbatched.

z/VSE 4.2 Supervisor Diagnosis Reference

SDAIDS will recognize that Access Register Mode was in effect when the data ref-
erence was made to a data area that PER was monitoring.

DUMP will dump and print the 16 Access Registers along with the General Purpose
Registers.

Authorization: Public Access List Entries are used for data spaces that means, no
authorization check is performed for data spaces by ART. Access List Entries for
address spaces are made private in z/VSE, forcing ART to perform validation
before granting access to the ALE. VSE supports two methods to set the value for
the EAX (CR 8) so that ART will be successful.

e GETFLD FIELD=ALET to load a sytem defined EAX into CR8 of the current
task.

e ETDEF and ETCRE to set the EAX in an entry in the entry table for a specific
space switching PC (program call instruction). Execution of the PC will load the
EAX from the entry table entry into CR8.

Extended authorization check is setup to fail always: Authority Table Designation
points to a field of binary zeros.

ART Control Block Structure in z/VSE: Each partition has its own ASTE. The
PCB contains a pointer to the ASTE. The ASTEs for the static partitions are allo-
cated during supervisor generation. The ASTE for a dynamic partition is allocated
at the time the dynamic partition is allocated.

The TCB contains a pointer to a task's access registers save area. The access
register save areas for the static partitions (maintasks) are allocated during super-
visor generation. The access register save area for a subtask or dynamic partition
is allocated when the subtask or dynamic partition is allocated.

The control block structure implemented in z/VSE is:

z/Architecture Access Registers 315

PCB TCB

AR save
CR5 CR2 CR8
PASTEO DUCTO EAX
vTDSE
PASTE TIB
—>
DUCT
—I <
EAX
vPASN-AL lDUAL
_>
ALE SCB
ALE
vASTE
L—»
ST

316 z/VSE 4.2 Supervisor Diagnosis Reference

Address Spaces

The usage of Access Registers in z/VSE is for cross memory services for author-
ized programs to provide efficient means of accessing data that resides in other
address spaces. Authorized programs have to introduce themselves to the VSE
system either by means of a SUBSID macro call or a PRODID macro call.

Authorization by means of the PRODID macro is designed to be used by Vendor
programs.

The authorized programs using SUBSID are:

* VSE/POWER
ACF/NTAM
OCCF

e VSE/PT
CICS TS®

To use Access Registers to address another address space, the authorized
program must do the following:

¢ Obtain the

— PIK of the target partition (GETFLD service is available) if
GETFLD FIELD=ALET is used

— STOKEN of the target partition may be retrieved by the target partition and
must be passed to the calling partition if ALESERV ADD is used

e To obtain the ALET for that partition use
— GETFLD FIELD=ALET,PART=pik
— ALESERV ADD with STOKEN for partition

e Load the desired Access Register with the ALET.

e Set itself into Access-Register Mode by using the SAC 512 instruction.

» Reference the data using any ESA/390 instruction except MVCP or MVCS (key
zero may be required).

e Take itself out of Access-Register Mode by using the SAC 0 instruction.

A z/VVSE service (XMOVE) is provided which allows movement of data between
partitions in the same or other address spaces. To use the XMOVE facilities, the
program would do the following:

* Obtain the PIK of the partition that the authorized program wants to address
(GETFLD services are provided for this purpose).

e Use the GETFLD FIELD=ALET,PART= service to obtain the ALET for that par-
tition.

e Place the ALET into the desired ALET field for the XMOVE parameter list
(XMOVE provides for both ‘from' and 'to' ALET fields).

e Issue the XMOVE macro.

3 Support for CICS TS subsystem is provided primarily so that transactions can be written to access data in other address spaces.
CICS TS contains no knowledge of the access registers. It is the responsibility of the user transaction to save the access regis-
ters prior to going to CICS for services and to restore those access registers on return. It is also the responsibility of the trans-
action to ensure that access-register mode is set off prior to going to CICS for services.

z/Architecture Access Registers 317

The GETFLD FIELD=ALET,PART=pik service is no fast path SVC anymore. lItis a
service-class C request now, that means, a normal SVC which can be issued only
by authorized programs in user state (RID=8). The SVC checks if the requestor is
a authorized subsystem. If so, EAX in ASTE is set up. Then the input for calling
phase IJBALE is build:

e Register 5 points to the PCB of the partition to which access should be estab-
lished.

¢ Register 14 will be loaded with a function code 1 if the request comes from the
VTAM partition, function code 2 if the request is issued by a VTAM application
and function code 0 in all other cases. IJBALE will build an entry in the DUAL
of the current task if the function code is 0. If the function code is 1 or 2 an
entry in the private part of VTAM's PASN-AL is build. If the function code is 0
or 1 the EAX is loaded from the ASTE into CR8.

e Call IJBALE.

e Pass ALET in register 1 and return code in register 15 to issuer of GETFLD.
The EAX in CR8 is only set up properly by means of calling IJBALE with function
code 0 or 1. Therefore, when the effective access list is created with ATTACH

ALCOPY=YES, authorization check of ART will fail as long as no GETFLD
FIELD=ALET is issued from the current task.

Data Spaces

Introduction

An address space, literally defined as the range of addresses available to a com-
puter program, is like a programmer's map of the virtual storage available for code
and data. An address space provides each programmer with access to all of the
addresses available through the computer architecture.

Because it maps all of the available addresses, an address space includes system
code and data as well as user code and data. Thus, not all of the mapped
addresses are available for user code and data. This limit on user applications was
a major reason for System/370 Extended Architecture (370-XA). Because the
effective length of an address field expanded from 24 bits to 31 bits, the size of an
address space expanded from 16 megabytes to 2GB.

A 2GB address space, however, does not, in and of itself, meet all of programmers'
needs in an environment where processor speed continues to increase, where busi-
nesses depend on quick access to huge amounts of information stored on DASD.

What programmers need in this environment is a large address space, of course,
but, even more, programmers need the ability to control what goes on in all those
addresses. Extended addressability meets that need. It allows programmers to
extend the power of applications through the use of additional address spaces or
data-only spaces. The data-only spaces that are available for your programs are
called data spaces. Your program can ask the system to create these spaces.
Their size can be up to 2GB, as your program requests. Unlike an address space,
a data space contains only user data; it does not contain system control blocks or
common areas. Program code cannot run in a data space.

318 z/VSE 4.2 Supervisor Diagnosis Reference

The following diagram shows, at an overview level, the difference between an
address space and a data space.

2GB

Address Spaces

SVA (31 bit)

Private
Partitions

BG F1 X1

Shared Partitions

SVA (24-Bit)

Supervisor

2GB

0 or 4KB

Data Spaces

DS1

DS2

DS3

Invocation.

Data Space services are invoked via the macros

e DSPSERV to create, delete, extend or release a data space.

e ALESERV to control access to a data space.

e SYSDEF to modify installation limits for data spaces. Or to retrieve data space

information for JCL and sub-systems. For the description see Appendix B.

z/Architecture Access Registers

319

DSPSERV Macro

The DSPSERV macro expands into the definition of the following parameter list and
a Program call (program call numbers X'00000900' and X'00000903"). The
Program Check Handler gets controls and interprets the Program Call 208 by
passing control to the SVA routine IJBDSP.

Bytes
Dec Hex Label Description

00— 0 00— 0 DSPXVERS VERSION IDENTIFIER

1-1 1-1 DSPXSERV SERVICE CODE:

X'01' CREATE

X'02' DELETE

X'03' RELEASE

X'06' EXTEND

Must be zero

DSPXFLG1 FLAGS:

B'100xxxxx"' SCOPE=SINGLE
B'010xxxxx"' SCOPE=ALL
B'001xxxxx"' SCOPE=COMMON
B'xxxx1xxx' GENNAME=COND
B'xxxxx1xx' GENNAME=YES
B'xxx0xx00' MUST BE ZEROES
4 — 4 4 — 4 DSPXFLG2 FLAGS:

B'01000000' FETCH PROTECT
B'0Ox000000' MUST BE ZEROES

w N
w N
w N
w N

5-5 5-5 DSPXKEY STORAGE KEY

6—- 6 6—- 6 DSPXTYPE ONLY TYPE= BASIC SUPPORTED
X'80'

7 -7 7 -7 DSPXFLG3 FLAGS:
X'00' MUST BE ZERO

8 — 15 8 - 10 DSPXOUTN NAME OF DATA SPACE

16 — 23 11 - 17 DSPXSTKN STOKEN

24 - 27 18 — 1B DSPXSTRT START ADDRESS FOR RELEASE

28 — 31 1C — 1F DSPXBLKS NUMBER OF MAXIMAL BLOCKS

32 - 47 20 — 2F DSPXTTKN TTOKEN

48 — 51 30 — 33 DSPXORIG START ADDRESS OF DSPACE

52 — 55 34 - 37 DSPXNBLK NUMBER OF EXTENDED BLOCKS

56 — 59 38 — 3B DSPXINIT NUMBER OF INIT BLOCKS OF DAT

320 z/VSE 4.2 Supervisor Diagnosis Reference

ALESERV Macro
The ALESERV macro expands into a declaration of the following parameter list and

a PC instruction (program call numbers X'0000000D' for ADD, X'0000000E' for

DELETE, X'0000000F' for EXTRACT and X'00000010' for SEARCH)

Bytes
Dec

Hex

Label

Description

0B~ W
[
(SN NN)

0B~ W
|

MNWN

ALSSRVC

ALSFLGS1

ALSRESV1
ALSRESV?2
ALSALET

ALSSTOKN

SERVICE CODE:

X'01' ADD

X'02' ADD-PASN

X'03' DELETE

X'04' EXTRACT

X'05' SEARCH

X'06' EXTRACTH

FLAGS:

B'00000xxx"' RESERVED
B'xxxxx100' MUST BE 1
B'xxxxxx0x' DU-AL
B'xxxxxx1x"' PASN-AL
B'xxxxxxx0' MUST BE 0
reserved: must be 0
reserved: must be 0
ALET

STOKEN

z/Architecture Access Registers

321

Control Block Structure.

322

TCB TDSE DU-AL
—>
— | TDSESCB
TCBTDSE |—
TDSEDUCT
SCB1 l SCB2 SCB3
v
«— > <
SCBFWPT SCBFWPT —— | SCBFWPT
SCBBWPT SCBBWPT SCBBWPT
DSCB DSCB DSCB

Every data space is owned by the task which created it. In the TDSE there is a
pointer (TDSESCB) to the SCB of the data space which was first created by the
task. All SCBs for data spaces which were created lateron are chained forward and
backward amongst each other. The forward pointer of the last SCB in this chain
points to the first SCB in the chain. The backward pointer of the first SCB in this
chain points to the last SCB in the chain. TDSESCB is X'00000000' when the task
does not own any data space.

e Extension of SCB for Data Spaces:

For every Data Space a Space Control Block is created as it is done for
Address Spaces. But for Data Spaces this control block has an extension. The
format of the extension is described in the following figure. Note that this exten-
sion is only appended to the SCB, if the flag SCBDSP within the SCB is on.

z/VSE 4.2 Supervisor Diagnosis Reference

Bytes

Dec Hex Label Description

128 —135 80 — 87 DSCBNAME NAME OF DATASPACE

136 —143 88 — 8F DSCBSTKN STOKEN OF DATA SPACE

144 -146 90 — 92 DSCBFLGS FLAGS
B'100xxxxx' SCOPE = SINGLE
B'010xxxxx"' SCOPE = ALL
B'001xxxxx"' SCOPE = COMMON
B'xxx1xxxx' VDISK
B'xxxx0000' RESERVED

147 -147 93 - 93 DSCBSKEY STORAGE KEY OF DATA SPACE

148 —151 94 - 97 DSCBSTRT ADDRESS OF AREA TO RELEASE

152 —155 98 — 9B DSCBRLSZ SIZE OF AREA TO RELEASE

156 —156 9C - 9C DSCBREND END INDICATOR FOR RELEASE

157 —159 9D — 9F DSCBRSVD RESERVED

160 —163 AO — A4 DSCBTIB ADDRESS OF OWNER'S TIB

SCBs for data spaces are always located in the system GETVIS area (31-bit).

e Extension of TCB for Data Spaces:

All the task specific fields needed for the data space support are defined in a
separate control block within the system GETVIS area (31-bit) addressed via
the field TCBTDSE (within TCB).

Bytes
Dec Hex Label Description

06- 3 06- 3 TDSEID IDENTIFIER OF CONTROL BLOCK

4 - 7 4 7 TDSESCB ADDRESS OF FIRST DATA SPACE
IN CHAIN OF OWNED DATA SPACE

8 - 11 8- B TDSEAUTS ADDRESS OF AUTOMATIC STORAGE
FOR IJBDSP/IJBALE

12 - 15 C- F TDSEAUTL LENGTH OF AUTOMATIC STORAGE
FOR IJBDSP/IJBALE

16 — 19 10 — 13