
Brian Hugenbruch, CISSP

z/VM Development, IBM: Endicott, NY, US

bwhugen@us.ibm.com

Introduction to REXX Programming on z/VM

© 2014 IBM Corporation

bwhugen@us.ibm.com

#zVM #Rexx #WAVV

Agenda

� Rexx Overview and Related Topics

� Creating and Executing Rexx Programs

� Rexx Language

► Basic Syntax

► Strings, Operators, Expressions

© 2014 IBM Corporation

► Strings, Operators, Expressions

► Tracing, Parsing

► Issuing Commands and use of Pipelines

► Control Constructs

► Subroutines & Functions

� Lab Exercises

2 #zVM #Rexx #WAVV

Rexx Overview

� REstructured eXtended eXecutor

� Rexx is a procedural, general purpose language

► Intuitive - easy to use and read

► Many uses, ranging from:
● Personal tools and utilities

• For example, frequently used command sequences

© 2014 IBM Corporation

• For example, frequently used command sequences

● Complex applications and licensed programs

► Available on many IBM and non-IBM platforms

� Rexx is designed to be interpreted

► Each program statement translated and executed as the program runs

► Programs can also be compiled to improve
● Performance
● Security
● Change control

3 #zVM #Rexx #WAVV

Rexx Overview (cont.)

� Few restrictions on program format

► Indentation

► 1 or more clauses on a line

► /* comments can be anywhere and any length */

► Implied semicolon delimiters at end of lines

© 2014 IBM Corporation

► Comma (,) as a continuation character

� Nothing to Declare !

► Implicit declarations take place during execution

4 #zVM #Rexx #WAVV

Rexx Platforms

� IBM Platforms
● VM
● TSO/E (z/OS)
● VSE
● AIX
● OS/2

� Object Rexx

► Object-Oriented Rexx supporting many utilities for a UNIX-type environment, including Linux for
System z

© 2014 IBM Corporation

� Regina Rexx

► Rexx interpreter ported to most UNIX platforms, including Linux

� NetRexx

► Blend of Rexx and Java; compiles into Java classes

� Language concepts are the same on all platforms

► Minor differences such as file names and structure

► Operating system-specific tools that support Rexx

(See references page for website information)

5 #zVM #Rexx #WAVV

Creating Rexx Programs: z/VM

� Create a file with filetype of EXEC using XEDIT, the CMS editor

XEDIT myrexx exec a

� Rexx programs begin with a comment line:

/* beginning of program */ /* Rexx */

© 2014 IBM Corporation

/* beginning of program */ /* Rexx */

� Can be run uncompiled and interpreted, or compiled with the Rexx
compiler

6 #zVM #Rexx #WAVV

Executing Rexx Programs: z/VM

� Search order

► Same for both compiled and interpreted execs

► Loaded and started through CMS EXEC handler

► Normal CMS Command search order:

EXECs, synonyms, MODULEs…

© 2014 IBM Corporation

� Invocation

► Invoke as a CMS command or EXEC:

myexec -or- exec myexec

● Implied exec (IMPEX) settings control whether exec files are treated as commands

• SET IMPEX ON|OFF (default is ON)

• QUERY IMPEX

7 #zVM #Rexx #WAVV

Creating and Executing Rexx Programs: TSO/E

� REXX exec can be a sequential data set or a PDS member

� TSO/E EXEC command to invoke a REXX program or a CLIST

� Three ways to use the EXEC command:

● Explicit execution:

EXEC dataset(member) 'parameters' operands

● Implicit execution:

© 2014 IBM Corporation

● Implicit execution:

membername parameters

● Extended implicit execution:

%membername parameters

� Search includes:

//SYSEXEC DD concatenation

then

//SYSPROC DD concatenation for membername on the command line

8 #zVM #Rexx #WAVV

Lab Exercises: What to Expect…

1. Run an existing Rexx program to create temporary disk space

2. Write a program to accept an input argument, prompt for data, and
display results

3.

© 2014 IBM Corporation

3. Trace and Debug existing Rexx programs

4. Write a program to obtain z/VM CP level information

(issues commands and Diagnose 8)

5. Write a program using a subroutine to issue CMS commands and
Pipes to query accessed disks

9 #zVM #Rexx #WAVV

Helpful Hints for Exercises

� List Files on A-disk: FILELIST * * A or… LISTFILE * * A

� XEDIT a file

• from command line: Xedit <filename> <filetype> <filemode>

• from prefix area on FILELIST Screen, PF11 or :

x PROFILE EXEC A1 V 75 74 1 09/17/07 15:48:18

© 2014 IBM Corporation

� XEDIT Prefix area commands:

a add (insert) a single line to the file

d delete a line (d5 deletes 5 lines)

m move a line (f following or p preceding)

c copy a line (f following or p preceding)

mm…mm block move, dd…dd block delete, cc…cc block copy

� Leaving XEDIT:

– Save changes: FILE

– Quit (restore file without changes): QQUIT

10 #zVM #Rexx #WAVV

Helpful Hints for Exercises (cont.)

� Screen execution modes

► CP Read

● CP is waiting for a command

► VM Read

● CMS is waiting for a command

► Running

© 2014 IBM Corporation

► Running

● System is ready for commands or is working on some

► More …

● More information than can fit on the screen is waiting to be displayed)

• Clear screen manually or let CP clear after x seconds determined by TERM command setting

► Holding

● Waiting for you to clear screen manually

► Not Accepted

● Too many commands in buffer; wait for executing command to complete)

11 #zVM #Rexx #WAVV

Logging on to the z/VM Lab System

� 3270 Session

� Userids

� Password

© 2014 IBM Corporation

� Password

12 #zVM #Rexx #WAVV

Exercise 1: Create Temp Disk Space

1. Logon to your VM lab userid

2. Issue command QUERY DISK to see which disks are accessed

3. Run existing exec GETTEMP mode (mode is input parameter) to:
• create a temporary disk at filemode mode

• copy existing EXEC programs from a-disk to new temp disk

– Note: – mode can be a letter from b - z representing an unused disk mode

© 2014 IBM Corporation

– Note: – mode can be a letter from b - z representing an unused disk mode

4. Issue QUERY DISK again – notice new disk at mode

5. Issue command FILELIST * * mode

6. Run GETTEMP again with mode a

7. Issue QUERY DISK again – notice new disk at mode a

8. LOGOFF

13 #zVM #Rexx #WAVV

Exercise 1: Create Temp Disk Space

/* Get Temporary disk space */

/* File mode of temporary disk is input argument */

parse upper arg fmode rest
If (fmode = '') | (rest ¬= '') then
Do

say ''
say 'ERROR: Input parm is FILEMODE.'
say ''
exit 4

End

'CP DETACH 555' /* Get rid of old disk */

© 2014 IBM Corporation

'CP DETACH 555' /* Get rid of old disk */
'CP DEFINE T3390 555 2' /* Define 2 cylinders of temp space */

queue 1 /* Answer YES to FORMAT prompt */
queue TMP555 /* Disk label is TMP555 */
'FORMAT 555 'fmode /* Format the disk for CMS files */

If (fmode = 'A') Then /* If input mode is "A" move A disk to B */
Do
Parse Value Diag(8,'QUERY 'UserId()) With thisuser .
'access VMSYSU:'thisuser'. b/a'
frommode = 'b'

End
Else frommode = 'a'

'COPYFILE * exec ' frommode '= =' fmode /* COPY existing EXEC files
to new temp disk */

exit 0

14 #zVM #Rexx #WAVV

Exercise 1: Create Temp Disk Space - Answer

query disk

LABEL VDEV M STAT CYL TYPE BLKSZ FILES BLKS USED-(%) BLKS LEFT BLK TOTAL
- DIR A R/W - - 4096 44 - - -
MNT190 190 S R/O 115 3390 4096 694 14562-70 6138 20700
MNT19E 19E Y/S R/O 355 3390 4096 1875 49995-78 13905 63900

gettemp z

HCPDTV040E Device 0555 does not exist
DASD 0555 DEFINED
DMSFOR603R FORMAT will erase all files on disk Z(555). Do you wish to continue?
Enter 1 (YES) or 0 (NO).

© 2014 IBM Corporation

Enter 1 (YES) or 0 (NO).
DMSFOR605R Enter disk label:
DMSFOR733I Formatting disk Z
DMSFOR732I 2 cylinders formatted on Z(555)

query disk

LABEL VDEV M STAT CYL TYPE BLKSZ FILES BLKS USED-(%) BLKS LEFT BLK TOTAL
- DIR A R/W - - 4096 44 - - -
MNT190 190 S R/O 115 3390 4096 694 14562-70 6138 20700
MNT19E 19E Y/S R/O 355 3390 4096 1875 49995-78 13905 63900
TMP555 555 Z R/W 2 3390 4096 19 60-17 300 360

15 #zVM #Rexx #WAVV

Exercise 1: Create Temp Disk Space – Answer..

gettemp a

DASD 0555 DETACHED
DASD 0555 DEFINED
DMSFOR603R FORMAT will erase all files on disk A(555). Do you wish to continue?
Enter 1 (YES) or 0 (NO).
DMSFOR605R Enter disk label:
DMSFOR733I Formatting disk A
DMSFOR732I 2 cylinders formatted on A(555)
B (VMSYSU:PIPUSR00.) R/O

query disk

© 2014 IBM Corporation

query disk

LABEL VDEV M STAT CYL TYPE BLKSZ FILES BLKS USED-(%) BLKS LEFT BLK TOTAL
TMP555 555 A R/W 2 3390 4096 19 60-17 300 360
- DIR B/A R/O - - 4096 44 - - -
MNT190 190 S R/O 115 3390 4096 694 14562-70 6138 20700
MNT19E 19E Y/S R/O 355 3390 4096 1875 49995-78 13905 63900

16 #zVM #Rexx #WAVV

Rexx Language Syntax

� Case Insensitivity

Cincinnati is the same as cincinnati

► specific support for upper and lower case is provided

► cases in quoted strings are respected

� All Rexx programs must begin with a comment

© 2014 IBM Corporation

/* This is a comment */

� Long lines are common

► Continuation with commas

say 'This text is continued ',

'on the next line'

► May wrap as a long single line (but don’t do this)

say 'This text is continued

on the next line'

17 #zVM #Rexx #WAVV

Rexx Strings

� Literal strings: Groups of characters inside single or double quotation
marks

"Try a game of blackjack",'and beat the odds!'

� Two " or ' indicates a " or ' in the string

'Guess the dealer''s top card'

© 2014 IBM Corporation

"The dealer""s card is an Ace"

� Hexadecimal strings: Hex digits (0-9,a-f,A-F) grouped in pairs:

'123 45'x is the same as '01 23 45'x

� Binary strings: Binary digits (0 or 1) grouped in quads:

'10000 10101010'b is the same as '0001 0000 1010 1010'b

18 #zVM #Rexx #WAVV

Operators & Expressions

� String Expressions

(blank) “Ohio" “River" --> “Ohio River"

|| ‘Ben'||‘gals' --> ‘Bengals'

© 2014 IBM Corporation

(abuttal) abc = ‘Ruther'

abc‘ford' --> ‘Rutherford'

� Arithmetic Expressions

+ - * / % (int division) // (remainder)

** (power) Prefix - Prefix+

19 #zVM #Rexx #WAVV

Input and Output

� say [expression]

► writes output to the user's terminal

say 'Five Euros equals ' ,

5 * 1.35 'USD'

� pull

► prompts for input from the user

© 2014 IBM Corporation

► prompts for input from the user

pull rate

say 'Five Euros equals' 5 * rate 'USD'

� parse arg

► collects arguments passed to a Rexx Program

● Invoke program: EXAMP input1 dataX moreData
parse arg A1 A2 A3

say A1 A2 A3

● Result:
input1 dataX moreData

20 #zVM #Rexx #WAVV

Operators & Expressions

� Comparative Express

► Normal = \= <> >< > < >= <=

● comparison is case sensitive

● leading/trailing blanks removed before compare

● shorter strings padded with blanks on right

© 2014 IBM Corporation

► Strict == \== >> << >>= \<< <<= \>>

● comparison is case sensitive

● if 2 strings = except one is shorter, the shorter string is less than the longer string

� Logical Expressions

& | &&

\ (preceding expression)

Note: the "not" sign and backslash " \ " are synonymous

21 #zVM #Rexx #WAVV

Numbers

� A Rexx character string that includes 1 or more decimal digits with an
optional decimal point

► May have leading and trailing blanks

► Optional sign + or -

► An "E" specifies exponential notation

● Be careful with device addresses such as 1E00 (use quotes)

© 2014 IBM Corporation

� Precision in calculations may be controlled by the NUMERIC DIGITS
instruction

► Default is 9 digits

� Examples (could also be enclosed in quotes):

12 -17.9 + 7.9E5

22 #zVM #Rexx #WAVV

Variables

� Data known by a unique name whose value may change

� Variable names

► NOT case sensitive

► Cannot begin with a digit 0-9

� Defined by assignment (give it a value)

© 2014 IBM Corporation

� Defined by assignment (give it a value)

population = 184627

� Variables with no assigned value will have the uppercase variable
name as its initial value

� Special variables: rc, result, sigl

► may be set automatically during program execution

23 #zVM #Rexx #WAVV

Parsing Strings

© 2014 IBM Corporation

� Parse Arg – takes data passed into exec or internal routine

► (see example on “Input and Output” chart)

� Parse Var – parses variable into other variable(s)

24 #zVM #Rexx #WAVV

Parsing Strings…

� Assigns data to variables using parsing rules

str1 = ‘April 13-16, 2014'

parse var str1 w1 w2 w3

● w1 = April

● w2 = 13-16,

● w3 = 2014

© 2014 IBM Corporation

parse upper var str1 w1 . w2

● w1 = APRIL

● w2 = 2014

parse var str1 w1 w2

● w1 = April

● w2 = 13-16, 2014

25 #zVM #Rexx #WAVV

Parsing Strings…

� Default token delimiter is a blank

► May be changed on Parse statement

str1 = ‘April*13-16,*2014'

© 2014 IBM Corporation

parse var str1 w1 '*' w2 '*' w3

● w1 = April

● w2 = 13-16,

● w3 = 2014

26 #zVM #Rexx #WAVV

Exercise 2: Say, Pull, & Passing Parameters

� Assume a card deck with suits of Hearts, Diamonds, Clubs, and Spades

� Write a Rexx program to:

► pass in 1 of the 4 suits as an argument

prompt for a number from 2-10

© 2014 IBM Corporation

► prompt for a number from 2-10

► display the number and the suit in the format:

'Your card is a 10 of Hearts'

� Run the program with different suits and numbers

27 #zVM #Rexx #WAVV

Exercise 2: Say, Pull, & Passing Parameters - Answer

/* */

parse arg suit

say 'Enter a number from 2-10:'

pull num

say 'Your card is a 'num' of ' suit

© 2014 IBM Corporation28 #zVM #Rexx #WAVV

Tracing

� Trace All - clauses before execution

� Trace Commands - commands before execution. If the command has an
error, then also displays the return code

� Trace Error - any command resulting in an error after execution and the
return code

� Trace Failure/Normal – default setting, any command with a negative
return code after execution, and the return code

© 2014 IBM Corporation

return code after execution, and the return code

� Trace Intermediates – Trace All, plus intermediate results during
evaluation of expressions and substituted names

� Trace Labels - only labels passed during execution

� Trace Off - traces nothing and resets options

� Trace Results – Trace All, plus results of an evaluated expression and
values assigned during PULL, ARG, and PARSE instructions

� Trace Scan – Trace All, but without the clauses being processed

29 #zVM #Rexx #WAVV

Tracing (cont.)

� output identifier tags:

- source of a single clause

>>> result of expression

>.> value assigned to placehldr

+++ error messages

© 2014 IBM Corporation

� prefixes if TRACE Intermediates in effect:

>C> data is compound variable

>F> data is result of func call

>L> data is a literal

>O> data is result of operation on 2 terms

>P> data is result of prefix op

>V> data is contents of variable

30 #zVM #Rexx #WAVV

Tracing (cont.)

� Prefix Options ! and ? modify tracing and execution

? controls interactive debugging

TRACE ?Results

! inhibits host command execution

TRACE !C causes command to be traced but not processed

© 2014 IBM Corporation

TRACE !C causes command to be traced but not processed

� CMS command SET EXECTRAC ON allows you to switch tracing on
without modifying the program

� TS and TE immed commands turn tracing on/off asynchronously

31 #zVM #Rexx #WAVV

Tracing - Example

� Program

/* Trace Sample Program */

Trace Intermediates

number = 1/7

say number

© 2014 IBM Corporation

� Output

3 *-* number = 1/7

>L> "1"

>L> "7"

>O> "0.142857143"

4 *-* say number

>V> "0.142857143"

0.142857143

32 #zVM #Rexx #WAVV

Exercise 3: Tracing and Debugging

The following Rexx Programs are on your VM A-disk:

► REXXEX3A.EXEC

► REXXEX3B.EXEC

There is something wrong with each program

© 2014 IBM Corporation

There is something wrong with each program

► Using the TRACE instruction, debug each problem

► Fix the code so that it functions properly

33 #zVM #Rexx #WAVV

Exercise 3: Tracing and Debugging – Answer A

Trace Intermediate output:

6 *-* string1 = "Rexx" 'Lab'

>L> "Rexx"

>L> "Lab"

>O> "Rexx Lab"

7 *-* say string11

© 2014 IBM Corporation

7 *-* say string11

>L> "STRING11"

STRING11

9 +++ string2 = "Exerc"||"ise'say string2

Error 6 running REXXTR3A EXEC, line 9: Unmatched "/*" or quote

34 #zVM #Rexx #WAVV

Exercise 3: Tracing and Debugging – Answer A

Corrected Rexx Program:Corrected Rexx Program:
Trace I

string1 = "Rexx" 'Lab'

say string1 /* Was: say string11 */

string2 = "Exerc"||"ise" /* Was: string2 = "Exerc"||"ise' */

say string2

Result:Result:

© 2014 IBM Corporation

Result:Result:
6 *-* string1 = "Rexx" 'Lab'

>L> "Rexx"

>L> "Lab"

>O> "Rexx Lab"

7 *-* say string1

>V> "Rexx Lab"

Rexx Lab

9 *-* string2 = "Exerc"||"ise"

>L> "Exerc"

>L> "ise"

>O> "Exercise"

10 *-* say string2

>V> "Exercise"

Exercise

35 #zVM #Rexx #WAVV

Exercise 3: Tracing and Debugging – Answer B

Trace Intermediate output:

7 *-* Nums = "25 35 71"

>L> "25 35 71"

9 *-* parse arg w1 . w2 w3

>>> ""

>.> ""

© 2014 IBM Corporation

>.> ""

>>> ""

>>> ""

11 *-* $average = (w1 + w2 + w3) // 3

>V> ""

>V> ""

11 +++ $average = (w1 + w2 + w3) // 3

DMSREX476E Error 41 running REXXTR3B EXEC, line 11: Bad arithmetic conversion

36 #zVM #Rexx #WAVV

Exercise 3: Tracing and Debugging – Answer B

Corrected Rexx Program:Corrected Rexx Program:

Trace I

Nums = "25 35 71"

parse var Nums w1 w2 w3 /* Was: parse arg w1 . w2 w3 */

$average = (w1 + w2 + w3) / 3 /* Was: (w1 + w2 + w3) // 3 */

© 2014 IBM Corporation

$average = (w1 + w2 + w3) / 3 /* Was: (w1 + w2 + w3) // 3 */

say "The average value of these numbers is" $average "."

37 #zVM #Rexx #WAVV

Exercise 3: Tracing and Debugging – Answer B

Result:Result:

7 *-* Nums = "25 35 71"

>L> "25 35 71"

9 *-* parse var Nums w1 w2 w3

>>> "25"

>>> "35"

>>> "71"

11 *-* $average = (w1 + w2 + w3) / 3

>V> "25"

© 2014 IBM Corporation

>V> "25"

>V> "35"

>O> "60"

>V> "71"

>O> "131"

>L> "3"

>O> "43.6666667"

12 *-* say "The average value of these numbers is" $average "."

>L> "The average value of these numbers is"

>V> "43.6666667"

>O> "The average value of these numbers is 43.6666667"

>L> "."

>O> "The average value of these numbers is 43.6666667 ."

The average value of these numbers is 43.6666667 .

38 #zVM #Rexx #WAVV

Symbols and Stems

� Constant symbol starts with a digit (0-9) or period:

77 .123 12E5

� Simple symbol does not start with a digit and does not contain periods:

ABC ?3

© 2014 IBM Corporation

ABC ?3

� Compound symbol contains at least one period, and at least 2 other
characters

► Stem (up to 1st period), followed by tail

ABC.3 Array.i Total.$name x.y.z

39 #zVM #Rexx #WAVV

Symbols and Stems…

/* Stems as arrays */

do i=1 to 50 by 1
array.i = i+5

end
say array.25 /* Output: "30" */
say array.51 /* Output: "ARRAY.51" */

© 2014 IBM Corporation

/* Stems as records */

If attendee.payment == "LATE" then
do
say attendee.$fullname
say attendee.$email
say attendee.$company.telephone

end

40 #zVM #Rexx #WAVV

Issuing Commands from Rexx

� CP and CMS commands can be issued as a quoted string:

► 'CP QUERY CPLEVEL'

► 'STATE PROFILE EXEC'

� Use DIAG function to issue CP commands with Diagnose x'08‘

© 2014 IBM Corporation

� Use DIAG function to issue CP commands with Diagnose x'08‘

► DIAG(8,'QUERY CPLEVEL')

► Can be an expression as part of a longer statement

► PARSE command output or parts of command output into variables

� Environment is selected by default on entry to a Rexx program

► ADDRESS instruction can change the active environment

► ADDRESS() built-in function used to get name of the currently selected environment

41 #zVM #Rexx #WAVV

Issuing Commands – z/VM Example

Address CMS /* send cmds to CMS */

'STATE PROFILE EXEC'

If RC=0 Then /* file found */

'COPY PROFILE EXEC A TEMP = ='

© 2014 IBM Corporation

'COPY PROFILE EXEC A TEMP = ='

/* Save command output in variable */

Parse Value diag(8,'QUERY CPLEVEL') With queryout

say queryout

z/VM Version 6 Release 2.0, service level 1101 (64-bit)

Generated at 05/09/12 19:47:52 EDT

IPL at 06/03/12 16:29:17 EDT

42 #zVM #Rexx #WAVV

Issuing Commands – TSO

"CONSOLE ACTIVATE"

...

ADDRESS CONSOLE /* change environment to CONSOLE for all commands */

"mvs_cmd"

...

"mvs_cmd"

© 2014 IBM Corporation

ADDRESS TSO tso_cmd /* change environment to TSO for one command */

...

"mvs_cmd"

ADDRESS TSO /* change environment to TSO for all commands */

"tso_cmd"

...

"CONSOLE DEACTIVATE"

43 #zVM #Rexx #WAVV

Using Pipelines with Rexx

� PIPE is a command that accepts stage commands as operands

► Stages separated by a character called a stage separator

● Default char is vertical bar | (x'4F')

� Allows you to combine programs so the output of one serves as input
to the next

© 2014 IBM Corporation

to the next

► Like pipes used for plumbing: data flows through programs like water
through pipes!

� User-written stages are Rexx programs

► Reads in data, works on it, places it back into pipe

44 #zVM #Rexx #WAVV

Using Pipelines with Rexx - Examples

� Invoking from CMS command line:

pipe < profile exec | count lines | console

� Invoking from an Exec:

/* Count number of lines in exec */

© 2014 IBM Corporation

/* Count number of lines in exec */
'PIPE < profile exec | count lines| console'

/* or … on multiple lines */

'PIPE < profile exec',

'| count lines',
'| console'

45 #zVM #Rexx #WAVV

Using Pipelines with Rexx - Examples

� Invoking commands and parsing output into a stem:

'pipe',

'CMS LISTFILE * EXEC A', /* issue cmd */

'| SPECS 1 1 , /* parse first word */

'| STEM response.' /* save in stem */

© 2014 IBM Corporation

'| STEM response.' /* save in stem */

do i = 1 to response.0

say response.i /* display file names */

end

46 #zVM #Rexx #WAVV

Control Constructs – DO…END

if wins > losses then

do

say 'Congratulations!'

say 'You have won!'

DO … END can be used to create a code block

© 2014 IBM Corporation

say 'You have won!'

end

else say 'Sorry, you have lost'

47 #zVM #Rexx #WAVV

Control Constructs - Selection

if wins > losses then say 'you have won'

else say 'you have lost'

select

when wins > losses then say 'winner'

when losses > wins then say 'loser'

otherwise say 'even'

© 2014 IBM Corporation

otherwise say 'even'

end

select

when wins > losses then say 'winner'

when losses > wins then say 'loser'

otherwise NOP

end

48 #zVM #Rexx #WAVV

Control Constructs – DO Loops

do forever

say 'You will get tired of this'

end

do 3

say "Roll, Roll, Roll the dice"

© 2014 IBM Corporation

say "Roll, Roll, Roll the dice"

end

do i=1 to 50 by 1

say i

end

49 #zVM #Rexx #WAVV

More DO Loops

i=30

do until i > 21 /* Evaluate after DO executes */

i=i+5

end

say i 35

© 2014 IBM Corporation

30

i=30

do while i < 21 /* Evaluate before DO executes */

i=i+5

end

say i

50 #zVM #Rexx #WAVV

Iterate, Leave, and Exit

� Iterate causes a branch to end of control construct

do i=1 to 4
if i=2 then iterate
say i

end

� Leave exits the control construct and continues the REXX program

do i=1 to 4

1, 3, 4

© 2014 IBM Corporation

do i=1 to 4
say i
if i=3 then leave

end
say 'I''m free!'

� Exit exits the REXX program unconditionally

i=1
do forever

say i
if i=3 then exit
i=i+1

end
say 'I''m free!'

1, 2, 3

I'm free!

1, 2, 3

51 #zVM #Rexx #WAVV

Built-In Functions

ABS(-1.674)

/* absolute value */

C2D('a')

D2X(129,2)

/* char to decimal, dec to hex*/

1.674

129

'81'

© 2014 IBM Corporation

DATATYPE('10.5','W')

DATATYPE('12 ')

/* determines if a string matches a provided type */

DATE('U')

/* date function */

LENGTH('abcdef')

/* length of the string */

'0'

'NUM'

'05/24/12'

6

52 #zVM #Rexx #WAVV

Built-In Functions

POS('day','Wednesday')

/* starting position of substr inside a string */

RIGHT('12',4,'0')

/* pad 12 out to 4 characters with 0’s */

SUBSTR('abcdef',2,3)

7

'0012'

'bcd'

© 2014 IBM Corporation

SUBSTR('abcdef',2,3)

/* obtain substring of 3 characters beginning at second character */

WORDS('are we done yet?')
/* return number of tokens inside a given string */

WORDPOS('the','now is the time')

/* return position of a given substring */

/* inside a string */

'bcd'

4

3

53 #zVM #Rexx #WAVV

Subroutines & Procedures

� CALL instruction is used to invoke a routine

► May be an internal routine, built-in function, or external routine

� May optionally return a result

RETURN expression

► variable result contains the result of the expression

© 2014 IBM Corporation

► variable result contains the result of the expression

� Parameters may be passed to the called routine

CALL My_Routine parm1

…which is functionally equivalent to the clause:

NewData = My_Routine(parm1)

� Variables are global for subroutines, but not known to procedures
unless passed in or EXPOSE option used

54 #zVM #Rexx #WAVV

Subroutine Example: Returning a Value

/* subroutine call example */

x = 5

y = 10

Call Calc x y /* call subroutine Calc */

If result > 50 Then

say "Perimeter is larger than 50"

Else

© 2014 IBM Corporation

Else

say "Perimeter is smaller than 50"

exit

Calc: /* begin subroutine */

Parse Arg len width /* input args */

return 2*len + 2*width /* calculate perimeter */

/* ...and return it */

55 #zVM #Rexx #WAVV

Exercise 4: WHATCP EXEC

� Write Rexx program WHATCP EXEC to show z/VM CP Level

information

► Issue CP command QUERY CPLEVEL to display CP level

► Use Rexx Diag function to issue QUERY CPLEVEL command

© 2014 IBM Corporation

● Parse command output to display CP Version, Release, and Service level

56 #zVM #Rexx #WAVV

Exercise 5: MYDISKS EXEC

� Write a Rexx program to show which disks your userid has accessed

► Call a subroutine that

► Uses a PIPE to issue CMS command QUERY DISK and save response

► Determine the number of disks accessed

► Return the value to the main routine

© 2014 IBM Corporation

► Display the returned number of disks accessed

► Display each of the disks that are accessed

► Issue the CMS command QUERY DISK without using a PIPE

► Verify that output from Steps 3 and 4 match

57 #zVM #Rexx #WAVV

Exercise 4: WHATCP – Answer

/* Display CP Level information for the z/VM system */

'CP QUERY CPLEVEL'

Parse value diag(8,'QUERY CPLEVEL') with ,

. . version . release . ',' . . servicelvl .

say 'z/VM Version = ' version

say 'z/VM Release = ' release

© 2014 IBM Corporation

say 'z/VM Release = ' release

say 'Service Level = ' servicelvl

58 #zVM #Rexx #WAVV

Exercise 5: MYDISKS EXEC – Answer #1

/* Find Number of disks accessed and list them */
Call GetDisks
Say 'This user has' NumDisks 'disks accessed.'
Say ' '

Do i = 1 to Numdisks
Say DiskList.i

End

Say ' '

© 2014 IBM Corporation59

Say ' '
ADDRESS CMS
'QUERY DISK'
Exit

/* Subroutine: Get list of disks and return number of disks accessed*/
GetDisks:

'PIPE',
'CMS QUERY DISK',
'| Drop 1',
'| STEM DiskList.'

NumDisks = DiskList.0
Return NumDisks

#zVM #Rexx #WAVV59

Exercise 5: MYDISKS EXEC – Answer #2

/* Find Number of disks accessed and list them */
Call GetDisks
Say 'This user has' NumDisks 'disks accessed.'
Say ' '

Do i = 1 to Numdisks
Say DiskList.i

End

Say ' '

© 2014 IBM Corporation60

Say ' '
ADDRESS CMS
'QUERY DISK'
Exit

/*Subroutine: Get list of disks and return number of disks accessed*/
GetDisks:

'PIPE',
'CMS QUERY DISK',
'| Drop 1',
'| STEM DiskList.',
'| count lines',
'| var NumDisks'

Return NumDisks

#zVM #Rexx #WAVV60

Sample Program: GETTMODE EXEC

� Rexx program GETTMODE locates the first unused file mode (A-Z) and
creates a temporary disk at that file mode

► Illustrates usage of many Rexx features covered in this workshop

► Subroutine

► Issuing commands

► Building and parsing strings

© 2014 IBM Corporation

► Building and parsing strings

► Built-in functions

► Stems

► Pipelines

► Displaying output

61 #zVM #Rexx #WAVV

Sample Program: GETTMODE EXEC

� Logic:

� Calls subroutine that:

► Uses a PIPE to issue CMS command QUERY SEARCH to obtain the used
modes (file mode is 3rd word of response); saves it in a stem

► Builds a string of used modes from the output stem of the PIPE

► Creates a string of possible file modes (A-Z)

► Builds a stem containing the possible file modes

► Marks the used file modes "unavailable" in the list of possible modes

© 2014 IBM Corporation

► Locates the first available mode and returns it to the main program

� If a file mode is returned:

► Issues commands to define and format a temporary disk at the returned mode

62 #zVM #Rexx #WAVV

Sample Program: GETTMODE EXEC (1 of 3)

/* Get temporary disk space and access it at an available file mode */

'CP DETACH 555' /* Get rid of old disk */

/* Call subroutine Findmode to locate the first available file mode. */
/* Once found, define a temporary disk and format and access it at */
/* the returned file mode. */

Call Findmode

If rtnmode <> 0 Then
Say 'Temp disk will be accessed at mode' rtnmode

Else
Do

© 2014 IBM Corporation

Do
Say 'No Filemodes available for temp disk'
Exit 8

End

'CP DEFINE T3390 555 2' /* Define 2 cylinders of temp space */

queue 1 /* Answer YES to FORMAT prompt */
queue TMP555 /* Disk label is TMP555 */
'FORMAT 555 'rtnmode /* Format the disk for CMS files */

Exit rc

63 #zVM #Rexx #WAVV

Sample Program: GETTMODE EXEC (2 of 3)

/* Subroutine Findmode will locate the first available (A-Z) file mode.*/
/* and return it in variable rtnmode. If no file modes are available, */
/* rtnmode will be set to zero. */
Findmode:

'PIPE',
'CMS QUERY SEARCH',
'| SPEC WORDS 3 1',
'| STEM usedmode.'

/* Build string of accessed file modes */
acc_modes = ''
Do I = 1 TO usedmode.0

acc_modes = acc_modes || SUBSTR(usedmode.I,1,1)
END

© 2014 IBM Corporation

/* Build stem containing all possible file modes */
possible_modes = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
Do i = 1 TO 26

modelist.i = SUBSTR(possible_modes,i,1)
End

/* Remove all accessed file modes from possible file mode list */
mlength = LENGTH(acc_modes)
Do n = 1 TO mlength

Do i = 1 TO 26
If (SUBSTR(acc_modes,n,1) = modelist.i) Then
Do

modelist.i = ' '
Leave

End
End

End

64 #zVM #Rexx #WAVV

Sample Program: GETTMODE EXEC (3 of 3)

/* Locate the first possible file mode that is "available" and */
/* return it */

foundmd = 'NO'
Do i = 1 TO 26

If modelist.i ¬= ' ' Then
Do

rtnmode = modelist.i
foundmd = 'YES'
Leave

End
End

/* If no file modes available, return zero */

© 2014 IBM Corporation

/* If no file modes available, return zero */

If foundmd = 'NO' Then
rtnmode = 0

Return

65 #zVM #Rexx #WAVV

Sample Program: GETTMODE EXEC – Pipelines Only

FINDMODE: procedure

'Pipe',
' literal A B C D E F G H I J K L M N O P Q R S T U V W X Y Z',
'| Split ',
'| Spec 1.1 13',
'| Append CMS Q disk *',
'| Nlocate 8.4 /VDEV/',
'| Spec 13.1',

© 2014 IBM Corporation

'| Spec 13.1',
'| Sort ',
'| Unique Single ',
'| Take 1',
'| Var freefm'

66 #zVM #Rexx #WAVV

For More Information…

� Websites:

► http://www.ibm.com/software/awdtools/rexx/ Rexx webpage

► http://www.ibm.com/software/awdtools/netrexx/ Netrexx

► http://www-01.ibm.com/software/awdtools/rexx/opensource.html Object Rexx

► http://regina-rexx.sourceforge.net/ Regina Rexx

� z/VM publications:

► Rexx/VM Reference - SC24-6113

► Rexx/VM User's Guide - SC24-6114

► website for library downloads: http://www.vm.ibm.com/library/

� z/OS publications:

© 2014 IBM Corporation

� z/OS publications:

► TSO/E Rexx User's Guide - SC28-1974

► TSO/E Rexx Reference - SC28-1975

► website for library downloads: http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/Shelves/IKJOSE10?filter=rexx

� Rexx Compiler

► Products ordered separately from z/VM:

● REXX/370 Compiler, 5695-013
● REXX/370 Library, 5695-014

� Other books:

► The Rexx Language ISBN 0-13-780651-5

► The Netrexx Language ISBN 0-13-806332-X

� List servers:

► http://listserv.uark.edu/scripts/wa.exe?A0=ibmvm

67 #zVM #Rexx #WAVV

© 2014 IBM Corporation68

Brian W. Hugenbruch, CISSP

z/VM Security Design and Development

bwhugen at us dot ibm dot com

+1 607.429.3660
@Bwhugen

John Franciscovich

z/VM Design and Development

francisj@us.ibm.com

+1 607.429.3574

#zVM #Rexx #WAVV

