TCP and EZA
WAVYV 2002

Tony Thigpen
Tony@VSE2PDF.COM

What 1s EZA?

 EZA 1s the IBM product prefix for TCP/IP
on MVS

 MVS has three major programming
interfaces to TCP/IP

— BSD/C Sockets

— EZASMI (Assembler Macro)
— EZASOKET (HLL API)

— REXX

MVS EZA BSD/C Sockets

* Based on “Berkeley” standards

— Open Group Technical Standards for
Networking Services

— http://www.opengroup.org/onlinepubs/009619199/
« Example:
— 1nt recv(int, char *, int, 1nt);

— result = recv(socket,&buffer,length,flags);

EZASMI

 Assembler Macro Interface

— 0OS/390 SecureWay Communications Server
[P Application Programming Interface Guide

Version 2 Release 8
Document Number SC31-8516-03

* Example:

— EZASMI Type=Recv,S=socket,
Buf=,Nbyte=,Flags=,Errorno=,Retcode

EZASOKET

* High Level Language API
— (Same document as EZASMI)

« Example:

— CALL 'EZASOKET" USING
SOC-FUNCTION S FLAGS NBYTE BUF
ERRNO RETCODE

REXX

« REXX API
— (Same document as EZASMI)

« Example:
— Socket(‘RECV’,s,maxlength,flags)

EZA and VSE

« BSD/C

— Implemented by LE/VSE C Runtime
e REXX

— Implemented by REXX/VSE

« EZASMI and EZASOKET
— Implemented on VSE 2.5 by IBM

— Implemented on VSE 2.1 and higher by BSI
for use on their TCP/IP stack

Relationships

 BSD/C calls are the basic building block

* Other interfaces just enable other languages
to communicate to the BSD/C calls.

« REXX, EZASMI, and EZASOKET all have
calls that are subsets of the available BSD/C
calls.

History on VSE

 IBM/MVS saw the need for using TCP/IP from
Cobol and Assembler and so designed the
EZASMI/EZASOKET to have as much of the

flexibility found in the BSD/C sockets as possible.

« BSI investigated these interfaces and decided that
M had done 1t right on MVS and so
implemented the same interface.

« IBM/VSE has since decided to implement the
same 1nterface for VSE starting with VSE 2.5.

Comparisons

« EZASMI contains a subset of the functions
available 1in the BSD/C interface

« EZASOKET contains a subset of the
functions available in the EZASMI
interface.

— Major defect 1s Asynchronous request support.

« REXX contains a subset of the functions
available in the BSD/C interface.

Vendor Comparisons

All functions available in the IBM/VSE interface
are available from BSI

One additional function available from BSI
— GETIBMOPT
« Supports ‘INITAPI’ field ‘“TCPNAME’
Several functions have keyword limits when
compared to MVS

— See spreadsheet for details
« HTTP://WWW.VSE2PDF.COM/COOLSTUFF/EZAPARMS XLS

Vendor Comparisons

* Switching between the IBM EZA and the
BSI EZA implementations
— For the most part, not a problem unless using

some of the more specialized functions and
then only 1f using some of the sub-functions

— Verify the EZASMI INITAPI function
 Stack 1d can be specified for BSI, but not for IBM
 ASYNC exit supported in BSI, but not in IBM

— See spreadsheet for details

Storage Requirements

* The IBM implementation of EZAMI and
EZASOKET requires LE services

— 3.5 Meg

* “If not loaded into the SVA, (EZASMI Interface) will be loaded into
the VSE/POWER partition. The total size may reach 3500 KB,
depending on the service level, and approximately 10% of this must
reside in GETVIS-24 storage. The pre-tailored VSE/ESA loads a
large portion of the LE-Base and LE-C Runtime phases into the SVA
(about 300 KB into Getvis-24 and 2500 KB into Getvis 31 SVA).”
VSE/POWER 2.5 Administration and Operation Guide
SC33-6733-01

* Less if already using LE (1.e. COBOL/VSE)

Storage Requirements

* The BSI implementation of EZAMI and
EZASOKET does not require LE services

— As little as 16K. Normally less than 64K.

EZASMI
CSI SOCKET Marco

 CSI Socket macro has less calls.
— 4 (open, close, send, receive)
* CSI has multiple types.

— 7 (TCP, UDP, TELNET, FTP, CLIENT,
CONTROL, RAW)

 EZA 1nterface has many functions.
— 38

EZASOKET

CSI Pre- Processor API
e CSI API has less calls.

— 4 (open, close, send, receive)
e CSI has multiple EXEC types.
— 5 (TCP, TELNET, FTP, CLIENT, CONTROL)

 EZA mterface has many functions.
— 31

Why Use the EZA Interface?

+ Portability
— HLL (call ‘EZASOKET”’)
— ASM (EZASMI macro)
— REXX (s=SOCKET(‘Open’,...)
* Non-portability
— HLL (EXEC TCP ...)
— ASM (SOCKET macro
— REXX (s=SOCKET(‘TCP’,‘OPEN")

Why Use the EZA Interface?

* For simple open/send/receive/close
functions, the CSI Interface 1s easier to

code, but 1t does require a pre-translate step
for the API.

 And the CSI API 1s TCP/IP Version
specific.

— Going to TCP/IP 1.4 required relinking of all
phases using the API.

Why Use the EZA Interface?

* Each CSI open or close performs many
TCP/IP functions.

— For programs that perform multiple opens, this
overhead can not be eliminated.

« Each EZA call performs only the function
being used.

— For programs performing multiple opens, the
overhead 1s greatly reduced.

Why Use the EZA Interface?

* Some capabilities of TCP/IP can not be
used when using the CSI Interface
— Simultaneous Reads and Writes

— Giving and Taking of open communication
links (can be done, but not documented)

— “Look Ahead” or “PEEK” processing

— IBM could not program NJE over TCP/IP
without first implementing EZASMI in VSE

Why Use the EZA Interface?

* CICS

— Special linking 1s required for CSI calls from
the CICS environment

* If the special linking 1s not performed, the program
“works” but places CICS into a “wait” when waiting
on data

* It appears to work during testing, but creates
unexpected problems when moved to production

— The EZA 1interface does not require any special
linking

EZA Programming

EZAC]
EZAC
EZAC]

EZAC]

Support Routines

CO04
(CO5
CO06
CO8

EBCDIC-to-ASCII
ASCII-to-EBCDIC
SELECT bit stream setup
HOST field processor

Types of Programs

Client

— Connects to a Server

[terative Server

— All processing 1s self-contained

Concurrent Server
— A Listener that spawns a Child when connected

Child

— A “partial” server to handle sends/receives

Concurrent Server and Child

* Why?
— Iterative Server has deficiencies

* 1to 1 only

* processing is tied up while handling the sends and
receives

 Additional Clients can not get a connection

EZA Client Program Flow

INITAPI (EZASMI only)
SOCKET

CONNECT

SEND/RECYV loop
SHUTDOWN

CLOSE

TERMAPI (EZASMI only)

EZA Client Program Flow

* INITAPI (EZASMI only)
— Loads interface programs into GETVIS

— Allocates storage
— Initializes default control information
— Verifies that the TCP/IP stack 1s available

— The EZASOKET interface performs this
function behind the scenes

EZA Client Program Flow

* SOCKET

— Assigns a socket number (Binary half-word)
— Allocates socket specific storage

— Informs caller of socket number

« CONNECT

— Establishes a communications session with the
requested server

EZA Client Program Flow

 WRITE, SEND, or SENDTO

— Transmits data

« READ, RECV, or RECVFROM

— Recelves Data

EZA Client Program Flow

« SHUTDOWN

— Informs stack to close down communications once all
buffers are transmitted

« CLOSE

— Releases socket specific storage acquired by the
SOCKET call

. TERMAPI (EZASMI only)

— Releases all storage acquired by the INITAPI call

— The EZASOKET interface performs this function
behind the scenes

EZA lIterative Server Flow

INITAPI (EZASMI only)
SOCKET
BIND
LISTEN
ACCEPT loop
— SEND/RECYV loop
— SHUTDOWN
— CLOSE
SHUTDOWN
CLOSE
TERMAPI (EZASMI only)

EZA lIterative Server Flow

INITAPI

— Same as Client Program

SOCKET

— Same as Client Program

BIND

— Informs interface as to what local port to use

LISTEN

— Informs the stack that the program wants any data
destined for the local port specified by the BIND

EZA lIterative Server Flow

« ACCEPT Loop

— Informs the stack that the program is ready to
receive data

— When data 1s received, a new socket area 1s
allocated and the program 1s informed of this
new socket number on which the
communication 1S to occur.

— The original socket number 1s NOT used. It
remains available for more ACCEPT calls

EZA lIterative Server Flow

« SEND/RECV
— Transfers data (on the NEW socket)

« SHUTDOWN

— Informs stack to close down communications once all
buffers are transmitted (on the NEW socket)

« CLOSE

— Releases socket specific storage acquired by the
ACCEPT call for the new socket

EZA lIterative Server Flow

« ACCEPT Loop

— Accepts continue to be performed against the original
socket. Anytime data 1s available, SEND/RECYV loops
are performed

« SHUTDOWN

— Informs the stack that the program no longer wishes to
receive data on a specific port

« CLOSE

— Releases socket specific storage acquired by the
original SOCKET call

EZA lIterative Server Flow

. TERMAPI (EZASMI only)

— Releases all storage acquired by the INITAPI
call

EZA Concurrent Server

* The original server continues to perform
ACCEPT calls, but instead of handling any
SEND/RECYV calls, 1t transfers the socket to

another program.

* This allows the original program to quickly
handle many requests without being slowed
by data transfers

EZA Concurrent Server

» Used to service multiple clients
simultaneously
* Depends on multiple tasks

— Main Server
— Client Subtasks

* Connections are passed using
— GIVESOCKET
— TAKESOCKET

- Client Process

Connect

- Server Main Process

Initapi n
Start subtasks
Obtain a socket
Bind socket
Listen
Do forever

Select

If new connection

Send request

@
[~

Read reply <

Close socket +4

p Accept
Find free
Givesocket

Post subtask

If exception
Close socket

End

- Server Subtask

Initapi
Do forever

Wait for work «

p Takesocket

Send client reply
Close socket

End

p Read client request

Listanar
(with clierid CLIEMTID-L)

- Child Process

1. Call GETCLIEMTID

returns CLIENTID-L under CICS

2, Call GIWVESOCKET
-gpecifies CLIENTID-CS

3. Call EXEC CICS 5TART | Chikd sarver
-gpecifies CLIENTID-L (with cllentld CLIENTID-Z5)

T F &

4. CallEXEC CICS RETRIEVE
returnz CLIENTIO-L inthe
INTC parameter

L. Call TAKESOCKET
apecifies CLIENTID-L

4 4 ¥

Client :

{4 WREITE/SEND

"EERVT

LISTENER
EZACICOZ

(11} INITAPI
(12 80CKET
(13 BIND

{14 LISTEN

| {15} GETCLIENTID

(16} EELECT

(22} EELECT

r
(23 CLOSE

-
[
|"'|

=[0]
=|C]

| K|

|E|-r.

_=|7|

=&

Child server:

Transaction EEEV

calling

program SEEVER

{(7T)EXEC CICE RETRIEVE

(9 READ/WRITE

I

I

I

I

I

I

I

I

| {8} TAKEEOCKET
I

I

I

I

K

I

| (10) CLOSE
I

GIVE/TAKE Restrictions

* Both processes must be using the same
stack

* There 1s no capability to transfer between
IBM and BSI applications.

Control Functions

FCNTL

GE’
GE’
GE’

[HOSTBYADDR
[HOSTBYNAME
[CLIENTID

GE’

[HOST

GETHOSTNAME
GETPEERNAME
GETSOCKNAME
GETSOCKOPT
[OCTL

SELECT Processing

« Allows a program to wait for multiple actions to
occur

 SELECT

— Wait for new ACCEPT at the same time as waiting for
a GIVESOCKET to complete

— Waiting for multiple ports
— Waiting for timers

— Wait for a port or a timer at the same time

« SELECTEX

— Will also wait for an external ECB

Not Implemented

« SENDV/WRITEV/SENDMSG Functions

— Allows multiple buffers to be processed with
one call

 ALET options

— Allows buftfers to reside outside of the normal
partition area.

Debugging

. M
— Operator command
. EZAAPI TRACE=ON[,PART=xx][,SYSLST]

— Help available
« EZAAPI?

* BSI
— // SETPARM IPTRACE=YYY’

— Output 1s in LST queue under the partition 1d

« EZALOGxx
— EZALOGF2 (example)

Other Helpful Manuals

« IBM TCP/IP for MVS: Application Programming
Interface Reference

— Version 3 Release 2
— SC31-7187-03

» | like this one better than the latter manual motioned on slide &

« TCP/IP for VSE/ESA: IBM Program Setup and
Supplementary Information
— As of VSE 2.5
— SC33-6601-05

Other Helpful Manuals

* Redbook: A Beginner's Guide to MVS
TCP/IP Socket Programming
— (GG24-2561-00

— Although written for MVS and a little dated, it
is a very good book to learn the basics.

— Watch out for the SYNC call used after a
SELECT

* No longer needed or supported in MVS or VSE

Information

* Download this presentation, compatibility
spreadsheet, and all the sample programs:
http://www.vse2pdf.com/coolstuff

« IBM 2000 VM/VSE Technical Conference
presentation

— TCP/IP for VSE/ESA Socket Programming
(Ingo Adlung)

* http://www-1.1bm.com/servers/eserver
/zseries/os/vse/pdf/orlando2000/E06.pdf

Downloads now available

e Batch « CICS
— Server — Listener (Server)
— Client — Client
— Child — Child

— Starter/stopper

	TCP and EZAWAVV 2002
	What is EZA?
	MVS EZA BSD/C Sockets
	EZASMI
	EZASOKET
	REXX
	EZA and VSE
	Relationships
	History on VSE
	Comparisons
	Vendor Comparisons
	Vendor Comparisons
	Storage Requirements
	Storage Requirements
	EZASMIvs. CSI SOCKET Marco
	EZASOKETvs. CSI Pre-Processor API
	Why Use the EZA Interface?
	Why Use the EZA Interface?
	Why Use the EZA Interface?
	Why Use the EZA Interface?
	Why Use the EZA Interface?
	EZA Programming
	Support Routines
	Types of Programs
	Concurrent Server and Child
	EZA Client Program Flow
	EZA Client Program Flow
	EZA Client Program Flow
	EZA Client Program Flow
	EZA Client Program Flow
	EZA Iterative Server Flow
	EZA Iterative Server Flow
	EZA Iterative Server Flow
	EZA Iterative Server Flow
	EZA Iterative Server Flow
	EZA Iterative Server Flow
	EZA Concurrent Server
	EZA Concurrent Server
	Child Process under CICS
	GIVE/TAKE Restrictions
	Control Functions
	SELECT Processing
	Not Implemented
	Debugging
	Other Helpful Manuals
	Other Helpful Manuals
	Information
	Downloads now available

