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What 1s EZA?

 EZA 1s the IBM product prefix for TCP/IP
on MVS

 MVS has three major programming
interfaces to TCP/IP

— BSD/C Sockets

— EZASMI (Assembler Macro)
— EZASOKET (HLL API)

— REXX



MVS EZA BSD/C Sockets

* Based on “Berkeley” standards

— Open Group Technical Standards for
Networking Services

— http://www.opengroup.org/onlinepubs/009619199/
« Example:
— 1nt recv(int, char *, int, 1nt);

— result = recv(socket,&buffer,length,flags);



EZASMI

 Assembler Macro Interface

— 0OS/390 SecureWay Communications Server
[P Application Programming Interface Guide

Version 2 Release 8
Document Number SC31-8516-03

* Example:

— EZASMI Type=Recv,S=socket,
Buf=,Nbyte=,Flags=,Errorno=,Retcode



EZASOKET

* High Level Language API
— (Same document as EZASMI)

« Example:

— CALL 'EZASOKET" USING
SOC-FUNCTION S FLAGS NBYTE BUF
ERRNO RETCODE



REXX

« REXX API
— (Same document as EZASMI)

« Example:
— Socket(‘RECV’,s,maxlength,flags)



EZA and VSE

« BSD/C

— Implemented by LE/VSE C Runtime
e REXX

— Implemented by REXX/VSE

« EZASMI and EZASOKET
— Implemented on VSE 2.5 by IBM

— Implemented on VSE 2.1 and higher by BSI
for use on their TCP/IP stack




Relationships

 BSD/C calls are the basic building block

* Other interfaces just enable other languages
to communicate to the BSD/C calls.

« REXX, EZASMI, and EZASOKET all have
calls that are subsets of the available BSD/C
calls.



History on VSE

 IBM/MVS saw the need for using TCP/IP from
Cobol and Assembler and so designed the
EZASMI/EZASOKET to have as much of the

flexibility found in the BSD/C sockets as possible.

« BSI investigated these interfaces and decided that
M had done 1t right on MVS and so
implemented the same interface.

« IBM/VSE has since decided to implement the
same 1nterface for VSE starting with VSE 2.5.




Comparisons

« EZASMI contains a subset of the functions
available 1in the BSD/C interface

« EZASOKET contains a subset of the
functions available in the EZASMI
interface.

— Major defect 1s Asynchronous request support.

« REXX contains a subset of the functions
available in the BSD/C interface.



Vendor Comparisons

All functions available in the IBM/VSE interface
are available from BSI

One additional function available from BSI
— GETIBMOPT
« Supports ‘INITAPI’ field ‘“TCPNAME’
Several functions have keyword limits when
compared to MVS

— See spreadsheet for details
« HTTP://WWW.VSE2PDF.COM/COOLSTUFF/EZAPARMS XLS



Vendor Comparisons

* Switching between the IBM EZA and the
BSI EZA implementations
— For the most part, not a problem unless using

some of the more specialized functions and
then only 1f using some of the sub-functions

— Verify the EZASMI INITAPI function
 Stack 1d can be specified for BSI, but not for IBM
 ASYNC exit supported in BSI, but not in IBM

— See spreadsheet for details



Storage Requirements

* The IBM implementation of EZAMI and
EZASOKET requires LE services

— 3.5 Meg

* “If not loaded into the SVA, (EZASMI Interface) will be loaded into
the VSE/POWER partition. The total size may reach 3500 KB,
depending on the service level, and approximately 10% of this must
reside in GETVIS-24 storage. The pre-tailored VSE/ESA loads a
large portion of the LE-Base and LE-C Runtime phases into the SVA
(about 300 KB into Getvis-24 and 2500 KB into Getvis 31 SVA).”
VSE/POWER 2.5 Administration and Operation Guide
SC33-6733-01

* Less if already using LE (1.e. COBOL/VSE)



Storage Requirements

* The BSI implementation of EZAMI and
EZASOKET does not require LE services

— As little as 16K. Normally less than 64K.



EZASMI
CSI SOCKET Marco

 CSI Socket macro has less calls.
— 4 (open, close, send, receive)
* CSI has multiple types.

— 7 (TCP, UDP, TELNET, FTP, CLIENT,
CONTROL, RAW)

 EZA 1nterface has many functions.
— 38




EZASOKET

CSI Pre- Processor API
e CSI API has less calls.

— 4 (open, close, send, receive)
e CSI has multiple EXEC types.
— 5 (TCP, TELNET, FTP, CLIENT, CONTROL)

 EZA mterface has many functions.
— 31



Why Use the EZA Interface?

+ Portability
— HLL (call ‘EZASOKET”’)
— ASM (EZASMI macro)
— REXX (s=SOCKET(‘Open’,...)
* Non-portability
— HLL (EXEC TCP ...)
— ASM (SOCKET macro
— REXX (s=SOCKET(‘TCP’,‘OPEN")



Why Use the EZA Interface?

* For simple open/send/receive/close
functions, the CSI Interface 1s easier to

code, but 1t does require a pre-translate step
for the API.

 And the CSI API 1s TCP/IP Version
specific.

— Going to TCP/IP 1.4 required relinking of all
phases using the API.



Why Use the EZA Interface?

* Each CSI open or close performs many
TCP/IP functions.

— For programs that perform multiple opens, this
overhead can not be eliminated.

« Each EZA call performs only the function
being used.

— For programs performing multiple opens, the
overhead 1s greatly reduced.



Why Use the EZA Interface?

* Some capabilities of TCP/IP can not be
used when using the CSI Interface
— Simultaneous Reads and Writes

— Giving and Taking of open communication
links (can be done, but not documented)

— “Look Ahead” or “PEEK” processing

— IBM could not program NJE over TCP/IP
without first implementing EZASMI in VSE



Why Use the EZA Interface?

* CICS

— Special linking 1s required for CSI calls from
the CICS environment

* If the special linking 1s not performed, the program
“works” but places CICS into a “wait” when waiting
on data

* It appears to work during testing, but creates
unexpected problems when moved to production

— The EZA 1interface does not require any special
linking



EZA Programming



EZAC]
EZAC
EZAC]

EZAC]

Support Routines

CO04
(CO5
CO06
CO8

EBCDIC-to-ASCII
ASCII-to-EBCDIC
SELECT bit stream setup
HOST field processor



Types of Programs

Client

— Connects to a Server

[terative Server

— All processing 1s self-contained

Concurrent Server
— A Listener that spawns a Child when connected

Child

— A “partial” server to handle sends/receives



Concurrent Server and Child

* Why?
— Iterative Server has deficiencies

* 1to 1 only

* processing is tied up while handling the sends and
receives

 Additional Clients can not get a connection



EZA Client Program Flow

INITAPI (EZASMI only)
SOCKET

CONNECT

SEND/RECYV loop
SHUTDOWN

CLOSE

TERMAPI (EZASMI only)



EZA Client Program Flow

* INITAPI (EZASMI only)
— Loads interface programs into GETVIS

— Allocates storage
— Initializes default control information
— Verifies that the TCP/IP stack 1s available

— The EZASOKET interface performs this
function behind the scenes



EZA Client Program Flow

* SOCKET

— Assigns a socket number (Binary half-word)
— Allocates socket specific storage

— Informs caller of socket number

« CONNECT

— Establishes a communications session with the
requested server



EZA Client Program Flow

 WRITE, SEND, or SENDTO

— Transmits data

« READ, RECV, or RECVFROM

— Recelves Data



EZA Client Program Flow

« SHUTDOWN

— Informs stack to close down communications once all
buffers are transmitted

« CLOSE

— Releases socket specific storage acquired by the
SOCKET call

. TERMAPI (EZASMI only)

— Releases all storage acquired by the INITAPI call

— The EZASOKET interface performs this function
behind the scenes



EZA lIterative Server Flow

INITAPI (EZASMI only)
SOCKET
BIND
LISTEN
ACCEPT loop
— SEND/RECYV loop
— SHUTDOWN
— CLOSE
SHUTDOWN
CLOSE
TERMAPI (EZASMI only)



EZA lIterative Server Flow

INITAPI

— Same as Client Program

SOCKET

— Same as Client Program

BIND

— Informs interface as to what local port to use

LISTEN

— Informs the stack that the program wants any data
destined for the local port specified by the BIND



EZA lIterative Server Flow

« ACCEPT Loop

— Informs the stack that the program is ready to
receive data

— When data 1s received, a new socket area 1s
allocated and the program 1s informed of this
new socket number on which the
communication 1S to occur.

— The original socket number 1s NOT used. It
remains available for more ACCEPT calls



EZA lIterative Server Flow

« SEND/RECV
— Transfers data (on the NEW socket)

« SHUTDOWN

— Informs stack to close down communications once all
buffers are transmitted (on the NEW socket)

« CLOSE

— Releases socket specific storage acquired by the
ACCEPT call for the new socket



EZA lIterative Server Flow

« ACCEPT Loop

— Accepts continue to be performed against the original
socket. Anytime data 1s available, SEND/RECYV loops
are performed

« SHUTDOWN

— Informs the stack that the program no longer wishes to
receive data on a specific port

« CLOSE

— Releases socket specific storage acquired by the
original SOCKET call



EZA lIterative Server Flow

. TERMAPI (EZASMI only)

— Releases all storage acquired by the INITAPI
call



EZA Concurrent Server

* The original server continues to perform
ACCEPT calls, but instead of handling any
SEND/RECYV calls, 1t transfers the socket to

another program.

* This allows the original program to quickly
handle many requests without being slowed
by data transfers



EZA Concurrent Server

» Used to service multiple clients
simultaneously
* Depends on multiple tasks

— Main Server
— Client Subtasks

* Connections are passed using
— GIVESOCKET
— TAKESOCKET



- Client Process

Connect

- Server Main Process

Initapi n
Start subtasks
Obtain a socket
Bind socket
Listen
Do forever

Select

If new connection

Send request

@
[~

Read reply <

Close socket +4

p Accept
Find free
Givesocket

Post subtask

If exception
Close socket

End

- Server Subtask

Initapi
Do forever

Wait for work «

p Takesocket

Send client reply
Close socket

End

p Read client request




Listanar
(with clierid CLIEMTID-L)

- Child Process

1. Call GETCLIEMTID

returns CLIENTID-L under CICS

2, Call GIWVESOCKET
-gpecifies CLIENTID-CS

3. Call EXEC CICS 5TART | Chikd sarver
-gpecifies CLIENTID-L (with cllentld CLIENTID-Z5)

T F &

4. CallEXEC CICS RETRIEVE
returnz CLIENTIO-L inthe
INTC parameter

L. Call TAKESOCKET
apecifies CLIENTID-L

4 4 ¥




Client :

{4 WREITE/SEND

"EERVT

LISTENER
EZACICOZ

(11} INITAPI
(12 80CKET
(13 BIND

{14 LISTEN

| {15} GETCLIENTID

(16} EELECT

(22} EELECT

r
(23 CLOSE

-
[
|"'|

=[0]
=|C]

| K|

|E|-r.

_=|7|

=&

Child server:

Transaction EEEV

calling

program SEEVER

{(7T)EXEC CICE RETRIEVE

(9 READ/WRITE

I

I

I

I

I

I

I

I

| {8} TAKEEOCKET
I

I

I

I

K

I

| (10) CLOSE
I




GIVE/TAKE Restrictions

* Both processes must be using the same
stack

* There 1s no capability to transfer between
IBM and BSI applications.



Control Functions

FCNTL

GE’
GE’
GE’

[HOSTBYADDR
[HOSTBYNAME
[CLIENTID

GE’

[HOST

GETHOSTNAME
GETPEERNAME
GETSOCKNAME
GETSOCKOPT
[OCTL




SELECT Processing

« Allows a program to wait for multiple actions to
occur

 SELECT

— Wait for new ACCEPT at the same time as waiting for
a GIVESOCKET to complete

— Waiting for multiple ports
— Waiting for timers

— Wait for a port or a timer at the same time

« SELECTEX

— Will also wait for an external ECB



Not Implemented

« SENDV/WRITEV/SENDMSG Functions

— Allows multiple buffers to be processed with
one call

 ALET options

— Allows buftfers to reside outside of the normal
partition area.



Debugging

. M
— Operator command
. EZAAPI TRACE=ON[,PART=xx][,SYSLST]

— Help available
« EZAAPI?

* BSI
— // SETPARM IPTRACE=YYY’

— Output 1s in LST queue under the partition 1d

« EZALOGxx
— EZALOGF2 (example)




Other Helpful Manuals

« IBM TCP/IP for MVS: Application Programming
Interface Reference

— Version 3 Release 2
— SC31-7187-03

» | like this one better than the latter manual motioned on slide &

« TCP/IP for VSE/ESA: IBM Program Setup and
Supplementary Information
— As of VSE 2.5
— SC33-6601-05




Other Helpful Manuals

* Redbook: A Beginner's Guide to MVS
TCP/IP Socket Programming
— (GG24-2561-00

— Although written for MVS and a little dated, it
is a very good book to learn the basics.

— Watch out for the SYNC call used after a
SELECT

* No longer needed or supported in MVS or VSE



Information

* Download this presentation, compatibility
spreadsheet, and all the sample programs:
http://www.vse2pdf.com/coolstuff

« IBM 2000 VM/VSE Technical Conference
presentation

— TCP/IP for VSE/ESA Socket Programming
(Ingo Adlung)

* http://www-1.1bm.com/servers/eserver
/zseries/os/vse/pdf/orlando2000/E06.pdf



Downloads now available

e Batch « CICS
— Server — Listener (Server)
— Client — Client
— Child — Child

— Starter/stopper
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