
DevelopmentsDevelopmentsDevelopmentsDevelopments Down Under Down Under Down Under Down Under

A ustra lian P rogram m ing C en tre (A P C)
P erth, W es tern A ustra lia

Presented for Jim Alexander, APC manager, by Alice Crema

2000 WAVV Conference
October 7-10, 2000

Colorado Springs

www.ibm.com/services/learning/conf/vmvse/

Page 1 of 19

Contents

17DFSMS/MVS Binder/Loader under CMS .
17VS FORTRAN 2.6 support for Additional Floating Point (AFP) registers
14DITTO/ESA 1.3 support for Exported Stacked Volumes (ESVs)
14VM/ESA only .

11HLASM Toolkit Feature: ASMPUT for Windows .
11VSE/ESA and VM/ESA .

8MQSeries for VSE/ESA 2.1.1 enhancements .
5Language Environment enhancements in VSE/ESA 2.5 .
4REXX for CICS on VSE/ESA .
4VSE/ESA only .

3About the Australian Programming Centre (APC) .

Developments Down Under

Page 2 of 19

About the Australian Programming Centre (APC)

Developments Down Under

VS COBOL II 1.3.2 and 1.4.0 for MVS, VM and
VSE/ESA

C/370 run-time for VSE/ESA

Language Environment for VSE/ESA (LE/VSE)

PL/I for VSE/ESA (PL/I VSE)

Debug Tool for VSE/ESA (DT/VSE)

HLASM for MVS, VM, and VSE/ESA

COBOL and CICS Command Level Conversion Aid
(CCCA) for MVS & OS/390 & VM, and for VSE/ESA

DITTO/ESA 1.3

Completed APC development projects

Developments Down Under

Current APC service projects
COBOL

PL/I

C/C++

Assembler

FORTRAN

Pascal

BASIC

DPPX

AOC

SA OS/390

DITTO

SDF

CCCA

APC is Level 3 support for all products that it has
developed

Y2K Technical Support Centre, Asia Pacific (closed)

The Australian Programming Centre (APC) has been developing and servicing language
products for the Santa Teresa Laboratory (STL) and other IBM software development labs
since 1989. The APC team consists of IBM employees and experienced contractors drawn
from the industry, combining intimate technical knowledge of internal IBM systems with
first-hand customer experience. APC is based in Perth, Western Australia.

Jim Alexander, APC manager

Developments Down Under

Page 3 of 19

VSE/ESA only

REXX for CICS on VSE/ESA

Interpreted language and application development
environment

Simple to configure and manage, simple to use editor
(runs under CICS)

No JCL, COBOL or CICS translator expertise required

Ideal for:

Prototyping

Ad hoc systems programming (for example, to
automate sequences of CICS activities)

Web-based programming

REXX for CICS on VSE/ESA

REXX for CICS on VSE/ESA...
Features

SAA Level 2 REXX (non-stream I/O) language support

SQL and EXEC CICS commands from REXX execs

CICS native text editor (able to edit VSE Librarian
members)

High-level, VSAM-based file system

High-level terminal I/O pane facility

REXX interface to CEDA and CEMT transaction
programs

Support for subcommands written in REXX

Developments Down Under

Page 4 of 19

Developments Down Under

REXX for CICS on VSE/ESA...
Features...

CICS pseudo-conversational support

Support for system and user-profile execs

Shared execs in virtual storage

Requirements

Any ESA/390-capable processing system running
CICS/ESA Version 4

More information
! REXX for CICS on MVS/ESA announcement letter:

www.ibmlink.ibm.com/usalets&parms=H_299-048

! REXX language home page:
www2.hursley.ibm.com/rexx/

Language Environment enhancements in VSE/ESA 2.5

Developments Down Under

Sneak
Preview

Language Environment 1.4.1
enhancements in VSE/ESA 2.5

PHASE-only maintenance minimises link-editing on
customer systems.

SCEECICS sublibrary removed. COBOL/VSE no longer
needs a separate CICS run-time library.

Multi-level condition handling. TRAP run-time option now
supports 2-tier condition handling in batch.

MSGFILE run-time option now supported under CICS.
Can be set to write LE/VSE run-time messages and
output to another transient data queue.

Developments Down Under

Page 5 of 19

Developments Down Under

LE 1.4.1 in VSE/ESA 2.5 ...
Further tuning of default installation run-time options.

Dynamic re-loading of CICS run-time options. A CICS
transaction (supplied) re-loads CICS-wide default
run-time options without needing to restart the CICS
system.

Improved performance of COBOL/VSE date routines by
reducing the number of SVCs used.

The execution of C routines has been optimized to
maximize performance. This change is internal only,
and does not require any user intervention.

Developments Down Under

LE 1.4.1 in VSE/ESA 2.5 ...
Performance enhancements to statically called
COBOL/VSE subroutines from a “main”. (Sysroute of
LE/MVS APAR PQ11742.)

New LE/VSE initialisation messages during CICS startup
to identify which LE/VSE components are successfully
installed in the CICS system.

New __console() function for C/VSE programs.
Provides support for sending and receiving messages on
the VSE system operator’s console.

TRAP run-time option enhancements: MAX and MIN
TRAP specifies the level of condition handling that LE/VSE performs for user abends and
program interrupts.

You must specify at least TRAP=((ON,MIN),..) in order for applications to run successfully.

TRAP=((ON,MAX),...) must be in effect for the ABTERMENC or ABPERC run-time options
to have effect.

This option is similar to the STAE|NOSTAE run-time option currently offered by C/370.

The use of the CEESGL callable service is not affected by this option.

Syntax: TRAP=((ON|OFF,MAX|MIN),OVR|NONOVR)

IBM-supplied default: TRAP=((ON,MAX),OVR)

MAX (new for LE/VSE 1.4.1)
Instructs LE/VSE to activate full condition handling. This will involve the use of both
STXIT AB and STXIT PC processing. If OFF is specified, then MAX has no effect.

Developments Down Under

Page 6 of 19

MIN (new for LE/VSE 1.4.1)
Instructs LE/VSE not to use any STXIT AB processing for LE/VSE condition
handling and to only use STXIT PC condition handling. This is required for internal
LE/VSE failures that are part of application abend reporting and dump producing
functions. If OFF is specified, then MIN has no effect.

Note: Each of the HLLs will still issue STXIT ABs as required regardless of the
TRAP run-time option setting.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

Supplied NEWC CICS-wide run-time options facility
Supplied with LE/VSE 1.4.1 is the NEWC CICS transaction that allows activation of
changed LE/VSE CICS-wide default run-time options, without the need to cycle the CICS
system. This means that you can change your installation CICS-wide default run-time
options by editing and running the supplied CEEWCOPT job, and then have these new
run-time options activated, all while the CICS system continues processing online
transactions.

This function is available for both CICS/VSE/TS 1.1 and CICS/VSE 2.3 systems.

You may change the transaction name used to perform this function to one of your choice.
The program to execute is EDCCNEWC and the supplied NEWC transaction definition
should be used as an example.

More information
! IBM VSE/ESA home page:

www.s390.ibm.com/vse/

! Language Environment for VSE/ESA home page:
www.s390.ibm.com/le_vse/

Related presentation
“Language Environment for VSE/ESA Hints & Tips”, Session E30
Presented by Wolfgang Bosch (Boeblingen Programming Laboratory, Germany)

This session updated for 2000 will contain more news and experiences with LE/VSE.

Developments Down Under

Page 7 of 19

MQSeries for VSE/ESA 2.1.1 enhancements
IBM MQSeries for VSE/ESA provides a set of messaging and queueing services which
support data transfer between distributed applications. These services allow applications
to communicate without knowledge of the lower levels of the communications network and
without specific knowledge of the location of other applications.

Developments Down Under

MQSeries for VSE/ESA 2.1.1
enhancements

Security: uses SAF RACROUTE interface between
systems and external security managers (ESMs) to
provide general security for MQSeries objects. When
active, MQSeries requires application programs to have
the appropriate authorization to access MQSeries
objects.

Message data conversion: converts message data
for a standard set of in-built message formats including
IMS, SAP, PCF and others. You can also define
conversion exits for non-standard message formats.

Security
VSE 2.4 introduced the SAF RACROUTE interface between systems and external
security managers (ESMs). MQSeries/VSE 2.1.1 exploits this interface to provide
general security for MQSeries objects including connections, queues and access
authorities. MQSeries/VSE uses a standard subset of the RACROUTE interface
which means it is not tied in to any particular ESM.

With 2.1.1, security becomes an installation option. When active, MQSeries requires
application programs to have the appropriate authorization to access MQSeries
objects. Secure application programs include CICS transaction programs, client
connections and batch programs exploiting the MQ/VSE Batch Interface.

Message data conversion
Prior to release 2.1.1, MQSeries/VSE did not provide data conversion for message
data. Data conversion was limited to internal MQSeries message headers. This
was to allow MQSeries to communicate with other MQSeries systems running on
different hardware, with different operating systems and potentially divergent
codepages.

MQSeries/VSE 2.1.1 introduces codepage conversion for message data. It is now
possible to configure MQSeries/VSE to convert message data for a standard set of
in-built message formats including IMS, SAP, PCF and others.

It is also possible to define conversion exits for non-standard message formats.
Codepage conversion for message data has also been extended to manage
Unicode, DBCS, Euc and ISO.

Developments Down Under

Page 8 of 19

Developments Down Under

MQSeries/VSE enhancements...
Automatic VSAM space reuse: configurable,
automatic reorganization of queues (VSAM KSDS)
without affecting running applications. Minimizes
downtime for applications requiring 24x7 availability.

Java client applications (running on other
platforms; not VSE) that use the Java Message Services
(JMS) API can connect to and use MQSeries/VSE
services.

Automatic VSAM space reuse
MQSeries/VSE uses VSAM for data storage. MQSeries/VSE queues are
implemented as VSAM keyed sequential data sets (KSDS) which, in normal
operation, require reorganization to maintain healthy performance. This can pose a
problem for application systems that require 24x7 availability. MQSeries/VSE 2.1.1
introduces an automated reorganization mechanism for its VSAM data sets. This
means MQSeries-dependant systems will not require “downtime” for scheduled
VSAM reorganization. This mechanism is configurable, automatic and transparent
to MQSeries/VSE applications.

Support for Java clients connecting to MQSeries/VSE
Java Message Service (JMS) offers developers an API for writing messaging
applications in Java. JMS is available for MQSeries for AIX, HP-UX, Sun Solaris,
and Windows NT.

Support for Java clients connecting to MQSeries/VSE will be introduced in 2.1.1.
This means client programs written in Java running on supported platforms will be
able to connect to and use MQSeries/VSE services.

Developments Down Under

MQSeries/VSE enhancements...
TCP/IP: channel definitions can now use domain
names in addition to IP addresses. Improved
performance over TCP/IP connections.

Availability

MQSeries/VSE 2.1.1 will be available in
September 2000.

Developments Down Under

Page 9 of 19

TCP/IP adaptions
Support for TCP/IP clients and connectability between MQSeries queue managers
was introduced in MQSeries/VSE 2.1.0. The TCP/IP product for VSE has been
improved and extended since its initial release. MQSeries/VSE 2.1.1 takes
advantage of these improvements. In 2.1.1, channel definitions can use domain
names in addition to IP addresses. Extensions to the Berkeley Standard Definition
(BSD) socket interface have also allowed MQSeries/VSE to improve performance
for TCP/IP client and queue manager connections.

Prerequisites
MQSeries/VSE 2.1 has the following prerequisites. All prerequisites should have the latest
maintenance applied:

! VSE/ESA 2.3.1 (VSE 2.3.2 recommended)

! CICS 2.3

! LE 1.4

! TCP 1.3

! VTAM 4.2

More information
! Redbook: MQSeries for VSE/ESA, SG24–5647–00

Available from:
www.redbooks.ibm.com

Acrobat PDF file:
www.redbooks.ibm.com/pubs/pdfs/redbooks/sg245647.pdf

! MQSeries Web site:
www.ibm.com/software/ts/mqseries/

Developments Down Under

Page 10 of 19

VSE/ESA and VM/ESA

HLASM Toolkit Feature: ASMPUT for Windows
The High Level Assembler Toolkit Feature Program Understanding Tool (ASMPUT)
analyzes assembler language programs, and displays analyzed source code and the
corresponding control flow graph.

You can use the control flow graph to trace complex control flows and inter-program
linkages. The control flow graph is made up of nodes and arcs. A node corresponds to a
group of lines of code, typically ending with a branch. An arc shows a connection between
nodes; a jump, call or return from one line of code to another. (A node that is directly
connected to another by an arc is a “linked node”.)

You can display different layers of the control flow graph. Higher layers display items in
less detail, lower layers reveal items in greater detail. For example, when you expand a
node by one layer, ASMPUT breaks the node holding many lines of code into a number of
nodes holding fewer lines of code plus connecting arcs.

Apart from isolated nodes, you can trace a path from one node to another, moving along
connecting arcs. The nodes immediately joined by arcs to a selected node are the nodes
of most importance. Nodes further away are less important to the selected node. When
you “remove the context” you remove the more distant nodes.

ASMPUT shows only the nodes directly related to the selected node. You can also add
context, so that nodes related to those currently displayed will also be displayed. By adding
or removing context, and by expanding or collapsing nodes, you can build a control flow
graph that has the degree of simplicity and detail that you want.

Zooming in and out changes the size of the elements in the control flow graph, without
making any difference to the structure of the graph. Clicking on a line of source code
highlights the corresponding node in the graph. Likewise, clicking a node in the graph
highlights the corresponding lines of source code. This means that you can trace the
control flow either from the source code listing or from the control flow graph, using
whichever you find the easiest. To prepare for using ASMPUT, you must create ADATA
files for each program you want to analyze.

ASMPUT provides information from the High Level Assembler (HLASM) assembly of the
programs, for example, listing all the assembly options. ASMPUT has three different
windows. The Main window shows the ADATA files that are open, information about these
files, and a source code listing. The Control Flow Graph window shows the control flow
graph, and the options and icons you can use the change the structure of the graph. The
Overview window shows a small copy of the control flow graph, and an area box for quick
zoom and scroll control.

You can use ASMPUT on Windows or OS/2. The interface and processes of these two
versions are essentially the same.

Developments Down Under

Page 11 of 19

Developments Down Under

HLASM Toolkit Feature
Program Understanding Tool (ASMPUT)
for Windows (previous version was OS/2-only)

Analyzes assembler language programs and produces a
control flow graph

From this graph, you can trace complex control flows
and program linkages

30-day evaluation version available on the Web

Ask me for a diskette demo

(Toolkit Feature also available under OS/390, MVS)

Developments Down Under

HLASM Toolkit Feature...

Developments Down Under

HLASM Toolkit Feature...
Other components of the
Toolkit Feature

Interactive Debug Facility (IDF)

Flexible disassembler

Complete set of structured programming macros

Cross-reference tool

Comparison and search facility (Enhanced SuperC)

Developments Down Under

Page 12 of 19

More information
HLASM Web site
(where you can download a 30-day trial version of ASMPUT for Windows):
www.ibm.com/software/ad/hlasm/

Related presentation
“IBM High Level Assembler Toolkit Feature: Program Understanding Tool (ASMPUT)”,
Session E29
Presented by Clive Nealon (APC change team leader; for many products, including
HLASM)

Come along and see how ASMPUT can help you analyze and debug assembler code.

Developments Down Under

Page 13 of 19

VM/ESA only

DITTO/ESA 1.3 support for Exported Stacked Volumes (ESVs)

Developments Down Under

DITTO/ESA 1.3 support for
Exported Stacked Volumes
(ESVs)

DITTO/ESA can now process ESVs created by the
Export function of the Virtual Tape Server

Two new DITTO/ESA functions for ESVs:

List (EVL)

Copy (EVC)

Developments Down Under

DITTO/ESA ESV support...
List (EVL) function

Batch or online

Short list

Lists all VOLSERs on the Exported Stacked Volume

Long list

Lists all or only selected VOLSERs on the Exported
Stacked Volume

Presents a volume layout for each VOLSER listed

Sample output from a short list:

DITTO/ESA for MVS
$$DITTO EVL INPUT=TAPE,TYPE=SHORT
Exported Stacked Volume Table of Contents for Volume VTS994
 VOLSER SEQ NO
 EJ1015 1
 EJ1012 2
 EJ1019 3
 EJ1035 4
 EJ1021 5
 EJ1001 6
 EJ1029 7
 EJ1100 8
 EJ1099 9
 EJ0020 10

Developments Down Under

Page 14 of 19

 EJ0007 11
EVL completed
$$DITTO EOJ

Output from a long list selecting only 4 VOLSERs:

$$DITTO EVL
INPUT=TAPE,TYPE=LONG,VOLSER=(EJ0020,EJ1019,EJ1029,EJ1035)
Exported Stacked Volume Table of Contents for Volume VTS994
 VOLSER SEQ NO Logical Volume Layout
 EJ1019 3 VOL1EJ1019
 HDR1PE.MNT06.TAB351OO
 ----- TAPE MARK -----
 Data File
 ----- TAPE MARK -----
 EOF1PE.MNT06.TAB351OO
 ----- TAPE MARK -----
 ----- TAPE MARK -----
 ===== End of Volume =====
 EJ1035 4 VOL1EJ1035
 HDR1PE.MNT12.TAB351OO
 ----- TAPE MARK -----
 Data File
 ----- TAPE MARK -----
 EOF1PE.MNT12.TAB351OO
 ----- TAPE MARK -----
 ----- TAPE MARK -----
 ===== End of Volume =====
 EJ1029 7 VOL1EJ1029
 HDR1PE.MNT08.TAB351OO
 ----- TAPE MARK -----
 Data File
 ----- TAPE MARK -----
 EOF1PE.MNT08.TAB351OO
 ----- TAPE MARK -----
 ----- TAPE MARK -----
 ===== End of Volume =====
 EJ0020 10 VOL1EJ0020
 HDR1.BACKTAPE.DATASET
 ----- TAPE MARK -----
 Data File
 ----- TAPE MARK -----
 EOF1.BACKTAPE.DATASET
 ----- TAPE MARK -----
 ----- TAPE MARK -----
 ===== End of Volume =====
EVL completed
$$DITTO EOJ

Developments Down Under

Page 15 of 19

Developments Down Under

DITTO/ESA ESV support...
Copy (EVC)

Copy up to 5 logical volumes in a single pass

Each logical volume copies to a single physical volume

Verifies requested volumes are on the ESV

Copies performed in order requested

Full logical volume copied (partial copy not supported)

Copy to disk not supported

New volume maintain VOLSER of output volume
(original VOLSER maintained only if no VOLSER found
on the output volume)

Developments Down Under

Availability

DITTO/ESA for VM 1.3

PTF UQ40493

Available since February 2000

DITTO/ESA for VSE 1.3

No support: VSE/ESA does not support the VTS
hardware capabilities

DITTO/ESA ESV support...

More information
DITTO/ESA Web site:
www.ibm.com/software/ad/ditto/

Developments Down Under

Page 16 of 19

VS FORTRAN 2.6 support for Additional Floating Point (AFP) registers

Developments Down UnderDevelopments Down Under

VS FORTRAN 2.6
Additional Floating Point
(AFP) register support

PTF introduces support for the 16
Floating Point registers in Generation 5 and Generation
6 S/390 Parallel Enterprise Servers

Enables the compiler’s Floating Point optimization
(under control of a new compiler option) to use these
additional registers where appropriate

Can lead to faster execution of recompiled FORTRAN
user applications

Ordering information
VS FORTRAN 2.6 program number: 5668-806

APAR number: PQ26305

PTF number for VM/ESA: UQ33003

DFSMS/MVS Binder/Loader under CMS

Developments Down Under

DFSMS/MVS Binder/Loader
under CMS

Enables the DFSMS/MVS Program Management Binder
and Loader in CMS

Provides function similar to the LOAD / INCLUDE /
GENMOD command sequence, and a superset of the
function of the LE prelinker and the LKED command

Produces an executable as a CMS MODULE file, a BFS
file, or a LOADLIB member

Not a port: the DFSMS/MVS binder is “cradled” to run
unmodified in the CMS environment

Developments Down Under

Page 17 of 19

Developments Down Under

DFSMS/MVS Binder/Loader
under CMS...

Invoked via either a simple command interface or the
powerful API provided by the native product

Features

Editable output (program objects)

Integrated processing of specialized C/C++ features
(prelink not required)

GOFF, XOBJ, traditional TEXT and program objects
supported as input

Rich set of control statements and options

Developments Down Under

DFSMS/MVS Binder/Loader
under CMS...
Benefits

Removes many size and function restrictions inherent in
LOAD and LKED

Increased TEXT and program object transportability
between CMS and MVS

Examples of using the BIND command from the CMS Ready prompt
This section presents a series of examples demonstrating the basic concepts and features
of using the BIND command from the CMS ready prompt. In some cases the behaviour
described may vary from what you would see on your own system. For example, if your
installation defaults specify NO as the value for the CALL option, the external references
examples would not operate as described.

Example 1: binding a single text deck with no external references
Assume you have a file called FILE1 TEXT on your A-disk containing object code
produced by a language compiler. Entering:

bind file1

will bind the text file and produce a program object called FILE1 MODULE on your A-disk.
A listing file called FILE1 SYSPRINT will also be produced.

Example 2: binding a single text deck with external references

Developments Down Under

Page 18 of 19

Suppose FILE2 is another program with external references resolved by members of text
libraries called MYLIB TXTLIB and SYSLIB TXTLIB. Entering:

bind file2

will result in error messages from the binder because no SYSLIB is available for autocall
processing, and because of the unresolved external references. Entering:

filedef syslib disk global txtlib * (concat
global txtlib mylib syslib
bind file2 (/nocmsauto

will bind the text file and resolve the external references to produce a program object
called FILE2 MODULE on your A-disk. A listing file called FILE2 SYSPRINT will also be
produced.

Example 3: specifying binder options
The CMS Binder command interface allows you to specify binder options either as
“mapped” options, or as native binder options in an options string. The CMS system
attribute is implemented using the CMS Binder API CMSSYSTEM option, which is mapped
as the SYSTEM option, so if you also wanted to set addressing and residence mode
attributes for FILE1, you could enter any of the following:

bind file1 (system amode 31 rmode any

bind file1 (/cmssytem=yes,amode=31,rmode=any

bind file1 (system/amode=31,rmode=any

Note: Options appearing before the slash (/) separator use a CMS-style syntax, while
options appearing after the slash use binder JCL parameter string syntax described in
DFSMS/MVS Program Management.

More information
DFSMS/MVS Program Management, SC26-4916-03
www.s390.ibm.com/bookmgr-cgi/bookmgr.cmd/
BOOKS/DGT1M605/CCONTENTS?SHELF=EZ239116

Developments Down Under

Page 19 of 19

