COBOL:
New Functions
and Features

IBM COBOL for VSE/ESA
Program Number 5686-068

OOOOOOOOOOOOOOOO

IBM COBOL for VSE/ESA TEES

Application Development Solutions

= Position COBOL for VSE/ESA
—Basically, it's VS COBOL Il release 4

= Support of Features Introduced
by VS COBOL Il

= New Language Features with
COBOL for VSE/ESA

= Language Environment Support

© IBM 1999, 2000 cobvsepg / 20SEP00 2

A History of COBOL IEEL

—— T | E—

Application Development Solutions

Intrinsic Functions
(addendum to '85 Std)
Language Extensions

Support for Language
Environment

Support for
Debug Tool

COBOL 85 Standard
(no intrinsic functions)

Structured
Programming

National Language
DBCS

Improved CICS
Interface
31-Bit Addressing
Reentrancy, Fast Sort
Optimizer,
SAA Flagging

Interactive Debugging
(full screen mode)

COBOL 85 Standard

Structured
Program ming

National Language
DBCS
Improved CICS

Interface
31-Bit Addressing
Reentrancy, Fast Sort
Optimizer,

SAA Flagging

COBOL 74 Standard

74 STD FIPS Flagging

Dynamic Debugging

Batch Debugging

Interactive Debugging
(line mode)

DOS/VS COBOL

COBOL 74

Compa tibility
85 STD FIPS Flagging
Dynamic Debugging
Batch Debugging

Interactive Debugging
(line mode)

COBOL 74

Compa tibility
85 STD FIPS Flagging
Dynamic Debugging
Batch Debugging

VS COBOL Il

COBOL for
VSE/ESA

© IBM 1999, 2000

cobvsepg / 20SEP00

3

—— T | E—

Application Development Solutions

COBOL Product Relationships IE ==,

DOS/VS

COBOL COBOL for
Compiler VSE/ESA

Compiler

DOS/VS

COBOL IBM

Library Debug Tool
5746-CB1 VS COBOL II 5686-068

Compiler

TESTCOB VS COBOL Il Language

Debug Tool Library Environment
Library

5734-CB1 5688-958 5686-094

© IBM 1999, 2000

cobvsepg / 20SEP00 4

A History of COBOL Run-Times IEE,

—— T | E—

Application Development Solutions

COBOL for
VSE/ESA
Programs
VS COBOL Il VS COBOL Il
Programs Programs
DOS/VS DOS/VS DOS/VS
COBOL COBOL COBOL
Programs Programs Programs
Assembler Assembler Assembler
Programs Programs Programs
DOS/VS VS COBOL I Language
COBOL run-time Environment
run-time library run-time

library library

© 1BM 1999, 2000 cobvsepg / 20SEP00 5

Language Environment Run-Time Picture :===3E.

Application Development Solutions

The complete picture ...

LE- COBOL C for PL/I for
conforming || for VSE/ESA VSE/ESA
Assembler VSE/ESA Programs Programs
Programs Programs
VS COBOL
Il Programs
R4
DOS/VS
Assembler || COBOL
Programs Programs
Rel 3

Assembler COBOL C PL/I

© IBM 1999, 2000 cobvsepg / 20SEP00 6

Application Development Environment

Application Development Solutions

Debug Tool
» Consistent across languages
" » Consistent across platforms

» Improved programmer
Development productivity
Environment

Compilers
COBOL C

PL/I

» Functional language
enhancements and
iImplementation

Common Execution
Environment

Language Environment

» Common run-time
environment

» Language specific
run-time services

» Enables assembly of
applications

» Base for languages

_>

© IBM 1999, 2000

cobvsepg / 20SEP00 7

COBOL for VSE/ESA Supports TEES
Existing VS COBOL Il Features ===7=°

Application Development Solutions

Support of Features Introduced
by VS COBOL Il

= ESA support, 31-bit addressing
= Reentrant object code

= Much improved CICS interface
(no more BLL cell manipulation)

= Structured programming constructs
— Review of 1985 Standard features

= And more!

© IBM 1999, 2000 cobvsepg / 20SEP00 8

ESA Support, 31-Bit Addressing £ =S5,

2 GB
COBOL for - 1
VSE/ESA Program ala
COBOL for
VSE/ESA Program
| I
7 16 MB
' .
DOS/VS COBOLL - Data | | M€
Program

Options for Application Growth

© 1BM 1999, 2000 cobvsepg / 11AUG00 9

ESA Support, 31-Bit Addressing

Application Development Solutions

COBOL for VSE/ESA compiler
options for 31-bit addressing

To get this:

Code this using
VS COBOL Il

Or this using COBOL
for VSE/ESA

WORKING-STORAGE
below the line

NORES,NORENT
or
RENT,DATA(24)

RENT, DATA(24)

or
NORENT with
RMODE(AUTO or 24)

WORKING-STORAGE
above the line

RES,RENT,
DATA(31)

RENT, DATA(31)
or
NORENT, RMODE(ANY)

AMODE(24) NORES,NORENT |N/A
or

RES,NORENT
AMODE(ANY) RES,RENT or always

RES, NORENT
RMODE(24) NORENT RMODE(24)

or
NORENT,RMODE(AUTO)

RMODE(ANY) RES,RENT RMODE(ANY)

or
RENT,RMODE(AUTO)

© IBM 1999, 2000

cobvsepg / 11AUGO00 10

ESA Support, 31-Bit Addressing

Application Development Solutions

Example: Mixing new and old (all calls DYNAMIC)

NORENT
RMODE RENT

RENT
DATA(31)

DATA(24)

< Won'twork
for
P1 DATA or P3

. DATA

16 MB Line
VSE

NORENT NORENT NORENT
RES or RMODE RES or
NORES (AUTO|24)

NORES

© IBM 1999, 2000

cobvsepg / 20SEP00 1 1

ESA Support, 31-Bit Addressing ... = ==

—— T | E—

Application Development Solutions

Application XYZ ESA CPU
COBOL for VSE/ESA PGM A
PGM A
DOS/VS COBOL
PGM B PGM C
COBOL for VSE/ESA PGM D
PGM C
16MB
COBOL for VSE/ESA
PGM D
PGM B PGM E
DOS/VS COBOL
PGM E

© IBM 1999, 2000

cobvsepg / 11AUG00 1 2

REENTRANT code EEE:,

—— T | E—

Application Development Solutions

= Controlled by RENT compiler option
= Load module is 'read-only'

= Programs can be preloaded into SVA
(Share Virtual Area)

- or other read-only areas

= WORKING-STORAGE section i1s not In
the load module

—Memory is dynamically acquired

© IBM 1999, 2000 cobvsepg / 20SEP00 13

CICS Support EEEE

—— T | E—

Application Development Solutions

= Designed interface
= Reentrant code

= Elimination of BLLs and SERVICE
RELOADs

= Subprograms can contain CICS
commands

© IBM 1999, 2000 cobvsepg / 11AUG00 14

Simplified COBOL-CICS Interface =,

—— T | E—

Application Development Solutions

COBOL-CICS Interface COBOL-CICS Interface
DOS/VS COBOL COBOL for VSE/ESA

WORKING-STORAGE SECTION.
77 LRECL-REC1 PIC S9(4) COMP.

LINKAGE SECTION. LINKAGE SECTION.

01 BLLCELLS.
02 FILLER PIC S9(8) COMP.
02 BLL-REC1IA PIC S9(8) COMP.
02 BLL-REC1B PIC S9(8) COMP.
02 BLL-REC2 PIC S9(8) COMP.

01 REC-1. 01 REC-1.
02 CTR PIC S(4) COMP. 02 CTR PIC S(4) COMP.
PROCEDURE DIVISION. PROCEDURE DIVISION.
EXEC CICS READ UPDATE ... EXEC CICS READ UPDATE ...
SET (BLL-REC1A) SET (ADDRESS OF REC1)
LENGTH (LRECL-REC1) END-EXEC.
END-EXEC.

SERVICE RELOAD REC-1.

IF LRECL-REC1 > 4096
THEN ADD 4096 TO BLL-REC1A
GIVING BLL-REC1B.

EXEC CICS REWRITE ... EXEC CICS REWRITE ...
FROM (REC-1) FROM (REC-1)
LENGTH (LRECL-REC1) END-EXEC.

END-EXEC.

© IBM 1999, 2000 cobvsepg / 11AUG00 1 5

DB2 and SQL/DS EEEE,

—— T | E—

Application Development Solutions

= Dynamic SQL statements

= Reentrant object code

= Example

EXEC SQL INCLUDE SQLCA END-EXEC.

= DB2 Stored Procedures Support

© IBM 1999, 2000 cobvsepg / 20SEP00 16

DB2 Stored Procedure Support =5

Application Development Solutions

DB2 Stored Procedures must be compiled

with COBOL for VSE/ESA, PL/I for VSE/ESA,
or C for VSE/ESA

DB2 Data calls that invoke DB2 Stored

Procedures can be called from a COBOL for
VSE/ESA program

COBOL Program
compiled with:
COBOL for VSE/ESA

. DB2
Version 6.1

DB2 Stored Procedures
CEEPIPI

compiled with: -

COBOL for VSE/ESA

SC09-2662-00: DB2 Server for VSE Application Programming
Version 6 Release 1, Appendix C. Using Stored Procedures

© IBM 1999, 2000 cobvsepg / 20SEP00 17

Structured Programming Constructs £ =55

Application Development Solutions

Review of 1985 Standard features

= Prime control structures
- Sequence
— Selection
— Iteration

= Explicit scope terminators
—Example: END-IF

= Conditional Statements

— AT END

—NOT AT END
= EVALUATE and CONTINUE statements
= In-line PERFORMSs

= Nested programs

© 1BM 1999, 2000 cobvsepg / 11AUG00 1 8

Prime Control Structures E=555

Application Development Solutions

= Sequence

= Selection
—|F THEN ELSE
- EVALUATE

= |[teration
- DO WHILE
— DO UNTIL

© 1BM 1999, 2000 cobvsepg / 11AUG00 19

IF Control Structure SE=555

B C
7
D
How to implement in 68/74 Std COBOL.:
IF condition-1 THEN
action-A
ELSE
IF condition-2 THEN
action-B
ELSE
action-C
... Now what?

© IBM 1999, 2000 cobvsepg / 11AUG00 20

IF Control Structure ... T =0

Try again ... T =
—
A T F—+

B C

e
:
D

!

In 68/74 Std COBOL.:

IF condition-1 THEN
action-A
ELSE
PERFORM ANOTHER-TEST.
GO TO AROUND-THE-TEST.
ANOTHER-TEST.
IF condition-2 THEN
action-B
ELSE
action-C.
action-D.
AROUND-THE-TEST.

© 1BM 1999, 2000 cobvsepg / 11AUG00 2 1

IF Control Structure ... E=555

New and
. T i‘; F
Improved

- %

F
. —
B C
y
D
In COBOL for VSE/ESA: %
—I|F condition-1 THEN
action-A
ELSE
— IF condition-2 THEN
action-B
ELSE |
action-C terminates
— END-IF - previous IF
action-D
——END-IF

© IBM 1999, 2000 cobvsepg / 11AUG00 2 2

CONTINUE vs NEXT SENTENCE IS ==,

—— T | E—

Application Development Solutions

68/74/85 Std: NEXT SENTENCE
85 Std: CONTINUE

If aField ="ABC"
Search All aTable
At End
Continue
When aElem (Ind) =1
Next Sentence
Else
Perform Not-ABC
End-If
Display "In same sentence, "
"but In next statement

Display "In next sentence"

© IBM 1999, 2000 cobvsepg / 11AUG00 23

AT END/NOT AT END E B EE

—— T | E—

Application Development Solutions

Replaces IF statements

Implementation with IF statements:

READ INPUT-FILE
AT END
MOVE 'EOF' TO EOF-FLAG.
IF NOT EOF THEN
PERFORM PROCESS-INPUT-DATA
ELSE
PERFORM EXIT-PARA.

Implementation with NOT AT END:

READ INPUT-FILE
AT END
PERFORM EXIT-PARA
NOT AT END
PERFORM PROCESS-INPUT-DATA
END-READ

© 1BM 1999, 2000 cobvsepg / 11AUG00 24

EVALUATE Statement =555,

Replaces several IF statements

Implementation with IF statements:

IF CARPOOL-SIZE =1 THEN
MOVE "SINGLE" TO CARPOOL-STATUS
ELSE
IF CARPOOL-SIZE = 2 THEN
MOVE "COUPLE" TO CARPOOL-STATUS
ELSE
IF CARPOOL-SIZE > 2 AND CARPOOL-SIZE <7 THEN
MOVE "SMALL GROUP" TO CARPOOL-STATUS
ELSE
IF CARPOOL-SIZE =7 OR
CARPOOL-SIZE = 8 THEN
MOVE "MEDIUM GROUP" TO CARPOOL-STATUS
ELSE
MOVE "LARGE GROUP" to CARPOOL-STATUS.

Corresponding Evaluate Statement:

EVALUATE CARPOOL-SIZE
WHEN 1
MOVE "SINGLE" TO CARPOOL-STATUS

WHEN 2
MOVE "COUPLE" TO CARPOOL-STATUS

WHEN 3 THRU 6
MOVE "SMALL GROUP" TO CARPOOL-STATUS

WHEN 7 THRU 8
MOVE "MEDIUM GROUP" TO CARPOOL-STATUS

WHEN OTHER
MOVE "LARGE GROUP" to CARPOOL-STATUS

END-EVALUATE.

© 1BM 1999, 2000 cobvsepg / 11AUG00 2 5

EVALUATE Statement EEE:,

—— T | E—

Application Development Solutions

EVALUATE TRUE ALSO FALSE ALSO TRUE
WHEN X=1 ALSO Y=3 ALSO Z<4
PERFORM
** Stuff **
END-PERFORM
WHEN X=2 ALSO ANY ALSO ANY
WHEN OTHER
DISPLAY 'error!’
END-EVALUATE

EVALUATE NUM
WHEN 1, 2, 3
PERFORM
** Stuff **
END-PERFORM

WHEN 4 THRU 5 WHEN 8
CALL 'SUB2'

WHEN OTHER
GOBACK
END-EVALUATE

© IBM 1999, 2000 cobvsepg / 11AUG00 26

DO WHILE Control Structure EEE:,

—— T | E—

Application Development Solutions

CODE

68/74 Std COBOL

-

CONDITION-P
lT

COBOL for
VSE/ESA

PERFORM PARA-NAME
UNTIL P

PERFORM WITH TEST
BEFORE UNTIL P

PARA-NAME.
CODE

CODE

END-PERFORM.

© IBM 1999, 2000

cobvsepg / 11AUG00 2 7

DO UNTIL Control Structure Ezs—f;@

—— T | E—

Application Development Solutions

CODE

'

F— CONDITION-P

lT

COBOL for
68/74 Std COBOL VSE/ESA
PERFORM PARA-NAME PERFORM WITH TEST
PERFORM PARA-NAME AFTER UNTIL P
UNTIL P
CODE
PARA-NAME.
CODE
END-PERFORM.

© IBM 1999, 2000 cobvsepg / 11AUG00 2 8

Nested Programs £ =5

Program A

Program Al

Program All

Program A2 (COMMON)

Program A3

© IBM 1999, 2000 cobvsepg / 11AUG00 29

—— T | E—

Other VS COBOL Il Features (Review) @~ :L=E=.

Application Development Solutions

= INITIALIZE statement

= SET TO TRUE

= LENGTH OF special register
= POINTER data items

= Reference modification (substring
handling)

= Hexadecimal Literals

© IBM 1999, 2000 cobvsepg / 11AUG00 30

INITIALIZE Example EEE:,

—— T | E—

Application Development Solutions

Example:

01 CUSTOMER-RECORD.

02 CUST-NUMBER PIC 9(6).

02 LAST-NAME PIC X(15).

02 FIRST-NAME PIC X(15).

02 DATABASE-ID PIC S9(9) BINARY.
02 INFO-PTR POINTER.

*With INITIALIZE:
INITIALIZE CUSTOMER-RECORD.
*Without INITIALIZE:
MOVE ZEROES TO CUST-NUMBER.
MOVE SPACES TO LAST-NAME FIRST-NAME.

COMPUTE DATABASE-ID = 0.
SET INFO-PTR TO NULL.

© 1BM 1999, 2000 cobvsepg / 11AUG00 3 1

SET...TO TRUE Example E B EE

—— T | E—

Application Development Solutions

Example (How to replace READY TRACE!):

WORKING-STORAGE SECTION.
01 TRACE-VAR PIC X.
88 READY-TRACE VALUE "Y'
88 RESET-TRACE VALUE 'N.

PROCEDURE DIVISION.
TRACE-IT SECTION USE FOR DEBUGGING
ON ALL PROCEDURES.
IF READY-TRACE THEN
DISPLAY "Trace:' DEBUG-NAME DEBUG-LINE
END-IF
MAIN SECTION.

MID SECTION.

SET READY-TRACE TO TRUE.
PARAL.
PARAZ.

SET RESET-TRACE TO TRUE
END1 SECTION.

© IBM 1999, 2000 cobvsepg / 11AUG00 3 2

LENGTH OF special register example

Application Development Solutions

Example:
01 CUST-REC.
02 CUST-NUMBER PIC 9(6).
02 LAST-NAME PIC X(15).
02 FIRST-NAME PIC X(15).
02 DATABASE-ID PIC S9(9) BINARY.
02 INFO-PTR POINTER.
77 X PIC 9(4).

PROCEDURE DIVISION.

COMPUTE X = LENGTH OF CUST-REC.

CALL 'SUB1' USING
BY VALUE LENGTH OF CUST-REC

© IBM 1999, 2000 cobvsepg / 11AUG00 33

POINTER data items example £ =S5,

Example:

WORKING-STORAGE SECTION.
77 COND-DATA-PTR USAGE POINTER.
LINKAGE SECTION.

01 COND-DATA.
02 MSGNO PIC X(4).
02 ERRCOUNT PIC 9(4).
PROCEDURE DIVISION USING COND-DATA.
SET COND-DATA-PTR TO

ADDRESS OF COND-DATA.

CALL 'ASM-SUB' USING COND-DATA-PTR.

© 1BM 1999, 2000 cobvsepg / 11AUG00 34

Reference Modification Examples @ = :=Z=

Example 1:
01 WHOLE-NAME PIC X(25).
01 LAST-NAME PIC X(25).

MOVE WHOLE-NAME(10:15) to LAST-NAME

Example 2: HHMMSSsS ---->HH:MM:SS
01 TIME-ITEM PIC X(8).

ACCEPT TIME-ITEM FROM TIME

DISPLAY "CURRENT TIME IS: "
TIME-ITEM(1:2)

TIME-ITEM(3:2)

TIME-ITEM(5:2)

© 1BM 1999, 2000 cobvsepg / 11AUG00 3 5

Hexadecimal Literal Example £ =S5,

Example:

WORKING-STORAGE SECTION.
01 PD-GROUPA.
2 S99PDA PIC S99 PACKED-DECIMAL.
01 PD-GROUPB.
2 S99PDB PIC S99 PACKED-DECIMAL.
77 ALPHA PIC X(30) VALUE X'0AOBOCODEEFF' .

PROCEDURE DIVISION.
MOVE X'015F TO PD-GROUPA.

IF S99PDA IS NUMERIC THEN

DISPLAY 'S99PDA is numeric with hex F'
ELSE

DISPLAY 'S99PDA is NOT numeric with hex F'
END-IF

IF PD-GROUPA = X'015F THEN

DISPLAY ' S99PDA still has hex F sign'
ELSE

DISPLAY ' S99PDA does NOT have hex F sign'
END-IF

© IBM 1999, 2000 cobvsepg / 11AUG00 36

New Language Features with T=ES
COBOL for VSE/ESA ===7=o

Application Development Solutions

= New CALL options

= Intrinsic Functions
» Mathematical
» Statistical
» Date/Time
» Financial
» Character Handling
» General

= Support for Language Environment
callable services

= Support for Language Environment
condition handling
» PROCEDURE-POINTER data type

= New Date/Time features
= QUOTES and APOSTROPHES

= New compiler options

© 1BM 1999, 2000 cobvsepg / 11AUG00 37

New CALL Options IE =TEo

—— T | E—

Application Development Solutions

Example:

01 RETURN-VALUE PIC 9(4).
01 X PIC 9(9) BINARY.
PROCEDURE DIVISION
USING BY VALUE X
RETURNING RETURN-VALUE.

COMPUTE X =1234567.

CALL 'SUB1' USING BY VALUE X
RETURNING RETURN-VALUE.

IF RETURN-VALUE =0 THEN
DISPLAY 'SUB1 Was successful’
ELSE
DISPLAY 'SUB1 had a problem'’
END-IF

© IBM 1999, 2000 cobvsepg / 11AUG00 3 8

Intrinsic Functions =S =552

= Amendment to 1985 ANSI COBOL
Standard

= Minimize program size

= Perform these tasks:
> Mathematical
~ Statistical
> Date/Time
> Financial
» Character Handling
- General

© IBM 1999, 2000 cobvsepg / 11AUG00 39

Intrinsic Functions ...

—— T | E—

Application Development Solutions

Mathematical Statistical Date/Time
ACOS MEAN CURRENT-DATE
ASIN MEDIAN DATE-OF-INTEGER
ATAN MIDRANGE DATE-TO-YYYYMMDD
COS RANDOM DATEVAL
FACTORIAL RANGE DAY-OF-INTEGER
INTEGER STANDARD-DEVIATION| DAY-TO-YYYYDDD

INTEGER-PART
LOG

VARIANCE

INTEGER-OF-DATE
INTEGER-OF-DAY

LOG10 WHEN-COMPILED

MOD YEAR-TO-YYYY

REM YEARWINDOW

SIN

SQRT

SUM

TAN

Financial Character Handling| General

ANNUITY CHAR LENGTH

PRESENT-VALUE LOWER-CASE MAX
NUMVAL MIN
NUMVAL-C ORD-MAX
ORD ORD-MIN
REVERSE
UPPER-CASE

© IBM 1999, 2000

cobvsepg / 11AUGO00 40

Intrinsic Function Rules

1. A numeric function is a numeric expression

2. Numeric functions cannot be used in
MOVE statements

3. Functions cannot be used as subscripts

4. The type of some functions is determined
by the arguments

COMPUTE PIC9 = FUNCTION MAX (12 3).

MOVE FUNCTION MAX ('A'"B" 'C') TO PICX.

© IBM 1999, 2000 cobvsepg / 11AUG00 41

Intrinsic Function Examples @ :=EZ=5Z=

Example 1.
01 X PIC 99.
01Y PIC 99.
01 Z PIC 99.

COMPUTE X = FUNCTION MAX(X'Y Z)

IF X = FUNCTION MAX(X'Y Z) THEN

Example 2:

COMPUTE Z =
FUNCTION LOG(FUNCTION FACTORIAL(2 * X + 1))

© 1BM 1999, 2000 cobvsepg / 11AUG00 42

Date/Time Intrinsic Functions =S =555,

Facilitate date/time arithmetic

* Calculate due date 90 days from today

01 YYYYMMDD PIC 9(8) DATE FORMAT YYYYXXXX..
01 | PIC S9(9) BINARY.

MOVE FUNCTION CURRENT-DATE(1:8) TO YYYYMMDD
COMPUTE | =FUNCTION INTEGER-OF-DATE(YYYYMMDD)
ADD 90 to |

COMPUTE YYYYMMDD = FUNCTION DATE-OF-INTEGER(I)
DISPLAY "DUE DATE: " YYYYMMDD

* Can also nest them!
COMPUTE YYYYMMDD = FUNCTION DATE-OF-INTEGER
(90 + FUNCTION INTEGER-OF-DATE
(FUNCTION INTEGER
(FUNCTION NUMVAL
(FUNCTION CURRENT-DATE(1:8))

)
)

)
DISPLAY "DUE DATE: " YYYYMMDD

© 1BM 1999, 2000 cobvsepg / 11AUG00 43

Intrinsic Functions and ALL Subscript £ =5

ALL subscript specifies all elements of a table
or table dimension:

01 Employee-table.

05 Emp-count PIC S9(4).
05 Emp-record OCCURS 1to 500 TIMES.
10 Emp-name PIC X(20).

10 Emp-id PIC 9(9).
10 Emp-salary PIC 9(7)V99.

COMPUTE max-salary = FUNCTION MAX(Emp-salary (ALL))
COMPUTE | = FUNCTION ORD-MAX(Emp-salary (ALL))
COMPUTE Avg-salary = FUNCTION MEAN(Emp-salary (ALL))
COMPUTE Salary-range = FUNCTION RANGE(Emp-salary(ALL))
COMPUTE Total-payroll = FUNCTION SUM(Emp-salary (ALL)

DISPLAY
"Highest paid employee: " Emp-name(l)
"Maximum salary " Max-salary
"Average salary " Avg-salary
"Salary range " Salary-range

"Total Payroll " Total-payroll.

© IBM 1999, 2000 cobvsepg / 11AUG00 44

LE-Callable Services Example E=5E,

Example:

WORKING-STORAGE SECTION.
01 PGMPTR USAGE PROCEDURE-POINTER.
77 FC PIC X(12).

77 ADDRSS USAGE POINTER.

77 HEAPID PIC 9(9) BINARY.

77 STGSIZE PIC 9(9) BINARY.

LINKAGE SECTION.

01 COND-DATA.
02 MSGNO PIC X(4).
02 ERRCOUNT PIC 9(4).

PROCEDURE DIVISION.
MOVE 0 TO HEAPID.
MOVE LENGTH OF COND-DATA TO STGSIZE.
CALL "CEEGTST" USING HEAPID, STGSIZE,
ADDRSS, FC.

SET ADDRESS OF COND-DATA TO ADDRSS.

© IBM 1999, 2000 cobvsepg / 11AUG00 45

—— T | E—

PROCEDURE-POINTER Data Type TS,

Application Development Solutions

= COBOL for VSE/ESA extension to
1985 ANSI COBOL Standard

= USAGE IS PROCEDURE-POINTER
= Holds address of an entry point

= An 8-byte Language Environment
entry variable

= Set with new format of SET statement

= SET PROC-PTR TO ENTRY 'SUB1".

© 1BM 1999, 2000 cobvsepg / 11AUG00 46

Functional Overview - TEES

Lani lage Environment for VSE/ESA_ -
Application Development Solutions

* Common Environment
Condition management
Memory management

Development Environment Task management

Subsystem interface

* Common Protocols

Tasking
Linkage

COBOL c PL/I * Common Services

Message
Dump

* Common Routines

Math
Callable services
Language runtimes

\ * Support for Debug Tool

* InterLanguage
Communication

Language Environment

© IBM 1999, 2000 cobvsepg / 20SEP00 47

Language Environment for VSE/ESA ... £ =55

A few benefits provided by a common run-time
environment for COBOL for VSE/ESA:

e Improved InterLanguage Communication
(ILC)

e Callable services
(via COBOL CALL statement)

» Storage management

> Date and time calculations

» Math calculations

» Message handling

» National language support

» Other services such as formatted dumps

e Common condition handling mechanism
across languages

e Comprehensive run-time options

© IBM 1999, 2000 cobvsepg / 20SEP00 48

Language Environment TREE
Condition Handlini ===7=
Application Development Solutions

Language Environment Condition Handling
Objectives:

= Predictable condition handling in

applications
- single language or mixed language

= Within a mixed application, honor each

HLL's error handling semantics
—ie: ON SIZE ERROR, ON EXCEPTION, etc

= Provide more capability for HLLs with

limited built-in error handling
— Like COBOL!

= Fault tolerant systems; crash protection

- only a truly catastrophic failure needs to disrupt your
application environment

= Enable new function, such as resumption
after error occurs

= Allow error handlers to be written in
COBOL

© IBM 1999, 2000 cobvsepg / 20SEP00 49

Language Environment TREE

= Some Concepts and Technology:

= Conditions include:
— Program interrupts
— ABENDs
— Software generated signals

= Condition token is created

= User-written condition handler
- |S a separate program
— Gets invoked when a condition occurs
— Optional: Gathers information about the
condition from the condition token
— Causes these actions to be taken:
resume, percolate, promote

© 1BM 1999, 2000 cobvsepg / 11AUG00 50

Language Environment T===

Condition Handlini - ===
Application Development Solutions

Calling chain:

Program A N
. Condition
Register Al
Handler Al
Call Program B
Program B
Register B1 Condition
Handler B1

Call Program C

i

Program C

Data exception

© IBM 1999, 2000 cobvsepg / 11AUG00 5 1

Language Environment TREE

ID DIVISION. PROGRAM-ID. MAIN.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
INPUT-OUTPUT SECTION. FILE-CONTROL.
SELECT RUNDATA ASSIGN TO SYSIN-S-FILE1DD
FILE STATUS IS RUNDATA-FS.
DATA DIVISION.
FILE SECTION.
FD RUNDATA.
01 WORK-RECORD.
03 CUST-NAME.
05 FIRST-NAME PIC X(10).
05 LAST-NAME PIC X(15).
03 BIRTH-DATE.
05 MONTH PIC 99.

05 PIC X.
05 DAYO PIC 99.
05 PIC X.

05 YEAR PIC 99.

03 ACCOUNT-NUM PIC 9(8).
03 CURRENT-AGE PIC 999.
03 BENNY-FACTOR PIC 9(3).
03 ADJUSTMENT PIC 9(3).
03 PAYOUT PIC X(6).

03 PIC X(24).

WORKING-STORAGE SECTION.
01 RUNDATA-FS PIC 99.

01 WORKING-DATA PIC 99.

77 EOF-IND PIC X.

88 EOF VALUE "Y".

88 NOT-EOF VALUE "N".

© 1BM 1999, 2000 cobvsepg / 11AUG00 52

Language Environment TREE

PROCEDURE DIVISION.

STARTIT. OPEN INPUT RUNDATA.
IF RUNDATA-FS NOT EQUAL TO O
DISPLAY "** ERROR ** NOT ABLE TO OPEN"
" RUNDATA FILE **"
GO TO STOPIT
END-IF
SET NOT-EOF TO TRUE.

LOOP.
PERFORM UNTIL EOF
READ RUNDATA
AT END
SET EOF TO TRUE
NOT AT END
CALL "SUBRTN" USING WORK-RECORD
END-READ

END-PERFORM.
STOPIT.

CLOSE RUNDATA.

STOP RUN.

END PROGRAM MAIN.

© 1BM 1999, 2000 cobvsepg / 11AUG00 53

Language Environment TREE

ID DIVISION. PROGRAM-ID. SUBRTN.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 CURR-DATE.
05 CURR-YEAR PIC 9(4).
05 CURR-MONTH PIC 99.
05 CURR-DAY PIC 99.
01 PGMPTR USAGE PROCEDURE-POINTER.
01 DATA-PTR USAGE POINTER.

*kkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

* Parameters for CEECBLDY *
*kkkkkkkkkkkkkkkhkkkkhkhkkkhkkkhhkhkkhkhkkhkkkkhhkhkkhkkhhkkhhkkhkkhhkhkkhhkhkkkhkkkhkkkkkkk
01 PICSTR.
05 PICSTR-LENGTH PIC 9(2) COMP VALUE 8.
05 PICSTR-STRING PIC X(50) VALUE "MM/DD/YY".
01 INPUT-DATE.
05 INPUT-LENGTH PIC 9(2) BINARY.
05 INPUT-STRING PIC X(50).
77 LILIAN PIC 9(9) COMP.
77 FC PIC X(12).

© IBM 1999, 2000 cobvsepg / 11AUG00 54

Language Environment

kkhkkkkkkkkkkkkkkkk

* Working Storage for DATE-OF-INTEGER
kkkkkkkkkkkkkkkkhkkkkhkkkkkhkhkhhhkkkkhkkkkkhkhkhhhkkkkhkkkkkhkkrkkkkkk
01 4-DIGIT-DATE PIC 9(8).
01 4-DIGIT-REDEFINED REDEFINES 4-DIGIT-DATE.
05 YYYY PIC 9(4).
05 MM PIC 9(2).
05 DD PIC 9(2).

LINKAGE SECTION.
01 WORK-RECORD.
03 CUST-NAME.
05 FIRST-NAME PIC X(10).
05 LAST-NAME PIC X(15).
03 BIRTH-DATE.
05 MONTH PIC 99.

05 PIC X.
05 DAYO PIC 99.
05 PIC X.

05 YEAR PIC 99.

03 ACCOUNT-NUM PIC 9(8).
03 CURRENT-AGE PIC 999.
03 BENNY-FACTOR PIC 9(3).
03 ADJUSTMENT PIC 9(3).
03 PAYOUT PIC 9(6).

© IBM 1999, 2000 cobvsepg / 11AUG00 55

Language Environment TREE

PROCEDURE DIVISION USING WORK-RECORD.

kkkkkkkkkkkkkkkkkkkkkhkkkhkkkkrkkkhkkkhkkkkhkkhkkkhkkkkrhkkhkkkkkkkkkkkhkk

* put address of common data area in TOKEN passed to
* LE/370 condition manager.

kkkrk

SET DATA-PTR TO ADDRESS OF WORK-RECORD.
kkhkkkkkkkkkkkk
* put name and address of user-written condition
* handler into PROCEDURE-POINTER data item to
* pass to condition manager.

kkk

SET PGMPTR TO ENTRY "USERHDLR".
*kkkkkkkkkkkkkkkkhkkhkkhkkkkkkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkhkhkkhkkhkkhkkikk
* register the user-written condition handler with the
* Language Environment condition manager.

kkk

CALL "CEEHDLR" USING PGMPTR DATA-PTR FC.

© 1BM 1999, 2000 cobvsepg / 11AUG00 56

Language Environment TREE

kkkkkkkkkkkkkkkkkkkkkhkkkkkkkhkhkkkkkkkhkhkhkkkkkhkkkkkkkkhkhkkkkkkhkkkkk

* get todays date with 4-digit year.

kkkkkkkkkkkkkkkkkkkkkkkkkkkkhkhkhkkkkkkkhkhkkkkkhkkkkkkkkhkhkkkkkkhkkkkk

MOVE FUNCTION CURRENT-DATE(1:8) TO CURR-DATE.

kkkkkkkkkkkkkkkkkkkkkkkkkkkhkhkhkkkkkkkkhkhkkhkkhkkkkkhkhkhkhkhkkkkkkkkkxk

* convert 2-digit year from file into integer using LE/370
* service to get COBOL Lilian date.
kkk
MOVE LENGTH OF BIRTH-DATE TO INPUT-LENGTH.
MOVE BIRTH-DATE TO INPUT-STRING.
CALL "CEECBLDY" USING INPUT-DATE PICSTR LILIAN FC.

kkkkkkkkkkkkkkkkkkkkkkkkkkkhkhkhkkkkkkkkhkkkkhkkhkkkkkkhkhkhkhkkkkkkkkkkk

* convert COBOL Lilian date into YYYYMMDD format.
kkkkkkkkkkkkkkkkkkkhkkkkkkkkkhkkkkkkhkkkkhkkhkkkkhkkkkkkhkkkkhkkkkkkhkkkkhkkkkkkkk
COMPUTE 4-DIGIT-DATE = FUNCTION
DATE-OF-INTEGER(LILIAN).
DISPLAY ">>>Birth Year =" YYYY.

COMPUTE CURRENT-AGE = CURR-YEAR - YYYY.

kkkkkkkkkkkkkkkkkkkkkkkkkkkkhkhkhkkkkkkkhkkrkkkkhkkkkkkkkhkhkkkkkkikkkkk

* this is the statement likely to fail with bad data.
kkk
COMPUTE PAYOUT =
(CURRENT-AGE * BENNY-FACTOR) / ADJUSTMENT.

GOBACK.
END PROGRAM SUBRTN.

© IBM 1999, 2000 cobvsepg / 11AUG00 57

Language Environment TREE

ID DIVISION. PROGRAM-ID. USERHDLR.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 TYPE-0 PIC S9(9) USAGE BINARY VALUE ZERO.
01 TYPE-1 PIC S9(9) USAGE BINARY VALUE 1.
01 FC.
05 SEVERITY PIC 9(4) USAGE BINARY.
05 MSGNO PIC 9(4) USAGE BINARY.
05 FILLER PIC X(8).
01 FAILING-OFST PIC S9(9) USAGE BINARY.

LINKAGE SECTION.
01 WORK-RECORD.
03 CUST-NAME.
05 FIRST-NAME PIC X(10).
05 LAST-NAME PIC X(15).
03 BIRTH-DATE.
05 MONTH PIC 99.

05 PIC X.
05 DAYO PIC 99.
05 PIC X.

05 YEAR PIC 99.

03 ACCOUNT-NUM PIC 9(8).

03 CURRENT-AGE PIC 999.

03 BENNY-FACTOR PIC 9(3).

03 ADJUSTMENT PIC 9(3).

03 PAYOUT PIC 9(6).

03 PIC X(24).
01 CURRENT-CONDITION PIC X(12).
01 DATA-PTR USAGE POINTER.
01 RESULT-CODE PIC S9(9) USAGE BINARY.
01 NEW-CONDITION PIC X(12).

© 1BM 1999, 2000 cobvsepg / 11AUG00 58

Language Environment TREE

PROCEDURE DIVISION USING CURRENT-CONDITION
DATA-PTR
RESULT-CODE
NEW-CONDITION.

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkk

* get addressability to common data area. *

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkk

SET ADDRESS OF WORK-RECORD TO DATA-PTR.

* DISPLAY "***In Userhdlr, WORK-RECORD ="
WORK-RECORD.

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkk

* find out which field(s) had bad data. *
kkkkkkhkkhkkkhkkkhkkhkkhkhkkhkhkkhkkhkhkkhhkkhhkkhkhkkhkhkkhhkkkhkkhkhkkhhkkhkkkkhkkikkkk
IF YEAR NOT NUMERIC THEN
DISPLAY " Bad data in year field"
COMPUTE YEAR =0
END-IF
IF BENNY-FACTOR NOT NUMERIC THEN
DISPLAY " Bad data in benefits factor field"
COMPUTE BENNY-FACTOR =1
END-IF
IF ADJUSTMENT NOT NUMERIC THEN
DISPLAY " Bad data in adjustment field"
COMPUTE ADJUSTMENT =1
END-IF
* DISPLAY "**After error checking WORK-RECORD ="
WORK-RECORD.

© 1BM 1999, 2000 cobvsepg / 11AUG00 59

Language Environment TREE

kkkkkkkkkkkkkkkkrkkkkkkhkkkkhkhkhkhkkkkkkkkhkkkkhkkhkkkkkhkkhkhkhkkkkkkkkkxk

* put out message indicating which record was bad.
kkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkhkkhkkkkhkkkhkkhkkkkkhkhkhkhhkkkkhkhkkhkkkhkkhkkkkikk
DISPLAY " Bad data in record with account number:"
ACCOUNT-NUM.
DISPLAY " and customer name: " CUST-NAME.
COMPUTE PAYOUT =0.

kkkkkkkkkkkkkkkkkkkkkkhkkkkkhkhkhkkkkkkkkhkkkhkkhkkkkkhkkhkhkhkkkkkkhkkkxk

* Retrieve the offset of the error
*khkkkkkkkkhkkhkkhkkhkkhkkhkkhhkkhkhkhkhkhkkhkkhkkhkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkikk
CALL "CEE3GRO" USING FAILING-OFST, FC.
IF SEVERITY >0 THEN
DISPLAY "CALL to CEE3GRO failed with Severity ="
SEVERITY ' and message number ="MSGNO
GOBACK
END-IF.
DISPLAY "Offset of error is " FAILING-OFST.

kkkkkkkkkkkkkkkkkkkkkkhkkkkkhkhkhkkkkkkkkhkkkhkkhkkkkkhkhkhkhkhkkkkkkkkkkk

* resume execution at MAIN, process next record.
kkk
CALL "CEEMRCR" USING TYPE-1 FC.
IF SEVERITY >0 THEN
DISPLAY "CALL to CEEMRCR failed with Severity ="
SEVERITY ' and message number ="MSGNO
END-IF

kkkkkkkkkkkkkkkkkkkkkkhkkkkkkhkhkhkkkkkkkhkkrkkkkkkkrkkkkkhkhkkkkkkhkkkkk

* mark the condition as handled

kkkkkkkkkkkkkkkkkkkkkkkkkkkhkhkhkkkkkkkhkhkkhhkkhkkkkrhkhkhkhkhkkkkkkhkkkkk

COMPUTE RESULT-CODE = 10.

GOBACK.
END PROGRAM USERHDLR.

© IBM 1999, 2000 cobvsepg / 11AUG00 60

New DATE/TIME Features E B EE

—— T | E—

Application Development Solutions

= MLE: Millennium Language Extensions
77 YYMMDD PIC 9(6)
DATE FORMAT YYXXXX.
77 YYYYMMDD PIC 9(8)
DATE FORMAT YYYYXXXX.

IF YYMMDD > YYYYMMDD THEN
MOVE YYMMDD TO YYYYMMDD
END-IF

= New formats of ACCEPT
ACCEPT 4-DIGIT-YEAR-GREGORIAN
FROM DATE YYYYMMDD.

ACCEPT 4-DIGIT-YEAR-JULIAN
FROM DATE YYYYDDD.

NOTE: These formats are ALLOWED under
CICS while the 2-digit year formats are not
allowed under CICS

© 1BM 1999, 2000 cobvsepg / 11AUG00 6 1

APOST/QUOTE E B EE

—— T | E—

Application Development Solutions

= You can now use both apostrophes
(sometimes called single quotes) and
guotes in the same program:

= DISPLAY '"The compiler looks to match’
"whichever it finds first".

= Now COPYBOOKSs with QUOTES can be
used in programs that use APOST

= And vice-versa

© IBM 1999, 2000 cobvsepg / 11AUG00 6 2

New Compiler Options £ =S5,

Application Development Solutions

= ADATA
= CURRENCY

= INTDATE

= OPT(FULL)

= RMODE

= DATEPROC/YEARWINDOW

NOTE:
No RES/NORES option anymore,
always 'RES'

© IBM 1999, 2000 cobvsepg / 20SEP00 63

IBM Debug Tool iE =TEo

—— T | E—

Application Development Solutions

= Advanced debugging capabilities

—|nteractive debugging of
CICS-COBOL applications

- Multi-language applications

- Subset of COBOL language
statements for Debug commands

SET, MOVE, COMPUTE, IF,
EVALUATE, PERFORM, CALL, ...

Evaluate expressions without
recompiling

Note: Available in Full Function Feature of
COBOL for VSE/ESA,
PL/lI for VSE/ESA, or
C for VSE/ESA

© 1BM 1999, 2000 cobvsepg / 11AUG00 64

COBOL Report Writer Precompiler £ =S5,

= Continued support for COBOL Report
Writer macros via the COBOL Report
Writer Precompiler (5798-DYR)

e Convert Report Writer statements to
non Report Writer

o Allows Report Writer statements in
COBOL for VSE/ESA applications

© IBM 1999, 2000 cobvsepg / 20SEP00 65

Summary - What Was Covered £ =55

= Position COBOL for VSE/ESA

= Support of Features Introduced
by VS COBOL II

= New Language Features with
COBOL for VSE/ESA

= Language Environment Support

= Debug Tool Support

cobvsepg / 11AUGO00 6 6

