
© IBM1999, 2000

Performance Tips and Techniques
for VSE COBOL and

Language Environment 

COBVSE_PERFTIPS / 07APR00



© IBM1999, 2000

The performance numbers given in this
presentation were originally created with the
MVS environment and have not been validated
for VSE. However, the numbers can be used to
show the relative savings that can be achieved
under VSE.

Disclaimer

COBVSE_PERFTIPS / 07APR00 2



© IBM1999, 2000

Compiler options for speed and profit

Run-time options for speed and efficiency

COBOL and LE features affecting run-time
performance

COBOL coding tips

CICS performance considerations

Year 2000 performance considerations

Topics

3COBVSE_PERFTIPS / 07APR00



© IBM1999, 2000

NUMPROC
PFD is fastest, but MIG is faster than NOPFD

11% faster to equal

OPTIMIZE
OPTIMIZE(STD) is 4% faster than NOOPT,
with a range of 17% faster to equal

OPTIMIZE(FULL) can be much faster for programs
with VALUE clauses that are called in initial state
(CALL and CANCEL, PROGRAM IS INITIAL)

One program that had 500 unreferenced data items was
80% faster with OPT(FULL) over STD

RENT
and NORENT are equivalent

Compiler options for speed and profit

COBVSE_PERFTIPS / 07APR00 4



© IBM1999, 2000

SSRANGE
Compiled w/SSRANGE, run with CHECK(ON)

is 4.3% slower than NOSSRANGE
Compiled w/SSRANGE, run with CHECK(OFF)

is 2.1% slower than NOSSRANGE
Compiled w/SSRANGE, run with CHECK(ON)

is 1.4% slower than with CHECK(OFF)

TEST
TEST(ALL,SYM) is 14% slower than NOTEST, range equal to 59% slower
TEST(NONE,SYM) is equal to NOTEST

TRUNC
TRUNC(OPT) is 27% faster than TRUNC(BIN) range 92% faster to equal
TRUNC(STD) is 26% faster than TRUNC(BIN) range 88% faster to equal
TRUNC(OPT) is 5% faster than TRUNC(STD) range 49% faster to equal

Compiler options for speed and profit ...

COBVSE_PERFTIPS / 07APR00 5



© IBM1999, 2000

Recommendations for speed and useability

NOCMPR2

FASTSRT

NUMPROC(MIG)

OPTIMIZE(STD)

RENT

NOSSRANGE

NOTEST or TEST(NONE,SYM)

TRUNC(OPT)

Compiler options for speed and profit ...

COBVSE_PERFTIPS / 07APR00 6



© IBM1999, 2000

AIXBLD
For VSAM files with alternate indexes
One VSAM program using AIXBLD is 8% slower than with NOAIXBLD

ALL31
ALL31(ON) is 1% faster than ALL31(OFF), range 4% faster to equal
One program with many library routine calls was 10% faster wuth
ALL31(ON)

CBLPSHPOP
Changes behavior of CICS condition handling
CBLPSHPOP(OFF) much faster for 2nd thru nth EXEC CICS LINK

CHECK
CHECK(ON) with SSRANGE is 2% slower than with CHECK(OFF)

range equal to 20% slower

Run-time options for speed 
and efficiency

COBVSE_PERFTIPS / 07APR00 7



© IBM1999, 2000

RPTOPTS
RPTOPTS(ON) is equivalent to RPTOPTS(OFF), range equal to 2% slower

RPTSTG
RPTSTG(ON) is 5% slower than RPTSTG(OFF)

range equal to 37% slower
RPTSTG(ON) can degrade CALL intensive applications 160% or more!

RTEREUS
For special cases only! Bad side-effects
Overhead of assembler MAIN calling COBOL sub is 99% less

STORAGE
STORAGE(00,00,00) is 7% slower than STORAGE(NONE,NONE,NONE)

Range equal to 57% slower
CALL intensive applications can be 160% slower

Run-time options for speed 
and efficiency ...

COBVSE_PERFTIPS / 07APR00 8



© IBM1999, 2000

STORAGE tuning
Use the RPTSTG(ON) option to get storage reports
Use the values returned by the RPTSTG(ON) option as the size of the initial
blocks of storage for the HEAP, ANYHEAP, BELOWHEAP, STACK, and
LIBSTACK run-time options

IBM defaults for storage options(non-CICS)
ANYHEAP(16K,8K,ANYWHERE,FREE)
BELOWHEAP(8K,4K,FREE)
HEAP(32K,32K,ANYWHERE,KEEP,8K,4K)
LIBSTACK(8K,4K,FREE)
STACK(128K,128K,BELOW,KEEP)

For COBOL-only applications:
STACK(64K,64K,BELOW,KEEP)

For AMODE(31) applications:
STACK(,,ANYWHERE,)

Run-time options for speed
and efficiency ...

COBVSE_PERFTIPS / 07APR00 9



© IBM1999, 2000

Recommendations for speed and useability
NOAIXBLD
ALL31(ON)

if CICS or if all programs are AMODE=31

CHECK(OFF)
NODEBUG
RPTOPTS(OFF)
RPTSTG(OFF)
NORTEREUS
STORAGE(00,,,)

if coming from WSCLEAR environment

STORAGE(NONE,,,)
if coming from NOWSCLEAR environment

NOTEST or TEST(NONE,SYM)
TRAP(ON)

Run-time options for speed
and efficiency ...

COBVSE_PERFTIPS / 07APR00 10



© IBM1999, 2000

Assembler driver calling COBOL programs repeatedly
Use a REUSABLE run-time environment

ILBDSET0, IGZERRE
ILBDSET0 will set up both DOS/VS COBOL and COBOL
portion of Language Environment
IGZERRE sets up only COBOL portion
ILBDSET0 should be converted to IGZERRE
Assembler main calling IGZERRE before calling COBOL
is 99% faster than not calling IGZERRE first

CEEENTRY and CEETERM
LE-conforming assembler MAIN calling COBOL is 99% faster
than non LE-conforming

CEEPIPI
Similar to IGZERRE, but works for all languages.
Can invoke MAIN or SUB programs

Add a COBOL stub in front of assembler driver

COBOL/LE features affecting
performance

COBVSE_PERFTIPS / 07APR00 11



© IBM1999, 2000

Mixing older COBOL programs with newer ones

DOS/VS COBOL mixed with COBOL for VSE/ESA

Both the DOS/VS COBOL and COBOL for VSE/ESA
parts of Language Environment must be used

Costs extra at INIT and TERM

Converting to COBOL for VS/ESA will avoid DOS/VS
COBOL run-time init and term

COBOL/LE features affecting
performance ...

COBVSE_PERFTIPS / 07APR00 12



© IBM1999, 2000

Subscripting
External decimal (USAGE DISPLAY)
Binary

Indexing
INDEXED BY phrase of OCCURS
USAGE IS INDEX

Which is fastest, and which slowest?
External Decimal = 4 instructions per reference
Binary with TRUNC(OPT or STD) = 2 instructions
Binary with TRUNC(BIN) = 4 instructions including CVD
Indexes = 1 instruction

Slowest is binary with TRUNC(BIN)

For programs with lots of table processing, use
INDEXES to really speed things up!

COBOL coding tips - 
table element references

COBVSE_PERFTIPS / 07APR00 13



© IBM1999, 2000

Given these data descriptions:
77 SUB1 PIC 9(4) USAGE BINARY.
01 GRP1.

05 TAB1 OCCURS 1000 INDEXED BY TABINDX.
10 SALES PIC 9(7) PACKED-DECIMAL.
10 EXPENSES PIC 9(7) PACKED-DECIMAL.
10 INVENTORY PIC 9(7) PACKED-DECIMAL.

Slow code:
PERFORM VARYING SUB1

FROM 1 BY 1
UNTIL SUB1 > 1000

COMPUTE SALES-TOTAL = SALES-TOTAL + SALES(SUB1)
COMPUTE EXPENSE-TOTAL = EXPENSE-TOTAL + EXPENSES(SUB1)
COMPUTE INVENTORY-TOTAL = INVENTORY-TOTAL + INVENTORY(SUB1)

END-PERFORM

Fast code:
PERFORM VARYING TABINDX

FROM 1 BY 1
UNTIL TABINDX > 1000

COMPUTE SALES-TOTAL = SALES-TOTAL + SALES(TABINDX)
COMPUTE EXPENSE-TOTAL = EXPENSE-TOTAL + EXPENSES(TABINDX)
COMPUTE INVENTORY-TOTAL = INVENTORY-TOTAL + INVENTORY(TABINDX)

END-PERFORM

COBOL coding tips - 
table element references ...

COBVSE_PERFTIPS / 07APR00 14



© IBM1999, 2000

VSAM files/datasets

Increase number of buffers
Data buffers (BUFND) for sequential access
Index buffers (BUFNI) for random access

Control interval size (CISZ)
A smaller CISZ results in faster retrieval for random processing at
the expense of inserts
A larger CISZ is more efficient for sequential processing
In general: large CISZ and buffer space may improve performance

Fastest access mode? In general:
SEQUENTIAL is fastest
DYNAMIC is next
RANDOM access is the least efficient

VSAM buffers above the 16 MB line
Programs compiled with VS COBOL II Release 3.2 or later
Running under Language Environment/VSE 1.4

COBOL coding tips - I/O performance

COBVSE_PERFTIPS / 07APR00 15



© IBM1999, 2000

EXEC CICS LINK slower under Language Environment
than under VS COBOL II

Each LINK or XCTL creates a new run-unit (enclave)
VS COBOL II transactions with lots of CICS LINKs can be up
to 50% slower

Language Environment uses more storage under
CICS than VS COBOL II

May need to increase CICS extended user DSA
Will need to increase CICS user DSA if using ALL31(OFF)
Why more storage?

Language Environment phases are bigger than VS COBOL II
Language Environment has bigger control blocks than VS COBOL II
Language Environment has more pools of storage than VS COBOL II

CICS performance considerations -
bad news

COBVSE_PERFTIPS / 07APR00 16



© IBM1999, 2000

EXEC CICS LINK much slower than COBOL CALL
TestcaseA:

COB1--LINK-->COB2--LINK-->COB3
COB1 EXEC CICS LINK to COB2 1000 times
return via EXEC CICS RETURN

TestcaseB:
COB1--DYNCALL-->COB2--DYNCALL->-COB3
COB1 CALL identifier to COB2 1000 times
return via GOBACK

TestcaseA CPU time: 0.85 SEC
TestcaseB CPU time: 0.17 SEC
EXEC CICS LINK has about 5 TIMES
the overhead of COBOL dynamic CALL

Convert CICS LINK/XCTL to COBOL CALL
Get even more benefit by going to CBLPSHPOP(OFF)!

CICS performance considerations -
CALL

COBVSE_PERFTIPS / 07APR00 17



© IBM1999, 2000

CBLPSHPOP run-time option
Performance testing shows that overhead of
CBLPSHPOP(ON) is significant!

No affect on EXEC CICS LINK/XCTL
For 2nd thru nth CALL to a program,
overhead is 1500%!
Each CALL takes 15 TIMES the overhead
of CBLPSHPOP(OFF)

When can I use CBLPSHPOP(OFF)?
If no CICS HANDLE ABEND, HANDLE AID, HANDLE
CONDITION, or IGNORE CONDITION statements
Any program that does their own
EXEC PUSH/POP HANDLE
Any program that does not use CALL statements
will not be affected

CICS performance considerations -
CALL ...

COBVSE_PERFTIPS / 07APR00 18



© IBM1999, 2000

New LE/VSE APAR PQ23382 and LE/VSE COBOL
APAR PQ23385

Reduces the overhead of a CICS LINK
(available March 1999)

for an ALL31(ON) application by approximately 10%
for an ALL31(OFF) application achieved nearly a 30% CPU
savings per CICS LINK

Includes VSCR which reduces amount of LE/VSE
below the line storage by moving modules above
16mb line

Support for the new RUWAPOOL option is in the
base code for CICS TS for VSE/ESA

CICS performance considerations -
good news!

COBVSE_PERFTIPS / 07APR00 19



© IBM1999, 2000

What to do?

Increase ERDSASZE/EDSALIM for CICS TS VSE

Put Language Environment modules in SVA

Use storage tuning to reduce GETMAIN/FREEMAIN
Remember the 16 byte storage buffer when setting values:
specified-value = desired-value - 16
Example: If you want 4K, specify 4080

Do not change RESERVE stack size to anything other
than 0K

This almost implies that the RESERVE stack should be 8K in order for
WSCLEAR to work.
The RESERVE stack is not needed under CICS. If an amount is coded,
we end up spending an extra getmain BELOW for that size for every
rununit.

CICS performance considerations -
storage

COBVSE_PERFTIPS / 07APR00 20



© IBM1999, 2000

What to do?
use ALL31(ON)
Here are tables of storage usage for
COBOL with Language Environment under CICS:

ALL31(OFF) TRAN(*) TRAN below Enclave
above

Enclave
below

LE 1.5 13524 1528 20232 20400
LE 1.7 13564 1568 20992 21160

ALL31(ON) TRAN(*) TRAN below Enclave
above

Enclave
below

above Enclave 0 28424 0

below 13564 0 29184 0

Note: These numbers are based on MVS
but can apply to VSE/ESA.

CICS performance considerations -
storage ...

COBVSE_PERFTIPS / 07APR00 21


