
IBM TRAINING

E57

Don Stoever

Securing VSE with SSL and Cryptography

®

Orlando, FL

© IBM Corporation 2006

SSL for VSE

Connectivity Systems

Product Development

Don Stoever

Agenda

• The Need
– Secure communications with applications on VSE

• The Solution
– The SSL protocol

• The Tools
– Standard cryptographic algorithms

• The Implementation
– Installing SSL on VSE

• The Benefits
– Creating secure applications for VSE

The Need

• E-Business
• E-Commerce
• Secret web sites and ports
• Viruses
• Hackers
• Denial of Service attacks
• Authentication
• Confidentiality
• Data Integrity

The Need: IP problems

• IP packets have no inherent security
– Relatively easy to forge the addresses

– Modify the contents

– Replay old packets

– Contents easy to inspect

• No guarantee that IP packets are:
– From the claimed sender

– Contain the original data set by sender

– Not inspected by a third party

The Need: TCP problems

• TCP provides a reliable connection
– Lost packets are retransmitted

– But no:
• Authentication

• Confidentiality

• Integrity

• Repudiation

Application Message Integrity

• Messages
– contain sensitive data

– travel a complex path

– must be authenticated

– must be kept confidential

– must not be altered

• Why not AMI for VSE ???

Why not just front end VSE ?

• Native solution is:
– More secure
– Efficient
– Cheaper
– Easy to maintain
– Less complicated

• VSE can now do it all too…
• So, why not have secure messaging applications

on VSE ?

The Solution: SSL for VSE

• SSL provides secure messaging for TCP/IP
applications on VSE by using:
– Public Key Infrastructure for server and client

authentication

– Data Encryption for confidentiality

– One-way keyed hash functions for message
integrity

– Digital Signatures for proof of authorship

The Solution:
TCP with SSL Protocol

Secure

HTTP FTP

Telnet User Applications

IP

TCP

SSL

End User

SSL Overview

• Two sockets connected
– One must be a Server the other a Client

• Server always authenticated

• Client authentication optional

• Client and Server must:
– Agree on cipher algorithms

– Establish crypto keys

SSL Handshake Hello’s

Client_Hello

Server_Hello

Certificate_Request (if using client authentication)

Server_Hello_Done

Server_Certificate

SSL Handshake Client Messages

Client_Key_Exchange

Change_Cipher_Spec

Client_Finished

Client_Certificate(Optional)

Client_Certificate_Verify (Optional)

SSL Handshake Server Messages

Server_Change_Cipher_Spec

Server_Finished

Server_DataClient_Data

SSL Handshake Resuming a
Previous Session

Client_Hello

Server_Hello

Finished

Change_Cipher_Spec

Change_Cipher_Spec

Client_Finished

SSL Alerts

Close_Notify_Warning

Handshake_Failure

Bad_Certificate_Fatal

Bad_Record_MAC_Fatal

SSL Enabled Server on VSE

• Server allocates a socket binds to a port, listens,
and issues a accept.

• Client connects to the VSE server and sends a
“client hello”.

• Server passes control to the SSL4VSE secure
socket initialization routine which performs the
actual SSL handshake.

• Server responds to the “client hello” by choosing
the cipher algorithms that will be used during the
session and sending the clients its x.509v3 PKI
certificate.

SSL Enabled Server on VSE

• Key material is generated that will be used
for encryption, decryption, and message
authentication.

• Once the handshake is completed a secure
connection is ready, and the server and
client can then use secure socket read and
write functions of the SSL4VSE API.

The Tools: Cryptography
Algorithms

• SSL requires cryptography functions
– X509v3 PKI certificates for identification

– RSA for key exchange

– DES for data encryption

– MD5 and SHA-1 for message hashing

– HMAC for message authentication

Crypto Toolkit for VSE

• API for cryptography standards
– Message Digest algorithms

• MD5 RFC1321
• SHA-1 FIPS Pub 180-1

– Bulk Data encryption
• DES FIPS Pub 46-3
• Triple DES Ansi x9.52 Triple DES

– Message authentication
• HMAC RFC2104

– Digital Signatures
• RSA PKCS#1

RSA Public Key encryption

• Used by SSL for initial key exchange and
digital signatures

• Separate keys used for encrypt and decrypt
• Public key shared with others in signed

certificate
• Private key used to decrypt and for creating

digital signatures
• RSA patent expired in September, 2000

Installing SSL on VSE

• Install a SSL enabled client
– MS-IE, QWS3270 Secure, Zephyr Passport, etc

• Create a RSA private key file

• Submit a CSR request to a Certificate
Authority.
– It will contain your public key and is digitally

signed with your private key

Installing SSL on VSE

• Install the CA signed certificate

• Install the CA root certificate

• Configure the SSL daemon on VSE

Example SSL enabled client

• Microsoft Internet Explorer
– Must be version 5 or higher

– Under the the "Tools - Internet Options -
Advanced - Security“ the "Use SSL/TLS“
checkbox must be checked

– Under the the "Tools - Internet Options –
Content - Certificates the CA root certificate
must be installed

Creating a RSA Key file

• Based on RSA PKCS#1
// EXEC CIALSRVR

SETPORT 5622

/*

* * RSA private key created on PC and sent to VSE

/&

Creating a CSR Request

• Based on RFC2314
// EXEC CIALCREQ
Webmaster: dstoever@tcpip4vse.com
Phone: xxx-xxx-xxxx
Server: TCP/IP for VSE 1.4
Common-name: www.dstoever.com
Organization Unit: Development
Organization: Connectivity Systems
Locality: Columbus
State: Ohio
Country: US
/*

Install Certificate Authority Root
Certificate

// EXEC CIALROOT
-----BEGIN CERTIFICATE-----

MIICpDCCAg2gAwIBAgIDPltCMA0GCSqGSIb3DQEBBAUAMIGHMQswCQYDVQQGEwJa

QTEiMCAGA1UECBMZRk9SIFRFU1RJTkcgUFVSUE9TRVMgT05MWTEdMBsGA1UEChMU

VGhhd3RlIENlcnRpZmljYXRpb24xFzAVBgNVBAsTDlRFU1QgVEVTVCBURVNUMRww

…

IyqW1vNOcNo=

-----END CERTIFICATE-----

/*

Install CA Signed certificate

// EXEC CIALCERT
-----BEGIN CERTIFICATE-----

MIICpDCCAg2gAwIBAgIDPltCMA0GCSqGSIb3DQEBBAUAMIGHMQswCQYDVQQGEwJa

QTEiMCAGA1UECBMZRk9SIFRFU1RJTkcgUFVSUE9TRVMgT05MWTEdMBsGA1UEChMU

VGhhd3RlIENlcnRpZmljYXRpb24xFzAVBgNVBAsTDlRFU1QgVEVTVCBURVNUMRww

…

IyqW1vNOcNo=

-----END CERTIFICATE-----

/*

IETF Standards Implemented

http://www.ietf.org/html.charters/tls-charter.html

• RFC2246 The TLS Protocol
– Handshake requires server certificate from VSE

– RSA used for generating key material

– DES used for application data encryption

– HMAC-SHA1 used for message authentication

IETF Standards Implemented

• RFC1321 The MD5 Message-Digest Algorithm

• RFC2104 HMAC: Keyed hashing for message
authentication

• RFC2202 Test Cases for HMAC-MD5 and
HMAC-SHA-1

• RFC1113 Universal Printable Character encoding

• RFC2459 Internet x509v3 PKI certificates

• Internet draft HTTP over TLS

FIPS Standards

• PUB 46-3 Data Encryption Standard (DES)

• PUB 81 DES Modes of Operation

• Cipher Block Chaining mode

• PUB 180-1 Secure Hash Standard (SHA-1)

• http://www-08.nist.gov/cryptval/des.htm

• http://csrc.nist.gov/pki/nist_crypto/welcome
.html

SSL Implementation on VSE

• Using the SSL Pass-Through server
– Defining the SSL pass-through daemon on VSE

• Using the SSL API on VSE
– Client Server application without SSL
– Client Server application with SSL

• Using Cryptography APIs on VSE
– Using DES to encrypt data
– Using SHA-1 to create a message fingerprint
– Using RSA to create a digital signature
– Using BASE64 encoding to transmit binary data

Using the SSL Pass-Through
Server

• Allows quick and easy implementation of
SSL

• No application modifications
• SSLD on VSE performs handshake with

SSL enabled client
– Encrypts outbound data to SSL client
– Decrypts inbound data from SSL client

• Currently used by TelnetD

Defining the SSL daemon on
VSE

• DEFINE TLSD,
– ID=TLSD01, Identifier
– PORT=443, We listen here
– PASSPORT=23 Pass to real daemon
– CIPHER=0A096208 Allowed ciphers
– CERTLIB=KEYLIB Library name
– CERTSUB=SSLKEYS Sublibrary name
– CERTMEM=SSL4VSE Member name
– TYPE=1 Server application
– MINVERS=0300 Protocol version

Implementing SSL into Applications
on VSE

• Two sockets connected
– One must be a Server the other a Client

• Server always authenticated

• Client authentication optional

• Client and Server must:
– Agree on cipher algorithms

– Establish crypto keys

SSL for VSE API

• Based on IBM OS/390 SSL Programming
Guide and Reference, manual number
SC24-5877
– Easy porting for OS/390 SSL applications

– Callable from either C or BAL

Client Server without SSL

• Client
– Allocate socket

– Connect to server

– Read/Write socket

– Close socket

• Server
– Allocate socket

– Bind socket to a port

– Listen on port

– Accept client
connection

– Read/Write socket

– Close socket

Client Server with SSL

• Client
– SSL setup environment

– Allocate socket

– Connect to server

– SSL socket
initialization

– SSL read/write socket

– SSL Close socket

– Close socket

• Server
– SSL setup environment

– Allocate socket

– Bind socket to a port

– Listen on port

– Accept client connection

– SSL socket initialization

– SSL read/write socket

– SSL Close socket

– Close socket

SSL for VSE API

• Based on IBM OS/390 SSL Programming
Guide and Reference, manual number
SC24-5877
– Easy porting for OS/390 SSL applications

– Callable from either C or BAL

Setup SSL environment

• C function = gsk_initialize()
– C header file = SSLVSE.H

• BAL vcon = IPCRINIT
– BAL macro = SSLVSE.A

• Standard linkage
– R13 = save area
– R14 = return address
– R15 = entry point
– R1 = parameter list

• On return R15 = return code
– Negative = failed, R1=@reason

Setup SSL environment

• Minimum acceptable protocol version

• Identify lib.sublib containing the private
key and certificates

• Session timeout value for fast client
reconnect

• Specifies the method for verifying client
certificates

Initialize SSL socket

• C function = gsk_secure_soc_init()
– C header file = SSLVSE.H

• BAL vcon = IPCRSINI
– BAL macro = SSLVSE.A

• Standard linkage
– R13 = save area
– R14 = return address
– R15 = entry point
– R1 = parameter list

• On return R15 = return code
– Negative = failed, R1=@reason

Initialize SSL socket

• Type of handshake
– Server/Client without client authentication
– Server/Client with client authentication

• List of acceptable cipher suites
– RSA512-Null-MD5, RSA512-Null-SHA
– RSA512-DES40-SHA
– RSA1024-DES-SHA
– RSA1024-TripleDES-SHA

Initialize SSL socket

• @ of read socket routine
• @ of write socket routine
• Calls back into your code for reading and

writing to the actual socket
• Parmlist passed contains:

– Fullword handle for use by application
– @ of data receive/send area
– Length of data receive/send area

Using cryptography APIs on
VSE

• SSL requires cryptography functions
– X509v3 PKI certificates for identification

– RSA for key exchange

– DES for data encryption

– MD5 and SHA-1 for message hashing

– HMAC for message authentication

CryptoVSE API algorithms

• API for cryptography standards
– Message Digest algorithms

• MD5 RFC1321
• SHA-1 FIPS Pub 180-1

– Bulk Data encryption
• DES FIPS Pub 46-3
• Triple DES Ansi x9.52 Triple DES

– Message authentication
• HMAC RFC2104

– Digital Signatures
• RSA PKCS#1

Using DES to encrypt data

• C function = cry_des_encrypt()
– C header file = SSLVSE.H

• BAL vcon = CRYDESEC
– BAL macro = SSLVSE.A

• Standard linkage
– R13 = save area
– R14 = return address
– R15 = entry point
– R1 = parameter list

• On return R15 = return code
– Negative = failed, R1=@reason

Using DES to encrypt data

• Parameters addresses off R1
– 0(R1) = address of data to encrypt

– 4(R1) = length of data to encrypt

– 8(R1) = address of key

– 12(R1) = length of key

– 16(R1) = address of work area

– 20(R1) = length of work area

Using AES128 to encrypt data

• C function = cry_aes128_encrypt()
– C header file = SSLVSE.H

• BAL vcon = CRYA12EC
– BAL macro = SSLVSE.A

• Standard linkage
– R13 = save area
– R14 = return address
– R15 = entry point
– R1 = parameter list

• On return R15 = return code
– Negative = failed, R1=@reason

Using AES128 to encrypt data

• Parameters addresses off R1
– 0(R1) = address of data to encrypt

– 4(R1) = length of data to encrypt

– 8(R1) = address of key

– 12(R1) = length of key

– 16(R1) = address of work area

– 20(R1) = length of work area

Using SHA-1 to create a message
fingerprint

• C function = cry_sha_hash()
– C header file = SSLVSE.H

• BAL vcon = CRYSHAHA
– BAL macro = SSLVSE.A

• Standard linkage
– R13 = save area
– R14 = return address
– R15 = entry point
– R1 = parameter list

• On return R15 = return code
– Negative = failed, R1=@reason

Using SHA-1 to create a message
fingerprint

• Parameters addresses off R1
– 0(R1) = address of input data for hash

– 4(R1) = length of input data

– 8(R1) = not used

– 12(R1) = not used

– 16(R1) = address of work area

– 20(R1) = length of work area

• 20-byte SHA-1 hash will be returned in the
supplied work area

Using RSA to create a digital
signature

• C function = cry_rsa_signature_create()
– C header file = SSLVSE.H

• BAL vcon = CRYRSASI
– BAL macro = SSLVSE.A

• Standard linkage
– R13 = save area
– R14 = return address
– R15 = entry point
– R1 = parameter list

• On return R15 = return code
– Negative = failed, R1=@reason

Using RSA to create a digital
signature

• Parameters addresses off R1
– 0(R1) = address of input data

– 4(R1) = length of input data

– 8(R1) = address of RSA private key

– 12(R1) = length of RSA private key

– 16(R1) = address of work area

– 20(R1) = length of work area

• 64 or 128 byte RSA PKCS#1 digital signature
will be returned in the supplied work area

Using BASE64 encoding to
transmit binary data

• C function = cry_universal_print_encode()
– C header file = SSLVSE.H

• BAL vcon = CRYUPENC
– BAL macro = SSLVSE.A

• Standard linkage
– R13 = save area
– R14 = return address
– R15 = entry point
– R1 = parameter list

• On return R15 = return code
– Negative = failed, R1=@reason

Using BASE64 encoding to
transmit binary data

• Parameters addresses off R1
– 0(R1) = address of input data

– 4(R1) = length of input data (48)

– 8(R1) = not used

– 12(R1) = not used

– 16(R1) = address of work area

– 20(R1) = length of work area

• 64 bytes of universally printable characters will
be returned in the supplied work area

Secure FTP

• SecureFTP provides:
– User authentication

– Privacy

– Integrity

• By using industry standard cryptographic
functions :
– RSA digitally signed certificates

– DES or Triple-DES encryption

– SHA-1 or MD5 secure hash functions

Secure FTP

• Internet Engineering Task Force(IETF)
draft document:

• "Securing FTP with TLS"

• Widely accepted de-facto standard for
securely transmitting files with the FTP
protocol.

Secure FTP

– SSL 3.0 and TLS 1.0 standards utilized for FTP
clients and servers running on the VSE
platform

– Provides protection for commands and data
transmitted with FTP natively on VSE

Secure FTP

• Explicit SecureFTP session requires:
– AUTH SSL command must be issued by client and

must be first command after OPEN to the foreign
connection

– SSL session negotiated explicitly after AUTH SSL
command

• Implicit SecureFTP session requires:
– Server must use default SFTP port 990
– SSL session negotiated implicitly after open with no

need for AUTH SSL command

Secure FTP

• Command connection must be secure for
userids and passwords

• But data connection security is optional

• PROT command defines security for the
data connection:
– PROT C – Clear No Privacy or Integrity

– PROT P – Private Privacy and Integrity

Secure FTP

• All controlled by Server Policy that may:
– Deny any commands before SSL negotiation

– Define level of SSL/TLS to be used

– Define cipher suites to be used

– Allow SSL/TLS client authentication instead of
USER/PASS, or require both!

– Insist on data connection security

Questions ?

	Return to Index :

