
IBM TRAINING

E37

Don Stoever

What Mother Never Told You about FTP on VSE

®

Orlando, FL

© IBM Corporation 2006

What Mother Never Told You
about FTP on VSE

Connectivity Systems
Product Development

Don Stoever

RFC 959
The File Transfer Protocol

• The objectives of FTP are:
– to promote sharing of files and encourage use

of remote computers
– to shield a user from variations in file storage

systems among hosts
– to transfer data reliably and efficiently

RFC 959
The File Transfer Protocol

• Protocol is a set of rules
• Following the rules allows totally different

systems to talk to each other

FTP Clients

• All ftp transfers have a single client, also
referred to as the control connection

• FTP clients use the telent protocol to send
commands and receive replies to a local and
foreign FTP server

FTP Clients

• Examples of clients
– // EXEC FTPBATCH
– // EXEC FTP
– WS_FTP Pro
– MS-DOS FTP command
– VM FTP command

FTP Clients

• Client opens connection to a:
– Local FTP server(daemon)
– Foreign FTP server(daemon)
– Both usually require a userid and password
– Clients often:

• mask actual commands(DIR=LIST)
• issue commands to each server at the same time

– Both the foreign and local servers must support the
standard set of commands as defined in RFC959

FTP Protocol

Control

Local Daemon Foreign Daemon

FTP Server commands
• ABOR
• ACCT
• ADAT
• ALLO
• APPE
• AUTH
• CDUP
• CONF
• CWD
• CWDX
• DELE
• ENC

• EVNT
• FEAT
• GEOJ
• HELP
• LIST
• MIC
• MKD
• MODE
• NLST
• NOOP
• PASS
• PASV

FTP Server commands
• PBSZ
• PORT
• PROT
• PWD
• PWDX
• QUIT
• REIN
• REST
• RETR
• RMD
• RNFR
• SITE

• SMNT
• STAT
• STOR
• STOU
• STRU
• SYST
• TYPE
• USER
• XCWD
• XMKD
• XPWD
• XRMD

FTP Clients

• FTP servers must return a 3 digit number as a
reply(s) to a command

• Example // EXEC FTPBATCH
– LUSER DON

• The client ftpbatch sends
– USER DON

• telnet string to the local ftp server on VSE
– The VSE ftp server replies with a:

• 331 User name okay, need password

FTP DIR

• DIR
– F: PORT 68,77,189,205,16,5
– F: 200 PORT command okay
– F: LIST
– F: 150 File Listing Follows in ASCII mode.
– F: 226 Transfer finished successfully.

FTP Put

• PUT
– %SAM0,SAM,FB,80,800 FTPBSAM0.TXT

• L: PASV (VSE is passive end)
– L: 227 Entering Passive Mode
– (068,077,189,205,016,038).

• F: PORT 68,77,189,205,16,38
– F: 200 PORT command okay
– Tells foreign to issue active open to VSE

• I hate Firewalls and NATs!

FTP Put

• FTP910I Data connection open
FTPBATCH,66.193.91.153(20)

• Data connection now is open…
• Command control connection waiting for

226 replies to RETR and STOR commands

FTP Put

• F: STOR FTPBSAM0.TXT
– F: 150 "/AAAJUNK/FTPBSAM0.TXT" file

ready to receive in ASCII mode
• IPF100I Sequential I/O Handler Startup

FTP Put

• L: RETR %SAM0,SAM,FB,80,800
– L: 150-About to open data connection
– File: Local.File.Definition
– Type: ASCII Recfm: FB Lrecl: 80 Blksize: 800
– CC=ON UNIX=OFF RECLF=OFF TRCC=OFF

CRLF=ON
– Translate with OS_02
– 150 File status okay; about to open data connection

FTP Put

• FTP936I Sent 8001 bytes for file
Local.File.Definition
– L: 226-Bytes sent: 656,082
– Records sent: 8,001
– Transfer Seconds: 5.03 (128K/Sec)
– File I/O Seconds: .39 (640K/Sec)
– 226 Closing data connection.
– F: 226 Transfer finished successfully.

FTP Put

• ACTIVE put in before PUT:
– F: PASV
– F: 227 Entering Passive Mode (66,193,91,153,140,64)
– L: PORT 66,193,91,153,140,64
– L: 200 Command okay
– F: STOR FTPBSAM0.TXT
– FTP321W Connection stalled at 12:01:40
– F: 425 Timeout on network transaction - closing

connection.

FTP Data Connection

• Type
– Image

• Binary data
– ASCII

• Text files
• Lines end with CR/LF x0A0D

– EBCDIC
• Text files
• Lines end with NL x15

FTP Data Connection

• Mode
– Stream

• Data is stream of bytes

– Block
• Data is series of blocks with headers

– Compressed
• Supported never seen used

FTP Data Connection

• Structure
– File

• Default
• Data is continuous bytes

– Record
• Data is framed

Mode Stream File

• Stream File
• Image

– No control codes
– End of file is connection close

• ASCII
– End of record is CRLF
– End of file is connection close

• EBCDIC
– End of record is NL
– End of file is connection close

Mode Stream Record

• Stream Record
– Image/Binary

• Escape char is x'FF'
• Next byte is meaning:

– 1111 1111 - Single data byte
– 0000 0001 - EOR
– 0000 0010 - EOF
– 0000 0011 - EOR & EOF

Mode Stream Record

• Stream Record
– ASCII

• Escape char is x'FF'
• Next byte is meaning:

– 1111 1111 - Single data byte
– 0000 0001 - EOR
– 0000 0010 - EOF
– 0000 0011 - EOR & EOF

Mode Stream Record

• Stream Record
– EBCDIC

• Escape char is x'FF'
• Next byte is meaning:

– 1111 1111 - Single data byte
– 0000 0001 - EOR
– 0000 0010 - EOF
– 0000 0011 - EOR & EOF

Mode Block

• Block File: Not supported
• Block Record Image

– 3-byte header:
– 1 byte: Type

• 1... - EOR
• .1.. - EOF
• ..1. - Unreliable (ignored)
• ...1 - Restart marker

– 2 bytes: Length
– Data follows

Mode Block Record

• Block Record EBCDIC
– 3-byte header:
– 1 byte: Type

• 1... - EOR
• .1.. - EOF
• ..1. - Unreliable (ignored)
• ...1 - Restart marker

– 2 bytes: Length
– Data follows

Mode Block Record

• Block Record ASCII
– 3-byte header:
– 1 byte: Type

• 1... - EOR
• .1.. - EOF
• ..1. - Unreliable (ignored)
• ...1 - Restart marker

– 2 bytes: Length
– Data follows

FTPBATCH as a External
Server

• Advantages:
– Moves all file opens/closes to external partition
– All I/O done outside of TCP/IP
– Free’s up tcp/ip to focus on network
– Improved recoverability
– Support for dataspaces
– Prioritize workloads

FTPBATCH as a External
Server

– // JOB FTPB0021
– // OPTION LOG,PARTDUMP
– // OPTION SYSPARM='00'
– * * Assign’s, Dlbl’s, Extent’s for all defined

files
• Should be taken from TCP/IP jcl

– // EXEC FTPBATCH,SIZE=FTPBATCH,
• PARM=‘FTPDPORT=21’

FTPBATCH as a External
Server

• // EXEC FTPBATCH,PARM=‘PARMS’
– FTPDPORT=0021
– UNIX=BIN
– MAXACT=10
– WELCOME=WMVSEDRS
– DYNFILE=NO
– ABORT=YES

FTPBATCH as a External
Server

• FTPBATCH sysipt commands:
– SET EXTTYPES NO
– SET DIAGNOSE EVENTS
– SET DIAGNOSE ON
– SET IDLETIME 36000

• Divide by 300=seconds to terminate idle sessions

– SET TERSE ON
– SET PULSE OFF

• Disables data connection pulsing

FTPBATCH as a External
Server

• FTPBATCH sysipt commands:
– MSGSUPP FTP910
– SET MSGXLOG ON
– SET DATAWECB ON
– SET SENDFAST ON
– SET FIOWAIT ON (HFS only)
– SET NULLRECD NOTHING

FTP Automatic Security

• No Need to code a security exit!!!
– SECURITY ON

• AUTO=ON
• BATCH=ON
• MODE=FAIL LOGGING=FAIL

FTP Automatic Security

• New ASECURITY command:
– ASECURITY FTPD=YES FTPC=YES
– ASECURITY BLOCKIP=YES
– ASECURITY BLOCKCNT=3

• TRUST ADD IP=66.193.91.130
• ACCESS CLEAR
• ACCESS CLEAR IP=

FTP Automatic Security

• DEFINE USER operands to create a
– FTP READ ONLY user...

• DEFINE USER
• ID=CSIVSEDR,PASSWORD=READ2357
• DATA=YYNNNNNNYNNNNNYYYNNNNNNN

NYNNYNNNNNNNNNNN
• ROOT='/HFS001/CSIVSEDR',FTP=YES

FTP Automatic Security

– DATA=YYNNNNNNYNNNNNYYYNNNNNNNNY
NNYNNNNNNNNNNN

• SXTYPASS EQU 1 - Password Check
• SXTYREAD EQU 2 - Read Check
• SXTYWRIT EQU 3 - Write Check
• SXTYUPDT EQU 4 - Update Check
• SXTYCMD EQU 9 - SITE Command check
• SXTYDEL EQU 10 - Delete check
• SXTYREN EQU 11 - Rename check
• SXTYCRT EQU 12 - Create check
• SXTYEXEC EQU 13 - EXEC command check

FTP Automatic Security

– DATA=YYNNNNNNYNNNNNYYYNNNNNNNNY
NNYNNNNNNNNNNN

• SXTYAPPE EQU 14 - APPEND check
• SXTYOPDI EQU 15 - OPDIR check
• SXTYRDD EQU 16 - RDDIR check
• SXTYCWD EQU 17 - CWD Check
• SXTYLOGI EQU 20 - Daemon LOGIN request
• SXTYMKD EQU 24 - Make directory
• SXTYRMD EQU 25 - Remove directory
• SXTYCWDL EQU 26 - Last CWD
• SXTYFCMD EQU 29 - FTPD command

FTP Automatic Security

– Suppose you want to stop any new ftp sessions
from being established on VSE

– Simply issue a:
– ASECURITY FTPD=NO

• No 220-welcome to VSE msg will be sent out to
anyone connecting into VSE on the ftp port(usually
21)

HFS Encrypted Files

• File can be stored on VSE with FTP
encrypted!!!
– Simply use the DEFINE FILE command
– DEFINE FILE

• DLBL=HFSTST,
• PUBLIC=HFSTST
• TYPE=HFS,RECFM=S,LRECL=4096
• CIPHER=SDESCBCSHA1
• CIPHERKEY=CIALHFSK

HFS Encrypted Files

• File can be stored on VSE with FTP weak or
strong cryptography and hashing for integrity
– CIPHER=NULL-NULL
– CIPHER=SDESCBC-SHA1

• Single DES

– CIPHER=TDESCBC-SHA1
• Triple DES

– CIPHER=AES128C-SHA1
• Rjindel

HFS Encrypted Files

• Allows complete control of keys and
ciphers used
– CIPHERKEY=CIALHFSK
– CIPHERKEY=user_defined
– CIPHER=KEYMASTER

FTP Security and Integrity

• Transmits commands, responses, and data
in the clear with no:
– Authentication
– Privacy
– Integrity

• Hey, wait a minute aren’t the FTP USER
and PASS commands good enough?

• What about a truncation attack?

FTP Security and Integrity

• So how can I ?
– Authenticate sender/receiver
– Guarantee Privacy of confidential data
– Guarantee Integrity of the data

Secure FTP

• Internet Engineering Task Force(IETF)
draft document:

• "Securing FTP with TLS"
• Widely accepted de-facto standard for

securely tranmitting files with the FTP
protocol.

Secure FTP

• Secure FTP provides:
– User authentication
– Privacy
– Integrity

• By using industry standard cryptographic
functions :
– RSA digitally signed certificates
– DES encryption
– SHA-1 secure hash functions.

Secure FTP

– Protection for commands and data transmitted
for the FTP protocol

– By implementing the SSL protocol for FTP
clients and servers running on the VSE
platform

– Secure FTP implements both the SSL 3.0 and
TLS 1.0 standards for security

Secure FTP

• Allow interoperation across platforms
– RFC-959 defines the FTP protocol
– RFC-2228 FTP Security Extensions
– RFC-2389 Feature Negotiation Mechanism for

FTP
– RFC-2246 defines the TLS protocol
– RFC-2577 FTP Security Considerations

Secure FTP

• New FTP commands:
– FEAT
– AUTH
– PBSZ
– PROT

Secure FTP

• FEAT command
– RFC2389 allows clients to find out what

features the FTP daemon supports
– 211-Extensions supported

• AUTH SSL
• PBSZ
• PROT

– 211 END

Secure FTP

• AUTH SSL command
– Issued by client
– Causes a SSL session to be negotiated
– Must be first command after OPEN

• All other commands rejected until SSL enabled FTP daemon
gets this!

– Protects the control/command connection to the foreign
FTP daemon

– AUTH TLS also allowed as synonym
– SSL is self-negotiating…

Secure FTP

• PBSZ command
– RFC2228 Protection Buffer Size
– Required Prior to PROT command
– Not coded by end-user

• Like when you do a PUT, internally FTP issues
PORT, RETR, STOR

– Not really used for anything but is still
required…because…

Secure FTP

• RFC2246 TLS/SSL protocol max buffer
size is 32k, because…
– has 2 byte length in its record header
– Cryptos use block ciphers DES-CBC, etc.
– DEFINE FTPD transfer buffer size

• 1.4A-E = 32k shared buffers
• 1.5A = 128k shared buffers
• 1.5B = 64k dedicated buffers

– But user defineable, BUFCNT=, BUFSIZE=

Secure FTP

• PROT command
– Defines security for the data connection
– You can just secure command connection
– Data Connection can be:

• PROT C – Clear No Privacy or Integrity
• PROT P – Private Privacy and Integrity
• PROT S – Safe No Privacy, but Integrity
• PROT E – Confidential Privacy, but no Integrity

Secure FTP

• All controlled be Server Policy that may:
– Deny any commands before SSL negotiation
– Define level of SSL/TLS to be used
– Define cipher suites to be used
– Allow SSL/TLS client authentication instead of

USER/PASS, or require both!
– Insist on data connection security

Questions?

	Return to Index :

