IBM GLOBAL SERVICES

G02

zMainframe Concepts Part 2

Brian Hatfield

|--|

Miami, FL

Mainframe Environment, Physical/Logical Partitioning, CPC Initialization and CHPIDs

Mainframe Environment, Physical/Logical Partitioning, CPC Initialization and CHPIDs

Operational Environment, I/O Configuration and HCD Overview

zSeries platform functions, Capacity on Demand and other zSeries exclusives enabling Autonomic Computing

Today's Mainframe Environment

Physical Partitioning (yesterday)

Physical partitioning, available in the 1980s is the capability of taking one physical CPC and dividing it into two separate CPCs with no sharing of resources.

- Supported on bipolar CPCs such as the 308x, 3090-x, and ES/9000 required certain CPC model configurations
 - These CPCs (model dependent) could operate in one physical Single Image (SI) or two physically partitioned (PP) images
- Physical partitioning was optionally enabled via H/W definition panels and required a POR
- Each physical partition required its own IOCDS
- Initially the two physically partitioned images could IPL only one operating system each in its architectural mode
 - Starting in the 1980s the operational architectural supported modes on various CPC H/W was 370-XA, ESA/370 and then ESA/390 which is supported on the ES/9000 through zSeries CPCs

Logical Partitioning (today)

Logical Partitioning (LPAR mode) available with PR/SM in the late1980s is the capability of taking one physical CPC and dividing it into many logical partitions, sharing and/or dedicating resources from the physical CPC.

- Supported on CPCs such as the Bipolar 3090-x, ES/9000, CMOS 9672 and zSeries
 - All zSeries CPCs supports 15 LPs in LPAR mode
 - zSeries 990 supports greater than 15 LPs and only operates in LPAR mode
- IOCDS must support LPAR mode
- Setup is done via H/W panels or activation profiles on CMOS CPCs
 - The operational architectural supported mode that is initially available to every LP is ESA/390, (supported on the 3090-x through zSeries CPCs)
 - A special mode, ICF (Internal Coupling Facility) is also supported on LPs

NOTE: zSeries supports z/Architecture,

z/Architecture support is provided by the OS and switches from ESA/390 to z/Architecture at IPL

Today's CPCs (9672s and zSeries) may be defined via activation profiles to operate in one of two modes at POR time

- LPAR mode Resources shared and/or dedicated
- ESA/390 mode Resources dedicated to a single image
 - This mode is typically called *NATIVE* or *BASIC* mode

Modes of Operation

LPAR mode

Basic Mode LPAR Mode POR in LPAR Mode POR in Basic Mode • Up to 15 partitions (z990 > 15) One Operating System • One operating system/partition All processor resources • A partition may be defined to operate in either ESA/390 or as a available to the operating Coupling Facility system • CPs may be shared or dedicated to - CPs, Storage, CHPIDs a partition ESA/390 or ESA/390 TPF • Storage allocated to the partition at modes supported LP activation • Coupling Facility mode is LP owns assigned storage NOT supported - requires

- CHPIDs may be dedicated, reconfigurable, shared or spanned
 - ESA/370 mode is not supported on the G4, G5,G6 or zSeries

CPC Activation Overview

- CPC Activation is initiated and monitored at the Hardware Management Console (HMC).
- Activation is controlled by activation profiles that reside on the Support Element (SE).
- Three types of activation profiles exist on the SE.
 - -Reset type Profile
 - Controls mode of operation (Basic or LPAR), supported I/O configurations and POR process.
 - -Image type Profile
 - Defines LP options and resources (LPAR mode only).
 - -Load type Profile
 - Defines IPL options, load address, and parameters.

Basic Mode Initialization Overview

Power on Reset (POR) in Basic mode to initialize the CPC

- Initialize CPs, storage, and channel subsystem
 - -Load selected IOCDS into the Hardware System Area
 - -POR complete CPC status is Not Operating
- •Initial Program Load (IPL)
 - -IPL the operating system
 - Additional steps required for zSeries
 - Determine architecture mode (z/Architecture or ESA/390)
 - Determine storage assignments (ignore expanded storage assignments in z/Architecture)
 - -Initialize the software
 - -Initialization complete
 - -CPC status is Operating
 - -Image status is Operating

zSeries CPC in Basic Mode

Reset Profile defines mode of operation at POR

LPAR Mode Initialization Overview

Power on Reset (POR) in LPAR mode to initialize CPC

- Initialize CPs, storage, and channel subsystem (CSS)
 - -Load selected IOCDS into the Hardware System Area (HSA)
 - -Load LPAR LIC code into HSA
 - -POR complete CPC status is Operating
 - -Image status is Not Activated
- Activate LPAR partitions
 - -Initialize each Image defined in the selected IOCDS as per each image's image profile
 - -Assign CPs, central and expanded storage, and CHPIDs
 - -Activate complete (OS Image) Image status is Not Operating
 - -Activate complete (CF Image) Image status is Operating
- Initial Program Load (IPL)
 - -IPL the operating system
 - Additional steps required for zSeries
 - Determine architecture mode (z/Architecture or ESA/390)
 - Determine storage assignments (ignore expanded storage in z/Architecture mode)
 - Initialize the software
 - •OS Initialization complete Image status is Operating

LPAR Overview (Physical to Logical)

Central and Expanded Storage in LPAR Mode

* ES not used in z/Architecture, all storage is assigned to CS (64-bit is H/W and OS dependent)

Memory is assigned exclusively to the owning partition, not shared. Exception: HSA which has common code and data.

LPAR Configuration Example

- This Model 104 assigns the PUs as 4 CPs, 1 ICF, 2IFLs 2SAPs and has up to 3 spare PUs.
- Spare PUs may be assigned to the ICF/IFL Pool via feature codes through IBM.
- Above configuration example only, Some storage would have to be taken into consideration for HSA use.

zSeries CPC in LPAR Mode

Operational Environment, I/O Configuration and HCD Overview

Mainframe Environment, Physical/Logical Partitioning, CPC Initialization and CHPIDs

Operational Environment, I/O Configuration and HCD Overview

zSeries platform functions, Capacity on Demand and other zSeries exclusives enabling Autonomic Computing

Operational Environment

Complexity 24 x 7 Availability

I/O Configuration Management - The People

Today's System environments use HCD to define both OS and CSS configurations.

- MVSCP was used previous to MVS release 5
 - -MVSCP configuration program used to define I/O to Operating system
- Since MVS release 5 HCD must be used to define I/O to the Operating system
 - -HCD may and typically is used to define CSS

• ID

- -Specifies ID (machine characteristics) of CPC
- RESOURCE
 - -Specifies partitions, type, and number
- CHPID
 - -Specifies channel paths, type, mode, and accessibility from LPARs
- CNTLUNIT
 - -Specifies control unit, type, and connections to Proc/CHP/ESCD
- IODEVICE
 - -Specifies devices, type, connections to CUs, and accessibility from LPARs

• IOCONFIG ID

-Specifies the numerical identifier of the OS (mandatory).

• EDT

- -An Eligible Device Table is specified with the EDT statement.
- NIPCON
 - -Specifies a list of device numbers to be used as NIP consoles (mandatory).

UNITNAME

-Esoteric and generic device groups is specified with the UNITNAME statement.

IODEVICE

-Defines device parameters.

Hardware Configuration Definition Concept

- HCD provides a Dialog to maintain the configuration description in an I/O Definition File (IODF)
- The IODF can contain multiple hardware and software I/O configurations
- LOAD Members are used at IPL time to
 - -Select the IODF to be read
 - -Choose the desired software configuration
 - -Select the master catalog to be used
 - -Set other IPL parameters
- The activate function of HCD or the MVS ACTIVATE command is used to manage dynamic hardware and software changes.

Hardware Configuration Definition Overview

HCD Dynamic Activation

D IOS, CONFIG IOS5061 16.00.01 I/O CONFIG DATA 313 ACTIVE IODF DATA SET = ATLRX3.IODF00 CONFIGURATION ID = MVS7 EDT ID = S7TOKEN: PROCESSOR DATE TIME DESCRIPTION SOURCE: ATLRX3 00-02-17 11:27:54 ATLRX3 IODF00 Processor token information that is currently in HSA Indicates that both the hardware and software definitions match using typical naming conventions

zSeries platform functions, Capacity on Demand and other zSeries exclusives

Mainframe Environment, Physical/Logical Partitioning, CPC Initialization and CHPIDs

Operational Environment, I/O Configuration and HCD Overview

zSeries platform functions, Capacity on Demand and other zSeries exclusives enabling Autonomic Computing

zSeries Platform For On Demand Capacity

zSeries provides platform function (zPlatform) for On Demand Capacity for the On Demand e-business world

On demand capacity for nondisruptive:

- Planned Outages
- Unplanned Outages

Autonomic Computing - combining zPlatform and z/OS functions for self-management capabilities

zSeries Nondisruptive Planned Upgrades

Capacity Upgrade on Demand (CUoD)

- Standard machine capability for concurrent upgrades
- Nondisruptive permanent addition of CP/ICF/IFL/zAAPs, memory, I/O ports and channel cards
 - -CIU, CBU and IBM field upgrades use this process

Customer Initiated Upgrade (CIU)

- Customer capability to order and install CUoD-capable upgrades
- •CIU feature ordered to initiate contract and administrative setup
- Customer orders and installs upgrade via the WEB using IBM Resource Link and RSF

On / Off Capacity on Demand (On/Off CoD) z990/z890 only

- Temporarily activation of unowned CP/ICF/IFL/zAAPs within model
- Requires CIU contract with IBM and uses CIU process
- Billed on a monthly basis

zSeries Nondisruptive Unplanned Upgrades

Capacity BackUp (CBU)

- Nondisruptive temporary addition of CPs only in an emergency or disaster recovery situation
- •CBU contract required to order CBU features and CBU LIC-CC
- •CBU cannot be used for peak and workload management
- •CBU activation can last up to 90 days
- •One CBU feature for each stand-by CP
- Spare characterizable PUs must be available for each CBU feature
- Downgrade (Nondisruptive) required after test or recovery is complete
- Both CBU and On/Off CoD LIC-CC can be installed
 - -Activation of CBU and activation On/Off CoD are mutually exclusive.
 - -Deactivation of one is required to activate the other

zSeries Capacity Upgrade Functions Summary

On demand capacity for on demand e-business

Function	Upgrades	Via	Туре	Process
CUoD	CPs,IFLs,ICFs Memory I/O	LIC or Hardware Installation	Concurrent and permanent	Ordered as an normal upgrade and activated by IBM
CIU	CPs,IFLs,ICFs, zAAPs Memory	LIC-only (cannot add book)	Concurrent and permanent	Initiated via web and activated by customer
On/Off CoD z990/z890	CPs,IFLs,ICFs, zAAPs	LIC-only (cannot add book)	Concurrent and temporary (no time limit)	Initiated via web and activated by customer
CBU	CPs	LIC-only (cannot add book)	Concurrent and temporary (up to 90 days)	Ordered for backup/recovery only and activated by customer

z900 CBU Operation Example

CBU available on all zSeries CPCs, depending on CPC configuration

z900 2C2 to 212 Capacity Upgrade (CBU) Example

Concurrent upgrade within MCM hardware with reserved CPs and CUoD

z990 Concurrent Book add With CUoD

Concurrent upgrade - model A08 to B16, Book add and enable two CPs (CUoD)

Web Based CIU and On/Off CoD

• What is it?

- IBM Resource Link Web-based solution
- Enables customers to configure, order and download microcode for vertical upgrade of processor and/or memory
- Permanent upgrades (CIU)
- Temporary upgrades of CPs, IFLs, ICFs and zAAPs (On/Off CoD)

Note: Assumes spare PUs available (zSeries memory can also use CIU if H/W configuration supports)

zSeries zAAP (z980/z890) Exclusive

zAAP is a z890 and z990 exclusive

- zAAPs are designed for z/OS Java code execution
- z/OS JAVA Virtual Machine (JVM) assists with the execution of code from standard CPs to zAAPs and back to the standard CPs
- JVM executes Java code on zAAPs
 - JVM is the only authorized user
- When configured with general purpose engines within logical partitions running z/OS, zAAPs may help increase general purpose processors productivity

- Requires z/OS 1.6 or z/OS.e 1.6 (z/OS.e for z890)

z/Architecture, zPlatform and z/OS

z/Architecture provides new platform function (zPlatform) z/OS enables these functions plus other z/OS components

zPlatform Features:

- ★ 64-bit Architecture
- ★ Intelligent Resource Director (IRD)
- ★ HiperSockets
- Workload License Charges (WLC) and zSeries Entry License Charges (zELC)
- ★ Integrated Facility for Linux
- ★ Project eLiza
- z/OS new systems management components
 - ★ msys for Setup
 - ★ msys for Operations

Autonomic Computing - combining zPlatform and z/OS functions for self-management capabilities

z/OS Enables 64-bit Real Storage Support

z/OS in combination with zSeries hardware

Real Storage

•Constraint relief

- Improved performance
 - -Expanded storage paging overhead is eliminated
 - -All memory is configured as real storage
- Ease of migration
 - -Application transparency, 24-bit and 31-bit applications run unchanged
 - -Minimal actions to take
 - -Flexible migration paths

64-bit addressing on zSeries Hardware

Intelligent Resource Director (IRD)

Available only with z/OS on zSeries hardware

- Goal-oriented management of logical partition resources:
 - -Processors
 - -Channels
- Integration of PR/SM, Workload Manager, Channel Subsystem, and Parallel Sysplex
- •IRD Functions:
 - -LPAR CPU management
 - -Dynamic channel path management
 - -Channel subsystem priority queuing

★ Directing resources to the priority work

HiperSockets: Network in the Box

16 HiperSockets available for z990 / z890 4 HiperSockets available for z800 / z900

zSeries

HiperSockets Accelerator

16 HiperSockets available for z990 / z890 4 HiperSockets available for z800 / z900

Workload License Charges Overview

Pricing model for zSeries: Workload License Charges (**WLC**) is IBM's newest software pricing model.

With WLC, customers pay only for the software capacity that they need.

Available on zSeries Machines running z/OS

License Charge

msys for Setup

• LDAP

msys for Operations

New z/OS base element (R2)

- Increase availability of systems and applications
 - -Improve system recoverability
 - Reduce outages due to operations errors
- Decrease total cost of ownership
 - -Reduce operations complexity
 - -Greater operational awareness
- Manage:
 - -Systems in a Parallel Sysplex environment
 - Coupling Facilities, couple data sets and structures

Automate

- WTO(R) buffer shortage
- System log problems
- Relieve ENQ contention or auxiliary storage shortages
- Clear "pending" conditions of CF structures

IBM Eserver and Autonomic computing

Formerly know as Project eLiza (Self-Configured)

- -Intelligent Resource Director
- -Parallel Sysplex extensions Cisco distributors
- -TCP/IP BIND9 Domain Named Server

- -Capacity Upgrade (CPs, I/O, memory)
- -Automatic hardware detection/configuration
- -Automatic communication configuration
- -z/OS msys for Operations and System
- -Concurrent memory upgrade (CUoD)
- -CPU, memory (ECC), I/O, network
- -Sysplex coupling facility duplexing
- Electronic service agent (call-home support)
- -Cryptographic enhancements (PCI accelerator)
- -LDAP
- -Tivoli Policy Director

zSeries Educational Offerings

Sysplex / zSeries course offerings

- H4016 (2 days) HMC Class
- H4041 (3) Plex Ops & Recovery (sysplex only)
- H4057 (5) Plex Ops & Recovery (H4016 & H4041)
- ES902 (5) Advanced Plex Recovery
- ES420 (5) Plex Implementation
- ES830 (5) CSAR (Complex Systems Availability & Recovery)
- ES820 (2) zSeries Mainframe Environment (A Technical Overview)
- •OZ09 (2) z/Architecture for z900
- •OZ05 (2) z990 Technical Update & Configuration Requirements
- ES321(2) FICON Environment (Native & Brigde)
- ES960 (4) HCD and Dynamic I/O
- ES270 (3) z/OS and OS/390 System Operations