
&06�$SSOLFDWLRQ�'HEXJJLQJ&06�$SSOLFDWLRQ�'HEXJJLQJ&06�$SSOLFDWLRQ�'HEXJJLQJ

Phil Smith III

:K\�:HµUH�+HUH:K\�:HµUH�+HUH

■ We all run OPP (Other People’s Products)

■ Programs (even CA’s!) do fail

■ You do not always have source code or formal
diagnostic procedures available

How do you approach and resolve
problems most effectively?

$JHQGD$JHQGD

■ Define problem types

■ Discuss tools

■ Examine some sample scenarios

'LVFODLPHU'LVFODLPHU

■ This presentation is partly based on recent
experiences supporting CA products
ä Information provided is not CA-specific
äUse it to improve both local and vendor problem

diagnosis/resolution

■ Not an attempt to teach dump reading
ä (Sadly) dump reading is a dying art
äTypically not learned without hands-on anyway

0\�%DFNJURXQG0\�%DFNJURXQG

■ 20+ years of VM development and support

■ I currently support 16 or so products
äMany of these I’ve never used in the real world
äCS reps are often surprised that I can fix things

without even knowing how to test them
■ How?

ä I know and use the tools I have available
äUse different tools/techniques until one works

'HEXJJLQJ����'HEXJJLQJ����

■ Generalizing debugging heuristics is hard!
äMany cases come down to “Look at stuff, see

what’s weird” (notice any anomalies)

■ If you don’t understand something, don’t just
ignore it – it may be the key
äExamples: compiler warnings from PL/I, C
äThe more clues you can collect, the better!

3UREOHP�7\SHV3UREOHP�7\SHV

■ Most (all?) problems can be grouped as one of the
following:
äABEND
äError message
äLoop
ä Incorrect output (“Incorrout”)

■ Incorrout is the catch-all
äOthers are all arguably Incorrout as well!

3UREOHP�6XEW\SHV3UREOHP�6XEW\SHV

■ Problems may be:
äRepeatable (occurs every time)
äNon-repeatable (only occurs once/sometimes)

■ And either type may be:
äPortable (happens on any user, any system)
äNon-portable (occurs only on specific userid or

in specific environment)
■ Always try to characterize

■ Non-repeatable, non-portable incorrout are the
worst to diagnose

%DVLFV�°%DVLFV�°
6SRROLQJ�WKH�&RQVROH6SRROLQJ�WKH�&RQVROH

■ Spooled console
äAlways run with console spooled (and started!)

to yourself
äAlways save console which matches dump, etc.

■ “Real programmers always spool their consoles!”

&06�7RROV�°&06�7RROV�°
%DVLFV%DVLFV

■ LISTFILE

äDon’t laugh – many problems caused by
outdated/duplicate EXECs/MODULEs!

■ MODMAP

äModule information, including entry points
ä IBM version semi-useless; improved MODMAP on

1998 VM Workshop site
äSorts EPs, shows options, etc.
ä IBM has code, will (hopefully) add to CMS

&06�7RROV�°&06�7RROV�°
%DVLFV%DVLFV

■ NUCXMAP, PROGMAP, EXECMAP, RTNMAP
äShow nucleus extensions (NUCEXTs), loaded

programs, in-storage EXECs, CSL routines

■ NUCXDROP, EXECDROP, RTNDROP
äRemove NUCEXTs/EXECs from storage
äDropping them often helps reduce indeterminacy

(“Which one are we running?”)
äBeware PERM nucleus extensions: NUCXDROP *

does not remove, must drop explicitly

&06�7RROV�°&06�7RROV�°
%DVLFV%DVLFV

■ SEARCH4 or equivalent (source scanner)
ä Invaluable for finding message texts, program

calls from EXECs, function calls, etc.
äAids quick identification of problem module

■ SET EXECTRAC ON
äStarts EXEC 2 and Rexx tracing
äStudy program flow, examine variables, etc.
ä ‘01’ bit at x‘5E6’ turns on tracing (do D S5E6,

add 1, then STORE S5E6 xx)

&06�7RROV�°&06�7RROV�°
%DVLFV%DVLFV

■ XCOMPARE or equivalent: comparison tool
äCompare before/after, working/non-working

(console, STORMAP output, control blocks, etc.)

■ Much smarter than native COMPARE:
äCan resynchronize after added/deleted lines
äOption to create CMS update files as output
äOther options aid comparison “smarts”

■ Also DIFF, MATCH, other names ...

&06�7RROV�°&06�7RROV�°
%DVLFV%DVLFV

■ IPL CMS
äProgram checks, storage allocations, etc.

should occur at same location after each IPL
äAllows repeatable traces, etc.

■ Consider ACCESS (NOPROF to avoid all automatic
ACCESSes

■ IPL CMS PARM NOSPROF skips
SYSPROF EXEC execution

■ Avoid stacking commands during PROFILE –
stack uses storage, changes results!

&06�7RROV�°&06�7RROV�°
0HVVDJH�UHODWHG0HVVDJH�UHODWHG

■ CP SET EMSG ON
äAdds headers on error messages
äReal Programmers always run with EMSG ON!

■ SET TRAPMSG
äCMS facility to take automatic VMDUMP
äOnly works with error messages (those affected

by CP SET EMSG)
äLimited utility, but occasionally useful

&06�7RROV�°&06�7RROV�°
(QYLURQPHQWDO�$LGV(QYLURQPHQWDO�$LGV

■ SET AUTODUMP ALL ENTIREVM
äTells CMS to automatically take VMDUMP on

CMS or program ABEND
äOdd syntax: ALL means “all ABENDs”,
ENTIREVM means “dump all storage”

■ EXECOS
äCall before/after command from EXEC to reset

OS Simulation (and VSAM) environments
äNot needed from console – CMS does

automatically

&06�7RROV�°&06�7RROV�°
(QYLURQPHQWDO�$LGV(QYLURQPHQWDO�$LGV

■ CP SET 370ACCOM ON
ä In XA/ESA/XC-mode virtual machine, allows

most 370-only programs to run
äSome limitations, but always worth a try

■ CMS SET CMS370AC ON
äTraps a few more things at CMS level which
370ACCOM does not

äNot needed for most programs; try 370ACCOM
alone first

&06�7RROV�°&06�7RROV�°
(QYLURQPHQWDO�$LGV(QYLURQPHQWDO�$LGV

■ SET RELPAGE OFF
äAvoids CMS storage release to CP
äMay change behavior of problem
äShould not be considered a fix, but may aid in

understanding storage-related bugs
■ SET STORECLR ENDCMD

äReleases program storage at return to CMS
command level, rather than after each SVC

äAgain, may change behavior – not a fix

&06�7RROV�°&06�7RROV�°
6WRUDJH�UHODWHG6WRUDJH�UHODWHG

■ STORMAP

äShows allocated/free storage queues
ä Issue before and after command to see storage

consumption (cancer)
äConsider “first run” effects: run program with
STORMAP three times, compare last two runs

■ SUBPMAP

äLists storage subpools, allocations for each
äAllows easy identification of heavy storage use

&06�7RROV�°&06�7RROV�°
6WRUDJH�UHODWHG6WRUDJH�UHODWHG

■ HX after command, to clear storage
äReleases USER storage subpool
äCombined with STORMAP/SUBPMAP, can help

identify storage cancers

■ STDEBUG

äCMS storage allocation/deallocation trap
äOptions include ranges, subpools, tracing to

punch or via CP MSG to other users

&06�7RROV�°&06�7RROV�°
6WRUDJH�UHODWHG6WRUDJH�UHODWHG

24-bit vs. 31-bit issues:
■ Try to reproduce errors with 15MB and with 32MB

(or more): may only occur with > 16MB
■ Especially for PROG1, PROG5 ABENDs

■ With 15MB, even 31-bit stuff is below-the-line
■ PROG4 in 24-bit may change to PROG5 in 31-bit

(due to storage “wraparound”)

&06�7RROV�°&06�7RROV�°
69&75$&(69&75$&(

■ CMS SVCTRACE facility traces registers before and
after SVC calls

■ Indicates if SVC ended with non-zero RC
■ Shows SVC depth, caller, callee, arguments
■ SO/HO CMS Immediate commands start/end
SVCTRACE

■ Output is to virtual printer
■ Of limited utility, occasionally useful

&3�7RROV�°&3�7RROV�°
75$&(75$&(

■ TRACE in VM/ESA is synonym for PER
■ TRACE PROG stops on program checks

äSome program checks are normal (for example,
during CMS IPL)

■ TRACE BRANCH traps branches from/into address
ranges
äHigh overhead, sometimes impractical
äWhen trap occurs, TRACE TABLE shows last six

branches trapped – often useful

&3�7RROV�°&3�7RROV�°
75$&(75$&(

■ TRACE STORE traps most storage changes
äCan trace alterations to registers or specific

locations, including specific values
äCauses significant execution slowdown
äDoes not trap alterations by I/O, DIAGNOSE,

MVCL, some other opcodes unless specific
value specified

äHardware limitation, not easily overcome

&3�7RROV�°&3�7RROV�°
75$&(75$&(

■ TRACE CALL/RETURN/GOTO allow easy movement
among multiple trace sets

■ QUERY TRACE, QUERY TRACE SETS, QUERY TRACE
RETURNS display traps, named sets, TRACE CALL
structure

■ TRACE CMD adds automatic action on trap
äConsider chaining traps together via
TRACE CMD CALL trapname

&3�7RROV�°
75$&(

&3�7RROV�°&3�7RROV�°
75$&(75$&(

■ TRACE CLEAR deletes all traps from current or
specified trace set

■ TRACE END clears all sets

■ Too powerful in many cases:
äUse CLEAR instead to avoid lost work

&3�7RROV�°&3�7RROV�°
75$&(75$&(

■ Can TRACE many instructions which cause SIE exit
with (essentially) no overhead

■ MC in source plus TRACE MC makes it easy to find
relocated code

■ TRACE DIAG 8 is quick way to find CP commands
issued by EXEC or MODULE

■ Remember that TRACE changes execution at
hardware level, so timing-related problems may
change/vanish while tracing

&3�7RROV�°&3�7RROV�°
75$&(75$&(

■ NOSIM option tells TRACE to skip actual execution
of some opcodes
äTRACE DIAG 4C RUN NOTERM NOSIM

avoids cutting accounting cards, for example
äBeware of programs which complain when they

detect “failed” operation due to NOSIM
äMay need to use CMD to fake results

■ Use CP SET PFxx NODISP BEGIN when tracing to
avoid typing b repeatedly

■ Many other capabilities, options

&3�7RROV�°&3�7RROV�°
',63/$<',63/$<

■ DISPLAY command displays storage
äOptions control display contents and format

■ DISPLAY I translates opcodes, makes code semi-
readable
äUse to look for “interesting” opcodes when

attempting to match code to listing
äLook at branches to determine base registers

■ DISPLAY PSW ALL shows fixed PSW locations
(PGMNPSW, etc.)

&3�7RROV�°&3�7RROV�°
',63/$<',63/$<

■ BASEx, INDEXx options use GPR x as base/index
registers
äD T0.FF;BASEC shows module header (in

standard OS linkage code)
äVery powerful as target of TRACE CMD
äBeware BASE0/INDEX0 – unintuitively use zero

as value, instead of GPR0
■ D T2A0.30 shows last two commands, EXECs,

transient modules

&3�7RROV�°&3�7RROV�°
',63/$<',63/$<

■ DISPLAY supports data spaces
äOperands can indicate primary space, or select

by space name, ASIT, etc.
äEXEC enables DISPLAY/STORE from other

userids via DMSSPCI, DMSPCC, DMSSPCP
CSL calls

äOwner needs XCONFIG with SHARE in directory
äComplex DISPLAY syntax:

D ASIT01C14A0000000001.T2A0.30

D SPACEPHILS:BASE.T2A0.30

&3�7RROV�°&3�7RROV�°
/2&$7(90�DQG�756285&(/2&$7(90�DQG�756285&(

■ CP LOCATEVM
äSearches user storage for string
äCan specify in hexadecimal or character
äSomewhat slow (deliberately, to avoid massive

paging), but invaluable at times
■ CP TRSOURCE

äPerforms CP-level tracing
äParticularly useful for I/O, interrupt problems
äDiscussed in Fun with CP Debugging Tools

&3�7RROV�°&3�7RROV�°
90'803V90'803V

■ Poorly understood, often underutilized

■ Always use as follows:
äVMDUMP 0-END DCSS TO *
ä Issue from CP READ, or via #CP

■ Never issue from RUNNING or VM READ without
#CP

äDump will be suspect, more difficult to analyze
at best; often completely useless

&3�7RROV�°&3�7RROV�°
0RUH�RQ0RUH�RQ�90'803V�90'803V

■ Common complaint from user, after service
machine ABENDs: “I can’t find the dump”
äUse CP QUERY RDR * ALL XFER ALL
äShows all reader files created by this userid but

owned by another userid
äDump will probably show up owned by
OPERSYMP or OPERATNS

$QG�'RQµW�)RUJHWª$QG�'RQµW�)RUJHWª

■ Many programs have (secret?) built-in options to
generate traces, other diagnostics

■ Service virtual machines typically perform some
sort of tracing and/or logging
äCheck and save SVM logs with dumps, consoles,

etc.
■ In rare cases, second-level testing may be

appropriate to isolate tracing effects

%DVLF�6FHQDULR�%DVLF�6FHQDULR�
5HSHDWDEOH��3RUWDEOH�$%(1'5HSHDWDEOH��3RUWDEOH�$%(1'

■ Report: “When I do this, it ABENDs”

■ Spool the console, reproduce ABEND
■ OK, it fails – now what?

äCP TRACE PROG, reproduce ABEND
äWhen it stops, look at registers, etc.
äRemember to D T0.2F;BASEC to view module

header (most of the time)
äOccasionally, problem is obvious; if not …

5HSHDWDEOH��3RUWDEOH�$%(1'�5HSHDWDEOH��3RUWDEOH�$%(1'��FRQWLQXHG��FRQWLQXHG�

■ Look for working variations (options, etc.)

■ Simplify test case if possible (remove code)
■ Normalize the environment:

äReIPL CMS and rerun
äReIPL again and repeat; presumably load/error

addresses, etc. are constant
äCreate EXEC if necessary to simplify

5HSHDWDEOH��3RUWDEOH�$%(1'�5HSHDWDEOH��3RUWDEOH�$%(1'��FRQWLQXHG��FRQWLQXHG�

■ TRACE code range near ABEND, look for “good”
execution of same code
ä If found, see what’s different

■ If execution path diverges near ABEND, try manual
fixup (STORE and/or BEGIN), see if any change
äMay not work, but other errors generated may

be more meaningful

5HSHDWDEOH��3RUWDEOH�$%(1'�5HSHDWDEOH��3RUWDEOH�$%(1'��FRQWLQXHG��FRQWLQXHG�

■ Take dump at point of ABEND; also let product
dump if it does so automatically

■ Save both dumps, plus matching console, offer all
to vendor/author

■ If you have source, trace back through caller, etc.

6FHQDULR�6FHQDULR�
1RQ�UHSHDWDEOH�$%(1'1RQ�UHSHDWDEOH�$%(1'

■ Spool the console
■ Run with TRACE PROG CMD VMDUMP to generate

dumps automatically
■ Collect any and all dumps

■ Examine system activity, other factors at time of
ABEND
äLook for other anomalies
äTry to find pattern, if intermittent
ä If working examples exist, examine differences

1RQ�UHSHDWDEOH�$%(1'1RQ�UHSHDWDEOH�$%(1'
�FRQWLQXHG��FRQWLQXHG�

■ If no dump, and not repeatable, report but close
problem immediately
äSuch “anecdotal” reports like this allow tracking

intermittent problems
äSecond (third, fourth, …) report validates original,

may provide new clues leading to resolution

6FHQDULR�6FHQDULR�
/RRS/RRS

■ Spool the console

■ If no longer looping, attempt to reproduce
■ If not reproducible, treat like non-repeatable

ABEND with no dump: report and close

■ If still happening, or reproducible, collect tracing
information while looping ...

/RRS/RRS
�FRQWLQXHG��FRQWLQXHG�

■ Press PA1 to get to CP READ (force disconnect if
PA1 not enabled)
äTake VMDUMP (via SECUSER if SVM)
äTRACE BR RUN NOTERM PRINT or
TRACE I RUN NOTERM PRINT
BEGIN

äUse #CP QUERY PRT * ALL to track output
volume generated

/RRS/RRS
�FRQWLQXHG��FRQWLQXHG�

■ Stop after 10,000 or so lines generated:
äPress PA1 again
ä Issue TRACE END
äTake another VMDUMP

■ Pass both dumps, console, trace (printer file) to
vendor

■ Beware of dumps after PA1: PSW may not reflect
loop location – check WAIT bit

6FHQDULR�6FHQDULR�
(UURU�0HVVDJH(UURU�0HVVDJH

■ If true error message, use CMS
SET TRAPMSG to generate VMDUMP

■ Message header gives clue as to issuer
■ Scan source/EXECs/MODULEs, find issuer

■ Examine code (if available) to find real message
reason

■ Beware messages issued for multiple reasons, or
from multiple places
äMay need to trap to find out which case is true

:KHQ�$OO�(OVH�)DLOV����:KHQ�$OO�(OVH�)DLOV����

■ Practice good programming hygiene
äExamine user code, fix obvious problems even if

not clearly related to problem at hand
äExamples: missing address command in

REXX programs; abbreviations/synonyms used
in EXECs

■ Release unneeded disks/directories
äOld/duplicate program/utility/subfunction may be

hiding there

:KHQ�$OO�(OVH�)DLOV����:KHQ�$OO�(OVH�)DLOV����

■ Check, re-check, and re-re-check product and user
configuration files

■ Remember CP directory options which can have
far-reaching (and unintuitive) effects!

&RQFOXVLRQ&RQFOXVLRQ

■ CMS and CP are both rich in tools for CMS
application debugging

■ No one tool is all-powerful (although
sometimes one will suffice)

■ Learn to use the tools – it makes your job
(and mine) easier!

&RQWDFW�,QIR&RQWDFW�,QIR

Phil Smith III
Computer Associates International, Inc.
1800 Alexander Bell Drive
Reston, VA 20191

(703) 264-8514 (voice)
(703) 264-8190 (FAX)

Phil.Smith@Sterling.com
USSCIPHS at IBMMail

5HVRXUFHV5HVRXUFHV

■ VM Workshop Tapes online
http://ukcc.uky.edu/~tools

■ VM Workshop home page:
http://vm.marist.edu/~workshop/

■ VMESA-L (VM discussion list)
Send mail to:
listserv@uafsysb.uark.edu
With body text:
subscribe vmesa-l

