
NetRexx Hands-on Lab
Sessions M62, M63, M64

VM/ESA & VSE/ESA Technical Conference
May 31-June 3, 2000

Orlando, Florida

Christine Casey
IBM VM Development

ccasey@vnet.ibm.com

Chuck Morse
IBM Washington Systems Center

morsec@us.ibm.com

RETURN TO INDEX

Copyright IBM, 1999

Disclaimer

The information contained in this document has not been submitted to any formal IBM test and
is distributed on an "AS IS" basis without any warranty either express or implied. The use of
this information or the implementation of any of these techniques is a customer responsibility
and depends on the customer’s ability to evaluate and integrate them into the operational
environment. While each item may have been reviewed by IBM for accuracy in a specific
situation, there is no guarantee that the same or similar results will be obtained elsewhere.
Customers attempting to adapt these techniques to their own environments do so at their own
risk.

In this document, any references made to an IBM licensed program are not intended to state or
imply that only IBM’s licensed program may be used; any functionally equivalent program may
be used instead.

Any performance data contained in this document was determined in a controlled environment
and, therefore, the results which may be obtained in other operating environments may vary
significantly. Users of this document should verify the applicable data for their specific
environments.

It is possible that this material may contain reference to, or information about, IBM products
(machines and programs), programming, or services that are not announced in your country.
Such references or information must not be construed to mean that IBM intends to announce
such IBM products, programming or services in your country.

2

Copyright IBM, 1999

Trademarks

The following are trademarks of International Business Machines Corporation.
Those identified with an (*) are registered trademarks of International Business
Machines

IBM*
S/390
VM/ESA*
OpenEdition
OS/2
AIX

The following are trademarks of the corporations identified
Windows 95 - is a registered trademark of Mircrosoft Corporation
JAVA - is a trademark of Sun Microsystems
"Write once, run anywhere" - is a trademark of Sun Microsystems

3

Copyright IBM, 1999

AWT Abstract Windowing Toolkit
JDBC Java Database Connectivity
JDK Java Developer’s Kit
JIT Just-In-Time (compiler)
JVM Java Virtual Machine
POSIX Portable Operating System Interface

Acronyms

4

Copyright IBM, 1999

A Quick Review
Using the OpenEdition/VM Shell
Using the NetRexx Compiler and JDK
The NetRexx Language

The Basics
Strings
Control Constructs & Exceptions
Subroutine & Function Methods

Agenda

5

Copyright IBM, 1999

A Quick Review

NetRexx

6

Roots in REXX and Java
Ease of use from REXX
Object model from Java
Compiles to Java classes
Java and NetRexx classes fully compatible
Cross-platform portability

Copyright IBM, 1999

 Principles of OOP
Reuse
Encapsulation
Inheritance
Polymorphism
Objects
Methods
Classes

Object Oriented Programming

7

Copyright IBM, 1999

The Java Virtual Machine

A software microprocessor with its own
instruction set and op-codes

Interprets bytecodes produced by the Java compiler
Architecture independent
Dynamically linked

Performs run time checking
Type and bounds checking
File I/O errors, exceptions

8

Copyright IBM, 1999

The JVM Concept

Your code

����������	
���
	���
��������

Binary File
(Pentium)

Binary File
(PowerPC)

Binary File
(S/390)

Compiler
(Pentium)

Compiler
(PowerPC)

Compiler
(S/390)

������������
��������

Java source

Java Compiler
(Pentium)

Java Compiler
(PowerPC)

Java Compiler
(S/390)

Java
Bytecodes
(Platform

Independent)

Java Interpreter
(Pentium)

Java Interpreter
(PowerPC)

Java Interpreter
(S/390)

NetRexx
source

9

Copyright IBM, 1999

The Java Developer’s Kit
Packages (class libraries)

Common to every implementation
Java source included

java.lang, java.util, java.math, java.text [strings, numbers, date/time...]
java.io, java.net [file and network I/O]
java.awt [abstract window toolkit], java.applet [animation, audio]
java.security [public keys, cryptography]
java.sql [database], java.rmi [remote methods]
java.beans [library of pluggable components]

Programs
javac Compiles Java source into bytecodes
java Invokes the JVM to run a compiled application
appletviewerPreviews a compiled applet
javadoc Extracts interface documentation from source
javah Generates C skeletons for native methods
javap Disassembles Java class files
jdb Runs the Java debugger

Samples and demos to illustrate usage

10

Copyright IBM, 1999

Java & NetRexx on VM/ESA
JVM, JDK 1.1.6 and NetRexx 1.160

Requires VM/ESA V2R3.0+
Byte File System
OpenEdition Shell and Utilities

Can be obtained
From the Web

Do not support
Execution of JDBC classes

Can execute AWT classes via Remote AWT
Packaged with JDK 1.1.6

Includes Just-in-Time Compiler (JIT)

11

Copyright IBM, 1999

Getting Into the OpenEdition/VM
Shell

SHELL EXEC
/* By Richard Lewis */
’CP TERM LINEDEL OFF’
’CP TERM ESCAPE OFF’
’SET INPUT’
’OPENVM UNMOUNT /’
’OPENVM MOUNT /../VMBFS:VMSYS:ROOT/ /’
’EXEC LOADJAVA’
’OPENVM SHELL’
’CP TERM LINEDEL "’
’CP TERM ESCAPE "’
Exit

12

Copyright IBM, 1999

Getting Into the OpenEdition/VM
Shell...
LOADJAVA EXEC
/* Pre-load the Java DLLs */
Address OPENVM
flags = ’’
libpath = ’’
libpathlen = Length(libpath)
loadname.1 = ’/usr/java/lib/openvm/native_threads/libagent.so’
loadname.2 = ’/usr/java/lib/openvm/native_threads/libjava.so’
loadname.3 = ’/usr/java/lib/openvm/native_threads/libjitc.so’
loadname.4 = ’/usr/java/lib/openvm/native_threads/libjpeg.so’
loadname.5 = ’/usr/java/lib/openvm/native_threads/libmath.so’
loadname.6 = ’/usr/java/lib/openvm/native_threads/libmmedia.so’
loadname.7 = ’/usr/java/lib/openvm/native_threads/libnet.so’
loadname.8 = ’/usr/java/lib/openvm/native_threads/libsysresource.so’
loadname.9 = ’/usr/lib/sockdll’
loadname.0 = 9
Do i = 1 To loadname.0
 the_loadname = loadname.i
 loadnamelen = Length(the_loadname)
 ’BPX1LOD loadnamelen the_loadname flags libpathlen libpath rv rcode rs’
 End
Exit

13

Copyright IBM, 1999

.profile
export TZ=EST5EDT
set -o logical
export PS1=’$PWD ($?)->’
export PATH=$HOME/bin:$PATH
export CLASSPATH=$HOME:$CLASSPATH
Set a few useful functions
function xedit { cms "XEDIT ’$1’ (NAMETYPE BFS" ; return }
function help { cms "HELP OSHELL $1" ; return }
... and a few useful synonyms
alias dir=’ls -al’
alias x=’xedit’
alias xw=’xeditw’
alias man=’help’
alias hh="cms help oshell ’$1’"
alias erase=’rm’
#cms ’set output ad [’
#cms ’set output bd]’
#cms ’set input [ad’
#cms ’set input] bd’
cd $HOME

User-Specific Login Profile

14

Copyright IBM, 1999

A Few Useful Commands
In the Shell

list files in the current directory
ls -l
copy a file
cp fromfile tofile
change working directory
cd
Erase a file
rm filename
Rename a File
mv oldname newname
Type the contents of a file
cat filename
Cancel program execution
ctl-C
(HX will abend the Shell)

Outside the Shell
Copy a file into the Byte File System
openvm putbfs fromfile tofile
Make a Retrieve key
set pfnn retrieve

�������������	�
����
��
	����
���
��
�������	�	
���������	��

	��	�
����

15

Copyright IBM, 1999

NetRexxC name -option -option
NetRexxC name -run

Translates NetRexx source to Java source
Invokes Java compiler to create Java byte code

nrc name -option -option
nrc name -run

Invokes NetRexxC
Optionally runs program (if -run specified)

javac name.java
Compiles Java source to bytecode

java name
Executes java bytecode

Compiling & Executing NetRexx
Programs

16

Copyright IBM, 1999

Command Line Options
Keep NetRexxC saves the intermediate

Java source file with .java.keep
extension

Nocompile Stops NetRexxC after the first
phase. Java source kept with
.java extension so it can be
compiled further with another

compiler
Time Displays processing time

(translation, compilation, total)

17

Copyright IBM, 1999

More Compiler Options
Can be specified on command line or on OPTIONS statement

BINARY All classes treated as binary
CROSSREF X-ref of variables organized by class
DIAG Displays diagnostic information
FORMAT Adds spaces, newline chars to java source
LOGO Controls printing of the compiler logo
REPLACE Can overwrite an existing .java file
STRICTARGS () enforced for method invocations
STRICTASSIGN Checks that type of assignment and method args match
STRICTCASE Reference to java classes must match
STRICTIMPORT Prevents automatic class imports
STRICTSIGNAL Compiler complains if exceptions are missing
TRACE Enable/disable all trace instructions
UTF8 Source is UTF-8 encoded
VERBOSE[n] Specify number of messages when executing

See page 15 for more details

18

Copyright IBM, 1999

File Types Used or Created
*.nrx NetRexx program files
*.class Compiled NetRexx or Java source
*.crossref Variable cross reference file
*.java.keep NetRexx pgm translated to Java
*.java Temp generated Java program

19

Copyright IBM, 1999

Exercise #1
Using the Compiler

Use NetRexxC to compile TOAST.nrx
enter the NetRexxC command
Visit Sea World
list the files created by the compiler
run the resulting Java class file

Use nrc to compile & run TOAST.nrx
enter the nrc command
Say Hi to Mickey
list files created by compiler

Create Java source for TOAST.nrx
use the nrc command
Take a look at the Space Shuttle
display Java source

Compile and execute the java source created in #3

20

Copyright IBM, 1999

NetRexx Syntax
Case Insensitivity

Sea World is the same as sea world

Comments
Rexx-Java style: /* */
/* This is a comment */

Line comments: --
say "No comment"--The rest is a comment

Continuation
Statements end at line-end or ; continued with hyphen
say ’This text is continued ’ -
 ’on the next line’

21

Copyright IBM, 1999

NetRexx Strings
Any group of characters inside single or double
quotation marks.
"We are not trying to entertain the critics. I’ll take my" -
’chances with the public.’ -- Walt Disney

Two " or ’ indicates a " or ’ in the string
’I only hope that we don’’t lose sight of one thing - that it’ -

’was all started by a mouse.’ -- Walt Disney

The escape character \ can also be used
’There\’s enough land here to hold all the ideas and plans’ -
’ we can possibly imagine.’ -- Walt Disney

22

Copyright IBM, 1999

Escape Sequences
\t tab
\n new-line
\r carriage return
\f form feed
\" double quote
\’ single quote
\\ backslash
\- null
\0 null
\xhh hex character
\uhhhh hex character

23

Copyright IBM, 1999

All Primitive Java types available
boolean, char
byte, short, int, long
float, double

All data converted to NetRexx strings before
evaluation
Automatic conversion between data types

Primitive Java Data Types

See page 21 for details on Java data types

24

Copyright IBM, 1999

Operators & Expressions
String Expressions
(blank) "Sea" "World" --> "Sea World"
 || "Sea"||"World" --> "SeaWorld"
(abuttal) abc = "Sea"
 abc"World" --> "SeaWorld"
Arithmetic Expressions
+ - * / % (int division) // (remainder)
** (power) Prefix - Prefix+

See page 22 for details

25

Copyright IBM, 1999

Operators & Expressions
Comparative Expressions

Normal = \= > < >= <=
comparison is not case sensitive
leading/trailing blanks removed before compare
shorter strings padded with blanks on right

Strict == \== >> << >>= <<=
comparison is case sensitive
if 2 strings = except one is shorter, the shorter
string is less than the longer string

Logical Expressions
 & | && Prefix \

See page 22 for details

26

Copyright IBM, 1999

Variables

Named object whose value may change (but
not its type)
Variable names

case insensitive
cannot begin with a digit
cannot contain a period

Defined by assignment
population = 176373

Can be declared by assigning a type
population = int

27

Copyright IBM, 1999

Talking to a NetRexx Program
and Getting it to Talk Back

say [expression]
writes output to the user’s terminal
say ’Shamu eats an average of ’ -
’ 7 * 250 ’pounds of fish per week’

terminating the string with a null character (\- or \0)
suppresses the new line sequence
say "enter the orbiter’s velocity\-"

ask
reads input from the user’s terminal
velocity = ask

28

Copyright IBM, 1999

Tracing

trace all
trace methods
trace results
trace off

output identifier tags:

 = 1st source line of clause
 - continuation line
 >a> value assigned to arg
 >p> value assigned to property
 >v> value assigned to variable
 >>> result of expression
 +++ error messages

29

Copyright IBM, 1999

Tracing -- example
3-line program:
trace results
number=1/7
parse number before ’.’ after

trace output:

 2 *=* number=1/7
 >v> number "0.142857143"
 3 *=* parse number before ’.’ after
 >v> before "0"

 >v> after "142857143"

30

Copyright IBM, 1999

Exercise #2
Say and Ask
SHAMU eats an average of 250 lbs. of fish per
day.
Write a NetRexx program to:

prompt for a number of weeks
calculate the pounds of fish Shamu would eat in that
time
display the number of weeks and the total
consumption as:
’SHAMU eats 5250 pounds of fish in 3 weeks’

Run the resulting Java class file with various
numbers of weeks

31

Copyright IBM, 1999

Parsing Strings
Very similar to Rexx
parse ’December 5, 1901 - Chicago’ w1 w2 w3

w1 = ’December’
w2 = ’5,’
w3 = ’1901 - Chicago’

parse ’December 5, 1901’ w1 . w2
w1 = ’December’
w2 = ’1901 - Chicago’

parse ’December 30, 1890’ w1 ’,’ w2
w1 = ’December 5’
w2 = ’ 1901 - Chicago’

Passing Arguments to a NetRexx Program
parse arg arg1 arg2 arg3
say arg1 arg2 arg3

32

Copyright IBM, 1999

Exercise #3
Passing Parameters

The average temperature can be calculated by adding
the high and the low temperature and dividing by 2.
Write a NetRexx program to

take as an argument: a month, the average high and low
temperatures (separated by commas)
calculate and display the average temperature as:
’The average temperature for Orlando in January is
60.5 degrees.’
run the program using any of the following values

month High(F) Low(F)
February 73 50
May 88 66
August 92 73
October 84 65

33

Copyright IBM, 1999

String Methods

Strings in NetRexx are of type Rexx
String functions invoked as object methods
Standard methods from Object Rexx
’-17322’.abs 17322
’orbit ’.compare(’orbit’,’-’) 6
’17322’.datatype(’W’) 1
’STS-96’.length 6
’DISCOVERY’.lower(2) ’Discovery’
’39B’.pos(’B’) 3
’Discovery’.substr(4,4) ’cove’
"Launch Pad 39B".wordpos(’Pad’) 2
’15’.x2d 21

See page 31 for a description of the built-in methods
34

Copyright IBM, 1999

Arrays

Fixed size - must be constructed first
Index is of type int and starts at 0
Length is provided by length variable

orbiter=Rexx[5]
orbiter[0]=’Columbia’
orbiter[1]=’Challenger’
orbiter[2]=’Discovery’
orbiter[3]=’Atlantis’
orbiter[4]=’Endevour’
orbiter.length 5

35

Copyright IBM, 1999

Indexed Strings

Strings with subvalues
Similar to Rexx stem variables

Non-indexed value must be assigned first
Non-indexed value used for reference to
non-existing value
orbiter=’?’
orbiter[’STS-96’]=’Discovery’
orbiter[’STS-93’]=’Columbia’
orbiter[’STS-99’]=’Endevour’
say orbiter[’STS-93’] Columbia
say orbiter[’STS-103’] ?

36

Copyright IBM, 1999

Control Constructs - Selection

if height > 40 then say ’may ride Space Mt.’
 else say ’cannot ride Space Mt.’

select
 when height > 52 then say ’may ride all rides’
 when height < 40 then say ’cannot ride restricted’
 otherwise say ’may ride some restricted rides’
end

DO....END can be used to create a code block

37

if year > 1440 then do
 say ’This event occurred after the invention’
 say ’of the printing press’
 end
 else say ’before printing press’

Copyright IBM, 1999

Control Constructs - Loops
loop forever
 say ’You will get tired of this’
end

loop for 3
 say "It’s a small world after all, \-"
end

loop i=1 to 50 by 1
 say i
end

38

Copyright IBM, 1999

More Loops
i=30
loop until i > 21
 i=i+5
end
say i 35

i = 30
loop while i < 21
 i=i+5
end
say i 30

39

Copyright IBM, 1999

More Loops
orbiter=’?’
orbiter[’STS-96’]=’Discovery’
orbiter[’STS-93’]=’Columbia’
orbiter[’STS-99’]=’Endevour’
loop mission over orbiter
 say ’the orbiter on mission’ mission -

’is’ orbiter[mission]
end

40

Copyright IBM, 1999

Exceptions

Semantics from Java
Generalized and simplified syntax (extends
existing control constructs)

�������������	
�����	�
�����
	�
�����������������������	�
��
�������������������������	�
���
��
��������
��	
��������������������	�
���������
������� �	�
���� ��	
����
�	�

41

Copyright IBM, 1999

Iterate & Leave

Iterate
causes a branch to the end of a control construct

leave
exits the control construct

42

Copyright IBM, 1999

Exercise #4
Sorting Cards

Convert the program CARDSORT EXEC
to NetRexx

cardsort takes an argument of 13 words
representing the values of playing cards and
sorts them in descending order

43

Copyright IBM, 1999

CARDSORT EXEC
/* */
rank=’2 3 4 5 6 7 8 9 10 J Q K A’
parse arg hand
num=words(hand)
do i=1 to num
 parse var hand item.i hand
end
do i=1 to num
 do j=i+1 to num
 if wordpos(item.j, rank) > wordpos(item.i,rank)
 then do

 temp=item.j
 item.j=item.i
 item.i=temp
 end
 end j
 hand = hand item.i
end
say hand

44

Copyright IBM, 1999

Subroutines & Functions

Functions return values
Subroutines do not
Both Implemented as methods

defined with the method statement
method name(parameters) static returns classname

data must be passed as parameters
return statement exits the method and optionally
returns a value

45

Copyright IBM, 1999

Method Example
Returning a value

/* spell a number from one to ten */
say "Enter a number from 1 to 10 \-"
number = int ask
say spellit(number)
method spellit(num=int) static returns rexx
numbers = ’one two three four five six seven eight nine ten’
spelling = numbers.word(num)
return spelling

46

Copyright IBM, 1999

Method Example
No Return Value

/* spell a number from one to ten */
say "Enter a number from 1 to 10 \-"
number = int ask
spellit(number)
method spellit(num=int) static
numbers = ’one two three four five six seven eight nine ten’
say numbers.word(num)

47

Copyright IBM, 1999

Modify the program game.nrx
1. Place the code that writes the results to the console in

a method
2. Write a method to keep asking the user for a number

until an integer is entered
loop until the datatype of the user’s input is W

Exercise #5
Game.nrx

Looking at the solution on page 51 is
frowned upon

48

Copyright IBM, 1999

Game.nrx
/* small game to guess a number between 1 and 100 */
say "I’m choosing a number between 0 and 100"
number = 100*Math.random() % 1 -- %1 trans result to int
say ’Found a number’
guess = int -- force guess to int
loop count = 1 until guess = number -- loop until guessed
 say count ’try:’ -- num tries
 guess = ask -- get player input
 select -- compare guess to number
 when guess > number then
 say guess ’is too big’
 when guess < number then
 say guess ’is too small’
 otherwise
 say ’Congratulations! You did it with ’ count ’tries.’
 end
catch RunTimeException -- if guess not valid number
 say ’Sorry, whole numbers only. You lost the game.’
end

49

Copyright IBM, 1999

IBM Centre for Java Technology Development:
http://ncc.hursley.ibm.com/javainfo/

Mike Cowlishaw’s NetRexx Language page:
http://www2.hursley.ibm.com/netrexx/

Mikes’ new book: The NetRexx Language
ISBN 0-13-806332-X,
IBM Puborder SR23-8926

ITSO Redbooks:
Creating Java Applications Using NetRexx, SG24-2216-00
VM/ESA Network Computing with Java and NetRexx, SG24-5148

IBM’s Java page: http://www.ibm.com/java

Sun’s Java page: http://www.javasoft.com

Some Books on Java
Ken Arnold and James Gosling, The Java Programming Language, ISBN 0-201-63455-4
David Flanagan, Java in a Nutshell, ISBN 1-56592-183-6
Peter van der Linden, Just Java, ISBN 0-13-565839-X

For More Information

50

Copyright IBM, 1999

Acknowledgments

For help in providing content to portions of this presentation,
 we would like to give special thanks to:

ITSO, San Jose Center -- Redbook for NetRexx

Mike Cowlishaw, IBM Fellow, Hursley, England

Pamela Taylor, Sterling Commerce, Dallas, TX

Richard Lewis, IBM Washington Systems Center

51

