
������������	
��
�

Christine T. Casey
VM/ESA Development, Endicott

caseyct@us.ibm.com

Richard F. Lewis
IBM Washington System Center

rflewis@us.ibm.com

VM/VSE Technical Conference
Orlando, May/June 2000

Session # M61

RETURN TO INDEX

����������

The information contained in this document has not been submitted to any formal IBM test and is distributed on an
"AS IS" basis without any warranty either express or implied. The use of this information or the implementation of
any of these techniques is a customer responsibility and depends on the customer’s ability to evaluate and integrate
them into the operational environment. While each item may have been reviewed by IBM for accuracy in a specific
situation, there is no guarantee that the same or similar results will be obtained elsewhere. Customers attempting
to adapt these techniques to their own environments do so at their own risk.

In this document, any references made to an IBM licensed program are not intended to state or imply that only IBM’s
licensed program may be used; any functionally equivalent program may be used instead.

Any performance data contained in this document was determined in a controlled environment and, therefore, the
results which may be obtained in other operating environments may vary significantly. Users of this document
should verify the applicable data for their specific environments.

It is possible that this material may contain reference to, or information about, IBM products (machines and
programs), programming, or services that are not announced in your country. Such references or information must
not be construed to mean that IBM intends to announce such IBM products, programming or services in your
country.

Permission is hereby granted to SHARE Inc. to publish an exact copy of this paper in the conference proceedings.
IBM retains the title to the copyright in this paper as well as title to the copyright in all underlying works. IBM retains
the right to make derivative works and to republish and distribute this paper to whomever it chooses in any way it
chooses.

����������

The following are trademarks of International Business Machines Corporation.
Those identified with an (*) are registered trademarks of International Business
Machines

Enterprise Systems Architecture/370
Enterprise Systems Architecture/390
ESA/370
ESA/390
IBM*
System/370
VM/ESA*
OpenEdition

The following are trademarks of the corporations identified
Windows 95 - is a registered trademark of Mircrosoft Corporation
JAVA - is a trademark of Sun Microsystems
"Write once, run anywhere" - is a trademark of Sun Microsystems

������

Introduction
Java on VM/ESA (V2R3 and V2R4)
Notes on JDK utility programs
Sample server
Summary

��������
���

Started life in 1991 as OAK (project green)
Failed to win bid in consumer electronic market
Small, portable, fast, and safe

Explosive growth in WWW
Provided Sun an ideal opportunity to capitalize on this
technology
Early 1995 - Sun releases alpha level of web browser called
HotJava
Ushered in new generation of Internet programming

��������
��������
 !

Jan 1996
Mar 1996

May 1996
Dec 1996

Feb 1997
Mar 1997

Sep 1997
Apr 1998

Sep 1998
Jan 1999

0

20

40

60

80

100

120

JDK
1.0

JDK
1.0.1

JDK
1.0.2

JDK
1.1

Beta

JDK
1.1

FCS

JDK
1.1.1

JDK
1.1.4

JDK
1.1.6

JDK
1.1.7

JDK
1.2

"#�
�$������%

A programming language that is
A simpler, safer dialect of C and C++ with things that are
complex, dangerous, or error-prone eliminated

No preprocessor, pointer, include files, operator overloading...
Object oriented with a rich set of classes

Single inheritance (interfaces mimic multiple inheritance)
Networking, Threading, Windowing

Robust
Java compiler and run time environment do extensive checking

Portable
"Write once, run anywhere"

A single API across all platforms

"#�
�$�����������
 !%

An execution environment (Java Virtual Machine)
Software microprocessor with its own instruction set and
op-codes (byte codes)
JVM interprets byte codes produced by the Java compiler

Architecture independent
Dynamically linked

JVM performs run time checking
Just-in-time (JIT) compilation may improve efficiency

Java has one Application Binary Interface (ABI) on all
platforms

Consistent program environment across all platforms

��������
������#�
��
&��

Applets and Applications

Java Core Classes Java Std Extension Classes

Java Virtual Machine

Browser

OS

Adapter

OS

Adapter

OS

Java
OS

�#�������������
��'��(�

Packages (class libraries)
Common to every implementation
Java source included

java.lang, java.util, java.math, java.text [strings, numbers, date/time...]
java.io, java.net [file and network I/O]
java.awt [abstract window toolkit], java.applet [animation, audio]
java.security [public keys, cryptography]
java.sql [database] java.rmi [remote methods]
java.beans [library of pluggable components]

Programs
javac Compiles Java source into bytecodes
java Invokes the JVM to run a compiled application
appletviewer Previews a compiled applet
javadoc Extracts interface documentation from source
javah Generates C header files for native methods
javap Disassembles Java class files
jdb Runs the Java debugger
jar Create Java archive files

Samples and demos to illustrate usage

"#�
�$���&����
���)�����
*�������

Port of JDK 1.1.6
The IBM Java Port for VM/ESA, Developer Release 1.1.6
Installed into BFS
Installed using VMSES/E, or manually

For the first time includes a Just-in-Time Compiler (JIT) for
VM/ESA
Integrate Remote AWT (RAWT)

Host code preinstalled
Obtain workstation code from
http://www.s390.ibm.com/java/rawt.html
View RAWT -readme.html from the java root directory

Euro support, IEEE floating point
IBM Java Port for VM/ESA, Developer Release 1.1.6 is ONLY
available from our web page: http://www.s390.ibm.com/vm/java

"#�
�$���&����
���)�����
*������������
 !

NetRexx 1.160
Major improvements to inner classes and select instruction
Many code generation improvements
Some new compiler options

CMS Multitasking and BFS performance enhancements (V2R4)
Extend kernel DSA frame size to prevent frame overflows (6->64kb)
Eliminate large number of ThreadCreates
Eliminate redundant BFS QueueOpen calls
Eliminate large number of calls to CMSSTOR

���#���#
���+���(�, , -

Includes:
Compiler
Debugger
Java Virtual Machine (JVM)
JDK 1.1.6 class files
Java Native Interface (JNI)
JDK portion of the JDBC

DB/2 on VM does not have a JDBC interface
Other utilities

Appletviewer not supported on VM/ESA

�����.�
����$�
��+���

An interface enabling code running inside a JVM to
interoperate with applications and libraries written in other
languages
Supports need to get things done outside a JVM
Imposes no restrictions on implementation of underlying
Java VM

Application writer can write one version of native application
and expect it to work with all Java VMs supporting JNI

When is 100% pure Java not enough?
Need to use a platform specific feature not supported by Java
class library
Desire to make existing application accessible to Java code
Need to implement time critical code in low-level language

�����.�
����$�
��+��������
 !

With the JNI you can use native methods to:
Create, inspect, and update Java objects (includes arrays
and strings)
Call Java methods
Catch and throw exceptions
Load classes and obtain class information
Perform runtime type checking

Reason for including in JDK is to avoid problems
associated with vendors offering specific native method
interfaces in their Java VM implementations

�����.�
����$�
��+��������
 !

Java
Source

Program

javac
Java
Class
File

C Source
File

javah

java

Link Edit

Compiler

Dynamic
Library

Binary
Object

File

C Header
File

1

2

3

4

6

5

7

�������
��)����������
���
�

Java API for executing SQL statements
Classes and interfaces written in Java
Facilitate writing data base applications in pure Java

Supports sending SQL statements to any database
SYBASE, ORACLE, INFORMIX, DB/2 Universal Database
Write once run anywhere

With JDBC your program can
Establish a connection with a database
Send SQL statements
Process the results

Benefit
Bring company data to end users on diverse platforms

�������
��)����������
���
��
����
 !

JDBC is an API that is uniform and database independent
Two parts:

Application layer
Standard API used by Java class files
Layer used by application developers

Driver layer
Translate JDBC calls into specific calls required by a particular database
Each supported database must have a driver
An application is written once and moved to systems with various drivers
Application remains constant, drivers are the part that change
Allows for implementation of database specific functionality

The application layer comes with the JDK
From VM, use solution with applet and DB/2 Connect on a
workstation platform (Win95/98, NT, Linux...)

�&�
/$�/��������
����

Code generator that runs concurrently with JVM
Determine methods called most often and generate
machine code on the fly
Makes use of specific hardware or coprocessors
May get as much as 2 to 3 times performance
improvement

Java directory structure
on VM

/

usr

java

binclasses include lib src

openvm openvmopenvm securityjava sun

applet beans

lang net

security text

awt io

math rmi

sql util

applet beans

lang net

security text

awt io

math rmi

sql util

sunw

io util

java sun

applet beans

lang net

security text

awt io

math rmi

sql util

tools

ttydebug

native_threads sys native_threads

sunw

io util

��+
0����*����1&���
��

At least VM/ESA V2R3
OpenEdition Shell and Utilities (feature 6059)

Not required for installation
Still recommended for execution environment

LE/370 1.8 (included in base VM/ESA V2R3 and V2R4)
SFS filepools installed (VMSYS:, VMSYSU:)
BFS
VMARC MODULE (depending how Java code is ordered
for VM/ESA V2R3 files)
Refer to our VM/ESA java website for installation
instructions

Logon to userid with posixinfo
Mount bfs root

mount /../VMBFS:VMSYS:ROOT/ /
Enter shell

openvm shell
Verify java version level

java -version
Response

java version "1.1.6"
cd /usr/java

java hw
Response should be Hello World

����+����$��
����
���

	�������(�	
���
��*�������

Java compiler
javac [options] filename.java ...
Options

-classpath path - overrides default or classpath environment
variable
-d directory - specifies root directory of class hierarchy,
destination directory for compiled classes (for writing)
Other options

Can compile more than one class at a time
Java interpreter

java filename.class
Executes java bytecodes

Java Debugger
Compile program with -g compiler option which generates debugging
tables
Run program with jdb command

jdb fn
Debugger loads class, and displays prompt to enter command

List thread information
Set break points
Step through a line at a time
Break at specified exceptions
Many more commands

Run process in background then <KILL -SIGINT pid> to obtain
thread dump

java <classname> & (to run in background)

	�������(�	
���
��*�������
����
 !

Java Documentation Generator
javadoc command
Parses declarations and comments
Produces html pages describing classes, interfaces,
constructors, methods, fields
Produces class hierarchy and index of all members
javadoc [options] fn ... (where fn is list of source files or
package names)

-d path - specifies target directory for output files
-classpath path - specifies where to look for source files
-sourcepath path - synonym for -classpath
Other options

	�������(�	
���
��*�������
����
 !

Java Archive Tool (jar)
Combines many class files and other resources into single
specific format file
Can be compressed using ZIP compression format
Useful for applets consisting of multiple classes with other
resource files such as image or sound files

Reduces download time by allowing browser to obtain all files
with one request

jar [options] infile ...
Options

c - creates a new or empty archive and adds files to it
f - specifies JAR file name as second command line argument
o - stores without ZIP compression

	�������(�	
���
��*�������
����
 !

openvm shell

IBM
Licensed Material - Property of IBM
5654-030 (C) Copyright IBM Corp. 1995
(C) Copyright Mortice Kern Systems, Inc., 1985, 1993.
(C) Copyright Software Development Group, University of Waterloo, 1989.

All Rights Reserved.

U.S. Government users - RESTRICTED RIGHTS - Use, Duplication, or
Disclosure restricted by GSA-ADP schedule contract with IBM Corp.

IBM is a registered trademark of the IBM Corp.

cms ’x SAMPLServer.java (namet bfs’

import java.net.*;
import java.io.*;
import java.util.*;
import java.text.*;

// This class is defined to implement the Runnable interface, so
// we can define and use multiple threads of execution. We could
// have constructed the program such that each new connection would
// cause a new thread to be defined. However, this could potentially
// cause serious performance problems as our server would be subject
// to memory shortages, and other undesireable effects when the
// number of concurrent threads became large. To avoid these problems
// we will only define 3 threads. We could have defined more
// without any serious side effects, but 3 will suffice for the demo.
// Implementing threads in this manner also keeps the logic very
// simple for those who are just beginning to understand java threads.

public class SAMPLServer implements Runnable {
 private ServerSocket ss; // Define a server socket
 // accessible by all threads

 public static void main(String args[]) throws Exception {
 SAMPLServer w = new SAMPLServer();
 w.go(); // Define instance of this class
 }

SAMPLServer.java

// Since SAMPLServer implements Runnable, we can pass it as an
// instance to the constructors of the Thread objects. We pass the
// same instance to all Thread objects, so that they can share code
// and data (specifically, the serversocket object.

 public void go() throws Exception {
 ss = new ServerSocket(5050, 5);
 Thread t1 = new Thread(this, "1"); // Thread named 1
 Thread t2 = new Thread(this, "2"); // Thread named 2
 Thread t3 = new Thread(this, "3"); // Thread named 3
 t1.start(); // Start each of the threads
 t2.start();
 t3.start();
 }

// Each thread that is started will execute the instance method run()
// When we defined this class as one that implements the Runnable
// interface, one consequence of that is that we had to define an
// instance method named run(). This is the code each thread will
// execute.

SAMPLServer.java

 public void run() {
 Socket s = null;
 BufferedWriter out = null;
 String myname = Thread.currentThread().getName();
 String enc = "8859_1";

 for(;;) {
 try {
 System.out.println("Thread " + myname + " about to accept..");
 s = ss.accept();
 System.out.println("Thread " + myname + " accepted a connection");
 out = new BufferedWriter(
 new OutputStreamWriter(s.getOutputStream(), enc)); ;
 Date dt = new Date();
 DateFormat df = DateFormat.getDateTimeInstance(DateFormat.FULL,
 DateFormat.DEFAULT);
 out.write("Thread " + myname + ": " + df.format(dt));
 Thread.sleep(10000); // we put a sleep here to force the
 // threads to run somewhat in sequence
 // and cycle through the set
 out.write("\n");
 out.close();
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }
 }
}

SAMPLServer.java

/******/
import java.net.
import java.io.
import java.util.
import java.text.

class SAMPLServer implements Runnable
 properties private
 ss = ServerSocket

 method main(argwords=String[]) static
 w = SAMPLServer SAMPLServer()
 w.go()

 method go() public signals IOException
 ss = ServerSocket ServerSocket(5050, 5)
 t1 = Thread Thread(this, "1")
 t2 = Thread Thread(this, "2")
 t3 = Thread Thread(this, "3")
 t1.start()
 t2.start()
 t3.start()

SAMPLServer.nrx

 method run() public
 s = Socket
 out = BufferedWriter
 myname = String Thread.currentThread().getName()
 enc = String "8859_1"

 Loop Forever
 Do
 Say "Thread " myname " about to accept.."
 s = ss.accept()
 Say "Thread " myname " accepted a connection"
 out = BufferedWriter(-
 OutputStreamWriter(s.getOutputStream(), enc))
 dt = Date Date()
 df = DateFormat DateFormat.getDateTimeInstance(DateFormat.FULL, -
 DateFormat.DEFAULT)
 disp = String "Thread " myname ": " df.format(dt) "\n"
 out.write(disp, 0, disp.length())
 Thread.sleep(10000)

 out.close()
 catch e = Exception
 e.printStackTrace()
 End
 End

SAMPLServer.nrx

nrc SAMPLServer.nrx
NetRexx portable processor, version 1.142
Copyright (c) IBM Corporation, 1998. All rights reserved.
Program SAMPLServer.nrx
 === class SAMPLServer ===
 function main(String[])
 signals IOException
 method go
 method run
 implements Runnable.run
Compilation of ’SAMPLServer.nrx’ successful

java SAMPLServer
Thread 1 about to accept..
Thread 3 about to accept..
Thread 2 about to accept..
Thread 1 accepted a connection
Thread 1 about to accept..

 pipe tcpclient 9.82.2.222 5050 linger 25 | xlate from codepage 819 to codepage
 1047 | console
Thread 1 : Monday, February 15, 1999 4:29:49 PM

Java started life in consumer electronic market
Explosive growth with WWW
Suited to characteristics of web

Portable
Single API and ABI
Secure
Most browsers have built-in Java interpreter

Object-oriented language
Everything is in a class
Core set of classes

Language extended through additional libraries
C-like syntax

�&�����

Interpreted language
Java Virtual Machine

JDK 1.1.6 implemented on VM/ESA V2R3 & V2R4
Installed in BFS (using VMSES/E)

Classes in directories, not zip file
AWT can be used on VM with RAWT classes
Exploitation of CMS facilities is attractive but subverts
portability

Java Native Interface to be exploited to open this up

Add VM to list of Java platforms

�&�����

