
Introduction to Introduction to
Object-OrientedObject-Oriented
ProgrammingProgramming

Christine T. CaseyChristine T. Casey
VM/VSE Technical ConferenceVM/VSE Technical Conference
Session M60Session M60
May/June 2000May/June 2000

RETURN TO INDEX

Trademarks / DisclaimerTrademarks / Disclaimer

The following are trademarks of the International Business Machines Corporation:
VM/ESA OS/390
MVS/ESA S/390
OS/2
AIX
OpenEdition

The following terms are trademarks or registered trademarks of other companies or institutions:
Java (Sun MicroSystems, Inc.)
Windows (Microsoft Corporation)

The information contained in this document has not been submitted to any formal IBM test and is distributed on an "as
is" basis without any warranty either expressed or implied. The use of this information or the implementation of any of
these techniques is a customer responsibility and depends on the customer’s ability to evaluate and integrate them
into the operational environment. While each item may have been reviewed by IBM for accuracy in a specific
situation, there is no guarantee that the same or similar results will be obtained elsewhere. Customers attempting to
adapt these techniques to their own environment do so at their own risk.

In this document, any references made to an IBM licensed program are not intended to state or imply that only IBM’s
licensed program may be used; any functionally equivalent program may be used instead.

Any performance data contained in this document was determined in a controlled environment and, therefore, the
results which may be obtained in other operating environments may vary significantly. Users of this document should
verify the applicable data for their specific environments.

It is possible that this material may contain reference to, or information about, IBM products (machines and
programs), programming, or services that are not announced in your country. Such references or information must
not be construed to mean that IBM intends to announce such IBM products, programming, or services in your country.

AgendaAgenda

 Principles of OO Programming Principles of OO Programming
 Classes, Objects, Methods Classes, Objects, Methods
 Encapsulation Encapsulation
 Inheritance Inheritance
 Composition Composition
 Polymorphism Polymorphism
 Reuse Reuse

Potential Benefits and Concerns of OOPotential Benefits and Concerns of OO
Summary of conceptsSummary of concepts

Classes and Objects and Methods...Classes and Objects and Methods...
 (oh my!) (oh my!)

Class - template used to create objectsClass - template used to create objects
the cookie cutterthe cookie cutter

Object - the space allocationObject - the space allocation
the cookiethe cookie

Class Characteristics:Class Characteristics:
Combine data and behavior in one packageCombine data and behavior in one package

Protective of their hidden dataProtective of their hidden data
Known as encapsulationKnown as encapsulation

Described by nounsDescribed by nouns
Contain Methods (the verbs) providingContain Methods (the verbs) providing
functions and proceduresfunctions and procedures

Object Concepts - MethodsObject Concepts - Methods
ConstructorsConstructors

Runs when object is instantiatedRuns when object is instantiated
Same name as objectSame name as object
Initializes object’s dataInitializes object’s data

Overloading - write_check(int) Overloading - write_check(int)
 write_check(int,int) write_check(int,int)

Same method, different argumentsSame method, different arguments
Method with args matching the call is runMethod with args matching the call is run

Overriding - deposit(int)Overriding - deposit(int)
Same method name in different objectsSame method name in different objects
Used by child object to replace a parent’s Used by child object to replace a parent’s
methodmethod

Object or Class?Object or Class?

Account 1 Account 2 Account 3 Account 4

Class (use as template)

Objects
 (instantiated from class)

Account

Object Concept - Encapsulation Object Concept - Encapsulation

Data:$$
Acctnum
Balance

get_balance()

deposit(int) withdraw(int)

Account

packaging of related data and procedures together

Class, Object, and Method Example in JavaClass, Object, and Method Example in Java

 class Account {

 int Balance; // object data
 void Account() { // constructor
 Balance = 0; // initialize
 }
 void deposit(int i) { // methods
 Balance += i;
 }
 void withdraw(int i) {
 Balance -= i;
 }
 void get_balance() {
 return Balance;
 }

Class, Object, and Method Example in Java (cont.)Class, Object, and Method Example in Java (cont.)

 public static void main(String argv[])
 {
 // create new objects and call methods

 Account account1 = new Account();
 Account account2 = new Account();

 account1.deposit(25);
 account2.deposit(100);
 account1.withdraw(5);

System.out.println("balance="+account1.get_balance());
 }
 }

/* NetRexx Method Example */

 A = Account() -- set up an account object
 A.deposit(int 25) -- call deposit method
 A.deposit(int 100) -- call deposit to add more money
 A.withdraw(int 5) -- call withdraw method
 new_Balance = A.Get_Balance() -- call Get_Balance
 say "Balance =" new_Balance -- print new balance

Method Example in NetRexxMethod Example in NetRexx

class Account
 Balance = int -- property type integer

 method Account() -- constructor
 Balance = 0

 method deposit(in_money)
 Balance = Balance + in_money

 method withdraw(out_money)
 Balance = Balance - out_money

 method Get_Balance returns int
 return Balance

Method Example in NetRexxMethod Example in NetRexx

InheritanceInheritance

 Used in implementing OO-relationships Used in implementing OO-relationships
 sending messages between objects sending messages between objects
 create objects as part of a new object create objects as part of a new object

 Kind-of (Is A) Kind-of (Is A)
 Dog is a "Kind-of" animal Dog is a "Kind-of" animal
 "Is a" inheritance to reuse by extending "Is a" inheritance to reuse by extending
 other classes other classes

 Part-of (Has A) Part-of (Has A)
 Tail is a "Part-of" dog Tail is a "Part-of" dog (Dog "has a" Tail) (Dog "has a" Tail)
 "Has a" composition to reuse by including "Has a" composition to reuse by including
 other classes other classes

 Inheritance Inheritance

 ������

��	

�����
���������������

��������������

Example of
Kind-Of

(Is A)
Hierarchy

 Inheritance Inheritance

 ��	

����

��������

��������

Example of
Part-Of
(Has A)

Hierarchy

CompositionComposition

Build class consisting of other classesBuild class consisting of other classes
Instances are composite objectsInstances are composite objects
Related to "Has A" conceptRelated to "Has A" concept

Inheritance and Composition Inheritance and Composition
Example: Is a, Has aExample: Is a, Has a

 Java class description in English:
"A home is a house which has a family and a pet"

public class Home extends House {
 Family humans; // composition
 Pet animal;
}

// extend by inheriting (is a) or
// compose by building blocks (has a)

Object Concept - InheritanceObject Concept - Inheritance

Data: fees

get_balance()

deposit(int) write_check(int)
write_check(int,int)

Checking
Account

account

Account

Checking
Account

CkAccount(int)

Code Example: Inheritance, OverloadingCode Example: Inheritance, Overloading

 class CkAccount extends Account {

 int fees;
 CkAccount(int f) {
 fees = f; // set fee passed in
 }
 void write_check(int amount) {
 withdraw(amount);
 }
 void write_check(int amount,int f) {
 withdraw(amount);
 System.out.println("We need the fees");
 }
 }

Code Example: Inheritance, Overloading Code Example: Inheritance, Overloading
(cont.)(cont.)

public static void main (String argv[]) {
 CkAccount ck1 = new CkAccount(1);
 System.out.println("Bal 0 ="+ck1.get_balance());
 ck1.deposit(100);
 System.out.println("Bal 1 ="+ck1.get_balance());
 ck1.write_check(10);
 System.out.println("Bal 2 ="+ck1.get_balance());
 ck1.write_check(20,0);
 System.out.println("Bal 3 ="+ck1.get_balance());
 }
 }

PolymorphismPolymorphism

Capability of a single variable to referCapability of a single variable to refer
to different objectsto different objects

 Account can hold SavingsAccount or Account can hold SavingsAccount or
CheckingAccount object at different times CheckingAccount object at different times

This allows a new object to be addedThis allows a new object to be added
without rewriting existing procedureswithout rewriting existing procedures

Object Concept - Object Concept -
PolymorphismPolymorphism

Account
Account

Checking
Account

Savings
Account

Object Concept - Object Concept -
PolymorphismPolymorphism

Data: int.rate

get_balance()

deposit(int) withdraw(int)

Savings
Account

account

Account

Savings
Account

SavingsAccount(int)

ReuseReuse

Once a class is defined, all instances of Once a class is defined, all instances of
that class are guaranteed to be identicalthat class are guaranteed to be identical
and perfectly formedand perfectly formed
Same name methods in unrelated classSame name methods in unrelated class
and unrelated methodsand unrelated methods
Reusable objects are building blocks forReusable objects are building blocks for
future softwarefuture software
Create classes complete enough for Create classes complete enough for
expected needs, but simple and expected needs, but simple and
independent of other classes independent of other classes

Potential Benefits of OO Potential Benefits of OO
ProgrammingProgramming

Faster DevelopmentFaster Development
Higher Quality of CodeHigher Quality of Code
Easier MaintenanceEasier Maintenance
Reduced CostReduced Cost
Increased ScalabilityIncreased Scalability
Better Information StructuresBetter Information Structures
Increased AdaptabilityIncreased Adaptability

Potential Concerns of OO Potential Concerns of OO
Programming Programming

Maturity of the TechnologyMaturity of the Technology
Need for StandardsNeed for Standards
Need for Better ToolsNeed for Better Tools
Speed of ExecutionSpeed of Execution
Availability of Skilled peopleAvailability of Skilled people
Costs of ConversionCosts of Conversion
Support for Large-Scale ModularitySupport for Large-Scale Modularity

SummarySummary

Different way to design reusable softwareDifferent way to design reusable software
Keep it Simple:Keep it Simple:

 choose meaningful variable, method, and choose meaningful variable, method, and
 class names class names
 nouns for classes, verbs for methods nouns for classes, verbs for methods
 avoid large complex classes in favor of avoid large complex classes in favor of
 several smaller ones several smaller ones
 data should be private with reasonable data should be private with reasonable
 number of access methods number of access methods

You can do it !!You can do it !!

Contact InformationContact Information

Christine CaseyChristine Casey
ccasey@vnet.ibm.comccasey@vnet.ibm.com
caseyct@gdlvm7caseyct@gdlvm7

Fax: (607)752-1162Fax: (607)752-1162
Phone: (607)752-5049Phone: (607)752-5049

