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Agenada

u Principles ol ©0 Programming
» Classes, Objects, Miethods
> Encapsulation
> |nheritance
> Composition
> Polymorphism
» Reuse
m Potential Benefits and Concerns of OO

B Summary of concepts




(Cllassesian e @n]ecisianaiVieliiouss:
(@lrmy)

m Class- template used te create o) ects
> the cookie cutter

m Opj ect - the space allocation
> the cookie

m Class Characteristics:
> Combine data and behavior In one package
— Protective of thelr hidden data
— Known as encapsulation
» Described by nouns

» Contain M ethods (the verbs) providing
functions and procedures




@) ect Concepis- VIeiees

u Consiruciors

> Runswhen o) ect Isinstantiiated

> Same name as 0] ect

> [nitializes object’s data
m Overloading - write _check(int)

write_cheek(int,int)

» Same method, different arguments

» Method with args matching the call Isrun
m Overriding - deposit(int)

» Same method name in different objects

» Used by child object to replace a parent’s
method




Objects
(instantiated from class)

Account 1 Account 2 Account 3 Account 4




@] ecl ConRcepl - Encapsilaoen

Account

get_balance()

Data:$$
Acctnum
Balance

deposit(int)

withdraw(int)

packaging of related data and procedures together




(Elass; Onject; andiViemod ExampleiniJava
class Account {

Int Balance,; // object data
void Account() { /[ constructor
Balance = 0; /[ Initialize
}
void deposit(int 1) { // methods
Balance +=1;
}
void withdraw(int 1) {
Balance -=1;
}

void get_balance() {
return Balance;




(C1ass; Onject; andiViermod ExamplerniJavalcont:)

public static void main(String argv| ] )

{

/[ create new objects and call methods

Account accountl = new Account( );
Account account2 = new Account( );

accountl.deposit(25);
account2.deposit(100);
accountl.withdraw(b);

System.out.printin("balance="+accountl.get_balance());

}

}




Miethed ExamplelnNetRexx

[* NetRexx M ethod Example */

A = Account( ) -- set up an account object

A .deposit(int 25) -- call deposit method

A .deposit(int 100) -- call deposit to add more money
A.withdraw(int 5) -- call withdraw method

new Balance = A.Get_Balance( ) -- call Get_Balance
say "Balance =" new_Balance -- print new balance




Viiethed ExamplelntNesRexx

class Account

Balance = int -- property type integer
method Account( ) -- constructor
Balance=0

method deposit(in_money)
Balance = Balance + in_money

method withdraw(out_money)
Balance = Balance - out_ money

method Get_Balancereturnsint
return Balance




| nheritance

m Usediniimplementing ©OO-rélatiensaips
> Sending nmessages Petween o) ects

> Clieale objects as part of anew eject

m Kind-of (IsA)
» Dogisa” Kind-of* animal
> “|sa’ Inheritancetoreuse by extending

other classes

m Part-of (HasA)

>

all isa" Part-of* dog (Dog " hasa"

ail)

> "Hasa' composition toreuse by including

other classes




Inhertance Example of
Kind-Of

(IsA)

Animal Hierarchy

German
Shepherd

Sheltie

Tri-Color




| nheritance Example of
Part-Of

(RESTAY)
Hierarchy




Compesition

m Build class consisting of other classes
| | astances are composite o) ects
m Related to “Has A™ concept




Ihedanceane CompPesition
Examplel lisia = asa

Java class description in English:
"A home Is a house which has a family and a pet"

public class Home extends House {
Family humans, // composition
Pet animal;

}

/[ extend by inheriting (isa) or
/[ compose by building blocks (has a)




@B ect Concepl - Inhediance

Account

Checking get_balance()
Account
Checking
Account
Data: fees
account
deposit(int) |write_check(irnt)

CkAccount(int)

write check{int,int)




CodeExampleinhediancerOvedeading

class CkAccount extends Account {

Int fees:

CkAccount(int f) {
fees =T; /| set fee passed Iin

}

void write_check(int amount) {
withdraw(amount);

}

void write_check(int amount,int f) {
withdraw(amount);
System.out.printin("We need the fees");

}
}




Code Example: Inheritance, Overloading
(Contz)

public static void main (String argv[ ] ) {
CkAccount ck1 = new CkAccount(1);
System.out.printin("Bal 0 ="+ck1.get_balance( ));
ck 1.deposit(100);
System.out.printin("Bal 1 ="+ck1.get_balance( ) );
ckl.write check(10);
System.out.printin("Bal 2 ="+ck1.get_balance( ) );
ckl.write check(20,0);
System.out.printin(*Bal 3 ="+ck1.get_balance( ) );

}
}




PeIVIMerpRIST

m Capanility ef asingle variable to refer
to diffierent ebjects

> Account can hoeld SavingsAccount or
CheckingAccount object at different times

m | his allowsanew object to be added
without rewriting existing procedures




O] Ecl Concep=
=OIYMGRPRIST

Account

/N

Account Account




@) ecl Concept

Polmorpnism
Account
Savings get_balance()
Account
Savings
Account

Data: int.rate

account

deposit(int) | withdraw(int)

SavingsAccount(int)




Relse

u Oncea classisdefined, allfinstances of
that cllass are guaranteed to e identical
and perfectly fermed

m Same name methods in unreated class
and unrelated methods

m Reusable obj ects are building blocks for
future software

m Create classes complete enough for
expected needs, but smple and
Independent of other classes




Potental SENEliS 61 0®
Pregramming

m Fasier Develepment

m Higher Quality of Code

m Easier M aintenance

m Reduced Cost

m | ncreased Scalability

m Better | nfor mation Structures
m | ncreased Adaptability




PotentiafConcensene®
Pregramming

m Vi aturity of the Technoloegy.

m Need for Standards

= Need for Better Tools

m Speed of Execution

m Availability of Skilled people

m Costs of Conversion

m Support for Large-Scale M odularity




Stmmeany.

| Different way te designireusablie software
m Keep It Simple:
> chioose meaningful variable, methed, and
class names
> nounsfor classes, verbsfior methods

» avoid large complex classesin favor of
several smaller ones

» data should be private with reasonable
number of access methods

m Youcan do it !!
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