ntreduchion toe
Oh] eci-Orientea
Programming

Christine T. Casey

VM/NVSE Technical Conference
Session M 60

May/June 2000

Trademarks/ Disclaimer

The following are trademarks of the International Business Machines Corporation:

VM/ESA 0S/390
WAVASTISISYAN S/390
0S/2

AIX

OpenEdition

The following terms are trademarks or registered trademarks of other companies or institutions:
Java (Sun MicroSystems, Inc.)
Windows (Microsoft Corporation)

The information contained in this document has not been submitted to any formal IBM test and is distributed on an "as
is" basis without any warranty either expressed or implied. The use of this information or the implementation of any of
these techniques is a customer responsibility and depends on the customer’s ability to evaluate and integrate them
into the operational environment. While each item may have been reviewed by IBM for accuracy in a specific
situation, there is no guarantee that the same or similar results will be obtained elsewhere. Customers attempting to
adapt these techniques to their own environment do so at their own risk.

In this document, any references made to an IBM licensed program are not intended to state or imply that only IBM's
licensed program may be used; any functionally equivalent program may be used instead.

Any performance data contained in this document was determined in a controlled environment and, therefore, the
results which may be obtained in other operating environments may vary significantly. Users of this document should
verify the applicable data for their specific environments.

It is possible that this material may contain reference to, or information about, IBM products (machines and
programs), programming, or services that are not announced in your country. Such references or information must
not be construed to mean that IBM intends to announce such IBM products, programming, or services in your country.

Agenada

u Principles ol ©0 Programming
» Classes, Objects, Miethods
> Encapsulation
> |nheritance
> Composition
> Polymorphism
» Reuse
m Potential Benefits and Concerns of OO

B Summary of concepts

(Cllassesian e @n]ecisianaiVieliiouss:
(@lrmy)

m Class- template used te create o) ects
> the cookie cutter

m Opj ect - the space allocation
> the cookie

m Class Characteristics:
> Combine data and behavior In one package
— Protective of thelr hidden data
— Known as encapsulation
» Described by nouns

» Contain M ethods (the verbs) providing
functions and procedures

@) ect Concepis- VIeiees

u Consiruciors

> Runswhen o) ect Isinstantiiated

> Same name as 0] ect

> [nitializes object’s data
m Overloading - write _check(int)

write_cheek(int,int)

» Same method, different arguments

» Method with args matching the call Isrun
m Overriding - deposit(int)

» Same method name in different objects

» Used by child object to replace a parent’s
method

Objects
(instantiated from class)

Account 1 Account 2 Account 3 Account 4

@] ecl ConRcepl - Encapsilaoen

Account

get_balance()

Data:$$
Acctnum
Balance

deposit(int)

withdraw(int)

packaging of related data and procedures together

(Elass; Onject; andiViemod ExampleiniJava
class Account {

Int Balance,; // object data
void Account() { /[constructor
Balance = 0; /[Initialize
}
void deposit(int 1) { // methods
Balance +=1;
}
void withdraw(int 1) {
Balance -=1;
}

void get_balance() {
return Balance;

(C1ass; Onject; andiViermod ExamplerniJavalcont:)

public static void main(String argv|])

{

/[create new objects and call methods

Account accountl = new Account();
Account account2 = new Account();

accountl.deposit(25);
account2.deposit(100);
accountl.withdraw(b);

System.out.printin("balance="+accountl.get_balance());

}

}

Miethed ExamplelnNetRexx

[* NetRexx M ethod Example */

A = Account() -- set up an account object

A .deposit(int 25) -- call deposit method

A .deposit(int 100) -- call deposit to add more money
A.withdraw(int 5) -- call withdraw method

new Balance = A.Get_Balance() -- call Get_Balance
say "Balance =" new_Balance -- print new balance

Viiethed ExamplelntNesRexx

class Account

Balance = int -- property type integer
method Account() -- constructor
Balance=0

method deposit(in_money)
Balance = Balance + in_money

method withdraw(out_money)
Balance = Balance - out_ money

method Get_Balancereturnsint
return Balance

| nheritance

m Usediniimplementing ©OO-rélatiensaips
> Sending nmessages Petween o) ects

> Clieale objects as part of anew eject

m Kind-of (IsA)
» Dogisa” Kind-of* animal
> “|sa’ Inheritancetoreuse by extending

other classes

m Part-of (HasA)

>

all isa" Part-of* dog (Dog " hasa"

ail)

> "Hasa' composition toreuse by including

other classes

Inhertance Example of
Kind-Of

(IsA)

Animal Hierarchy

German
Shepherd

Sheltie

Tri-Color

| nheritance Example of
Part-Of

(RESTAY)
Hierarchy

Compesition

m Build class consisting of other classes
| | astances are composite o) ects
m Related to “Has A™ concept

Ihedanceane CompPesition
Examplel lisia = asa

Java class description in English:
"A home Is a house which has a family and a pet"

public class Home extends House {
Family humans, // composition
Pet animal;

}

/[extend by inheriting (isa) or
/[compose by building blocks (has a)

@B ect Concepl - Inhediance

Account

Checking get_balance()
Account
Checking
Account
Data: fees
account
deposit(int) |write_check(irnt)

CkAccount(int)

write check{int,int)

CodeExampleinhediancerOvedeading

class CkAccount extends Account {

Int fees:

CkAccount(int f) {
fees =T; /| set fee passed Iin

}

void write_check(int amount) {
withdraw(amount);

}

void write_check(int amount,int f) {
withdraw(amount);
System.out.printin("We need the fees");

}
}

Code Example: Inheritance, Overloading
(Contz)

public static void main (String argv[]) {
CkAccount ck1 = new CkAccount(1);
System.out.printin("Bal 0 ="+ck1.get_balance());
ck 1.deposit(100);
System.out.printin("Bal 1 ="+ck1.get_balance());
ckl.write check(10);
System.out.printin("Bal 2 ="+ck1.get_balance());
ckl.write check(20,0);
System.out.printin(*Bal 3 ="+ck1.get_balance());

}
}

PeIVIMerpRIST

m Capanility ef asingle variable to refer
to diffierent ebjects

> Account can hoeld SavingsAccount or
CheckingAccount object at different times

m | his allowsanew object to be added
without rewriting existing procedures

O] Ecl Concep=
=OIYMGRPRIST

Account

/N

Account Account

@) ecl Concept

Polmorpnism
Account
Savings get_balance()
Account
Savings
Account

Data: int.rate

account

deposit(int) | withdraw(int)

SavingsAccount(int)

Relse

u Oncea classisdefined, allfinstances of
that cllass are guaranteed to e identical
and perfectly fermed

m Same name methods in unreated class
and unrelated methods

m Reusable obj ects are building blocks for
future software

m Create classes complete enough for
expected needs, but smple and
Independent of other classes

Potental SENEliS 61 0®
Pregramming

m Fasier Develepment

m Higher Quality of Code

m Easier M aintenance

m Reduced Cost

m | ncreased Scalability

m Better | nfor mation Structures
m | ncreased Adaptability

PotentiafConcensene®
Pregramming

m Vi aturity of the Technoloegy.

m Need for Standards

= Need for Better Tools

m Speed of Execution

m Availability of Skilled people

m Costs of Conversion

m Support for Large-Scale M odularity

Stmmeany.

| Different way te designireusablie software
m Keep It Simple:
> chioose meaningful variable, methed, and
class names
> nounsfor classes, verbsfior methods

» avoid large complex classesin favor of
several smaller ones

» data should be private with reasonable
number of access methods

m Youcan do it !!

Contact lInfermation

Christine Casey
ccasey(@vnet.iom.com
caseyct@gdlvm7

Fax: (607)752-1162
Phone: (607)752-5049

