
Advanced Pipelines
VM 3D3

Will J. Roden, Jr.

IBM
Endicott, NY

05/05/00

(c) Copyright IBM Corp. 2000

Disclaimer

Pipelines

The information contained in this document has not been submitted to any formal
IBM test and is distributed on an "As is" basis without any warranty either express
or implied. The use of this information or the implementation of any of these
techniques is a customer responsibility and depends on the customer’s ability to
evaluate and integrate them into the operational environment. While each item may
have been reviewed by IBM for accuracy in a specific situation, there is no
guarantee that the same or similar results will be obtained elsewhere.
Customers attempting to adapt these techniques to their own environment do so
at their own risk.

In this document, any references made to an IBM licensed program are not
intended to state or imply that only IBM’s licensed program may be used; any
functionally equivalent program may be used instead.

Any performance data contained in this document was determined in a controlled
environment and, therefore, the results which may be obtained in other operating
environment may vary significantly. Users of this document should verify the
applicable data for their specific environment.

It is possible that this material may contain reference to, or information about, IBM
products (machines and programs), programming, or services that are not
announced in your country. Such references or information must not be
construed to mean that IBM intends to announce such IBM products,
programming or services in your country.

Permission is hereby granted to publish an exact copy of this paper. IBM retains
the title to the copyright in this paper as well as title to the copyright in all
underlying works. IBM retinas the right to make derivative works ands to republish
and distribute this paper to whomever it chooses in any way it chooses.

Juxtapose and Getfiles

Predselect

Append / Preface

Callpipe

Handling Multiple Files

Strip Blanks

Reconnection

Substitute Many Lines for One

Addpipe

Commit levels

Agenda
Pipelines

JUXTAPOSE
Prefixes records in the secondary stream with the

most recently read record from the primary
stream

Example:

JUXTAPOSE
Pipelines

Input: JUX FILE

a John
j Master Plumber
a Will
h Fireman
h EMT

Output:

John Master Plumber
Will Fireman
Will EMT

JUXTAPOSE

JUXTAPOSE ...
Pipelines

Read a Record

strip

l: locate 1.1 /a/

console

specs 3-* 1 specs 3-* 1

---------- buffer ----
j: juxtapose

pad 8

Code:

JUXTAPOSE
Pipelines

pipe (end ?)
 < jux file

| strip
|l:locate 1.1 /a/
| specs 3-* 1
| pad 8
|j:juxtapose
| console
?l:
| specs 3-* 1
|j:

Find It In
To find a string(s) in specified files
Example:

JUXTAPOSE and GETFILE Pipelines

finditin * exec a /will/!/john/

JUXTAPOSE

JUXTAPOSE and GETFILE ... Pipelines

CMS listfile

strip

f: fanout

getfiles

---------- buffer ----
j: juxtapose

 > FINDITIN LIST A

casei all

Find It In
To find a string(s) in specified files
Example:

JUXTAPOSE and GETFILE Pipelines

finditin * exec a /will/!/john/

arg fn ft fm lookfor
’Pipe (endchar ? name FINDITIN)’,
’ cms listfile’ fn ft fm,
’|f:fanout’,
’|j:juxtapose’,
’| > finditin list a’,
’?f:’,
’| getfiles’,
’| casei all’ lookfor,
’|j:’,

PREDSELECT
Copies a record from its primary input

stream to either its primary or
secondary output stream depending on
the order of arrival of input records on
its other streams.

Example:
Discard all blank records without

changing any other records. (leave
their trailing blanks)

PREDSELECT
Pipelines

PREDSELECT

PREDSELECT ...
Pipelines

Read a Record

f: fanout

strip

p: predselect

l:locate 1

Write a Record Write a Record

Selected Not Selected

Example:

PREDSELECT
Pipelines

/* Discard blank lines. */

PIPE (endchar ?)
’ < my input’, /* Read input */
’|f:fanout’, /* Copy record */
’|p:predselect’, /* Keep original */
’| > selected output a’, /* Write a file */
’?’, /* Second Pipeline */
’ f:’, /* Copy of record */
’| strip’, /* Strip blanks */
’|l:locate 1’, /* Is length >= 1? */
’|p:’, /* Second input */
’| > notsel output a’, /* Write a file */
’?’, /* Third Pipeline */
’ l:’, /* Rcds length < 1 */
’|p:’ /* Third input */

Preface runs its Pipeline argument first
Append runs its Pipeline argument after EOF is received
Watch for stage separator conflicts

Scanned twice ...
| is stage separator
\ is pipeline end character
Example: append literal one two three||split

Uses
Keeps LITERALs in order
Allows reading multiple files
Allows running of entire pipelines
Allows one pipeline to be run after another has
finished

 ...| hole | append ...
Allows a pipeline to be run after several others have
finished

 ...|h:hole | append ... ?...|h: ?...|h:

Append / Preface
Pipelines

Count the number of .foil lines in any list of files

One way this can be run

’Pipe (endchar ! name FOILSCNT)’,
’ cms listfile * foils a’,
’|f:fanout’,
’|j:juxtapose’,
’| console’,
’?f:’,
’| foilscnt’,
’|j:’

A possible output

ADVPIPE FOILS A1 22
B FOILS A1 41
EX FOILS A1 7
LISTOF FOILS A1 0
MICRO FOILS A1 16

Callpipe: Handling Multiple Files Pipelines

REXX Solution

/* FOILSCNT REXX */
’PEEKTO’ fileID /* Get fileID */
do while rc = 0 /* Data avail? */
’callpipe (endchar ?)’,
’ <’ fileId,
’| casei strfind /.foil/’,
’| count lines’,
’| *:’

’READTO’ /* Consume */
’PEEKTO’ fileID /* Get fileID */

end /* do while rc = 0 */

Callpipe: Handling Multiple Files ... Pipelines

SPECS and PIPCMD Solution

’Pipe (endchar ? name FOILSCNT)’,
’ cms listfile * foils a’,
’|f:fanout’,
’| pad 21’,
’|j:juxtapose’,
’| console’,
’?f:’,
’| specs @callpipe < @ 1 1-* n’,

’@|| casei strfind /.foil/@ nw’,
’@|| count lines@ n’,
’@||*:@n’,

’| pipcmd’,
’|j:’

Callpipe: Handling Multiple Files ... Pipelines

Eliminate Duplicate Blanks from each line

One Way... But has a maximum and leaves a leading
blank

| change / / /
| change / / /
| change / / /

Another Way ... But assumes no x25 in text

| spec 1-* 1 x25 n
| split
| joincont not trailing x25 / /

Callpipe: Strip Blanks
Pipelines

A Callpipe that works for a line - assumes no | or ? in
text

callpipe
 literal
| split
| join * / /
|*:

The final code

’Pipe (endchar ?)’,
’| append literal Line one is here.’,
’| append literal This is the second.’,
’| append literal The third. ’,
’| specs @callpipe@ 1’,
’@ literal@ n 1-* nw’,
’@|| split@ n’,
’@|| join * / /@ n’,
’@||*:@ n’,

’| pipcmd’,
’| console,

The Output

Line one is here.
This is the second.
The third.

Callpipe: Strip Blanks ...
Pipelines

Reconnect Do heading then body ...

The EXEC

/* RECONN EXEC */
’Pipe (endchar ?)’,
’ < input data’,
’| reconn’,
’| console’

The REXX

/* RECONN REXX */
’callpipe’,
’ *:’,
’| take 4’,
’|*:’

’callpipe’,
’ *:’,
’| locate 5.1 /4/’,
’|*:’

Callpipe: Reconnection
Pipelines

INPUT DATA

Nbr S Last Ans Next Nx Dpt
 E Actopm Code Action Ac Nxt
 V Done To Do ID Act
----+----1----+----2----+----3----+-
001 3 RECEIVED ANSWER KL A32
002 3 RECEIVED ANSWER BR A32
003 3 RECEIVED ANSWER BI A00
004 5 ANSWERED COLD INT1 VM B29
005 3 ANSWERED DUP CLOSE CO B26
006 3 OPENED RECEIVE BI A00
007 4 REROUTED RECEIVE PE B18
008 3 OPENED RECEIVE BI A00
009 4 RECEIVED ANSWER BE B18
010 3 ANSWERED COLD SSV DE A31
011 4 CLOSED CNEW NONE
012 4 CLOSED CNEW NONE
013 3 OPENED RECEIVE CP A64
014 4 RECEIVED ANSWER NE B18
015 1 OPENED RECEIVE CP A64
016 3 RECEIVED ANSWER XX A31

Callpipe: Reconnection ...
Pipelines

The Output

Nbr S Last Ans Next Nx Dpt
 E Actoon Code Action Ac Nxt
 V Done To Do ID Act
----+----1----+----2----+----3----+-
007 4 REROUTED RECEIVE PE B18
009 4 RECEIVED ANSWER BE B18
011 4 CLOSED CNEW NONE
012 4 CLOSED CNEW NONE
014 4 RECEIVED ANSWER NE B18

Callpipe: Reconnection ...
Pipelines

LANGUAGE HTML

<html>
<head>
<title>Language Selection</title>
</head>
<body>
<FORM METHOD=POST ACTION="sendfile.cgi?roden">
<INPUT TYPE="submit" VALUE="Submit">
<h5>Your Favorite Programming Language:</h5>
<select name="language">
<option>

</select>
</FORM>
</body>
</html>

OPTION LIST

APL
Assembler
C
C++
JAVA
Pipelines
REXX

Callpipe: One line into Many
Pipelines

The Output

<html>
<head>
<title>Language Selection</title>
</head>
<body>
<FORM METHOD=POST ACTION="sendfile.cgi?roden">
<INPUT TYPE="submit" VALUE="Submit">
<h5>Your Favorite Programming Language:</h5>
<select name="language">
<option>APL
<option>Assembler
<option>C
<option>C++
<option>JAVA
<option selected>Pipelines
<option>REXX

</select>
</FORM>
</body>
</html>

Callpipe: One line into Many ...
Pipelines

The Code

’Pipe (end ?)’,
’ < language html’,
’|l:locate @<option>@’,
’| spec @callpipe < option list||*:@1’,
’| pipcmd’,
’| spec / <option>/ 1 1-* n’,
’|f:faninany’,
’| > language htm a’,
’?l:’,
’|f:’

Callpipe: One line into Many ...
Pipelines

Differences between callpipe and addpipe
Callpipe runs as a "pipeline subroutine"

When callpipe terminates, connections are put
back

Addpipe runs as a "separate task"
When addpipe terminates, connections are

terminated
Nine ways addpipe can be used:

addpipe B | C
addpipe B | C |*.input:
addpipe *.output: | B | C
addpipe *.input: | B | C
addpipe B | C |*.output:
addpipe *.input: | B | C |*.input:
addpipe *.output: | B | C |*.output:
addpipe *.input: | B | C |*.output:
addpipe *.output: | B | C |*.input:

Addpipe
Pipelines

Pipeline A | Z | D

Z -- a typical REXX stage

’PEEKTO in’
do while rc = 0
/* Do something */
’OUTPUT’ in
’READTO’
’PEEKTO in’

end /* do while rc = 0 */

Addpipe’s Nine Cases Pipelines

’PEEKTO in’
do while rc = 0
/* Do something */
’OUTPUT’ in
’READTO’
’PEEKTO in’

end /* do while rc = 0 */

Addpipe’s Nine Cases Pipelines

A

D

*.input.0:|...

...|*.input.0:

*.output.0:|...

...|*.output.0:

Z

addpipe B | C

addpipe B | C |*.input:

addpipe *.output: | B | C

<

Addpipe’s Nine Cases ... Pipelines

A Z D

B C

A

B C

DZ

A

CB

DZ

addpipe *.input: | B | C

addpipe B | C |*.output:

addpipe *.input: | B | C |*.input:

Addpipe’s Nine Cases ... Pipelines

A

CB

DZ

A D

CB

Z

A DZ

CB

addpipe *.output: | B | C |*.output:

addpipe *.input: | B | C |*.output:

addpipe *.output: | B | C |*.input:

Addpipe’s Nine Cases ... Pipelines

A

CB

DZ

A D

CB

Z

A DZ

CB

The commit level allows stages to coordinate their
initial execution. This assists in preventing the loss
of data from a device drives such as reading an A3
file.

Commit levels
Pipelines

< INPUT FILE A

> OUTPUT FILE A

specs 1.3 5.1 22.15

ADDEM

locate 5.1 /4/

drop 4

Commit Level

0

-2

-2

-1

-2

0

CMS Pipelines User’s Guide - SC24-5777
CMS Pipelines Reference - SC24-5778
CMS Pipelines Author’s Edition - SL26-0018
Quick Reference - SX24-5290
Development Contact

Will J. Roden, Jr.
Internet:: roden@us.ibm.com
Phone: (607) 752-5065
Web: http://www.vm.ibm.com/devpages/roden
Mail: IBM Department G37G
Mail: 1701 North Street
Mail: Endicott,NY 13760

For More Information:
Pipelines

