
Writing CGI Scripts

VM/ESA and VSE/ESA Technical Conference
Orlando - Summer 2000

Session # M23

Richard F. Lewis
IBM Washington System Center

rflewis@us.ibm.com

RETURN TO INDEX

IBM
Disclaimer

The information contained in this document has not been submitted to any formal IBM test and is distributed on an "as is" basis
without any warranty either expressed or implied. The use of this information or the implementation of any of these techniques is a
customer responsibility and depends on the customer’s ability to evaluate and integrate them into the operational environment. While
each item may have been reviewed by IBM for accuracy in a specific situation, there is no guarantee that the same or similar results will
be obtained elsewhere. customers attempting to adapt these techniques to their own environments do so at their own risk.

In this document, any references made to an IBM licensed program are not intended to state or imply that only IBM’s licensed program
may be used; any functionally equivalent program may be used instead.

Any performance data contained in this document was determined in a controlled environment and, therefore, the results which may be
obtained in other operating environments may vary significantly. Users of this document should verify the applicable data for their
specific environments.

It is possible that this material may contain reference to, or information about, IBM products (machines and programs), programming,
or services that are not announced in your country. Such references or information must not be construed to mean that IBM intends to
announce such IBM products, programming or services in your country.

IBM
Trademarks

The following are trademarks of International Business Machines Corporation. Those
identified with an (*) are registered trademarks of International Business Machines

Enterprise Systems Architecture/370
Enterprise Systems Architecture/390
ESA/370
ESA/390
IBM*
System/370
VM/ESA*

Following are trademarks of the company specified
VM:Webserver - Sterling Software, Inc.
EnterpriseWeb/VM - Beyond Software Incorporated
Netscape Netsite - Netscape
Microsoft IIS - Microsoft
Java - Sun Microsystems
ESAWEB - Velocity Software

IBM
Agenda

Introduction
Overview of WWW

Overview of CGI Programming
What is a CGI
Operation of a CGI
Headers

How to:
Send output to browser
Access Environment Variables
Access request headers
Obtain data sent from a browser using POST

Basic flow of a CGI
Considerations
A brief look into the future
Summary

IBM
Overview

Web
Server

Firewall

Internet
“Public Network”

Web
Browser

Intranet
“Private Network”

Web Server

TCP/IP

TCP/IP Sockets

New
Data

Existing
Data

Common Gateway
Interface (CGI)

Existing
Applications

IBM
What Does a Web Server Do?

Client

Selects link for
application

Fills out form
Submits form

Examines data

Sends form

Runs CGI script

Sends created

CGI Script

Obtains parameters
from FORM
Call Application
Converts responses to
HTML format
Outputs dynamic data

Server
Selects link

Sends static data

HTML file
 text, images
 sound, video

Examines data

HTML file
 text, images
 sound, video

IBM

Hypertext Transfer Protocol (HTTP) provides means for
browser to send data to server

GET, POST, PUT
Servers not written to process this data

Servers typically as generic as possible
Common Gateway Interface is specification that determines
how server will link to separate program to process the data

Defines how:
Browser sends data to server
Server provides data to program
Program passes data back to server

Example:
Browser sends database query to server
Server needs to link to a program that can interface with database
Server passes query from browser to program

What is a CGI?

IBM
Browser Sending Data To Server...

Universal Resource Locator (URL), query string
URL

Specify internet resources using single line of characters
Flexible scheme
Supports all major internet resources (FTP, Gopher, e-mail, http...)
Form:

Protocol Domain Name : Port / Resource Loc Query String?

HTTP://some.com:1080/database.cgi?Lewis

Data in query string passed to CGI program
Encoding of characters done:

For characters disallowed in a URL
For special characters (%xx where xx is hex code for ASCII char)

IBM

Extra Path Information
Resembles directory information added to URL after name of CGI but
before any query string information
E.g. http://some.com/cgi-bin/proga/extra/path?query+string

Data sent to server in message body
HTTP POST method
Used with HTML FORMs
Different encoding schemes used by different browsers

Form-urlencoded
MIME/form-data

Server handles decoding of message body

Browser Sending Data To Server

IBM
Server Sending Data To Program

Command line argument
Data from document with ISINDEX HTML tag, or FORM, GET method
Data sent from browser as encoded query string, with + delimited words
Server decodes query string, replaces + sign with blank
CGI program receives blank delimited words as command line input

Environment variables
Variable names and contents defined by CGI standard
Variables loaded by server before launch of CGI program
Variables contain extra path information, and query string information
Other variables contain

Request header information
Server information

VM webservers typically use GLOBALV for environment variables
Standard input

Typically used with POST method from an HTML FORM
Program receives name=value strings

IBM
Program Passes Data To Server

Write to standard output
Most common method for program to send results to browser
Data stream includes headers and HTML source
Output may also include server directives
Server adds headers to data from CGI program

Non-parsed header program
Specially named CGI

Program name begins with nph
Server sends CGI output directly to browser
No processing of output by server
No additional headers created by server
CGI responsible for providing all headers along with output data
On VM this is implemented by:

Options to commands used to write output
Accessing the socket write routines directly from a CGI

IBM
Operating Characteristics

HTTP protocol is a stateless protocol
Server and CGI retain no knowledge of previous transactions

CGI program must have mechanisms for keeping track of
information from previous transaction
Most common method is to use TYPE="hidden" INPUT
elements within HTML forms

Data passed back and forth between client and server
End user at browser never sees data

Netscape extension provides alternative
Cookies

Set-cookie: HTTP response header, name=value data
Browser stores state information sent by server, on hard drive
Cookie content sent as part of HTTP request header when appropriate

Tied to URL domain name value
Defined in Set-cookie header

Only supported by Netscape and Internet Explorer browsers

IBM
Request Headers

Part of data sent from client to server
Request header consists of:

Request fields (single line of ASCII text terminated with CRLF)
Blank line with CRLF terminus

Method field of request header is always first
Specifies HTTP method to use
Location of desired resource on server
Version of HTTP protocol client would like to use

Request fields follow method field
Provide information to server about client
Information about the nature of data (if any) being sent by client

Server typically places all data from request headers into
environment variables

IBM
Example Request Headers

GET /Tests/file.html HTTP/1.0
Accept: text/plain
If-Modified-Since: Wed, 19 May 1999 17:23:31 GMT
Referer: http://www.place.com/webstuff/page.html
User-Agent: Mozilla/1.01
 a blank line with CRLF

IBM

Part of data returned to client from server
Consists of:

Response header
Response header fields

Single lines of text terminated by a CRLF
Response header terminated by blank line containing only CRLF

Used to communicate information about a txn to the client
Message data may follow response header
First line in response header is status line

Identifies protocol level used by server, and whether request successful
Format:

http_version status_code explanation
Other response header fields include:

Date header - date and time object was assembled for transmission
MIME-version field - MIME version used by server to compose response
Server field - returns name and version of server software
Content-type - indicates MIME content-type of date being returned

Response Headers

IBM
Example Response Headers

HTTP/1.0 200 OK
Content-Type: text/html
Last-Modified: Tue, 18 May 1999 22:53:06 GMT
Server: Aserver/01.2
Date: Wed, 19 May 1999 13:19:29 GMT
 a blank line with CRLF
<HTML>
<HEAD>

IBM
CGI Execution Environment

Method by which CGIs are invoked differs by web server
EnterpriseWeb/VM and Webshare

CGI is a pipeline filter (user written stage)
3 input streams (only two with Webshare)

Primary - input parameters from POST method or query string from GET
Secondary - header fields from browser
Tertiary - environment variables (on Webshare environment variables are
accessed from GLOBALV group HTTPD)

1 output stream
Primary - contents sent directly to client browser

VM:Webgateway
Preferred environment for a CGI program is a REXX EXEC
Pipeline command can be included in the EXEC
Input from client, output to client, and environment variables processed by
CGI REXX function
CGI can be a pipeline filter for compatibility with WebShare

Less efficient environment than the preferred REXX EXEC environment
CGI programs can be run in the server virtual machine, or in a worker
(adjunct) virtual machine

IBM
Storing CGI Programs

CGI programs are stored in the file system managed by the
webserver (SFS, BFS, Minidisk)

Could be stored along with html files in directories that reflect the URL
path to the CGI program
Could be stored in a central CGI location (web server may have special
settings to facilitate this)

CGI programs are named with any file name, and a file type that
matches an entry in the web server’s file type table or media map
table identifying an executable file

Standard file type is CGI
Enterprise/Web VM

EWEBCGI is an executable file type
VM:Webgateway

CGI, CGIREXX, HTTPPROC for Webshare compatibility
WRKEXEC - REXX CGI running in a worker virtual machine
VMGW - REXX CGI running in the server

Modify the table to add a new file type

IBM
Invoking CGI Programs

CGI programs typically invoked in one of 3 ways:
Using a URL:

http://wscm2vm/abstract.vmgw?speaker=Lewis
http://wscm2vm/abstract.ewebcgi

From an html page hyperlink (browser user clicks on the text)
 some text
 some text

From an html page form tag
<form action="abstract.vmgw" method="POST" ...>
<form action="abstract.ewebcgi method="GET" ...>

IBM

You can determine whether or not you are running as a
pipeline stage using the REXX PARSE SOURCE statement

Pipeline stage
Parse SOURCE env .
Say env (results in ?)

Called EXEC
Parse SOURCE env .
Say env (results in CMS)

You can identify server software executing CGI, by examining
the SERVER_SOFTWARE global variable

Address "COMMAND" ’GLOBALV SELECT HTTPD GET
SERVER_SOFTWARE’
Say SERVER_SOFTWARE (results in)

VM:Webgateway/3.0 (for Sterling Software’s VM:Webgateway)
EnterpriseWeb/1.1.4 (for Beyond Software’s EnterpriseWeb/VM)
Webshare/1.2.3 (for Rick Troth’s Webshare)

Determining Web Server Execution
Environment

IBMSending Output To Browser
VM:Webgateway

Use WRITE option of VM:Webgateway CGI command
Write header information, and document (body) information
Translate output from EBCDIC to ASCII
Add CRLF to end of each line
Write from string, variable, or stem
For binary data (image) specify TRANSLATE NONE, and NOCRLF

/******/
Line.0 = 3
Line.1 = "<html><body>"
Line.2 = "<p>Some output"
Line.3 = "</body></html>"
’CGI WRITE HEADER (STRING Status: 200 OK’
headerdata = "Content-Type: text/html’
’CGI WRITE HEADER (VAR HEADERDATA’

’CGI WRITE DOCUMENT (TRANSLATE USENGLISH CRLF STEM LINE.’

VIGRTNS SUBSTITUTE is a utility that can be used to replace
variables in an html file with values of Rexx variables in CGI
program

IBMSending Output To Browser
EnterpriseWeb/VM

Everything from the primary output stream of the CGI is
returned to the browser

Headers
Document data (body)

/*****/
’OUTPUT’ "HTTP/1.0 200 OK"
’OUTPUT’ "Content-Type: text/html"
’OUTPUT’ "<html><body>"

’CALLPIPE < BEGIN DATA * | *:’

’OUTPUT’ "</body></html>"

EWSET is a utility provided to simplify updating variable data
in an html form being sent to a browser

Use to initialize a form, or redisplay form with partially filled data
Reads html on primary input stream, list of variables to update on
secondary stream

IBMSending Output To Browser
Webshare

Everything from the primary output stream of the CGI is
returned to the browser

Headers
Document data (body)

/*****/
’OUTPUT’ "HTTP/1.0 200 OK"
’OUTPUT’ "Content-Type: text/html"
’OUTPUT’ "<html><body>"

’CALLPIPE < BEGIN DATA * | *:’

’OUTPUT’ "</body></html>"

IBM
Lab Notes

Each team will logon to CGIUSERn where:
n = 1- F
password = CGIUSERn

Each Thinkpad has Netscape browser installed, URL to use is:
http://9.130.31.15:xxxx/CGIUSERn/file.html where:

xxxx = 9080 for VM:Webserver
xxxx = 6080 for Webshare
xxxx = 3080 for Enterprise/Web

Each CGI userid has three SFS directories accessed
To see where the directories are accessed enter QUERY ACCESSED from
CMS command line
CGICLASS.CGIUSERn is directory to place all objects such as html, or cgi
programs
HTTPD3.WEBSHARE.CGIUSERn is directory for Webshare objects

May want to just alias all items placed into CGICLASS.CGIUSERn
ALIAS * * CGICLASS.CGIUSERn = = HTTPD3.WEBSHARE.CGIUSERn

Example files are in CGICLASS.EXAMPLES

IBM
Lab Assignment 1

We will start off with a trivial CGI program so that you can get used to the
mechanics of creating the CGI file, saving it in the proper place, and
testing it with your web browser
Create a CGI that simply displays the text "Hello World"

Output of the CGI should be <html><body><p>Hello World</body></html>
The CGI should be invoked from your web browser using a URL similar to:

http://9.130.31.15:xxxx/CGIUSERn/hellow.vmgw (or .ewebcgi)
If you want more of a challenge code the CGI program to run under any of
the web servers
If you are done early with this assignment, feel free to add additional
output to your CGI, for example the date and time, and the system netid of
the host
Example files:

LAB1 EXAMPLE, SINGLE SOURCE, COMMON HTMLELEM, FORM
HTMLELEM

IBM
Some Sample HTML Tags

<html>
<head>
<title>Title For Browser Window</title>
</head>
<body>
<center>
<h1>This is a heading level 1</h1>
<h2>This is a heading level 2</h2>
</center>
<hr>

<p>
This is a text inside a paragraph
</p>
This is a hypertext link
<img src="some.gif" alt="Text if image not
displayed">

This is an element in an unordered list
This is another element

</body>
</html>

IBM
Sample HTML Form Tags

<html>
<head>
<title> Sample HTML Form Tags </title>
</head>
<body>
<center><h1> Sample HTML Form Tags </h1> </center>
<blockquote>
<form action="some.cgi" method="post">
<p>
Sample text box
<input type="text" name="atextb" size="20">

Sample selection box
<select name="aselect">
 <option> First option
 <option selected> Second option
</select>

Sample checkboxes
<input type="checkbox" name="achkb" value="First" checked> First
<input type="checkbox" name="achkb" value="Second"> Second

Sample radio buttons
<input type="radio" name="aradio" value="First" checked> First
<input type="radio" name="aradio" value="Second"> Second

Sample Submit Button
<input type="submit" name="sub" value="Submit Button">
</form>
</blockquote>
</body>
</html>

�����

IBMAccessing Environment Variables
VM:Webgateway

Use the GETVAR option of VM:Webgateway CGI command
Will retrieve value of single variable or all variables in a stem
With stem, element zero contains a list of names, rather than a count

Example below obtains all environment variables, and logs
values to console

/****/
’CGI GETVAR * (STEM CGIVARS.’

Do I = 1 to WORDS(CGIVARS.0)
 varname = WORD(CGIVARS.0,I)
 ’CGI LOG (VAR CGIVARS.’varname
End

Exit
Assuming WORD(CGIVARS.0,2) is
HTTP_USER_AGENT

Say CGIVARS.HTTP_USER_AGENT
 results in: Mozilla/2.02E (OS/2;I)

Data Examples

IBMAccessing Environment Variables
EnterpriseWeb/VM

Use CMS GLOBALV command with group HTTPD
Transaction specific information can be obtained from group
THREADn (where n represents a service machine)

/****/
’CALLPIPE COMMAND GLOBALV SELECT HTTPD LIST’,
 ’| DROP FIRST 1’,
 ’| STRIP’,
 ’| XLATE fieldsep = f1 upper’,
 ’| change //=PARM./’,
 ’| varload’

Say PARM.VERSION
’StreamState INPUT 2’
If rc=0 | rc = 4 Then
 Do
 ’CALLPIPE *.input.2: | varload’
 End
’CALLPIPE COMMAND GLOBALV SELECT THREAD’eweb.thread ’LIST’,
 ’| DROP FIRST 1’,
 ’| STRIP’,
 ’| XLATE fieldsep = f1 upper’,
 ’| change //=PARM./’,
 ’| varload’

Say PARM.REMOTE_ADDR

Say PARM.VERSION would result in:
 EnterpriseWeb 1.1.4 VM/CMS

Say PARM.REMOTE_ADDR would result in:
 9.82.1.101

IBMAccessing Environment Variables
Webshare

Use CMS GLOBALV command with group HTTPD

/***/
’CALLPIPE COMMAND GLOBALV SELECT HTTPD LIST’,

’| DROP FIRST 1’,
’| SORT’,
’| NLOCATE 1-6 / TYPE./’,
’| NLOCATE 1-6 / PIPE./’,
’| NLOCATE 1-7 / GTYPE./’,
’| NLOCATE 1-7 / MTYPE./’,
’| STRIP’,
’| XLATE fieldsep = f1 upper’,
’| CHANGE //=PARM./’,
’| VARLOAD’

Say PARM.HTTP_USER_AGENT

IBM

Use GETVAR option of VM:Webgateway CGI command
Request headers have names beginning with HTTP

E.g. HTTP_REFERER, HTTP_USER-AGENT
Obtain single header, or all headers into a stem

Accessing Request Headers
VM:Webgateway

/****/
’CGI GETVAR HTTP_REFERER (VAR header_host’

Say header_host

Exit
Result of Say statement would be:

Referer: http://www.place.com/webstuff/page.html

IBM

Request headers sent to secondary input stream of CGI
No reformatting of header data done by server
Can use algorithm shown for Webshare
EnterpriseWeb/VM provides option on EWGET command to retrieve
headers

Accessing Request Headers
EnterpriseWeb/VM

/********/

’CALLPIPE EWGET headers’

Do I = 1 to header.0
Say header.I

End

Say header.1

EWGET with headers option creates stemmed array
containing the request headers. Element 0 contains
the number of elements in the array.

Result of Say header.1 would be:

Referer: http://www.place.com/webstuff/page.html

IBM

Request headers sent to secondary input stream of CGI
No reformatting of the header data is done by server

Accessing Request Headers
Webshare

/******/

’CALLPIPE (endchar ?) *.INPUT.1:’,
’| strip’,
’|a: fanout’,
’| specs /HDR./ 1 w1 n /=/ n w2-* n’,
’| xlate fieldsep = f1 upper’,
’| change /HDR./=HDR./’,
’| change /:=/=/’,
’| varload’,
’?’,
’a:’,
’| specs w1 1’,
’| change /:/ /’,
’| xlate 1-*’,
’| join *’,
’| var HDR.0’

Say ’Referer is" HDR.REFERER

Algorithm places headers into stemmed array, using the
header name as the name of the array element. Element 0
contains a list of names used for all other elements

Results of Say statement would be:

Referer is Referer:
http://www.place.com/webstuff/page.html

IBM
Lab Assignment 2

Create a CGI program to display all environment variables,
and the following request header fields

Request method
User Agent

Invoke the CGI program with URL similar to Lab 1
Optionally code the CGI such that it can run under any of the
three VM web servers
Create an html form that has:

Title and header information of your choosing
A select box listing CP and CMS commands that can be executed
A text input box that can be used to enter the user’s name
A submit button

Note: since this is not an html class, a sample page has been provided in the
examples directory that demonstrates how the various html elements are coded
(CGICLASS HTML)

�����

IBMObtaining Data Sent By POST
VM:Webgateway

Use READ option of VM:Webgateway CGI command
Translates data from ASCII to EBCDIC
Data still in "encoded form" (field_name=value&field_name=value...)

Use URLDECODE option of VM:Webgateway CGI command
Breaks down an encoded string
Creates stem listing variable names as well as values

stem.0 contains list of variable names
stem.var_name contains variable value

/****/
’CGI READ 1 (VAR BLOCK TRANSLATE USENGLISH’

If Length(BLOCK) <> 0 Then
 Do
 ’CGI URLDECODE (VAR BLOCK INTO DECODED.’
 Do I = 1 to WORDS(DECODED.0)
 ’CGI LOG (STRING’ WORD(DECODED.0,I)
 ’CGI LOG (VAR DECODED.’WORD(DECODED.0,I)
 End
 End

Say BLOCK results in:
 fname=Richard&mname=F&lname=Lewis

Log output would contain

 ... FNAME
 ... Richard
 ... MNAME
 ... F
 ... LNAME
 ... Lewis

IBMObtaining Data Sent By Post
EnterpriseWeb/VM

Use EWGET utility (pipeline filter)
Option VAR, or PARMS will obtain data posted from a form and decode
it.
Two stems are used

First stem specified contains values of variables
Second stem specified contains variable names
Second stem is a pointer to values in first stem

/****/
’CALLPIPE *: | EWGET vars p. ptr.’

Do I = 1 to ptr.0
’OUTPUT’ ptr.I
name = ptr.I
Do J = 1 to VALUE(name’.0’)

’OUTPUT’ VALUE(name’.’J)
End

End

Assuming appropriate html in
the example, the browser
screen would contain:

P.FNAME
Richard
P.MNAME
F
P.LNAME
Lewis

IBMObtaining Data Sent By Post
Webshare

Form data sent using POST method is supplied on the primary
input stream to the CGI program
Melinda Varian of Princeton University has created a very
good subroutine pipeline to process this data with Webshare

’CALLPIPE (name GetForm)’, /* Input: name=value */
 ’ *:’, /* Get input from sample form. */
 ’| xlate 1-* 05 40’, /* Convert tabs to blanks. */
 ’| strip’, /* Strip leading/trailing. */
 ’| locate 1’, /* discard null lines, if any. */
 ’| xlate fieldsep = f1 upper’, /* Upper-case variable names. */
 ’| change //=PARM./’, /* ==> =PARM.name=value */
 ’| varload’

IBMObtaining Form Data Sent With GET -
VM:Webgateway

Use GETVAR option of VM:Webgateway CGI command
Specify QUERY_STRING as variable to "GET"
Data still in "encoded form" (field_name=value&field_name=value+value...)

Use URLDECODE option of VM:Webgateway CGI command
Breaks down an encoded string
Creates stem listing variable names as well as values

stem.0 contains list of variable names
stem.var_name contains variable value

USE GETVAR option of CGI command with REQUEST_METHOD
to determine whether GET or POST was used by client

/****/
’CGI GETVAR QUERY_STRING (VAR BLOCK’

If Length(BLOCK) <> 0 Then
 Do
 ’CGI URLDECODE (VAR BLOCK INTO DECODED.’,

 ’MODE TRANSFORMED TRANSLATE USENGLISH’
 Do I = 1 to WORDS(DECODED.0)
 ’CGI LOG (STRING’ WORD(DECODED.0,I)
 ’CGI LOG (VAR DECODED.’WORD(DECODED.0,I)
 End
 End

Say BLOCK results in:
 fname=Richard&mname=F&lname=Lewis

Log output would contain

 ... FNAME
 ... Richard
 ... MNAME
 ... F
 ... LNAME
 ... Lewis

IBM

Use same method as described earlier for POST
Code would look similar except for initial callpipe
callpipe var ARG | EWGet decoded | EWGet vars p. ptr.

REQUEST_METHOD server variable is located under the
thread specific globalv group

Obtaining Form Data Sent With GET -
EnterpriseWeb/VM

/****/
’StreamState INPUT 2’
If rc=0 | rc = 4 Then
 Do
 ’CALLPIPE *.input.2: | varload’
 End
’CALLPIPE COMMAND GLOBALV SELECT THREAD’eweb.thread ’LIST’,
 ’| DROP FIRST 1’,
 ’| STRIP’,
 ’| XLATE fieldsep = f1 upper’,
 ’| change //=PARM./’,
 ’| varload’

Say PARM.REQUEST_METHOD

Encoded data also available as input ARG to CGI program
Still in varname=value&varname=value+value form

IBM

Use same method as described earlier for POST
Code would look the same

REQUEST_METHOD server variable is located under the
HTTPD global variable group

Obtaining Form Data Sent With GET -
Webshare

Encoded data also available as input ARG to CGI program
Still in varname=value&varname=value+value form

’CALLPIPE COMMAND GLOBALV SELECT HTTPD GET REQUEST_METHOD | VAR RMETHOD’

’CALLPIPE (name GetForm)’, /* Input: name=value */
 ’ *:’, /* Get input from sample form. */
 ’| xlate 1-* 05 40’, /* Convert tabs to blanks. */
 ’| strip’, /* Strip leading/trailing. */
 ’| locate 1’, /* discard null lines, if any. */
 ’| xlate fieldsep = f1 upper’, /* Upper-case variable names. */
 ’| change //=PARM./’, /* ==> =PARM.name=value */
 ’| varload’

IBM
Basic Flow Of CGI Script

Obtain any input
Command line input if encoded in URL
Message body input for FORM using POST method

Perform processing algorithm
May involve

Calling other programs
Submitting queries to a database engine
Reading and writing files accessible by web server

Send output back to browser
Send appropriate header information
Use appropriate techniques to maintain state information if needed

IBM

Add the following functions to the CGI you created in lab 1:
Process the form data sent by the browser
Create and execute the requested CP or CMS command
Format the response and send back to the browser
Put a link in the response to the original form so that the user can
request the submit form and send another request

If you are done with this assignment early, and are feeling
bored, try modifying the assignment such that:

Instead of a link back to the form, your CGI dynamically generates the
form at the top of the response page so that the end user can simply
scroll up to submit another command
Dynamically modify the selection box such that the highlighted choice is
the command they previously selected
A hidden variable is created that contains the response from their
previous command (so for example if the command is indicate they can
see the current and previous response from indicate).

Lab Assignment 3

�����

IBMPutting The Parts Together -
A Sample CGI Script...

IBMPutting The Parts Together -
A Sample CGI Script...

IBMPutting The Parts Together -
A Sample CGI Script...

/***/
/* Sample CGI Program - processes query command form */
/***/

/***/
/* Initialize some constants containing html */
/***/
init_out.0 = 10
init_out.1 = ’<!doctype html public "-//IETF//DTD HTML 2.0//EN">’
init_out.2 = ’<html><head>’
init_out.3 = ’<title>Execute a CP Command</title> ’
init_out.4 = ’</head>’
init_out.5 = ’<body background="page1bck.gif">’
init_out.6 = ’<center>’
init_out.7 = ’
’
init_out.8 = ’</center>’
init_out.9 = ’<center><h2>Sample Page to Execute a CP Command</h2>’,
 ’</center>’
init_out.10 = ’<p>’

end_out.0 = 2
end_out.1 = ’</body>’
end_out.2 = ’</html>’

output. = ’’

IBMPutting The Parts Together -
A Sample CGI Script...

/***/
/* Find out whether we are an EXEC or a stage in a pipeline */
/***/

Address "COMMAND" ’GLOBALV SELECT HTTPD GET SERVER_SOFTWARE’
Parse SOURCE env .
If env = ’CMS’ Then
 Do
 Address ’COMMAND’ ’NUCEXT CGI’
 vm_webserver = (rc = 0)
 End

IBMPutting The Parts Together -
A Sample CGI Script...

/***/
/* Determine which server we are running under */
/***/

Select

 When SUBSTR(SERVER_SOFTWARE,1,5) = "Enter" Then
 Do
 Parse ARG args
 ’StreamState INPUT 2’
 If rc=0 | rc=4 Then
 Do
 ’Callpipe (name GetEwVars) *.input.2: | varload’
 End
 else
 Do
 ’Output’ "An error was detected. No THREAD parameter was passed.",
 "</body></html>"
 Exit 0
 End

 what_server = ’Beyond’
 pipe_command = ’callpipe’
 End

IBMPutting The Parts Together -
A Sample CGI Script...

/***/
/* Determine which server we are running under */
/***/

 When SUBSTR(SERVER_SOFTWARE,1,4) = "Webs" Then
 Do
 Parse ARG args
 what_server = ’Webshare’
 pipe_command = ’callpipe’
 End

 Otherwise
 Do
 If vm_webserver Then
 Do
 what_server = ’Sterling’
 pipe_command = ’pipe’
 ’CGI WRITE HEADER (STRING Status: 200 OK’
 header = ’Content_Type: text/html’
 ’CGI WRITE HEADER (VAR HEADER’
 End
 Else
 Exit 12
 End
End

IBMPutting The Parts Together -
A Sample CGI Script...

/***/
/* Do the real processing for this CGI program */
/***/

pipe_command ’stem init_out. | stem output.’
done = Produce_Output(what_server)
done = Read_Form_Data(what_server)
If done = 0 Then
 Do
 done = Process_Command(cmnd)
 done = Produce_Output(what_server)
 pipe_command ’stem end_out. | stem output.’
 done = Produce_Output(what_server)
 End

Exit 0

IBMPutting The Parts Together -
A Sample CGI Script...

/***/
/* Subroutines */
/***/

/***/
/* Write contents of output. stem to the server indicated */
/***/

Produce_Output:
Parse ARG what_server

Select

 When what_server = ’Beyond’ | what_server = ’Webshare’ Then
 Do
 pipe_command ’STEM OUTPUT. | *:’
 End

 Otherwise
 Do
 ’CGI WRITE DOCUMENT (TRANSLATE USENGLISH CRLF STEM OUTPUT.’
 End
End

output. = ’’

Return 0

IBMPutting The Parts Together -
A Sample CGI Script...

/***/
/* Read data sent from browser for method and server indicated */
/***/
Read_Form_Data:
Parse ARG what_server
cmnd = ’’
rc = 0

Select

 When what_server = ’Beyond’ Then
 Do
 pipe_command ’*: | EWGET vars p. ptr.’
 Do I = 1 to ptr.0
 name = ptr.I
 If name = ’P.CPCOMMAND’ Then
 cmnd = VALUE(name’.1’)
 End
 End
 When what_server = ’Sterling’ Then
 Do
 ’CGI GETVAR REQUEST_METHOD (VAR RMETHOD’
 If rmethod = ’POST’ Then
 ’CGI READ 1 (VAR BLOCK TRANSLATE USENGLISH’
 Else
 ’CGI GETVAR QUERY_STRING (VAR BLOCK’
 If Length(BLOCK) <> 0 Then
 Do
 ’CGI URLDECODE (VAR BLOCK INTO DECODED.’
 index = WORD(DECODED.0,WORDPOS(’CPCOMMAND’,DECODED.0))
 If index <> 0 Then
 cmnd = DECODED.index
 end
 End

IBMPutting The Parts Together -
A Sample CGI Script...

 When what_server = ’Webshare’ Then
 Do
 pipe_command ’(name GetForm)’,
 ’ *:’,
 ’| xlate 1-* 05 40’,
 ’| strip’,
 ’| locate 1’,
 ’| xlate fieldsep = f1 upper’,
 ’| change //=PARM./’,
 ’| varload’
 If PARM.cpcommand <> ’’ Then
 cmnd = PARM.cpcommand
 End
 Otherwise
 NOP
End

Select
 When cmnd = ’IND’ Then
 cmnd = ’CP INDICATE’
 When cmnd = ’QCPL’ Then
 cmnd = ’CP QUERY CPLEVEL’
 When cmnd = ’QCPID’ Then
 cmnd = ’CP QUERY CPUID’
 Otherwise
 Do
 rc = 12
 cmnd = ’’
 End
End

Return rc

IBMPutting The Parts Together -
A Sample CGI Script

/***/
/* Run the specified command as a pipeline stage, placing result */
/* into stem output. */
/***/

Process_Command:
ARG cmnd

inconst.0 = 0
inconst.1 = ’<h2> Response to your’ cmnd ’command is: </h2>
’
inconst.0 = inconst.0 + 1
inconst.2 = ’<pre>’
inconst.0 = inconst.0 + 1

pipe_command ’(endchar ?)’,
 ’ stem inconst.’,
 ’|a: fanin’,
 ’| stem output.’,
 ’?’,
 cmnd,
 ’| append literal </pre>
’,
 ’| a:’

Return rc

�����	�

IBM

CGI programs run in server virtual machine
Exceptions to this:

VM:Webgateway dynamic worker machines
Dedicated EnterpriseWeb/VM virtual machine

Run with full authority of server
Can harm system if server has CP privileges
Can harm server and data managed by server

Restrict CGI programs
Keep them in few well defined directories

E.g. CGI-BIN directory
Only allow administrator to add or replace CGI programs
Dissallow CGI programs from running in user directories
Run in dynamic worker or dedicated EnterpriseWeb virtual machine
Ensure CGI does not return information to client that reveals file
structure of system or other system related information
Ensure CGI programs carefully inspect client data that may cause
commands to be executed

Security Considerations

IBM

CGI programs run in server virtual machines unless moved to
dynamic worker or dedicated server

Can potentially block entire server with long running commands
Can consume excessive resources slowing other server functions

Code CGI programs to:
Execute short running commands and avoid virtual machine blocking
commands
Use a time-out mechanism for asynchronous operations

CGI programs are restarted for each incoming request
Ensure fast initialization logic

May want to code longer running CGI programs such that
some information is delivered to client early, to avoid
perception of hang

Block output into large block sizes

Performance Considerations

IBM

One problem with CGI programs is they must be started for
each client reference

Performance impact to server
Difficult to maintain state information about client

One solution to this problem is server application
programming interfaces

Extend server’s base functions
API is analogous to exit points
API programs run as part of server

Persistent across client requests
Typically faster than CGI programs

More complicated to code than standard CGI
Restricted to particular server brand

Examples
Netscape Netsite Server (NSAPI)
Microsoft IIS Web Server (ISAPI)

What’s On The Horizon -
Server APIs

IBM

Similar to API program without many of the drawbacks
Written in standard well known language
Portable, runs on Java virtual machine
Protected from doing harm by virtual machine boundaries

Provides all of the positive features of API programs
Persistent execution

Avoid continuous startup cost of CGI programs
Easy to maintain client state information

May be faster than CGI programs
Implemented by incorporating Java Servlet API and Classes
into Web Server (Java Servlet Development Kit available to
assist in doing this)

Applications can receive input data from server, and return output
Applications written with standard object set from Java

What’s On The Horizon -
JAVA Servlet Code

IBM

HTTP protocol defines how browser interacts with server
Browser sends request header with header fields

Method field defines request server should act upon
Browser may send message or entity body with data

Depends on method being used
Processing of data sent by browser requires additional programs in
server

Common Gateway Interface specification defines how server and CGI
program pass data back and forth
CGI programs invoked by browser reference, to process request and input
data
CGI programs respond to browser through server

Server sends response header with fields to browser
Status field indicates result of request processing to browser
HTML may follow response header as output to browser

Creating CGI programs on VM is fun, and easy
Full power and capability of VM systems accessible from CGI program

Summary

