Linux Scalability and ISP Productivity David Boyes Dimension Enterprises VM/VSE Tech Conference June, 2000

Agenda

ļ

[∞] Overview of ISP/IDC Environment

P

1

- * Construction of the Test Case
- $\$ Process of Testing
- *****What We Learned
- **So What's the Point Anyway? ∞**
- $\ensuremath{\,^{\ensuremath{\ll}}}\xspace$ Areas for Further Research

Questions

Please hold questions until the end -- I've got lots to talk about, and I want to make sure we get through all of it.

Overview of ISP/IDC Requirements

- Internet Service Providers (ISP)s and Internet-oriented Data Centers (IDCs) have similar requirements:
 - standard open-source applications (sendmail, bind, UCB POP3, UW IMAP, WUFTPD, INN, etc)
 - primarily Unix-based environment
 - IP-centric (some Novell, some NETBIOS)

Overview of ISP/IDC Requirements

- Primary differentiator is scalability and TCO:
 - IDC requires substantially larger scalability (avg 5000+ systems for industrial scale)
 - Target TCO computation for traditional solution: \$1500/sq ft/month
 - total operational cost, including staff, environmentals, operation and management software, etc.

Overview of ISP/IDC Requirements

- *Secondary differentiator is time to market (TTM):
 - avg for discrete machines = 7 days from payment to delivery
 - high-volume sources (Exodus, AboveNet) avg
 4-5 days to delivery
- *Most business ISP/IDC customers expect dedicated servers to guarantee SLAs.

Horizontal Vs Vertical Scaling

[∗] Horizontal:

- well suited to distributed apps and client/server
- use of load balancing hardware hides complexity

Horizontal Vs Vertical Scaling

Vertical:

- well suited to interactive user sessions and applications
- simpler to configure due to smaller number of machines

"Well, this is a pretty mess you've gotten us into..."

Customer looking at requirements for infrastructure buildout for managed router services:

- 250 initial customers
- DNS and Usenet News/INN only for first service offering (later offerings based on success of managed router service)

System Count: Discrete Solution

- 常estimating 2 Sun UE2 class systems for DNS; 1 Sun UE1000 system for INN due to I/O requirements.
 - System requirement replicated for each customer.
 - Implies 2 RU per UE2; 4 RU per UE1000 + disk array (2-4 RU)
- *3 systems per customer: 750 machines!

Support Infrastructure: Discrete Solution

- * VLAN configuration
- & routing policy # Tivoli management agent license

* IP address allocation

- Tivoli TSM backup client license
- 🏽 etc, etc, etc

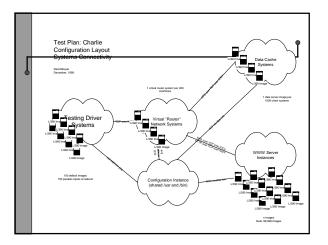
The Approach

- Customer unwilling to commit without proof of concept.
 Customer uncomfortable with
 Solution: do a study and push the technology hard to determine feasibility!
- "bucking the trend" and concerned about perception of S/390 vs traditional solution.

Objects of Study

- [∗]Scalability of Linux on System/390
- * Compatibility and Applications Support
- Suitability of Linux on System/390 for ISP/IDC server platform
- *☆* Just plain curiosity

Architecture of Study


- *Must resemble a "real" application prevalent in an ISP/IDC/ASP environment.
- **[∗]**Must show:
 - traditional ISP applications (DNS, News, NFS, WWW server)
 - integration of system management and connectivity management
 - viability of virtual server and risk.

Test Plan Able/Baker

*Small scale tests (250, 2750, 10000 images)

•

- *Relied on test scripting and easy source portability.
- * Determined that all-out testing was required.

Lessons Learned

- Substantial operational advantages accrue from SCIF common console and VM system resource instrumentation and management.
 - Increased security and system resource monitoring
 - I/O modeling information
 - networking hardware management

Lessons Learned

- Default Linux idle task management concept is not well-suited for hypervisor environments.
 - Default 100 hz timer pops consume substantial resources for no benefit if system is idle.

9

 Must be adjusted proportionately -- other important timing functions are derived from this value.

Lessons Learned

- * Linux for S/390 reacts proportionally to resource constraints.
 - SLA management <u>can</u> be reported and managed via VM resource controls for singleapplication Linux instances.
 - Further experimentation seems to indicate that limiting Linux paging by using large virtual machines is advantageous for large farms (allows VM to make more intelligent resource mgmt decisions)

Lessons Learned

- *VM is <u>critical</u> to large scale Linux for System/390 scalability.
 - 15 LPARs do not offer sufficient cost/benefit to make the case for Linux on S/390 iron.
 - Loss of VM resource management and error recovery substantially complicates system management.

Lessons Learned

- Applications are directly source-compatible between Intel-based Linux and S/390based Linux where supporting devices exist.
 - Compute-intesive apps work, but may not be optimum for S/390 unless interacting with other S/390 resources (eg, DB/2, etc).
 - Use of IEEE HW FP is significant (20-30% faster than emulation code depending on problem and instruction mix)

Lessons Learned

- *Software HA is still somewhat limited and requires significant planning:
 - multiple network stacks
 - dynamic routing
 - service failover during CPU PM

Customer Outcome

- * Customer is now creating between 15 and 30 virtual systems per day on a new 9672.
- [∞] Clients of the service are pleased with the uptime and low cost.
- Virtual system deployment almost completely automated (integrated into WWW front-end and back-end business systems).

Why?

TCO for traditional solution: \$1500/sq foot/month.

*****Averages:

- 3500-7000 discrete systems
- 15,000-20,000 square feet
- 3500-7000 network cables and LAN ports at 150/port
- 3500-7000 power cables
- Time to market: 4-7 days

Why Not!

- %1 to 41,000+ systems: 400 square ft
 (G5+Shark/EMC cabinet + misc routers)
- ☆ Time to Market: about 90 seconds per virtual machine created
- *1 high-capacity network cable (DS3/OC3/OC12 plus ESCON cabling to Cisco 7xxx+CIPs)
- *1 power cable per cabinet. Simplicity!

Where to Go?

- * Test Plan Omega: 100,000 images.
- * Multi-physical box clustering
- * Global clusters
- * "VM Stun" -- migration of virtual machines between physical complexes.
- *Non-S/390 Virtual Machines

Test Plan Omega

- Push a single S/390 system to the limit: 100,000 systems
 - Endicott says that VM is supposed to support it as a design target -- let's find out!
- *Object: find out how many Linux systems we can cram onto one <u>big</u> box.
- Just looking for spare time to work on it. Anybody got a spare ZZ7 they'd like to lend some standalone time for this?

Multi-CPU Clusters

- * Use CSE or ISFC to build linked physical clusters (TSAF limits size of cluster to 8).
- Separate applications from network processing/allow PM of individual CPUs w/o interrupting service to entire complex.
- *See earlier notes wrt to high-availability planning -- critical to this effort.
- **WORKS TODAY WITH VM!**

Global CPU Clusters

- Link physical systems over long distances (eg, NY to Paris)
- *Operates as single complex (remember VM/SSI?)
- Value: global companies, large WWW hosting facilites with replication between centers.

"VM Stun"

- * Wild idea between Perry Ruiter and I.
- Concept: create a virtual machine with all the trimmings, and then "stun" it:
 - Page the entire virtual machine out and package it for transmission to another system.
 - Send the package to another system.
 - Merge the package into the paging system of the new host
 - Schedule as normal.

"VM Stun"

- Full suspend and resume capability without IPL of virtual environment.
 Very, very difficult problems to solve here.
- *Snapshot initiation of fully configured
- system w/o IPL startup configuration.
 - Very, very difficult problems to solve here too.

Non-S/390 Virtual Machines

- Why should VM emulate only the S/390 architecture?
- *Can be done SLOWLY today with Linux for S/390 for almost any popular micro architecture:
 - Intel 486 (good enough to run NT Server!)
 - Macintosh
 - Apple II
 - Commodore 64 (I'm NOT kidding!)

Non-S/390 Virtual Machines

- * Hand optimization of code will address speed concerns.
- ***** Future microcode bonus? X3?

Questions?

- * Don't forget to tell your IBM rep that you want to see more Linux for S/390 apps!
- * Don't forget to tell your IBM rep you think VM is critical to the success of Linux on the S/390!

Contact Info

Linux-related stuff:

dboyes99@hotmail.com +1 703 783 0438

Available in the Expo somewhere near the Linux for S/390 booth.

Gratuitous Rah-Rah Slide

VM & Linux:

1

Let's Rock Some Worlds!