

Web Encryption 101: Secure Sockets Layer (SSL)

Session G22
Michael Ludé -- mlude@neonsys.com
NEON Systems, Incorporated
http://www.neonsys.com

- Secure Sockets Layer
- Can be (theoretically) added to any existing protocol
 - HTTP plus SSL equals HTTPS
- Provides point-to-point encryption of entire session
- No change necessary to CGIs, etc.

- ✓ URLs start with HTTPS, ✓ Insecure sites show: not HTTP
 - https://www.nesy.com
- The default port is 443, not 80
- Everything else is the same

Secure sites show:

- Computing keys is processor-intensive
- Each transaction requires an SSL handshake
 - Eliminate superfluous images from secure pages
- Run both secure and non-secure servers
 - This may be two copies of same server, one with SSL enabled, one with it disabled

- Unauthorized bad guy accesses private information
- Bad guy pretends to be trusted location
- Data sent from server to user intercepted (and maybe replaced) by bad guy
- All can be prevented by proper use of SSL

- Access control
 - Interface to External Security Manager
- Authentication
 - Username/password OR digital certificate
 - Authenticate client and/or server
- < Encryption
- Accountability

- All traffic to/from the browser is in cleartext
 - HTML, GIFs, reports etc. from the server
 - User-entered form data from the browser
 - Userids/passwords entered from the browser
- What is your risk?
 - ✓ Internet vs. Intranet
 - Is the routing hardware secure?

Username and Password Required	×
Enter username for SecretWeb at jupiter.beyond-software.com:83:	
User Name: jquser	
Password: *****	
OK Cancel	

GET /index.html HTTP/1.0 Connection: Keep-Alive

User-Agent: Mozilla/4.04 [en] (Win95; I)

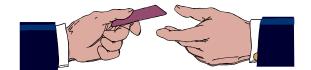
Host: jupiter.beyond-software.com:83

Authorization: Basic anF1c2VyOnNlY3JldA==

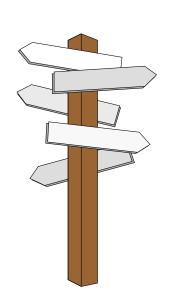
- Electronic document
- Impossible to forge
- Contains information about the "owner"
- Digitally "signed" by a trusted authority
- Server sends certificate at the start of an SSL conversation (the "handshake")

- It's like an ID card
 - Issued by a certificate authority
- Is this ID accepted?

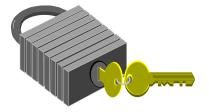
- Well, who's the CA?
- You must have the CA's card on file
 - Their ID might be issued by another CA
 - It might be issued by themselves
 - A self-signed ID is called a trusted root


- Organization name ("NEON Systems Inc")
- Organizational unit ("Engineering")
- State or Province ("Texas")
- Country ("US")
- Domain name ("www.neonsys.com")
- Plus information on the certificate authority

- Commonly referred to as a "CA"
- It's a third party that vouches for you
- Some certificate authorities:
 - RSA, VeriSign, Thawte, AT&T, Canada Post
 - Click "Security", then "Certificates" and "signers" from Netscape to see a list
 - Click "Options", "Security", then "Sites" for IE


Contact your favorite CA

- Provide documentation
 - DUNS number, incorporation papers, or even CPA audit
 - There are several classes of certificates
 - Prices start at around \$400
- You get a certificate and insurance

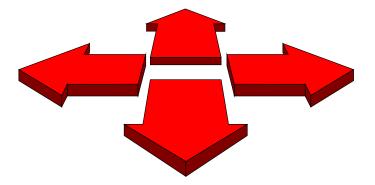


- Install it on your server
 - See server documentation for details
- You'll also need a trusted root
 - A certificate self-signed by your CA
 - The SSL code requires this
- All certificates reside in a "key file" on the server

- Both Encryption and Decryption require the use of a key
 - If same key is used for both, it's symmetric
 - If someone discovers your key, you're toast!
 - If not, it's asymmetric
 - Public-key encryption is one example
- SSL uses both symmetric and asymmetric encryption

- Symmetric is much faster
 - But, how do you exchange the key?
- Solution: use asymmetric encryption to exchange the key, then switch to symmetric
- Before you bother to compute the key, trade certificates
- This is the essence of SSL

- Client requests URL, server sends certificate
- Client verifies certificate, sends cipher list
- Server selects cipher, tells client
- Client generates session key, encrypts it using server's public key, and sends it
- Server gets session key, then uses it to encrypt data sent to client

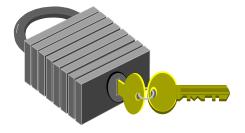


- The symmetric key used for encryption is also called a "session key", and is normally used for a single transaction.
- Some servers can cache this key and use it in later transactions.
- This saves the overhead of renegotiating the SSL handshake each transaction.

- The client trusts the server because of a signed digital certificate
- Traffic can't be intercepted, because everything's encrypted
- What's missing?

- Servers always have them, but client (browser) certificates are optional
- If you use them, password prompts are no longer necessary
- Identity proved by certificate more reliably than with userid/password combination

- The certificate can contain lots of information about the user:
 - e-mail address
 - RACF username and password
 - Other statistics (birthday, SSN, etc.)
- All of this information is available to a CGI
- No password prompts are necessary



Field	Value	
Encryption cipher used	RC4-40, 40 bit	
SSL Version	300	
Client Certificate		
Serial number	f1f382f3f884f184 f9f48382f28182f8 858182f082f9f6f8 82f582f1f681f3f5	
E-mail address	mike_lude@beyond-software.com	
Common name	Michael Lude	
Organizational unit	VeriSign Class 1 CA - Individual Subscriber	
Organization	VeriSign, Inc.	
Locality	Internet	
Client's state or province		
Client's country		
Issuer's organizational unit	VeriSign Class 1 CA - Individual Subscriber	
Issuer's organization	VeriSign, Inc.	
Issuer's locality	Internet	
Issuer's state or province		
Issuer's country		
Certificate valid from	Wednesday, February 18, 1998 at 12:00:00 AM	
Certificate valid until	Monday, April 20, 1998 at 12:59:59 AM	
Status	REVOCATION UNKNOWN	

- Client certificates start at \$10 for one year
- You can become your own CA for \$1500
 - Software generally runs on Unix or NT
 - Send certificates and your trusted root to all of your users
 - Manage revoked certificates
- Administrative headache, but may be worth it

- Access control, Authorization, and Encryption should be used in combination
- SSL is the correct answer for Web servers
- Start out with just server certificates
- A move to client certificates provides better authentication, but more hassle

