

IBM COBOL for VSE/ESA IBM

Programming Guide
Release 1

 SC26-8072-02

IBM COBOL for VSE/ESA IBM

Programming Guide
Release 1

 SC26-8072-02

 Note!

Before using this information and the product it supports, be sure to read the general information under
“Notices” on page xiv.

Third Edition (June 1998)

This edition applies to Version 1 Release 1 Modification 1 of IBM COBOL for VSE/ESA, Program Number 5686-068, and to all
subsequent releases and modifications until otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address given below.

A form for reader's comments appears at the back of this publication. If the form has been removed, address your comments to:

IBM Corporation, Department BWE/H3
P.O. Box 49023
San Jose, California, 95161-9023

 U.S.A.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1983, 1998. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . xiv
Programming Interfaces . xiv
Trademarks . xv

About This Book . xvi
Abbreviated Terms . xvi
Syntax Notation . xvii
How Examples Are Shown . xviii
Publications Provided with COBOL/VSE . xviii
Language Environment for VSE/ESA Publications xix
Comparison of Commonly Used LE/VSE and COBOL/VSE Terms xxi

Summary of Changes . xxii
Changes in Modification Level 1 . xxii

| Changes in the Third Edition . xxii

Part 1. Overview of COBOL/VSE Programming . 1

Chapter 1. Product Features . 2
COBOL/VSE Features . 2
Major IBM Extensions . 6

Chapter 2. Program Development Process . 8
Create Program Specifications . 8

Determining Requirements . 9
Designing a Solution . 10

Code and Compile Your Program . 10
Code Your Program . 10
Compile Your Program . 12

Link and Run Your Program with Test Data . 12
Do the Results Meet Specifications? . 12
Put Your Program into Use . 13

Part 2. Coding Your Program . 15

Chapter 3. Program Structure . 16
The Identification Division . 16

Listing Header in the Identification Division . 17
Errors to Watch for in the Identification Division 18

The Environment Division . 18
Configuration Section . 18
Input-Output Section . 21

The Data Division . 24
File Section (Data Used in Input/Output Operations) 25
Working-Storage Section (Data Developed for Internal Processing) 27
Linkage Section (Data from Another Program) 29
Limits in the Data Division . 30

The Procedure Division . 30
Procedure Division Structure . 30

 Copyright IBM Corp. 1983, 1998 iii

Structured Programming Practices . 35
COBOL Tools for Structured Programming . 36
COBOL Tools for Top-Down Coding . 41

Chapter 4. Data Representation and Assignment 42
Variables, Structures, Literals, and Constants . 42

Variables (Data Items) . 42
Structures (Group Items and Records) . 43
Literals . 43
Constants (Data Items with a VALUE) . 44

Assignment and Terminal Interactions . 44
Initializing a Variable (INITIALIZE Statement) 45
Initializing a Structure (INITIALIZE Statement) 46
Assigning Values to Variables or Structures (MOVE Statement) 47
Assigning Terminal Input to Variables (ACCEPT Statement) 48
Displaying Data Values (DISPLAY Statement) 48
Assigning Arithmetic Results . 48

Built-in (Intrinsic) Functions . 49
Nesting Functions . 51
Substrings of Function Identifiers . 52
Additional Information on Intrinsic Functions 52

Arrays (Tables) and Pointers . 52
Arrays (Tables) . 52
Pointers . 52
Procedure Pointers . 53

Chapter 5. String Handling . 54
Joining Data Items (STRING Statement) . 54

STRING Statement Example . 54
Splitting Data Items (UNSTRING Statement) . 56

UNSTRING Statement Example . 56
Referencing Substrings of Data Items (Reference Modifiers) 58

A Sample Problem . 59
Using Variables as Reference Modifiers . 60
Using Arithmetic Expressions as Reference Modifiers 60
Using Intrinsic Functions as Reference Modifiers 61
Referencing Substrings of Table Items . 62

Tallying and Replacing Data Items (INSPECT Statement) 62
INSPECT Statement Examples . 62

Using Double-Byte Character (DBCS) Data . 63
Nonnumeric to DBCS Data Conversion . 64
DBCS to Nonnumeric Data Conversion . 66

Converting Data Items (Intrinsic Functions) . 67
Converting to Uppercase or Lowercase (UPPER-CASE, LOWER-CASE) . . 68
Converting to Reverse Order (REVERSE) . 68
Converting to Numbers (NUMVAL, NUMVAL-C) 68

Evaluating Data Items (Intrinsic Functions) . 69
Evaluating Single Characters for Collating Sequence (CHAR, ORD) 69
Finding the Largest or Smallest Data Item (MAX, MIN, ORD-MAX,

ORD-MIN) . 70
Finding the Length of Data Items (LENGTH) 71

Finding the Date of Compilation (WHEN-COMPILED) 71

Chapter 6. Numbers and Arithmetic . 73

iv COBOL/VSE Programming Guide

General COBOL View of Numbers (PICTURE clause) 73
Defining Numeric Items . 73
Separate Sign Position (for Portability) . 73
Extra Positions for Displayable Symbols (Numeric Editing) 74

Computational Data Representation (USAGE Clause) 74
External Decimal (USAGE DISPLAY) Items 75
External Floating-Point (USAGE DISPLAY) Items 75
Binary Items . 75
Packed Decimal (PACKED-DECIMAL or COMP-3) Items 76
Floating-Point (COMP-1 and COMP-2) Items 76
Internal Representation of Numeric Items . 77

Data Format Conversions . 78
What Conversion Means . 78
Conversion Takes Time . 78
Conversions and Precision . 78

Sign Representation and Processing . 79
NUMPROC Compiler Option . 79

Checking for Incompatible Data (Numeric Class Test) 80
How to Do a Numeric Class Test . 80
Interaction of NUMPROC and NUMCLS Options 81

Performing Arithmetic . 81
COMPUTE and Other Arithmetic Statements 82
Arithmetic Expressions . 82
Numeric Intrinsic Functions . 83
LE/VSE Callable Services . 86

Fixed-Point versus Floating-Point Arithmetic . 88
Floating-Point Evaluations . 89
Fixed-Point Evaluations . 89
Arithmetic Comparisons (Relation Conditions) 90
Examples of Fixed-Point and Floating-Point Evaluations 90

| Using Currency Signs . 91
| Specifying Currency Signs . 91
| Multiple Currency Signs . 92
| Euro Currency Sign . 92

Chapter 7. Handling Tables (Arrays) . 94
Defining a Table (OCCURS Clause) . 94

One Dimension . 95
Two Dimensions . 95
Three Dimensions . 95

Referring to an Item in a Table . 96
Subscripting . 96
Subscripting Using Index-Names (Indexing) 97
Referring to a Substring of a Table Item . 99

Putting Values in a Table . 99
Loading the Table Dynamically . 100
Initializing the Table (INITIALIZE Statement) 100
Assigning Values When You Define the Table (VALUE Clause) 100

Creating Variable-Length Tables (DEPENDING ON Clause) 103
ODO Object outside the Group . 103
ODO Object and Subject Contained in Sending Group Item 105
ODO Object and Subject Contained in Receiving Group Item 105
Complex OCCURS DEPENDING ON . 106

Searching a Table (SEARCH Statement) . 110

 Contents v

Serial Search . 110
Binary Search (SEARCH ALL Statement) . 111
SEARCH Statement Examples . 112

Processing Table Items (Intrinsic Functions) . 113
Efficient Coding for Tables . 114

Chapter 8. Selection and Iteration . 115
Selection (IF and EVALUATE Statements) . 115

IF Statement . 115
EVALUATE statement . 117
Conditional Expressions . 117

Iterative Loops (PERFORM Statement) . 120
Coding a Loop to Be Executed a Definite Number of Times 121
Conditional Looping . 121
Looping through a Table . 121
Executing a Group of Paragraphs or Sections 122

Chapter 9. File Input/Output Overview . 123
File Organization and Input/Output Devices . 123

Sequential File Organization . 123
Indexed File Organization . 124
Relative File Organization . 124
File Organization on Sequential-Only Devices 124
File Organization on Direct-Access Storage Devices 124
COBOL Input/Output Coding . 125

File Availability . 127
Input-Output Using EXTERNAL Files . 127

Chapter 10. Processing SAM Files . 133
COBOL Coding for SAM Files . 133

Environment Division Entries for SAM Files 133
Data Division Entries for SAM Files . 134
Availability of SAM Files . 140
Creating SAM Files . 141
Retrieving SAM Files . 141
Job Control Language for SAM Files . 142
Ensuring File Attributes Match Your Program 142
Coding Input/Output Statements for SAM Files 144
Error Processing for SAM . 144
Opening a SAM File . 144
Processing Multiple Tape Files . 145
Adding Records to a SAM File . 145
Updating a SAM File . 146
Writing Your File to a Printer or VSE/POWER Spool File 146
Closing a SAM File . 147

Processing Labels for SAM Files . 148
Standard Label Format . 148
Standard User Labels . 149
LABEL Declarative . 149

Processing SAM ASCII Tape Files . 150
Specify the ASCII Alphabet . 150
Specify the Record Formats . 150
Process ASCII File Labels . 151
Processing SAM 3540-Diskette Unit Files . 151

vi COBOL/VSE Programming Guide

Chapter 11. Processing VSAM Files . 152
VSAM Terminology . 152
VSAM File Organization . 153

VSAM Sequential File Organization . 153
VSAM Indexed File Organization . 153
VSAM Relative-Record File Organization . 154

File Access Modes . 156
COBOL Coding for VSAM Files . 157

Environment Division Entries for VSAM Files 157
Data Division Entries for VSAM Files . 158
Coding Input/Output Statements for VSAM Files 159
File Position Indicator . 161
Error Processing for VSAM . 161
Opening a File (ESDS, KSDS, or RRDS) . 162
Reading Records from a VSAM File . 164
Updating Records in a VSAM File . 165
Adding Records to a VSAM file . 165
Replacing Records in a VSAM File . 166
Deleting Records from a VSAM File . 166
Closing VSAM Files . 167
Protecting VSAM Files with a Password . 167
Availability of VSAM Files . 168
Defining VSAM Files (Access Method Services) 168
Creating Alternate Indexes . 169
Dynamically Invoking Access Method Services 172
Job Control Language for VSAM files . 172

Considerations for VSAM Performance . 173

Chapter 12. File Sorting and Merging . 175
Describing the Files . 175

The SORT Statement . 176
The MERGE Statement . 177

Specifying the Sort Criteria . 178
Restrictions on Sort-Key Length . 179
Alternate Collating Sequences . 179
Windowed Date Fields . 179

Coding the Input Procedure . 179
Coding the Output Procedure . 180
Restrictions on Input/Output Procedures . 181
Determining Whether the Sort or Merge Was Successful 181
Premature Termination of a Sort or Merge Operation 182
Performing More than One Operation in a Program 183
Preserving the Original Sequence of Records with Equal Keys 183
Coding Run-Time JCL for SORT . 183
Improving Sort Performance with FASTSRT . 184
Sorting Variable-Length Records . 186
Passing Control Statements to DFSORT/VSE . 186
Using Control Statements . 188
SORT Special Registers . 188
Storage Use During a Sort or Merge Operation 189
Checkpoint/Restart During DFSORT/VSE . 190
SORTING under CICS . 190

CICS SORT Application Restrictions . 191

 Contents vii

Chapter 13. Error Handling . 192
User-Initiated Dumps (CALLs to LE/VSE) . 192
STRING and UNSTRING Operations . 193
Arithmetic Operations . 193

Example of Checking for Division by Zero . 194
Input/Output Error Handling Techniques . 194

End-of-File Phrase (AT END) . 197
EXCEPTION/ERROR Declarative . 198
File Status Key . 198
VSAM Return Code (VSAM Files Only) . 201
INVALID KEY Phrase . 202

CALL Statements . 203
User-Written Error-Handling Routines . 204

Part 3. Compiling Your Program . 205

Chapter 14. Methods of Compilation . 206
Coding Compilation JCL . 206
Batch Compiling . 209
Input and Output Files . 213

Required Compiler Files . 214
Source Code File: SYSIPT . 214
Output File: SYSLST . 215
Directing Compiler Messages to the Console: SYSLOG 215
Specifying Libraries: LIBDEF Job Control Statement 215
Creating Object Code: SYSLNK or SYSPCH 215
Creating an Associated Data File : SYSADAT 216

Controlling Your Compilation . 216
Using Compiler-Directing Statements . 216
Using Compiler Options . 216
Compiler Options and their JCL OPTION Statement Equivalents 218
Conflicting Compiler Options . 218

Results of Compilation . 220
Compiler-Detected Errors and Messages . 220

Compiler Error Messages . 221
Compiler Error Message Codes . 221
Correcting Your Mistakes . 222
Generating a List of All Compiler Error Messages 223

Chapter 15. Compiler Options . 224
Compiler Options Summary . 224

Default Values for Compiler Options . 225
Performance Considerations . 226
Option Settings for COBOL 85 Standard Compilation 226

Compiler Option Descriptions . 226
ADATA . 226
ADV . 227
APOST . 227
AWO . 227
BUFSIZE . 227
CMPR2 . 228
COMPILE . 228
CURRENCY . 229

viii COBOL/VSE Programming Guide

DATA . 230
DATEPROC . 231
DBCS . 232
DECK . 232
DUMP . 232
DYNAM . 233
EXIT . 234
FASTSRT . 234
FLAG . 234
FLAGMIG . 235
FLAGSAA . 236
FLAGSTD . 236
INTDATE . 238
LANGUAGE . 239
LIB . 240
LINECOUNT . 240
LIST . 240
MAP . 241
NAME . 242
NUMBER . 242
NUMPROC . 243
OBJECT . 244
OFFSET . 245
OPTIMIZE . 245
OUTDD . 246
QUOTE/APOST . 246
RENT . 247
RMODE . 247
SEQUENCE . 248
SIZE . 248
SOURCE . 249
SPACE . 249
SSRANGE . 250
TERMINAL . 250
TEST . 251
TRUNC . 252
VBREF . 254
WORD . 255
XREF . 255
YEARWINDOW . 256
ZWB . 257

Compiler-Directing Statements . 257

Part 4. Advanced Topics . 259

Chapter 16. Subprograms and Data Sharing 260
Transferring Control to Another Program . 260

Main Programs and Subprograms . 261
Making Calls between Programs . 262
Nested Programs . 263
Static and Dynamic Calls . 266
CALL Statement Examples . 269
Subprogram Linkage . 271

 Contents ix

Converting Static Calls . 271
Sharing Data . 273

Passing Data BY REFERENCE or BY CONTENT 273
Linkage Section . 276
Grouping Data to Be Passed . 276
Using Pointers to Process a Chained List . 276
Passing Entry Point Addresses with Procedure Pointers 280
Passing Return Code Information (RETURN-CODE Special Register) 280
Sharing Data Using the EXTERNAL Clause 281
Sharing Files between Programs (EXTERNAL Files) 281

Reentrant Programs . 285
Calls to Alternative Entry Points . 286

Chapter 17. Interrupts and Checkpoint/Restart 287
Getting a Checkpoint . 287

Designing a Checkpoint . 288
The Checkpoint File . 288
Restrictions . 289
Messages Generated during Checkpoint . 289

Restarting a Program . 290
Sample Job Control Procedures for Checkpoint/Restart 290

Chapter 18. Debugging . 292
Using Source Language to Debug . 292

Tracing Program Logic (DISPLAY Statements) 292
Handling Input/Output Errors (USE EXCEPTION/ERROR Declaratives) . . . 293
Validating Data (Class Test) . 293
Assessing Switch Problems (INITIALIZE or SET Statements) 293
Improving Program Readability (Explicit Scope Terminators) 293
Finding Input/Output Errors (File Status Keys) 293
Generating Information about Procedures (USE FOR DEBUGGING

Declaratives) . 294
Using Compiler Options for Debugging . 296

The FLAG Option . 296
The NOCOMPILE Option . 298
The SEQUENCE Option . 299
The XREF Option . 299
The MAP Option . 299
The SSRANGE Option . 300
The TEST Option . 301

Getting Useful Listing Components . 301
A Short Listing—the Bare Minimum . 301
Listing of Your Source Code—for Historical Records 304
Using Your Own Line Numbers . 304
Data Map Listing . 305
A Procedure Division Listing with Assembler Expansion (LIST Output) 310
Program Signature Information Bytes . 313
A Condensed Procedure Division Listing . 320
A Verb Cross-Reference Listing . 321
A Data-Name, Procedure-Name, and Program-Name Cross-Reference

Listing . 322

Chapter 19. Program Tuning . 326
Coding Techniques and Considerations . 326

x COBOL/VSE Programming Guide

Programming Style . 326
Use of Data . 328
Planning the Use of Fixed-Point and Floating-Point Data Types 330
Table Handling . 331

Optimization . 334
The OPTIMIZE Compiler Option . 334
Other Compiler Features that Affect Optimization 336

Compiler Options . 337
Other Product Considerations . 341
Performance Tuning Worksheet . 341
Run-Time Performance Considerations . 342

Chapter 20. Techniques to Improve Programmer Productivity 343
Eliminating Repetitive Coding (the COPY Facility) 343

COPY Statement . 344
BASIS Statement . 344

Making a Change to Your Program (the REPLACE Statement) 346
Simplifying Complex Coding and Other Programming Tasks 347

Intrinsic Functions . 347
LE/VSE Callable Services . 347

Finding Coding Errors . 351
Controlling the Content of the Output Listing . 352

Selective Source Listing . 353
Storage Mapping in the Data Division . 354
Object Code in the Procedure Division . 354

Debug Tool/VSE . 354

Chapter 21. The “Year 2000” Problem . 356
Date Processing Problems . 356
Year 2000 Solutions . 356

The Full Field Expansion Solution . 357
The Internal Bridging Solution . 359
The Century Window Solution . 360
The Mixed Field Expansion and Century Window Solution 361
The Century Encoding/Compression Solution 362
The Integer Format Date Solution . 362

Performance Considerations . 363
Performance Comparison . 363

How to Get 4-digit Year Dates . 364
Using Callable Services with DOS/VS COBOL and VS COBOL II 365

Chapter 22. Using the Millennium Language Extensions 366
Description . 366
Getting Started . 367

Implementing Date Processing . 367
Resolving Date-Related Logic Problems . 368

Basic Remediation . 368
Internal Bridging . 369
Full Field Expansion . 370

Programming Techniques . 373
Date Comparisons . 373
Arithmetic Expressions . 375
Sorting and Merging . 377
Other Date Formats . 378

 Contents xi

Controlling Date Processing Explicitly . 378
Analyzing Date-Related Diagnostic Messages 380
Other Potential Problems . 382

Principles . 383
Objectives . 383

Concepts . 384
Date Semantics . 384
Compatible Dates . 384
Treatment of Non-Dates . 385

Chapter 23. Target Environment Considerations 388
COBOL/VSE Programming Considerations for CICS 388

Developing a COBOL/VSE Program for CICS 388
Coding Input/Output in CICS . 389
Compiler Options . 389
CICS Reserved Word Table . 390
Using CICS HANDLE with COBOL/VSE Programs 390
Coding Restrictions . 393
Translating CICS Commands into COBOL . 394
Compiling and Link-Editing CICS Code . 394
System Date under CICS . 394
Calls under CICS . 395

COBOL/VSE Programming Considerations for DL/I 395
Using CEETDLI to Interface to DL/I . 395
For Mixed COBOL/VSE, VS COBOL II, and DOS/VS COBOL Applications . 396

COBOL/VSE Programming Considerations for SQL/DS 396

Part 5. Appendixes . 397

Appendix A. COBOL/VSE Compiler Limits . 398

Appendix B. Intermediate Results and Arithmetic Precision 401
Calculating Precision of Intermediate Results . 401
Fixed-Point Data and Intermediate Results . 402

Exponentiations Evaluated in Fixed-Point Arithmetic 403
Shortened Intermediate Results . 404
Binary Data and Intermediate Results . 404
Intrinsic Functions Evaluated in Fixed-Point Arithmetic 404

Floating-Point Data and Intermediate Results . 406
Exponentiations Evaluated in Floating-Point Arithmetic 406
Intrinsic Functions Evaluated in Floating-Point Arithmetic 407

ON SIZE ERROR and Intermediate Results . 407
Arithmetic Expressions in Nonarithmetic Statements 407

Appendix C. Coding Your Program for Cross-System Portability 409
Compiling under VSE and Running under OS/390, MVS, or VM 409

Compiler Options that Affect Portability . 410
Migrating Object Programs to MVS or VM . 410

Compiling under MVS or VM and Running under VSE 412
Compiler Options that Affect Portability . 413
Migrating Object Programs to VSE/ESA . 413

Appendix D. EXIT Compiler Option . 415

xii COBOL/VSE Programming Guide

Syntax and Parameters . 415
Character String Formats . 416
User-Exit Work Area . 416
Linkage Conventions . 416
Using INEXIT . 417
Using LIBEXIT . 418

Nested COPY Statements . 418
Using PRTEXIT . 420
Using ADEXIT . 421
Error Handling . 422
An Example SYSIPT User-Exit . 423

Appendix E. Sample Programs . 427
Overview of the IGYTCARA . 427

Data Validation and Update . 427
Hierarchy Chart for IGYTCARA . 428
Input Data for IGYTCARA . 429
Report Produced by IGYTCARA . 430
Running IGYTCARA . 431

Compiler Options . 431
Running the Job . 431

Overview of IGYTSALE . 434
Program Chart for IGYTSALE . 434
Nested Program Map for IGYTSALE . 435
Input Data for IGYTSALE . 436
Reports Produced by IGYTSALE . 439
Running IGYTSALE . 442

Running the Job . 442
Language Elements and Concepts that Are Illustrated 444

Bibliography . 448
IBM COBOL for VSE/ESA . 448
IBM VisualAge COBOL Millennium Language Extensions for VSE/ESA 448
Language Environment Publications . 448
Related Publications . 448
Softcopy Publications . 449

Glossary . 450

Index . 468

 Contents xiii

 Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any func-
tionally equivalent product, program, or service that does not infringe any of the
intellectual property rights of IBM may be used instead of the IBM product,
program, or service. The evaluation and verification of operation in conjunction with
other products, except those expressly designated by IBM, are the responsibility of
the user.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594, U.S.A.

Licensees of this program who wish to have information about it for the purpose of
enabling: (1) the exchange of information between independently created programs
and other programs (including this one) and (2) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation, W92/H3
P.O. Box 49023
San Jose, CA 95161-9023

 U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

 Programming Interfaces
This COBOL/VSE Programming Guide is intended to help you create and compile
IBM COBOL for VSE/ESA application programs. This book documents
General-Use Programming Interface and Associated Guidance Information provided
by IBM COBOL for VSE/ESA.

General-Use programming interfaces allow the customer to write programs that
obtain the services of IBM COBOL for VSE/ESA.

xiv Copyright IBM Corp. 1983, 1998

 Trademarks
The following terms are trademarks of International Business Machines Corporation
in the United States, or other countries, or both:

Other company, product or service names may be the trademarks or service marks
of others.

AD/Cycle
CICS
CICS/ESA
CICS/VSE
COBOL/370
DFSORT
Enterprise Systems Architecture/370
IBM
IMS/ESA

MVS/ESA
OS/2
OS/390
SQL/DS
System/370
System/390
VisualAge
VM/ESA

 Notices xv

About This Book

The purpose of this book is to help you write and compile IBM COBOL for
VSE/ESA programs. A companion volume, LE/VSE Programming Guide, provides
instructions on link-editing and running your programs.

This book assumes experience in developing application programs and some know-
ledge of COBOL. It focuses on using IBM COBOL for VSE/ESA (hereafter referred
to as COBOL/VSE) to accomplish your programming objectives and not on the defi-
nition of the COBOL/VSE language. For complete information on COBOL/VSE
syntax, refer to COBOL/VSE Language Reference.

Previous IBM COBOL products provided their own environment and services for
running programs, and the application programming guides for these products com-
monly included information on how to link-edit and run your programs. However,
IBM Language Environment for VSE/ESA (LE/VSE) provides the run-time environ-
ment and run-time services required to run your COBOL/VSE programs. Therefore,
you will find information on link-editing and executing programs in the LE/VSE Pro-
gramming Guide.

As mentioned, the focus of this book is to provide guidance on creating and com-
piling COBOL/VSE programs. For information on migrating DOS/VS COBOL and
VS COBOL II programs to COBOL/VSE, see COBOL/VSE Migration Guide.

For an overview of all the COBOL/VSE and LE/VSE publications, see
“Bibliography” on page 448. For a comparison of commonly used COBOL/VSE
and LE/VSE terms, see “Comparison of Commonly Used LE/VSE and COBOL/VSE
Terms” on page xxi.

 Abbreviated Terms
Certain terms are used in a shortened form in this book. Abbreviations for the
product names used most frequently in this book are listed alphabetically in
Figure 1. Abbreviations for other terms, if not commonly understood, are listed in
the glossary in the back of this book.

In addition to these abbreviated terms, the term “COBOL 85 Standard” is used in
this book to refer to the combination of the following standards:

� ISO 1989:1985, Programming languages - COBOL

� ISO 1989/Amendment 1, Programming Languages - COBOL - Amendment 1:
Intrinsic function module

Figure 1. Common Abbreviations in this Book

Term Used Long Form

CICS CICS/VSE

COBOL/VSE IBM COBOL for VSE/ESA

DL/I DL/I DOS/VS

LE/VSE IBM Language Environment for VSE/ESA

VSE VSE/ESA

xvi Copyright IBM Corp. 1983, 1998

� X3.23-1985, American National Standard for Information Systems - Program-
ming Language - COBOL

� X3.23a-1989, American National Standard for Information Systems - Program-
ming Language - Intrinsic Function Module for COBOL

Note that the two ISO standards are identical to the American National standards.

 Syntax Notation
In this book, syntax is described using the structure defined below.

� Read the syntax diagrams from left to right, from top to bottom, following the
path of the line.

The ��─── indicates the beginning of a syntax diagram.

The ───� symbol indicates that the statement syntax is continued on the next
line.

The �─── symbol indicates that a statement is continued from the previous line.

The ───�� indicates the end of a syntax diagram.

Diagrams of syntactical units other than complete statements start with the �───
symbol and end with the ───� symbol.

� Required items appear on the horizontal line (the main path).

��──STATEMENT────────────required item───────────────────��

� Optional items appear below the main path.

��──STATEMENT──────────┬───────────────┬─────────────────��

 └─optional item─┘

� When you can choose from two or more items, they appear vertically in a
stack.

If you must choose one of the items, one item of the stack appears on the
main path.

��──STATEMENT──────────┬─required choice1─┬──────────────��

 └─required choice2─┘

If choosing one of the items is optional, the entire stack appears below the
main path.

��──STATEMENT──────────┬──────────────────┬──────────────��

 ├─optional choice1─┤

 └─optional choice2─┘

� Keywords appear in uppercase letters (for example, PRINT). They must be
spelled exactly as shown. Variables appear in all lowercase letters (for
example, item). They represent user-supplied names or values.

� If punctuation marks, parentheses, arithmetic operators, or such symbols are
shown, they must be entered as part of the syntax.

� Use at least one blank or comma to separate parameters.

 About This Book xvii

How Examples Are Shown
This book shows numerous examples of sample COBOL statements, program frag-
ments, and small programs to help illustrate the concepts being discussed. The
examples of program code are written in lowercase, uppercase, or mixed-case to
demonstrate that you can write your programs in any of these three cases.

To improve clarity, examples are separated from the explanatory text. They may
be indented, printed in a different font style, or are shown in boxes.

Publications Provided with COBOL/VSE
Publications provided with the COBOL/VSE product include the following:

General Information
Contains high-level information designed to help you evaluate the
COBOL/VSE product. This book describes new compiler and language
features, application development with LE/VSE, and product support for
industry standards.

Migration Guide
Contains detailed migration and compatibility information for current
users of DOS/VS COBOL and VS COBOL II who wish to migrate to, or
reuse existing applications on, COBOL/VSE. This book also describes
several migration aids or tools to help you plan a migration path for your
installation.

Installation and Customization Guide
Provides information you will need in order to install and customize the
COBOL/VSE product. Detailed planning information includes:

� System and storage requirements for COBOL/VSE

� Information about changing compiler option defaults during installa-
tion

� Information for installing the product in shared storage

Programming Guide
Contains guidance information for writing and compiling application pro-
grams using COBOL/VSE, including information on the following topics:

� Programming using new product features, such as intrinsic functions

Figure 2. IBM COBOL for VSE/ESA Publications

Task Publication
Order
number

Evaluation and Planning General Information
Migration Guide
Installation and Customization Guide

GC26-8068
GC26-8070
SC26-8071

Programming Programming Guide
Language Reference
Reference Summary

SC26-8072
SC26-8073
SX26-3834

Diagnosis Diagnosis Guide SC26-8528

Warranty Licensed Program Specifications GC26-8069

xviii COBOL/VSE Programming Guide

� Processing techniques for VSAM and SAM files

� Debugging techniques using compiler options and listings

� Nested programming techniques

� Year 2000 processing, and using the millennium language exten-
sions

 � Subsystem considerations

Language Reference
Provides syntax and semantic information about the COBOL language
as implemented by IBM, including rules for writing source programs, and
descriptions of IBM language extensions. This book is meant to be
used in conjunction with the COBOL/VSE Programming Guide, which
provides programming task-oriented information.

Reference Summary
Contains a convenient summary of the COBOL/VSE language
syntax—including new intrinsic functions—as well as syntax for compiler
options, compiler-directing statements, and the COBOL/VSE reserved
word list.

Diagnosis Guide
Provides instructions for diagnosing failures in the COBOL/VSE compiler
product that are not caused by user error. This book will help you con-
struct a keyword string that allows you or IBM Service to search the
product failure database for previously documented problems and appro-
priate corrections.

Licensed Program Specifications
Contains a product description and product warranty information for the
COBOL/VSE compiler.

Language Environment for VSE/ESA Publications
Other publications useful for developing applications with COBOL/VSE include the
following publications provided with the LE/VSE product:

Figure 3. IBM Language Environment for VSE/ESA Publications

Task Publication
Order
number

Evaluation and Planning Fact Sheet
Concepts Guide
Installation and Customization Guide

GC33-6679
GC33-6680
SC33-6682

Programming Programming Guide
Programming Reference
C Run-Time Programming Guide
Writing Interlanguage Communication
Applications
Debugging Guide and Run-Time Messages

SC33-6684
SC33-6685
SC33-6688
SC33-6686

SC33-6681

Migrating Run-Time Migration Guide SC33-6687

Warranty Licensed Program Specifications GC33-6683

 About This Book xix

Fact Sheet
Provides a brief overview and description of LE/VSE.

Concepts Guide
Provides a detailed overview of program models and intended architec-
ture for LE/VSE, the common run-time environment.

Installation and Customization Guide
Contains information needed to plan for installing and customizing the
LE/VSE product.

Programming Guide
Provides detailed information on the following topics:

� Directions for linking and running programs that use LE/VSE ser-
vices

� Information on storage management, run-time message handling,
and condition handling models

This book also contains language-specific run-time information.

Programming Reference
Provides detailed information on callable services and run-time options,
and how to use them.

Writing Interlanguage Communication Applications
Provides instructions for writing programs that use interlanguage com-
munication (ILC).

C Run-Time Programming Guide
Provides information on customizing and using locales, to allow your
programs to present information in country-specific formats.

Debugging Guide and Run-Time Messages
Provides detailed information on debugging techniques and services.
Provides a listing of run-time messages and their explanations, as well
as abend codes.

Licensed Program Specifications
Contains a product description and warranty information.

xx COBOL/VSE Programming Guide

Comparison of Commonly Used LE/VSE and COBOL/VSE Terms
For a better understanding of the various terms used throughout the IBM Language
Environment for VSE/ESA and IBM COBOL for VSE/ESA publications, and what
terms are meant to be equivalent, see the following table.

Figure 4. Comparison of Commonly-used LE/VSE and COBOL/VSE Terms

LE/VSE Term COBOL/VSE Equivalent

Aggregate Group Item

Array A table created using the OCCURS clause

Array element Table element

Enclave Run Unit

External data Working-Storage data (defined with EXTERNAL clause)

Local data Working-Storage data (defined without EXTERNAL clause)

Routine Program

Scalar Elementary Item

Stack frame Register save area associated with the program in the TGT

 About This Book xxi

Summary of Changes

This section lists the major changes that have been made to the COBOL/VSE
product and this manual since Release 1. Technical changes are marked in the
text by a change bar in the left margin.

Changes in Modification Level 1
� The INTDATE compiler option, allowing COBOL integer dates to be treated as

either ANSI-standard or LE/VSE-compatible.

� New intrinsic functions to convert 2-digit year dates to 4-digit year dates.

� New specifications on the format-2 ACCEPT statement to receive the system
date with a 4-digit year.

� The millennium language extensions, enabling compiler-assisted date proc-
essing for dates containing 2-digit and 4-digit years (see Chapter 22, “Using
the Millennium Language Extensions” on page 366).

Requires VisualAge COBOL Millennium Language Extensions for VSE/ESA
(program number 5686-MLE) to be installed with your compiler.

| Changes in the Third Edition
| � Extensions to currency support for displaying financial data, including:

| – Support for currency signs of more than one character
| – Support for more than one type of currency sign in the same program
| – Support for the euro currency sign, as defined by the Economic and Mone-
| tary Union (EMU)

| (see “Using Currency Signs” on page 91).

xxii Copyright IBM Corp. 1983, 1998

 Overview of COBOL Programming

Part 1. Overview of COBOL/VSE Programming

This part of the book provides an overview of product features and how they
support you in the program development process.

Chapter 1. Product Features . 2

Chapter 2. Program Development Process . 8

 Copyright IBM Corp. 1983, 1998 1

 Overview of COBOL Programming

 Chapter 1. Product Features

COBOL (COmmon Business Oriented Language) is a programming language that
efficiently processes business information. COBOL emphasizes the description and
handling of data items and of input/output records. Instead of extensive algebraic
or logical processing, COBOL applications manipulate large files of data in a rela-
tively simple way.

The COBOL/VSE Compiler is an IBM licensed program that supports System/370
Enterprise Systems Architecture (ESA). COBOL/VSE runs under VSE/ESA and
requires LE/VSE.

The compiler accepts and compiles COBOL programs written in COBOL 85
Standard (except for Report Writer, Communications, and Level 2 of the Debug
module). It also accepts and compiles a number of IBM extensions to COBOL 85
Standard. (See page xvi for the definition of COBOL 85 Standard as used in this
book.)

The COBOL language as accepted by the compiler is described in COBOL/VSE
Language Reference.

 COBOL/VSE Features
The following features are available with COBOL/VSE:

24- or 31-Bit Addressing
The compiler and the object programs it produces can be run in either 24- or
31-bit addressing mode.

COBOL 85 Standard support
COBOL/VSE incorporates most of the major and minor language enhance-
ments to the required modules for the high level of the COBOL 85 Standard.
(See page xvi for the definition of COBOL 85 Standard as used in this book.)

COBOL/VSE supports all required modules at the intermediate level. It also
supports all the required modules at the high level with the exception of the
following language features:

� EXTEND phrase of the OPEN statement

� REVERSED phrase of the OPEN statement

� OF/IN phrase of the COPY statement

LE/VSE support
COBOL/VSE is a member of the set of languages that uses LE/VSE, a
common run-time library and set of services. As such, development of multilan-
guage applications is greatly simplified and enhanced, since the application
programmer uses a common interface to the run-time support—common run-
time options, a set of powerful callable services, a common condition-handling
mechanism, and a set of interlanguage call conventions.

In addition, LE/VSE support provides:

� Preinitialization of the run-time environment for multiple invocations of the
same application (in a non-CICS environment)

2 Copyright IBM Corp. 1983, 1998

 Overview of COBOL Programming

� Customization of the run-time environment via a user exit facility

� Storage Management and Tuning

� Dynamic storage allocation for data areas

� One common dump for all LE-conforming languages in an easily under-
standable format

� National language support for message handling

These features are described in the LE/VSE Programming Guide.

VSAM (Virtual Storage Access Method) support
VSAM provides:

� Fast storage and retrieval of records
 � Password protection
� Centralized and simplified data and space management
� Advanced error recovery facilities
� System and user catalogs

Using VSAM, COBOL supports:

� Sequential files (through VSAM ESDS capabilities)
� Indexed files with alternate indexes (through VSAM KSDS capabilities)
� Relative files (through VSAM RRDS capabilities)

Expanded VSAM file status codes enhance your ability to identify and handle
exception conditions using the FILE STATUS clause.

Program-related information and listings
You can request and control a variety of listing and program-related informa-
tion:

� Print or suppress the listing of your source program by using the SOURCE
compiler option.

� Produce a listing of the assembler-language expansion of your source code
by using the LIST compiler option.

� Control the appearance and content of your source listing by using the
TITLE statement, LANGUAGE, LINECOUNT, SEQUENCE, SPACE,
OFFSET, and NUMBER compiler options.

� Obtain cross-reference information for statements (verbs), data-names,
procedure-names, and program-names, by using the VBREF and XREF
compiler options.

� Obtain Data Division map listing, nested program structure map, global
tables, and literal pools by using the MAP compiler option.

� Control the error level for which diagnostic messages are to appear in your
listing by using the FLAG compiler option.

� Flag specific elements in your source listing. Use FLAGSTD to identify the
level or subset of Standard COBOL that is to be regarded as the conform-
ance level. Use FLAGMIG as an aid in migrating from VS COBOL II
Release 2 level language to COBOL/VSE.

� Obtain a system dump for diagnostic use by using the DUMP compiler
option.

 Chapter 1. Product Features 3

 Overview of COBOL Programming

� Use the ADATA compiler option to produce the SYSADAT file containing
program data. This information can be used by utilities that previously
parsed the compiler output listing.

Optimized object code
Produces object programs that generally use less processing time.

Library management facility
This default feature allows installations running with multiple LE/VSE partitions
to save considerable main storage by sharing some or all of the LE/VSE library
routine modules.

Syntax-checking compilation
Saves machine time while debugging source syntax errors. When the
NOCOMPILE compiler option without any subparameter is used, the source
program is scanned for syntax errors and diagnostic messages are produced,
but no object code is produced. When you use the NOCOMPILE option with
W, E, or S, a full compilation is produced with object code when no diagnostic
message is found with higher severity than that requested. When you use the
COMPILE option, a full compilation is produced even in the presence of serious
errors. All diagnostics and object code will be produced.

Separately located installation defaults
Allows an installation to define the default compiler options, rather than have
the definition in the compiler code.

Installation control of defaults
Prevents specific installation defaults from being replaced. (This allows
enforcement of certain customer standards.)

Reentrant compiler
Allows the COBOL/VSE compiler to reside in the Shared Virtual Area so that it
can be shared by multiple users.

Reentrant object code option
Allows the object code for a COBOL/VSE program to reside in the Shared
Virtual Area so that one copy of it may be shared among all callers.

Intrinsic functions
Allows a variety of arithmetic, string-handling, and date management functions
to be handled by reference to a function name from within a statement.

SSRANGE
Checks subscript and index values to see that the composite of the subscripts
does not address an area beyond the region of the table. Checks to see that a
variable-length item is within its defined maximum length. It also checks refer-
ence modification values to see that they do not address an area outside the
region of the subject data item.

RTEREUS
In a non-CICS environment, RTEREUS is a run-time option that implicitly initial-
izes the run-time environment for reuse when the first COBOL program is
invoked.

User exits
The EXIT compiler option provides you with a way to specify that a
user-supplied program, or programs, be given control at particular points in the
compilation process. You may supply programs that will supply source input,

4 COBOL/VSE Programming Guide

 Overview of COBOL Programming

provide copy-library functions, receive the listing output, or be given access to
records written to the Associated Data file.

Reserved word control
Allows you to specify (with the WORD compiler option) an alternative reserved
word table to be used by the compiler. A user-defined reserved word table can
be used instead of the default reserved word table supplied by IBM. A
CICS-specific reserved word table is also provided as an alternative table, for
flagging syntax not supported under CICS.

Hexadecimal notation for nonnumeric literals
Allows you to use hexadecimal notation in nonnumeric literals.

Batch compiling
A batch compiling technique and the use of the NAME compiler option allows
you to create one or more phases with a single invocation of the compiler.

VS COBOL II Release 2 to COBOL/VSE migration tools
The CMPR2 and FLAGMIG compiler options help you to migrate your VS
COBOL II Release 2 applications to COBOL/VSE.

Structured programming support
Constructs are provided that enable you to develop and maintain a structured
application program. Such things as nested programs, WITH TEST BEFORE
and AFTER phrases, and explicit scope terminators, aid in the development of
structured programs.

Nonnumeric literal with double-byte characters
Allows you to use both EBCDIC and double-byte characters in nonnumeric
literals.

National Language Support
COBOL/VSE supports a compiler option, LANGUAGE, which allows you to
select a national language for compiler listing headings and compiler mes-
sages.

Currency sign compiler option
The CURRENCY compiler option allows you to select a symbol other than the
dollar sign ($) to be the currency symbol you use in the PICTURE clause when
you do not use the CURRENCY SIGN clause in your program.

Mixed-case headings and messages
The LANGUAGE compiler option allows you to select between mixed-case and
uppercase compiler listing headings and compiler messages.

Numeric sign processing compiler option
With the NUMPROC compiler option you can select from three different kinds
of sign processing, including one that provides sign processing similar to that
used by DOS/VS COBOL.

Numeric truncation compiler option
The TRUNC compiler option allows you to select from three different types of
numeric truncation for binary receiving fields.

Relaxed compiler limits
Many limits imposed by DOS/VS COBOL are relaxed in COBOL/VSE. Some of
the Data Division limits are shown in Figure 5 on page 6. For a comparison of

 Chapter 1. Product Features 5

 Overview of COBOL Programming

other limits, see COBOL/VSE Migration Guide, or for a list of compiler limits,
see Appendix A, “COBOL/VSE Compiler Limits” on page 398.

Figure 5. Compiler Limits Relaxed by COBOL/VSE

Language Element

DOS/VS COBOL
Limit

COBOL/VSE
Limit

Working-Storage Section
 Level-77 data-names

Level-01 through -49 data-names
Elementary item size

 1 megabyte
 1 million
 1 million
32 kilobytes

128 megabytes
 16 million
 16 million
 16 megabytes

Linkage Section 1 megabyte 128 megabytes

Major IBM Extensions
ADDRESS special register

Allows the address of a record area to be passed and received, using a CALL
statement.

LENGTH special register
Provides the number of single byte character positions used by an identifier.

TITLE page heading specification
Displays the literal in the title portion of the page heading of succeeding pages.
It replaces the title portion provided by the compiler or a prior TITLE statement.

Double-Byte Character Set (DBCS)
Supports USAGE option (DISPLAY-1) and PICTURE characters (G and N) that
define a data item that has 2-byte characters. Support includes DBCS user
names and literals, special registers for shift-out and shift-in characters, and
comparison between DBCS items, based on the binary collating sequence. In
addition, DBCS items may also be reference modified. In addition, nonnumeric
literals can contain a mix of DBCS and EBCDIC characters, and can also be
used as titles in the TITLE statement. COBOL/VSE also provides two service
routines (IGZCA2D and IGZCD2A) for converting alphanumeric and DBCS data
items. DBCS is used primarily in conjunction with applications that support
large character sets; for example, the Kanji character set used in Japan.

Hexadecimal notation for nonnumeric literals
Allows you to use hexadecimal notation in nonnumeric literals.

POINTER data item
Supports a USAGE option (POINTER), which defines a data type that can be
used to hold addresses.

PROCEDURE-POINTER data item
Supports a USAGE option (PROCEDURE-POINTER), which defines a data
type that holds the address of a program entry point.

Complex OCCURS DEPENDING ON
Adds support to OCCURS DEPENDING ON (ODO) for the following IBM exten-
sions:

� In all formats with the OCCURS DEPENDING ON clause, any subordinate
entry may be variable in length—that is, may contain an OCCURS
DEPENDING ON clause.

6 COBOL/VSE Programming Guide

 Overview of COBOL Programming

� An entry containing an OCCURS DEPENDING ON clause need not be the
last in a record or group. It may be followed by nonsubordinate entries,
any of which may contain an OCCURS DEPENDING ON clause.

Floating-point data
Includes support for single-precision internal floating-point (COMP-1), double-
precision internal floating-point (COMP-2), and external floating-point
(DISPLAY) data types and fractional exponentiation.

Parentheses in abbreviated conditions
Provides support for the use of parentheses in abbreviated expressions to
specify an intended order of evaluation and to clarify the expression for read-
ability.

APPLY WRITE-ONLY
Allows you to store data more efficiently on external media.

TALLY special register
An internally defined data-name that can be referenced or modified by the user.
It is commonly used in conjunction with such verbs as INSPECT, STRING, and
UNSTRING.

SORT special registers
Compiler-defined data-names that may be referenced or modified by the user
and will be used in the SORT interface. The six SORT special registers are
SORT-CONTROL, SORT-CORE-SIZE, SORT-FILE-SIZE, SORT-MESSAGE,
SORT-MODE-SIZE, and SORT-RETURN.

Date processing
Allows date fields with 2-digit years to be used with automatic recognition of the
century, based on a century window. This requires VisualAge COBOL
Millennium Language Extensions for VSE/ESA (5686-MLE) to be installed with
your compiler.

 Chapter 1. Product Features 7

 Overview of COBOL Programming

Chapter 2. Program Development Process

Figure 6 shows the basic process for developing a program. The highlighted step
is supported by the COBOL/VSE Compiler product and is the primary focus of this
book. The other steps are supported by LE/VSE.

The sections following the figure describe each of these steps at a general level
and refer you to other parts of this book for detailed information or to other publica-
tions as appropriate. Most of these publications and their order numbers are listed
in “Bibliography” on page 448.

 ┌──────────────────┐

 │ Create program │

│ specifications │

 └────────┬─────────┘

 │

 ┌──────────────────┐
 │ Code and compile │

 │ your program │ �─────┐

 └────────┬─────────┘ │

 │ │

 │

 ┌──────────────────┐ │

│ Link and run │ │

│ your program with│ │

 │ test data │ │

 └────────┬─────────┘ │

 │ │

 │

 ┌──────────────────┐ │

│ Do the results │ no │

 │ meet ├───────┘

 │ specifications? │

 └────────┬─────────┘

 │

 │ yes

 │

 ┌──────────────────┐

│ Put your program │

 │ into use │

 └──────────────────┘

Figure 6. Program Development Process

Create Program Specifications
Before you can start coding your program, you need to understand clearly what it
should do. In other words, you must know the requirements for your program.

Once you have determined the requirements, you can formulate a programming
solution to the problem. You can express this solution in terms of a detailed
program design. It is often necessary, especially for larger programming projects,
to publish the requirements and design in some type of specifications document.
This document must be detailed enough to enable you to verify that the program,
when completed, meets the specifications.

As you create the specifications for your program, you might want to consider the
factors that are outlined in the following section.

8 Copyright IBM Corp. 1983, 1998

 Overview of COBOL Programming

 Determining Requirements
As mentioned, you must clearly understand what your program must do before you
can design it. In other words, once you have determined:

� In what computer environment your program will run
� What inputs will be provided to your program
� What outputs or responses your program must produce

then you can decide:

� What processing your program needs to perform

 Computer Environment
For your program's computer environment, you might need to determine:

� Which subsystem: CICS, DL/I, SQL/DS?
� Which storage media: Tape, disk, or unit-record devices?
� Which access method: SAM or VSAM?
� Which input device: Terminal, unit-record devices or DBCS or special graphics

input device?
� Which output device: Terminal, printer, DBCS or special graphics printer, tape,

disk, or unit-record devices?

 Inputs
For your program's inputs (information provided by the end user or by other pro-
grams), you might need to determine:

� Does the input data already exist?
� Where will the input data come from?

– Will it be passed from another program? How?
– Will it come from an online or batch system?

� What will the input data look like?
� What possible errors can the input data contain?
� What initial editing will you need to do?
� What is the size and type of each input value?
� What kinds of errors might the user make?
� Will more than one person use the program at the same time?

Outputs or Responses
For your program's outputs or responses, you might need to determine:

� What information does the end user require?
� How many reports will your program create?
� What comments or explanatory text need to appear on the reports?
� What format is required for the printed results?
� Where should results be printed or stored?
� Will results be used as input to another program?
� What error messages are required?
� Will your program continue running after less-than-severe errors?

 Chapter 2. Program Development Process 9

 Overview of COBOL Programming

Designing a Solution
Once you understand the problem in terms of specific requirements, you can
design the processing that will solve the problem. “Design” implies a detailed
description of various parts and how they work together.

Your design might include descriptions of:

� The flow of your program
� The computational algorithms, if any
� The functions, subroutines, and subprograms used, if any
� The dependencies on input and output
� The overall logic of the program

 Top-Down Design
Approaching your programming problem using the technique of top-down structure
with stepwise refinement helps create an application design that can be more effi-
ciently coded and easily tested. Identify the major tasks and components neces-
sary and then repeatedly break these tasks and components down into smaller and
smaller pieces.

 Modularity
Sometimes your solution will be simple enough to code as a single, self-sufficient
program. More often, however, your solution will require more than one program.
The coordinated programs that make up the application are bound together as one
run unit (or enclave in LE/VSE terminology).

When deciding on how to break your program down into its pieces or into other
programs, you should be concerned primarily with function and secondarily with
size and independence.

A simple and easy-to-follow design simplifies the coding, testing, and maintenance
of your program. You can simplify your program by grouping major functions and
identifying common subfunctions.

Code and Compile Your Program
After creating specifications for your program, the next step is to code and compile
a program that meets those specifications. This book guides you through the
process of coding and compiling COBOL/VSE programs.

If your COBOL/VSE program needs to call programs written in other
LE/VSE-conforming languages, or is to be called by such programs, refer to
LE/VSE Writing Interlanguage Communication Applications for instructions on using
interlanguage communication (ILC).

Code Your Program
Coding a program involves choosing the appropriate COBOL/VSE language state-
ments necessary to accomplish your objectives and entering these source state-
ments into a file.

10 COBOL/VSE Programming Guide

 Overview of COBOL Programming

 Programming Style
While there are many ways to code a program that implements your design, you
should always keep in mind that future maintenance of your program requires that it
be easy to understand and modify. If your programming style follows the principles
of structured programming outlined below, your programs will be easier to maintain.

For information on how to implement the following principles in the COBOL/VSE
language, see “The Procedure Division” on page 30.

Modularity: The hierarchy of your program should be obvious and oriented to the
functions performed by your program. At the highest level is the main program or
driver, followed by secondary program units, which could be subprograms, sections,
or paragraphs, depending on the size of your application. At the lower levels, some
program units might be shared or reused by higher units. In any case, the units of
your program generally should not exceed one page of code (about 50 lines).

For instructions on using subprograms, refer to Chapter 16, “Subprograms and
Data Sharing” on page 260.

Three Control Structures: Your program should be built using only the three
logic structures sequence, selection, and iteration, as follows:

Sequence
Grouped COBOL statements are executed one after another in the order that
they appear in the program. There is no change of the control flow, for
example, with a GO TO statement, to another part of the program.

Selection
One or more COBOL statements are executed conditionally, depending on the
results of a test. For simple conditions, the IF ... THEN ... ELSE sequence
provides a two-path alternative (the IF construct). For multiple conditions, the
EVALUATE statement provides a number of path options, one of which is
taken for each condition (the CASE construct).

Iteration
One or more COBOL statements are executed repeatedly, either:

WHILE a condition remains true (the DO-WHILE construct), or
UNTIL a condition becomes true (the DO-UNTIL construct).

These are implemented using variations of the COBOL PERFORM statement.

One Entry: Each of the program units that make up your program should have
only one entry point and return to the place from which it was invoked. Avoid the
use of GO TO, ALTER, and ENTRY statements.

Descriptive Comments and Names: A well-structured program clearly describes
the functions that it performs, both in the comments you enter as documentation
and in the names you give to program units, paragraphs, and data items. These
comments and names should reflect function and not implementation details.

Visual Clarity: To enhance visual clarity, blank lines should separate logical con-
structions, and indentation should be used to show nesting or subordination. For
example, sequences of statements embedded in selection or iteration structures
should always be indented.

 Chapter 2. Program Development Process 11

 Overview of COBOL Programming

Compile Your Program
After writing a program, you compile the source file (or files, if you have subpro-
grams) to produce an object module(s). When you compile, you can choose what
types of listings of your programs the compiler will produce. Figure 7 shows the
basic process of compilation.

Your source statements (in a file)

 ┌───────────────────┐

 │ ID DIVISION. │

 │ . │

 │ . ├────┐

 │ STOP RUN. │ │

 └───────────────────┘ │

 ┌────────────────┐

│ COBOL COMPILER │

 └──────┬──┬──────┘

 │ │

│ │ Your object module

 ┌──────────┐ │ │ ┌──────────────┐

│ Messages │ │ │ │ Machine─code │

│ and │ �──────────┘ └────────� │ version of │

│ listings │ │ your program │

 └──────────┘ └──────────────┘

Figure 7. Compilation Process

You can compile several COBOL programs with a single invocation of the compiler
using a batch technique.

Part 3, “Compiling Your Program” on page 205 contains detailed instructions for
compiling your program.

Link and Run Your Program with Test Data
After compilation, your program will consist of one or more object modules which
contain unresolved references to each other, as well as a reference to the LE/VSE
run-time library. These references are resolved during link-editing or, dynamically,
during execution.

So, after compiling the COBOL/VSE program, the next step is to link and run it with
test data to verify it produces the results you expect.

LE/VSE provides the run-time environment and services needed to run your
program. Therefore, for instructions on linking and running COBOL/VSE and all
other LE-conforming language programs, refer to LE/VSE Programming Guide.

Do the Results Meet Specifications?
When you run your program with test data, it might be obvious that its behavior
does not meet your specifications or expectations. In this case, you must modify
your program as necessary, recompile, relink, and test it again. Assuming your
design represents a valid solution to user requirements, your program will be ready
for general use when it has successfully handled all the test cases necessary to
verify compliance with your specifications. If general use of the program shows
that it does not meet user requirements, you may have to change your design.

12 COBOL/VSE Programming Guide

 Overview of COBOL Programming

It is also possible that your program will behave unexpectedly for no apparent
reason. In this case, you will need to determine the cause of the problem using
debugging techniques and facilities, make the necessary changes, and test your
program again. Once you have fixed your program so that it exhibits correct
behavior for all the necessary test cases, it is ready for general use.

To discover problems in your program, you can use certain COBOL/VSE language
elements and facilities, and analyze storage dumps. See Chapter 18, “Debugging”
on page 292 for more information on these various problem determination tech-
niques.

CICS Programs: For CICS programs you can also use the CICS Execution Diag-
nostic Facility (EDF) to debug your program.

Put Your Program into Use
Once you have verified the results of your program, it is ready for general use.
Because LE/VSE provides the run-time environment and services necessary to run
your COBOL/VSE program, make sure that the target computer environment in
which your program will run has access to LE/VSE.

 Chapter 2. Program Development Process 13

 Overview of COBOL Programming

14 COBOL/VSE Programming Guide

 Coding Your Program

Part 2. Coding Your Program

This part of the book explains how to accomplish various programming objectives
using the COBOL/VSE language. It discusses the most common topics, starting
with basic ones and then building on those in succeeding chapters. More complex
programming topics are treated in Part 4, “Advanced Topics” on page 259.

Chapter 3. Program Structure . 16

Chapter 4. Data Representation and Assignment 42

Chapter 5. String Handling . 54

Chapter 6. Numbers and Arithmetic . 73

Chapter 7. Handling Tables (Arrays) . 94

Chapter 8. Selection and Iteration . 115

Chapter 9. File Input/Output Overview . 123

Chapter 10. Processing SAM Files . 133

Chapter 11. Processing VSAM Files . 152

Chapter 12. File Sorting and Merging . 175

Chapter 13. Error Handling . 192

 Copyright IBM Corp. 1983, 1998 15

 Coding Your Program

 Chapter 3. Program Structure

Program specifications are the basis for coding your application program. The data
descriptions in your program will match the data described in the specifications;
likewise, the logic of your program will match the logic in the specifications. Fur-
thermore, the order in which you code the parts of your program will follow the
“top-down” hierarchy established at the design stage.

A COBOL program consists of four divisions, and each division has a specific
logical function to perform when solving your data processing problems. The Iden-
tification Division is required; the other three (the Environment Division, Data Divi-
sion, and Procedure Division) are optional.

The following example illustrates the simplest COBOL program that will compile
without errors. It contains the only required division header and one other state-
ment:

 Identification Division.

 Program-ID. Miniprog.

Although this program does compile, it does not actually do anything. To write
meaningful programs, you need to understand all of the COBOL divisions, which
are explained in this chapter.

The Identification Division
As shown in the following sample entry, you assign a name to the program and
provide other identifying information about it in the Identification Division:

 Identification Division.

 Program-ID. Miniprog.

Author. Peter Programmer.

 Installation. Computing Laboratories.

 Date-Written. �8/24/94.

 Date-Compiled. �9/26/94.

The division header and the PROGRAM-ID paragraph are the only required ele-
ments.

The PROGRAM-ID paragraph names your program. Other programs use the name
assigned by the PROGRAM-ID paragraph to call this program. The name you use
in the PROGRAM-ID appears in the header on each page, after the first, of the
program listing generated when the program is compiled. If you specify the NAME
compiler option, the name you use in the PROGRAM-ID is placed on the Linkage
Editor PHASE statement or librarian CATALOG command to identify the object
module resulting from the compilation.

You can specify the program attributes COMMON and INITIAL with the
PROGRAM-ID clause.

The COMMON attribute specifies that the program may be called by the containing
program or by any program within the containing program. However, the
COMMON program may not be called by any program contained within itself. Only
contained programs may have the COMMON attribute. For more information see
“Nested Programs” on page 263.

16 Copyright IBM Corp. 1983, 1998

 Coding Your Program

The INITIAL attribute specifies that whenever a program is called, it is placed in its
initial state, and any of its contained programs are also placed in their initial state.
Essentially, a program is in its initial state when: data items with VALUE clauses
are set to the specified value, changed GOTO and PERFORM statements are set
to their initial states, and internal files are closed.

The other Identification Division paragraphs are optional and treated as documenta-
tion. You can use them for descriptive information about your program.

The DATE-COMPILED paragraph, for example, inserts the compilation date in
place of any comments you enter.

Both the date and time of the compilation are stored in the object code in the
format MM/DD/YY HH.MM.SS. This will be the value used in the
WHEN-COMPILED Special Register.

Listing Header in the Identification Division
The header on the first page of your source statement listing contains the identifica-
tion of the compiler and the current release level, the announcement date, the
current date, plus the date and time of compilation and the page number. You can
change the header on succeeding pages of the listing with the compiler-directing
TITLE statement. If you do not use the TITLE statement, the header remains the
same throughout the listing. For example:

PP 5686-�68 IBM COBOL for VSE/ESA 1.1.1 Date �6/16/1998 Time 13:41:27 Page 1

For the succeeding pages in the listing, you can change the first 65 characters of
this header with the TITLE statement. For example:

TITLE 'DATA ENTRY PROGRAM'.

The TITLE statement forces a new page and produces the specified header on the
new page and succeeding pages of the listing. Besides the title you specify, each
new header line contains:

� The name of the program being compiled—as specified on the PROGRAM-ID
statement (the name space is blank for pages in the listing that precede the
processing of the PROGRAM-ID statement)

� The date and time of the compilation

� The current page number

For example:

DATA ENTRY PROGRAM IGYCARPB Date �6/16/1998 Time 13:41:27 Page 2

You can specify one header for your entire listing or you can change the header
several times throughout the listing.

The title is left-justified at the top of the page. It must be a nonnumeric literal.

The TITLE statement:

 Chapter 3. Program Structure 17

 Coding Your Program

� Can be specified in any division (however, it is recommended that you code it
as the last statement in the Identification Division)

� Cannot be continued on the next line

� Is not printed on the source listing

� Has no effect on the compilation or execution of a program

Errors to Watch for in the Identification Division
To avoid the mistakes most commonly made in the Identification Division, verify the
following:

� Is the division header spelled correctly and without hyphens?

� Are all the necessary periods included?

� Are the hyphens properly placed in PROGRAM-ID, DATE-WRITTEN, and
DATE-COMPILED?

� Is everything coded in the correct margin or area?

The Environment Division
In the two optional sections of the Environment Division, you can specify the partic-
ular computer environment in which you are working. The Configuration Section
specifies the characteristics of your computer and the Input-Output Section relates
your program files to the external file names known by the operating system.

 Configuration Section
Figure 8 on page 20 shows a sample of some of the entries you might include in
the Configuration Section. It is an optional section in which you can:

� Describe the computer

– On which the source program is compiled
– On which the object program is executed

� Set status indicators

� Specify the collating sequence

� Specify the character to be used for the currency sign

� Specify the interchange of functions for the comma and the period

� Specify symbolic characters

� Specify a user-defined class

The Configuration Section can only appear in the outermost program of a nested
program structure.

Describe the Computer
With the SOURCE-COMPUTER and OBJECT-COMPUTER paragraphs, you define
the computer(s) where your program will be compiled and executed. With the
SPECIAL-NAMES paragraph, you relate environment-names defined by IBM to
mnemonic-names that you define. That is, you associate system devices with
mnemonic-names used in ACCEPT and DISPLAY statements.

18 COBOL/VSE Programming Guide

 Coding Your Program

 SOURCE-COMPUTER Paragraph

This paragraph documents the computer on which your program will be com-
piled.

The WITH DEBUGGING MODE clause specifies that the debugging lines in
your program (those statements which are coded with a "D" in column 7) are
compiled.

 OBJECT-COMPUTER Paragraph

The MEMORY SIZE clause documents the amount of main storage your
program uses.

The PROGRAM COLLATING SEQUENCE clause specifies the collating
sequence, associating it with a mnemonic-name defined in the
SPECIAL-NAMES paragraph.

 SPECIAL-NAMES Paragraph

The SPECIAL-NAMES paragraph allows you to specify special system features,
such as the name of the alphabet your program uses for program collating
sequence.

This paragraph associates system functions with names used in your program,
such as ACCEPT/DISPLAY devices, UPSI switches, and WRITE ADVANCING
actions. The environment-names you can use for ACCEPT/DISPLAY devices
and for WRITE ADVANCING are documented in COBOL/VSE Language Refer-
ence.

Set Status Indicators
User Programmable Status Indicator (UPSI) switches were used on older com-
puters for processing special conditions at run time. Although this method is still
supported, the recommended ways to set status indicators at run time are:

� Read data and code conditional processing based on the value of the data

� Pass run-time parameters in the PARM parameter of the EXEC statement in
the job control procedure

These preferred techniques require:

� The USING option of the Procedure Division header

A description in the Linkage Section of the records that will contain the parame-
ters passed

� The passing of the parameters in run-time JCL

Specify the Collating Sequence
Using the PROGRAM COLLATING SEQUENCE clause and the ALPHABET
clause, you can establish the collating sequence to be used in the following oper-
ations:

� Nonnumeric comparisons explicitly specified in relation conditions and
condition-name conditions

� HIGH-VALUE and LOW-VALUE settings

 � SEARCH ALL

 Chapter 3. Program Structure 19

 Coding Your Program

� SORT and MERGE unless replaced by a COLLATING SEQUENCE phrase on
the SORT or MERGE statement

The sequences used may be based on one of these alphabets:

� EBCDIC (specify NATIVE if the native character set is EBCDIC). This is the
default if the ALPHABET clause is omitted

� ASCII (specify STANDARD-1)

� ISO 7-bit code, International Reference Version (specify STANDARD-2)

� A change of the EBCDIC sequence that you define in the SPECIAL-NAMES
paragraph

Each separate SORT or MERGE operation can replace the alphabet specified in
the PROGRAM COLLATING SEQUENCE clause.

Figure 8 shows the Environment Division coding used to specify a collating
sequence where uppercase and lowercase letters are similarly treated for compar-
isons and for sorting or merging. Please note that when you change the EBCDIC
sequence in the SPECIAL-NAMES paragraph, the overall collating sequence is
affected, not just the collating sequence of the characters included in the
SPECIAL-NAMES paragraph.

Identification Division.

...

Environment Division.

 Configuration Section.

 Source-Computer. IBM-37�.

 Object-Computer. IBM-37�

Program Collating Sequence Special-Sequence.

 Special-Names.

Alphabet Special-Sequence Is

"A" Also "a"

"B" Also "b"

"C" Also "c"

"D" Also "d"

"E" Also "e"

"F" Also "f"

"G" Also "g"

"H" Also "h"

"I" Also "i"

"J" Also "j"

"K" Also "k"

"L" Also "l"

"M" Also "m"

"N" Also "n"

"O" Also "o"

"P" Also "p"

"Q" Also "q"

"R" Also "r"

"S" Also "s"

"T" Also "t"

"U" Also "u"

"V" Also "v"

"W" Also "w"

"X" Also "x"

"Y" Also "y"

"Z" Also "z".

Figure 8. Example of an Alternate Collating Sequence

20 COBOL/VSE Programming Guide

 Coding Your Program

Specify Currency Sign
The literal specified with the CURRENCY SIGN clause takes precedence over the
default currency sign established by the CURRENCY compiler option.

Comma / Period Interchange
The functions of the period and the comma in PICTURE character strings and in
numeric literals may be exchanged through use of the DECIMAL-POINT IS
COMMA clause.

Specify Symbolic Characters
By using the SYMBOLIC CHARACTER clause, you can give symbolic names to
any character of the specified alphabet. For example, to give a name to the back-
space character (X'16' in the EBCDIC alphabet) you would code:

SYMBOLIC CHARACTERS BACKSPACE IS 23

You use ordinal position to identify the character, position 1 corresponds to char-
acter X'00'.

Specify a User-Defined Class
Using the CLASS clause, you give a name to a set of characters listed in the
clause. For example, name the set of digits by coding:

CLASS DIGIT IS "�" THROUGH "9"

The class name can only be referenced in a class condition.

 Input-Output Section
Your COBOL/VSE programs can process either SAM sequential files or VSAM files
with sequential, indexed or relative organization. Use the FILE-CONTROL and I-O
CONTROL paragraphs to identify and describe the characteristics of your program
files, associate them with the external files where they physically reside, and
specify information to control efficient transmission of the data records between
your program and the external medium.

Note: For CICS programs, code only the Environment Division header and,
optionally, the Configuration Section. CICS does not allow COBOL definition of
files.

Figure 9 shows examples of FILE-CONTROL entries for a SAM disk file, a SAM
tape file, and a VSAM indexed file.

Figure 9. Examples of FILE-CONTROL entries

FILE-CONTROL Entry for a SAM Disk File:

SELECT PRINTFILE

ASSIGN TO UPDPRINT

ORGANIZATION IS SEQUENTIAL

ACCESS IS SEQUENTIAL.

FILE-CONTROL Entry for a SAM Tape File:

SELECT TAPE-FILE

ASSIGN TO SYS��6-TAPE1.

FILE-CONTROL Entry for a VSAM File:

SELECT COMMUTER-FILE

ASSIGN TO COMMUTER

ORGANIZATION IS INDEXED

ACCESS IS RANDOM

RECORD KEY IS COMMUTER-KEY

FILE STATUS IS

 COMMUTER-FILE-STATUS

 COMMUTER-VSAM-STATUS.

 Chapter 3. Program Structure 21

 Coding Your Program

For both SAM and VSAM files, the SELECT and ASSIGN clauses are required.
The SELECT clause chooses a file in the COBOL program to be associated with
an external file. The ASSIGN clause then associates the program's name for the
file with the external name for the actual data file.

Use the ORGANIZATION clause to describe the file's organization and the
ACCESS MODE clause to define the manner in which the records in the file will be
made available for processing—sequential, random, or dynamic. For SAM files,
both the ORGANIZATION and ACCESS MODE clause are optional. SAM files
always have sequential organization. For VSAM files, you may have additional
statements in the FILE-CONTROL paragraph depending on the type of VSAM file
you are using.

Chapter 9, “File Input/Output Overview” on page 123 provides a general overview
on files and file processing. For more specifics on Input-Output Section entries and
other details on SAM and VSAM file processing, see Chapter 10, “Processing SAM
Files” on page 133, or Chapter 11, “Processing VSAM Files” on page 152.

You need to define to the operating system all files that you process in your
COBOL/VSE program. Figure 10 shows the relationship of JCL statements to the
FILE-CONTROL and FD entries in your program. For information about JCL state-
ments for file access, see “Job Control Language for SAM Files” on page 142, and
“Job Control Language for VSAM files” on page 172.

Figure 10. Examples of JCL, FILE-CONTROL Entries, and FD Entries

The numbers in Figure 10 correspond to the numbers below:

�1� The filename in the JCL corresponds to the name in the ASSIGN clause:

// DLBL OUTFILE corresponds to ASSIGN TO OUTFILE
// TLBL TAPEFIL corresponds to ASSIGN TO SYS��6-TAPEFIL

Sequential Disk File Example Tape File Example

JCL Statements:

 ┌──────────────────────────�1�

// DLBL OUTFILE,'OUT171',�,SD,BLKSIZE=4�8

 ┌──────────────────────────�1�

// TLBL TAPEFIL,'OUTPUT.TAPE'

// ASSGN SYS��6,58�

 �

 └──────────────────────────�2�

COBOL/VSE Program Code:

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT CARPOOL �───────────────────�3�
ASSIGN TO OUTFILE �────────────�1�
ORGANIZATION IS SEQUENTIAL

ACCESS IS SEQUENTIAL.
...

DATA DIVISION.

FILE SECTION.

FD CARPOOL �──────────────────────────�3�
LABEL RECORD STANDARD

BLOCK CONTAINS � RECORDS

RECORD CONTAINS 8� CHARACTERS
...

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL. ┌────────────────────────�3�
 ┌────────────────�2�
 SELECT TEST-FILE

ASSIGN TO SYS��6-TAPEFIL �─────�1�
ORGANIZATION IS SEQUENTIAL

ACCESS IS SEQUENTIAL.
...

DATA DIVISION.

FILE SECTION.

FD TEST-FILE �────────────────────────�3�
LABEL RECORDS STANDARD

BLOCK CONTAINS 2� RECORDS

RECORD CONTAINS 8� CHARACTERS
...

22 COBOL/VSE Programming Guide

 Coding Your Program

�2� For the tape file, the programmer logical unit in the ASSGN JCL statement
corresponds to SYSnnn in the ASSIGN clause:

// ASSGN SYS��6 corresponds to ASSIGN TO SYS��6-TAPEFIL

�3� When you specify a file in the FILE-CONTROL entry, the file must be
described in an FD entry for file-name in the Data Division.

SELECT CARPOOL corresponds to FD CARPOOL
SELECT TEST-FILE corresponds to FD TEST-FILE

Set Status Keys for Error Handling
Using the FILE STATUS clause, you can set up error-handling procedures for use
when a nonzero file status code is returned.

Coding the FILE STATUS clause for each defined file and coding a test for the file
status key value after each I/O statement is strongly recommended. For VSAM
files, you can use a second data-name in the FILE STATUS clause to get VSAM
return code, component code and reason code information.

FILE STATUS IS data-name-1 [data-name-2]

Both data-names must be defined in the Data Division.

Note: Neither data-name in the FILE STATUS clause can be variably located.
(See “Complex OCCURS DEPENDING ON” on page 106 for more information on
variably located data items.)

For more information on using the FILE STATUS clause, see “File Status Key” on
page 198 and “VSAM Return Code (VSAM Files Only)” on page 201.

Another way of handling input/output errors is to set up error/exception declaratives.
For more information on using error declaratives, see “Input/Output Error Handling
Techniques” on page 194.

Vary the Input/Output File at Run Time
The file-name you specify in your SELECT sentence is used as a constant
throughout your COBOL program, while the name of the file on the DLBL or TLBL
statement can be associated with a different file at run time.

Changing a file-name in your COBOL program requires changing input/output state-
ments and recompiling the program. In contrast, you can change the file identifier
in the DLBL or TLBL statement at run time.

As an example, consider a COBOL program that might be used in exactly the same
way for several different master files. It contains this SELECT sentence:

 SELECT MASTER

ASSIGN TO SYS�11-S-MASTRA

The three possible input files are MASTER1, MASTER2, and MASTER3. There-
fore, one of the following JCL statements or sets of JCL statements is coded in the
job step that calls for program execution:

 Chapter 3. Program Structure 23

 Coding Your Program

// DLBL MASTRA,'MASTER1',�,SD

// DLBL MASTRA,'MASTER2',�,SD

// TLBL MASTRA,'MASTER3'

// ASSGN SYS�11,TAPE

Any reference within the program to MASTRA is a reference to the file identifier in
the DLBL or TLBL file identifier.

The system-name portion of the assignment-name that appears in the ASSIGN
clause and the filename of the DLBL or TLBL statement must always be the same.
You can vary the file itself in the file identifier in the DLBL or TLBL statement.

The file-name that follows the SELECT statement (MASTER in the previous
example) must be the same as the FD file-name entry.

MULTIPLE FILE TAPE Clause
The MULTIPLE FILE TAPE clause is treated as documentation. It is syntax-
checked, but has no effect on the execution of the program. For files with standard
labels, the function is performed by SAM, the Sequential Access Method. When
each file is processed in the sequence stored on the tape, and a rewind is not
needed for any file except the last, the function is not needed.

Note: An arbitrary access to a file without labels or with nonstandard labels on a
multiple file tape is not supported.

APPLY WRITE-ONLY Clause
The APPLY WRITE-ONLY clause makes optimum use of buffer and device space
when creating a sequential file with blocked V-mode records. With APPLY
WRITE-ONLY, a buffer is shortened only when the next record does not fit in the
unused remainder of the buffer.

Also note that the AWO compiler option puts the APPLY WRITE-ONLY clause on
all eligible files.

Without APPLY WRITE-ONLY, a buffer is shortened when there is not enough
space remaining in it to accommodate the maximum size record.

This clause has meaning only when the file is opened as OUTPUT or EXTEND and
has standard sequential organization.

The Data Division
In the Data Division, you define the characteristics of your data and group your
data definitions into one of the three sections within this division:

Data used in input/output operations (File Section)
Data developed for internal processing (Working-Storage Section)
Data from another program (Linkage Section)

To save processing time:

� Group data definitions of constants together.

� Group data definitions of variables together, separately from the constants.

24 COBOL/VSE Programming Guide

 Coding Your Program

� Place the most frequently referenced data items close together in the Working-
Storage Section.

� Define data in a way that avoids unnecessary conversions.

To save yourself time, use the COPY statement in the Data Division.

File Section (Data Used in Input/Output Operations)
The data you use in input and output operations is defined in the File Section.
Entries in the File Section are summarized in Figure 11 on page 25. Naming and
describing the input and output files is the File Section's primary function. Data
items defined in the File Section are never available to Procedure Division state-
ments until the file has been successfully opened.

The FD file-name is the name used in the Procedure Division when you OPEN and
CLOSE files and READ records from them. (For VSAM files, the file-name in the
FD entry is also used for a START or DELETE request.)

The record description following the FD entry describes the fields of the records in
the file. You can code this as a level-01 description of the entire record. In the
Working-Storage Section, you can code a “working copy” that describes the fields
of the record.

The record-name established is the object of WRITE and REWRITE statements.

For SAM files only, you can specify one of the following:

� The record format in the RECORDING MODE clause. Without this specifica-
tion, the compiler determines the record format based on the RECORD clause
and on the level-01 record descriptions. For more information on record format
and length, see “Data Division Entries for SAM Files” on page 134.

� A blocking factor for the file in the BLOCK CONTAINS clause. If the BLOCK
CONTAINS clause is omitted, the file will be unblocked.

For VSAM files, the BLOCK CONTAINS clause is treated as a comment.

Figure 11 (Page 1 of 2). File Section Entries

Clause To Specify Notes

FD The file-name to be referred to in
Procedure Division input/output
statements

Must match file-name in the SELECT clause

BLOCK CONTAINS Size of physical record SAM: If equal to 0, BLKSIZE must be speci-
fied on JCL, or, for files defined using the
VSE/VSAM Space Management for SAM
Feature, in the VSAM catalog. BLOCK CON-
TAINS 0 should only be specified for files
assigned to direct-access storage devices
(DASD). The BLOCK CONTAINS clause is
ignored for files assigned to unit record
devices.
VSAM: Treated as comment

 Chapter 3. Program Structure 25

 Coding Your Program

Figure 11 (Page 2 of 2). File Section Entries

Clause To Specify Notes

RECORD CONTAINS Size of logical records
(fixed or variable length)

If specified for an input file assigned to a
DASD device and defined using the
VSE/VSAM Space Management for SAM
Feature, must match the record size in the
VSAM catalog. Alternatively, RECORD CON-
TAINS 0 may be used for such files. The
RECORD CONTAINS 0 should not be used
for files other than those described above.

RECORD IS
VARYING

Size of logical records
(variable length)

If specified must match information on JCL or
file label; compiler checks match with record
descriptions

LABEL RECORDS

 STANDARD

 OMITTED

 data-name

Discussed under “Processing
Labels for SAM Files” on page
148

Labels exist

Labels do not exist

Labels defined by the user

VSAM: Treated as comment

SAM: Treated as comment

SAM: Treated as comment

SAM: Allowed for (optional) tape or disk

VALUE OF An item in the label records associ-
ated with file

Comments only

DATA RECORDS Names of records associated with
file

Comments only

LINAGE Depth of logical page SAM only

CODE-SET ASCII or EBCDIC files SAM only

RECORDING MODE Physical record description SAM only

The FD File Name
The FD file-name must match the SELECT file-name. Through the assignment-
name, the file-name is associated with the system-name of the file.

Record Descriptions in the File Section
The record description following the FD file-name describes the logical records in
the file, following the COBOL rules for data description (level numbers, picture
clause, and so forth).

A common programming practice is to keep the FD input and output record
descriptions at the 01 level and code more detailed data descriptions (with the
fields used in processing) in Working-Storage. READ INTO is used to bring the
records into Working-Storage. Processing occurs on the copy of data in Working-
Storage. A WRITE FROM statement then writes processed data into the record
area defined in the File Section.

For variable-length records, use READ instead of READ INTO. By specifying a
READ INTO statement for a file in format U, V, or S, the record size just read for
that file is used in the compiler-generated MOVE statement. Consequently, you
may not get the result you expect if the record just read does not correspond to the
level-01 record description. All other rules of the MOVE statement apply.

26 COBOL/VSE Programming Guide

 Coding Your Program

The record length must correspond to the record length of the file.

The record length must allow for the control character if you are going to specify
the NOADV compiler option; otherwise the record length should be the same as
that of the record to be printed.

The CODE-SET Clause
For SAM files, the CODE-SET clause of the FD statement can be used to identify
the file as being either EBCDIC or ASCII.

Sharing Files Using the EXTERNAL and GLOBAL Clauses
Programs in the same run unit can share, or have access to, common files. The
method for doing this depends on whether the programs are part of a nested (con-
tained) structure or are separately compiled (including programs compiled as part of
a batch sequence).

EXTERNAL: Is used for separately compiled programs. A file that is defined as
EXTERNAL can be referenced by any program in the run unit which describes that
file. See “Input-Output Using EXTERNAL Files” on page 127 for an example.

GLOBAL: Is used for programs in a nested, or contained, structure. If a program
contains another program (directly or indirectly), both programs can access a
common file by referencing a GLOBAL file name. For more information on con-
tained programs and the GLOBAL clause, see “Nested Programs” on page 263.

Working-Storage Section (Data Developed for Internal Processing)
You can write a program that processes data without performing any input/output
operations. In such a program, all the data is defined in the Working-Storage
Section. Most programs, however, have a combination of input and output file
processing and internal data manipulation; the data files are defined in the File
Section and the data developed by the program is defined in the Working-Storage
Section.

Initialize all the data in the Working-Storage Section before you use it. For
methods of initializing data, see “Initializing a Variable (INITIALIZE Statement)” on
page 45.

Data read from input files is quite often copied into the Working-Storage Section
before processing begins (using the READ INTO statement).

A CALL statement with the USING option is more efficient when a single item is
passed than when many level-01 items are passed.

Several other techniques help to make working with Working-Storage data in your
program easier and to make passing this data to subprograms more efficient:

� Keep indentation consistent
� Group data entries
� Use standard data item names
� Use meaningful prefixes and suffixes
� Use the EXTERNAL clause for data items passed to separately compiled sub-

programs
� Use the GLOBAL clause for data items passed to contained subprograms

 Chapter 3. Program Structure 27

 Coding Your Program

Keep Indentation Consistent
The key purpose of indentation is to help the reader understand program relation-
ships and functions. Some ways to do this in the Data Division are:

� Begin all PICTURE clauses in the same column The choice of column depends
on the length of the longest data-name and on the depth of the level structure.
Starting all PICTURE clauses somewhere between columns 32 through 45 is
reasonable.

� Indent continuation lines. This makes it clear that they are part of the same
entry. Use a consistent number of spaces, such as 4.

� Highlight record structure by indenting each successive level by 2 to 4 spaces.

� Group individual data items (items that are not part of records) under a higher
level. For example, group individual items that are not part of other records
under level-01 entries with descriptive names, such as FLAGS or
ERROR-MESSAGES.

In addition to indentation, use blank lines to make record groupings clearer.

Conventions vary from one programming organization to another. You should
follow the standards in effect for your organization.

Group Data Entries
Group entries under one or only a few level-01 data-names. Then use level-05 and
greater to describe logical record areas.

Use widely incremented level numbers like 01, 05, 10, 15, instead of 01, 02, 03, 04,
to allow room for future insertions of group levels.

Use level-88 condition-names. Then, if the conditional values must be changed,
the Procedure Division coding for conditional tests does not need to be changed.

Use Standard Data Item Names
Some general rules to follow in naming your data items are:

� Make sure they conform to internal standards
� Do not use reserved words
� Select meaningful names

Use Meaningful Prefixes or Suffixes
Careful use of prefixes and suffixes helps to:

� Make groups and subordination clear

� Distinguish between similar record-fields

� Make record and field-names meaningful

Make groups and subordination clear.
Assign a prefix or suffix for each group item. Use this prefix or suffix on every
subordinate item (except FILLER) to associate a file with its records and work
areas.

This technique makes it easier for a person unfamiliar with the program to find
fields in the program listing and to determine which fields are logically part of
the same record or area. For example:

28 COBOL/VSE Programming Guide

 Coding Your Program

 �1 STATUS-AREA.

 �5 COMMUTER-FILE-STATUS PIC X(2).

 �5 COMMUTER-VSAM-STATUS.

1� VSAM-R15-RETURN-CODE PIC 9(2) COMP.

1� VSAM-FUNCTION-CODE PIC 9(1) COMP.

1� VSAM-FEEDBACK-CODE PIC 9(3) COMP.

Distinguish between similar record-fields.
If, for example, three files all have a date field, instead of DATE1, DATE2, and
DATE3, use MASTER-DATE, DETAIL-DATE, and REPORT-DATE.

Make record and field-names meaningful.
One convention for making data-names meaningful is prefixing. For example:

Prefix For Names of Items in

T Transaction files

M Old master files

NM New master files

Another convention is to make the suffix or prefix of all file names different from
all record names. For example:

Make the prefix of all file-names FILE
Make the suffix of all record names RECORD or REC.

Using such conventions consistently throughout your program helps readers
understand the structure and function of the program.

Use the EXTERNAL clause
By using the EXTERNAL clause, any program in the run unit that includes declara-
tions for data items may access the data items. Only level-01 items may be speci-
fied as EXTERNAL. For more details, see “Sharing Data Using the EXTERNAL
Clause” on page 281.

Use the GLOBAL clause
The GLOBAL clause allows the data items to be accessed by any subprogram con-
tained within the program that includes the declarations. Only level-01 items may
be specified as GLOBAL. For more details, see “Nested Programs” on page 263.

Linkage Section (Data from Another Program)

Separately Compiled Programs
Many times an application's solution consists of many, separately compiled pro-
grams that call and pass data to one another. The Linkage Section in the called
program describes the data that is passed from another program. The calling
program must use a CALL ... BY REFERENCE or BY CONTENT statement to pass
the data. For details on using data from other programs, see “Passing Data BY
REFERENCE or BY CONTENT” on page 273.

 Chapter 3. Program Structure 29

 Coding Your Program

 Nested Programs
An application's solution may also consist of nested programs—programs that
contain other programs. Level-01 Linkage Section data items may be specified
with the GLOBAL clause. This allows Linkage Section data items to be accessed
by any nested program that includes the declarations. For more details, see
“Nested Programs” on page 263.

Limits in the Data Division
The COBOL/VSE compiler limits the maximum size of data division elements. For
a complete list of these compiler limits, see Appendix A, “COBOL/VSE Compiler
Limits” on page 398.

The Procedure Division
In the Procedure Division, you code the executable statements that process the
data you have defined in the other divisions. The Procedure Division contains the
logic of your program.

The Procedure Division begins with the division header and a procedure-name
header. It is divided into sections, paragraphs, sentences, and statements:

A section is a logical subdivision of your processing logic. A section may contain
several paragraphs.

A paragraph subdivides a section, procedure, or program. It contains a set of
related statements that provide a function and is one of the basic building blocks of
a structured program. A paragraph can be the subject of the PERFORM state-
ment.

A sentence is a series of one or more COBOL statements ending with a period.
Many structured programs do not have separate sentences. Each paragraph may
contain one sentence. Using scope terminators instead of periods to show the
logical end of the scope of a statement is preferred. Scope terminators, both
explicit and implicit, are discussed beginning on page 33.

A statement performs a defined step of COBOL processing, such as adding two
numbers. A statement is a syntactically correct combination of words, beginning
with a COBOL verb.

Procedure Division Structure
In structured programming, the language implementation techniques in COBOL
apply to the Procedure Division.

In the COBOL/VSE language, there are four categories of statements:

 Imperative
 Conditional
 Compiler-directing
 Delimited scope

30 COBOL/VSE Programming Guide

 Coding Your Program

 Imperative Statements
An imperative statement specifies that an unconditional action is to be taken. The
statements in the following table are imperative when they are used without any
conditional phrases (such as ON EXCEPTION, NOT ON EXCEPTION, AT END,
NOT AT END, and so on). Additionally, conditional statements that are terminated
by their explicit scope terminators are classified as imperative.

Figure 12. COBOL Statements Causing Unconditional Action to be Taken

Type of Imperative Statement COBOL Statement

An arithmetic statement ADD
COMPUTE
DIVIDE
INSPECT (TALLYING)
MULTIPLY
SUBTRACT

A data-manipulation statement ACCEPT (DATE, DAY,
DAY-OF-WEEK, TIME)
INITIALIZE
INSPECT (REPLACING
or CONVERTING)
MOVE
SET
STRING
UNSTRING

A procedure-branching statement ALTER
CALL
EXIT
EXIT PROGRAM
GO TO
PERFORM
STOP
STOP RUN

An I/O statement ACCEPT (SYSIN, CONSOLE)
CLOSE
DELETE
DISPLAY
OPEN
READ
REWRITE
START
WRITE

One of the following miscellaneous statements CANCEL
CONTINUE
ENTRY
MERGE
RELEASE
RETURN
SORT

 Chapter 3. Program Structure 31

 Coding Your Program

 Conditional Statements
A conditional statement is either a simple conditional statement (IF, EVALUATE,
SEARCH) or a conditional statement made up of an imperative statement that
includes a conditional phrase or option.

For example, an arithmetic statement without ON SIZE ERROR is an imperative
statement. But an arithmetic statement with the conditional option ON SIZE
ERROR and without a scope terminator is a conditional statement.
Data-manipulation statements or CALL statements with ON OVERFLOW and I/O
statements with INVALID KEY, AT END, AT END-OF-PAGE, or RETURN with AT
END and without a scope terminator are all conditional statements.

For additional program control, the NOT phrase can also be used with conditional
statements. For example, you can provide instructions to be performed when a
particular exception does not occur, such as, NOT ON SIZE ERROR. The NOT
phrase cannot be used with the ON OVERFLOW phrase of the CALL statement,
but can be used with the ON EXCEPTION phrase.

 Compiler-Directing Statements
A compiler-directing statement is not part of the program logic. Compiler-directing
statements inform the compiler about the program structure, copy processing,
listing control, and control flow. The following statements are considered compiler
directing:

BASIS REPLACE
*CBL SERVICE LABEL
*CONTROL SKIP1
COPY SKIP2
DELETE SKIP3
EJECT TITLE
ENTER USE
INSERT

Delimited Scope Statements
In general, a delimited scope statement uses an explicit scope terminator to turn a
conditional statement into an imperative statement; the resulting imperative state-
ment can then be nested. Explicit scope terminators may also be used, however,
to terminate the scope of an imperative statement and clearly end the statement.
Explicit scope terminators are provided for certain COBOL verbs and are listed
under “Explicit Scope Terminators” on page 33.

Because a period implicitly terminates the scope of all previous statements, do not
use a period within a delimited scope statement.

Unless specified otherwise, a delimited scope statement may be specified wherever
an imperative statement is allowed by language rules.

� Use a delimited scope statement to delimit the range of operation for a COBOL
conditional statement and to explicitly show the levels of nesting.

For example, use an END-IF instead of a period to terminate the scope of an
IF statement within a nested IF.

� Use a delimited scope statement if you want to code a conditional statement
where the COBOL syntax calls for an imperative statement.

32 COBOL/VSE Programming Guide

 Coding Your Program

For example, code a conditional statement as the object of an in-line
PERFORM:

PERFORM UNTIL TRANSACTION-EOF

 PERFORM 2��-EDIT-UPDATE-TRANSACTION

 IF NO-ERRORS

 PERFORM 3��-UPDATE-COMMUTER-RECORD

 ELSE

 PERFORM 4��-PRINT-TRANSACTION-ERRORS

 END-IF

READ UPDATE-TRANSACTION-FILE INTO WS-TRANSACTION-RECORD

 AT END

SET TRANSACTION-EOF TO TRUE

 END-READ

 END-PERFORM

An explicit scope terminator is required for the in-line PERFORM statement,
but is invalid for the out-of-line PERFORM statement.

Using Nested Delimited Scope Statements: When nested within another delim-
ited scope statement with the same verb, each explicit scope terminator ends the
statement begun by the most recently preceding (and as yet unpaired) occurrence
of that verb.

Be careful when coding an explicit scope terminator for an imperative statement
that is nested within a conditional statement. You must ensure that the scope ter-
minator is paired with the statement for which it was intended. In the following
example, the scope terminator will be paired with the second READ statement,
instead of the first, as intended by the programmer.

 READ FILE1

 AT END

MOVE A TO B

 READ FILE2

 END-READ

To ensure that the explicit scope terminator is paired with the intended statement,
the preceding example could be recoded in one of the following ways:

 READ FILE1 READ FILE1

 AT END AT END

MOVE A TO B PERFORM

READ FILE2 MOVE A TO B

 CONTINUE READ FILE2

 END-READ END-PERFORM

 END-READ

Explicit Scope Terminators
An explicit scope terminator marks the end of certain Procedure Division state-
ments. Explicit scope terminators may be used with both the conditional and
imperative forms of these statements.

The following are explicit scope terminators:

 Chapter 3. Program Structure 33

 Coding Your Program

Example of Using Explicit Scope Terminators:

MOVE � TO TOTAL

PERFORM UNTIL X = 1�

ADD 1 TO TOTAL

IF X = 5

DISPLAY "HALFWAY THROUGH"

DISPLAY "TOTAL IS " TOTAL

 END-IF

ADD 1 TO X

 END-PERFORM

DISPLAY "FINAL TOTAL IS " TOTAL

END-ADD END-IF END-SEARCH
END-CALL END-MULTIPLY END-START
END-COMPUTE END-PERFORM END-STRING
END-DELETE END-READ END-SUBTRACT
END-DIVIDE END-RETURN END-UNSTRING
END-EVALUATE END-REWRITE END-WRITE

Implicit Scope Terminators
An implicit scope terminator is a period (.) that terminates the scope of all previous
statements not yet terminated.

An unterminated conditional statement may not be contained by another statement.
Except for nesting statements with IF statements, nested statements must be
imperative statements and must follow the rules for imperative statements. You
should not nest conditional statements.

Example of Using Implicitly Terminated Statements:

IF ITEM = "A"

DISPLAY "THE VALUE OF ITEM IS " ITEM

ADD 1 TO TOTAL

MOVE "C" TO ITEM

DISPLAY "THE VALUE OF ITEM IS NOW " ITEM.

IF ITEM = "B"

ADD 2 TO TOTAL.

Each of the two periods in the above program fragment terminate the IF state-
ments, making the code equivalent to the following example which has explicit
scope terminators:

IF ITEM = "A"

DISPLAY "THE VALUE OF ITEM IS " ITEM

ADD 1 TO TOTAL

MOVE "C" TO ITEM

DISPLAY "THE VALUE OF ITEM IS NOW " ITEM

 END-IF

IF ITEM = "B"

ADD 2 TO TOTAL

 END-IF

Explicit scope terminators make a program easier to understand and prevent the
unintentional termination of statements that an implicit terminator may cause. For
instance, changing the location of the first period in the first implicit scope example
changes the meaning of the code:

34 COBOL/VSE Programming Guide

 Coding Your Program

IF ITEM = "A"

DISPLAY "VALUE OF ITEM IS " ITEM

ADD 1 TO TOTAL.

MOVE "C" TO ITEM

DISPLAY " VALUE OF ITEM IS NOW " ITEM

IF ITEM = "B"

ADD 2 TO TOTAL.

In this case, the two statements:

MOVE "C" TO ITEM

DISPLAY " VALUE OF ITEM IS NOW " ITEM

will be executed regardless of the value of ITEM, despite what the indentation indi-
cates, because the first period terminates the IF statement. For improved program
clarity and to avoid unintentional termination of statements, you should use explicit
scope terminators instead of implicit scope terminators, especially within para-
graphs. You should only use implicit scope terminators at the end of a paragraph
or the end of the program.

Scope of Statements
Statements that include explicit scope terminators are termed delimited scope state-
ments. (See “Delimited Scope Statements” on page 32, “Explicit Scope
Terminators” on page 33, and “Implicit Scope Terminators” on page 34.)

When statements are nested within other statements, a separator period that termi-
nates the sentence also terminates all nested statements.

When a delimited scope statement is nested within another delimited scope state-
ment with the same verb, each explicit scope terminator terminates the statement
initiated by the most recent, and as yet unterminated, occurrence of that verb.

For statements nested within statements allowing optional conditional phrases, any
optional conditional phrase encountered is considered the nearest preceding unter-
minated statement. If no phrase has been associated with it, then it can be associ-
ated with the scope terminator.

Structured Programming Practices
The following specific structured programming practices are suggested for use in
the Procedure Division:

� To improve readability:

– Limit paragraphs to one listing page
– Write paragraph and section names on separate lines
– Indent to show program logic
– Align the PICTURE clauses
– Put the VALUE clause on a separate line, if it is long
– Use in-line PERFORM statements if the paragraphs are short

� To end the scope of your statements, use explicit scope terminators instead of
periods.

� To be sure you have included all necessary functions, compare your code to
the design documents.

� To achieve top-down programming:

 Chapter 3. Program Structure 35

 Coding Your Program

– Avoid the PERFORM . . . THRU structure unless you use the THRU option
to an EXIT for a paragraph. (You should enter a program at the beginning
of a paragraph and exit at its end.)

– Avoid skipping around in the code with GO TO statements

The GO TO statement transfers control to one other paragraph, and the
GO TO . . . DEPENDING ON statement transfers control to one of several
different paragraphs, on the basis of the value of the control item you
define. Errors caused by a GO TO used with DEPENDING ON are difficult
to debug, because, during execution, it may be difficult to determine the
value the control item had at any particular time.

The difference between a GO TO branch and a PERFORM is that
PERFORM returns control to the statement that follows the PERFORM
imperative statement. In contrast, a GO TO branches to another part of the
code and stays there.

– Avoid the ALTER statement

ALTER can be used to change the name of a paragraph to which a GO TO
statement transfers control. If you must use this statement (it is not recom-
mended that you do), keep a tally to indicate whether or not the ALTER
statement has been executed. Otherwise, errors caused by the statement
are difficult to debug.

– Avoid STOP with literal

STOP with literal suspends execution temporarily and sends a message
(the literal) to the system operator. This use is not recommended in an
application program.

COBOL Tools for Structured Programming
COBOL/VSE offers several language elements that help support a structured
approach in your Procedure Division coding:

� EVALUATE statement—permits “case” constructions

� In-line PERFORM statement—permits “do” constructions

� TEST BEFORE and TEST AFTER in the PERFORM statements—function as
“do-while” and “do-until” constructions

� Scope terminators—permit nesting of structured programming constructions
(see “Delimited Scope Statements” on page 32)

For language syntax, see COBOL/VSE Language Reference.

 EVALUATE Statement
The case structure is implemented in COBOL/VSE by the EVALUATE statement.
For example:

36 COBOL/VSE Programming Guide

 Coding Your Program

 EVALUATE CARPOOL-SIZE

 WHEN 1

MOVE "SINGLE" TO PRINT-CARPOOL-STATUS

 WHEN 2

MOVE "COUPLE" TO PRINT-CARPOOL-STATUS

WHEN 3 THRU 6

MOVE "SMALL GROUP" TO PRINT-CARPOOL-STATUS

 WHEN OTHER

MOVE "BIG GROUP" TO PRINT-CARPOOL-STATUS

 END-EVALUATE

The following nested IF statements represent the same logic:

IF CARPOOL-SIZE = 1 THEN

MOVE "SINGLE" TO PRINT-CARPOOL-STATUS

 ELSE

IF CARPOOL-SIZE = 2 THEN

MOVE "COUPLE" TO PRINT-CARPOOL-STATUS

 ELSE

IF CARPOOL-SIZE >= 3 and CARPOOL-SIZE <= 6 THEN

MOVE "SMALL GROUP" TO PRINT-CARPOOL-STATUS

 ELSE

IF CARPOOL-SIZE >= 7 THEN

MOVE "BIG GROUP" TO PRINT-CARPOOL-STATUS

 END-IF

 END-IF

 END-IF

 END-IF

In the EVALUATE statement, expressions to be tested are called selection-
subjects. In the example above, CARPOOL-SIZE is the selection-subject. The
answer selected is called a selection-object. When evaluated, each pair of
selection-subjects and selection-objects must belong to the same class (numeric,
character, CONDITION TRUE or FALSE).

Use the EVALUATE statement to select from a set of processing actions. Using
EVALUATE, you specify a condition to be evaluated and select a processing action
based on that evaluation. You can specify up to 255 evaluate subjects and objects
in an EVALUATE statement. There is no limit to the number of WHEN clauses that
can be specified in an EVALUATE statement, but one page is a practical limit to
observe.

The compiler looks at the first WHEN condition. If this condition is satisfied, the
processing actions associated with this phrase are selected.

The preceding example of the EVALUATE statement shows that when several con-
ditions evaluate to a range of values and each condition leads to the same proc-
essing action, you can use the THRU phrase to easily implement this logic.
Alternatively, you can also use multiple WHEN statements when several conditions
lead to the same processing action. Multiple WHEN statements give you more flex-
ibility for specifying the same processing action for conditions that do not evaluate
to values that fall within a range or evaluate to alphanumeric values.

For the following EVALUATE statement:

 Chapter 3. Program Structure 37

 Coding Your Program

 EVALUATE MARITAL-CODE

 WHEN "M"

ADD 2 TO PEOPLE-COUNT

 WHEN "S"

 WHEN "D"

 WHEN "W"

ADD 1 TO PEOPLE-COUNT

 END-EVALUATE

The following nested IF statements represent the same logic:

IF MARITAL-CODE = "M" THEN

ADD 2 TO PEOPLE-COUNT

 ELSE

IF MARITAL-CODE = "S" OR

MARITAL-CODE = "D" OR

MARITAL-CODE = "W" THEN

ADD 1 TO PEOPLE-COUNT

 END-IF

 END-IF

The execution of the EVALUATE statement ends when:

� The statements associated with the selected WHEN phrase are executed
� The statements associated with the WHEN OTHER phrase are executed
� No WHEN conditions are satisfied

WHEN phrases are tested in the order they were coded. Therefore you should
order these phrases with optimum performance in mind. The WHEN phrase con-
taining selection-objects most likely to be satisfied should be coded first. Code the
other WHEN phrases in descending order of probability of satisfaction
occurrence—except, of course, the WHEN OTHER phrase, which must come last.

With EVALUATE statements, you can test several conditions and specify a different
action for each. For example, in Figure 13 on page 39, both selection- subjects in
a WHEN phrase must satisfy the TRUE condition before the phrase is executed. If
both subjects do not evaluate to TRUE, the next WHEN phrase is processed.

38 COBOL/VSE Programming Guide

 Coding Your Program

Identification Division.

 Program-ID. MiniEval.

Environment Division.

 Configuration Section.

 Source-Computer. IBM-37�.

Data Division.

 Working-Storage Section.

 �1 Age Pic 999.

 �1 Sex Pic X.

 �1 Description Pic X(15).

 �1 A Pic 999.

 �1 B Pic 9999.

 �1 C Pic 9999.

 �1 D Pic 9999.

 �1 E Pic 99999.

 �1 F Pic 999999.

Procedure Division.

 PN�1.

Evaluate True Also True

When Age < 13 Also Sex = "M"

Move "Young Boy" To Description

When Age < 13 Also Sex = "F"

Move "Young Girl" To Description

When Age > 12 And Age < 2� Also Sex = "M"

Move "Teenage Boy" To Description

When Age > 12 And Age < 2� Also Sex = "F"

Move "Teenage Girl" To Description

When Age > 19 Also Sex = "M"

Move "Adult Man" To Description

When Age > 19 Also Sex = "F"

Move "Adult Woman" To Description

 When Other

Move "Invalid Data" To Description

 End-Evaluate

Evaluate True Also True

When A + B < 1� Also C = 1�

Move "Case 1" To Description

When A + B > 5� Also C = (D + E) / F

Move "Case 2" To Description

 When Other

Move "Case Other" To Description

 End-Evaluate

 Stop Run.

Figure 13. EVALUATE Statement Example

In-Line PERFORM Statement
The traditional out-of-line PERFORM statement requires an implicit branch to a
separate paragraph and an implicit return (see “Iterative Loops (PERFORM
Statement)” on page 120). If the performed paragraph is in the subsequent
sequential flow, it will be executed one more time. To avoid this additional exe-
cution, the paragraph is placed outside the normal sequential flow, as shown in
Figure 14 on page 40. (The performed paragraph can be thought of as an internal
subroutine.)

In structured programming, using an in-line PERFORM statement, the paragraph
performs one logical function. For readability, this paragraph should be contained
on one listing page (about 50 lines or less).

The subject of an in-line PERFORM must be an imperative statement. Therefore,
statements other than imperative statements within an in-line PERFORM must be
coded with their scope terminators, shown also in Figure 14.

 Chapter 3. Program Structure 39

 Coding Your Program

 Perform 1��-Initialize-Paragraph

Read Update-Transaction-File Into WS-Transaction-Record

 At End

Set Transaction-EOF To True

 End-Read

Perform Until Transaction-EOF

 Perform 2��-Edit-Update-Transaction

 If No-Errors

 Perform 3��-Update-Commuter-Record

 Else

 Perform 4��-Print-Transaction-Errors

 End-If

 Perform 41�-Re-Initialize-Fields

Read Update-Transaction-File Into WS-Transaction-Record

 At End

Set Transaction-EOF To True

 End-Read

 End-Perform

Figure 14. In-Line and Out-of-Line PERFORM Statements

The choice of whether to put a PERFORM statement in-line or out-of-line depends
on several factors:

� Is it performed from several places?

Use out-of-line PERFORM when you perform the same piece of code from
several places in your program.

� Which will be easier to read?

If the PERFORM is put in-line, will the logical flow of the program be less clear
because the logical portions of the program flow over several pages? One use
of the in-line PERFORM that would violate structured programming practices
would be to let a paragraph flow over several pages.

If, however, the PERFORM paragraph is short, an in-line PERFORM may save
the trouble of skipping around in the listing.

� Which makes sense, given the efficiency trade-offs?

An in-line PERFORM paragraph does not require branching.

But remember, PERFORM coding can improve code optimization, so efficiency
concerns should not be overemphasized.

TEST BEFORE or TEST AFTER Loop
The traditional COBOL PERFORM statement allowed just one type of test. The
condition to terminate the “do loop” was always tested before the loop was entered.
If the test condition was false, the loop was not executed even once. (In structured
programming terminology, this was a “do-while” loop.)

Because you can now use the TEST BEFORE or TEST AFTER phrase with the
PERFORM statement, you can choose to have your test either before the loop
entry or after it.

With TEST AFTER, the loop is executed the first time—regardless of the condition.

40 COBOL/VSE Programming Guide

 Coding Your Program

TEST BEFORE corresponds to “do-while.”

Do one
iteration of
PERFORM

Test
Condition

True

False

TEST AFTER corresponds to “do-until.”

Do one
iteration of
PERFORM

Test
Condition

True

False

COBOL Tools for Top-Down Coding
The following tools are available to encourage top-down coding:

� PERFORM statements for program modules

For small program modules that are not shared among programs, you can write
the lower-level paragraphs as stubs. During early program development,
PERFORM statements can point to these stubs.

� Nested COPY statements

The COPY statement in COBOL/VSE allows you to nest COPY statements to
any depth, and you can code them in any program division. You can write and
debug the high-level modules of your program first. These high-level modules
contain COPY statements that point to unwritten stubs that “stand in” for the
lower-level code.

Because COPY statements can be nested, you can code COPY statements at
every code sequence level in your program. At a later stage in coding, these
same COPY statements can point to the completed code sequence.

 � CALL statements

For large and complex programs, use the CALL statement to separate logically
distinct portions of your program into called programs. These called subpro-
grams are high-level modules of your application program. The CALL state-
ment executes the subprograms.

Each subprogram is a complete program within itself. You develop and code
the highest-level control modules first. In these control modules you can code
statements that invoke the next lower-level subprograms. These subprograms
can be stubs that will later be developed into complete subprograms.

 Chapter 3. Program Structure 41

 Coding Your Program

Chapter 4. Data Representation and Assignment

A simple COBOL program might process data entered only from the terminal,
whereas most COBOL programs process data from files. Whether your data
comes from the terminal or from a file, your program must have a way of referring
to each item of data as it processes.

In addition, items of information that are constant for each run of the program, as
well as items that are derived from manipulation of other items or received as feed-
back from other software systems, must also be represented in a way suitable for
processing.

This chapter introduces COBOL/VSE fundamentals for representing items of data
and assigning values to those items. Subsequent chapters discuss the details of
specific data types and the processing techniques associated with each.

For complete definitions of each of the language elements and rules described
below, see COBOL/VSE Language Reference.

Variables, Structures, Literals, and Constants
The concept of data being represented as variables, structures, literals, and con-
stants is fairly universal in high-level programming languages. Although the termi-
nology might be different in COBOL, such data representations are used.

Variables (Data Items)
Because the idea behind writing programs is to create a process that can be used
repeatedly for different sets of data, you will want to represent many of the items
your program deals with as variables (or in COBOL terminology, data items). For
example, your variables might be customer names, employee addresses, or inven-
tory parts. You refer to a variable by a data-name, which you define in the Data
Division of your program:

 Data Division.
 . . .

 �1 Customer-Name Pic X(2�).

 �1 Original-Customer-Name Pic X(2�).
 . . .

 Procedure Division.
 . . .

Move Customer-Name to Original-Customer-Name
...

The data used in a COBOL program can be divided into three classes—alphabetic,
alphanumeric, and numeric. For complete details on the classes and categories of
data and the PICTURE clause rules for defining data, see COBOL/VSE Language
Reference. The discussion of “The Data Division” on page 24 also provides addi-
tional information.

42 Copyright IBM Corp. 1983, 1998

 Coding Your Program

Structures (Group Items and Records)
Related data items are often parts of a larger data structure, and these hierarchic
structures are defined in the Data Division. A data item that includes subordinated
data items is called a group item. An elementary data item is a data item that does
not have any subordinate items and has a PICTURE clause. A record can be
either an elementary data item or a group of data items.

In the following example, Customer-Record is a group item including two group
items (Customer-Name and Part-Order) both of which contain elementary data
items. Note how you can refer to the entire group item or to parts of the group item
as shown in the MOVE statements in the Procedure Division.

 Data Division.

 File Section.

 FD Customer-File

Recording Mode is F

Record Contains 45 Characters.

 �1 Customer-Record.

 �5 Customer-Name.

 1� Last-Name Pic x(17).

 1� Filler Pic x.

 1� Initials Pic xx.

 �5 Part-Order.

 1� Part-Name Pic x(15).

 1� Part-Color Pic x(1�).

 Working-Storage Section.

 �1 Orig-Customer-Name.

 �5 Surname Pic x(17).

 �5 Initials Pic x(3).

 �1 Inventory-Part-Name Pic x(15).
 . . .

 Procedure Division.
 . . .

Move Customer-Name to Orig-Customer-Name

Move Part-Name to Inventory-Part-Name
...

For more information on defining records and group items, refer to the discussion of
“The Data Division” on page 24.

 Literals
There are some cases when you know the value you want to use for a data item.
In these cases, you do not need to define or refer to a data-name; you simply use
a literal representation of the data value in the Procedure Division.

For example, you might want to prepare an error message for an output file:

Move "Invalid Data" To Customer-Name

Or, you might want to compare a data item to a certain number:

 �1 Part-number Pic 9(5).
 . . .

If Part-number = �3519 then display "Part number was found"

 Chapter 4. Data Representation and Assignment 43

 Coding Your Program

In these examples, "Invalid Data" is a nonnumeric literal, and �3519 is a numeric
literal.

Constants (Data Items with a VALUE)
There is no special COBOL construct specifically for constants, but most program-
mers simply define a data item with an initial VALUE (as opposed to initializing a
variable using the INITIALIZE statement):

 Data Division.
 . . .

�1 Report-Header pic x(5�) value "Company Sales Report".
...

�1 Interest pic 9v9999 value 1.�265.

 Figurative Constants
Certain commonly used constants and literals are provided as reserved words
called figurative constants. Since they represent fixed values, figurative constants
do not require a data definition: ZERO, SPACE, HIGH-VALUE, LOW-VALUE,
QUOTE, NULL, ALL.

For example:

Move Spaces To Report-Header

This statement fills the entire length, as defined in the Data Division, with spaces.

Assignment and Terminal Interactions
After you have defined a data item, you can assign a value to it at any time.
Assignment takes many forms in COBOL, depending on the purpose behind the
assignment:

� To establish a constant, use the VALUE clause in the definition of the data
item. See the previous section, “Constants (Data Items with a VALUE),” for
some examples.

� To assign values to a variable or large data area, use one of the following
methods:

– INITIALIZE statement as explained later in this chapter
– MOVE statement as explained later in this chapter
– STRING or UNSTRING statement as discussed in Chapter 5, “String

Handling” on page 54
– VALUE clause as discussed in “Assigning Values When You Define the

Table (VALUE Clause)” on page 100

� To replace characters or groups of characters in a data item, use the INSPECT
statement which is discussed in “Tallying and Replacing Data Items (INSPECT
Statement)” on page 62.

� To receive input values from the terminal, use the ACCEPT statement. See
“Assigning Terminal Input to Variables (ACCEPT Statement)” on page 48.

� To receive input values from a file, use the READ (or READ INTO) statement.
This subject is discussed in Chapter 9, “File Input/Output Overview” on
page 123.

44 COBOL/VSE Programming Guide

 Coding Your Program

� To assign the results of arithmetic, use the COMPUTE statement or one of the
other arithmetic statements listed in the table on page 31.

Initializing a Variable (INITIALIZE Statement)
The following examples illustrate some uses of the INITIALIZE statement. (In these
examples, the symbol ␣ indicates a space.)

Example 1:

INITIALIZE identifier-1

Example 2:

�1 ANJUST PIC X(8) JUSTIFIED RIGHT.

�1 ALPHABETIC-1 PIC A(4) VALUE "ABCD".
...

INITIALIZE ANJUST

REPLACING ALPHANUMERIC DATA BY ALPHABETIC-1

Example 3:

�1 ALPHANUMERIC-1 PIC X.

�1 ALPHANUMERIC-3 PIC X(1) VALUE "A".
...

INITIALIZE ALPHANUMERIC-1

REPLACING ALPHANUMERIC DATA BY ALPHANUMERIC-3

identifier-1
PICTURE

identifier-1
Before

identifier-1
After

9(5) 12345 �����

X(5) AB123 ␣␣␣␣␣

99XX9 12AB3 ␣␣␣␣␣

XXBX/XX ABbC/DE ␣␣␣␣/␣␣

**99.9CR 1234.5CR ����.�␣␣

A(5) ABCDE ␣␣␣␣␣

+99.99E+99 +12.34E+�2 +��.��E+��

ALPHABETIC-1 ANJUST Before ANJUST After

ABCD ␣␣␣␣␣␣␣␣ ␣␣␣␣ABCD

ALPHANUMERIC-3

ALPHANUMERIC-1
Before

ALPHANUMERIC-1
After

A y A

 Chapter 4. Data Representation and Assignment 45

 Coding Your Program

Example 4:

�1 NUMERIC-1 PIC 9(8).

�1 NUM-INT-CMPT-3 PIC 9(7) COMP VALUE 1234567.
...

INITIALIZE NUMERIC-1

REPLACING NUMERIC DATA BY NUM-INT-CMPT-3

Example 5:

�1 ALPHANUM-EDIT-1 PIC XXBX/XXX.

�1 ALPHANUM-EDIT-3 PIC X/BB VALUE "M/␣␣".
...

INITIALIZE ALPHANUM-EDIT-1

REPLACING ALPHANUMERIC-EDITED DATA

BY ALPHANUM-EDIT-3

NUM-INT-CMPT-3

NUMERIC-1
Before

NUMERIC-1
After

1234567 98765432 �1234567

ALPHANUM-EDIT-3

ALPHANUM-EDIT-1
Before

ALPHANUM-EDIT-1
After

M/␣␣ AB␣C/DEF M/␣␣/␣␣␣

Initializing a Structure (INITIALIZE Statement)
Resetting the values of subordinate items by initializing the group item is an advan-
tage of the INITIALIZE statement. The following example shows how you can reset
fields in a transaction record produced by a program to spaces and zeros.

Note: The fields are not identical in each record produced.

�1 TRANSACTION-OUT.

�5 TRANSACTION-CODE PIC X.

�5 PART-NUMBER PIC 9(6).

�5 TRANSACTION-QUANTITY PIC 9(5).

�5 PRICE-FIELDS.

1� UNIT-PRICE PIC 9(5)V9(2).

1� DISCOUNT PIC V9(2).

1� SALES-PRICE PIC 9(5)V9(2).
...

INITIALIZE TRANSACTION-OUT

TRANSACTION-OUT
Before

TRANSACTION-OUT
After

Record 1 R��1383���24���������������� ␣���������������������������

Record 2 R��139����48���������������� ␣���������������������������

Record 3 S��141����12���������������� ␣���������������������������

Record 4 C��1383���������425��������� ␣���������������������������

Record 5 C��2�1�������������1�������� ␣���������������������������

Note: The symbol ␣ represents a blank space.

46 COBOL/VSE Programming Guide

 Coding Your Program

Assigning Values to Variables or Structures (MOVE Statement)
Assignment in the most common sense of the term is accomplished with the MOVE
statement. For example, the following statement:

Move Customer-Name to Orig-Customer-Name

assigns the contents of the variable Customer-Name to the variable
Orig-Customer-Name. If Customer-Name were longer than Orig-Customer-Name, trun-
cation would occur on the right. If it were shorter, the extra character positions on
the right would be filled with spaces.

In the case of variables containing numbers, moves can be more complicated since
there are several ways numbers are represented. These are discussed in
Chapter 6, “Numbers and Arithmetic” on page 73. In general, the algebraic values
of numbers are moved if possible (as opposed to the digit-by-digit type of move
performed with character data):

 �1 Item-x Pic 999v9.
 . . .

Move 3.�6 to Item-x

This move would result in Item-x containing the value 3.0, represented by 0030.

The compiler assumes you know what the description of the item is that you are
moving. Therefore, it will perform all MOVE statements regardless of whether
items “fit,” even if that means a destructive overlap could occur at run time. In such
cases, you will get a warning message when you compile your program. There-
fore, when you move a group item to another group item, be sure the subordinate
data descriptions are compatible.

For example:

 Data Division.

 File Section.

 FD Customer-File

Recording Mode is F

Record Contains 45 Characters.

 �1 Customer-Record.

 �5 Customer-Name.

 1� Last-Name Pic x(17).

 1� Filler Pic x.

 1� Initials Pic xx.

 �5 Part-Order.

 1� Part-Name Pic x(15).

 1� Part-Color Pic x(1�).

 Working-Storage Section.

 �1 Orig-Customer-Name.

 �5 Surname Pic x(17).

 �5 Initials Pic x(3).
...

 Procedure Division.
...

Move Customer-Name To Orig-Customer-Name
...

 Chapter 4. Data Representation and Assignment 47

 Coding Your Program

Assigning Terminal Input to Variables (ACCEPT Statement)
Another way to assign a value to a variable is to read the value from the terminal.
To enter data from the terminal, you may first associate the terminal with a
mnemonic-name in the SPECIAL-NAMES Paragraph:

 Environment Division.

 Configuration Section.

 Special-Names.

Console is Names-Input.

Then the statement:

Accept Customer-Name From Names-Input

assigns the line of input entered at the terminal to the variable Customer-Name.

Displaying Data Values (DISPLAY Statement)
In addition to assigning to a variable a value read in from the terminal, you can also
display the value of a variable on the terminal or on an output device. For
example, if the contents of the variable Customer-Name were JOHNSON, then the
following statement:

Display "No entry for surname '" Customer-Name "' found in the file.".

would display this message:

No entry for surname 'JOHNSON' found in the file.

Where the DISPLAY Output Goes
The UPON phrase of the DISPLAY statement allows you to direct the output to an
output device such as the terminal or the system logical output device. You can
use UPON CONSOLE to direct the output to the terminal. For example:

Display Record-Count " records read from file." Upon Console.

If you omit the UPON phrase, the output is directed to the system logical output
device, which is the filename specified in the OUTDD compiler option. When this is
the same as the filename specified in the LE/VSE MSGFILE run-time option, the
output from the COBOL DISPLAY statement is directed to the LE/VSE message
file. For more information, see the LE/VSE Programming Guide.

Assigning Arithmetic Results
When assigning a number to a variable, it is sometimes better to use the
COMPUTE statement rather than the MOVE statement. For example, the following
two statements accomplish the same thing in most cases:

Move w to z

Compute z = w

However, when significant left-order digits would be lost in execution, the
COMPUTE statement can detect the condition and allow you to deal with it,
whereas the MOVE statement carries out the assignment with destructive trun-
cation. When you use the ON SIZE ERROR phrase of the COMPUTE statement,
the compiler generates code to detect a size-overflow condition. If the condition
occurs, the code you specified in the ON SIZE ERROR phrase is executed, and the
content of z remains unchanged. If the ON SIZE ERROR phrase is not specified,
the assignment is carried out with truncation. There is no ON SIZE ERROR
support for the MOVE statement.

48 COBOL/VSE Programming Guide

 Coding Your Program

Assigning Results of COBOL/VSE and LE/VSE Calculations
(COMPUTE Statement)
The COMPUTE statement is also used to assign the result of an arithmetic
expression (or intrinsic function) to a variable. For example:

Compute z = y + (x �� 3)

Compute x = Function Max(x y z)

For information on intrinsic functions, see section “Built-in (Intrinsic) Functions.”

Results of date, time, mathematical calculations and other operations can be
assigned to data items using LE/VSE callable services. These LE/VSE services
are available via a standard COBOL CALL statement, and the values they return
are passed in the parameters in the CALL statement. For example, you can invoke
the LE/VSE service CEESIABS to find the absolute value of a variable with the
statement:

Call 'CEESIABS' Using Arg, Feedback-code, Result.

As a result of this call, the variable Result is assigned to be the absolute value of
the value that is in the variable Arg; the variable Feedback-code contains the return
code indicating whether the service completed successfully. You have to define all
the variables in the Data Division using the correct descriptions, according to the
requirements of the particular callable service you are using. For the example
above, the variables could be defined like this:

 77 Arg Pic s9(9) Binary.

 77 Feedback-code Pic x(12) Display.

 77 Result Pic s9(9) Binary.

For an overview of LE/VSE callable services available from COBOL/VSE, see
“LE/VSE Callable Services” on page 347.

For detailed information on each LE/VSE callable service such as syntax, param-
eter descriptions, usage notes, and examples, refer to the discussion on callable
services in the LE/VSE Programming Reference.

Built-in (Intrinsic) Functions
Some high-level programming languages have “built-in” functions that you can ref-
erence in your program as if they were variables having defined attributes and a
predetermined value. In COBOL/VSE, these are called intrinsic functions; they
provide various string- and number-manipulation capabilities.

For example:

Unstring Function Upper-case(Name) Delimited By Space Into Fname Lname

Compute A = 1 + Function Log1�(x)

Compute M = Function Max(x y z)

The groups of highlighted words in the examples are referred to as function identi-
fiers. A function identifier is the combination of the COBOL reserved word "func-
tion" followed by a function-name (such as MAX), followed by any arguments to
be used in the evaluation of the function (such as x, y, z). As such, a function
identifier represents both the function's invocation and the data value returned by

 Chapter 4. Data Representation and Assignment 49

 Coding Your Program

the function. Since it actually represents a data item, a function identifier can be
used in most places in the Procedure Division where a data item having the attri-
butes of the returned value can be used. For exact information on where function
identifiers can be used, see COBOL/VSE Language Reference.

Because the value of an intrinsic function is derived automatically at the time of
reference, you do not need to define functions in the Data Division. You define
only the nonliteral data items that you use as arguments. Figurative constants are
not allowed as arguments.

Function identifiers are loosely spoken of in this book as function references.
Whereas the COBOL word “function” is a reserved word, the names of the various
functions (function-names) are not reserved—you can use them in other contexts,
such as for the name of a variable and without references to a function. For
example, you could use “SQRT” to invoke an intrinsic function and/or to name a
variable in your program:

 Working-Storage Section.

 �1 x Pic 99 value 2.

 �1 y Pic 99 value 4.

 �1 z Pic 99 value �.

 �1 Sqrt Pic 99 value �.
...

Compute Sqrt = 16 �� .5

Compute z = x + Function Sqrt(y)
...

Note: Functions are not allowed when the CMPR2 compiler option is in effect.

A function identifier represents a value that is either a character string (alphanu-
meric data class) or a number (numeric data class) depending on the type of func-
tion. The functions MAX, MIN, DATEVAL, and UNDATE can return either type of
value depending on the type of arguments you supply. Figure 15 on page 52 lists
the functions available with COBOL/VSE according to their function
types—alphanumeric, numeric, or either. The function type defines the data type of
the function result and where the function can be referenced. See the COBOL/VSE
Language Reference for individual descriptions of each function, specific require-
ments for their arguments, and allowable places to reference them.

Three functions, DATEVAL, UNDATE, and YEARWINDOW are provided with the
millennium language extensions to assist with manipulating and converting win-
dowed date fields. For details on the millennium language extensions, see
Chapter 22, “Using the Millennium Language Extensions” on page 366. The three
functions are described individually in the COBOL/VSE Language Reference.

50 COBOL/VSE Programming Guide

 Coding Your Program

Figure 15. Function Types

Alphanumeric Numeric Alphanumeric or
Numeric

CHAR
CURRENT-DATE
LOWER-CASE
REVERSE
UPPER-CASE
WHEN-COMPILED

ACOS
ANNUITY
ASIN
ATAN
COS
DATE-TO-YYYYMMDD
DATE-OF-INTEGER
DAY-OF-INTEGER
DAY-TO-YYYYDDD
FACTORIAL
INTEGER
INTEGER-OF-DATE
INTEGER-OF-DAY
INTEGER-PART
LENGTH
LOG
LOG10
MEAN
MEDIAN
MIDRANGE
MOD
NUMVAL
NUMVAL-C
ORD
ORD-MAX
ORD-MIN
PRESENT-VALUE
RANDOM
RANGE
REM
SIN
SQRT
STANDARD-DEVIATION
SUM
TAN
VARIANCE
YEAR-TO-YYYY
YEARWINDOW

DATEVAL
MAX
MIN
UNDATE

 Nesting Functions
Functions can reference other functions as arguments as long as the results of the
nested functions meet the requirements for the arguments of the outer function.

For example:

Compute x = Function Max((Function Sqrt(5)) 2.5 3.5)

In this case, Function Sqrt(5) returns a numeric value. Thus, the three arguments
to the MAX function are all numeric, which are allowable argument types for this
function.

Some of the examples in the next three chapters show nesting of functions.

 Chapter 4. Data Representation and Assignment 51

 Coding Your Program

Substrings of Function Identifiers
You can include a substring specification (reference modifier) in your function iden-
tifier for alphanumeric functions. Chapter 5, “String Handling” on page 54 dis-
cusses these details and some uses for alphanumeric functions.

Additional Information on Intrinsic Functions
In addition to the three general categories of intrinsic functions shown in Figure 15
on page 50, numeric intrinsic functions are further classified according to the type
of numbers they return. For these details and information on some uses for
numeric functions, see “Numeric Intrinsic Functions” on page 83.

For information on using intrinsic functions in table handling, see “Processing Table
Items (Intrinsic Functions)” on page 113. This discussion includes a description of
the efficient ALL subscript feature that enables you to easily reference all of the
elements of an array as function arguments.

Arrays (Tables) and Pointers
Representing data as an array of elements and referring to data by the address of
the data (pointers) are fairly universal concepts in high-level programming lan-
guages. These concepts are outlined below.

 Arrays (Tables)
In COBOL, arrays are called tables, and there are language constructs available for
representing and handling tables. This subject is treated comprehensively in
Chapter 7, “Handling Tables (Arrays)” on page 94, including the assignment of
values to arrays and considerations for moving variable-length items.

 Pointers
Pointer data items may contain virtual storage addresses. You define them explic-
itly with the USAGE IS POINTER clause in the Data Division or implicitly as
ADDRESS OF special registers.

Pointer data items can be:

� Passed between programs (CALL ... BY REFERENCE statement)
� Moved to other pointers (SET statement)
� Compared to other pointers for equality (relation condition)
� Initialized to contain an invalid address (VALUE IS NULL)

You can use pointer data items when you want to accomplish limited base
addressing, particularly when you want to pass and receive addresses of a variably
located record area. You can also use pointers to handle a chained list. For infor-
mation on these topics, read the appropriate sections in Chapter 16, “Subprograms
and Data Sharing” on page 260.

52 COBOL/VSE Programming Guide

 Coding Your Program

 Procedure Pointers
A pointer to an entry point can be defined as a procedure pointer. A data item
defined with the USAGE IS PROCEDURE-POINTER clause in the Data Division
may contain the entry address for a procedure entry point. A procedure-pointer
data item has the same format as the LE/VSE entry variable data type.

See “Passing Entry Point Addresses with Procedure Pointers” on page 280 for
more information.

 Chapter 4. Data Representation and Assignment 53

 Coding Your Program

 Chapter 5. String Handling

COBOL/VSE provides language constructs for performing various operations asso-
ciated with string data items. For example:

� Joining data items
� Splitting data items
� Referencing substrings of data items
� Tallying and replacing data items
� Using double-byte character items (DBCS)
� Converting data items

This chapter discusses the many techniques you can use to manipulate string data.

Joining Data Items (STRING Statement)
You can use the STRING statement to join all or parts of several data items into
one data item. One STRING statement can save you several MOVE statements.

The STRING statement transfers data into the receiving item in the order you
specify. You can specify:

� Delimiters that cause a sending field to be ended and another to be started.

� Special actions to be taken when an ON OVERFLOW condition occurs—that is,
when the single receiving field is filled before all of the sending characters have
been processed.

For more information about ON OVERFLOW with STRING and UNSTRING, see
Chapter 13, “Error Handling” on page 192.

STRING Statement Example
The following example illustrates some of the considerations that apply to the
STRING statement.

In the File Section, the following input record is defined:

 �1 RCD-�1.

 �5 CUST-INFO.

 1� CUST-NAME PIC X(15).

 1� CUST-ADDR PIC X(35).

 �5 BILL-INFO.

 1� INV-NO PIC X(6).

 1� INV-AMT PIC $$,$$$.99.

 1� AMT-PAID PIC $$,$$$.99.

 1� DATE-PAID PIC X(8).

 1� BAL-DUE PIC $$,$$$.99.

 1� DATE-DUE PIC X(8).

In the Working-Storage Section, the programmer has defined the following fields:

 77 RPT-LINE PIC X(12�).

 77 LINE-POS PIC S9(3).

77 LINE-NO PIC 9(5) VALUE 1.

77 DEC-POINT PIC X VALUE ".".

54 Copyright IBM Corp. 1983, 1998

 Coding Your Program

The programmer wants to construct an output line consisting of portions of the
information from RCD-01. The line is to consist of a line number, customer name
and address, invoice number, next billing date, and balance due, shortened to the
dollar figure shown. (The symbol ␣ indicates a blank space.)

The record, as read, contains the following information:

 J.B.␣SMITH␣␣␣␣␣

 444␣SPRING␣ST.,␣CHICAGO,␣ILL.␣␣␣␣␣␣

 A14275

 $4,736.85

 $2,4��.��

 �9/22/94

 $2,336.85

 1�/22/94

In the Procedure Division, the programmer initializes RPT-LINE to SPACES, and
sets LINE-POS to 4 (that is to be used as the POINTER field). When the pointer
option is specified, you can use the explicit pointer field to control placement of
data in the receiving field. This STRING statement is then issued:

STRING LINE-NO SPACE CUST-INFO INV-NO SPACE DATE-DUE SPACE

DELIMITED BY SIZE BAL-DUE DELIMITED BY DEC-POINT

INTO RPT-LINE WITH POINTER LINE-POS.

When the statement is executed, the following steps take place:

1. The field LINE-NO is moved into positions 4 through 8 of RPT-LINE

2. A space is moved into position 9

3. The group item CUST-INFO is moved into positions 10 through 59

4. INV-NO is moved into positions 60 through 65

5. A space is moved into position 66

6. DATE-DUE is moved into positions 67 through 74

7. A space is moved into position 75

8. The portion of BAL-DUE that precedes the decimal point is moved into posi-
tions 76 through 81.

9. The value of LINE-POS is 82 after the STRING statement is executed

At the end of execution of the STRING statement, RPT-LINE appears as shown in
the following:

Column

 4 1� 6� 67 76

 │ │ │ │ │

 │ │ │ │ │

 ����1 J.B. SMITH 444 SPRING ST., CHICAGO, ILL. A14275 1�/22/94 $2,336

 Chapter 5. String Handling 55

 Coding Your Program

Splitting Data Items (UNSTRING Statement)
You can use the UNSTRING statement to split one sending field into several
receiving fields. One UNSTRING statement can save you several MOVE state-
ments.

As with the STRING statement, you can specify delimiters that, when encountered
in the sending field, cause the current receiving field to be switched to the next one
specified. You can get back the number of characters placed in each receiving
field, and you can keep a count of the total number of characters transferred. If all
the receiving fields are filled before the end of the sending item is reached, you can
specify special actions for the program to take.

UNSTRING Statement Example
The following example illustrates some of the considerations that apply to the
UNSTRING statement.

In the Data Division, the programmer has defined the following input record to be
acted upon by the UNSTRING statement:

 �1 INV-RCD.

 �5 CONTROL-CHARS PIC XX.

 �5 ITEM-INDENT PIC X(2�).

 �5 FILLER PIC X.

 �5 INV-CODE PIC X(1�).

 �5 FILLER PIC X.

 �5 NO-UNITS PIC 9(6).

 �5 FILLER PIC X.

 �5 PRICE-PER-M PIC 99999.

 �5 FILLER PIC X.

 �5 RTL-AMT PIC 9(6).99.

The next two records are defined as receiving fields for the UNSTRING statement.
DISPLAY-REC is to be used for printed output. WORK-REC is to be used for
further internal processing.

 �1 DISPLAY-REC.

 �5 INV-NO PIC X(6).

�5 FILLER PIC X VALUE SPACE.

 �5 ITEM-NAME PIC X(2�).

�5 FILLER PIC X VALUE SPACE.

 �5 DISPLAY-DOLS PIC 9(6).

 �1 WORK-REC.

 �5 M-UNITS PIC 9(6).

 �5 FIELD-A PIC 9(6).

�5 WK-PRICE REDEFINES FIELD-A PIC 9999V99.

 �5 INV-CLASS PIC X(3).

56 COBOL/VSE Programming Guide

 Coding Your Program

The programmer has also defined the following fields for use as control fields in the
UNSTRING statement:

 77 DBY-1 PIC X.

 77 CTR-1 PIC S9(3).

 77 CTR-2 PIC S9(3).

 77 CTR-3 PIC S9(3).

 77 CTR-4 PIC S9(3).

 77 DLTR-1 PIC X.

 77 DLTR-2 PIC X.

 77 CHAR-CT PIC S9(3).

 77 FLDS-FILLED PIC S9(3).

In the Procedure Division, the programmer writes the following UNSTRING state-
ment to move subfields of INV-RCD to the subfields of DISPLAY-REC and
WORK-REC:

 UNSTRING INV-RCD

DELIMITED BY ALL SPACES OR "/" OR DBY-1

INTO ITEM-NAME COUNT IN CTR-1

INV-NO DELIMITER IN DLTR-1 COUNT IN CTR-2

 INV-CLASS

M-UNITS COUNT IN CTR-3

 FIELD-A

DISPLAY-DOLS DELIMITER IN DLTR-2 COUNT IN CTR-4

WITH POINTER CHAR-CT

TALLYING IN FLDS-FILLED

ON OVERFLOW GO TO UNSTRING-COMPLETE.

Before the UNSTRING statement is issued, the programmer places the value 3 in
CHAR-CT (the POINTER item), to avoid working with the two control characters in
INV-RCD. In DBY-1, a period (.) is placed for use as a delimiter, and, in
FLDS-FILLED (the TALLYING item), the value 0 (zero) is placed. The data is then
read into INV-RCD, as shown in the following:

Column

1 1� 2� 3� 4� 5� 6�

│ │ │ │ │ │ │

│ │ │ │ │ │ │

│ │ │ │ │ │ │

ZYFOUR─PENNY─NAILS 7�789�/BBA 47512� ��122 ���379.5�

When the UNSTRING statement is executed, the following steps take place:

1. Positions 3 through 18 (FOUR-PENNY-NAILS) of INV-RCD are placed in
ITEM-NAME, left-justified within the area, and the unused character positions
are padded with spaces. The value 16 is placed in CTR-1.

2. Because ALL SPACES is specified as a delimiter, the 5 contiguous SPACE
characters are considered to be one occurrence of the delimiter.

3. Positions 24 through 29 (707890) are placed in INV-NO. The delimiter char-
acter, /, is placed in DLTR-1, and the value 6 is placed in CTR-2.

4. Positions 31 through 33 are placed in INV-CLASS. See Note.

5. Positions 35 through 40 (475120) are examined and placed in M-UNITS. The
value 6 is placed in CTR-3. See Note.

 Chapter 5. String Handling 57

 Coding Your Program

6. Positions 42 through 46 (00122) are placed in FIELD-A and right-justified within
the area. The high-order digit position is filled with a 0 (zero). See Note.

Note: In steps 4, 5, and 6, the delimiter is a SPACE, but because no field has
been defined as a receiving area for delimiters, the SPACE is bypassed.

At the end of execution of the UNSTRING statement:

� DISPLAY-REC contains the following data:

 7�789� FOUR-PENNY-NAILS ���379

� WORK-REC contains the following data:

 47512����122BBA

� CHAR-CT (the POINTER field) contains the value 55

� FLDS-FILLED (the TALLYING field) contains the value 6

7. Positions 48 through 53 (000379) are placed in DISPLAY-DOLS. The period (.)
delimiter character in DBY-1 is placed in DLTR-2, and the value 6 is placed in
CTR-4.

8. Because all receiving fields have been acted upon and 2 characters of data in
INV-RCD have not been examined, the ON OVERFLOW exit is taken, and exe-
cution of the UNSTRING statement is completed.

Note: The UNSTRING statement has a slightly different behavior when the
CMPR2 compiler option is in effect. For VS COBOL II Release 2 compatibility and
migration details, see COBOL/VSE Migration Guide.

Referencing Substrings of Data Items (Reference Modifiers)
You can use reference modifiers with character string data items to reference a
substring of the data item. Remember that intrinsic functions which return char-
acter string values are also considered alphanumeric data items, and thus can
include a reference modifier. Figure 15 on page 50 shows which intrinsic functions
return alphanumeric data.

The following example shows how to use a reference modifier to reference a sub-
string of a data item:

Move Customer-Record(1:2�) to Orig-Customer-Name

As this shows, you specify the wanted substring in parentheses immediately fol-
lowing the data item. Within the parentheses, you specify the ordinal position (from
the left) of the character you want the substring to start with, followed by a colon
and the length of the substring. The length is optional and if omitted, the substring
will automatically extend to the end of the data item.

If the leftmost character position or the length value is a noninteger, truncation will
occur to create an integer.

Both numbers in the reference modifier must be at least 1, and their sum should
not exceed the total length of the data item plus one.

For additional information on reference modification, see COBOL/VSE Language
Reference.

58 COBOL/VSE Programming Guide

 Coding Your Program

The SSRANGE compiler option and the CHECK run-time option detect out-of-range
reference modifiers and flag violations with a run-time message.

A Sample Problem
Assume that you want to retrieve the current time from the system and display its
value in an expanded format. You can retrieve the current time value from the
system with the ACCEPT statement, which returns the hours, minutes, seconds,
and hundredths of seconds in the format:

 HHMMSSss

However, you might prefer to view the current time in the format:

 HH:MM:SS

Without Reference Modification
Without reference modification, the following data items would have to be defined:

 �1 TIME-GROUP.

 �5 INTERESTING-FIELDS.

 1� HOURS PIC XX.

 1� MINUTES PIC XX.

 1� SECONDS PIC XX.

 �5 UNINTERESTING-FIELDS.

 1� HUNDREDTHS-OF-SECONDS PIC XX.

 �1 EXPANDED-TIME-GROUP.

 �5 INTERESTING-FIELDS.

 1� HOURS PIC XX.

 1� PIC X VALUE ":".

 1� MINUTES PIC XX.

 1� PIC X VALUE ":".

 1� SECONDS PIC XX.

The following code would retrieve the TIME value, convert it to its expanded format,
and display the new value:

ACCEPT TIME-GROUP FROM TIME.

 MOVE CORRESPONDING

INTERESTING-FIELDS OF TIME-GROUP TO

INTERESTING-FIELDS OF EXPANDED-TIME-GROUP.

DISPLAY "CURRENT TIME IS: " EXPANDED-TIME-GROUP.

With Reference Modification
With reference modification, you need not provide names for the subfields that
describe the TIME elements. The only data definition that is needed is:

 �1 REFMOD-TIME-ITEM PIC X(8).

The code to retrieve and expand the time value would appear as follows:

ACCEPT REFMOD-TIME-ITEM FROM TIME.

DISPLAY "CURRENT TIME IS: "

 REFMOD-TIME-ITEM (1:2)

 ":"

 REFMOD-TIME-ITEM (3:2)

 ":"

 REFMOD-TIME-ITEM (5:2).

 Chapter 5. String Handling 59

 Coding Your Program

The reference:

 REFMOD-TIME-ITEM (1:2)

causes a reference beginning at character position 1, for a length of 2, thus
retrieving the portion of the time value that corresponds to the number of hours.

The reference:

 REFMOD-TIME-ITEM (3:2)

causes a reference beginning at character position 3, for a length of 2, thus
retrieving the portion of the time value that corresponds to the number of minutes.

The reference:

 REFMOD-TIME-ITEM (5:2)

causes a reference beginning at character position 5, for a length of 2, thus
retrieving the portion of the time value that corresponds to the number of seconds.

With Reference Modification of an Intrinsic Function
The simplest solution to our problem would be to reference a substring of the
CURRENT-DATE function:

Display "Current Date is: "

 Function Current-Date(9:2)

 ":"

 Function Current-Date(11:2)

 ":"

 Function Current-Date(13:2).

This code requires no Data Division entries and fewer lines of code.

Using Variables as Reference Modifiers
So far, all of the substringing examples have used numeric literals as the integers
in the reference modifier. However, these values can also be variables that are
defined as integers.

For example:

 �5 Left-posn Pic 99 Value 4.

 �5 Name-length Pic 99 Value 5.
 . . .

Move Customer-Record(Left-posn:Name-length) To Customer-Name

In this example, the substring of Customer-Record that would be moved depends on
the values of Left-posn and Name-length at run time.

Using Arithmetic Expressions as Reference Modifiers
You can also use an arithmetic expression as either of the integers in a reference
modifier. An arithmetic expression that creates a fixed-point noninteger is short-
ened to create an integer. An arithmetic expression that creates a floating-point
noninteger is rounded to create an integer.

As an example, suppose that a field contains some characters, right-justified, and
you want to move the characters to another field, but justified left instead of right.
Using reference modification and an INSPECT statement, you could do just that.

60 COBOL/VSE Programming Guide

 Coding Your Program

The program would have the following data:

 �1 LEFTY PIC X(3�).

�1 RIGHTY PIC X(3�) JUSTIFIED RIGHT.

 �1 I PIC 9(9) USAGE BINARY.

The program would then count the number of leading spaces and, using arithmetic
expressions in a reference modification expression, move the right-justified charac-
ters into another field, left-justified:

MOVE SPACES TO LEFTY

MOVE ZERO TO I

 INSPECT RIGHTY

TALLYING I FOR LEADING SPACE.

IF I IS LESS THAN LENGTH OF RIGHTY THEN

MOVE RIGHTY (I + 1 : LENGTH OF RIGHTY - I) TO LEFTY

 END-IF

The MOVE statement transfers characters from RIGHTY, beginning at the position
computed in I + 1, for a length that is computed in LENGTH OF RIGHTY - I, into the
field LEFTY.

In the previous example, both the leftmost character position and the length were
specified in the reference modifier for RIGHTY to illustrate the use of arithmetic
expressions as reference modifiers.

However, remember that specifying the length is optional. If it is omitted, the sub-
string created will automatically extend to the end of the item. Thus, coding:

MOVE RIGHTY (I + 1 :) TO LEFTY

is equivalent to:

MOVE RIGHTY (I + 1 : LENGTH OF RIGHTY - I) TO LEFTY

Omitting the length, when possible, is recommended as a simpler, less error-prone
coding technique.

Using Intrinsic Functions as Reference Modifiers
Since a numeric function identifier can be used anywhere an arithmetic expression
is allowed, it can be used as the leftmost character position and/or the length in the
reference modifier.

For example:

 �5 WS-name Pic x(2�).

 �5 Left-posn Pic 99.

 �5 I Pic 99.
 . . .

Move Customer-Record(Function Min(Left-posn I):Function Length(WS-name))

 to WS-name

When executed, this statement causes a substring of Customer-Record to be
moved into the variable WS-name; the substring is determined at run time.

If you want to use a numeric, noninteger function in a position requiring an integer
function, you can use the INTEGER or INTEGER-PART function to convert the
result to an integer. For example:

Move Customer-Record(Function Integer(Function Sqrt(I)):) to WS-name

 Chapter 5. String Handling 61

 Coding Your Program

For a list that shows which numeric functions return integer and noninteger results,
see the COBOL/VSE Language Reference.

Referencing Substrings of Table Items
You can also reference substrings of table entries, including variable-length entries.
This is discussed in Chapter 7, “Handling Tables (Arrays)” on page 94.

Tallying and Replacing Data Items (INSPECT Statement)
The INSPECT statement is useful for filling selective portions of a data item with a
value, or for replacing portions with a corresponding portion of another data item.
You can also use it for counting the number of times a specific character (zero,
space, asterisk, for example) occurs in a data item.

INSPECT Statement Examples
The following examples illustrate some uses of the INSPECT statement. In all
instances, the programmer has initialized the COUNTR field to zero before the
INSPECT statement is executed.

Example 1:

77 COUNTR PIC 9 VALUE ZERO.

�1 DATA-1 PIC X(6).
 . . .

 INSPECT DATA-1

TALLYING COUNTR FOR CHARACTERS AFTER INITIAL "S"

REPLACING ALL "A" BY "O"

Example 2:

77 COUNTR PIC 9 VALUE ZERO.

�1 DATA-2 PIC X(11).
 . . .

 INSPECT DATA-2

TALLYING COUNTR FOR LEADING "�"

REPLACING FIRST "A" BY "2"

AFTER INITIAL "C"

DATA-1 Before COUNTR After DATA-1 After

ANSELM 3 ONSELM

SACKET 5 SOCKET

PASSED 3 POSSED

DATA-2 Before COUNTR After DATA-2 After

��ACADEMY�� 2 ��AC2DEMY��

����ALABAMA 4 ����ALABAMA

CHATHAM���� 0 CH2THAM����

62 COBOL/VSE Programming Guide

 Coding Your Program

Example 3:

77 COUNTR PIC 9 VALUE ZERO.

�1 DATA-3 PIC X(8).
 . . .

 INSPECT DATA-3

REPLACING CHARACTERS BY ZEROS

BEFORE INITIAL QUOTE

The following example shows the use of INSPECT CONVERTING with AFTER and
BEFORE phrases. The table shows examples of the contents of DATA-4 before
and after the conversion statement is performed.

Example 4:

�1 DATA-4 PIC X(11).

 INSPECT DATA-4

 CONVERTING "abcdefghijklmnopqrstuvwxyz"

 TO "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

AFTER INITIAL "/"

 BEFORE INITIAL"?"

DATA-3 Before COUNTR After DATA-3 After

456"ABEL 0 ���"ABEL

ANDES"12 0 �����"12

"TWAS BR 0 "TWAS BR

DATA-4 Before DATA-4 After

a/five/?six a/FIVE/?six

r/Rexx/RRRr r/REXX/RRRR

zfour?inspe zfour?inspe

Using Double-Byte Character (DBCS) Data
Direct use of byte-oriented nonnumeric operations (for example, STRING and
UNSTRING) on nonnumeric data items containing double-byte characters leads to
unpredictable results. When statements that operate on a byte-by-byte basis are
used with nonnumeric data items containing double-byte characters, you should
first convert these items to pure DBCS data. This allows you to use supported
functions on the DBCS data item. Once you have achieved the results you want,
you may convert the DBCS data item back to a nonnumeric data item containing
double-byte characters.

You can use reference modifiers with DBCS data items to reference a substring of
a DBCS data item the same way you can for non-DBCS items:

Move dbcs-item-1(2:5) to dbcs-item-2

The values within the parentheses represent the leftmost "character" position you
want the substring to begin with and the number of "character" positions to move.
If the second value is omitted, the substring will automatically extend to the end of
the DBCS item.

 Chapter 5. String Handling 63

 Coding Your Program

COBOL/VSE provides two service routines (IGZCA2D and IGZCD2A) which allow
you to convert between nonnumeric data items and DBCS data items using the
COBOL/VSE CALL interface. The DBCS compiler option does not affect the opera-
tion of these service routines.

Note: The examples in this section use the following notation to describe DBCS
items:

< and > denote Shift-Out (SO) and Shift-In (SI), respectively

D0, D1, D2,... Dn, denote any DBCS character except for double-byte
EBCDIC characters

.A, .B, .C, ..., denote any double-byte EBCDIC character; the period,
".", represents the value X'42'

A single letter, such as A, B, or s, denotes any single-byte EBCDIC
character.

Nonnumeric to DBCS Data Conversion
The IGZCA2D service routine may be used to convert nonnumeric data that con-
tains double-byte characters to pure DBCS data. You may use the IGZCA2D
service routine by passing four parameters to the routine using the CALL state-
ment. These parameters are:

parameter-1
specifies the sending field for the conversion. It is treated as a nonnumeric
data item.

parameter-2
specifies the receiving field for the conversion. It is treated as a DBCS data
item. Reference modification cannot be used with parameter-2.

parameter-3
specifies the number of bytes in parameter-1 that will be converted. It may be
the LENGTH special register of parameter-1 or a four-byte USAGE IS BINARY
data item containing the number of bytes of parameter-1 to be converted. Shift
codes are counted as one byte each.

parameter-4
specifies the number of bytes in parameter-2 that will receive the converted
data. It may be the LENGTH special register of parameter-2 or a four-byte
USAGE IS BINARY data item containing the number of bytes of parameter-2 to
receive the converted data.

Parameter-2 must be passed to the routine BY REFERENCE, while parameter-1,
parameter-3, and parameter-4 may be passed BY REFERENCE or BY CONTENT.

Note: The compiler will not perform syntax checking on these parameters. You
are responsible for ensuring that the parameters are correctly set and passed to the
conversion routine using the CALL statement. If the parameters are not correctly
set and passed to the conversion routine, results may be unpredictable.

If parameter-1 contains double-byte character data, the conversion routine removes
the shift codes, leaving the DBCS data unchanged. The single-byte EBCDIC data
in parameter-1 is converted to double-byte EBCDIC characters. An EBCDIC space
(X'40') will be converted to a DBCS space (X'4040'), instead of X'4240'.

64 COBOL/VSE Programming Guide

 Coding Your Program

The contents of parameter-1, parameter-3, and parameter-4 remain unchanged by
the service routine.

The valid range for the contents of parameter-3 and parameter-4 is 1 to 16 million.

The service routine sets the RETURN-CODE special register to reflect the status of
the conversion. Figure 16 describes the meanings of these return codes.

In the Procedure Division, you can write the following CALL statement to convert
the nonnumeric data in alpha-item to DBCS data. The results of the conversion
will be placed in dbcs-item.

CALL "IGZCA2D" USING BY REFERENCE alpha-item dbcs-item

BY CONTENT LENGTH OF alpha-item

LENGTH OF dbcs-item

If the contents of alpha-item and dbcs-item before the conversion were:

alpha-item = AB<D1D2D3>CD

 dbcs-item = D4D5D6D7D8D9D�

and the lengths were:

LENGTH OF alpha-item = 12

LENGTH OF dbcs-item = 14

then after the conversion, alpha-item and dbcs-item will contain:

alpha-item = AB<D1D2D3>CD

 dbcs-item = .A.BD1D2D3.C.D

with a RETURN-CODE of 0.

Figure 16. IGZCA2D Return Codes

Return
Code

Explanation

0 Parameter-1 was converted and the results were placed in parameter-2.

2 Parameter-1 was converted and the results were placed in parameter-2. Parameter-2 was
padded on the right with DBCS spaces.

4 Parameter-1 was converted and the results were placed in parameter-2. The DBCS data
placed in parameter-2 was cut off on the right.

6 Parameter-1 was converted and the results were placed in parameter-2. An EBCDIC
character in the range X'00' to X'3F' or X'FF' was encountered. The valid EBCDIC
character has been converted into an out-of-range DBCS character.

8 Parameter-1 was converted and the results were placed in parameter-2. An EBCDIC
character in the range X'00' to X'3F' or X'FF' was encountered. The valid EBCDIC
character has been converted into an out-of-range DBCS character.
Parameter-2 was padded on the right with DBCS spaces.

10 Parameter-1 was converted and the results were placed in parameter-2. An EBCDIC
character in the range X'00' to X'3F' or X'FF' was encountered. The valid EBCDIC
character has been converted into an out-of-range DBCS character.
The DBCS data in parameter-2 was cut off on the right.

12 An odd number of bytes was found between paired shift codes in parameter-1. No con-
version occurred.

13 Unpaired or nested shift codes were found in parameter-1. No conversion occurred.

14 Parameter-1 and parameter-2 were overlapping. No conversion occurred.

15 The value provided for parameter-3 or parameter-4 was out of range. No conversion
occurred.

16 An odd number of bytes was specified in parameter-4. No conversion occurred.

 Chapter 5. String Handling 65

 Coding Your Program

DBCS to Nonnumeric Data Conversion
The IGZCD2A routine converts pure DBCS data to nonnumeric data which may
contain double-byte characters. The DBCS compiler option has no effect on the
operation of the service routine. The IGZCD2A service routine requires four param-
eters. These parameters are:

parameter-1
specifies the sending field for the conversion. It is treated as a DBCS data
item.

parameter-2
specifies the receiving field for the conversion. It is treated as a nonnumeric
data item.

parameter-3
specifies the number of bytes in parameter-1 that will be converted. It may be
the LENGTH special register of parameter-1 or a four-byte USAGE IS BINARY
data item containing the number of bytes of parameter-1 to be converted.

parameter-4
specifies the number of bytes in parameter-2 that will receive the converted
data. It may be the LENGTH special register of parameter-2 or a four-byte
USAGE IS BINARY data item containing the number of bytes of parameter-2 to
receive the converted data. Shift codes are counted as one byte each.

Parameter-2 must be passed to the routine BY REFERENCE, while parameter-1,
parameter-3, and parameter-4 may be passed BY REFERENCE or BY CONTENT.

Note: The compiler will not perform syntax checking on these parameters. You
are responsible for ensuring that the parameters are correctly set and passed to the
conversion routine. If the parameters are not correctly set and passed to the con-
version routine, results may be unpredictable.

If parameter-1 contains DBCS characters which are not double-byte EBCDIC char-
acters, shift codes will be inserted around these DBCS characters. All double-byte
EBCDIC characters will be converted to single-byte EBCDIC characters. The
DBCS space (X'4040') will be converted to an EBCDIC space (X'40').

The contents of parameter-1, parameter-3, and parameter-4 remain unchanged by
the service routine.

If the converted data contains double-byte characters, shift codes are counted in
the length of parameter-2.

The valid range for the contents of parameter-3 and parameter-4 is 1 to 16 million.

The service routine sets the RETURN-CODE special register to reflect the status of
the conversion. Figure 17 describes the meanings of these return codes.

66 COBOL/VSE Programming Guide

 Coding Your Program

1 If a truncation occurs within the DBCS characters, the truncation will occur on
an even-byte boundary and a shift-in (SI) will be inserted. If necessary, the
nonnumeric data will be padded with an EBCDIC space after the shift-in.

In the Procedure Division, you can write the following CALL statement to convert
the DBCS data in dbcs-item to nonnumeric data with double-byte characters. The
results of the conversion will be placed in alpha-item.

CALL "IGZCD2A" USING BY REFERENCE dbcs-item alpha-item

BY CONTENT LENGTH OF dbcs-item

LENGTH OF alpha-item

If the contents of dbcs-item and alpha-item before the conversion were

 dbcs-item = .A.BD1D2D3.C.D

alpha-item = ssssssssssss

and the lengths were

LENGTH OF dbcs-item = 14

LENGTH OF alpha-item = 12

then after the conversion, dbcs-item and alpha-item will contain

 dbcs-item = .A.BD1D2D3.C.D

alpha-item = AB<D1D2D3>CD

with a RETURN-CODE of 0.

Figure 17. IGZCD2A Return Codes

Return
Code

Explanation

0 Parameter-1 was converted and the results were placed in parameter-2.

2 Parameter-1 was converted and the results were placed in parameter-2. Parameter-2 was
padded on the right with EBCDIC spaces.

4 Parameter-1 was converted and the results were placed in parameter-2. Parameter-2 was
cut off on the right.1

14 Parameter-1 and parameter-2 were overlapping. No conversion occurred.

15 The value of parameter-3 or parameter-4 was out of range. No conversion occurred.

16 An odd number of bytes was specified in parameter-3. No conversion occurred.

Converting Data Items (Intrinsic Functions)
Intrinsic functions are available to convert character string data items to:

� Uppercase or lowercase
 � Reverse order
 � Numbers

Besides using intrinsic functions to convert characters, you can also use the
INSPECT statement. See the examples under “Tallying and Replacing Data Items
(INSPECT Statement)” on page 62.

 Chapter 5. String Handling 67

 Coding Your Program

Converting to Uppercase or Lowercase (UPPER-CASE, LOWER-CASE)
The following code:

�1 Item-1 Pic x(3�) Value "Hello World!".

 �1 Item-2 Pic x(3�).
...

 Display Item-1

Display Function Upper-case(Item-1)

Display Function Lower-case(Item-1)

Move Function Upper-case(Item-1) to Item-2

 Display Item-2

would display the following messages on the terminal:

 Hello World!

 HELLO WORLD!

 hello world!

 HELLO WORLD!

Note that the DISPLAY statements do not change the actual contents of Item-1
and only affect how the letters are displayed. However, the MOVE statement
causes uppercase letters to be moved to the actual contents of Item-2.

Converting to Reverse Order (REVERSE)
The following code:

Move Function Reverse(Orig-cust-name) To Orig-cust-name

would reverse the order of the characters in Orig-cust-name. For example, if the
starting value were JOHNSON␣␣␣, the value after execution of the statement would
be ␣␣␣NOSNHOJ.

Converting to Numbers (NUMVAL, NUMVAL-C)
The NUMVAL and NUMVAL-C functions convert character strings to numbers. You
can use these functions to convert alphanumeric data items that contain free format
character representation numbers to numeric form and process them numerically.
For example:

�1 R Pic x(2�) Value "- 1234.5678".

 �1 S Pic x(2�) Value " $12,345.67CR".

�1 Total Usage is Comp-1.
...

Compute Total = Function Numval(R) + Function Numval-C(S)

The difference between NUMVAL and NUMVAL-C is that NUMVAL-C is used when
the argument includes a currency symbol and/or comma, as shown in the example.
You can also specify an algebraic sign before or after, and it will be processed.
The arguments must not exceed 18 digits (not including the editing symbols). For
exact syntax rules, see the COBOL/VSE Language Reference.

Using NUMVAL and NUMVAL-C reduces the need for you to statically declare
numeric data in a fixed format and input data in a precise manner. For example,
for this code:

�1 X Pic S999V99 leading sign is separate.
...

Accept X from Console

68 COBOL/VSE Programming Guide

 Coding Your Program

The user must enter the numbers exactly as defined by the PICTURE clause. For
example:

 +��1.23

 -3��.��

However, using the NUMVAL function, you could code:

 �1 A Pic x(1�).

 �1 B Pic S999V99.
...

Accept A from Console

Compute B = Function Numval(A)

and the input could be:

 1.23

 -3��

Note: Both NUMVAL and NUMVAL-C return a long (double-precision) floating-
point value. A reference to either of these functions, therefore, represents a refer-
ence to a numeric data item. For more information about the characteristics of
numeric data, see Chapter 6, “Numbers and Arithmetic” on page 73.

Evaluating Data Items (Intrinsic Functions)
Several intrinsic functions can be used in evaluating data items:

� CHAR and ORD for evaluating integers and single alphanumeric characters
with respect to the collating sequence used in your program

� MAX, MIN, ORD-MAX, and ORD-MIN for finding the largest and smallest items
in a series of data items

� LENGTH for finding the length of data items

� WHEN-COMPILED for finding the date and time the program was compiled

Evaluating Single Characters for Collating Sequence (CHAR, ORD)
If you want to know the ordinal position of a certain character in the collating
sequence, you can reference the ORD function specifying the character in question
as the argument, and ORD will return an integer representing that ordinal position.

One convenient way to do this is to use the substring of a data item as the argu-
ment to ORD:

IF Function Ord(Customer-record(1:1)) Is > 13 THEN ...

On the other hand, if you know what position in the collating sequence you want
but do not know what character it corresponds to, then reference the CHAR func-
tion specifying the integer ordinal position as the argument, and CHAR will return
the required character:

INITIALIZE Customer-Name REPLACING ":" BY Function Char(29)

 Chapter 5. String Handling 69

 Coding Your Program

Finding the Largest or Smallest Data Item (MAX, MIN, ORD-MAX,
ORD-MIN)

If you have two or more alphanumeric data items and want to know which data
item contains the largest value (evaluated according to the collating sequence), you
can use the MAX function, supplying the data items in question as arguments. If
you want to know which item contains the smallest value, you would use the MIN
function. The MAX and MIN functions simply return the contents of one of the vari-
ables you supply.

On the other hand, the functions ORD-MAX and ORD-MIN return an integer that
represents the ordinal position of the argument with the “largest” or “smallest” value
in the list of arguments you have supplied (counting from the left).

For example, with these data definitions:

�5 Arg1 Pic x(1�) Value "THOMASSON ".

 �5 Arg2 Pic x(1�) Value "THOMAS ".

 �5 Arg3 Pic x(1�) Value "VALLEJO ".

then the following statement:

Move Function Max(Arg1 Arg2 Arg3) To Customer-record(1:1�)

would assign VALLEJO␣␣␣ to the first ten character positions of Customer-record.

If the ORD-MAX function were used above, you would receive a syntax error
message at compile time, since you would be attempting to reference a numeric
function in an invalid place (see COBOL/VSE Language Reference). The following
is a valid example of the ORD-MAX function:

Compute x = Function Ord-max(Arg1 Arg2 Arg3)

This would assign the integer 3 to x, if the same arguments were used as in the
previous example. If MIN and ORD-MIN were used respectively in the two exam-
ples above, then THOMAS␣␣␣␣ and the integer 2 would be the values returned.

Note: This group of functions can also be used for numbers, in which case the
algebraic values of the arguments are compared. For more information, see the
appropriate section of Chapter 6, “Numbers and Arithmetic” on page 73.

The above examples would probably be more realistic if Arg1, Arg2 and Arg3 were
instead successive elements of an array (table). For information on using table
elements as function arguments, see the section on “Processing Table Items
(Intrinsic Functions)” on page 113 in Chapter 7, “Handling Tables (Arrays).”

Returning Variable-Length Results with Alphanumeric Functions
The results of alphanumeric functions may be of varying lengths and values
depending on the function arguments.

In the following example, the amount of data moved to R3 and the results of the
COMPUTE statement depend on the values and sizes of R1 and R2:

�1 R1 Pic x(1�) value "e".

�1 R2 Pic x(�5) value "f".

�1 R3 Pic x(2�) value spaces.

 �1 L Pic 99.
...

Move Function Max(R1 R2) to R3

Compute L = Function Length(Function Max(R1 R2))

70 COBOL/VSE Programming Guide

 Coding Your Program

In this case, R2 is evaluated to be larger than R1. Therefore, assuming that the
symbol ␣ represents a blank space, the string “f␣␣␣␣” would be moved to R3 (the
unfilled character positions in R3 are padded with spaces), and L evaluates to the
value 5. If R1 were the value “g” then R1 would be larger than R2, and the string
“g␣␣␣␣␣␣␣␣␣” would be moved to R3 (the unfilled character positions in R3 would be
padded with spaces); the value 10 would be assigned to L.

Therefore, be aware that you may be dealing with variable-length output from
alphanumeric functions and plan your program code accordingly. For example, you
may need to think about using variable-length record files when it is possible that
the records you will be writing may be of different lengths:

 File Section.

 FD Output-File.

 �1 Customer-Record Pic X(8�)

 Working-Storage Section.

 �1 R1 Pic x(5�).

 �1 R2 Pic x(7�).
...

Write Customer-Record from Function Max(R1 R2)

Finding the Length of Data Items (LENGTH)
The LENGTH function is useful in many programming contexts for determining the
length of string items. The following COBOL statement shows moving a data item,
such as a customer name, into the particular field in a record that is for customer
names:

Move Customer-name To Customer-record(1:Function Length(Customer-name))

Note: The LENGTH function can also be used on a numeric data item or a table
entry. Numeric data and tables are discussed in Chapter 6, “Numbers and
Arithmetic” on page 73 and in Chapter 7, “Handling Tables (Arrays)” on page 94.

In addition to the LENGTH function, another technique to find the length of a data
item is to use the LENGTH OF special register. Thus, coding either Function
Length(Customer-Name) or LENGTH OF Customer-Name would return the same result–
the length of Customer-Name in bytes.

Whereas the LENGTH function may only be used where arithmetic expressions are
allowed, the LENGTH OF special register can be used in a greater variety of con-
texts. For example, the LENGTH OF special register may be used as an argument
to an intrinsic function that allows integer arguments. (An intrinsic function may not
be used as an operand to the LENGTH OF special register.) The LENGTH OF
special register can also be used as a parameter in a CALL statement.

Finding the Date of Compilation (WHEN-COMPILED)
If you want to know the date and time the program was compiled as provided by
the system on which the program was compiled, you can use the
WHEN-COMPILED function. The result returned has 21 character positions with
the first 16 positions in the format:

 YYYYMMDDhhmmsshh

to show the four-digit year, month, day, and time (in hours, minutes, seconds, and
hundredths of seconds) of compilation.

 Chapter 5. String Handling 71

 Coding Your Program

The WHEN-COMPILED special register is another technique you can use to find
the date and time of compilation. It has the format:

 MM/DD/YYhh.mm.ss

The WHEN-COMPILED special register supports only a two-digit year and carries
the time out only to seconds. This special register can only be used as the sending
field in a MOVE statement.

72 COBOL/VSE Programming Guide

 Coding Your Program

Chapter 6. Numbers and Arithmetic

This chapter explains how COBOL views numeric data and how you can best rep-
resent numeric data and perform efficient arithmetic operations. The topics are:

� “General COBOL View of Numbers (PICTURE clause).”
� “Computational Data Representation (USAGE Clause)” on page 74.
� “Data Format Conversions” on page 78.
� “Sign Representation and Processing” on page 79.
� “Checking for Incompatible Data (Numeric Class Test)” on page 80.
� “Performing Arithmetic” on page 81.
� “Fixed-Point versus Floating-Point Arithmetic” on page 88.

| � “Using Currency Signs” on page 91.

General COBOL View of Numbers (PICTURE clause)
In general, you can view COBOL numeric data in a way similar to character-string
data—as a series of decimal digit positions. However, numeric items can have
special properties, such as an arithmetic sign.

Defining Numeric Items
Define numeric items using the character "9" in the data description to represent
the decimal digits of the number instead of using an "x" like with alphanumeric
items:

�5 Count-x Pic 9(4) Value 25.

�5 Customer-name Pic x(2�) Value "Johnson".

You can code up to 18 digits in the PICTURE clause, as well as various other char-
acters of special significance. The "s" in the following example means that the
value is signed:

�5 Price Pic s99v99.

The field can hold a positive or negative value. The "v" indicates the position of an
implied decimal point. Neither "s" nor "v" are counted in the size of the item, nor
do they require extra storage positions, unless the item is coded as USAGE
DISPLAY with the SIGN IS SEPARATE clause. An exception is internal floating
point data (COMP-1 or COMP-2), for which there is no PICTURE clause.

For information on how you can control the way the compiler handles non-separate
signs, see the NUMPROC compiler option description under “NUMPROC” on
page 243.

Separate Sign Position (for Portability)
If you plan to port your program or data to a different machine, you might want to
code the sign as a separate digit position in storage:

�5 Price Pic S99V99 Sign Is Leading, Separate.

This ensures that the convention your machine uses for storing a non-separate sign
will not cause strange results when you use a machine that uses a different con-
vention.

 Copyright IBM Corp. 1983, 1998 73

 Coding Your Program

Extra Positions for Displayable Symbols (Numeric Editing)
You can also define numeric items with certain editing symbols (such as decimal
points, commas, and dollar signs) to make the data easier to read and understand
when displayed or printed on reports. For example:

�5 Price Pic 9(5)v99.

�5 Edited-price Pic $zz,zz9v99.
...

Move Price To Edited-price

 Display Edited-price

If the contents of Price were 0150099 (representing the value 1,500.99), then $
1,5��.99 would be displayed after the code is run.

How to Use Numeric-Edited Items as Numbers
Numeric-edited items are classified as alphanumeric data items, not as numbers.
Therefore, they cannot be operands in arithmetic expressions or ADD, SUBTRACT,
MULTIPLY, DIVIDE, and COMPUTE statements.

Numeric-edited items can be moved to numeric and numeric-edited items. In the
following example, the numeric-edited item is de-edited and its numeric value is
moved to the numeric data item.

Move Edited-price to Price

Display Price

If these two statements were to immediately follow the statements shown in the
previous example, then Price would be displayed as 0150099, representing the
value 1,500.99.

For complete information on the data descriptions for numeric data, refer to
COBOL/VSE Language Reference.

Computational Data Representation (USAGE Clause)
Control how the computer internally stores your numeric data items by coding the
USAGE clause in your data description entries. The numeric data you use in your
program will be one of the formats available with COBOL:

External decimal (USAGE DISPLAY)
External floating-point (USAGE DISPLAY)
Internal decimal (USAGE PACKED-DECIMAL)
Binary (USAGE BINARY)
Internal floating-point (USAGE COMP-1, USAGE COMP-2)

COMP and COMP-4 are synonymous with BINARY, and COMP-3 is synonymous
with PACKED-DECIMAL.

Regardless of what USAGE clause you use to control the computer's internal repre-
sentation of the value, you use the same PICTURE clause conventions and
decimal value in the VALUE clause except for floating point data.

74 COBOL/VSE Programming Guide

 Coding Your Program

External Decimal (USAGE DISPLAY) Items
When you code USAGE DISPLAY or omit the USAGE clause, each position (or
byte) of storage contains one decimal digit. This corresponds to the format used
for printing or displaying output, meaning the items are stored in displayable form.

What USAGE DISPLAY Items Are For
External decimal items are primarily intended for receiving and sending numbers
between your program and files, terminals, and printers. However, it is also accept-
able to use external decimal items as operands and receivers in your program's
arithmetic processing, and it is often convenient to program this way.

Should You Use Them for Arithmetic
If your program performs a lot of intensive arithmetic and efficiency is a high pri-
ority, you might want to use one of COBOL's computational numeric data types for
the data items used in the arithmetic.

The compiler has to automatically convert displayable numbers to the internal rep-
resentation of their numeric value before they can be used in arithmetic operations.
Therefore, it is often more efficient to define your data items as computational items
to begin with, rather than as DISPLAY items. For example:

�5 Count-x Pic s9v9(5) Usage Comp Value 3.14159.

External Floating-Point (USAGE DISPLAY) Items
Displayable numbers coded in a floating-point format are called external floating-
point items. Like external decimal items, you define external floating-point items
explicitly with USAGE DISPLAY or implicitly by omitting the USAGE clause.

In the following example, Compute-Result is implicitly defined as an external
floating-point item. Each byte of storage contains one character (except for V).

�5 Compute-Result Pic -9v9(9)E-99.

The VALUE clause is not allowed in the data description for external floating-point
items. Also, the minus signs (-) do not mean that the mantissa and exponent will
always be negative numbers, but that when displayed the sign will appear as a
blank for positive and a minus sign for negative. If a plus sign (+) were used,
positive would be displayed as a plus sign and negative as a minus sign.

Just as with external decimal numbers, external floating-point numbers have to be
converted (automatically by the compiler) to an internal representation of the
numeric value before they can be operated on. External floating-point numbers are
always converted to internal long floating-point format.

 Binary Items
BINARY, COMP, and COMP-4 are synonyms on all platforms.

Binary format occupies 2, 4, or 8 bytes of storage and is handled for arithmetic
purposes as a fixed-point number with the leftmost bit being the operational sign.
For byte-reversed binary data, the sign bit is the leftmost bit of the rightmost byte.

 Chapter 6. Numbers and Arithmetic 75

 Coding Your Program

How Much Storage BINARY Occupies
A PICTURE description with 4 or fewer decimal digits occupies 2 bytes; with 5 to 9
decimal digits, 4 bytes; with 10 to 18 decimal digits, 8 bytes.

Binary items with 9 or more digits require more handling by the compiler. Testing
them for the SIZE ERROR condition and rounding is more cumbersome than with
other types.

Why Use Binary
Binary items can, for example, contain subscripts, switches, and arithmetic oper-
ands or results.

However, you might want to use packed decimal format instead of binary because:

� Binary format might not be as well suited for decimal alignment as packed
decimal format.

� Binary format is not converted to and from DISPLAY format as easily as
packed decimal format.

Truncation of Binary Data (TRUNC Compiler Option)
Use the TRUNC(STD|OPT|BIN) compiler option (described in “TRUNC” on
page 252) to indicate how binary data (BINARY, COMP, and COMP-4) is trun-
cated.

Packed Decimal (PACKED-DECIMAL or COMP-3) Items
Packed decimal format occupies 1 byte of storage for every two decimal digits you
code in the PICTURE description, except that the right-most byte contains only 1
digit and the sign. This format is most efficiently used when you code an odd
number of digits in the PICTURE description, so that the left-most byte is fully used.
Packed decimal format is handled as a fixed-point number for arithmetic purposes.

Why Use Packed Decimal
� Packed decimal format requires less storage per digit than DISPLAY format

requires.

� Packed decimal format might be better suited for decimal alignment than binary
format.

� Packed decimal format is converted to and from DISPLAY format more easily
than binary format.

� Packed decimal format can, for example, contain arithmetic operands or results.

Floating-Point (COMP-1 and COMP-2) Items
COMP-1 refers to short (single-precision) floating-point format, and COMP-2 refers
to long (double-precision) floating-point format, which occupy 4 and 8 bytes of
storage, respectively. The leftmost bit contains the sign; the next seven bits
contain the exponent; the remaining 3 or 7 bytes contain the mantissa.

COMP-1 and COMP-2 data items are stored in System/390 hexadecimal format.

A PICTURE clause is not allowed in the data description of floating-point data
items, but you can provide an initial value using a floating-point literal in the VALUE
clause:

76 COBOL/VSE Programming Guide

 Coding Your Program

�5 Compute-result Usage Comp-1 Value �6.23E-24.

The characteristics of conversions between floating-point format and other number
formats are discussed in the next section, “Data Format Conversions” on page 78.

Floating-point format is well suited for containing arithmetic operands and results
and for maintaining the highest level of accuracy in arithmetic.

For complete information on the data descriptions for numeric data, see
COBOL/VSE Language Reference.

Internal Representation of Numeric Items
Figure 18 shows how the different numeric data types are represented internally in
program storage.

Figure 18. Internal Representation of Numeric Items

Numeric
Type

PICTURE and USAGE and
Optional SIGN Clause Value Internal Representation

External
Decimal

PIC S9999 DISPLAY + 1234

- 1234

 1234

F1 F2 F3 C4

F1 F2 F3 D4

F1 F2 F3 C4

PIC 9999 DISPLAY 1234 F1 F2 F3 F4

PIC S9999 DISPLAY

SIGN LEADING

+ 1234

- 1234

C1 F2 F3 F4

D1 F2 F3 F4

PIC S9999 DISPLAY

SIGN LEADING SEPARATE

PIC S9999 DISPLAY

SIGN TRAILING SEPARATE

+ 1234

- 1234

+ 1234

- 1234

4E F1 F2 F3 F4

6� F1 F2 F3 F4

F1 F2 F3 F4 4E

F1 F2 F3 F4 6�

Binary PIC S9999 BINARY

 COMP

 COMP-4

+ 1234

- 1234

 �4 D2

 FB 2E

PIC 9999 BINARY

 COMP

 COMP-4

+ 1234 �4 D2

Internal
Decimal

PIC S9999 PACKED-DECIMAL

 COMP-3

+ 1234

- 1234

�1 23 4C

�1 23 4D

PIC 9999 PACKED-DECIMAL

 COMP-3

+ 1234

- 1234

�1 23 4F

�1 23 4F

Internal
Floating
Point

COMP-1 + 1234 43 4D 2� ��

Internal
Floating
Point

COMP-2 + 1234

- 1234

43 4D 2� �� �� �� �� ��

C3 4D 2� �� �� �� �� ��

External
Floating
Point

PIC +9(2).9(2)E+99 DISPLAY + 1234 4E F1 F2 4B F3

F4 C5 4E F� F2

- 1234 6� F1 F2 4B F3

F4 C5 4E F� F2

 Chapter 6. Numbers and Arithmetic 77

 Coding Your Program

Data Format Conversions
When the code in your program involves the interaction of items with different data
formats, the compiler converts these items:

� Temporarily, for comparisons and arithmetic operations.
� Permanently, for assignment to the receiver in a MOVE or COMPUTE state-

ment.

What Conversion Means
A conversion is actually a move of a value from one data item to another. The
compiler performs any conversions that are required during the execution of arith-
metic and comparisons with the same rules that are used for MOVE and
COMPUTE statements. The rules for moves are defined in COBOL/VSE Language
Reference.

When possible, the compiler performs the move to preserve the numeric “value” as
opposed to a direct digit-for-digit move. (For more information on truncation and
predicting the loss of significant digits, refer to Appendix B, “Intermediate Results
and Arithmetic Precision” on page 401.)

Conversion Takes Time
Conversion generally requires additional storage and processing time because data
is moved to an internal work area and converted before the operation is performed.
The results might also have to be moved back into a work area and converted
again.

Conversions and Precision
Conversions between fixed-point data formats (external decimal, packed decimal,
and binary) are completed without loss of precision, as long as the target field can
contain all the digits of the source operand.

Conversions Where Loss of Precision Is Possible
A loss of precision is possible in conversions between fixed-point data formats and
floating-point data formats (short floating-point, long floating-point, and external
floating-point). These conversions happen during arithmetic evaluations that have a
mixture of both fixed-point and floating-point operands. (Because fixed-point and
external floating-point items both have decimal characteristics, reference to fixed-
point items in the following examples includes external floating-point items as well,
unless stated otherwise.)

When converting from fixed-point to internal floating-point format, fixed-point
numbers in base 10 are converted to the numbering system used internally, base
16.

Although the compiler converts short form to long form for comparisons, zeros are
used for padding the short number.

When a USAGE COMP-1 data item is moved to a fixed-point data item with more
than 9 digits, the fixed-point data item will receive only 9 significant digits, and the
remaining digits will be zero.

78 COBOL/VSE Programming Guide

 Coding Your Program

Conversions that Preserve Precision: If a fixed-point data item with 6 or fewer
digits is moved to a USAGE COMP-1 data item and then returned to the fixed-point
data item, the original value is recovered.

If a USAGE COMP-1 data item is moved to a fixed-point data item of 9 or more
digits and then returned to the USAGE COMP-1 data item, the original value is
recovered.

If a fixed-point data item with 15 or fewer digits is moved to a USAGE COMP-2
data item and then returned to the fixed-point data item, the original value is recov-
ered.

If a USAGE COMP-2 data item is moved to a fixed-point (not external floating-
point) data item of 18 digits and then returned to the USAGE COMP-2 data item,
the original value is recovered.

Conversions that Result In Rounding: If a USAGE COMP-1 data item, a
USAGE COMP-2 data item, an external floating-point data item, or a floating-point
literal is moved to a fixed-point data item, rounding occurs in the low-order position
of the target data item.

If a USAGE COMP-2 data item is moved to a USAGE COMP-1 data item, rounding
occurs in the low-order position of the target data item.

If a fixed-point data item is moved to an external floating-point data item where the
PICTURE of the fixed-point data item contains more digit positions than the
PICTURE of the external floating-point data item, rounding occurs in the low-order
position of the target data item.

Sign Representation and Processing
Sign representation affects the processing and interaction of your numeric data.

Given X'sd', where s is the sign representation and d represents the digit, the
valid sign representations for external decimal (USAGE DISPLAY without the SIGN
IS SEPARATE clause) are :

Positive: C, A, E, and F.

Negative: D and B.

NUMPROC Compiler Option
The COBOL NUMPROC compiler option affects sign processing for external
decimal and internal decimal data. NUMPROC has no effect on binary data or
floating-point data. For additional details on the NUMPROC compiler option, see its
description under “NUMPROC” on page 243.

 NUMPROC(PFD)
Given X'sd', where s is the sign representation and d represents the digit, when
you use NUMPROC(PFD), the compiler assumes that the sign in your data is one
of three preferred signs:

Signed positive or 0: X'C'

Signed negative: X'D'

 Chapter 6. Numbers and Arithmetic 79

 Coding Your Program

Unsigned or alphanumeric: X'F'

Based on this assumption, the compiler uses whatever sign it is given to process
data. The preferred sign is generated only where necessary (for example, when
unsigned data is moved to signed data). Using the NUMPROC(PFD) option can
save processing time, but you must be sure you use preferred signs with your data
for correct processing.

 NUMPROC(NOPFD)
When the NUMPROC(NOPFD) compiler option is in effect, the compiler accepts
any valid sign configuration. When processing is done with DISPLAY or
PACKED-DECIMAL data, the sign in the sending item is converted to the preferred
sign before the operation is performed. The preferred sign is also generated in the
receiver. NUMPROC(NOPFD) is less efficient than NUMPROC(PFD), but it should
be used whenever data that does not use preferred signs might exist.

If an unsigned, external decimal sender is moved to an alphanumeric receiver, the
sign is unchanged (even with NUMPROC(NOPFD)).

 NUMPROC(MIG)
When NUMPROC(MIG) is in effect, the compiler generates code that is similar to
that produced by DOS/VS COBOL. This option can be especially useful as a tool
when migrating DOS/VS COBOL programs to COBOL/VSE.

Checking for Incompatible Data (Numeric Class Test)
The compiler assumes that the values you supply for a data item are valid for the
item's PICTURE and USAGE clauses and assigns the value you supply without
checking for validity. When an item is given a value that is incompatible with its
data description, references to that item in the PROCEDURE DIVISION will be
undefined and your results will be unpredictable.

Frequently, values are passed into your program and assigned to items that have
incompatible data descriptions for those values. For example, non-numeric data
might be moved or passed into a field in your program that is defined as a numeric
item. Or, perhaps a signed number is passed into a field in your program that is
defined as an unsigned number. In either case, these fields contain invalid data.
Ensure that the contents of a data item conforms to its PICTURE and USAGE
clauses before using the data item in any further processing steps.

How to Do a Numeric Class Test
You can use the numeric class test to perform data validation. For example:

Linkage Section.

�1 Count-x Pic 999.
...

Procedure Division Using Count-x.

If Count-x is numeric then display "Data is good"
...

The numeric class test checks the contents of a data item against a set of values
that are valid for the particular PICTURE and USAGE of the data item. For
example, a packed decimal item would be checked for hexadecimal values X'0'

80 COBOL/VSE Programming Guide

 Coding Your Program

through X'9' in the digit positions and for a valid sign value in the sign position
(whether separate or non-separate).

Interaction of NUMPROC and NUMCLS Options
The numeric class test is affected by the NUMPROC compiler option and the
NUMCLS option (which is set at installation time). For information on the
NUMPROC compiler option, refer to its description under “NUMPROC” on
page 243. To determine the NUMCLS setting used at your installation, consult
your system programmer.

Figure 19 and Figure 20 show the values that the compiler considers valid for the
sign. Only external decimal, external floating-point, and packed decimal items are
checked for sign, because binary and internal floating-point items use an opera-
tional sign that is always valid.

If NUMCLS(ALT) is in effect at your installation, see Figure 20.

Figure 19. Sign Representation with NUMCLS(PRIM)

NUMPROC(NOPFD) NUMPROC(PFD) NUMPROC(MIG)

Signed C, D, F C, D, +0 (positive zero) C, D, F

Unsigned F F F

Separate Sign +, - +, -, +0 (positive zero) +, -

Figure 20. Sign Representation with NUMCLS(ALT)

NUMPROC(NOPFD) NUMPROC(PFD) NUMPROC(MIG)

Signed A to F C, D, +0 (positive zero) A to F

Unsigned F F F

Separate Sign +, - +, -, +0 (positive zero) +, -

 Performing Arithmetic
COBOL provides various language features to perform arithmetic:

� ADD, SUBTRACT, MULTIPLY, DIVIDE, and COMPUTE statements (discussed
in “COMPUTE and Other Arithmetic Statements” on page 82).

� Arithmetic expressions (discussed in “Arithmetic Expressions” on page 82).

� Intrinsic functions (discussed in “Numeric Intrinsic Functions” on page 83).

� LE/VSE callable services.

Callable services are introduced in “LE/VSE Callable Services” on page 86
and discussed more fully in LE/VSE Programming Reference.

For the complete details of syntax and usage for COBOL language constructs, refer
to COBOL/VSE Language Reference.

 Chapter 6. Numbers and Arithmetic 81

 Coding Your Program

COMPUTE and Other Arithmetic Statements
The general practice is to use the COMPUTE statement for most arithmetic evalu-
ations rather than ADD, SUBTRACT, MULTIPLY, and DIVIDE statements. This is
because one COMPUTE statement can often be coded instead of several individual
statements.

The COMPUTE statement assigns the result of an arithmetic expression to a data
item:

Compute z = a + b / c �� d - e

or to many data items:

Compute x y z = a + b / c �� d - e

When to Use Other Arithmetic Statements
Some arithmetic might be more intuitive using the other arithmetic statements. For
example:

Add 1 To Increment

instead of:

Compute Increment = Increment + 1

Or,

Subtract Overdraft From Balance

instead of:

Compute Balance = Balance - Overdraft

Or,

Add 1 To Increment-1, Increment-2, Increment-3

instead of:

Compute Increment-1 = Increment-1 + 1

Compute Increment-2 = Increment-2 + 1

Compute Increment-3 = Increment-3 + 1

You might also prefer to use the DIVIDE statement (with its REMAINDER phrase)
for division in which you want to process a remainder. The REM intrinsic function
also provides the ability to process a remainder. For an example of the REM func-
tion, see “Mathematics” on page 86.

 Arithmetic Expressions
In the examples of COMPUTE shown above, everything to the right of the equal
sign represents an arithmetic expression. Arithmetic expressions can consist of a
single numeric literal, a single numeric data item or a single intrinsic function refer-
ence. They can also consist of several of these items connected by arithmetic
operators. These operators are evaluated in a hierarchic order:

82 COBOL/VSE Programming Guide

 Coding Your Program

Operators at the same level are evaluated from left to right; however, you can use
parentheses with these operators to change the order in which they are evaluated.
Expressions in parentheses are evaluated before any of the individual operators are
evaluated. Parentheses, necessary or not, make your program easier to read.

In addition to using arithmetic expressions in COMPUTE statements, you can also
use them in other places where numeric data items are allowed. For example, you
can use arithmetic expressions as comparands in relation conditions:

If (a + b) > (c - d + 5) Then...

Figure 21. Operator Evaluation

Operator Meaning Order of Evaluation

Unary + or - Algebraic Sign First

** Exponentiation Second

/ or * Division or multiplication Third

Binary + or - Addition or subtraction Last

Numeric Intrinsic Functions
Intrinsic functions can return an alphanumeric or numeric value.

Numeric intrinsic functions:

� Return a signed numeric value.

� Are considered to be temporary numeric data items.

� Can be used only in the places in the language syntax where expressions are
allowed.

� Can save you time because you don't have to provide the arithmetic for the
many common types of calculations that these functions cover.

For more information on the practical application of intrinsic functions, including
examples of their usage, refer to “Intrinsic Function Examples” on page 84.

Many of the capabilities of intrinsic functions are also provided by LE/VSE callable
services. For a comparison of the two, see “LE/VSE Callable Services” on
page 86.

Types of Numeric Functions
Numeric functions are classified into these categories:

Integer Those that return an integer

Floating-Point Those that return a long floating-point value

Mixed Those that return an integer, a long floating-point value, or a
fixed-point number with decimal places, depending on the argu-
ments

The numeric functions available in COBOL under these categories are described in
COBOL/VSE Language Reference.

 Chapter 6. Numbers and Arithmetic 83

 Coding Your Program

Nesting Functions and Arithmetic Expressions
Numeric functions can be nested; you can reference one function as the argument
of another. A nested function is evaluated independently of the outer function,
except when determining whether a mixed function should be evaluated with fixed-
point or floating-point procedures.

Because numeric functions and arithmetic expressions hold similar status syntac-
tically speaking, you can also nest an arithmetic expression as an argument to a
numeric function:

Compute x = Function Sum(a b (c / d))

In this example, there are only three function arguments: a, b, and the arithmetic
expression (c / d).

ALL Subscripting and Special Registers
Two other useful features of intrinsic functions are the ALL subscript and special
registers:

� You can reference all the elements of an array as function arguments by using
the ALL subscript. This feature is used with tables, and examples of its use
are shown under “Processing Table Items (Intrinsic Functions)” on page 113.

� The integer-type special registers are allowed as arguments wherever integer
arguments are allowed.

Intrinsic Function Examples
You can use intrinsic functions to perform several different kinds of arithmetic, as
outlined in Figure 22.

Figure 22. Types of Arithmetic that Numeric Intrinsic Functions Handle

Number Han-
dling Date/Time Finance Mathematics Statistics

LENGTH
MAX
MIN
NUMVAL
NUMVAL-C
ORD-MAX
ORD-MIN

CURRENT-DATE
DATE-OF-INTEGER
DATE-TO-YYYYMMDD
DAY-OF-INTEGER
DAY-TO-YYYYDDD
INTEGER-OF-DATE
INTEGER-OF-DAY
WHEN-COMPILED
YEAR-TO-YYYY
YEARWINDOW

ANNUITY
PRESENT-VALUE

ACOS
ASIN
ATAN
COS
FACTORIAL
INTEGER
INTEGER-PART
LOG
LOG10
MOD
REM
SIN
SQRT
SUM
TAN

MEAN
MEDIAN
MIDRANGE
RANDOM
RANGE
STANDARD-DEVIATION
VARIANCE

The following examples and accompanying explanations show intrinsic functions in
each of the categories listed in the preceding table.

General Number-Handling: Suppose you want to find the maximum value of two
prices (represented as alphanumeric items with dollar signs), put this value into a
numeric field in an output record, and determine the length of the output record.
You could use NUMVAL-C (a function that returns the numeric value of an alphanu-
meric string) and the MAX function to do this:

84 COBOL/VSE Programming Guide

 Coding Your Program

�1 X Pic 9(2).

�1 Price1 Pic x(8) Value "$8���".

�1 Price2 Pic x(8) Value "$2���.

�1 Output-Record.

 �5 Product-Name Pic x(2�).

 �5 Product-Number Pic 9(9).

 �5 Product-Price Pic 9(6).
 . . .

Procedure Division.

Compute Product-Price =

Function Max (Function Numval-C(Price1) Function Numval-C(Price2))

Compute X = Function Length(Output-Record)

Additionally, to ensure that the contents in Product-Name are in uppercase letters,
you could use the following statement:

Move Function Upper-case(Product-Name) to Product-Name

Date/Time: The following example shows how to calculate a due date that is 90
days from today. The first eight characters returned by the CURRENT-DATE func-
tion represent the date in a 4-digit year, 2-digit month, and 2-digit day format
(YYYYMMDD). In the example, this date is converted to its integer value. Then 90
is added to this value, and the integer is converted back to the YYYYMMDD format.

�1 YYYYMMDD Pic 9(8).

�1 Integer-Form Pic S9(9).
...

Move Function Current-Date(1:8) to YYYYMMDD

Compute Integer-Form = Function Integer-of-Date(YYYYMMDD)

Add 9� to Integer-Form

Compute YYYYMMDD = Function Date-of-Integer(Integer-Form)

Display 'Due Date: ' YYYYMMDD

Finance: Business investment decisions frequently require computing the present
value of expected future cash inflows to evaluate the profitability of a planned
investment. The present value of money is its value today. The present value of
an amount that you expect to receive at a given time in the future is that amount
which if invested today at a given interest rate would accumulate to that future
amount.

For example, assume a proposed investment of $1,000 produces a payment
stream of $100, $200, and $300 over the next three years, one payment per year
respectively. The following COBOL statements show how to calculate the present
value of those cash inflows at a 10% interest rate:

�1 Series-Amt1 Pic 9(9)V99 Value 1��.

�1 Series-Amt2 Pic 9(9)V99 Value 2��.

�1 Series-Amt3 Pic 9(9)V99 Value 3��.

�1 Discount-Rate Pic S9(2)V9(6) Value .1�.

�1 Todays-Value Pic 9(9)V99.
...

Compute Todays-Value =

 Function

Present-Value(Discount-Rate Series-Amt1 Series-Amt2 Series-Amt3)

The ANNUITY function can be used in business problems that require you to deter-
mine the amount of an installment payment (annuity) necessary to repay the prin-
cipal and interest of a loan. The series of payments is characterized by an equal

 Chapter 6. Numbers and Arithmetic 85

 Coding Your Program

amount each period, periods of equal length, and an equal interest rate each
period. The following example shows how you could calculate the monthly
payment required to repay a $15,000 loan at 12% annual interest in three years (36
monthly payments, interest per month = .12/12):

�1 Loan Pic 9(9)V99.

�1 Payment Pic 9(9)V99.

�1 Interest Pic 9(9)V99.

�1 Number-Periods Pic 99.
...

Compute Loan = 15���

Compute Interest = .12

Compute Number-Periods = 36

Compute Payment =

Loan � Function Annuity((Interest / 12) Number-Periods)

Mathematics: The following COBOL statement demonstrates how intrinsic func-
tions can be nested, how arguments can be arithmetic expressions, and how previ-
ously complex mathematical calculations can be simply performed:

Compute Z = Function Log(Function Sqrt (2 � X + 1)) + Function Rem(X 2)

Here, the remainder of dividing X by 2 is found with an intrinsic function instead of
using a DIVIDE statement with a REMAINDER clause.

Statistics: Intrinsic functions also make calculating statistical information on data
easier. Assume you are analyzing various city taxes and want to calculate the
mean, median, and range (the difference between the maximum and minimum
taxes):

�1 Tax-S Pic 99v999 value .�45.

�1 Tax-T Pic 99v999 value .�2.

�1 Tax-W Pic 99v999 value .�35.

�1 Tax-B Pic 99v999 value .�3.

�1 Ave-Tax Pic 99v999.

�1 Median-Tax Pic 99v999.

�1 Tax-Range Pic 99v999.
...

Compute Ave-Tax = Function Mean(Tax-S Tax-T Tax-W Tax-B)

Compute Median-Tax = Function Median(Tax-S Tax-T Tax-W Tax-B)

Compute Tax-Range = Function Range (Tax-S Tax-T Tax-W Tax-B)

LE/VSE Callable Services
Many of the capabilities of intrinsic functions are also provided by LE/VSE callable
services. LE/VSE callable services are a means of assigning results of arithmetic
to data items.

LE/VSE provides a set of callable services that include mathematical types of func-
tions (“Math-Oriented Callable Services and Intrinsic Functions” on page 87) and
date and time operations (“Date Callable Services and Intrinsic Functions” on
page 88). Some of these return the same results as corresponding COBOL
intrinsic functions, some produce slightly different results than the corresponding
intrinsic functions, and some provide services for which there is no corresponding
COBOL intrinsic function (see LE/VSE Programming Reference).

86 COBOL/VSE Programming Guide

 Coding Your Program

Math-Oriented Callable Services and Intrinsic Functions

Although these functions produce the same results, how you use intrinsic functions
and LE/VSE callable services differs. The rules for the data types required for
intrinsic function arguments are less restrictive. For numeric intrinsic functions, you
can use arguments that are of any numeric data type. When you invoke a LE/VSE
callable service with a CALL statement, you must ensure that the parameters are
defined with the numeric data types required by that particular service, generally
COMP-1 and COMP-2.

The error handling of intrinsic functions and LE/VSE callable services sometimes
differs. If you pass an explicit feedback token when calling the LE/VSE math ser-
vices, you must check the feedback code after the call and take explicit action to
deal with any errors. (However, if the feedback token is explicitly OMITTED, you
do not need to check the token after each call. Any errors will be automatically
signaled by LE/VSE.)

Figure 24 shows the numeric intrinsic function and the LE/VSE callable service that
return nonequivalent values.

Both the RANDOM intrinsic function and CEERAN0 service generate random
numbers between zero and one. However, because each uses its own algorithm,
RANDOM and CEERAN0 will produce different random numbers from the same
seed.

Figure 23. Same Numeric Results

COBOL
Intrinsic Function

LE/VSE
Callable Service

ACOS CEESDACS

ASIN CEESDASN

ATAN CEESDATN

COS CEESDCOS

LOG CEESDLOG

LOG10 CEESDLG1

REM CEESSMOD

SIN CEESDSIN

SQRT CEESDSQT

TAN CEESDTAN

Figure 24. Nonequivalent Numeric Results

COBOL
Intrinsic Function

LE/VSE
Callable Service

RANDOM CEERAN0

 Chapter 6. Numbers and Arithmetic 87

 Coding Your Program

Date Callable Services and Intrinsic Functions
Both the COBOL intrinsic functions and the LE/VSE date callable services are
based on the Gregorian calendar. However the starting dates can be different,
depending on the setting of the INTDATE compiler installation option. When the
IBM default setting of INTDATE(ANSI) is in effect, COBOL uses January 1, 1601 as
day 1. When INTDATE(LILIAN) is in effect, COBOL uses October 15, 1582 as day
1. LE/VSE always uses October 15, 1582 as day 1.

This means that if you set your installation default to INTDATE(LILIAN) you will get
equivalent results from COBOL intrinsic functions and LE/VSE callable date ser-
vices.

INTDATE(ANSI) in Effect

INTDATE(LILIAN) in Effect

Figure 25. Compatible Numeric Results with INTDATE(ANSI) in Effect

COBOL Intrinsic Function LE/VSE Callable Service

INTEGER-OF-DATE CEECBLDY

Figure 26. Incompatible Numeric Results with INTDATE(ANSI) in Effect

COBOL Intrinsic Function LE/VSE Callable Service

DATE-OF-INTEGER CEEDATE with picture_string YYYYMMDD

DAY-OF-INTEGER CEEDATE with picture_string YYYYDDD

INTEGER-OF-DATE CEEDAYS

Figure 27. Compatible Numeric Results with INTDATE(LILIAN) in Effect

COBOL Intrinsic Function LE/VSE Callable Service

DATE-OF-INTEGER CEEDATE with picture_string YYYYMMDD

DAY-OF-INTEGER CEEDATE with picture_string YYYYDDD

INTEGER-OF-DATE CEEDAYS

Figure 28. Incompatible Numeric Results with INTDATE(LILIAN) in Effect

COBOL Intrinsic Function LE/VSE Callable Service

INTEGER-OF-DATE CEECBLDY

Fixed-Point versus Floating-Point Arithmetic
Many statements in your program might involve arithmetic. For example, each of
the following COBOL statements requires some kind of arithmetic evaluation:

 � General arithmetic.

compute report-matrix-col = (emp-count �� .5) + 1

add report-matrix-min to report-matrix-max giving report-matrix-tot

� Expressions and functions.

compute report-matrix-col = function sqrt(emp-count) + 1

compute whole-hours = function integer-part((average-hours) + 1)

88 COBOL/VSE Programming Guide

 Coding Your Program

 � Arithmetic comparisons.

if report-matrix-col < function sqrt(emp-count) + 1
if whole-hours not = function integer-part((average-hours) + 1)

For each arithmetic evaluation in your program—whether it is a statement, an
intrinsic function, an expression, or some combination of these nested within each
other—how you code the arithmetic determines whether it will be floating-point or
fixed-point evaluation.

The following discussion explains when arithmetic and arithmetic comparisons are
evaluated in fixed-point and floating-point. For details on the precision of arithmetic
evaluations, see Appendix B, “Intermediate Results and Arithmetic Precision” on
page 401.

 Floating-Point Evaluations
In general, if your arithmetic evaluation has either of the characteristics listed
below, it will be evaluated by the compiler in floating-point arithmetic:

� An operand or result field is floating-point.

A data item is floating-point if you code it as a floating-point literal, or if you
define it as USAGE COMP-1, USAGE COMP-2, or as external floating-point
(USAGE DISPLAY with a floating-point PICTURE).

An operand that is a nested arithmetic expression or a reference to numeric
intrinsic function results in floating-point when:

– An argument in an arithmetic expression results in floating-point.
– The function is a floating-point function.
– The function is a mixed-function with one or more floating-point arguments.

� An exponent contains decimal places.

This is true if you use a literal that contains decimal places, give the item a
PICTURE containing decimal places, or use an arithmetic expression or func-
tion whose result has decimal places.

An arithmetic expression or numeric function yields a result with decimal places
if any operand or argument—excluding divisors and exponents—has decimal
places.

 Fixed-Point Evaluations
In general, if your arithmetic operation contains neither of the characteristics listed
above for floating-point, it will be evaluated by the compiler in fixed-point arithmetic.
In other words, your arithmetic evaluations will be handled by the compiler as fixed-
point only if all your operands are given in fixed-point, your result field is defined to
be fixed-point, and none of your exponents represent values with decimal places.
Nested arithmetic expression and function references must represent fixed-point
values.

 Chapter 6. Numbers and Arithmetic 89

 Coding Your Program

Arithmetic Comparisons (Relation Conditions)
If your arithmetic is a comparison (contains a relational operator), then the numeric
expressions being compared—whether they are data items, arithmetic expressions,
function references, or some combination of these—are really operands
(comparands) in the context of the entire evaluation. This is also true of abbrevi-
ated comparisons; although one comparand might not explicitly appear, both are
operands in the comparison. For example, in the following statement:

if (a + d) = (b + e) and c

there are two comparisons: (a + d) = (b + e) and (a + d) = c. Although (a + d)

does not explicitly appear in the second comparison, it is nevertheless an operand
in that comparison (and thus, evaluation of (a + d) is influenced by the attributes of
c).

Implicit Note: Implicit comparisons (no relational operator used) are not handled
as a unit—the two expressions being compared are treated separately as to
whether they will be evaluated in floating-point or fixed-point. In the following
example we actually have five arithmetic expressions that are evaluated inde-
pendent of one another's attributes, and then are compared to each other.

Thus, the rules outlined so far for determining whether your evaluation will be done
in fixed-point or floating-point arithmetic apply to your comparison statement as a
unit.

evaluate (a + d)

when (b + e) thru c

when (f / g) thru (h � i)
...

end-evaluate

Your comparison operation (and the evaluation of any arithmetic expressions
nested in your comparison) will be handled by the compiler as floating-point arith-
metic if either of your comparands is a floating-point value or resolves to a floating-
point value.

Your comparison operation (and the evaluation of any arithmetic expressions
nested in your comparison) will be handled by the compiler as fixed-point arithmetic
if both of your comparands are fixed-point values or resolve to fixed-point values.

Examples of Fixed-Point and Floating-Point Evaluations
For the examples shown on page 88, if you define the data items in the following
manner:

�1 employee-table.

 �5 emp-count pic 9(4).

�5 employee-record occurs 1 to 1��� times

depending on emp-count.

 1� hours pic +9(5)e+99.
...

�1 report-matrix-col pic 9(3).

�1 report-matrix-min pic 9(3).

�1 report-matrix-max pic 9(3).

�1 report-matrix-tot pic 9(3).

�1 average-hours pic 9(3)v9.

�1 whole-hours pic 9(4).

90 COBOL/VSE Programming Guide

 Currency Signs

� These evaluations would be done in floating-point arithmetic:

compute report-matrix-col = (emp-count �� .5) + 1

compute report-matrix-col = function sqrt(emp-count) + 1

if report-matrix-tot < function sqrt(emp-count) + 1

� These evaluations would be done in fixed-point arithmetic:

add report-matrix-min to report-matrix-max giving report-matrix-tot

compute report-matrix-max =

function max(report-matrix-max report-matrix-tot)

if whole-hours not = function integer-part((average-hours) + 1)

| Using Currency Signs
| Many programs need to process financial information and present that information
| to the user with the relevant currency signs in the output. With COBOL currency
| support, in addition to using symbols such as the dollar sign ($) to display financial
| output, you can:

| � Use currency signs of more than one character, for example, USD, DEM, EUR

| � Use more than one currency sign in a program

| � Use the euro sign established by the Economic and Monetary Union (EMU) as
| a currency sign, if your code page supports it for your printer or display unit

| This section describes these features, and gives examples of how you can use
| them.

| Specifying Currency Signs
| You use the CURRENCY SIGN clause to specify the symbols to be used for dis-
| playing financial information, and the picture characters that relate to those signs.
| In the following example, the picture character "$" indicates that the currency sign
| "$US" is to be used:

| Currency Sign is "$US" with Picture Symbol "$".
| .| .| .

| 77 Invoice-Amount Pic $$,$$9.99.
| .| .| .

| Display "Invoice amount is " Invoice-Amount.

| In this example, if Invoice-Amount contained 1500.00, the display output would be:

| Invoice amount is $US1,5��.��

| Using Hex Literals for Currency Signs
| You can use a hexadecimal literal to indicate the currency sign value. This may be
| useful when the data entry method for the source program does not allow the entry
| of the intended character(s) easily. The following example shows the hex value
| used as the the currency sign:

| Currency Sign X'9F' with Picture Symbol 'U'.
| .| .| .

| �1 Deposit-Amount Pic UUUUU9.99.

 Chapter 6. Numbers and Arithmetic 91

 Currency Signs

| Multiple Currency Signs
| By using more than one CURRENCY SIGN clause in your program, you can allow
| for multiple currency signs to be displayed. The following example shows how
| values can be displayed in both Euro currency (as EUR) and French francs (as
| FRF):

| IDENTIFICATION DIVISION.

| PROGRAM-ID. EuroExample.

| Environment Division.

| Configuration Section.

| Special-Names.

| Currency Sign is "FRF " with Picture Symbol "F"

| Currency Sign is "EUR " with Picture Symbol "U".

| Data Division.

| Working-Storage Section.

| �1 Deposit-in-Euro Pic S9999V99 Value 8���.��.

| �1 Deposit-in-FRF Pic S99999V99.

| �1 Deposit-Report.

| �2 Report-in-Franc Pic -FFFFF9.99.

| �2 Report-in-Euro Pic -UUUUU9.99.

| �1 EUR-to-FRF-Conv-Rate Pic 9V99999 Value 6.789�1.

| PROCEDURE DIVISION.

| Report-Deposit-in-FRF-and-EUR.

| Move Deposit-in-Euro to Report-in-Euro

| Compute Deposit-in-FRF Rounded

| = Deposit-in-Euro � EUR-to-FRF-Conv-Rate

| on Size Error

| Perform Conversion-Error

| not on Size Error

| Move Deposit-in-FRF to Report-in-Franc

| Display "Deposit in Euro = " Report-in-Euro

| Display "Deposit in Franc = " Report-in-Franc

| End-Compute

| Goback.

| Conversion-Error.

| Display "Conversion error from EUR to FRF"

| Display "Euro value: " Report-in-Euro.

| The above example will produce the following display output:

| Deposit in Euro = EUR 8���.��

| Deposit in Franc = FRF 54312.�8

| Note that the exchange rate used in this example to perform the currency conver-
| sion is for illustrative purposes only; it is not the official exchange rate.

| Euro Currency Sign
| You can use the euro sign established by the Economic and Monetary Union
| (EMU) as a currency sign if your code page supports it for your printer or display
| unit.

| However, if there is no corresponding character on your keyboard, you will need to
| specify it as a hexadecimal value in the CURRENCY SIGN clause (for details, see
| “Using Hex Literals for Currency Signs” on page 91). The hexadecimal value for
| the euro sign is either X'9F' or X'5A', depending on the code page in use.

| Figure 29 shows the code pages that support the euro sign as code point X'9F'.

92 COBOL/VSE Programming Guide

 Currency Signs

| Figure 30 shows the code pages that support the euro sign as code point X'5A'.

| Figure 29. Code Pages with Euro Sign as Code Point X'9F'

| Code Page| Applicable Countries
| Modified
| From

| IBM-1140| USA, Canada, Netherlands, Portugal, Australia, New
| Zealand
| IBM-037

| IBM-1141| Austria, Germany| IBM-273

| IBM-1144| Italy| IBM-280

| IBM-1145| Spain, Latin America - Spanish| IBM-284

| IBM-1146| UK| IBM-285

| IBM-1147| France| IBM-297

| IBM-1148| Belgium, Canada, Switzerland| IBM-500

| IBM-1149| Iceland| IBM-871

| Figure 30. Code Pages with Euro Sign as Code Point X'5A'

| Code Page| Applicable Countries
| Modified
| From

| IBM-1142| Denmark, Norway| IBM-277

| IBM-1143| Finland, Sweden| IBM-278

 Chapter 6. Numbers and Arithmetic 93

Chapter 7. Handling Tables (Arrays)

A table is a collection of data items that have the same description. It is the
COBOL equivalent of an array of elements. This chapter explains the concepts
and coding techniques necessary for defining, referencing, initializing, searching,
and processing table items, including both fixed-length and variable-length items.

Defining a Table (OCCURS Clause)
Use the COBOL OCCURS clause in the Data Division entry to define a table. The
OCCURS clause eliminates the need for separate entries for repeated data items; it
also supplies the information necessary for the use of subscripts or indexes. For
more information on the format of the OCCURS clause, refer to COBOL/VSE Lan-
guage Reference.

Give the table a group name, then define a subordinate item (the table element)
that is to be repeated n times:

 �1 table-name

�5 element-name OCCURS n TIMES.

 .

. (subordinate items of the table element may follow)

 .

 .

While the table element has a collective name, the individual occurrences do not
have unique data-names. To refer to them, specify the data-name of the table
element, together with the occurrence number of the wanted item within the
element. The occurrence number is called a subscript, and the technique of sup-
plying the occurrence number of individual table elements is called subscripting.
A related technique, called subscripting using index-names (indexing) is also
available for table references.

A subscript indicates the position of an entry. If you had a one-dimensional table
called YEAR-TABLE that contained the 12 months (January through December),
the subscript for January would be 1. The notation for March would be
YEAR-TABLE (3). See “Subscripting” on page 96.

An index is a symbol used to locate an item in a table. An index differs from a
subscript in that an index is a value to be added to the address of a table to locate
an item (the displacement from the beginning of the table). See “Subscripting
Using Index-Names (Indexing)” on page 97.

The following figures show how to code tables:

A One-Dimensional Table—Figure 31 on page 95
A Two-Dimensional Table—Figure 32 on page 95
A Three-Dimensional Table—Figure 33 on page 96

For all the tables, the table element definition (which includes the OCCURS clause)
is subordinate to the group item that contains the table. Remember that the
OCCURS clause cannot appear in a level-01 description.

Tables of up to seven dimensions may be defined using this same method.

94 Copyright IBM Corp. 1983, 1998

 One Dimension
To create a one-dimensional table, use one OCCURS clause. For example:

SAMPLE-TABLE-ONE

COBOL Code Graphic Representation

10 TABLE-ITEM-1 PIC X(2).
10 TABLE-ITEM-2 PIC X(1).

05 TABLE-COLUMN OCCURS 3 TIMES.
01 SAMPLE-TABLE-ONE.

Figure 31. Coding a One-Dimensional Table

Sample-Table-One is the group item that contains the table. Table-Column names
the table element of a one-dimensional table that occurs 3 times.

 Two Dimensions
To create tables of more than one dimension, use nested OCCURS clauses. That
is, create a table of tables.

To define a two-dimensional table, define a one-dimensional table within each
occurrence of another one-dimensional table. For example:

Graphic Representation

SAMPLE-TABLE-TWO

COBOL Code

05 TABLE-ROW OCCURS 2 TIMES.
01 SAMPLE-TABLE-TWO.

10 TABLE-COLUMN OCCURS 3 TIMES.
15 TABLE-ITEM-1 PIC X(2).
15 TABLE-ITEM-2 PIC X(1).

Figure 32. Coding a Two-Dimensional Table

Sample-Table-Two is the name of a two-dimensional table. Table-Row is an
element of a one-dimensional table that occurs 2 times. Table-Column is an
element of a two-dimensional table that occurs 3 times within each occurrence of
Table-Row.

 Three Dimensions
To create a three-dimensional table, define a one-dimensional table within each
occurrence of another one-dimensional table, which is itself contained within each
occurrence of another one-dimensional table. For example:

 Chapter 7. Handling Tables (Arrays) 95

COBOL Code
Graphic Representation

SAMPLE-TABLE-THREE

01 SAMPLE-TABLE-THREE.
05 TABLE-DEPTH OCCURS 2 TIMES.

10 TABLE-ROW OCCURS 2 TIMES.
15 TABLE-COLUMN OCCURS 3 TIMES.

20 TABLE-ITEM-1 PIC X(2).
20 TABLE-ITEM-2 PIC X(1).

Figure 33. Coding a Three-Dimensional Table

In Sample-Table-Three, Table-Depth is an element of a one-dimensional table that
occurs 2 times. Table-Row is an element of a two-dimensional table that occurs 2
times within each occurrence of Table-Depth. Table-Column is an element of a
three-dimensional table that occurs 3 times within each occurrence of Table-Row.

Referring to an Item in a Table
A table element has a collective name, but the individual occurrences within it do
not have unique data-names. To refer to them, use the data-name of the table
element, together with the occurrence number, called a subscript, of the desired
item within the element.

The technique of supplying the occurrence number of individual table elements is
called subscripting. A related technique, called subscripting using index-names
(indexing) is also available for table references.

An index is a symbol used to locate an item in a table. An index differs from a
subscript in that an index is a value to be added to the address of a table to locate
an item (the displacement from the beginning of the table). See page 97.

 Subscripting
A subscript is an integer that represents an occurrence number of a table element
within a table. The lowest possible subscript value is 1, which points to the first
occurrence of the table-element. In a one-dimensional table, the subscript corre-
sponds to the row number. In a two-dimensional table, the two subscripts corre-
spond to the column and row numbers. In a three-dimensional table, the three
subscripts correspond to the depth, column, and row numbers.

You can use a literal subscript or a data-name for a variable subscript.

A literal subscript must be an integer and must have a value of 1 or greater. For
example, valid literal subscript references to Sample-Table-Three are:

Table-Column (2, 2, 1)

Table-Column (2 2 1) (The spaces are required for subscripting.)

In the table reference Table-Column (2, 2, 1), the first value (2) refers to the
second occurrence within Table-Depth, the second value (2) refers to the second
occurrence within Table-Row, and the third value (1) refers to the first occurrence
within Table-Column.

96 COBOL/VSE Programming Guide

If a subscript is represented by a literal and the subscripted item is of fixed length,
then the compiler resolves the location of the subscripted data item within the table
at compile time.

The data-name used as a variable subscript must be described as an elementary
numeric integer data item. A valid, variable subscript reference to
Sample-Table-Two, (assuming that Sub1 and Sub2 are data-names containing posi-
tive integer values within the range of the table), is :

Table-Column (Sub1 Sub2)

If a subscript is represented by a data-name, the code generated for the application
resolves the location at run time. The most efficient format for data used as a
variable subscript is COMPUTATIONAL (COMP) with a PICTURE size of less than
five digits.

In relative subscripting, the subscript may be incremented or decremented by a
specified integer amount. Relative subscripting is valid with either literal or variable
subscripts. For example:

Table-Column (Sub1 - 1, Sub2 + 3)

indicates that the value in data-name Sub1 is to be decremented by one, and the
value in Sub2 is to be incremented by three.

Subscripting Using Index-Names (Indexing)
You can also refer to table elements by using an index. An index is a displacement
from the start of the table, based on the length of the table element. Use the index
in SET, SEARCH, SEARCH ALL, PERFORM VARYING, or relational condition
statements. An index-name must be initialized through a SET, PERFORM
VARYING, or SEARCH ALL statement before it is used in a table reference.

The compiler determines the index of an entry based on the following formula:

I = L * (S-1)

where:

I is the index value

L is the length of a table entry

S is the subscript (occurrence number) of an entry

You define the index-name for a table in the INDEXED BY clause of the OCCURS
clause in the table definition.

To be valid during execution, an index value must correspond to a table element
occurrence of not less than 1 nor greater than the highest permissible occurrence
number. This restriction applies to both direct and relative indexing.

In direct indexing, the index-name is in the form of a displacement. The value
contained in the index is then calculated as the occurrence number minus 1, multi-
plied by the length of the individual table entry. For example:

�5 Table-Item occurs 1� indexed by Inx-A PIC X(8).

 Chapter 7. Handling Tables (Arrays) 97

For the fifth occurrence of Table-Item, the binary value contained in Inx-A is (5 - 1)
* 8 = 32.

In relative indexing, the index-name is followed by a space, followed by a + or a -,
followed by another space, followed by an unsigned numeric literal. The literal is
considered to be an occurrence number, and is converted to an index value before
being added to or subtracted from the index-name. For example, if you specify
indexing for Sample-Table-Three as follows:

 �1 Sample-Table-Three

�5 Table-Depth occurs 3 times indexed by Inx-A.

1� Table-Column occurs 4 times indexed by Inx-B.

15 Table-Row occurs 8 times indexed by Inx-C PIC X(8).

then a relative indexing reference to

Table-Row (Inx-A + 1, Inx-B + 2, Inx-C - 1)

causes the following calculation of the displacement:

(contents of Inx-A) + (256 � 1)

+ (contents of Inx-B) + (64 � 2)

+ (contents of Inx-C) - (8 � 1)

This means:

Each occurrence of Table-Depth is 256 characters in length
Each occurrence of Table-Column is 64 characters in length
Each occurrence of Table-Row is 8 characters in length

One or more index references (direct or relative) may be specified together with
literal subscripts.

To compare two different occurrences of a table element, use a direct indexing ref-
erence together with a relative indexing reference, or use subscripting, which is
easier to read in your code.

An index can be shared among different tables. That is, you can use the index
defined with one table to index another table if both table descriptions are identical.
To be identical, the tables must have the same number of occurrences, as well as
occurrences of the same length.

You can use index data items to store index values. You can use the SET state-
ment to assign to an index the value that you stored in the index data item. The
index data item holds the physical displacement value. You define an index data
item with the USAGE IS INDEX clause.

For example, when you read records to load a variable-length table, you can store
the index value of the last record in a data item defined as USAGE IS INDEX.
Then, when you use the table index to look through or process the variable-length
table, you can test for the end of the table by comparing the current index value
with the index value of the last record you stored in the index data item.

Because you are comparing a physical displacement, you can use index data items
only in SEARCH and SET statements or for comparisons with indexes or other
index data items. You cannot use index data items as subscripts or indexes.

98 COBOL/VSE Programming Guide

Subscripting and Indexing Restrictions

1. A data-name must not be subscripted or indexed when it is being used as a
subscript or qualifier.

2. An index can be modified only by a PERFORM, SEARCH, or SET statement.

3. When a literal is used in a subscript, it must be a positive or unsigned integer.

4. When a literal is used in relative indexing or relative subscripting, it must be an
unsigned integer.

Referring to a Substring of a Table Item
Both reference modification and subscripting can be specified for a table element in
the same statement. For example, if you define a table like this:

 �1 ANY-TABLE.

 �5 TABLE-ELEMENT PIC X(1�)

OCCURS 3 TIMES

 VALUE "ABCDEFGHIJ".

you can change the third and fourth bytes in the first element of TABLE-ELEMENT
so that both bytes contain the value "?". This could be performed with the following
MOVE statement:

MOVE "??" TO TABLE-ELEMENT (1) (3 : 2)

This will move the value “??” into table element number 1, beginning at character
position 3, for a length of 2.

So, if ANY-TABLE looked like this before the change:

┌──────────┐

│ABCDEFGHIJ│

├──────────┤

│ABCDEFGHIJ│

├──────────┤

│ABCDEFGHIJ│

└──────────┘

ANY-TABLE would look like this after the change:

┌──────────┐

│AB??EFGHIJ│

├──────────┤

│ABCDEFGHIJ│

├──────────┤

│ABCDEFGHIJ│

└──────────┘

Putting Values in a Table
Use one of these methods to put values in a table:

� Load the table dynamically
� Initialize the table
� Assign values when you define the table

 Chapter 7. Handling Tables (Arrays) 99

Loading the Table Dynamically
If the initial values of your table are different with each execution of your program,
then the table can be defined without initial values, and the changed values can be
read into the table before your program refers to the table.

To load a table, use:

The PERFORM . . . VARYING statement
Either subscripting or indexing

See Figure 35 and Figure 36 on page 103.

When reading data to load your table:

1. Make sure that the data does not exceed the space allocated for the table.

2. If the data must be in sequence, check the sequence

3. If the data contains the subscript that determines its position in the table, check
the subscript for a valid range.

When testing for the end of a table, use a named value giving the item count rather
than using a literal. Then, if you make the table bigger, you need to change only
one value, instead of all references to a literal.

Initializing the Table (INITIALIZE Statement)
You can load your table with a value during execution with the INITIALIZE state-
ment. You can move:

� Spaces into alphabetic, alphanumeric, and alphanumeric-edited items
� Zeros into numeric and numeric-edited items
� A particular value

You can use INITIALIZE to move a value into each table element. For example, to
fill a table with 3s:

INITIALIZE TABLE-ONE REPLACING NUMERIC DATA BY 3.

You cannot use INITIALIZE for a variable-length table (one that was defined using
OCCURS DEPENDING ON).

Assigning Values When You Define the Table (VALUE Clause)
If your table contains stable values (for example a table that contains the days and
months of the year), it is useful to set specific values your table holds when you
define it.

Define static values in Working-Storage in one of three ways:

1. First describe the table storage area by simply arranging subordinate data
description entries, specifying the initial value of each subordinate entry in a
VALUE clause. Then code a REDEFINES entry to describe the table as a
record that contains a repeating subordinate entry, defined with an OCCURS
clause. For an example of this method, see Figure 34 on page 102.

This technique is practical only for small tables. To initialize larger tables, use
MOVE, PERFORM, or INITIALIZE statements, as described above.

100 COBOL/VSE Programming Guide

2. Code a level-01 record and assign to it, through the VALUE clause, the con-
tents of the whole table. Then, in a subordinate level data item, use an
OCCURS clause to define the individual table items. For example,

 �1 TABLE-ONE VALUE "1234".

�5 TABLE-TWO OCCURS 4 TIMES PIC X.

A VALUE clause can also be present on a group item which contains an
OCCURS clause with the DEPENDING ON option. In this case, each subordi-
nate structure that contains the DEPENDING ON option is initialized using the
maximum number of occurrences. If the table is defined with the DEPENDING
ON option, all the elements are initialized using the maximum defined value of
the DEPENDING ON object. In both cases, if the ODO object has a VALUE
clause, it is logically initialized after the ODO subject has been initialized. For
example:

 �1 TABLE-THREE VALUE "3ABCDE".

 �5 X PIC 9.

�5 Y OCCURS 5 TIMES

DEPENDING ON X PIC X.

causes Y(1) to be initialized to 'A', Y(2) to 'B',... Y(5) to 'E', and finally the
object of the ODO (X) is initialized to '3'. Any subsequent reference to
TABLE-THREE (such as DISPLAY) would refer to the first 3 elements, Y(1)
through Y(3). This behavior is different if the CMPR2 compiler option is in
effect. See COBOL/VSE Migration Guide for more details on VS COBOL II
Release 2 compatibility and migration.

3. You can use the VALUE clause on a table element to initialize the element to
the indicated value. As an example, this code:

 �1 T2.

 �5 T-OBJ PIC 9 VALUE 3.

�5 T OCCURS 5 TIMES DEPENDING ON T-OBJ.

 1� X PIC XX VALUE "AA".

 1� Y PIC 99 VALUE 19.

 1� Z PIC XX VALUE "BB".

causes all the X elements (1 through 5) to be initialized to 'AA', all the Y ele-
ments (1 through 5) to be initialized to '19', and all the Z elements (1 through
5) to be initialized to 'BB'. T-OBJ is then set to '3'.

 Chapter 7. Handling Tables (Arrays) 101

���

��� E R R O R F L A G T A B L E ���

���

 �1 Error-Flag-Table Value Spaces.

 88 No-Errors Value Spaces.

 �5 Type-Error Pic X.

 �5 Shift-Error Pic X.

 �5 Home-Code-Error Pic X.

 �5 Work-Code-Error Pic X.

 �5 Name-Error Pic X.

 �5 Initials-Error Pic X.

 �5 Duplicate-Error Pic X.

 �5 Not-Found-Error Pic X.

 �5 Address-Error Pic X.

 �5 City-Error Pic X.

 �5 State-Error Pic X.

 �5 Zipcode-Error Pic X.

 �5 Home-Phone-Error Pic X.

 �5 Work-Phone-Error Pic X.

 �5 Home-Junction-Error Pic X.

 �5 Work-Junction-Error Pic X.

 �5 Driving-Status-Error Pic X.

�1 Filler Redefines Error-Flag-Table.

�5 Error-Flag Occurs 17 Times

Indexed By Flag-Index Pic X.

���

��� E R R O R M E S S A G E T A B L E ���

���

 �1 Error-Message-Table.

�5 Filler Pic X(25) Value

"Transaction Type Invalid".

�5 Filler Pic X(25) Value

"Shift Code Invalid".

�5 Filler Pic X(25) Value

"Home Location Code Inval.".

�5 Filler Pic X(25) Value

"Work Location Code Inval.".

�5 Filler Pic X(25) Value

"Last Name - Blanks".

�5 Filler Pic X(25) Value

"Initials - Blanks".

�5 Filler Pic X(25) Value

"Duplicate Record Found".

�5 Filler Pic X(25) Value

"Commuter Record Not Found".

�5 Filler Pic X(25) Value

"Address - Blanks".

�5 Filler Pic X(25) Value

"City - Blanks".

�5 Filler Pic X(25) Value

"State Is Not Alphabetic".

�5 Filler Pic X(25) Value

"ZipCode Is Not Numeric".

�5 Filler Pic X(25) Value

"Home Phone Number Error".

�5 Filler Pic X(25) Value

"Work Phone Number Error".

�5 Filler Pic X(25) Value

"Home Junction Is Blanks".

�5 Filler Pic X(25) Value

"Work Junction Is Blanks".

�5 Filler Pic X(25) Value

"Driving Status Invalid".

�1 Filler Redefines Error-Message-Table.

�5 Error-Message Occurs 17 Times

Indexed By Message-Index Pic X(25).

Figure 34. Sample Table

102 COBOL/VSE Programming Guide

The procedure shown in Figure 35 on page 103 processes the entire table shown
in Figure 34, using subscripting and the PERFORM...VARYING statement.

Perform

Varying Sub From 1 By 1

 Until No-Errors

If Error-Flag (Sub) = Error-On

Move Space To Error-Flag (Sub)

Move Error-Message (Sub) To Print-Message

 Perform 26�-Print-Report

 End-If

 End-Perform

Figure 35. Processing the Sample Table, Using Subscripting

The procedure shown in Figure 36 processes the entire table, using indexing.

Set Flag-Index To 1

Perform Until No-Errors

 Search Error-Flag

When Error-Flag (Flag-Index) = Error-On

Move Space To Error-Flag (Flag-Index)

Set Message-Index To Flag-Index

Move Error-Message (Message-Index) To

 Print-Message

 Perform 26�-Print-Report

 End-Search

 End-Perform

Figure 36. Processing the Sample Table, Using Indexing

Creating Variable-Length Tables (DEPENDING ON Clause)
If you do not know before execution how many occurrences of a table element
there are, you need to set up a variable-length table definition. To do this, use the
OCCURS DEPENDING ON (ODO) clause.

The cases to consider when using the ODO clause are:

� ODO object is outside of the group item that contains the subject.

� ODO object and subject are contained within the same group item, and that
item is a sending field.

� ODO object and subject are contained within the same group item, and that
item is a receiving field.

ODO Object outside the Group
You must ensure that the object of the OCCURS DEPENDING ON clause (which
specifies the number of occurrences of the table elements) contains a value that
correctly specifies the current number of occurrences of the table elements.
Figure 37 on page 104 shows how to define a variable-length table.

 Chapter 7. Handling Tables (Arrays) 103

 DATA DIVISION.

 FILE SECTION.

 FD LOCATION-FILE

RECORDING MODE F

BLOCK � RECORDS

RECORD 8� CHARACTERS

LABEL RECORD STANDARD.

 �1 LOCATION-RECORD.

 �5 LOC-CODE PIC XX.

 �5 LOC-DESCRIPTION PIC X(2�).

 �5 FILLER PIC X(58).

 WORKING-STORAGE SECTION.

 �1 FLAGS.

�5 LOCATION-EOF-FLAG PIC X(5) VALUE SPACE.

 88 LOCATION-EOF VALUE "FALSE".

 �1 MISC-VALUES.

�5 LOCATION-TABLE-LENGTH PIC 9(3) VALUE ZERO.

�5 LOCATION-TABLE-MAX PIC 9(3) VALUE 1��.

 ���

��� L O C A T I O N T A B L E ���

��� FILE CONTAINS LOCATION CODES. ���

 ���

 �1 LOCATION-TABLE.

�5 LOCATION-CODE OCCURS 1 TO 1�� TIMES

DEPENDING ON LOCATION-TABLE-LENGTH PIC X(8�).

Figure 37. Defining a Variable-Length Table

Figure 38 shows a “do-until” structure used to control loading of a variable-length
table. When initialization is complete, LOCATION-TABLE-LENGTH will contain the
subscript of the last item in the table. (This variable-length table is defined in
Figure 37.)

Perform Test After

Varying Location-Table-Length From 1 By 1

 Until Location-EOF

Or Location-Table-Length = Location-Table-Max

Move Location-Record To

 Location-Code (Location-Table-Length)

 Read Location-File

At End Set Location-EOF To True

 End-Read

 End-Perform

Figure 38. Loading a Variable-Length Table

Two factors that affect the successful manipulation of variable-length records are
the correct calculation of record lengths and the conformance of the data in the
OCCURS...DEPENDING ON object to its picture. If you are using variable-length
group items in either a READ...INTO or WRITE...FROM statement, in conjunction
with an OCCURS...DEPENDING ON statement, make sure that the receiver or
intermediate field length is correct. The length of the variable portions of a group
item is the product of the object of the DEPENDING ON option and the length of
the subject of the OCCURS clause.

If the content of the ODO object does not match its PICTURE clause, the program
may abend. See Chapter 6, “Numbers and Arithmetic” on page 73 for more infor-
mation on data and sign representation.

104 COBOL/VSE Programming Guide

ODO Object and Subject Contained in Sending Group Item
The following example illustrates a group item (REC-1) whose subordinate items
contain an OCCURS clause with the DEPENDING ON option and the object of that
DEPENDING ON option.

 WORKING-STORAGE SECTION.

 �1 REC-1.

 �5 FIELD-1 PIC S9.

�5 FIELD-2 OCCURS 1 TO 5 TIMES

DEPENDING ON FIELD-1 PIC X(�5).

 �1 REC-2.

 �5 REC-2-DATA PIC X(5�).

If you wanted to move REC-1 to REC-2, the length of REC-1 is determined imme-
diately prior to the MOVE, using the current value in FIELD-1. If the contents of
FIELD-1 do not conform to its PICTURE, that is, if FIELD-1 does not contain an
external decimal item, the program will abend. (See Chapter 6, “Numbers and
Arithmetic” on page 73 for more information on data and sign representation).

As you can see, you must be sure that in this situation you have the correct value
placed in the ODO object (FIELD-1) before the MOVE is initiated.

ODO Object and Subject Contained in Receiving Group Item
The following example illustrates a group item (MAIN-AREA) whose subordinate
items contain an OCCURS clause with the DEPENDING ON option and the object
of that DEPENDING ON option.

 WORKING-STORAGE SECTION.

 �1 MAIN-AREA.

 �3 REC-2.

 �5 FIELD-3 PIC S9.

�5 FIELD-4 OCCURS 1 TO 5 TIMES

DEPENDING ON FIELD-3 PIC X(�5).

If you wanted to do a MOVE to REC-2, the length of REC-2 is determined using
the maximum number of occurrences. In this example, that would be 5 occur-
rences of FIELD-4 plus FIELD-3 for a length of 26.

In this case, the ODO object (FIELD-3) need not be set before referencing REC-2
as a receiving item.

This behavior is different if the CMPR2 compiler option is in effect. See
COBOL/VSE Migration Guide for details on VS COBOL II Release 2 compatibility
and migration.

However, if REC-2 were followed by a data item which is in the same record but is
not subordinate to REC-2, then the actual length of REC-2 is used and the ODO
object must be set before the reference. In the following example, REC-2 is fol-
lowed by REC-3.

 Chapter 7. Handling Tables (Arrays) 105

 �1 MAIN-AREA

 �3 REC-2.

 �5 FIELD-3 PIC S9.

 �5 FIELD-5 PIC S9.

�5 FIELD-4 OCCURS 1 TO 5 TIMES

DEPENDING ON FIELD-3 PIC X(�5).

 �3 REC-3.

�5 FIELD-6 OCCURS 1 TO 5 TIMES

DEPENDING ON FIELD-5 PIC X(�5).

If you did a MOVE to REC-2 in this case, the actual length of REC-2 would be
calculated immediately prior to the move using the current value of the ODO object
(FIELD-3), and a compiler message would be issued letting you know that the
actual length, instead of the maximum length, was used. This case requires that
you set the value of the ODO object (FIELD-3) prior to using the item as a
receiving field.

Complex OCCURS DEPENDING ON
The basic forms of complex ODO permitted by the compiler are:

� A data item described by an OCCURS clause with the DEPENDING ON option
is followed by a nonsubordinate item.

� A data item described by an OCCURS clause with the DEPENDING ON option
is followed by a nonsubordinate data item described by an OCCURS clause
with the DEPENDING ON option.

� A data item described by an OCCURS clause with the DEPENDING ON option
is nested within another data item described by an OCCURS clause with the
DEPENDING ON option.

If a group item contains both the subject and object of the ODO, and it is a
receiving item, then the maximum length of the item is used. In this situation it is
not necessary to set the value of the ODO object before a reference is made. If
the receiving item is followed by a data item which is in the same record but is not
subordinate to the receiver, then the actual length is used and a compiler message
is issued to inform you that the actual length, not the maximum, will be used. In
this situation it is necessary to set the value of the ODO object before any refer-
ence to the item. This behavior is different if the CMPR2 compiler option is in
effect. See COBOL/VSE Migration Guide for more details on VS COBOL II
Release 2 compatibility and migration.

All other cases of ODO objects in an 01-level must be set before any reference is
made to a complex ODO item in the 01-level.

Note: An ODO object cannot be variably located. For instance, in the following
example, before EMPLOYEE-NUMBER can be referred to, COUNTER-1 and
COUNTER-2 must be set, even though EMPLOYEE-NUMBER does not directly
depend on either of the ODO objects for its value.

The length of the variable portions of each record is the product of the ODO object
and the length of the subject of the OCCURS clause. The length is calculated at
the time of a reference to one of the following:

106 COBOL/VSE Programming Guide

�1� a group item of variable length

�2� a data item following, and not subordinate to, a variable-length table in the
same level-01 record (variably located item)

�3� a group item following, and not subordinate to, a variable-length table in the
same level-01 record (variably located group)

�4� an index name for a table that has variable-length elements

�5� an element of a table that has variable-length elements

Any item that meets one of these five criteria is considered to be a “complex ODO
item.” The following example illustrates each of the possible occurrences of a
complex ODO item.

 �1 FIELD-A. �1�

 �2 COUNTER-1 PIC S99.

 �2 COUNTER-2 PIC S99.

 �2 TABLE-1.

�3 RECORD-1 OCCURS 1 TO 5 TIMES

DEPENDING ON COUNTER-1 PIC X(3).

�2 EMPLOYEE-NUMBER PIC X(5). �2�
�2 TABLE-2 OCCURS 5 TIMES �3�

INDEXED BY INDX. �4�
 �3 TABLE-ITEM PIC 99. �5�

�3 RECORD-2 OCCURS 1 TO 3 TIMES

DEPENDING ON COUNTER-2.

 �4 DATA-NUM PIC S99.

Whenever a reference is made to one of these five data items, the actual length, if
used, is computed as follows:

� The contents of COUNTER-1 are multiplied by 3 to calculate the length of
TABLE-1.

� The contents of COUNTER-2 are multiplied by 2 and added to the length of
TABLE-ITEM to calculate the length of TABLE-2.

� The length of FIELD-A is calculated by adding the length of COUNTER-1,
COUNTER-2, TABLE-1, EMPLOYEE-NUMBER, and TABLE-2 times 5.

If a data item described by an OCCURS clause with the DEPENDING ON option is
followed in the same level-01 record by nonsubordinate data items, a change in the
value of the ODO object, and a subsequent reference to a complex ODO item
during the course of program execution, will have the following effects:

� The size of any group containing the related OCCURS clause will reflect the
new value of the ODO object.

� Whenever a MOVE to a group containing an ODO object is executed, the
MOVE is made based on the current contents of the object of the DEPENDING
ON option.

Note: The value of the ODO object may change because a MOVE is made to
it or to the group in which it is contained. The value of the ODO object may
also change because the group in which it is contained is a record area that
has been changed by execution of a READ statement.

 Chapter 7. Handling Tables (Arrays) 107

� The location of any nonsubordinate items following the item described with the
OCCURS clause will be affected by the new value of the ODO object. If you
wish to preserve the contents of these items, the following procedure can be
used: Prior to the change in the ODO object, move all nonsubordinate items
following the variable item to a work area; after the change in the ODO object,
move all the items back.

You must be careful when using complex-ODO index names. If you set an
index name (like 'INDX' in the previous example) for a table with variable-
length entries ('TABLE-2'), and then change the value of the ODO object
('COUNTER-2'), be aware that the offset in your index is no longer valid for
the table, since the table has changed. If, at this point, you were to code state-
ments that used your index name, thinking the index name had a valid value
for the table, the statements would produce unexpected results. This would
apply to coding:

– A reference (using your index name) to an element of the table

– A format-1 SET statement of the type SET INTEGER-DATA-ITEM TO
INDEX-NAME

– A format-2 SET statement of the type SET INDEX-NAME UP/DOWN BY
INTEGER

To avoid making this type of error, you can do the following:

1. Save the value of your index name (in the form of its integer occurrence
number) in an integer data item before changing the ODO object.

2. Immediately after changing the ODO object, restore the value of your index
name from the integer data item.

For example:

 77 INTEGER-DATA-ITEM-1 PIC 99.

SET INDX TO 5

� INDX IS VALID AT THIS POINT.

SET INTEGER-DATA-ITEM-1 TO INDX

MOVE NEW-VALUE TO COUNTER-2.

� INDX IS NOT VALID AT THIS POINT.

SET INDX TO INTEGER-DATA-ITEM-1.

� INDX IS NOW VALID AND CAN BE

� USED WITH EXPECTED RESULTS.

The following example applies to updating a record containing an OCCURS
clause with the DEPENDING ON option and at least one other subsequent
entry. In this case, the subsequent entry is another OCCURS clause with the
DEPENDING ON option.

108 COBOL/VSE Programming Guide

 WORKING-STORAGE SECTION.

 �1 VARIABLE-REC.

 �5 FIELD-1 PIC X(1�).

 �5 CONTROL-1 PIC S99.

 �5 CONTROL-2 PIC S99.

�5 VARY-FIELD-1 OCCURS 1 TO 1� TIMES

DEPENDING ON CONTROL-1 PIC X(5).

 �5 GROUP-ITEM-1.

 1� VARY-FIELD-2

OCCURS 1 TO 1� TIMES

DEPENDING ON CONTROL-2 PIC X(9).

 �1 STORE-VARY-FIELD-2.

 �5 GROUP-ITEM-2.

 1� VARY-FLD-2

OCCURS 1 TO 1� TIMES

DEPENDING ON CONTROL-2 PIC X(9).

Assume that both CONTROL-1 and CONTROL-2 contain the value 3. In this
situation, storage for VARY-FIELD-1 and VARY-FIELD-2 would look like this:

 ┌──┬──┬──┬──┬──┐

VARY─FIELD─1(1) │ │ │ │ │ │

 ├──┼──┼──┼──┼──┤

VARY─FIELD─1(2) │ │ │ │ │ │

 ├──┼──┼──┼──┼──┤

VARY─FIELD─1(3) │ │ │ │ │ │

 ├──┼──┼──┼──┼──┼──┬──┬──┬──┐

VARY─FIELD─2(1) │ │ │ │ │ │ │ │ │ │

 ├──┼──┼──┼──┼──┼──┼──┼──┼──┤

VARY─FIELD─2(2) │ │ │ │ │ │ │ │ │ │

 ├──┼──┼──┼──┼──┼──┼──┼──┼──┤

VARY─FIELD─2(3) │ │ │ │ │ │ │ │ │ │

 └──┴──┴──┴──┴──┴──┴──┴──┴──┘

In order to add a fourth field to VARY-FIELD-1, the following steps are required
to prevent VARY-FIELD-1 from overlaying the first 5 bytes of VARY-FIELD-2:

MOVE GROUP-ITEM-1 TO GROUP-ITEM-2

ADD 1 TO CONTROL-1

MOVE "additional field" TO

 VARY-FIELD-1 (CONTROL-1)

MOVE GROUP-ITEM-2 TO GROUP-ITEM-1

The updated storage for VARY-FIELD-1 and VARY-FIELD-2 would now look
like this:

 ┌──┬──┬──┬──┬──┐

VARY─FIELD─1(1) │ │ │ │ │ │

 ├──┼──┼──┼──┼──┤

VARY─FIELD─1(2) │ │ │ │ │ │

 ├──┼──┼──┼──┼──┤

VARY─FIELD─1(3) │ │ │ │ │ │

 ├──┼──┼──┼──┼──┤

VARY─FIELD─1(4) │ │ │ │ │ │

 ├──┼──┼──┼──┼──┼──┬──┬──┬──┐

VARY─FIELD─2(1) │ │ │ │ │ │ │ │ │ │

 ├──┼──┼──┼──┼──┼──┼──┼──┼──┤

VARY─FIELD─2(2) │ │ │ │ │ │ │ │ │ │

 ├──┼──┼──┼──┼──┼──┼──┼──┼──┤

VARY─FIELD─2(3) │ │ │ │ │ │ │ │ │ │

 └──┴──┴──┴──┴──┴──┴──┴──┴──┘

The intent of this last example is to emphasize that if you want to preserve the
values contained in data items that follow a variable-length item within the
same record, you must move them to another field prior to changing the length

 Chapter 7. Handling Tables (Arrays) 109

of the variable-length item, and then move them back after the length indicator
has been changed.

Searching a Table (SEARCH Statement)
COBOL provides two search techniques for tables: serial and binary.

To perform serial searches:

� Use PERFORM . . . VARYING with subscripting or indexing
(discussed in “Creating Variable-Length Tables (DEPENDING ON Clause)” on
page 103).

� Use SEARCH and indexing

To perform binary searches:

Use indexing and the SEARCH ALL statement.

The following discussion assumes you are familiar with the format of the SEARCH
and SEARCH ALL statements. If you are not, see COBOL/VSE Language Refer-
ence.

 Serial Search
Use the SEARCH statement to perform a serial search beginning at the current
index setting. (You can use the SET statement to modify the index setting before
using the SEARCH statement.) The conditions in the WHEN option are evaluated
in the order in which they are written.

� If none of the conditions are satisfied, the index is increased to correspond to
the next table element, and the WHEN conditions are again evaluated.

� If one of the WHEN conditions is satisfied, the search ends, and the index
remains pointing to the table element that satisfied the condition.

� When the entire table has been searched and no conditions were met, the AT
END imperative statement is executed, if there is one. If you do not use the
AT END option, control passes to the next statement.

Only one level of a table (a table element) can be referenced with one SEARCH
statement. SEARCH statements can be nested if you delimit the statement with
END-SEARCH, because an imperative statement must follow the WHEN condition
and because the SEARCH statement is itself conditional.

It is important to know if the found condition comes after some intermediate point
in the table element. You can speed up the SEARCH by using the SET statement
to set the index to begin the search after that point.

Arranging the table so that the data used most often is at the beginning also
enables more efficient serial searching. If the table is large and is presorted, a
binary search is more efficient.

110 COBOL/VSE Programming Guide

Binary Search (SEARCH ALL Statement)
When you use SEARCH ALL to perform a binary search, you do not need to set
the index before you begin. The index used is always the one associated with the
first index-name in the OCCURS clause, and it varies during execution to maximize
the search efficiency.

To use the SEARCH ALL statement, your table must be ordered on the KEY(S)
specified in the OCCURS clause. You can specify any KEY in the WHEN condi-
tion, but all preceding data-names in the KEY option must also be tested. The test
must be an equal-to condition, and the KEY data-name must be either the subject
of the condition or the name of a conditional variable with which the tested
condition-name is associated. The WHEN condition can also be a compound con-
dition, formed from one of the simple conditions listed above, with AND as the only
logical connective. The KEY and its object of comparison must be compatible, as
stated in the relation test rules.

For example, a table defined like this:

 �1 TABLE-A.

�5 TABLE-ENTRY OCCURS 9� TIMES

ASCENDING KEY-1, KEY-2

 DESCENDING KEY-3

INDEXED BY INDX-1.

 1� PART-1 PIC 99.

 1� KEY-1 PIC 9(5).

 1� PART-2 PIC 9(6).

 1� KEY-2 PIC 9(4).

 1� PART-3 PIC 9(18).

 1� KEY-3 PIC 9(5).

could be searched using the following instructions:

SEARCH ALL TABLE-ENTRY

 AT END

 PERFORM NOENTRY

WHEN KEY-1 (INDX-1) = VALUE-1 AND

KEY-2 (INDX-1) = VALUE-2 AND

KEY-3 (INDX-1) = VALUE-3

MOVE PART-1 (INDX-1) TO OUTPUT-AREA

 END-SEARCH

These instructions will execute a search on the given table that contains 90 ele-
ments of 40 bytes and 3 keys. The primary and secondary keys (KEY-1 and
KEY-2) are in ascending order, but the least significant key (KEY-3) is in
descending order. If an entry is found in which three keys are equal to the given
values (VALUE-1, VALUE-2, and VALUE-3), PART-1 of that entry will be moved to
OUTPUT-AREA. If the matching keys are not found in any of the entries in
TABLEA, the NOENTRY routine is performed.

 Chapter 7. Handling Tables (Arrays) 111

SEARCH Statement Examples
 Example 1:

 �1 ARRAY-VALUES.

�5 FILLER PIC 999V99 VALUE 11.11.

�5 FILLER PIC 999V99 VALUE 22.22.

�5 FILLER PIC 999V99 VALUE 33.33.

�5 FILLER PIC 999V99 VALUE 44.44.

�5 FILLER PIC 999V99 VALUE 55.55.

�5 FILLER PIC 999V99 VALUE 66.66.

�5 FILLER PIC 999V99 VALUE 77.77.

�5 FILLER PIC 999V99 VALUE 88.88.

�5 FILLER PIC 999V99 VALUE 99.99.

 �5 FILLER PIC 999V99 VALUE 111.11.

�1 ARRAY-TBL REDEFINES ARRAY-VALUES.

�5 ARRAY-ELEMENT OCCURS 1� TIMES

ASCENDING KEY IS AE-KEY

INDEXED BY AE-INDEX.

 1� AE-KEY PIC 999V99.

SET AE-INDEX TO 1

MOVE 2 TO RETURN-CODE

 SEARCH ARRAY-ELEMENT

 AT END

MOVE 4 TO RETURN-CODE

WHEN AE-KEY(AE-INDEX) = 77.77

 CONTINUE

WHEN AE-KEY(AE-INDEX) = 88.88

MOVE � TO RETURN-CODE

 END-SEARCH

Values after execution:

RETURN-CODE = 2

AE-INDEX points to the TABLE-ELEMENT that equals 77.77

112 COBOL/VSE Programming Guide

 Example 2:

 �1 TABLE-ONE.

�5 TABLE-ENTRY1 OCCURS 1� TIMES

INDEXED BY TE1-INDEX.

1� TABLE-ENTRY2 OCCURS 1� TIMES

INDEXED BY TE2-INDEX.

15 TABLE-ENTRY3 OCCURS 5 TIMES

ASCENDING KEY IS KEY1

INDEXED BY TE3-INDEX.

 2� KEY1 PIC X(5).

 2� KEY2 PIC X(1�).

SET TE1-INDEX TO 1

SET TE2-INDEX TO 4

SET TE3-INDEX TO 1

MOVE "A1234" TO KEY1 (TE1-INDEX, TE2-INDEX, TE3-INDEX + 2)

MOVE "AAAAAAAA��" TO KEY2 (TE1-INDEX, TE2-INDEX, TE3-INDEX + 2)

 SEARCH TABLE-ENTRY3

 AT END

MOVE 4 TO RETURN-CODE

WHEN TABLE-ENTRY3(TE1-INDEX, TE2-INDEX, TE3-INDEX)

 = "A1234AAAAAAAA��"

MOVE � TO RETURN-CODE

 END-SEARCH

Values after execution:

TE1-INDEX = 1

TE2-INDEX = 4

TE3-INDEX points to the TABLE-ENTRY3

that equals "A1234AAAAAAAA��"

RETURN-CODE = �

Processing Table Items (Intrinsic Functions)
As pointed out in Chapter 4, “Data Representation and Assignment” on page 42,
which introduces intrinsic functions, some intrinsic functions process numeric argu-
ments, some process alphanumeric arguments, and some process either type of
argument. Therefore, you can use any of the intrinsic functions to process alpha-
numeric or numeric table items as long as the table item's data description is com-
patible with the function's argument requirements. The COBOL/VSE Language
Reference describes the required data formats for the arguments of the various
intrinsic functions.

You can use a subscript or an index to reference an individual data item as a func-
tion argument. Assuming Table-One is a 3x3 array of numeric items, you can find
the square root of the middle element with a statement such as:

Compute X = Function Sqrt(Table-One(2,2))

You may often need to process the data in tables iteratively. Traditionally, this
processing has been performed with constructs such as the PERFORM and
SEARCH statements. However, for intrinsic functions that accept multiple argu-
ments, you can use the ALL subscript (valid only in intrinsic functions) to reference
all the items in the table or single dimension of the table. The iteration is handled

 Chapter 7. Handling Tables (Arrays) 113

automatically, making your code shorter and simpler. The following example deter-
mines the maximum value in Table-One:

Compute Table-Max = Function Max(Table-One(ALL))

The next example sums a cross-section of Table-Two:

Compute Table-Sum = Function Sum(Table-Two(ALL, 3, ALL))

Assuming that Table2 is a 2x3x2 array, the above statement would cause these
elements to be summed:

 Table-Two(1,3,1)

 Table-Two(1,3,2)

 Table-Two(2,3,1)

 Table-Two(2,3,2)

The following example also shows the power of intrinsic functions used with the
ALL subscript. Notice the simplicity of the code and that you do not have to explic-
itly write constructs to loop through all the elements of the table.

 �1 Employee-Table.

 �2 Emp-Count Pic s9(4) usage binary.

�2 Emp-Record occurs 1 to 5�� times

depending on Emp-Count.

 �3 Emp-Name Pic x(2�).

 �3 Emp-Idme Pic 9(9).

 �3 Emp-Salary Pic 9(7)v99.
...

 Procedure Division.

Compute Max-Salary = Function Max(Emp-Salary(ALL))

Compute I = Function Ord-Max(Emp-Salary(ALL))

Compute Avg-Salary = Function Mean(Emp-Salary(ALL))

Compute Salary-Range = Function Range(Emp-Salary(ALL))

Compute Total-Payroll = Function Sum(Emp-Salary(ALL))

Scalars and array arguments can be mixed for functions that accept multiple argu-
ments. For example:

Compute Table-Median = Function Median(Arg1 Table-One(ALL))

Efficient Coding for Tables
For efficient table-handling, follow these suggestions:

� If the table is searched sequentially, put the data values most likely to satisfy
the search criteria at the beginning of a table.

� Using index-names instead of subscripts is more efficient, but subscripting may
be easier to understand and maintain. Relative index references are executed
as fast as direct index references. For additional details, see “Subscripting” on
page 96 and “Subscripting Using Index-Names (Indexing)” on page 97.

� Use binary (COMP) data items with 9 or fewer digits for subscripts and
OCCURS DEPENDING ON objects. Use fewer than 5 digits, if possible.

� Avoid referencing errors by coding subscript and index checks into your
program.

114 COBOL/VSE Programming Guide

Chapter 8. Selection and Iteration

This chapter explains the control structures you can use to choose alternative
program actions based on the outcome of a decision and how to control looping
within your program.

Selection (IF and EVALUATE Statements)
Selection is the means of providing for alternative program actions depending on
the tested value of data items.

The IF and EVALUATE statements are COBOL selection constructs. The testing of
data items is accomplished in both of these statements by means of a conditional
expression.

The IF and EVALUATE statements, as well as conditional expressions are dis-
cussed below.

 IF Statement
Use IF . . . ELSE to code a choice between two processing actions. (The word
THEN is optional in a COBOL/VSE program.) For example:

 IF condition-p

 statement-1

 ELSE

 statement-2

 END-IF

IF Statement with a Null Branch
There are two ways you can code an IF statement when one of the processing
choices is no action. Since the ELSE clause is optional, you can code the fol-
lowing:

 IF condition-q

 statement-1

 END-IF

This coding is suitable for simple programming cases. However, if the logic in you
program is complex (for example, you have nested IF constructs with action for
only one of the processing choices), you may want to use the ELSE clause and
code the null branch of the IF statement with the CONTINUE statement:

 IF condition-q

 statement-1

 ELSE

 CONTINUE

 END-IF

Nested IF Statements
When an IF statement has another IF statement as one of its possible processing
branches, these IF statements are said to be nested IFs. Theoretically, there is no
limitation on the depth of nested IF statements. However, when the program has to
test a variable for more than two values, EVALUATE is the better choice.

 Copyright IBM Corp. 1983, 1998 115

Use nested IF statements sparingly; the logic can be difficult to follow, although
proper indentation helps.

Consider the following pseudocode for a nested IF statement:

 IF condition-p

 IF condition-q

 statement-1

 ELSE

 statement-2

 END-IF

 statement-3

 ELSE

 statement-4

 END-IF

In this case, an IF is nested, along with a sequential structure, in one branch of
another IF. The structure for this logic is shown in Figure 39 on page 116.

When you code a structure like the one in Figure 39, the END-IF closing the inner
nested IF becomes very important. Use END-IF instead of a period, because a
period would terminate the outer IF structure as well.

Statement 1 Statement 3

condition-p

condition-q

Statement 2

Statement 4

True

True

False

False

Figure 39. A Control Logic Structure for Nested IF Statements

When IF statements are nested, readability and debugging will be easier if each IF
statement has its own END-IF scope-terminator and if proper indentation is used.
For example:

IF A = 1

IF B = 2

 PERFORM C

ELSE PERFORM D.

The ELSE PERFORM D phrase is interpreted as the ELSE phrase of the last pre-
vious IF which is, IF B = 2. If this is the intent, you can make the logic clearer with
the following coding:

116 COBOL/VSE Programming Guide

IF A = 1

IF B = 2

 PERFORM C

 ELSE

 PERFORM D

 END-IF

 END-IF

If this programmer intended that ELSE PERFORM D depends on IF A = 1, the
code would look like this:

IF A = 1

IF B = 2

 PERFORM C

 END-IF

 ELSE

 PERFORM D

 END-IF

 EVALUATE statement
The EVALUATE statement is an expanded form of the IF statement.

An IF statement allows your program to act on one of two conditions: true or false.
When the condition is true, one action is performed. When the condition is not
true, a different action is performed (the ELSE clause). If you had three or more
possible conditions instead of just two, and you were limited to using IF statements,
you would need to nest or cascade the IF statements. Such nested IF statements
are a common source of logic errors and debugging problems.

With the EVALUATE statement, you can test any number of conditions in a single
statement and have separate actions for each. In structured programming terms,
this is a “case” construct. It can also be thought of as a form of decision table. For
an example and discussion of the EVALUATE statement used to implement a case
structure, see “EVALUATE Statement” on page 36.

 Conditional Expressions
The IF and EVALUATE statements let you specify alternative program actions,
depending on the true or false value of a condition expression. COBOL lets you
specify any of these simple conditions:

� Class condition—for testing whether data is alphabetic, numeric, DBCS, or
Kanji. This conditional expression is discussed in “Checking for Incompatible
Data (Numeric Class Test)” on page 80. NUMPROC(PFD) which bypasses
invalid sign processing may affect the outcome of a test for numeric data.

� User-defined condition—for testing a level-88 condition name to discover
whether or not a data item contains a particular value or range of values.

� Relation condition—for comparing two items

� Sign condition—for testing whether a numeric operand is less than, greater
than, or equal to zero.

� Switch-status condition—for testing whether an UPSI switch is on or off.

You can create combined conditions by use of logical connectives (AND, OR, or
NOT) and you can combine combined conditions.

 Chapter 8. Selection and Iteration 117

Specific rules for using conditions are given in COBOL/VSE Language Reference.

Use level-88 items to define condition-names that you can test to control the proc-
essing of switches and flags.

Condition-Names (Switches and Flags)
Some program decisions are based on whether the value of a data item is true or
false, on or off, yes or no. Define level-88 items with meaningful names to act as
switches to control these two-way decisions in your program. For example, to test
for an end-of-file condition for an input file named Transaction-File, you could use
the following data definitions:

 Working-Storage Section.

 �1 Switches.

 �5 Transaction-EOF-Switch Pic X value space.

 88 Transaction-EOF value "y".

The level-88 description says a condition named Transaction-EOF is turned on
when Transaction-EOF-Switch has a value of "y". Referencing Transaction-EOF in
your Procedure Division expresses the same condition as testing for
Transaction-EOF-Switch = "y". For example, the statement

If Transaction-EOF Then Perform Print-Report-Summary-Lines

causes the report to be printed only if your program has read through to the end of
the Transaction-File and if the Transaction-EOF-Switch has been set to "y".

Some program decisions are based not on an on or off condition of a data item, but
instead, depend on the particular value (or range of values) of a data item. To test
for more than two specific values, you can assign more than one condition-name to
a field by using multiple level-88 items. When condition-names are used to give
more than just on or off values to a field, the field is generally referred to as a flag,
not a switch.

Consider a program that updates a master file. The updates are read from a trans-
action file. The records of the transaction file contain a field for the function to be
performed: add, change, or delete. In the record description of the input file, code
a field for the function code using level-88 items:

 �1 Transaction-Input Record

 �5 Transaction-Type Pic X.

 88 Add-Transaction Value "A".

 88 Change-Transaction Value "C".

 88 Delete-Transaction Value "D".

 �5 ...

The code in the Procedure Division for testing these condition-names might look
like this:

 Evaluate True

 When Add-Transaction

 Perform Add-Master-Record-Paragraph

 When Change-Transaction

 Perform Update-Existing-Record-Paragraph

 When Delete-Transaction

 Perform Delete-Master-Record-Paragraph

 End-Evaluate

118 COBOL/VSE Programming Guide

Flags and switches make your code easier to modify. If you need to change the
values for a condition, you have to change only the level-88 condition-name value.
The name of the condition as you use it in the Procedure Division need not be
changed. For example, a program that uses a condition-name to test a field for a
given numeric range—a salary range—need not be changed. If the program must
be modified to check for a different salary range, you would need to change only
the condition-name value in the Data Division. You do not need to make changes
in the Procedure Division.

Resetting Condition-Names (Switches and Flags)
Throughout your program, you may need to reset your switches to on or off or
change your flags back to the original values they have in their data descriptions.
To do so, you can use either a SET statement or define your own data item to use.

� SET condition-name TO TRUE

When you use the SET condition-name TO TRUE statement, the switch or flag
is set back to the original value it was assigned in its data description.

This method makes it easy for the reader to follow your code if you choose
meaningful condition-names and if the value assigned has some association
with a logical value of true.

The SET statement in the following example is exactly equivalent to
Move "y" to Transaction-EOF-Flag.

 �1 Switches

 �5 Transaction-EOF-Switch Pic X Value space.

 88 Transaction-EOF Value "y".
...

 Procedure Division.

 ���-Do-Main-Logic.

 Perform 1��-Initialize-Paragraph

 Read Update-Transaction-File

At End Set Transaction-EOF to True

 End-Read

The following example shows how you can assign a value for a field in an
output record based on the transaction code of an input record.

 �1 Input-Record.

 �5 Transaction-Type Pic X(9).
...

 �1 Data-Record-Out.

 �5 Data-Record-Type Pic X.

 88 Record-Is-Active Value "A".

 88 Record-Is-Suspended Value "S".

 88 Record-Is-Deleted Value "D".

 �5 Key-Field Pic X(5).
...

 Chapter 8. Selection and Iteration 119

 Procedure Division.
...

Evaluate Transaction-Type of Input-Record

 When "ACTIVE"

Set Record-Is-Active to TRUE

 When "SUSPENDED"

Set Record-Is-Suspended to TRUE

 When "DELETED"

Set Record-Is-Deleted to TRUE

 End-Evaluate

Note: For a level-88 item with multiple values (such as 88 Record-is-Active

Value "A" "O" "S") SET condition-name TO TRUE assigns the first value (or
"A" in this case).

 � SWITCH-OFF

Establish a data item with this description:

 �1 SWITCH-OFF Pic X Value "n".

Then use SWITCH-OFF throughout your program to set on/off switches to off.
By using this method, whoever reads your code can easily see what you are
doing to a switch. From this code:

 �1 Switches

 �5 Transaction-EOF-Switch Pic X Value space.

 88 Transaction-EOF Value "y".

 �1 SWITCH-OFF Pic X Value "n".
...

 Procedure Division.

Move SWITCH-OFF to Transaction-EOF-Switch

it is easy to see that you are setting the end-of-file switch to off. In other
words, you have reset the switch to indicate that the end of the file has not
been reached.

Iterative Loops (PERFORM Statement)
For looping (repeating the same code), use one of the forms of the PERFORM
statement. You can use the PERFORM statement to control the looping with a
definite number or with a decision.

PERFORM statements can be in-line or out-of-line. For suggestions on deciding
which format to use, see “In-Line PERFORM Statement” on page 39.

Use the PERFORM statement to execute a paragraph and then implicitly return
control to the next executable statement. In effect, the PERFORM statement is a
way of specifying a closed subroutine that you can enter from many different parts
of the program.

120 COBOL/VSE Programming Guide

Coding a Loop to Be Executed a Definite Number of Times
Use the PERFORM . . . TIMES statement to execute a paragraph a specified
number of times:

PERFORM �1�-PROCESS-ONE-MONTH 12 TIMES

 INSPECT ...

When control reaches the PERFORM statement, the code for the paragraph
010-PROCESS-ONE-MONTH is executed 12 times before control is transferred to
the INSPECT statement.

 Conditional Looping
Use the PERFORM ... UNTIL statement to execute a paragraph until a condition
you specify is satisfied. You can use either of the following forms:

PERFORM ... WITH TEST AFTER ... UNTIL ...

PERFORM ... [WITH TEST BEFORE] ... UNTIL ...

In the following example, the implicit WITH TEST BEFORE phrase provides a “do-
while” structure.

 PERFORM �1�-PROCESS-ONE-MONTH

UNTIL MONTH EQUAL DECEMBER

 INSPECT ...

When control reaches the PERFORM statement, the condition (MONTH EQUAL
DECEMBER) is tested. If it is satisfied, control is transferred to the INSPECT
statement. If it is not satisfied, 010-PROCESS-ONE-MONTH is executed, and the
condition is tested again. This cycle continues until the condition tests as true. (To
make your program easier to read, you may want to code the WITH TEST
BEFORE clause.)

Use the PERFORM . . . WITH TEST AFTER . . . UNTIL if you want to execute the
paragraph at least once and then test before any subsequent execution. This is
equivalent to the “do-until” structure.

Looping through a Table
Use the PERFORM statement to control a loop through a table. You can use
either of the following forms:

PERFORM ... WITH TEST AFTER ... VARYING ... UNTIL ...

PERFORM ... [WITH TEST BEFORE] ... VARYING ... UNTIL ...

For example, use PERFORM . . . VARYING to initialize the table. In this form, a
variable is increased or decreased and tested until a condition is satisfied. The
following code shows an example of looping through a table to check for invalid
data:

 Chapter 8. Selection and Iteration 121

��� BLANK FIELDS ARE NOT ALLOWED IN THE INPUT DATA ���

PERFORM TEST AFTER VARYING WS-DATA-IX

FROM 1 BY 1

UNTIL WS-DATA-IX = 12

IF WS-DATA (WS-DATA-IX) EQUALS SPACES

SET SERIOUS-ERROR TO TRUE

 DISPLAY ELEMENT-NUM-MSG5

END-IF

 END-PERFORM

 INSPECT ...

In the code above, when control reaches the PERFORM statement, WS-DATA-IX is
set equal to 1 and the PERFORM statement is executed. Then the condition
(WS-DATA-IX = 12) is tested. If it is true, control drops through to the INSPECT
statement. If it is false, WS-DATA-IX is increased by 1, the PERFORM statement
is executed, and the condition is tested again. This cycle of execution and testing
continues until WS-DATA-IX is equal to 12.

In terms of the application, what this loop does is control input-checking for the 12
fields of item WS-DATA. Empty fields are not allowed, and this section of code
loops through and issues error messages, as appropriate.

Executing a Group of Paragraphs or Sections
In structured programming, the paragraph you execute is usually a single para-
graph. However, you can execute a group of paragraphs, a single section, or a
group of sections using the PERFORM . . . THRU statement.

When you use PERFORM . . . THRU, use a paragraph-EXIT statement to clearly
indicate the end point for the series of paragraphs.

Intrinsic functions can make the task of the iterative processing of tables simpler
and easier for you to code. For information on using the ALL subscript with
intrinsic functions to reference all the items in a table, see “Processing Table Items
(Intrinsic Functions)” on page 113.

122 COBOL/VSE Programming Guide

Chapter 9. File Input/Output Overview

This section contains general information on COBOL input/output coding and on
using input/output files.

Reading and writing data is an essential part of every program. Your program
retrieves information, processes it as you specify, and then produces the results.

The source of the information and the target for the results can be one or more of
the following:

A direct-access device
A magnetic tape

 A printer
 A terminal

A card reader or punch (unit-record device)
Another program to which you pass data

The information as it exists on the external device is a physical record or block.
It is an actual physical collection of information that is handled as a unit by the
system during input/output operations.

Your COBOL program does not handle these physical records. The information as
it is used by your COBOL program is a logical record (which may or may not be
the same as the physical record). A logical record can be a complete physical
record, it can be part of a physical record, or it can include parts or all of one or
more physical records. Your COBOL program handles only these logical records,
and it handles them exactly as you have defined them.

In COBOL, a collection of physical and logical records is a file; that is, a sequence
of pieces of information that your program can process.

File Organization and Input/Output Devices
Depending on the input/output device, your file organization will be either sequen-
tial, indexed, or relative. You should decide on the devices and file types to be
used when you design your program. SAM and VSAM are the two access methods
available with COBOL/VSE that will handle the input/output requests to the oper-
ating system for the storage and retrieval of records from the input/output devices.

Sequential File Organization
The arrangement of records is established by the physical order in which they are
entered when the file is created. Each record (except the first) has a unique prede-
cessor record, and each record (except the last) has a unique successor record.
Once established, these relationships do not change.

The record transmission (access) mode allowed for sequential files is sequential
only.

 Copyright IBM Corp. 1983, 1998 123

Indexed File Organization
Each record in the file contains a field whose contents form the record key. The
position of this key field is the same in each record.

The index component of the file provides the logical arrangement of the main file,
ordered by record key. The actual physical arrangement of the records in the main
file is not significant to your COBOL program.

An indexed file can also make use of alternate indexes—keys that let you access
the file using a different logical arrangement of the records.

The record transmission (access) modes allowed for indexed files are sequential,
random, or dynamic. When indexed files are read or written sequentially, the
sequence is that of the key values. For a description of random and dynamic
record transmission, see “File Access Modes” on page 156.

Relative File Organization
Records in the file are identified by their location relative to where the file begins.
The first record in the file has a relative record number of 1, the tenth record has a
relative record number of 10, and so forth.

The record transmission (access) modes allowed for relative files are sequential,
random, or dynamic. When relative files are read or written sequentially, the
sequence is that of the relative record number. For a description of random and
dynamic record transmission, see “File Access Modes” on page 156.

File Organization on Sequential-Only Devices
Terminals, printers, card readers, and punches are called unit-record devices.
They work a “line” at a time. After that line is processed, it exits the device. There-
fore, you must work sequentially with each record as it is presented to your
program or as your program sends it out.

On a tape, the records are always arranged sequentially, and your program must
process them sequentially. Use SAM physical sequential files. The records on
tapes may be of fixed or variable length, and the rate of data transfer is faster than
it is for cards.

File Organization on Direct-Access Storage Devices
Direct-access storage devices hold many records at a time. Record arrangement in
the file is significant because it determines the ways your program can process the
data. Because of this, your program's use of direct-access storage can be more
varied than its use of the sequential-only devices.

Several types of direct-access file organization are possible:

Sequential (VSAM or SAM)
 Indexed (VSAM)
 Relative (VSAM)

If you need to process records randomly, use VSAM indexed or relative files.

124 COBOL/VSE Programming Guide

Sometimes, the file processing method has been determined for you by the specifi-
cations for your application program or by the standards of your installation. But, if
the decision is yours, you need to consider several things:

� If a large percentage of the file is referenced or updated in your application
program, sequential processing is faster than indexed or relative. If a small
percentage of records is processed during each run of your application
program, use indexed or relative access.

� A SAM or VSAM sequential file is the simplest file type. Either works for an
application that uses only sequential access of fixed-length or variable-length
records and no insertion of records between existing ones.

� An indexed file is the most flexible file. It may be used for applications
requiring both sequential and random access in the same program. A VSAM
indexed file can make use of fixed-length or variable-length records.

� A relative file works well for an application that performs random insert and
delete operations.

Figure 40 shows the possible file organizations, access modes, and record length
attributes for COBOL files.

Figure 40. Summary of File Organizations, Access Modes, and Record Lengths

File Organization

Sequential
Access

Random
Access

Dynamic
Access

Fixed
Length

Variable
Length

SAM (Physical Sequential) YES NO NO YES YES

VSAM Sequential (ESDS) YES NO NO YES YES

VSAM Indexed (KSDS) YES YES YES YES YES

VSAM Relative (RRDS) YES YES YES YES YES

COBOL Input/Output Coding
You code your COBOL program according to the types of files and record lengths
you decide to use. The general format of input/output coding is shown in Figure 41
on page 126. Explanations of user-supplied information (lowercase) follow the
figure.

 Chapter 9. File Input/Output Overview 125

IDENTIFICATION DIVISION.
...

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

 FILE-CONTROL.

SELECT filename ASSIGN TO assignment-name
ORGANIZATION IS org ACCESS MODE IS access
RECORD/RELATIVE KEY IS keyname
FILE STATUS IS status
...

DATA DIVISION.

 FILE SECTION.

 FD filename
 �1 recordname.

nn . . . fieldlength & type
nn . . . fieldlength & type

...

WORKING-STORAGE SECTION

 �1 status PICTURE 99.
...

PROCEDURE DIVISION.
...

OPEN iomode filename
...

 READ filename
 . . .

 WRITE recordname
 . . .

 CLOSE filename
 . . .

 STOP RUN.

Figure 41. Overview of COBOL Input/Output Coding

The user-supplied information in Figure 41 can be explained as follows:

filename
Any legal COBOL name. You must use the same file name on the SELECT
and the FD statements, and on the READ, OPEN, and CLOSE statements.
Additionally, the file name is required if you use the START or DELETE state-
ments. This name is not necessarily the actual name of the file as it is known
to the system. Each file requires its own SELECT, FD, and input/output state-
ments.

assignment-name
Any 1- to 30-character name you choose, provided that it follows COBOL and
system naming rules. This assignment-name becomes important later, when
you get ready to run your program, at which time you specify it on a DLBL,
TLBL, or ASSGN statement.

org
Specifies the organization: SEQUENTIAL, INDEXED, or RELATIVE. This
clause is optional for SAM files because SAM is implicitly sequential.

access
Specifies the access mode, SEQUENTIAL, RANDOM, or DYNAMIC. For
sequential file-processing, you can omit this clause.

keyname
Defines a data item you will later fill with the key value of a record you want
before you do a READ, START, or WRITE. A keyname is used only if you are
using a VSAM indexed or relative file.

126 COBOL/VSE Programming Guide

status
Contains the 2-character COBOL FILE STATUS key.

recordname
Contains the name of the record used in the WRITE and REWRITE state-
ments.

fieldlength
Contains the logical length of the field.

type
Must match the record format of the file. If you break the record description
entry beyond the level-01 description, each element should map accurately
against the fields of the record.

iomode
Specifies INPUT or OUTPUT mode. If you are only reading from a file, specify
INPUT. If you are only writing to it, specify OUTPUT or EXTEND. If you are
doing both, specify I-O.

Note: EXTEND is only supported for sequentially accessed VSAM files. For
SAM files it is not supported and will, if specified, result in the OPEN statement
terminating with a file status code of '37'.

See Chapter 10, “Processing SAM Files” on page 133 and Chapter 11, “Proc-
essing VSAM Files” on page 152 for more complete details on processing SAM
and VSAM files.

 File Availability
The concepts of file availability and creation affect OPEN processing, OPTIONAL
files, and file status codes 05 and 35. The successful execution of an OPEN state-
ment determines the availability of the file.

Note: Optional files are not necessarily present each time the program is run.
You can define files opened in INPUT, I-O, or EXTEND mode as optional by
defining them with the SELECT OPTIONAL phrase in the FILE-CONTROL para-
graph of your program.

For example, an OPEN I-O of a nonoptional file that is not available results in file
status 35. If the file is OPTIONAL, the OPEN I-O will create the file and return file
status 05.

File availability and creation are defined differently for SAM and VSAM files.

For details about SAM files see “Availability of SAM Files” on page 140, and for
details about VSAM files see “Availability of VSAM Files” on page 168.

Input-Output Using EXTERNAL Files
Using the EXTERNAL clause for files allows separately compiled programs within
the run unit to have access to common files. The example on page 129 shows
some of the advantages of using EXTERNAL files:

� The main program can reference the record area of the file, even though the
main program does not contain any I/O statements.

 Chapter 9. File Input/Output Overview 127

� Each subprogram can control a single I/O function, such as OPEN or READ.

� Each program has access to the file

The example on page 129 also illustrates that the following items are required to
successfully process an EXTERNAL file:

� The file-name in the SELECT clause of all the programs accessing the file must
match.

� The assignment-name in the ASSIGN clause of all the programs accessing the
file must match.

� The data-name in the FILE STATUS clause of all the programs that will check
the file status code must match.

� EXTERNAL must be coded in the file's FD entry in all the programs accessing
the file.

� For all programs that want to check the same file status field, the EXTERNAL
clause must be coded on the level-01 data definition for the file status field in
each program.

The following table gives the names of the main program and subprograms used in
the example shown in Figure 43 on page 129 and describes their functions.

Additionally, COPY statements ensure that each subprogram contains an identical
description of the file.

Each program in the example declares a data item with the EXTERNAL clause in
its Working-Storage Section. This item is used to check file status codes, and is
also placed using the COPY statement.

Each program uses three Copy Library members:

� The first is named efselect and is placed in the FILE-CONTROL paragraph.

 Select ef1

Assign To ef1

File Status Is efs1

Organization Is Sequential.

Figure 42. Program Names for Input/Output Using EXTERNAL Files

Program Name Function

ef1 This is the main program. It calls all the subprograms, and then verifies
the contents of a record area.

ef1openo This program opens the external file for output and checks the File
Status Code.

ef1write This program writes a record to the external file and checks the File
Status Code.

ef1openi This program opens the external file for input and checks the File
Status Code.

ef1read This program reads a record from the external file and checks the File
Status Code.

ef1close This program closes the external file and checks the File Status Code.

128 COBOL/VSE Programming Guide

� The second is named effile and is placed in the File Section.

Fd ef1 Is External

Record Contains 8� Characters

Recording Mode F.

 �1 ef-record-1.

 �2 ef-item-1 Pic X(8�).

� The third is named efwrkstg and is placed in the Working-Storage Section.

�1 efs1 Pic 99 External.

 Identification Division.

 Program-ID.

 ef1.

 �

� This is the main program that controls the external file

 � processing.

 �

 Environment Division.

 Input-Output Section.

 File-Control.

 Copy efselect.

 Data Division.

 File Section.

 Copy effile.

 Working-Storage Section.

 Copy efwrkstg.

 Procedure Division.

 Call "ef1openo"

 Call "ef1write"

 Call "ef1close"

 Call "ef1openi"

 Call "ef1read"

If ef-record-1 = "First record" Then

Display "First record correct"

 Else

Display "First record incorrect"

Display "Expected: " "First record"

Display "Found : " ef-record-1

 End-If

 Call "ef1close"

 Goback.

End Program ef1.

Figure 43 (Part 1 of 4). Input/Output Using EXTERNAL Files

 Chapter 9. File Input/Output Overview 129

 Identification Division.

 Program-ID.

 ef1openo.

 �

� This program opens the external file for output.

 �

 Environment Division.

 Input-Output Section.

 File-Control.

 Copy efselect.

 Data Division.

 File Section.

 Copy effile.

 Working-Storage Section.

 Copy efwrkstg.

 Procedure Division.

Open Output ef1

If efs1 Not = �

Display "file status " efs1 " on open output"

 Stop Run

 End-If

 Goback.

End Program ef1openo.

 Identification Division.

 Program-ID.

 ef1write.

 �

� This program writes a record to the external file.

 �

 Environment Division.

 Input-Output Section.

 File-Control.

 Copy efselect.

 Data Division.

 File Section.

 Copy effile.

 Working-Storage Section.

 Copy efwrkstg.

 Procedure Division.

Move "First record" to ef-record-1

 Write ef-record-1

If efs1 Not = �

Display "file status " efs1 " on write"

 Stop Run

 End-If

 Goback.

End Program ef1write.

Figure 43 (Part 2 of 4). Input/Output Using EXTERNAL Files

130 COBOL/VSE Programming Guide

 Identification Division.

 Program-ID.

 ef1openi.

 �

� This program opens the external file for input.

 �

 Environment Division.

 Input-Output Section.

 File-Control.

 Copy efselect.

 Data Division.

 File Section.

 Copy effile.

 Working-Storage Section.

 Copy efwrkstg.

 Procedure Division.

Open Input ef1

If efs1 Not = �

Display "file status " efs1 " on open input"

 Stop Run

 End-If

 Goback.

End Program ef1openi.

 Identification Division.

 Program-ID.

 ef1read.

 �

� This program reads a record from the external file.

 �

 Environment Division.

 Input-Output Section.

 File-Control.

 Copy efselect.

 Data Division.

 File Section.

 Copy effile.

 Working-Storage Section.

 Copy efwrkstg.

 Procedure Division.

 Read ef1

If efs1 Not = �

Display "file status " efs1 " on read"

 Stop Run

 End-If

 Goback.

End Program ef1read.

Figure 43 (Part 3 of 4). Input/Output Using EXTERNAL Files

 Chapter 9. File Input/Output Overview 131

 Identification Division.

 Program-ID.

 ef1close.

 �

� This program closes the external file.

 �

 Environment Division.

 Input-Output Section.

 File-Control.

 Copy efselect.

 Data Division.

 File Section.

 Copy effile.

 Working-Storage Section.

 Copy efwrkstg.

 Procedure Division.

 Close ef1

If efs1 Not = �

Display "file status " efs1 " on close"

 Stop Run

 End-If

 Goback.

End Program ef1close.

Figure 43 (Part 4 of 4). Input/Output Using EXTERNAL Files

Checking for Input/Output Errors
After each input/output statement is executed for a file, the FILE STATUS key is
updated with a value that indicates the success or the failure of the operation.
Using a FILE STATUS clause, you can test the FILE STATUS key after each
input/output statement and set up error-handling procedures to use when a nonzero
file status code is returned. Checking the file status key is highly recommended.
For VSAM files, you can use a second data-name in the FILE STATUS clause to
get additional VSAM return code information.

For details on using the FILE-STATUS clause, see “File Status Key” on page 198.

Another way of handling input/output errors is to set up error/exception declaratives
as explained under “Input/Output Error Handling Techniques” on page 194.

132 COBOL/VSE Programming Guide

Chapter 10. Processing SAM Files

There are certain COBOL language statements needed to process Sequential
Access Method (SAM) files. After identifying and describing the SAM files in the
Environment and Data Divisions, you can process the records in these files in the
Procedure Division of your program.

SAM files are unkeyed files where the records are placed one after another,
according to entry order. Your program can process these files only sequentially;
that is, you can retrieve (READ) records in the same order as they exist in the file.
Each record is placed after the preceding record. After you have created a record,
you cannot change its length or its position in the file, and you cannot erase it. You
can, however, update SAM files on disk by using the REWRITE statement.

SAM files can be on unit-record, tape, or direct-access storage devices.

SAM processing is best for tables and intermediate storage.

For information on how SAM files are organized and how the system processes
them, see the VSE/ESA System Macros User's Guide.

COBOL Coding for SAM Files

Environment Division Entries for SAM Files
Use the FILE-CONTROL entry to define the files in your COBOL program to be
SAM files and to associate them with the filenames for the external files (an
external file name is the name by which a file is known to the operating system).
For example:

FILE-CONTROL.

 SELECT COMMUTER-FILE-MST

ASSIGN TO COMMUTR

ORGANIZATION IS SEQUENTIAL

ACCESS MODE IS SEQUENTIAL.

Your ASSIGN clause may include an “S-” before the name to document that the file
is a SAM file. For example:

ASSIGN TO S-COMMUTR

For files on disk or tape, the name in the ASSIGN clause (“COMMUTR” in this
example) is the same as that on the DLBL or TLBL JCL statement. This relates
the file in the program to the external file where the data resides. For more infor-
mation, see “Input-Output Section” on page 21.

For files on devices other than disk or tape, specify the SYSnnn format. For
example:

ASSIGN TO SYS�11-S-CARDIN

This example refers to an input device such as a card reader, which will be
assigned to SYS011 (using the JCL ASSGN statement) at run time.

 Copyright IBM Corp. 1983, 1998 133

For a full description of the syntax and parameters of the SELECT statement, see
the COBOL/VSE Language Reference. For a description of the JCL statements
used to relate program files with external data files, see VSE/ESA System Control
Statements.

Data Division Entries for SAM Files
In the FD entry, specify the record format and whether or not the records are
blocked. In the associated record description entry or entries, define the record-
name and record length.

You can explicitly specify a record format of F, V, S, or U in the RECORDING
MODE clause, or let COBOL determine the record format from the RECORD
clause or from the record descriptions associated with your FD entry for the file. If
you want the records to be blocked, you must specify the BLOCK CONTAINS
clause in your FD entry.

The following example shows how the FD entry may look for a file with fixed-length
records.

FILE SECTION.

 FD COMMUTER-FILE-MST

RECORDING MODE IS F

BLOCK CONTAINS � RECORDS

RECORD CONTAINS 8� CHARACTERS.

 �1 COMMUTER-RECORD-MST.

 �5 COMMUTER-NUMBER PIC X(16).

 �5 COMMUTER-DESCRIPTION PIC X(64).

The term logical record is used in a slightly different way in the COBOL language
and in SAM. For format-V and format-S files, the SAM logical record includes a
4-byte prefix before the user data portion of the record that is not included in the
definition of a COBOL logical record. For format-F and format-U files, the definitions
of SAM logical record and COBOL logical record are identical.

Fixed-Length Records (Format F)
Fixed-length records are in format F. You may specify RECORDING MODE F.

If you omit the RECORDING MODE clause, the compiler determines the recording
mode to be F, if:

The largest level-01 record associated with the file is not greater than the block
size specified in the BLOCK CONTAINS clause.

In addition, you must do one of the following:

� Use the RECORD CONTAINS integer clause (RECORD Clause Format 1).

When you use this clause, the file is always fixed format with record length
integer, even if there are multiple level-01 record description entries with dif-
ferent lengths associated with the file.

� Omit the RECORD CONTAINS integer clause, but specify all level-01 record
description entries associated with the file to be of the same fixed size, and
none contains an OCCURS DEPENDING ON clause. This fixed size is the
record length.

In an unblocked format-F file, the logical record is the same as the block.

134 COBOL/VSE Programming Guide

In a blocked format-F file, the number of logical records within a block (the blocking
factor) is constant for every block in the file, except the last block, which may be
shorter.

The layout of format-F records is shown in Figure 44 on page 135. See also
VSE/ESA System Macros User's Guide.

 Unblocked Record

┌───┐

│ Logical Record │

└───┘

�─────────────────── Fixed Length ────────────────────�

 Blocked Records

┌─────────────────┬─────────────────┬─────────────────┐

│ Logical │ Logical │ Logical │

│ Record │ Record │ Record │

└─────────────────┴─────────────────┴─────────────────┘

�─────────────────── Fixed Length ────────────────────�

Figure 44. Format-F Records and Blocks

Variable-Length Records (Format V or D)
Variable-length records can be in format V or format D. Format-D records are
variable-length records on ASCII tape files. Format-D records are processed in the
same way as format-V records; use RECORDING MODE V for both.

If you omit the RECORDING MODE clause, the compiler determines the recording
mode to be V if:

The largest level-01 record associated with the file is not greater than the block
size specified in the BLOCK CONTAINS clause.

In addition, you must also do one of the following:

� Use the RECORD IS VARYING clause (RECORD Clause Format 3).

� Use the RECORD CONTAINS integer-1 TO integer-2 clause (RECORD Clause
Format 2) with integer-1 the minimum length and integer-2 the maximum length
of the level-01 records associated with the file.

� Omit the RECORD clause, but specify multiple level-01 records (associated
with the file) that are of different sizes, or some of which contain an OCCURS
DEPENDING ON clause.

The RECORD clause is sensitive to the CMPR2 compiler option. See COBOL/VSE
Migration Guide for more information on VS COBOL II Release 2 compatibility and
migration.

Format-V records have control fields preceding your data. The control fields are
shown in Figure 45 on page 136. Please note how the SAM logical record length
is determined by adding 4 bytes (for the control fields) to the record length that is
defined in your program. Your program must not include these 4 bytes in its
description of the record and record length.

 Chapter 10. Processing SAM Files 135

│�─── Block Size ───�│

│�─ SAM Logical Record ──────�│

│ │�── Data Record ──�│

│ │ (Level-�1 Record) │

 4 4 Variable 4 Variable

 bytes bytes bytes bytes bytes

┌────┬────┬────┬────┬───────────────────┬────┬────┬────────┐

│ LL │ BB │ ll │ bb │ Data │ ll │ bb │ Data │

└────┴────┴────┴────┴───────────────────┴────┴────┴────────┘

 'CC' 'cc' 'cc'

Figure 45. Format-V Records and Blocks

CC The first 4 bytes of each block contain control information.

LL Represents 2 bytes designating the length of the block (including the 'CC'

field).

BB
Represents 2 bytes reserved for system use.

cc The first 4 bytes of each SAM logical record contain control information.

ll Represents 2 bytes designating the SAM logical record length (including
the 'cc' field).

bb Represents 2 bytes reserved for system use.

For unblocked format-V records, the length of the block is:

CC + cc + the data portion.

For blocked format-V records, the length of the block is:

CC + the cc of each record + the data portion of each record.

The operating system provides the control bytes when the file is written; the control
byte fields do not appear in your description of the logical record in the Data Divi-
sion of your program. COBOL allocates input and output buffers large enough to
accommodate the control bytes. These control fields in the buffer are not available
for you to use in your program. When variable-length records are written on unit-
record devices, control bytes are neither printed nor punched. They appear,
however, on other external storage devices, as well as in buffer areas of storage. If
you move V-mode records from an input buffer to a working-storage area, they will
be moved without the control bytes.

By specifying a READ INTO statement for a format-V file, the record size read for
that file is used in the MOVE statement generated by the compiler. Consequently,
you may not get the result you expect if the record just read does not correspond to
the level-01 record description. All other rules of the MOVE statement apply. For
example, when you specify a MOVE statement for a format-V record read in by the
READ statement, the size of the record moved corresponds to its level-01 record
description.

136 COBOL/VSE Programming Guide

Spanned Records (Format S)
Spanned records are in format S. A spanned record is a logical record that can be
contained in one or more physical blocks. You can specify RECORDING MODE S
for spanned records in SAM files assigned to magnetic tape or to direct-access
devices.

If you use VSE/VSAM you should note that the VSE/VSAM Space Management for
SAM Feature does not support the spanned record format.

If you omit the RECORDING MODE clause in the FD entry, the compiler deter-
mines the recording mode to be S, if:

The maximum record length plus 4 is greater than the block size specified in
the BLOCK CONTAINS clause.

When you are creating files containing format-S records, if a record is larger than
the remaining space in a block, a segment of the record is written to fill the block,
and the rest of the record is stored in the next block or blocks, depending on its
length.

When you are retrieving files with format-S records, your program can only retrieve
complete records.

Spanned records are preceded by control fields, as shown in Figure 46.

4 bytes│4 bytes Variable bytes

 ┌────┬────┬────┬────┬────────────────────────┐

│ LL │ BB │ ll │ bb │ Data Record or Segment │

 └────┴────┴────┴────┴────────────────────────┘

 BDF SDF

 Block Segment

 Descriptor Descriptor

 Field Field

Figure 46. Format-S Records

Each block is preceded by a block descriptor field (BDF). There is only one block
descriptor field at the beginning of each physical block.

Each segment of a record in a block, even if the segment is the entire record, is
preceded by a segment descriptor field (SDF). There is one segment descriptor
field for each record segment within the block. The segment descriptor field also
indicates whether the segment is the first, the last, or an intermediate segment.

You do not describe these fields in the Data Division of your COBOL program, and
the fields are not available for you to use in your program.

A spanned blocked file is a file including fixed-length physical blocks that you
define. The logical records can be either fixed or variable in length and their size
may be smaller than, equal to, or larger than the physical block size. There are no
required relationships between logical records and physical block sizes.

A spanned unblocked file is a file made up of physical blocks, each containing one
logical record or one segment of a logical record. The logical records may be
either fixed or variable in length. When the physical block contains one logical
record, the block length is determined by the logical record size. When a logical

 Chapter 10. Processing SAM Files 137

record has to be segmented, the system always writes the largest physical block
possible. The system segments the logical record when the entire logical record
cannot fit on a track.

You can efficiently use external storage and still organize your files with logical
record lengths by defining files with format-S records.

� You can specify block lengths to efficiently use track capacities on direct-
access devices.

� You are not required to adjust the logical record lengths to device-dependent
physical block lengths. One logical record can span two or more physical
blocks.

� You have greater flexibility when you want to transfer logical records between
direct-access storage types.

� You will, however, have additional overhead in processing format-S files.

By specifying a READ INTO statement for a format-S file, the record size just read
for that file is used in the MOVE statement generated by the compiler. Conse-
quently, you may not get the result you expect if the record just read does not cor-
respond to the level-01 record description. All other rules of the MOVE statement
apply.

Undefined Records (Format U)
Format-U records have undefined or unspecified characteristics. With format U,
you can process blocks that do not meet format-F or format-V specifications.

The compiler determines the recording mode to be U only if you specify
RECORDING MODE U.

The record length is determined in your program based on how you use the
RECORD clause. If you:

� Use the RECORD CONTAINS integer clause (RECORD Clause Format 1).

The record length is the value specified for integer, regardless of the lengths of
the level-01 record description entries associated with the file.

� Use the RECORD IS VARYING clause (RECORD Clause Format 3).

If you specify values for integer-1 and integer-2 (RECORD IS VARYING FROM
integer-1 TO integer-2), the maximum record length is the value specified for
integer-2, regardless of the lengths of the level-01 record description entries
associated with the file. If you omit integer-1 and integer-2, the maximum
record length is determined to be the size of the largest level-01 record
description entry associated with the file.

� Use the RECORD CONTAINS integer-1 TO integer-2 clause (RECORD Clause
Format 2) with integer-1 and integer-2 matching the minimum length and the
maximum length of the level-01 record description entries associated with the
file.

The maximum record length is the value specified for integer-2.

� Omit the RECORD clause.

The maximum record length is determined to be the size of the largest level-01
record description entry associated with the file.

138 COBOL/VSE Programming Guide

Each block on external storage is treated as a logical record; there are no record-
length or block-length fields. Format-U records are shown in Figure 47 on
page 139.

 �───────────────── Physical Block ───────────────────�

 ┌──┐

 │ Logical Record │

 └──┘

Figure 47. Format-U Records

When you specify a READ INTO statement for a format-U file, the size of the
record just read for that file is used in the MOVE statement generated by the com-
piler. Consequently, you may not get the result you expect if the record just read
does not correspond to the level-01 record description. All other rules of the MOVE
statement apply.

 Block Sizes
In a COBOL program, you establish the size of a physical record with the BLOCK
CONTAINS clause. If you do not use this clause, the compiler assumes that the
records are not blocked. Blocking SAM files on disk or tape can enhance proc-
essing speed and minimize storage requirements.

If you specify the block size explicitly in the BLOCK CONTAINS clause, it must not
be greater than the maximum block size for the device. The block size specified
for a format-F file must be an integral multiple of the record length.

If your program uses SAM files on tape, use a physical block size of at least 12 to
18 bytes. Otherwise, the block will be treated as “noise” and skipped over when a
parity check occurs while:

Reading a block of records of fewer than 12 bytes

Writing a block of records of fewer than 18 bytes

If you use the VSE/VSAM Space Management for SAM Feature to process a SAM
ESDS file, the BLOCK CONTAINS clause is sensitive to the CMPR2 compiler
option. When a program compiled with the CMPR2 compiler option accesses a
previously implicitly or explicitly defined SAM ESDS file, the block size is deter-
mined from the BLOCK CONTAINS clause, unless BLOCK CONTAINS 0 is speci-
fied. When a program compiled with the NOCMPR2 compiler option opens a
previously implicitly or explicitly defined SAM ESDS file, the block size of the file is
determined from the VSE/VSAM catalog. For more information, see COBOL/VSE
Migration Guide.

BLOCK CONTAINS 0: If your program uses files assigned to direct-access
storage devices, it may be more flexible if you code BLOCK CONTAINS 0 in your
source program and set the block size at run time in the DLBL statement by using
the BLKSIZE parameter. For information about specifying the block size in the
DLBL statement of your JCL, see “Job Control Language for SAM Files” on
page 142.

If you use VSE/VSAM and the VSE/VSAM Space Management for SAM Feature,
you may also benefit from coding BLOCK CONTAINS 0 in your source program.

 Chapter 10. Processing SAM Files 139

COBOL/VSE will attempt to determine the block size from the VSAM catalog at
OPEN time.

BLOCK CONTAINS 0 should not be specified for:

� Files assigned to tape devices

� Files with fixed-length records, opened as I-O, unless the file is a previously
defined SAM ESDS file

The BLOCK CONTAINS clause is ignored for files assigned to unit-record devices.

Block size for ASCII files: If you specify the BLOCK CONTAINS clause for an
ASCII sequential file that has a block prefix, be sure to indicate the length of the
block prefix in the block size you specify.

Availability of SAM Files
A SAM file is available if one of the following conditions is true:

� If the file resides on a direct-access storage device, a DLBL statement is
present for the file, and there is a corresponding VTOC entry for the file, or, for
a SAM ESDS file created using the VSE/VSAM Space Management for SAM
Feature, there is a corresponding entry in the VSAM catalog.

� If the file does not reside on a direct-access storage device, the system logical
unit number specified in the ASSIGN clause is assigned to a valid input device.

If a SAM file is unavailable and the COBOL language defines that the file be
created (such as an OPTIONAL file being opened as I-O), COBOL/VSE will create
the file using the file information provided by your JCL.

If you attempt to create a SAM file which resides on a direct-access storage device
and you have not coded a DLBL statement for the file, the following will occur:

� If you have coded an ERROR declarative procedure in your program for the
SAM file, that procedure will be given control.

� If you have defined a file status key for the file, it will be set to 96.

� If you have not defined a file status key, and you did not code an ERROR
declarative, then your program will abend.

If you attempt to create a SAM file, and the system logical unit number for the file
has been assigned to UA, the following will occur:

� If you have coded an ERROR declarative procedure in your program for the
SAM file, that procedure will be given control.

� If you have defined a file status key for the file, it will be set to 90.

� If you have not defined a file status key, and you did not code an ERROR
declarative, then your program will abend.

A SAM file opened in INPUT mode is unavailable if one of the following conditions
is true:

� If the file resides on a direct-address storage device, a DLBL statement is
present for the file, and there is no corresponding VTOC entry.

140 COBOL/VSE Programming Guide

� If the system logical unit number specified in the ASSGN clause, or on the
EXTENT statement for a SAM file on a direct-access storage device, is
assigned to UA.

The behavior for handling unavailable files is different if the CMPR2 compiler option
is in effect. See COBOL/VSE Migration Guide.

Creating SAM Files
When you create a SAM file, use your run-time JCL to:

� Select the type of input/output device to be allocated for the file.

For a direct-access storage device or a diskette device, use the DLBL JCL
statement.

For a magnetic tape device, use the TLBL JCL statement.

For a unit-record device or unlabeled tape, use the ASSGN JCL statement.

� Name the file using the file-ID (file-identifier) parameter of the DLBL or TLBL
JCL statement.

� Give instructions for the volume on which the file will reside and for volume
mounting.

For a direct-access storage device or a diskette device, use the EXTENT
and ASSGN JCL statements.

For a magnetic tape device, use the volume serial number parameter of the
TLBL JCL statement, or let the system choose an output volume.

� For direct-access storage devices or a diskette device, allocate the type and
amount of space the file needs. To do this, use the EXTENT JCL statement.

For a SAM ESDS file, created using the VSE/VSAM Space Management for
SAM Feature, you may alternatively use the RECORDS and RECSIZE parame-
ters of the DLBL JCL statement.

� For a SAM ESDS file, indicate whether you want to keep or delete the file after
it is closed. To do this, use the DISP parameter of the DLBL JCL statement.

� For a direct-access storage device, specify a different block size than that
coded in your program. To do this, use the BLKSIZE parameter of the DLBL
JCL statement.

This parameter does not apply to SAM ESDS files.

Retrieving SAM Files
You retrieve SAM files by using job control statements.

SAM ESDS files
Some file information, such as volume, space, and block size, is stored in the
VSAM catalog. In this case, all you have to specify in the DLBL statement are
the file-ID, the catalog name (if not your installation default catalog), and the
disposition (DISP parameter).

Other SAM files
For a file which resides on a direct-access storage device or a diskette device,
some information, such as space, is stored in the volume table of contents
(VTOC), but you must specify the volume information as well as the file-ID.

 Chapter 10. Processing SAM Files 141

For a file which resides on a magnetic tape device, you must specify the unit
and volume information, as well as the file-ID.

For a file which resides on a unit-record device, you must specify the unit infor-
mation.

Job Control Language for SAM Files
Some of the information about the SAM file must always be specified in the
FILE-CONTROL entry, the FD entry, and other COBOL clauses. Other information
must be specified in the JCL statement for output files. For input files, the system
can obtain information from the VTOC (for direct-access storage devices or diskette
devices), or the VSE/VSAM catalog (for SAM ESDS files).

Certain characteristics of SAM files cannot be expressed in the COBOL language,
but they may be specified in the JCL statements.

For files which reside on direct-access storage devices, code the parameters of the
DLBL JCL statement to specify information about the file, including:

� Block size (BLKSIZE=), if BLOCK CONTAINS 0 RECORDS was specified at
compile time. This parameter can be used to specify a block size for SAM files.
For SAM ESDS files the block size will be determined from the VSAM catalog,
if the file has been previously defined.

Note that, for output files with fixed-length records, the BLKSIZE parameter
must be 8 + a multiple of the record length.

� Block size (BLKSIZE=) for a file opened as OUTPUT if you want to replace the
block size specified in the BLOCK CONTAINS clause in your program. If you
specify the BLKSIZE parameter in your DLBL JCL statement, VSE, and conse-
quently COBOL/VSE, will use the block size from the BLKSIZE parameter and
not the block size specified in your program. For SAM ESDS files the block size
will be determined from the VSAM catalog and not from your program, if the file
has been previously defined and your program was compiled with the
NOCMPR2 compiler option.

� Disposition (DISP=OLD), if you wish to add records to a SAM ESDS file, or
magnetic tape file, which you previously created.

Ensuring File Attributes Match Your Program
When the fixed file attributes specified in the JCL statements, the VTOC, or the
VSE/VSAM catalog (SAM ESDS) for a file and the attributes specified for that file in
the SELECT and FD statements of your COBOL program are not consistent, an
OPEN statement in your program may not execute successfully. Mismatches in the
attributes for file organization, record format (fixed or variable), or record length
result in a file status code 39, and the OPEN statement fails.

To prevent common file status 39 problems, follow these guidelines:

Processing Existing Files: When your program processes an existing file, code
the description of the file in your COBOL program to be consistent with the file
attributes of the file. For format-V or format-S files, the maximum record length
specified in your program must be exactly 4 bytes smaller than the length attribute
of the file. For format-F files, the record length specified in your program must
exactly match the length attribute of the file. For format-U files, the maximum

142 COBOL/VSE Programming Guide

record length specified in your program must exactly match the length attribute of
the file.

For details on how logical record lengths are determined from the FD entry and
record descriptions in your program, see “Variable-Length Records (Format V or
D)” on page 135, “Fixed-Length Records (Format F)” on page 134, and “Undefined
Records (Format U)” on page 138.

The easiest way to define variable-length records in your program is to use
RECORD IS VARYING FROM integer-1 TO integer-2 in the FD entry and specify
an appropriate value for integer-2. For example, assume that you have determined
the length attribute of the file to be 104. Keeping in mind that the maximum record
length is determined from the RECORD IS VARYING clause (in which values are
specified) and not from the level-01 record descriptions, you could define a
format-V file in your program with this code:

FILE SECTION.

FD COMMUTER-FILE-MST

RECORDING MODE IS V

RECORD IS VARYING FROM 4 TO 1�� CHARACTERS.

�1 COMMUTER-RECORD-A PIC X(4).

�1 COMMUTER-RECORD-B PIC X(75).

Assume that the existing file in the previous example was format-U instead of
format-V. If the 104 bytes are all user data, you could define the file in your
program with this code:

FILE SECTION.

FD COMMUTER-FILE-MST

RECORDING MODE IS U

RECORD IS VARYING FROM 4 TO 1�4 CHARACTERS.

�1 COMMUTER-RECORD-A PIC X(4).

�1 COMMUTER-RECORD-B PIC X(75).

To define fixed-length records in your program, use either the RECORD CON-
TAINS integer clause, or omit this clause and specify all level-01 record
descriptions to be the same fixed size. In either case, use a value that equals the
value of the length attribute of the file. An alternative way to avoid record length
conflicts for SAM ESDS files with fixed-length records is to simply code RECORD
CONTAINS 0.

Processing New Files: When your COBOL program will write records to a new
file, ensure that the file attributes you specify in the JCL statements do not conflict
with the attributes you have specified in your program. For example, if you use the
BLKSIZE parameter of the DLBL JCL statement to specify the block size of a file
with fixed-length records, being opened as OUTPUT, the block size must be 8 + a
multiple of the record length.

Processing Printer Files: When your COBOL program will write records to a
printer file, ensure that the record length is not larger than the maximum record
length allowed by the device to which the file is assigned. For example, the largest
record length that may be specified for printer file assigned to a 1403 printer is 132
bytes. One byte is added to the record length to account for the printer control
character. If you specify the NOADV compiler option when you compile your
program, the maximum record length you may specify in your program is 133
bytes. For information about the maximum record lengths allowed for printer

 Chapter 10. Processing SAM Files 143

devices, see the description of the DTFPR system macro in VSE/ESA System
Macros Reference.

Coding Input/Output Statements for SAM Files
Code the following input/output statements to process a SAM file:

OPEN
Makes the file available to your program.

For all SAM files, you can open the file as INPUT or OUTPUT (depending on
device capabilities).

For direct-access storage SAM files, you can also open the file as I-O.

READ
Reads a record from the file.

With sequential processing, your program reads one record after another in the
same order in which they were entered when the file was created.

WRITE
Creates a record in the file.

Your program writes new records at the end of the file.

REWRITE
Updates a record.

CLOSE
Releases the connection between the file and your program.

For the complete syntax of COBOL/VSE statements, see COBOL/VSE Language
Reference.

Error Processing for SAM
When an input/output statement operation fails, COBOL/VSE will not perform cor-
rective action for you. You choose whether or not your program will continue exe-
cuting after a less-than-severe input/output error occurs. COBOL/VSE provides
these techniques for intercepting and handling certain SAM input/output errors:

The end-of-file phrase (AT END)
The EXCEPTION/ERROR declarative
The FILE STATUS clause
The INVALID KEY phrase

If you do not specify a file status key or you do not code a declarative, then a
serious input/output processing error will cause your program to abend.

For details on detecting input/output processing problems, see “Input/Output Error
Handling Techniques” on page 194.

Opening a SAM File
Before it can use any READ, WRITE or REWRITE statements to process records
in a file, your program must first open the file with an OPEN statement. The con-
cepts of file availability and optional files affect OPEN processing, file creation, and
file status codes 05, 35, and 96.

144 COBOL/VSE Programming Guide

Note: Optional files are files that are not necessarily present each time the
program is executed. You can define files opened in INPUT and I-O mode as
optional by defining them with the SELECT OPTIONAL phrase in the
FILE-CONTROL paragraph of your program.

An OPEN statement can execute successfully if the file is available. A file is con-
sidered to be available when it has been identified to the operating system with a
file name definition. Without a file name definition, a file is not dynamically created.

For additional information on file availability and creation, see the availability topic
under “Availability of SAM Files” on page 140

An OPEN operation executes successfully only when the fixed file attributes speci-
fied in the JCL statements, the VTOC, or the VSE/VSAM catalog (SAM ESDS) for
a file and the attributes specified for that file in the SELECT and FD statements of
your COBOL program are consistent. Mismatches in the attributes for file organiza-
tion, the code set, the maximum record size, or the record type (fixed or variable)
result in a file status code 39 and the OPEN statement fails.

Preventing the Reopening of a File during Program Execution: Specify
CLOSE WITH LOCK so that the file cannot be opened again during program exe-
cution.

Processing Tape Files in Reverse Order: Use the REVERSED option of the
OPEN statement. The OPEN statement does not reposition the file. Prior to the
OPEN statement, the file should be positioned correctly. Subsequent READ state-
ments read the data records in reverse order, starting with the last record.

SAM OPEN NO REWIND: OPEN NO REWIND is supported only for tape files.
When the NO REWIND phrase is specified, the OPEN statement does not cause
the file to be repositioned. The use of the NO REWIND phrase causes the file to be
OPENed at the current file pointer.

OPEN NO REWIND for disk files is not supported. If coded, the phrase is ignored
when the file is OPENed.

Processing Multiple Tape Files
The MULTIPLE FILE TAPE clause of the I-O-CONTROL paragraph is syntax-
checked, but has no effect on the execution of the program. Use the file-sequence-
number of the TLBL JCL statement to specify the position of a file on a multiple file
tape. If the tape is unlabeled, use the NO REWIND option of the OPEN and
CLOSE statements to ensure the tape is correctly positioned.

Adding Records to a SAM File
You cannot add to a SAM file by opening the file as EXTEND. If you attempt to
open a SAM file as EXTEND you will cause the following to occur:

1. If you have coded an ERROR declarative procedure in your program for the
SAM file, that procedure will be given control.

2. If you have defined a file status key for the file, it will be set to 37.

3. If none of the above has been done, your program will abend.

 Chapter 10. Processing SAM Files 145

You can, however, use VSE system services to add records to a SAM ESDS file,
or a magnetic tape file. To do this, specify a disposition of OLD on the DLBL, or a
disposition of OLD or MOD on the TLBL JCL statement for the file, open the file as
OUTPUT, and use the WRITE statement to add records immediately after the last
record in the file.

If you want to add records to a file opened as I-O, you must close the file and open
it as OUTPUT.

Updating a SAM File
You can only update SAM files that reside on direct-access storage devices.

You can replace an existing record with another record of the same length by:

� Opening the file as I-O

� Using REWRITE to update an existing record in the file. (The last file proc-
essing statement before REWRITE must have been a successful READ state-
ment.)

Writing Your File to a Printer or VSE/POWER Spool File
Controlling the Size of Your Printed Page: You can use the LINAGE clause of
the FD entry to control the size of your printed page. In the LINAGE clause, you
set the number of lines in the top and bottom margins and in the footing area of the
page. When you use the LINAGE clause, COBOL treats the file as if you had also
specified the ADV compiler option.

If you use the LINAGE clause in combination with WRITE BEFORE/AFTER
ADVANCING nn LINES, be careful about the values you set. With the
ADVANCING nn LINES clause, COBOL first calculates the sum of
LINAGE-COUNTER plus nn. Subsequent actions depend on the size of nn. The
END-OF-PAGE imperative statement is executed after the LINAGE-COUNTER is
increased. Consequently, the LINAGE-COUNTER could be pointing to the next
logical page instead of to the current footing area when the END-OF-PAGE state-
ment is executed.

Note that any AT END-OF-PAGE or NOT AT END-OF-PAGE imperative statements
are executed only if the write operation completes successfully. If the WRITE oper-
ation is unsuccessful, control is passed to the end of the WRITE statement, omit-
ting all conditional phrases.

If you use the END-OF-PAGE phrase without the LINAGE clause, the
END-OF-PAGE condition exists when channel 12 is sensed (defined either in the
FCB or on the carriage control tape). The printer file must be defined as an
unblocked, single-buffered file (RESERVE 1 AREA and no BLOCK CONTAINS
clause). You should ensure that every WRITE statement in the program using the
ADVANCING option advances the printer only one line at a time; otherwise,
channel 12 may not be sensed and results may be unpredictable.

Controlling the Vertical Positioning of Records You Write: Use the WRITE
ADVANCING statement to control the vertical positioning of each record you write
on a printed page.

BEFORE ADVANCING prints the record before the page is advanced
AFTER ADVANCING prints the record after the page is advanced

146 COBOL/VSE Programming Guide

Specify the number of lines the page is advanced with an integer (or an identifier
with a mnemonic-name) following ADVANCING. If you omit the ADVANCING
option from your WRITE statement, you get the equivalent of:

AFTER ADVANCING 1 LINE

Segmenting Your Printer Files: If you use the VSE/POWER SEGMENT macro
to segment your printer file, you should close the file before issuing the SEGMENT
macro, and then reopen the file. This will ensure that all records written to the file
are received by VSE/POWER before the file is segmented. If you do not close the
file, not all records written may appear in the correct segment of the VSE/POWER
output.

Alternatively, if the file is defined as single-buffered (RESERVE 1 AREA) and
unblocked, all records will be written to the file before the file is segmented and will
appear in the correct segment of the VSE/POWER output.

If you use the DISPLAY verb to direct output to SYSLST and concurrently use
WRITE ... ADVANCING to a file also assigned to SYSLST, or you use WRITE ...
ADVANCING to write to multiple files which are assigned to SYSLST, you should
also define the files as single-buffered and unblocked to ensure the records are
written in the correct order.

Closing a SAM File
Use the CLOSE statement to disconnect your program from the SAM file. If you try
to close a file that is already closed, you will get a logic error.

Certain options which may be specified on the COBOL/VSE CLOSE statement are
invalid for certain device types in VSE. These are indicated in the following chart.

 Sequential Sequential

 Disk Tape

 CLOSE Statement Format Unit Record Files Files

 CLOSE

 CLOSE REEL/UNIT X

 CLOSE REEL/UNIT WITH X X

 REWIND

 CLOSE REEL/UNIT FOR X X

 REMOVAL

 CLOSE WITH NO REWIND X

 CLOSE WITH LOCK

" X " means option is invalid for device type.

In instances where such invalid options are specified, the CLOSE statement is
processed and a file-status set to indicate the invalid option.

Automatic Closing of Files: If you neglect to close a SAM file in your application,
the file is automatically closed for you under the following conditions:

� At the termination of the run unit (STOP RUN, or GOBACK from the main
program) all open files defined in any COBOL/VSE program within the run unit
are closed, both SAM and VSAM.

� At abnormal termination of the run unit (when the LE/VSE run-time option
TRAP(ON) is in effect), all open files defined in any COBOL/VSE program
within the run unit are closed, both SAM and VSAM.

 Chapter 10. Processing SAM Files 147

� When CANCEL is used for a COBOL/VSE subprogram, any open nonexternal
files defined in that subprogram are closed.

� When a COBOL/VSE subprogram with the INITIAL attribute returns control, any
open nonexternal files defined in that subprogram are closed.

File status codes are set when these implicit CLOSE operations are performed, but
EXCEPTION/ERROR declaratives are not invoked. Also, LABEL declaratives are
not invoked when implicit CLOSE operations are performed.

Processing Labels for SAM Files
Labels can be used to identify magnetic-tape and direct-access volumes. The
labels are used to locate the files and are identified and verified by label processing
routines of the operating system.

There are two different kinds of labels: standard and nonstandard. Nonstandard
user labels are not supported by COBOL/VSE.

Standard labels consist of volume labels and groups of file labels. The volume
label group precedes or follows data on the volume; it identifies and describes the
volume. The file label groups precede or follow each file on the volume, and iden-
tify and describe the file.

� The file labels that precede the file are called header labels.

� The file labels that follow the file are called trailer labels. They are similar to
the header labels, except that they also contain a count of blocks in the file.

� The file label groups can optionally include standard user labels.

� The volume label groups can optionally include standard user labels.

Standard Label Format
Standard labels are 80-character records that are recorded in EBCDIC or ASCII.
The first 4 characters are always used to identify the labels. Figure 48 shows what
these identifiers are for tape.

The format of the direct-access volume label is the same as the format of the tape
volume label group, except that on each volume a file occupies, the initial file label
contains file control information. This information appears in the volume table of
contents (VTOC) and contains the equivalent of the tape file header and trailer
information, in addition to space allocation and other control information.

Figure 48. Identifiers for Tape Labels

Identifier Description

VOL1 Volume label

HDR1 or HDR2 File header labels

EOV1 or EOV2 File trailer labels (end-of-volume)

EOF1 or EOF2 File trailer labels (end-of-file)

UHL1 to UHL8 User header labels

UTL1 to UTL8 User trailer labels

148 COBOL/VSE Programming Guide

Standard User Labels
Standard user labels contain user-specified information about the associated file.
User labels are optional within the standard label groups. The format used for user
header labels (UHL1-8) and user trailer labels (UTL1-8) consists of a label 80 char-
acters in length recorded in:

EBCDIC on DASD or on IBM standard labelled tapes
ASCII on ANSI/ISO/FIPS labelled tapes

The first 3 bytes consist of the characters that identify the label:

UHL for a user header label (at the beginning of a file)
UTL for a user trailer label (at the end-of-volume or end-of-file)

The next byte contains the relative position of this label within a set of labels of the
same type. From 1 through 8 labels are permitted.

The remaining 76 bytes consist of user-specified information.

Trailer and Header Labels: User labels are generally created, examined, or
updated when the beginning or end of a file or volume (reel) is reached. End- or
beginning-of-volume exits are allowed (that is, intermediate trailers and headers
may be created or examined).

Trailer labels for files opened as INPUT or I-O are processed when the file has
reached AT END condition. You can create, examine, or update up to eight header
labels and eight trailer labels on each volume of the file. These labels reside on
the initial volume of a multivolume file on a direct-access storage device.

User-Label Track: For direct-access storage volumes, LIOCS writes standard
user labels on the first track of your file's first (or only) extent on each volume. The
user-label track will contain both user header and user trailer labels.

 LABEL Declarative
The USE AFTER LABEL declarative provides label handling procedures at the
COBOL source level for handling user labels. The AFTER option indicates proc-
essing of standard user labels. List the labels as data-names in the LABEL
RECORDS clause in the File Description entry for the file.

When the file is opened as:

INPUT
The label is read and control is passed to the LABEL declarative if a
USE . . . LABEL declarative is specified for the OPEN option or for the file.

OUTPUT
A buffer area for the label is provided and control is passed to the LABEL
declarative, if a USE . . . LABEL declarative is specified for the OPEN option or
for the file.

INPUT or I-O
Control is passed to the LABEL declarative for processing trailer labels when a
CLOSE statement is executed for the file that has reached the AT END condi-
tion.

 Chapter 10. Processing SAM Files 149

A special exit may be specified by the statement GO TO MORE-LABELS. When
an exit is made from a label declarative section by means of this statement, the
system will do one of the following:

� Write the current beginning or ending label and then reenter the USE section at
its beginning for further creating of labels. After creating the last label, you
must exit by executing the last statement of the section.

� Read an additional beginning or ending label, and then reenter the USE section
at its beginning for further checking of labels. When processing user labels,
the section will be reentered only if there is another user label to check.
Hence, a program path that flows through the last statement in the section is
not needed.

If a GO TO MORE-LABELS statement is not executed for a user label, the declar-
ative section is not reentered to check or create any immediately succeeding user
labels.

Processing SAM ASCII Tape Files
If your program processes an ASCII SAM tape file, you must:

� Specify the ASCII alphabet
� Specify the record formats
� Define the block length

In addition, if your program processes numeric data items from ASCII files, you
should use the separately signed numeric data type (SIGN IS LEADING SEPA-
RATE).

Specify the ASCII Alphabet
In the SPECIAL-NAMES paragraph, specify:

ALPHABET-NAME IS STANDARD-1

In the FD statement for the file, specify:

CODE-SET IS ALPHABET-NAME

Note: STANDARD-1 means ASCII.

Specify the Record Formats
You can process SAM ASCII tape files with these record formats:

Fixed-Length (format F)
Undefined (format U)
Variable-length (format V)

If you are using variable-length records, you cannot explicitly code format D.
Instead, specify RECORDING MODE V. The format information is internally con-
verted to D mode. D-mode records have a 4-byte record descriptor for each
record.

150 COBOL/VSE Programming Guide

Process ASCII File Labels
Standard label processing for ASCII files is no different from standard label proc-
essing for EBCDIC files. The system translates ASCII code into EBCDIC before
processing.

All ANS user labels are optional. ASCII files may have user header labels (UHLn)
and user trailer labels (UTLn). There is no limit to the number of user labels at the
beginning and the end of a file. You can write as many labels as you need. All
user labels must be 80 bytes in length. You may not use USE BEFORE
STANDARD LABEL procedures.

To create or verify user labels (user label exit), code a USE AFTER STANDARD
LABEL procedure.

ASCII files on tape may have:

 ANS labels
ANS and user labels

 No labels

Any labels on an ASCII tape must be in ASCII code. Tapes containing a combina-
tion of ASCII and EBCDIC cannot be read.

Processing SAM 3540-Diskette Unit Files
COBOL/VSE supports 3540 Diskette unit file management. The 3540 diskette unit
is quite different from standard direct-access devices. The physical characteristics
on the device include:

1. The 3540 diskette is divided into character sectors, with each sector containing
128 characters.

2. Each logical record may occupy no more than one sector, and may be from 1
to 128 characters long.

3. All records in the file must be the same size. Only fixed-length records can
reside on a 3540 diskette.

4. Blocking factors can only be 1, 2, 13, or 26 records.

If your program processes a 3540 Diskette unit file, you should be aware of the
physical characteristics of the device when you code your:

Data Division entries

 Input/Output statements

 Chapter 10. Processing SAM Files 151

Chapter 11. Processing VSAM Files

Virtual Storage Access Method (VSAM) is an access method for files on direct-
access storage devices. The basic ways to use VSAM are:

To load a file
To retrieve records from a file
To update a file

VSAM processing has some advantages over SAM:

� Data can be protected against unauthorized access

 � Cross-system compatibility

� Device independence (no need to be concerned with block size and other
control information) is provided

� JCL for COBOL programs using VSAM files is simpler (information needed by
the system is provided in the VSAM catalog)

VSAM processing is the only way for your COBOL/VSE program to use indexed or
relative file organizations.

This chapter provides a brief introduction to VSAM file organization and access
modes, describes the coding your COBOL programs need to identify and process
VSAM files, and explains how VSAM files must be defined and identified to the
operating system before your program can process them.

If you have complex requirements, or are going to be a frequent user of VSAM, you
should review the VSE/VSAM publications. A list of these is given in “Bibliography”
on page 448.

 VSAM Terminology
VSAM and COBOL use slightly different terminology when referring to files. For
example, file organization refers to sequential, indexed, and relative files. The cor-
responding VSAM names are: entry-sequenced, key-sequenced, and relative-
record files. The term file in the following discussion may refer either to a COBOL
file or to a VSAM file.

Figure 49 shows some examples of how VSAM terminology is different from the
terminology used for SAM files.

Figure 49 (Page 1 of 2). VSAM Terminology

VSAM Term Similar Non-VSAM Term

ESDS SAM file

KSDS ISAM file

RRDS DAM file

Control interval size (CISZ) Block size

Buffers (BUFNI/BUFND) BUFNO

Access Method Control Block (ACB) Define The File (DTF)

152 Copyright IBM Corp. 1983, 1998

Figure 49 (Page 2 of 2). VSAM Terminology

VSAM Term Similar Non-VSAM Term

Cluster (CL) File

Cluster Definition File allocation

Record size Record length

VSAM File Organization
The physical organization of VSAM files differs considerably from those used by
other access methods. VSAM files are held in control intervals and control areas;
the size of these is normally determined by the access method, and the way in
which they are used is not visible to you.

There are three types of file organization you can use with VSAM (see Figure 50
on page 155 for a comparison):

VSAM sequential file organization
Also referred to as VSAM ESDS (Entry-Sequenced Data Set) organization.

VSAM indexed file organization
Also referred to as VSAM KSDS (Key-Sequenced Data Set) organization.

VSAM relative file organization
Also referred to as VSAM fixed-length or variable-length RRDS (Relative-
Record Data Set) organization.

Note: Throughout this book, the term VSAM relative record file (or RRDS) is
used to mean relative-record files with fixed-length and variable-length records,
unless they need to be differentiated.

VSAM files can be processed in COBOL/VSE programs only after they are defined
with access method services, explained under “Defining VSAM Files (Access
Method Services)” on page 168.

VSAM Sequential File Organization
In VSAM sequential file organization (ESDS), the records are stored in the order
in which they were entered. VSAM entry-sequenced files are equivalent to SAM
sequential files, except that tape storage or unit record devices cannot be used with
VSAM. The order of the records is fixed.

Records in sequential files can only be accessed (read or written) sequentially.

After you have placed a record into the file, you cannot shorten, lengthen, or delete
it. However, you can update (REWRITE) a record if the length does not change.
New records are added at the end of the file.

VSAM Indexed File Organization
In a VSAM indexed file (KSDS), the records are ordered according to the collating
sequence of an embedded prime key field, which you define. The prime key con-
sists of one or more consecutive characters within the records. The prime key
uniquely identifies the record and determines the sequence in which it is accessed
with respect to other records. A prime key for a record might be, for example, an

 Chapter 11. Processing VSAM Files 153

employee number or an invoice number. In your COBOL program, you specify this
key through the clause:

RECORD KEY IS data-name

where data-name is the name of the key field as you defined it in the record
description entry in the Data Division.

You can also specify one or more alternate keys to use for retrieving records.
Using alternate keys, you can access the file to read records in some sequence
other than the prime key sequence. For example, you could access the file through
employee department rather than through employee number. Alternate keys need
not be unique. More than one record will be accessed, given a department number
as a key. This is permitted if alternate keys are specified as allowing duplicates.

You define the alternate key in your COBOL program with the ALTERNATE
RECORD KEY IS clause:

ALTERNATE RECORD KEY IS data-name

where data-name is the name of the key field as you defined it in the record
description entry in the Data Division.

To use an alternate index, you need to define a file (using access method services)
called the Alternate Index (AIX). For information on defining the Alternate Index,
see “Creating Alternate Indexes” on page 169. This file contains one record for
each value of a given alternate key; the records are in sequential order by alternate
key value. Each record contains the corresponding primary keys of all records in
the associated indexed files that contain the alternate key value.

Indexed files are identified as such in your COBOL program by the ORGANIZA-
TION IS INDEXED clause.

VSAM Relative-Record File Organization
A VSAM relative record file (RRDS) contains records ordered by their relative
key—the relative key being the relative record number representing the record's
location relative to where the file begins. The relative record number identifies the
record which can be either fixed or variable in length.

Your COBOL program may use some type of randomizing routine that will asso-
ciate a key value in each record with the relative record number for that record.

Although there are many techniques used to convert a record key to a relative
record number, the most commonly used randomizing algorithm is the
division/remainder technique. With this technique, you divide the key by a value
equal to the number of slots in the file to produce a quotient and remainder.
When you add one to the remainder, the result will be a valid relative record
number.

Relative files are identified as such in your COBOL program by the ORGANIZA-
TION IS RELATIVE clause. You may define a relative key to associate each
logical record with its relative record number with the RELATIVE KEY IS clause.

Alternate indexes are not supported for VSAM RRDS.

154 COBOL/VSE Programming Guide

Relative-Record File Organization with Fixed-Length Records
In a VSAM fixed-length RRDS, records are placed in a series of fixed-length slots
in storage. Each slot is associated with a relative record number. For example in
a fixed-length RRDS containing 10 slots, the first slot has a relative record number
of 1, while the 10th slot has a relative record number of 10.

Each record in the file occupies one slot, and you store and retrieve records
according to the relative record number of that slot.

When you load the file, you have the option of skipping over slots and leaving them
empty.

Relative-Record File Organization with Variable-Length Records
In a VSAM variable-length RRDS, the records are ordered according their relative
record number. Records are stored and retrieved according to the relative record
number you specify.

When you load the file, you have the option of skipping over relative record
numbers. Unlike fixed-length RRDS, there are no slots in variable-length RRDS.
Instead, there is user-defined free space to allow for more efficient record
insertions.

To use a VSAM variable-length RRDS, you:

� Define the file in your COBOL program with the ORGANIZATION IS RELATIVE
clause.

� Use the appropriate FD statements in your COBOL program to describe the
records with variable-length sizes.

� Define the VSAM file through access method services as a RRDS.

Figure 50 (Page 1 of 2). Comparison of VSAM file organizations

Entry-Sequenced
file

Key-Sequenced
file

Relative-Record
file

Records are in order in
which they are written.

Records are in collating
sequence by key field.

Records are in relative
record number order.

Access is sequential. Access is by key through
an index.

Access is by relative record
number, which is treated like
a key.

May have one or more alter-
nate indexes, though not
supported in COBOL.

May have one or more
alternate indexes.

May not have alternate
indexes.

A record's RBA (relative byte
address) cannot change.

A record's RBA can
change.

A record's relative record
number cannot change.

Space at the end of the file
is used for adding records.

Distributed free space is
used for inserting records
and changing their lengths
in place.

For fixed-length RRDS,
empty slots in the file are
used for adding records.
For variable-length RRDS,
distributed free space is
used for adding records and
changing their lengths in
place.

 Chapter 11. Processing VSAM Files 155

Figure 50 (Page 2 of 2). Comparison of VSAM file organizations

Entry-Sequenced
file

Key-Sequenced
file

Relative-Record
file

A record cannot be deleted,
but you can reuse its space
for a record of the same
length.

Space given up by a
deleted or shortened
record is automatically
reclaimed within a control
interval.

Space given up by a deleted
record can be reused.

Can have spanned records. Can have spanned
records.

Cannot have spanned
records.

Can be reused as a work file
unless it has an alternate
index, is associated with key
ranges, or exceeds 123
extents per volume.

Can be reused as a work
file unless it has an alter-
nate index, is associated
with key ranges, or
exceeds 123 extents per
volume.

Can be reused as a work
file.

File Access Modes
You can only access records in VSAM sequential files sequentially. You can
access records in VSAM indexed and relative files in three ways, sequentially, ran-
domly, or dynamically.

1. Sequential access—Specify ACCESS IS SEQUENTIAL in the FILE CONTROL
entry.

For indexed files, records are accessed in the order of the key field selected
(either primary or alternate).

For relative files, records are accessed in the order of their relative record
numbers.

2. Random access—Specify ACCESS IS RANDOM in the FILE-CONTROL entry.

For indexed files, records are accessed according to the value you place in a
key field.

For relative files, records are accessed according to the value you place in the
relative key.

3. Dynamic access—Specify ACCESS IS DYNAMIC in the FILE-CONTROL
entry.

Dynamic access is a mixed sequential-random access within the same
program. Using dynamic access, you can write one program to perform both
sequential and random processing, accessing some records in sequential order
and others by their keys.

For example, suppose you had an indexed file of employee records, and the
employee's hourly wage formed the record key. Also, suppose your program
was interested in those employees earning between $7.00 and $9.00 per hour
and those earning $15.00 per hour and above. To do this, retrieve the first
record randomly (with a random-retrieval READ) based on the key of 0700.
Next, begin reading sequentially (i.e. using READ NEXT) until the salary field
exceeds 0900. You would then switch back to a random read, this time based
on a key of 1500. After this random read, switch back to reading sequentially
until you reach the end of the file.

156 COBOL/VSE Programming Guide

Figure 51 summarizes VSAM file organization, access modes, and record formats
(fixed or variable length).

Figure 51. VSAM File Organizations, Access Modes, and Record Lengths

File Organization

Sequential
Access

Random
Access

Dynamic
Access

Fixed
Length

Variable
Length

VSAM Sequential (ESDS) Yes No No Yes Yes

VSAM Indexed (KSDS) Yes Yes Yes Yes Yes

VSAM Relative (RRDS) Yes Yes Yes Yes Yes

COBOL Coding for VSAM Files
There are certain COBOL language statements needed to process VSAM files.
After identifying and describing the VSAM files in the Environment and Data Divi-
sion, you can process the records in the files in the Procedure Division of your
program.

Remember that VSAM files must be defined with access method services before
your COBOL/VSE program can do any file processing.

Environment Division Entries for VSAM Files
Use the FILE-CONTROL entry to define the VSAM file organizations and access
methods for the files in your COBOL program. Figure 52 shows typical
FILE-CONTROL entries for VSAM files. The first example is for a VSAM sequential
file (ESDS). The second example shows the statements for a VSAM indexed file
(KSDS) that will be accessed dynamically. In addition to the primary key,
COMMUTER-NO, there is an alternate key for this file, LOCATION-NO. Example 3 is for a
relative-record file (RRDS) to be accessed randomly by the value placed in the rel-
ative key, ITEM-NO.

Example 1: VSAM Sequential File

 SELECT S-FILE

ASSIGN TO SEQUENTIAL-AS-FILE

ORGANIZATION IS SEQUENTIAL

ACCESS IS SEQUENTIAL

FILE STATUS KEY IS FSTAT-CODE VSAM-CODE.

Example 2: VSAM Indexed File

 SELECT I-FILE

ASSIGN TO INDEXED-FILE

ORGANIZATION IS INDEXED

ACCESS IS DYNAMIC

RECORD KEY IS IFILE-RECORD-KEY

ALTERNATE RECORD KEY IS IFILE-ALTREC-KEY

FILE STATUS KEY IS FSTAT-CODE VSAM-CODE.

Example 3: VSAM Relative File

 SELECT R-FILE

ASSIGN TO RELATIVE-FILE

ORGANIZATION IS RELATIVE

ACCESS IS RANDOM

RELATIVE KEY IS RFILE-RELATIVE-KEY

FILE STATUS KEY IS FSTAT-CODE VSAM-CODE.

Figure 52. Example File-Control Entries for VSAM Files

 Chapter 11. Processing VSAM Files 157

The ORGANIZATION clause will be:

� ORGANIZATION IS SEQUENTIAL—for VSAM sequential files (ESDS)
� ORGANIZATION IS INDEXED—for VSAM indexed files (KSDS)
� ORGANIZATION IS RELATIVE—for VSAM relative files (RRDS)

The FILE STATUS clause specifies fields that are updated by VSAM after each
input/output statement to indicate the success or failure of the operation. See “File
Status Key” on page 198 and “VSAM Return Code (VSAM Files Only)” on
page 201 for information on how to set up the fields to check the returned values.

The index (key) for VSAM indexed files: For a VSAM indexed file, your
RECORD KEY definition must agree with the definition in the catalog entry.

If you are using VSAM indexed files with alternate indexes, your ALTERNATE
RECORD KEY definitions must agree with the definitions in the catalog entry. Any
password entries that are cataloged should be coded directly after the ALTERNATE
RECORD KEY phrase. Specify WITH DUPLICATES only if your alternate index
was cataloged as having duplicate keys.

For further details on using alternate indexes and an example of the relationship
between the COBOL FILE-CONTROL entry and the DLBL statements for a VSAM
indexed file with alternate indexes, see “Creating Alternate Indexes” on page 169.

Data Division Entries for VSAM Files
VSAM records can be fixed or variable in length. COBOL determines the record
format from the RECORD clause and the record descriptions associated with your
FD entry for the file.

Since the concept of blocking has no meaning for VSAM files, you may omit the
BLOCK CONTAINS clause. The clause is syntax-checked, but it has no effect on
the execution of the program.

 Fixed-Length Records
The compiler determines the records to be fixed length, if you do one of the fol-
lowing:

� Use the RECORD CONTAINS integer clause (RECORD Clause Format 1).

� Omit the RECORD clause and define all the level-01 records (associated with
the file) to be the same fixed size.

 Variable-Length Records
The compiler determines the records to be variable length, if you do one of the
following:

� Use the RECORD IS VARYING clause (RECORD Clause Format 3).

If you specify values for integer-1 and integer-2 (RECORD IS VARYING FROM
integer-1 to integer-2), the maximum record length is the value specified for
integer-2, regardless of the lengths specified in the level-01 record description
entries associated with the file. If you omit integer-1 and integer-2, the
maximum record length is determined to be the size of the largest level-01
record description entry associated with the file.

158 COBOL/VSE Programming Guide

� Use the RECORD CONTAINS integer-1 TO integer-2 clause (RECORD Clause
Format 2) with integer-1 the minimum length and integer-2 being the maximum
length of the level-01 records associated with the file.

The maximum record length is the value specified for integer-2.

� Omit the RECORD clause, but specify multiple level-01 records (associated
with the file) that are of different sizes, or some of which contain an OCCURS
DEPENDING ON clause.

The maximum record length is determined to be the size of the largest level-01
record description entry associated with the file.

The RECORD clause is sensitive to the CMPR2 compiler option. See COBOL/VSE
Migration Guide for more information on VS COBOL II Release 2 compatibility and
migration.

By specifying a READ INTO statement for a format-V file, the record size read for
that file is used in the MOVE statement generated by the compiler. Consequently,
you may not get the result you expect if the record just read does not correspond to
the level-01 record description. All other rules of the MOVE statement apply. For
example, when you specify a MOVE statement for a format-V record read by the
READ statement, the size of the record corresponds to its level-01 record
description.

Coding Input/Output Statements for VSAM Files
VSAM file processing involves seven COBOL statements:

OPEN
Connect the VSAM file to your COBOL program for processing.

WRITE
Add records to a file or load a file.

START
Establish the current location in the cluster for a READ NEXT statement.

START does not retrieve a record; it only sets the current record pointer,
described under “File Position Indicator” on page 161.

READ and READ NEXT
Retrieve records from a file.

REWRITE
Update records.

DELETE
Logically remove records from indexed and relative files only.

CLOSE
Disconnect the VSAM file from your program.

All of the following determine which input/output statements are valid for a given
VSAM file:

� Access mode (sequential, random, or dynamic)
� File organization (ESDS, KSDS, or RRDS)
� Mode of OPEN statement (INPUT, OUTPUT, I-O, or EXTEND)

 Chapter 11. Processing VSAM Files 159

Figure 53 on page 160 shows the possible combinations with sequential files
(ESDS). The 'X' indicates that the specified statement may be used with the open
mode given at the top of the column.

Figure 54 shows the possible combinations with indexed (KSDS) and relative
(RRDS) files. The 'X' indicates that the specified statement may be used with the
open mode given at the top of the column.

Figure 53. Valid COBOL Statements with Sequential Files (ESDS)

Access Mode

COBOL/VSE
Statement

OPEN
INPUT

OPEN
OUTPUT

OPEN
I-O

OPEN
EXTEND

Sequential OPEN X X X X

 WRITE X X

 START

 READ X X

 REWRITE X

 DELETE

 CLOSE X X X X

Figure 54 (Page 1 of 2). Valid COBOL Statements with Indexed Files (KSDS) and
Relative Files (RRDS)

Access Mode

COBOL/VSE
Statement

OPEN
INPUT

OPEN
OUTPUT

OPEN
I-O

OPEN
EXTEND

Sequential OPEN X X X X

 WRITE X X

 START X X

 READ X X

 REWRITE X

 DELETE X

 CLOSE X X X X

Random OPEN X X X

 WRITE X X

 START

 READ X X

 REWRITE X

 DELETE X

 CLOSE X X X

Dynamic OPEN X X X

 WRITE X X

 START X X

 READ X X

160 COBOL/VSE Programming Guide

Figure 54 (Page 2 of 2). Valid COBOL Statements with Indexed Files (KSDS) and
Relative Files (RRDS)

Access Mode

COBOL/VSE
Statement

OPEN
INPUT

OPEN
OUTPUT

OPEN
I-O

OPEN
EXTEND

 REWRITE X

 DELETE X

 CLOSE X X X

File Position Indicator
The file position indicator indicates the next record to be accessed for sequential
COBOL requests. You do not specify the file position indicator anywhere in your
program. The file position indicator is set by successful OPEN, START, READ,
and READ NEXT statements. Subsequent READ or READ NEXT requests then
use the established file position indicator position and update it.

The file position indicator is not used or affected by the output statements WRITE,
REWRITE, or DELETE. The file position indicator has no meaning for random
processing.

Error Processing for VSAM
All errors in processing a VSAM file, whether logic errors in your program or
input/output errors on the external storage media, return control to your COBOL
program.

When an input/output statement operation fails, COBOL/VSE will not perform cor-
rective action for you. Such errors return control to your program. You choose
whether or not your program will continue executing after a less-than-severe
input/output error occurs. COBOL/VSE provides the following techniques for inter-
cepting and handling certain VSAM input/output errors:

The end-of-file phrase (AT END)
The EXCEPTION/ERROR declarative
The FILE STATUS clause (file status key and VSAM return code)
The INVALID KEY phrase

If you do not specify a file status key and you do not code a declarative, serious
VSAM processing errors can go undetected by your program. VSAM file proc-
essing problems do not usually cause an abend, and it is possible your program
will be processing wrong data.

If you continue processing after such errors occur, you may impair the integrity of
your data. Good coding practice demands that you check the status key value
after every input/output request (including OPEN and CLOSE). Each VSAM file
should have its own status key defined in your program.

For details on detecting input/output processing problems, see “Input/Output Error
Handling Techniques” on page 194.

 Chapter 11. Processing VSAM Files 161

Opening a File (ESDS, KSDS, or RRDS)
Before your program can use any WRITE, START, READ, REWRITE, or DELETE
statements to process records in a file, it must first open the file with an OPEN
statement. The concepts of file availability and creation affect OPEN processing,
OPTIONAL files, and file status codes 05 and 35.

For example, an OPEN EXTEND of a nonoptional file that is not available results in
file status 35, and the OPEN statement fails. If the file is OPTIONAL, the OPEN
EXTEND will create the file and return file status 05. The successful execution of
an OPEN statement determines the availability of the file.

An OPEN operation executes successfully only when the fixed file attributes speci-
fied in the VSAM catalog for the file and the attributes specified for that file in the
SELECT and FD statements of your COBOL program are consistent. Mismatches
in the attributes for file organization (sequential, relative, or indexed), the prime
record key, the alternate record keys, the maximum record size, or the record type
(fixed or variable) result in a file status code 39 and the OPEN statement fails.

How you code the OPEN statement in your COBOL program for a VSAM file
depends on whether the file is empty (has never contained records) or a loaded
file. For either type of file, you should check the file status key after each
OPEN statement.

Opening an Empty File
To open a file that has never contained records (an empty file):

Use OPEN OUTPUT for ESDS files.

Use OPEN OUTPUT or OPEN EXTEND for KSDS and RRDS files (either
coding has the same effect). If you have coded the file for random dynamic
access, you can also use OPEN I-O if the file is optional.

Optional files are files that are not necessarily present each time the program is
run. You can define files opened in INPUT, I-O, or OUTPUT mode as optional by
defining them with the SELECT OPTIONAL phrase in the FILE-CONTROL section
of your program.

Initially Loading Records Sequentially into a File: Initially loading a file means
writing records into the file for the first time. This is not the same as writing records
into a file that has contained records that have all been deleted.

To initially load a VSAM file:

Use OPEN I-O (for optional files) or OPEN OUTPUT or OPEN EXTEND
Use sequential processing because it is faster (ACCESS IS SEQUENTIAL)
Use WRITE to add a record to the file

Using OPEN OUTPUT to load a VSAM file will significantly improve the perform-
ance of your program. Using OPEN I-O or OPEN EXTEND will have a negative
impact on your program's performance.

When you load VSAM indexed files sequentially, you optimize both loading per-
formance and subsequent processing performance because sequential processing
maintains user-defined free space. Future insertions will be more efficient.

162 COBOL/VSE Programming Guide

With ACCESS IS SEQUENTIAL, you must write the records in ascending RECORD
KEY order.

When you load VSAM relative files sequentially, the records are placed in the file in
the ascending order of relative record numbers.

Figure 55 shows the COBOL statements used for loading a VSAM file.

Initially Loading a File Randomly or Dynamically: Although sequential proc-
essing is more efficient, you can use random or dynamic processing to load a file.
Because VSAM does not support such processing, COBOL/VSE has to perform
some extra processing to enable you to use ACCESS IS RANDOM or ACCESS IS
DYNAMIC with OPEN OUTPUT or OPEN I-O.

These COBOL/VSE processing steps prepare the file for use and give it the status
of a loaded file, having been used at least once. In addition to this extra overhead
for preparing files for use, remember that random processing does not consider any
user-defined free space and, as a result, any future insertions may be inefficient.
Conversely, sequential processing maintains user-defined free space.

Loading a VSAM file with Access Method Services: You can load or update a
VSAM file with the IDCAMS REPRO command. See VSE/VSAM Commands and
Macros for information about REPRO. REPRO should be used whenever pos-
sible.

Figure 55 shows the COBOL statements used for loading a VSAM file.

Figure 55. Statements Used to Load Records into a VSAM File

 ESDS KSDS RRDS

Environment
Division

SELECT
ASSIGN
FILE STATUS
PASSWORD
ACCESS MODE

SELECT
ASSIGN
ORGANIZATION
 IS INDEXED
RECORD KEY
ALTERNATE
 RECORD KEY
FILE STATUS
PASSWORD
ACCESS MODE

SELECT
ASSIGN
ORGANIZATION
 IS RELATIVE
RELATIVE KEY
FILE STATUS
PASSWORD
ACCESS MODE

Data
Division

FD entry
LABEL RECORDS

FD entry
LABEL RECORDS

FD entry
LABEL RECORDS

Procedure
Division

OPEN OUTPUT
OPEN EXTEND
WRITE
CLOSE

OPEN OUTPUT
OPEN EXTEND
WRITE
CLOSE

OPEN OUTPUT
OPEN EXTEND
WRITE
CLOSE

Opening a Loaded File (a File with Records)
To open a file that already contains records:

Use OPEN INPUT, OPEN I-O, or OPEN EXTEND

� For a VSAM entry-sequenced or relative-record file opened as EXTEND,
the added records are placed after the last existing records in the file.

 Chapter 11. Processing VSAM Files 163

� For a VSAM key-sequenced file opened as EXTEND, each record you add
must have a record key higher than the highest record in the file.

Reading Records from a VSAM File
Use the READ statement to retrieve records from a file. To read a record, you
must have opened the file INPUT or I-O. You should check the file status key
after each READ statement.

Records in VSAM sequential files can be retrieved only in the sequence in which
they were written.

Records in VSAM indexed and relative record files can be retrieved:

Sequentially
According to the ascending order of the key you are using, the RECORD KEY
or the ALTERNATE RECORD KEY, beginning at the current position of the file
position indicator for indexed files, or according to ascending relative record
locations for relative files.

Randomly
In any order, depending on how you set the RECORD KEY or ALTERNATE
RECORD KEY or the RELATIVE KEY prior to your READ request.

Dynamically
Mixed sequential and random.

With dynamic access, you can switch between reading a specific record directly
and reading records sequentially, by using READ NEXT for sequential retrieval and
READ for random retrieval (by key). See “File Access Modes” on page 156 for a
complete description of the features of each access mode.

When you want to read sequentially, beginning at a specific record, use START
before the READ NEXT to set the file position indicator to point to a particular
record (see “File Position Indicator” on page 161). When you specify START fol-
lowed by READ NEXT, the next record is read and the file position indicator is
reset to the next record. The file position indicator can be moved around randomly
through the use of START, but all reading is done sequentially from that point. You
can continue to read records sequentially, or you can use the START statement to
move the file position indicator:

START file-name KEY IS EQUAL TO ALTERNATE-RECORD-KEY

When a direct READ is executed for a VSAM indexed file, based on an alternate
index for which duplicates exist, only the first record in the file (base cluster) with
that alternate key value is retrieved. You need a series of READ NEXT statements
to retrieve each of the file records with the same alternate key. A FILE STATUS
value of '02' is returned if there are more records with the same alternate key
value to be read; a value of '00' is returned when the last record with that key
value has been read.

164 COBOL/VSE Programming Guide

Updating Records in a VSAM File
The COBOL language statements that can be used to update a VSAM file in the
Environment and Data Divisions are the same as those shown in Figure 55 on
page 163.

Figure 56 shows the statements that you can use in the Procedure Division for
sequential (ESDS), indexed (KSDS), and relative-record (RRDS) files.

Figure 56. Procedure Division Statements Used to Update VSAM Files

ESDS KSDS RRDS

ACCESS IS SEQUENTIAL:
 OPEN EXTEND
 WRITE
 CLOSE
 or
 OPEN I-O
 READ
 REWRITE
 CLOSE

ACCESS IS SEQUENTIAL:
 OPEN EXTEND
 WRITE
 CLOSE
 or
 OPEN I-O
 READ
 REWRITE
 DELETE
 CLOSE

ACCESS IS SEQUENTIAL:
 OPEN EXTEND
 WRITE
 CLOSE
 or
 OPEN I-O
 READ
 REWRITE
 DELETE
 CLOSE

ACCESS IS RANDOM:

 not applicable

ACCESS IS RANDOM:
 OPEN I-O
 READ
 WRITE
 REWRITE
 DELETE
 CLOSE

ACCESS IS RANDOM:
 OPEN I-O
 READ
 WRITE
 REWRITE
 DELETE
 CLOSE

ACCESS IS DYNAMIC
Sequential Processing:

 not applicable

ACCESS IS DYNAMIC
Sequential Processing:
 OPEN I-O
 READ NEXT
 WRITE
 REWRITE
 START
 DELETE
 CLOSE

ACCESS IS DYNAMIC
Sequential Processing:
 OPEN I-O
 READ NEXT
 WRITE
 REWRITE
 START
 DELETE
 CLOSE

ACCESS IS DYNAMIC
Random Processing:

 not applicable

ACCESS IS DYNAMIC
Random Processing:
 OPEN I-O
 READ
 WRITE
 REWRITE
 DELETE
 CLOSE

ACCESS IS DYNAMIC
Random Processing:
 OPEN I-O
 READ
 WRITE
 REWRITE
 DELETE
 CLOSE

Adding Records to a VSAM file
The COBOL WRITE statement adds a record to a file, without replacing any
existing records. The record to be added must not be larger than the maximum
record size specified when the file was defined. You should check the file status
key after each WRITE statement.

 Chapter 11. Processing VSAM Files 165

Adding Records Sequentially
Use ACCESS IS SEQUENTIAL and code the WRITE statement to add records
sequentially to the end of a VSAM file that has been opened with either OUTPUT
or EXTEND.

Sequential files are always written sequentially.

For indexed files, new records must be written in ascending key sequence. If the
file is opened EXTEND, the record keys of the records to be added must be higher
than the highest primary record key on the file when the file was opened.

For relative files, the records must be in sequence. If you include a RELATIVE
KEY data item in the SELECT clause the relative record number of the record just
written is placed in that data item.

Adding Records Randomly or Dynamically
When you write records to an indexed file and ACCESS IS RANDOM or ACCESS
IS DYNAMIC, the records can be written in any order.

Replacing Records in a VSAM File
To replace records in a VSAM file, use REWRITE on a file that you have opened
for I/O. If you attempt to use REWRITE on a file that is not opened I-O, the record
is not rewritten and the status key is set to 49. You should check the file status
key after each REWRITE statement.

� For files accessed sequentially, you must read the record before you issue a
REWRITE statement.

� For sequential files, the length of the record you rewrite must be the same as
the length of the original record.

� For indexed files, you can change the length of the record you rewrite.

To replace records randomly or dynamically, the record to be rewritten need not be
read by the COBOL program. Instead, to position the record you want to update:

� For indexed files, move the record key to the RECORD KEY data item, and
then issue the REWRITE.

� For relative files, move the relative record number to the RELATIVE KEY data
item, and then issue the REWRITE.

Deleting Records from a VSAM File
Open the file for I/O and use the DELETE statement to remove an existing record
from an indexed or relative file. You cannot use DELETE on a sequential file.

When ACCESS IS SEQUENTIAL, or if the file contains spanned records, the
record to be deleted must first be read by the COBOL program. The DELETE then
removes the record that was read. If the DELETE is not preceded by a successful
READ, the deletion is not done and the status key value is set to 92.

When ACCESS IS RANDOM or ACCESS IS DYNAMIC, and if the records are not
spanned, the record to be deleted need not be read by the COBOL program. To
delete a record, the key of the record to be deleted is moved to the RECORD KEY
data item and the DELETE is issued. You should check the file status key after
each DELETE statement.

166 COBOL/VSE Programming Guide

Closing VSAM Files
Use the CLOSE statement to disconnect your program from the VSAM file. If you
try to close a file that is already closed, you will get a logic error. You should
check the file status key after each CLOSE statement.

Automatic Closing of Files: If you neglect to close a file (SAM or VSAM) in your
application, the file is automatically closed for you under the following conditions:

� At the termination of the run unit (STOP RUN, or GOBACK from the main
program) all open files defined in any COBOL/VSE program within the run unit
are closed, both SAM and VSAM.

� At abnormal termination of the run unit (when the LE/VSE run-time option
TRAP(ON) is specified), all open files defined in any COBOL/VSE program
within the run unit are closed, both SAM and VSAM.

� When CANCEL is used for a COBOL/VSE subprogram, any open nonexternal
files defined in that program are closed.

� When a COBOL/VSE subprogram with the INITIAL attribute returns control, any
open nonexternal files defined in that program are closed.

File status codes are set when these implicit CLOSE operations are performed, but
EXCEPTION/ERROR declaratives are not invoked. Also, LABEL declaratives are
not invoked when implicit CLOSE operations are performed.

Protecting VSAM Files with a Password
COBOL/VSE supports explicit passwords on VSAM files to prevent unauthorized
access and update. To use explicit passwords, specify the optional PASSWORD
clause in your program's SELECT statement. Use this clause only if the catalog
entry for the file includes a read or an update password.

� If the catalog entry includes a read password, the file cannot be opened and
accessed in a COBOL program unless the password clause is specified in the
FILE-CONTROL paragraph and described in the Data Division. The data-name
referred to must contain a valid password when the file is opened.

� If the catalog entry includes an update password, the file can be opened and
accessed, but not updated unless the password clause is specified in the
FILE-CONTROL paragraph and described in the Data Division.

� If the catalog entry includes both a read password and an update password,
specify the update password in order to both read and update the file in your
program.

If your program only retrieves records and does not update them, you need only
specify the read password. If your program loads files or updates them, you need
to specify the update password.

For indexed files, the PASSWORD data item for the RECORD KEY must contain
the valid password before the file can be successfully opened.

If you password-protect a VSAM indexed file, you must also password-protect every
alternate index in order for the file to be fully password-protected. Where you place
the PASSWORD clause becomes important because each alternate index has its
own password. The PASSWORD clause must directly follow the key clause to
which it applies.

 Chapter 11. Processing VSAM Files 167

An example of the COBOL code used for a VSAM indexed file with password pro-
tection is as follows:

...

INPUT-OUTPUT SECTION.

FILE-CONTROL.

 SELECT LIBFILE

ASSIGN TO PAYMAST

ORGANIZATION IS INDEXED

RECORD KEY IS EMPL-NUM

PASSWORD IS BASE-PASS

ALTERNATE RECORD KEY IS EMPL-PHONE

PASSWORD IS PATH1-PASS
...

WORKING-STORAGE SECTION.

�1 BASE-PASS PIC X(8) VALUE "25BSREAD".

�1 PATH1-PASS PIC X(8) VALUE "25ATREAD".

Availability of VSAM Files
A VSAM file is defined as available if it has a DLBL statement (see Figure 10 on
page 22 for an example), has been defined by access method services, and has
previously contained a record. A VSAM file is unavailable if it has a DLBL state-
ment, has been defined by access method services, but has never contained a
record.

If an indexed or relative file is unavailable and the COBOL language defines that
the file be created, COBOL/VSE will write a dummy record in the file and then
delete the record. This prepares the file for use.

Notes:

1. A return code of zero will always be returned upon completion of the OPEN
statement for a VSAM sequential file.

2. The IDCAMS REPRO command can be used to empty a file. Deleting records
in this manner will reset the files high-use Relative Byte Address (RBA) to zero.
The file is effectively empty and appears to COBOL as if it never contained a
record.

Defining VSAM Files (Access Method Services)
VSAM entry-sequenced, key-sequenced, and relative-record files can be processed
in COBOL/VSE only after defining them through access method services
(IDCAMS).

A VSAM cluster is a logical definition for a VSAM file and has one or two compo-
nents:

The data component of a VSAM cluster contains the data records.

The index component of a VSAM key-sequenced cluster consists of the index
records.

You use the access method services DEFINE CLUSTER command to define your
VSAM files (clusters). This process includes creating an entry in the VSAM catalog
without any data transfer. Specify the following information about the cluster:

� Name of the entry

168 COBOL/VSE Programming Guide

� Name of the catalog to contain this definition and its password (may use default
name)

� Organization—sequential, indexed, or relative

� Device and volumes the file will occupy

� Space required for the file

� Record size and control interval sizes (CISIZE)

� Passwords (if any) required for future access

� For VSAM Indexed files (KSDS) only, specify length and position of the prime
key within the records

� For VSAM Fixed-Length Relative-Record files (RRDS):

DEFINE CLUSTER NUMBERED
RECORDSIZE(n,n)

where:

n is greater than or equal to the maximum size COBOL record.

When a file is defined in this manner, all records will be padded to the fixed slot
size n. If the RECORD IS VARYING ON data-name form of the RECORD
clause is used, a WRITE or REWRITE will use the length specified in the
DEPENDING ON data-name as the length of the record to be transferred by
VSAM. This data is then padded to the fixed slot size. READ statements will
always return the fixed slot size in the DEPENDING ON data-name.

� For VSAM Variable-Length Relative-Record files (RRDS):

DEFINE CLUSTER NUMBERED
RECORDSIZE(avg,m)

where:

avg is the average size COBOL record expected and is strictly less than
m.

m is the maximum size COBOL record expected.

For further information, see VSE/VSAM Commands and Macros.

Creating Alternate Indexes
An alternate index provides access to the records in a file using more than one key.
It accesses records in the same way as the prime index key of an indexed file
(KSDS).

When planning to use an alternate index, you must know:

� The type of file (base cluster) with which the index will be associated
� Whether the keys will be unique or nonunique
� Whether the index is to be password-protected
� Some of the performance aspects of using alternate indexes

To use an alternate index, you need to follow these steps:

� Define the alternate index, using the DEFINE ALTERNATEINDEX command.

 Chapter 11. Processing VSAM Files 169

� Relate the alternate index to the base cluster (the file to which the alternate
index gives you access), using the DEFINE PATH command. The base cluster
and alternate index are described by entries in the same catalog.

� Build the alternate index, using typically the BLDINDEX command.

Defining the Alternate Index
Since an alternate index is, in practice, a VSAM file that contains pointers to the
keys of a VSAM file, you must define the alternate index and the alternate index
path (the entity that establishes the relationship between the alternate index and
the prime index).

To define and build a catalog entry for the alternate index, use the access method
services command:

DEFINE ALTERNATEINDEX

In it, you specify:

� The name of the alternate index

� The name of its related VSAM indexed file

� The location in the record of any alternate indexes and whether they are unique
or not

� Whether or not alternate indexes are to be updated when the file is modified

� The name of the catalog to contain this definition and its password (may use
default name)

Note: If you intend to use an alternate index on a file that is to be opened for I-O,
the base cluster must be defined with share options of 2 or greater. Otherwise, the
open I-O will fail.

In your COBOL program the alternate index is identified solely by the ALTERNATE
RECORD KEY clause of the FILE CONTROL paragraph. The ALTERNATE
RECORD KEY definitions must match the definitions you have made in the catalog
entry.

Any password entries you have cataloged should be coded directly after the
ALTERNATE RECORD KEY phrase.

Figure 57 maps the relationships between the COBOL FILE-CONTROL entry and
the DLBL statements for a VSAM indexed file with alternate indexes.

// DLBL MASTRA,'CLUSTER.NAME',�,VSAM,DISP=OLD �1�
// DLBL MASTRA1,'PATH1',�,VSAM,DISP=OLD �2�
// DLBL MASTRA2,'PATH2',�,VSAM,DISP=OLD �3�

FILE-CONTROL.

 SELECT MASTER─FILE ASSIGN TO MASTRA �4�
RECORD KEY IS EM─NAME

PASSWORD IS PW─BASE �5�
ALTERNATE RECORD KEY IS EM─PHONE �6�

PASSWORD IS PW─PATH1

ALTERNATE RECORD KEY IS EM─CITY �7�
PASSWORD IS PW─PATH2.

Figure 57. COBOL FILE-CONTROL Entry / DLBL Statements for VSAM Indexed File with
Alternate Indexes

170 COBOL/VSE Programming Guide

The example shows the connection between a program using two alternate indexes
and the required DLBL statements. In this example:

�1� The base cluster name is CLUSTER.NAME.

�2� The name of the first alternate index path is PATH1.

�3� The name of the second alternate index path is PATH2.

�4� The systemname for the base cluster is specified with the ASSIGN clause.

The file-names for the alternate indexes are formed from the file-name for the
base cluster suffixed by 1 for the first alternate path, 2 for the second alternate
path, and so on. Therefore, the file-name for the base cluster must not be
longer than six characters so that the file-names for the alternate paths will not
exceed the VSE maximum of seven characters. Coding a seven-character file-
name for the base cluster will result in I/O for the alternate record keys being
processed on the primary key instead of the alternate keys.

�5� Passwords immediately follow their indexes.

�6� The key, EM-PHONE, relates to the first alternate index.

�7� The key, EM-CITY, relates to the second alternate index.

Defining Alternate Index Paths
After you define an alternate index, you need to make a catalog entry to establish
the relationship (or path) between the alternate index and its base cluster. This
path allows you to access the records of the base cluster through the alternate
keys.

To create a path, issue the access method services command:

DEFINE PATH

In it, you can specify:

� The name of the path
� The alternate index to which the path is related
� The name of the catalog that contains the alternate index

Building the Alternate Index
After you have defined the alternate index and its path and have loaded the VSAM
indexed file, you can specify the access method services command:

BLDINDEX

This command causes the alternate index to be loaded with index records.
BLDINDEX reads all the records in your VSAM indexed file (or base cluster) and
extracts the data needed to build the alternate index.

In the BLDINDEX command, you need to identify an input and an output file. The
input file is the indexed file (base cluster), and the output file is the alternate index
or its path.

Alternatively, as described in the next section, you can use the run-time option
AIXBLD to build the alternate index at run time. However, this may adversely affect
run-time performance.

 Chapter 11. Processing VSAM Files 171

Dynamically Invoking Access Method Services
You can dynamically invoke access method services at run time for VSAM indexed
files (KSDS) to complete the file and index definition procedures. To do this, you
must use the run-time option AIXBLD, which is described in the LE/VSE Program-
ming Reference, and make sure that:

1. Your program opens the VSAM file as OUTPUT.

2. The access method services utility program is available.

3. You provide a job catalog (IJSYSUC) JCL DLBL statement for the VSAM
catalog containing the definition of the alternate index; no job catalog DLBL is
required if the definition of the alternate index is contained in the VSAM master
catalog.

Use this procedure only when necessary, since it uses a large amount of proc-
essing time. When possible, preload the base cluster before defining alternate
indexes.

Job Control Language for VSAM files
All VSAM files have to be predefined and cataloged through the access method
services command, DEFINE. Most of the information about a VSAM file is in the
catalog, as opposed to in the run-time JCL statements. Consequently, you need to
specify only minimal JCL for a VSAM file. Usually, the input and data buffers are
the only variables you are concerned about. The basic JCL statement you need for
your VSAM files is:

// DLBL file-name,'file-ID',,VSAM,CAT=catname

file-ID
Must be the same as the name specified in the access method services
command DEFINE CLUSTER or DEFINE PATH.

VSAM
Indicates a VSE/VSAM file label.

CAT=catname
This parameter specifies the file-name of the DLBL statement for the catalog
owning this VSAM file. Specify this parameter only if the VSAM file is owned by
a VSAM catalog other than the job catalog, or, if there is no job catalog, the
master catalog.

You may also specify the following parameters in the DLBL statement for your
VSAM file:

BUFSP
Specifies the number of bytes of virtual storage to be allocated as buffer space
for the file. This parameter takes precedence over the information provided in
the catalog or in the ACB, if its value is higher.

BUFND
Specifies the number of I/O buffers to hold control intervals containing data
records.

BUFNI
Specifies the number of I/O buffers to hold control intervals containing index
records.

172 COBOL/VSE Programming Guide

Considerations for VSAM Performance
Most likely, your system programmer is responsible for COBOL/VSAM performance
tuning. There are some things that you, as an application programmer, might want
to control:

� Invoking access methods services

Build your alternate indexes in advance, using IDCAMS.

 � Buffering

The default is one index (BUFNI) and two data buffers (BUFND). Specify addi-
tional data buffers for sequential access and specify additional index buffers for
random access. Specify both BUFND and BUFNI when ACCESS IS
DYNAMIC. (See the VSE/VSAM Programmer's Reference.)

Avoid coding additional buffers unless your application will run interactively; and
then code buffers only when response-time problems arise that may be caused
by I/O delay.

� Loading records, using access methods services

The access methods services REPRO command can update an indexed file as
fast or faster than any COBOL program when:

– The target indexed file already contains records.

– The input sequential file contains records to be updated or inserted into the
indexed file.

If you do use a COBOL program to load the file, use OPEN OUTPUT and
ACCESS SEQUENTIAL. See “File Access Modes” on page 156 for a com-
plete description of each of the access modes.

� File access modes

For optimum performance, access records sequentially. The least efficient
method of accessing records is dynamic access.

 � Key design

For optimum key compression, design the key within the records so that the
high-order portion is relatively constant while the low-order portion changes
often.

� Multiple alternate indexes

Because updates have to be applied through the primary paths and reflected
through multiple alternate paths, the use of multiple alternate indexes may
cause performance degradation.

� Relative File Organization

Although they are not as space efficient, VSAM fixed-length relative files are
more run-time efficient than VSAM variable-length relative files.

� Control Interval Sizes (CISZ)

VSAM will calculate CISZ to best fit the direct-access storage device (DASD)
usage algorithm, which may not, however, be efficient for your application.

Provide your system programmer with information about the data access and
future growth of your VSAM files. From this information, your system pro-
grammer can determine the best CISZ.

 Chapter 11. Processing VSAM Files 173

An average CISZ of 4096 is suitable for most applications. A smaller CISZ
means faster retrieval for random processing at the expense of inserts (that is,
more CI splits and consequently more space in the file). A larger CISZ results
in the transfer of more data across the channel for each READ. This is more
efficient for sequential processing, similar to a large OS BLKSIZE.

174 COBOL/VSE Programming Guide

Chapter 12. File Sorting and Merging

Arranging records in a particular sequence is a common requirement in data proc-
essing. Such record sequencing can be accomplished using sort or merge oper-
ations.

� The sort operation accepts unsequenced input and produces output in a speci-
fied sequence.

� The merge operation compares records from two or more sequenced files and
combines them in order.

COBOL has special language features that assist in sort and merge operations.
For information on the COBOL sort and merge language, see the COBOL/VSE
Language Reference. For additional information on sorting and merging records,
see the DFSORT/VSE Application Programming Guide.

With COBOL/VSE, your IBM sort/merge licensed program must be DFSORT/VSE
or an equivalent product. Whenever DFSORT/VSE is mentioned, any other equiv-
alent SORT product can be used.

COBOL programs containing SORT or MERGE statements can reside above or
below the 16-megabyte line.

To sort or merge files, you need to do the following:

Figure 58. Preparing to Sort or Merge Files

Action Code

Describe the input and output files for
sorting or merging.

FILE-CONTROL and FD entries (if needed)

Describe sort files and merge files. FILE-CONTROL and SD entries (always
needed)

Specify the sort or merge operation. SORT or MERGE statements in the Proce-
dure Division

Establish an environment in which the sort
product is available.

See “Coding Run-Time JCL for SORT” on
page 183

Describing the Files
Sort files and merge files must be described with SELECT statements in the Envi-
ronment Division and SD (Sort File Description) entries in the Data Division. (For
an example, see Figure 59 on page 177.) The sort file or merge file described in
an SD entry is the working file used during the sort or merge operation. You
cannot execute any input/output statements for this file, and you do not create JCL
statements in the run-time JCL for the file.

Code FD (File Description) entries, if needed, to describe files used as input to or
output from a sort or merge operation. You can also sort or merge records that are
defined only in Working-Storage.

 Copyright IBM Corp. 1983, 1998 175

If you are only sorting or merging data items from Working-Storage and are not
using files as input to or output from a sort or merge operation, you still need SD
and FILE-CONTROL entries for the sort file or merge file.

Every SD entry must contain a record description, for example:

 SD SORT-WORK-1

RECORD CONTAINS 1�� CHARACTERS.

 �1 SORT-WORK-1-AREA.

 �5 SORT-KEY-1 PIC X(1�).

 �5 SORT-KEY-2 PIC X(1�).

 �5 FILLER PIC X(8�).

Do not specify RECORDING MODE, BLOCK CONTAINS, or LABEL RECORDS in
a sort file description.

The sort files and merge files are processed with SORT or MERGE statements in
the Procedure Division. The statement specifies the key field(s) within the record
upon which the sort or merge is to be sequenced. You can specify a key or keys
as ascending or descending, or when you specify more than one key, as a mixture
of the two.

You can mix SORT and MERGE statements in the same program. Within the limits
of virtual storage, a COBOL/VSE program can contain any number of sort or merge
operations, each with its own independent input or output procedure.

The SORT Statement
You can specify input procedures to be performed on the sort records before they
are sorted (SORT ... INPUT PROCEDURE).

You can specify output procedures to be performed on the sort records after they
are sorted (SORT ... OUTPUT PROCEDURE).

You can use input or output procedures to add, delete, change, edit, or otherwise
modify the records.

You can use the SORT statement to:

� Sort data items (including tables) in Working-Storage

� Read records directly into the new file without any preliminary processing
(SORT ... USING)

� Transfer sorted records directly to a file without any further processing (SORT
... GIVING)

A COBOL program containing a sort operation is usually organized so that one or
more input files are read and operated on by an input procedure. Within the input
procedure, a RELEASE statement (analogous to the WRITE statement) places a
record into the file to be sorted. That is, when input procedure execution is com-
pleted, all the records that are to be sorted have been given to DFSORT/VSE. If
you do not want to modify or process the records before the sorting operation
begins, the SORT statement USING option releases the unmodified records to the
new file.

176 COBOL/VSE Programming Guide

 ID Division.

 Program-ID. SmplSort.

 Environment Division.

 Input-Output Section.

 File-Control.

 � Assign Name For A Sort File Is

 � Treated As Documentation.

 �

Select Sort-Work-1 Assign To SortFile.

Select Sort-Work-2 Assign To SortFile.

Select Input-File Assign To InFile.

 Data Division.

 File Section.

 SD Sort-Work-1

Record Contains 1�� Characters.

 �1 Sort-Work-1-Area.

 �5 Sort-Key-1 Pic X(1�).

 �5 Sort-Key-2 Pic X(1�).

 �5 Filler Pic X(8�).

 SD Sort-Work-2

Record Contains 3� Characters.

 �1 Sort-Work-2-Area.

 �5 Sort-Key Pic X(5).

 �5 Filler Pic X(25).

 FD Input-File

Label Records Are Standard

Block Contains � Characters

Record Contains 1�� Characters

Recording Mode Is F.

 �1 Input-Record Pic X(1��).

 � .

 � .

 � .

 Working-Storage Section.

 �1 EOS-Sw Pic X.

 �1 Filler.

�5 Table-Entry Occurs 1�� Times

Indexed By X1 Pic X(3�).

 � .

 � .

 � .

Figure 59. Environment and Data Division Entries for a Sort Program

After all the input records have been passed to DFSORT/VSE, the sorting operation
is executed. This operation arranges the entire set of records in the sequence
specified by the key(s).

After completion of the sorting operation, sorted records can be made available,
one at a time, through a RETURN statement, for modification in an output proce-
dure. If you do not want to modify or process the sorted records, the SORT state-
ment GIVING option names the output file and writes the sorted records to an
output file.

The MERGE Statement
You have access to output procedures (used after merging) that can modify the
output records.

Unlike the SORT statement, you cannot specify an input procedure in the MERGE
statement; you must use MERGE ... USING.

 Chapter 12. File Sorting and Merging 177

The files to be merged must already be in the same sequence. The merge
program then combines them into one sequenced file.

The MERGE statement execution begins the merge processing. This operation
compares keys within the records of the input files, and passes the sequenced
records one-by-one to the RETURN statement of an output procedure or to the file
named in the GIVING phrase.

If you want to process the merged records, they can be made available to your
COBOL program, one at a time, through a RETURN statement in an output proce-
dure. If you do not want to modify or process the merged records, the MERGE
statement GIVING phrase names the merged output file into which the merged
records will be written.

Note: When using DFSORT/VSE, the maximum number of input files that may be
merged is 9.

Specifying the Sort Criteria
In the SORT statement, you specify the key on which the file will be sorted. The
key must be defined in the record description of the file to be sorted. In the fol-
lowing example, notice that SORT-GRID-LOCATION and SORT-SHIFT are defined in the
Data Division before they are used in the SORT statement:

 DATA DIVISION.

 .

 .

 .

 SD SORT-FILE

RECORD CONTAINS 115 CHARACTERS

DATA RECORD SORT-RECORD.

 �1 SORT-RECORD.

 �5 SORT-KEY.

 1� SORT-SHIFT PIC X(1).

 1� SORT-GRID-LOCATION PIC X(2).

 1� SORT-REPORT PIC X(3).

 �5 SORT-EXT-RECORD.

 1� SORT-EXT-EMPLOYEE-NUM PIC X(6).

 1� SORT-EXT-NAME PIC X(3�).

 1� FILLER PIC X(73).

 PROCEDURE DIVISION.

 .

 .

 .

 SORT SORT-FILE

ON ASCENDING KEY SORT-GRID-LOCATION SORT-SHIFT

INPUT PROCEDURE 6��-SORT3-INPUT

OUTPUT PROCEDURE 7��-SORT3-OUTPUT.

 .

 .

 .

To sort on more than one key, as shown in the example above, list the keys in
descending order of importance. The example also shows the use of an input and
an output procedure. Use an input procedure if you want to process the records
before you sort them, and use an output procedure if you want to further process
the records after you sort them.

178 COBOL/VSE Programming Guide

Note: The key used in the SORT statement cannot be variably located. (See
“Complex OCCURS DEPENDING ON” on page 106 for more information on vari-
ably located data items.)

Restrictions on Sort-Key Length
The maximum number of keys is 64, as long as the total length of the keys does
not exceed 3072 bytes.

Alternate Collating Sequences
You can sort records on EBCDIC, ASCII, or another collating sequence. The
default collating sequence is EBCDIC or the PROGRAM COLLATING SEQUENCE
you specified in the Configuration Section (if any). You can replace the sequence
named in the PROGRAM COLLATING SEQUENCE by using the COLLATING
SEQUENCE option of the SORT statement. Consequently, you can use different
collating sequences for multiple sorts in your program.

When you sort an ASCII file, you have to request the ASCII collating sequence. To
do this, use the COLLATING SEQUENCE alphabet-name option of the SORT
statement, where the alphabet-name has been defined in the SPECIAL-NAMES
paragraph as STANDARD-1.

Windowed Date Fields
You can specify windowed date fields as sort keys if you are using DFSORT/VSE
as your sort program, and your version of DFSORT/VSE supports the Y2PAST
option. DFSORT/VSE will use a windowed date sequence to sort the records,
rather than a simple binary collating sequence. You can achieve this automatically
if you use the DATE FORMAT clause to define a windowed date field, and use this
field as a sort key. In this case, the century window used by DFSORT/VSE will be
the same as that used by the compilation unit (specified by the YEARWINDOW
compiler option).

See Chapter 22, “Using the Millennium Language Extensions” on page 366 for a
description of windowed date fields and how you can use them to assist with the
Year 2000 problem. See the DFSORT/VSE Application Programming Guide for
information on DFSORT/VSE and the Y2PAST option.

Coding the Input Procedure
Use SORT ... USING if you do not need to process the records in an input file (or
files) before they are released to the sort program. With SORT ... USING
file-name, the compiler generates an input procedure to open the file, read the
records, release the records to the sort program, and close the file.

The input file must not be open when the SORT statement begins execution. If you
want to process the records in the input file before they are released to the sort
program, use the INPUT PROCEDURE option of the SORT statement.

Each input procedure must be contained in either paragraphs or sections. For
example, to release records from Working-Storage (a table) to the new file:

 Chapter 12. File Sorting and Merging 179

 SORT SORT-WORK-2

ON ASCENDING KEY SORT-KEY

INPUT PROCEDURE 6��-SORT3-INPUT-PROC

 .

 .

 .

 6��-SORT3-INPUT-PROC SECTION.

PERFORM WITH TEST AFTER

VARYING X1 FROM 1 BY 1 UNTIL X1 = 1��

RELEASE SORT-WORK-2-AREA FROM TABLE-ENTRY (X1)

 END-PERFORM.

An input procedure contains code for processing records and releasing them to the
sort operation. You might want to use an input procedure to:

� Release data items to the new file from Working-Storage

� Release records that have already been read elsewhere in the program

� Read records from an input file, select or process them, and release them to
the new file

To transfer records to the new file, all input procedures must contain at least one
RELEASE or RELEASE FROM statement. To release A from X, for example, you
can enter:

MOVE X TO A.

 RELEASE A.

Figure 60 compares the use of the RELEASE and RELEASE FROM statements.

Figure 60. Comparison of RELEASE and RELEASE FROM

RELEASE RELEASE FROM

MOVE EXT-RECORD
 TO SORT-EXT-RECORD
PERFORM RELEASE-SORT-RECORD
 .
 .
 .
RELEASE-SORT-RECORD.
 RELEASE SORT-RECORD

PERFORM RELEASE-SORT-RECORD
 .
 .
 .
RELEASE-SORT-RECORD.

RELEASE SORT-RECORD FROM SORT-EXT-RECORD

Coding the Output Procedure
Use SORT ... GIVING if you want DFSORT/VSE to transfer the sorted records
directly from the sort work file into another file without any further processing. With
SORT ... GIVING file-name, the compiler generates an output procedure to open
the file, return the records, write the records, and close the file. At the time the
SORT statement is executed, the file named with the GIVING option must not be
open.

If, however, you want to select, edit, or otherwise modify the sorted records before
writing them from the sort work file into another file, use the OUTPUT PROCE-
DURE option of the SORT statement.

In the output procedure, you must use the RETURN statement to make each sorted
record available to your program (the RETURN statement for a sort file is similar to

180 COBOL/VSE Programming Guide

a READ statement for an input file). Your output procedure may then contain any
statements necessary to process the records that are made available, one at a
time, by the RETURN statement.

You can use RETURN INTO, instead of RETURN, to return and process the
records into Working-Storage or to an output area. You may also use the AT END
and END-RETURN phrases with the RETURN statement. The imperative state-
ments on the AT END phrase will execute after all the records have been returned
from the sort file. The END-RETURN explicit scope terminator serves to delimit the
scope of the RETURN statement.

When you code output procedures, remember that each output procedure must
include at least one RETURN or RETURN INTO statement. Also, each output pro-
cedure must be contained in either a section or a paragraph.

Restrictions on Input/Output Procedures
The following restrictions apply to the procedural statements within input and output
procedures:

1. The input/output procedure must not contain any SORT, MERGE, STOP RUN,
EXIT PROGRAM, or GOBACK statements.

2. The execution of a CALL statement to another program that follows standard
linkage conventions is permitted. The called program cannot execute a SORT
or MERGE statement. For information on linkage convention considerations
with LE/VSE callable services, see the LE/VSE Programming Guide.

3. You can use ALTER, GO TO, and PERFORM statements in the input/output
procedure to refer to procedure-names outside the input/output procedure.
However, you must return to the input/output procedure after a GO TO or
PERFORM statement.

4. The remainder of the Procedure Division must not contain any transfers of
control to points inside the input/output procedure (with the exception of the
return of control from a Declarative Section).

5. During a SORT or MERGE operation, the SD data item is used. You should
not use it in the OUTPUT PROCEDURE before the first RETURN statement
executes. If data is moved into this record area before the first RETURN state-
ment, the first record to be returned will be overwritten.

6. LE/VSE condition handling does not allow user handlers to be established in an
input or output procedure. For details on condition handling considerations and
restrictions, see the LE/VSE Programming Guide.

Determining Whether the Sort or Merge Was Successful
The DFSORT/VSE program returns a completion code after execution of a sort.
The codes are:

0 Successful completion of sort/merge

16 Unsuccessful completion of sort/merge

The DFSORT/VSE Application Programming Guide contains a detailed description
of conditions under which a sort will be terminated.

 Chapter 12. File Sorting and Merging 181

The return code or completion code is stored in the SORT-RETURN special reg-
ister. The contents of SORT-RETURN change with the execution of each SORT or
MERGE statement.

You should test for successful completion after each SORT or MERGE statement.
For example,

 SORT SORT-WORK-2

ON ASCENDING KEY SORT-KEY

INPUT PROCEDURE IS 6��-SORT3-INPUT-PROC

OUTPUT PROCEDURE IS 7��-SORT3-OUTPUT-PROC.

IF SORT-RETURN NOT=�

DISPLAY "SORT ENDED ABNORMALLY. SORT-RETURN = "

 SORT-RETURN.

 .

 .

 .

 6��-SORT3-INPUT-PROC SECTION.

 .

 .

 .

 7��-SORT3-OUTPUT-PROC SECTION.

 .

 .

 .

Premature Termination of a Sort or Merge Operation
The SORT-RETURN special register can also be used to terminate the
DFSORT/VSE product operation. Move the integer 16 into the register in an input
or output procedure or in a Declarative Section entered during sort or merge proc-
essing. In an input or output procedure, sort or merge processing will be termi-
nated immediately after the execution of the next RELEASE or RETURN statement.
In a declarative section entered during processing of a USING or GIVING file, sort
or merge processing will be terminated immediately after the execution of the next
implicit RELEASE or RETURN, which will occur after a record has been read from
or written to the USING or GIVING file. Control then returns to the statement fol-
lowing the SORT or MERGE statement.

If you do not reference SORT-RETURN anywhere in your program, COBOL will
test the return code and, if the code is 16, issue a run-time diagnostic message. If
you test SORT-RETURN for one or more (but not necessarily all) SORT or MERGE
statements, COBOL will not check the return code. (DFSORT/VSE messages are
listed in the DFSORT/VSE Messages, Codes and Diagnosis Guide.)

By default, DFSORT/VSE diagnostic messages are sent to SYSLST. If you want to
change this default, you can use the ROUTE= parameter of the DFSORT/VSE
OPTION control statement (see Figure 61 on page 189) or the SORT-MESSAGE
special register.

If both the COBOL program and DFSORT/VSE write to SYSLST, uncertain printing
results will occur. You can do one of the following:

� Change the DFSORT/VSE message destination to an alternate logical or phys-
ical printer via ROUTE= or the SORT-MESSAGE special register (as above).

� Redirect the COBOL program output to an alternate logical or physical printer.

182 COBOL/VSE Programming Guide

Performing More than One Operation in a Program
You can perform more than one sort or merge in your COBOL program, including:

� Multiple executions of the same sort or merge
� Multiple sorts and/or merges

However, one operation must be completed before another can begin.

Preserving the Original Sequence of Records with Equal Keys
The order of identical collating records can be preserved from input to output in one
of these ways:

� Install DFSORT/VSE with the EQUALS option as the default.

� Use the WITH DUPLICATES IN ORDER phrase in the SORT statement; this
adds the EQUALS keyword to the SORT-CONTROL statement.

For restrictions when EQUALS is in effect, see the DFSORT/VSE Application Pro-
gramming Guide.

Coding Run-Time JCL for SORT
You need run-time JCL to describe the following files:

Sort Work Files
DLBL, EXTENT and ASSGN statements for SORTWK1, SORTWK2,
SORTWK3, ..., SORTWKn (where n is 9 or less).

You control the number of sort work files that DFSORT/VSE will use during the
sort or merge operation by the number of sort work files you specify in your
run-time JCL. You must specify the required DLBL information, either in your
JCL or in standard labels, for each sort work file in the sequence SORTWK1 to
SORTWKn, where n is the number of sort work files to be used. DFSORT/VSE
requires sort work files to be numbered consecutively. For example, if you
provide DLBLs for SORTWK1, SORTWK2, and SORTWK4, only the
SORTWK1 and SORTWK2 will be used. If, at run time, you use the WORKNM
sort option to change the first 4 characters of the sort work file names, you
must still specify run-time JCL for the required sort work files in sequence.

SYSLST
An ASSGN statement for sort diagnostic messages, unless the destination is
changed via the ROUTE= keyword of the OPTION control statement in the
SORT-CONTROL file, or in the SORT-MESSAGE special register.

SORTCKP
Needed if sort will take checkpoints.

Input and Output Files
Define these, if any.

DFSORT/VSE Sublibrary
A LIBDEF statement to define the sublibrary containing the modules.

The size of the program storage in the partition must be large enough to allow sort

 Chapter 12. File Sorting and Merging 183

to be loaded, and also allow for sort work areas and buffers. The size of program
storage can be specified as follows:

// EXEC pgmname,SIZE=(pgmname,1��K)

This will set the size of program storage to the size of the phase containing the
COBOL program, plus 100K for SORT.

Improving Sort Performance with FASTSRT
Using the FASTSRT compiler option improves the performance of most sort oper-
ations. With FASTSRT, the DFSORT/VSE product performs the I/O on input and/or
output files named in either or both of the following statements:

SORT ... USING
SORT ... GIVING

You may not use the DFSORT/VSE FILNM= option if you specify FASTSRT.

FASTSRT allows DFSORT/VSE (instead of COBOL/VSE) to perform the I/O. Per-
formance of the sort operation may be significantly improved if you block your input
and output records.

BLOCK CONTAINS 0 should not be specified for either of the input or output files.

If file status is specified, it will be ignored during the sort.

FASTSRT Requirements for JCL

� In the run-time JCL, the sort work files (SORTWKn files) must be assigned to a
direct-access device.

� The parameters of the DLBL statement in run-time JCL must match the FD
description for the input/output file.

FASTSRT Requirements for Input and Output Files

� SAM files must have a record format of fixed, variable, or spanned.

� VSAM files cannot be password protected.

� BLOCK CONTAINS 0 clause must not be specified for either input or output
files.

� Any RELATIVE KEY specified for an output file will not be set by the sort.

� No INPUT declarative (for input files), OUTPUT declarative (for output files), or
any file-specific declaratives (for either input or output files) can be specified
that apply to FDs used in the sort.

� The same VSAM file cannot be named in both the USING and GIVING
phrases.

� A VSAM file will not qualify for FASTSRT (either for the USING or the GIVING
clause) if more than one file was specified on the opposing (USING or GIVING)
phrase.

� The same SAM file may be used for both FASTSRT input and output, but must
be described by two different DLBL or TLBL statements at run time. For
example, if FASTSRT is in effect, in the FILE-CONTROL Section you might
have:

184 COBOL/VSE Programming Guide

SELECT FILE-IN ASSIGN INPUTF.

SELECT FILE-OUT ASSIGN OUTPUTF.

In the Data Division, then, you would have an FD for both FILE-IN and
FILE-OUT, where FILE-IN and FILE-OUT are identical, except for their names
(they describe the same file).

In the Procedure Division, your SORT statement would look like this:

 SORT file-name

ASCENDING KEY data-name-1

USING FILE-IN GIVING FILE-OUT

Then in your run-time JCL, you would use:

// DLBL INPUTF,'INOUT',�,SD

// DLBL OUTPUTF,'INOUT',�,SD

� If the input and output SAM files are the same, either because the same file
name was specified for the USING and GIVING phrases, or because the input
and output files are assigned the same file-name, then the file can be accepted
for FASTSRT either for input or output, but not both. If no other conditions
disqualify the file from being eligible for FASTSRT on input, then the file will be
accepted for FASTSRT on input, but not on output. However, if the file was
found to be ineligible for FASTSRT on input, it may be eligible for FASTSRT on
output.

� A VSAM file that qualifies for FASTSRT (either in the USING or the GIVING
phrase) cannot be accessed by the COBOL program until the SORT statement
processing has completed. That is, if a VSAM file qualifies for FASTSRT on
input (USING phrase), it cannot be accessed (OPEN will fail) in the output pro-
cedure and vice versa.

� A SAM file that qualifies for FASTSRT (either in the USING or the GIVING
phrase) may be accessed by the COBOL program during the execution of the
SORT statement. That is, if it is used for FASTSRT on input, it can be
accessed by the COBOL program in the output procedure; if it is used for
FASTSRT on output, it can be accessed in the input procedure.

� A variable relative file is ineligible to be either the input or output file for
FASTSRT.

� The record descriptions of the SD and FD (for either the input or the output file)
must both specify the same format, either fixed or variable, and the largest
records of the SD and FD (for either the input file or the output file) must
specify the same record length.

In addition, input files and output files must meet specific requirements.

FASTSRT Requirements for Input Files

� Only one file can be mentioned in the USING phrase.

� A VSAM file used as input must not be empty. However, a SAM input file may
be empty.

� No input procedure can be used.

FASTSRT Requirements for Output Files

� Only one file can be mentioned in the GIVING phrase.

� The LINAGE clause must not be specified for the output FD entry.

 Chapter 12. File Sorting and Merging 185

� No output procedure can be used.

Information Messages for FASTSRT
The compiler issues information messages to point out statements in which
FASTSRT can improve performance. The compiler also issues messages if you
specified FASTSRT, but do not qualify for improved sort performance in your
program.

If the requirements for FASTSRT listed above are not met, COBOL will perform all
the I/O, and there will be no performance improvement, even though you specified
FASTSRT.

Sorting Variable-Length Records
Although you cannot specify RECORDING MODE V in the SD entry (which does
not allow the RECORDING MODE clause), the compiler determines that the
records in the new file are of variable length if:

� The input file to the new file has variable-length records.

� The SD includes more than one record description and the records are of dif-
ferent lengths.

� The SD includes a RECORD IS VARYING IN SIZE clause.

If the input file to the new file contains variable-length records, specify the record
length that occurs most frequently in the input file (the modal length) on the SMS=
statement or in the SORT-MODE-SIZE special register. (For the format of the SMS
statement, see “Passing Control Statements to DFSORT/VSE.”) Use of the SMS
statement or SORT-MODE-SIZE special register is optional, but it can improve sort
performance.

Passing Control Statements to DFSORT/VSE
Optionally, you can pass information to DFSORT/VSE through control statements
read from SYSIPT or contained in a VSE Librarian member. Use this technique
only if you want to change the system defaults in order to improve the performance
of your sort operations.

The control statements you can include at run time (in the order listed) are:

1. SORT or MERGE (used to replace the SORT or MERGE statement generated
by the compiler)

2. SMS=nnnnn where nnnnn is the length, in bytes, of the most frequent record
size (ignored if the SD is not variable)

3. OPTION (except FILNM=)

4. Other DFSORT/VSE control statements (ALTSEQ, ANALYZE, INCLUDE,
INREC, OMIT, OUTREC, or SUM)

The purpose of each of these control statements is summarized in Figure 61 on
page 189. For keyword values that you can use with OPTION and other
DFSORT/VSE control statements, see the DFSORT/VSE Application Programming
Guide.

186 COBOL/VSE Programming Guide

Format of the Control Statements
Control statements must be coded in the order listed above, and must be between
columns 2 and 71. You can continue a record by ending the line with a comma,
and continuing the next line with a new keyword. No labels or comments are
allowed on the records, and the record itself cannot be a DFSORT/VSE comment
statement. No other syntax checking of the statement is performed.

Specifying Control Statements Source
The use of run-time DFSORT/VSE control statements is optional. You can specify
that run-time control statements are to be read by using the SORT-CONTROL
special register. You can assign to SORT-CONTROL the value “SYSIPT” (if control
statements are to be read from SYSIPT) or the name of a VSE Librarian member.
If you provide the name of a VSE Librarian member, the member must be of type
“C,” it must be cataloged in a source sublibrary available at run time, and its name
must not be IGZSRTCD.

If you provide the name of a VSE Librarian member and it is not found you will
receive the message IGZ0027W.

Specifying SORT or MERGE Control Statements
If the compiler generates a SORT statement and you try to override this with a
MERGE statement from the SORT-CONTROL member, the overriding MERGE
statement is ignored and no message is issued.

If the compiler generates a MERGE statement and you try to override this with a
SORT statement from the SORT-CONTROL member, the overriding SORT state-
ment is ignored and no message is issued.

The LE/VSE run-time library appends parameters to the SORT statement
depending on the COBOL/VSE SORT options requested. These appends are:

FILES= (determined by the number of sort work DLBL statements found)

EQUALS (if DUPLICATES is coded in the COBOL/VSE SORT statement)

SIZE= (when SORT-FILE-SIZE is set (compatibility only))

These appends will be made to the SORT statement supplied via the
SORT-CONTROL member. However, if any of these parameters are already
coded on the supplied statement, the supplied option takes precedence.

If you have multiple sorts in a single COBOL program the generated SORT state-
ments can be overriden by using multiple SORT-CONTROL members and
changing the value of SORT-CONTROL before each sort. Alternatively, you can
set SORT-CONTROL to SYSIPT and use a JCL setup as follows:

// EXEC SORTPGM

SORT FIELDS= ... (sort one override statements)

/�

SORT FIELDS= ... (sort two override statements)

/�

 Chapter 12. File Sorting and Merging 187

Using Control Statements
The FASTSRT option will not take effect for input if an input procedure is used or
for output if an output procedure is used in the SORT statement.

Many functions usually performed in an input or output procedure are the same as
those done by the DFSORT/VSE functions:

 INREC
 OUTREC
 INCLUDE
 OMIT
 SUM

You may be able to eliminate your input and output procedures. To do so, code
the appropriate DFSORT/VSE program control statements and place them in
COBOL/VSE's SORT-CONTROL file, thereby allowing your SORT statement to
qualify for FASTSRT.

For more information, see the DFSORT/VSE Application Programming Guide.

SORT Special Registers
The COBOL programmer has control over a number of aspects of sort behavior.
For some of these aspects, a special register is available to insert a value before
the sort to control the process, or to test the contents after the sort to verify its
success. In other cases, COBOL compiler options can affect the sort process. In
all cases, sort control statement keywords can be used as an alternative method.

SORT-RETURN
SORT-RETURN is a COBOL special register containing the SORT return
code. Test this return code to verify that the sort was successful. For an
example of SORT-RETURN verification, see “Determining Whether the Sort
or Merge Was Successful” on page 181. You can also use it to terminate
sort/merge before its processing is complete by moving the integer 16 to it in
an input or output procedure, or in an ERROR declarative entered during
sort or merge processing. A RETURN or RELEASE statement must then be
executed.

SORT-CONTROL
SORT-CONTROL is an 8-character COBOL special register. If you want to
provide run-time DFSORT/VSE control statements, you can assign to
SORT-CONTROL the value “SYSIPT” or the name of a VSE Librarian
member. Once you have assigned a value to SORT-CONTROL you can
cancel it by assigning spaces to SORT-CONTROL.

Figure 61 on page 189 lists those aspects of sort behavior that can be affected by
special registers or COBOL compiler options, and the equivalent sort control state-
ment keywords. For a full list of sort keywords, see the DFSORT/VSE Application
Programming Guide.

188 COBOL/VSE Programming Guide

The SORT-CORE-SIZE, SORT-FILE-SIZE, SORT-MESSAGE, and
SORT-MODE-SIZE special registers will be used in the SORT interface when they
have nondefault values. However, at run time, individual SORT special registers
will be replaced by the corresponding parameters on control statements that are
included in the SORT-CONTROL file, and a message will be issued. In addition, a
compiler warning message (W-level) will be issued for each SORT special register
that was set in the program.

Figure 61. Sorting in COBOL/VSE

To Set or Test Use

Sort completion code SORT-RETURN special register

Name of file with sort control
statements (by default
IGZSRTCD)

SORT-CONTROL special register

Modal length of records in a file
with variable-length records

SORT-MODE-SIZE special register, or
RECORD control statement keyword: LENGTH

Number of sort records SORT-FILE-SIZE special register, or
SORT control statement keyword: SIZE (ignored by
DFSORT/VSE)

Amount of main storage to be
used

SORT-CORE-SIZE special register, or
OPTION control statement keyword: STORAGE

Name of sort message file
(default SYSLST)

SORT-MESSAGE special register, or
OPTION control statement keyword: ROUTE

Century window for sorting or
merging on date fields

YEARWINDOW compiler option, or
OPTION control statement keyword: Y2PAST

Format of windowed date fields
used as sort or merge keys

Derived from PICTURE, USAGE, and DATE FORMAT
clauses, or
SORT control statement keyword: FORMAT=Y2x

Storage Use During a Sort or Merge Operation
In general, the more storage DFSORT/VSE has available, the faster the sorting
operation is performed. Certain parameters specified during the installation of
DFSORT/VSE determine the amount of storage used during its operation.

Enough program storage must be reserved for:

� The COBOL program to be executed

 � DFSORT/VSE modules

� DFSORT/VSE input and output buffers

� DFSORT/VSE working storage

Note: Program storage may be reserved by using the JCL EXEC statement SIZE
parameter. Your run-time JCL should look like:

// EXEC pgrmid,SIZE=(pgrmid,nnnK)

where nnnK is the amount of program storage required for DFSORT/VSE.

 Chapter 12. File Sorting and Merging 189

GETVIS storage must be reserved for:

� COBOL programs that are dynamically loaded from an input or output proce-
dure

� COBOL run-time library routines

� Any storage obtained by these routines

� LE/VSE run-time library routines

� Storage for the DFSORT/VSE GVSIZE option

For a specific execution of a sort or merge, you may replace the values specified at
installation. The STORAGE keyword on the DFSORT/VSE OPTION control state-
ment, or the SORT-CORE-SIZE special register, can be used for this purpose.
(For the meaning of this key word see the DFSORT/VSE Application Programming
Guide).

Note: Be careful not to replace the storage allocation to the extent that more than
the reserved program storage is used for the sort operation.

Checkpoint/Restart During DFSORT/VSE
It is possible to take a checkpoint during a sort operation. DFSORT/VSE will take
only one checkpoint during a sort operation. No checkpoint will be taken during a
merge operation.

A checkpoint taken during a DFSORT/VSE operation, unless taken by
DFSORT/VSE, cannot be used to restart. Restarts using checkpoints are invalid if
the checkpoint was taken by your COBOL/VSE program while SORT or MERGE
statements were executing. The restarts are detected and canceled.

If a checkpoint is to be taken during a sorting operation, a checkpoint file must be
provided in the run-time JCL. The checkpoint file must:

� be assigned to SYS000 (a tape or a direct-access device, CKD or FBA)

� have standard labels

� have the filename SORTCKP

To cause DFSORT/VSE to take a checkpoint while a SORT statement is executing,
code in the following I-O control paragraph:

RERUN ON assignment-name

SORTING under CICS
Under CICS, you can use the SORT statement (along with a sort program that runs
under CICS) to sort small amounts of data. The SORT statement must have both
an INPUT PROCEDURE and an OUTPUT PROCEDURE. In the INPUT PROCE-
DURE, use the RELEASE statement to transfer records from the COBOL program
to the SORT program before the sort is performed. In the OUTPUT PROCEDURE,
use the RETURN statement to transfer records from the sort program to the
COBOL program after the sort is performed.

Note: There is no IBM sort product that is supported under CICS.

190 COBOL/VSE Programming Guide

CICS SORT Application Restrictions
The following restrictions apply to COBOL/VSE applications that are written using
the SORT statement and will run under CICS.

� SORT statements that include the USING or GIVING phrase are not supported.

� Sort control files are not supported. Data in the SORT-CONTROL special reg-
ister is ignored.

� Using the following CICS commands in the input/output procedures may cause
unpredictable results:

 CICS LINK
 CICS XCTL
 CICS RETURN
 CICS HANDLE
 CICS IGNORE
 CICS PUSH
 CICS POP

� CICS commands, other than those in the preceding list, are allowed provided
they are used with the NOHANDLE or RESP option. Unpredictable results may
occur if the NOHANDLE or RESP option is not used.

� Any CICS HANDLE or CICS HANDLE ABEND commands specified in the
COBOL program prior to executing the SORT statement will not be in effect
during the SORT.

� The COBOL sort input/output procedure can contain CALLs to nested pro-
grams. Calls to separately compiled programs are not allowed and unpredict-
able results may occur.

 Chapter 12. File Sorting and Merging 191

 Chapter 13. Error Handling

As you plan and code, you naturally attempt to create a perfect program—one that
will be error-free and run without problems. But it is unrealistic to believe that prob-
lems will never occur during the execution of your program. Even if your own code
is flawless, errors may occur in the system facilities that your program uses.

Anticipate these possibilities by putting code into your program to handle them.
Such code can be thought of as built-in distress flares or lifeboats. If such error-
handling code is not present in your program, not only could output data and files
obviously be ruined, but you might not even be aware of the problem.

The action taken by your error-handling code can vary from attempting to cope with
the situation and continue, to issuing a message, to halting execution. In any
event, coding a warning message is a good idea.

You might be able to create your own error-detection routines for data-entry errors
or for errors as your installation defines them.

COBOL/VSE contains special elements to help you anticipate and correct error
conditions. These fall into the following main areas:

 � User-initiated dumps
� String and unstring operations

 � Arithmetic operations
� Input/output error-handling techniques

 � CALL statements
� User-written error-handling routines

User-Initiated Dumps (CALLs to LE/VSE)
Creating a Formatted Dump: You can cause a dump of the LE/VSE run-time
environment and the member language libraries at any prespecified point in your
program by coding a call to the LE/VSE subroutine CEE5DMP. For example:

 77 Title-1 Pic x(8�) Display.

 77 Options Pic x(255) Display.

 �1 Feedback-code Pic x(12) Display.
 . . .

Call "CEE5DMP" Using Title-1, Options, Feedback-code

In order to have symbolic variables included in the formatted dump produced by
LE/VSE, you must compile with the SYM suboption of the TEST compiler option
and use the VARIABLES subparameter of CEE5DMP. For further details on using
CEE5DMP, see the LE/VSE Programming Reference.

You can also specify, through run-time options, that a dump be produced for error
conditions of your choosing. For information on these run-time options and their
syntax, see the LE/VSE Programming Reference. For more information about
using dumps, refer to LE/VSE Debugging Guide and Run-Time Messages.

192 Copyright IBM Corp. 1983, 1998

Creating a System Dump: You can cause a system dump at any prespecified
point in your program by coding a call to the LE/VSE subroutine CEE5ABD.

This callable service terminates the run unit immediately, and a system dump is
requested when the ABEND is issued.

For details on CEE5ABD, see the LE/VSE Programming Reference.

STRING and UNSTRING Operations
When stringing or unstringing data, the pointer may fall out of the range of the
receiving field. In this case, a potential overflow condition exists, but COBOL does
not allow the overflow to actually occur; the STRING/UNSTRING operation will not
be completed and the receiving field remains unchanged.

If you do not have an ON OVERFLOW clause on the STRING or UNSTRING state-
ment, control passes to the next sequential statement, and you are not notified of
the incomplete operation.

Consider the following statement:

String Item-1 space Item-2 delimited by Item-3

 into Item-4

with pointer String-ptr

 on overflow

Display "A string overflow occurred"

 End-String

Since String-ptr has a value of zero which falls short of the receiving field, an
overflow condition occurs and the STRING operation is not completed (a
String-ptr greater than 9 would cause the same result). Had ON OVERFLOW not
been specified, you would not have been notified that the contents of Item-4 remain
unchanged.

Figure 62. Data Values before and after Statement Executes

Data
Item

PICTURE

Value
Before

Value
After

Item-1 X(5) AAAAA AAAAA

Item-2 X(5) EEEAA EEEAA

Item-3 X(2) EA EA

Item-4 X(8) ␣␣␣␣␣␣␣␣ ␣␣␣␣␣␣␣␣

String-ptr 9(2) � �

Note: The symbol ␣ represents a blank space.

 Arithmetic Operations
When your program performs arithmetic operations, the results may be larger than
the fixed-point field that is to hold them, or you may have attempted a division by 0.
In either case, the ON SIZE ERROR clause after the ADD, SUBTRACT, MUL-
TIPLY, DIVIDE, or COMPUTE statement can handle the situation.

 Chapter 13. Error Handling 193

For ON SIZE ERROR to work correctly for fixed-point overflow and decimal over-
flow, you must specify the TRAP(ON) run-time option.

If you code the ON SIZE ERROR clause, the imperative statement of your clause
will be executed and your result field will not be changed in the following five cases:

 � Fixed-point overflow
� Division by 0
� Zero raised to the zero power
� Zero raised to a negative number
� A negative number raised to a fractional power

Note: You should be aware that floating-point exponent overflow, which occurs
when the value of a floating-point arithmetic calculation cannot be represented in
the System/370 floating-point operand format, does not cause SIZE ERROR; an
abend occurs instead.

Example of Checking for Division by Zero
Code your ON SIZE ERROR imperative statement so that it issues an informative
message. For example:

 DIVIDE-TOTAL-COST.

DIVIDE TOTAL-COST BY NUMBER-PURCHASED

 GIVING ANSWER

ON SIZE ERROR

DISPLAY "ERROR IN DIVIDE-TOTAL-COST PARAGRAPH"

DISPLAY "SPENT " TOTAL-COST, " FOR " NUMBER-PURCHASED

 PERFORM FINISH

 END-DIVIDE

 .

 .

 .

 FINISH.

 STOP RUN.

In this example, if division by 0 occurs, the program will do two things: write out a
message identifying the trouble and halt program execution.

Input/Output Error Handling Techniques
COBOL/VSE offers five techniques for intercepting and handling certain input/output
errors. With the exception of VSAM Return Code they can be used for both SAM
and VSAM file processing.

� The end-of-file phrase (AT END)
� The EXCEPTION/ERROR declarative
� The file status key
� The VSAM Return Code
� The INVALID KEY phrase

The most important thing to remember about input/output errors is that you choose
whether or not your program will continue executing after a less-than-severe
input/output error occurs. COBOL/VSE does not perform corrective action. If you
choose to have your program continue (by incorporating error-handling code into
your design), you must also code the appropriate error-recovery procedure.

194 COBOL/VSE Programming Guide

The following figures show the flow of logic after the indicated errors:

Figure 63. List of Logic Flow Figures

Error Figure

A VSAM input/output error Figure 64

An out-of-space (INVALID KEY) condition in SAM Figure 65 on page 196

A SAM input/output error detected by COBOL Figure 66 on page 196

A SAM input/output error detected by SAM Figure 67 on page 197

yes

End-of-File

Return to
COBOL Program

at the end of
the I/O statement

Severe
error

?

Set Status
Key (if
present)

Evaluate
error type

Issue error
message

Terminate
COBOL
Program

User
have EOF
imperative

?

E3 E3

E3

yes

no

All
Others

Invalid
Key

no no

yes yes

no

User
have inv.

Key Imper-
ative

?

User
have assoc.
Error Declar-

ative
?

Execute
EOF
Imperative

Execute
Invalid Key
Imperative

Execute
Error
Declarative

Figure 64. Flow of Logic after a VSAM I/O Error

 Chapter 13. Error Handling 195

Type of Error: Errors not found by SAM for WRITE or
CLOSE REEL/UNIT (INVALID KEY condition).

Invalid
Key Phrase
Specified

?

Error-
Declarative
Specified

?

File
Status Clause

Specified
?

Issue
Message
and Abend

Exit to
Invalid
Key Phrase

Exit to Error
Declarative

Continue
Program
Execution

no

no

no

yes

yes

yes

*

*

* Execution of COBOL program then continues after the I/O statement
that caused the error.

Figure 65. Flow of Logic after an Out-of-Space (INVALID KEY) Condition in SAM

Type of Error: Errors detected by COBOL.

Error-
Declarative
Specified

?

File
Status Clause

Specified
?

Issue
Message
and Abend

no

no

Exit to Error
Declarative

Continue
Program
Execution

yes

yes

*

* Execution of COBOL program continues after the I/O statement
that caused the error.

Figure 66. Flow of Logic after a SAM I/O Error Detected by COBOL

196 COBOL/VSE Programming Guide

Type of Error: Errors detected by SAM.

* On exit from declarative, return to SAM.

Figure 67. Flow of Logic after a SAM I/O Error Detected by SAM

End-of-File Phrase (AT END)
An end-of-file condition may or may not represent an error. In many designs,
reading sequentially to the end of a file is done intentionally, and the AT END con-
dition is expected.

For example, suppose you are processing a file containing transactions in order to
update a master file:

PERFORM UNTIL TRANSACTION-EOF = "TRUE"

READ UPDATE-TRANSACTION-FILE INTO WS-TRANSACTION-RECORD

 AT END

DISPLAY "END OF TRANSACTION UPDATE FILE REACHED"

MOVE "TRUE" TO TRANSACTION-EOF

 END READ
...

 END-PERFORM

In some cases, however, the condition will reflect an error. You code the AT END
phrase of the READ statement to handle either case, according to your program
design.

If you code an AT END phrase, then at end-of-file the phrase is executed. If you
do not code an AT END phrase, the associated ERROR declarative is executed.

Any NOT AT END phrase that you code is executed only if the READ statement
completes successfully. That is, if the READ operation fails because of any condi-
tion other than end-of-file, neither the AT END nor the NOT AT END phrase is exe-
cuted. Instead, control passes to the end of the READ statement after executing
any associated declarative procedure.

 Chapter 13. Error Handling 197

If you have coded neither an AT END phrase nor an EXCEPTION declarative pro-
cedure but have coded a status key clause for the file, control passes to the next
sequential instruction after the input/output statement that detected the end-of-file
(where presumably you have some code to take appropriate action).

 EXCEPTION/ERROR Declarative
You can code one or more ERROR declarative procedures in your COBOL/VSE
program that will be given control if an input/output error occurs. You can have:

� A single, common procedure for the entire program

� Group procedures for each file open mode (whether INPUT, OUTPUT, I-O, or
EXTEND)

� Individual procedures for each particular file

Place each such procedure in the declaratives section of your Procedure Division.
(For syntax details, see COBOL/VSE Language Reference.)

In your procedure, you can choose to attempt corrective action, retry the operation,
continue, or end execution. You can use the ERROR declaratives procedure in
combination with the status key if you want a further analysis of the error.

If you continue processing a blocked file, you may lose the remaining records in a
block after the record that caused the error.

Write an ERROR declarative procedure if you want the system to return control to
your program after an error occurs. If you do not write such a procedure, your job
may be canceled or abnormally terminated after an error occurs.

When writing an ERROR declarative procedure for a SAM file, you should observe
the following restrictions.

1. COBOL/VSE cannot handle nested input/output errors on SAM files. If
input/output errors occur within an ERROR declarative procedure, the results
are unpredictable.

2. Not all input/output errors cause control to be transferred to your ERROR
declarative procedure, only input/output errors which the system determines to
be “standard” will transfer control.

For a discussion of input/output error handling, see VSE/ESA System Macros
User's Guide.

File Status Key
The system updates the file status key after each input/output statement executed
for a file, placing values in the two digits of the file status key. In general, a zero in
the first digit indicates a successful operation, and a zero in both digits means
"nothing abnormal to report". Establish a file status key using the file status clause
in the FILE-CONTROL and data definitions in the Data Division.

FILE STATUS IS data-name-1

data-name-1
Specifies the 2-character COBOL file status key that should be defined in the
Working-Storage Section.

198 COBOL/VSE Programming Guide

Note: The data-name in the FILE STATUS clause cannot be variably located.
(See “Complex OCCURS DEPENDING ON” on page 106 for more information on
variably located data items.)

Your program can check the COBOL file status key to discover whether an error
has been made and, if so, what general type of error it is. For example, if a FILE
STATUS clause is specified like this:

FILE STATUS IS FS-CODE

then FS-CODE is used by COBOL/VSE to hold status information like this:

 FS─CODE

 ┌──────────┬──────────┐

 │ 2 │ 1 │

 └──────────┴──────────┘

 � �

 │ └────────── Sequence error

 │

 └────────── Invalid key

Follow these rules for each SAM or VSAM file:

1. Define a different file status key for each file.

This is especially important for VSAM files, because, under normal circum-
stances, errors on a VSAM file return control to your COBOL
program—whether they are errors due to the logic of your program or whether
they are input/output errors occurring on the storage media.

2. Check the file status key after every input/output request.

After an input or output statement is executed, check the contents of the status
key; if it contains a value other than 0, your program can issue an error
message, or can take an action based on the value of the code placed in the
status key.

You do not have to reset the status key code, because it is set to 0 before
each input/output attempt.

For VSAM files, in addition to the file status key, you can specify a second identifier
in the FILE STATUS clause to get more detailed VSAM information on input/output
requests. For further details, see “VSAM Return Code (VSAM Files Only)” on
page 201.

Note: For VSAM: If you do not specify a file status key and you do not code an
ERROR declarative, serious processing errors can go undetected by your
program, which will go right on processing the wrong data. If you continue
processing after such errors occur, you may impair the integrity of your
data.

For SAM: If you do not specify a file status key and you do not code an
ERROR declarative, then a serious I-O processing error will cause your
program to abend.

You can use the status key alone, or in conjunction with the INVALID KEY option,
or to supplement the EXCEPTION/ERROR declarative. Using the status key in this
way gives you precise information about the results of each input/output operation.

 Chapter 13. Error Handling 199

Figure 68 shows that the meanings for the possible file status key values fall into
six general categories. The COBOL/VSE Language Reference explains each indi-
vidual status key in detail.

Figure 69 on page 201 shows an example of the COBOL coding for performing a
simple check on opening a file.

Figure 68. File Status Key Condition Types and Descriptions

Type of Condi-
tion

File
Status
Code

 General Description

Successful
Completion

 00
 02
 04
 05
 07

A '0' in the first digit indicates a successful operation
condition, and a '0' in both digits means “nothing
abnormal to report.”

AT END 10
 14

A '1' in the first digit indicates an end-of-file condition
during a sequential READ operation; there are no more
records to READ.

Invalid Key 21
 22
 23
 24

A '2' in the first digit indicates an invalid key condition.
There is a problem with a VSAM indexed prime record
key value, a VSAM indexed alternate record key value,
or a VSAM relative record key value on READ, START,
REWRITE, and DELETE requests such as a duplicate
key, a record not found, or a boundary violation.

Permanent Error 30
 34
 35
 37
 38
 39

A '3' in the first digit indicates a permanent error condi-
tion with unsuccessful completion of the I/O operation.
You may have a boundary violation or have attempted
an invalid OPEN statement such as trying to OPEN a
file that would not support the open mode specified in
the OPEN statement.

Logic Error 41
 42
 43
 44
 46
 48
 49

A '4' in the first digit indicates a logic error condition
with unsuccessful completion of the I/O operation.
Some possible causes are attempting an OPEN state-
ment for an already open file; a CLOSE statement for
an already closed file; a READ, WRITE, DELETE or
REWRITE statement on a file not open in the correct
mode; or trying to REWRITE a record to a file and the
record is a wrong size.

Implementer-
Defined

 90
 91
 92
 93
 94
 95
 96
 97

A '9' in the first digit indicates an implementer-defined
condition. COBOL/VSE uses files status codes 90 and
96 for SAM files. For VSAM files, COBOL/VSE uses
files status codes 90-97. Some possible causes of
VSAM I/O errors include password failures, missing
DLBL statement for the file, or invalid or incomplete file
information.

200 COBOL/VSE Programming Guide

 .

 .

 .

Environment Division.

 .

 .

 .

File-Control.

 Select Master-File

Assign To AS-MASTRA

File Status Is Master-File-Check

 .

 .

 .

Data Division.

 .

 .

 .

Working-Storage Section.

 �1 Master-File-Check Pic X(2).

 .

 .

 .

Procedure Division.

 .

 .

 .

Open Input Master-File

If Master-File-Check Not = Zeros

Display "Cannot Open File"

 .

 .

 .

Figure 69. Using the Status Key to Check an OPEN Statement

VSAM Return Code (VSAM Files Only)
Often the 2-character file status code is too general to pinpoint the disposition of a
request. You can get more detailed information about VSAM input/output requests
by specifying a second status area:

FILE STATUS IS data-name-1 data-name-2

data-name-1
Specifies the 2-character COBOL file status key.

data-name-2
Specifies a 6-byte data item that contains the VSAM return code when the
COBOL file status key is not '00'.

The complete status area might be defined in Working-Storage Sections as:

 �1 RETURN-STATUS.

 �5 FS-CODE PIC X(2).

 �5 VSAM-CODE.

 1� VSAM-R15-RETURN PIC 9(2) COMP.

 1� VSAM-FUNCTION PIC 9(1) COMP.

 1� VSAM-FEEDBACK PIC 9(3) COMP.

 Chapter 13. Error Handling 201

The second area is used by COBOL/VSE to pass along information supplied by
VSAM, for example:

 FS─CODE VSAM─CODE

 ┌────────┬─────────┐ ┌─────────┬────────┬────────┐

│ 2 │ 1 │ │ �8 │ � │ �24 │

 └────────┴─────────┘ └─────────┴────────┴────────┘

� � �

│ │ │

 Register 15 return ─────────┘ │ │

 code: request not accepted. │ │

 │ │

Function code: an attempt ────┘ │

to access the base cluster. │

 │

 Feedback─field code: ────────┘

Key ranges were specified

for the file when it was

defined, but no range was

specified that includes the

record to be inserted.

For information on interpreting the VSAM codes, see your VSAM Administration:
Macro Instruction Reference and VSE/ESA Messages and Codes.

INVALID KEY Phrase
This phrase will be given control in the event that an input/output error occurs
because of a faulty index key. You can include INVALID KEY phrases on READ,
START, WRITE, REWRITE, and DELETE requests for VSAM indexed and relative
files.

You can also include INVALID KEY on WRITE requests for SAM files. In the case
of SAM files, however, the INVALID KEY phrase has limited meaning. It is used
only when you attempt to write to a disk that is full.

INVALID KEY phrases differ from ERROR declaratives in these ways:

� INVALID KEY phrases operate for only limited types of errors, whereas the
ERROR declarative encompasses all types.

� INVALID KEY phrases are coded directly onto the input/output verb, whereas
ERROR declaratives are coded separately.

� INVALID KEY phrases are specific for one single input/output operation,
whereas ERROR declaratives are more general.

If you specify INVALID KEY in a statement that causes an INVALID KEY condition,
control is transferred to the INVALID KEY imperative statement. In this case, any
ERROR declaratives you have coded are not executed.

Any NOT INVALID KEY phrase that you specify is executed only if the statement
completes successfully. If the operation fails because of any condition other than
INVALID KEY, neither the INVALID KEY nor the NOT INVALID KEY phrase is exe-
cuted. Instead control passes to the end of the statement after executing any asso-
ciated ERROR declaratives.

Use the FILE STATUS clause in conjunction with INVALID KEY to evaluate the
status key and determine the specific INVALID KEY condition.

202 COBOL/VSE Programming Guide

For example, assume you have a file containing master customer records and need
to update some of these records with information in a transaction update file. You
will read each transaction record, find the corresponding record in the master file,
and make the necessary updates. The records in both files each contain a field for
a customer number, and each record in the master file has a unique customer
number.

The File-Control entry for the master file of commuter records includes statements
defining indexed organization, random access, MASTER-COMMUTER-NUMBER as
the prime record key, and COMMUTER-FILE-STATUS as the file status key. The
following example illustrates how you can use FILE STATUS in conjunction with the
INVALID KEY to determine more specifically the cause of an I/O statement failure.

 .

. (read the update transaction record)

 .

MOVE "TRUE" TO TRANSACTION-MATCH

MOVE UPDATE-COMMUTER-NUMBER TO MASTER-COMMUTER-NUMBER

READ MASTER-COMMUTER-FILE INTO WS-CUSTOMER-RECORD

 INVALID KEY

DISPLAY "MASTER CUSTOMER RECORD NOT FOUND"

DISPLAY "FILE STATUS CODE IS: " COMMUTER-FILE-STATUS

MOVE "FALSE" TO TRANSACTION-MATCH

 END-READ

 CALL Statements
When dynamically calling a separately compiled program, the program that you call
may be unavailable to the system. For example, the system may be out of storage
or it may be unable to locate the phase. If you do not have an ON EXCEPTION or
ON OVERFLOW clause on the CALL statement, your application may end abnor-
mally (abend). You can use the ON EXCEPTION clause to execute a series of
statements and to perform your own error handling. For example:

 CALL "REPORTA"

 ON EXCEPTION

DISPLAY "Program REPORTA not available. Loading REPORTB."

 CALL "REPORTB"

 END-CALL

 END-CALL

If program REPORTA is unavailable, control will continue with the ON EXCEPTION
clause.

The behavior of the ON EXCEPTION/OVERFLOW clause is sensitive to the
CMPR2 compiler option. See COBOL/VSE Migration Guide for details on VS
COBOL II Release 2 compatibility and migration.

Note: The ON EXCEPTION clause applies only to the availability of the called
program. If an error occurs while the called program is running, the ON EXCEP-
TION clause will not be executed.

 Chapter 13. Error Handling 203

User-Written Error-Handling Routines
You can handle most error conditions that might occur during program execution by
using the ON EXCEPTION phrase, the ON SIZE ERROR phrase, and other lan-
guage semantics. But in the event of an extraordinary condition like a machine
check, normally your program will not regain control—it will be abnormally termi-
nated. However, COBOL/VSE in conjunction with LE/VSE provides a mechanism
whereby your program can gain control when such conditions occur. LE/VSE con-
dition handling gives you the opportunity to write your own error-handling routines
to handle conditions which can allow your program to resume executing.

In order to have LE/VSE pass control to your own user-written error routine, you
must first identify and register its entry point to LE/VSE. Procedure-pointer data
items allow you to pass the entry address of procedure entry points to LE/VSE ser-
vices. For more information on procedure-pointer data items, see “Passing Entry
Point Addresses with Procedure Pointers” on page 280.

For more information on LE/VSE condition management and a COBOL/VSE
example of handling conditions with a user-written condition handler, see LE/VSE
Programming Guide.

204 COBOL/VSE Programming Guide

 Compiling Your Program

Part 3. Compiling Your Program

This part of the book provides instructions for compiling your COBOL/VSE pro-
grams. More complex programming topics are discussed in Part 4, “Advanced
Topics” on page 259.

Chapter 14. Methods of Compilation . 206

Chapter 15. Compiler Options . 224

 Copyright IBM Corp. 1983, 1998 205

 Compiling Your Program

Chapter 14. Methods of Compilation

Methods of compilation vary according to the system you are using. However, the
compilation procedure is basically the same in all systems:

Your source statements (in a file)

 ┌───────────────────┐

 │ ID. DIVISION. │

 │ . │

 │ . ├────┐

 │ . │ │

 │ STOP RUN. │ │

 └───────────────────┘ │

 ┌────────────────┐

│ COBOL COMPILER │

 └──────┬──┬──────┘

 │ │

│ │ Your object phase

 ┌──────────┐ │ │ ┌──────────────┐

│ Messages │ │ │ │ Machine─code │

│ and │ �────────┘ └────────� │ version of │

│ Listings │ │ your program │

 │ . │ │ │

 │ . │ └──────────────┘

 │ . │

 └──────────┘

The system under which you can use the COBOL/VSE compiler is VSE/ESA batch.

You can compile a sequence of separate COBOL programs with a single invocation
of the compiler by using a batch compile technique. See “Batch Compiling” on
page 209 for more information.

Coding Compilation JCL
The JCL for compilation includes:

� A job identifier
� Definitions of the options to be used
� Definitions for the files needed
� A statement to execute the compiler

The easiest way to compile your program is to code JCL that uses a cataloged
procedure, as shown in Figure 70 on page 207.

206 Copyright IBM Corp. 1983, 1998

 Compiling Your Program

┌────(name of the cataloged

 // JOB JOB1 │ procedure)

 // EXEC PROC=COBVUC �─────────────┘

���1�� IDENTIFICATION DIVISION �───┐

 . │

. └─────────(the source code)

 .

/� �─────────────────────────────────(end-of-data file statement)

/& �─────────────────────────────────(end-of-job statement)

Figure 70. JCL for Compilation, Using a Cataloged Procedure

COBVUC is the name of a cataloged procedure that contains statements for com-
piling a program, including statements for defining the required files. (For informa-
tion about how to set up cataloged procedures see your system programmer).

Cataloged procedures, however, may not give you the programming flexibility you
need for more complex programs. You may need to specify your own job control
statements. Figure 71 shows the general format of JCL used to compile a
program.

// JOB jobname
// LIBDEF PHASE,SEARCH=(lib.library)
// LIBDEF SOURCE,SEARCH=(lib.sublib,...)
// DLBL IJSYS�1,'COBOLVSE.WORKFILE.IJSYS�1',�,SD

// EXTENT SYS��1,volser,...
// ASSGN SYS��1,DISK,VOL=volser,SHR
// DLBL IJSYS�2,'COBVSE.WORKFILE.IJSYS�2',�,SD

// EXTENT SYS��2,volser,...
// ASSGN SYS��2,DISK,VOL=volser,SHR
// DLBL IJSYS�3,'COBVSE.WORKFILE.IJSYS�3',�,SD

// EXTENT SYS��3,volser,...
// ASSGN SYS��3,DISK,VOL=volser,SHR
// DLBL IJSYS�4,'COBVSE.WORKFILE.IJSYS�4',�,SD

// EXTENT SYS��4,volser,...
// ASSGN SYS��4,DISK,VOL=volser,SHR
// DLBL IJSYS�5,'COBVSE.WORKFILE.IJSYS�5',�,SD

// EXTENT SYS��5,volser,...
// ASSGN SYS��5,DISK,VOL=volser,SHR
// DLBL IJSYS�6,'COBVSE.WORKFILE.IJSYS�6',�,SD

// EXTENT SYS��6,volser,...
// ASSGN SYS��6,DISK,VOL=volser,SHR
// DLBL IJSYS�7,'COBVSE.WORKFILE.IJSYS�7',�,SD

// EXTENT SYS��7,volser,...
// ASSGN SYS��7,DISK,VOL=volser,SHR
// DLBL IJSYSLN,'COBVSE.WORKFILE.IJSYSLN',�,SD

// EXTENT SYSLNK,volser,...
// ASSGN SYSLNK,DISK,VOL=volser,SHR
// OPTION options
// EXEC IGYCRCTL,SIZE=IGYCRCTL,PARM='options'
 .

 .

 .

/�

/&

Figure 71. JCL for Compiling a COBOL/VSE Program—General Format

 Chapter 14. Methods of Compilation 207

 Compiling Your Program

Figure 72 shows a working example of JCL for compiling a program, using the
VSE/VSAM Space Management for SAM Feature to define the required work files.
The JCL in this example assumes that a default model for SAM ESDS files has
been defined in the VSAM master catalog.

// JOB JOB1

// LIBDEF PHASE,SEARCH=(PRD2.PROD)

// LIBDEF SOURCE,SEARCH=(PRIVATE.COPYLIB)

// DLBL IJSYS�1,'%COBVSE.WORKFILE.IJSYS�1',�,VSAM,RECSIZE=4�96, X

 RECORDS=(5�,1��),DISP=(NEW,KEEP)

// DLBL IJSYS�2,'%COBVSE.WORKFILE.IJSYS�2',�,VSAM,RECSIZE=4�96, X

 RECORDS=(5�,1��),DISP=(NEW,KEEP)

// DLBL IJSYS�3,'%COBVSE.WORKFILE.IJSYS�3',�,VSAM,RECSIZE=4�96, X

 RECORDS=(5�,1��),DISP=(NEW,KEEP)

// DLBL IJSYS�4,'%COBVSE.WORKFILE.IJSYS�4',�,VSAM,RECSIZE=4�96, X

 RECORDS=(5�,1��),DISP=(NEW,KEEP)

// DLBL IJSYS�5,'%COBVSE.WORKFILE.IJSYS�5',�,VSAM,RECSIZE=4�96, X

 RECORDS=(5�,1��),DISP=(NEW,KEEP)

// DLBL IJSYS�6,'%COBVSE.WORKFILE.IJSYS�6',�,VSAM,RECSIZE=4�96, X

 RECORDS=(5�,1��),DISP=(NEW,KEEP)

// DLBL IJSYS�7,'%COBVSE.WORKFILE.IJSYS�7',�,VSAM,RECSIZE=4�96, X

 RECORDS=(5�,1��),DISP=(NEW,KEEP)

// DLBL IJSYSLN,'%COBVSE.WORKFILE.IJSYSLN',�,VSAM,RECSIZE=322, X

 RECORDS=(4��,6��)

// OPTION LINK

// EXEC IGYCRCTL,SIZE=IGYCRCTL

���1�� IDENTIFICATION DIVISION.

 .

 .

 .

/�

/&

Figure 72. Example of JCL for Compilation

JOB
Specifies the name of the job as JOB1. The JOB statement indicates the
beginning of a job.

LIBDEF PHASE
Defines the sublibrary where the COBOL/VSE compiler resides.

LIBDEF SOURCE
Defines the sublibrary where the copy members reside.

IJSYS01, IJSYS02, IJSYS03, IJSYS04, IJSYS05, IJSYS06, IJSYS07
Defines compiler work files used by the compiler to process the source
program. All work files must be on direct-access storage devices. VSE/VSAM
will determine the volumes on which to allocate the compiler work files from the
SAM ESDS default model in the VSAM catalog. The "%" prefix in the file-ID
indicates that the work file is partition-unique.

IJSYSLN
Defines the SYSLNK file that receives output from the LINK option (the object
phase).

OPTION LINK
Specifies that the generated object code be placed on disk or tape to be used
later as input for the linkage editor.

EXEC
Specifies that the COBOL/VSE compiler (IGYCRCTL) is to be invoked.

208 COBOL/VSE Programming Guide

 Compiling Your Program

/* The end-of-data file statement indicates the end of the input to the compiler
(source code), and separates data from subsequent job control statements in
the input stream.

/& The end-of-job statement indicates the end of the job.

 Batch Compiling
A sequence of separate COBOL programs may be compiled with a single invoca-
tion of the compiler. The object programs produced from this compilation may be
cataloged separately into a VSE Librarian sublibrary, with a member type of OBJ.
The NAME compiler option may be used for this. Alternatively, the object programs
from this compilation may be link-edited into a single phase.

Each program in the sequence must be terminated by an END PROGRAM header,
except the last program in the batch (for which the END PROGRAM header is
optional). CBL/PROCESS statements may optionally precede each program in the
sequence.

If the END PROGRAM header is omitted from a program (other than the last
program in a sequence of separate programs), the next program in the sequence
will be nested within the preceding program. In this case, an intervening
PROCESS statement will cause the generation of error diagnostics. An intervening
CBL statement will also cause the generation of error diagnostics unless the CBL
statement is coded entirely within the sequence number area (columns 1 through
6). In this case, no diagnostic message will be issued for the CBL statement
because it is considered a label for the source statement line.

Note: If the CMPR2 compiler option is in effect, individual programs must be sep-
arated by the CBL form of the PROCESS/CBL statement (END PROGRAM
headers cannot be used when CMPR2 is in effect). The PROCESS form of the
PROCESS/CBL statement cannot be used as a program separator under CMPR2.

Options for each program in the sequence may be specified in the installation
default macro, on the invocation of the compiler, and on CBL/PROCESS state-
ments preceding a program. The following rules apply for options in a batch
compile:

� The option settings used for each program in the sequence are based on the
following hierarchy. See Figure 73 on page 210 for an example of compiler
option hierarchy.

1. Installation defaults, fixed at your site

2. The values of the BUFSIZE, LIB, and SIZE compiler options that were in
effect for the first program in the batch

3. The CBL/PROCESS statements, if any, for the current program

4. Options specified on the compiler invocation (for example, JCL PARM)

5. Options specified on the JCL OPTION statement

6. Nonfixed installation defaults

If the current program does not contain CBL/PROCESS statements, then the
settings of options that were in effect for the previous program are used.

 Chapter 14. Methods of Compilation 209

 Compiling Your Program

If a CBL/PROCESS statement is specified in the current program, the
CBL/PROCESS statements are resolved together with the options in effect prior
to the first program.

� If the BUF, LIB, or SIZE options are required by any program in the sequence,
they must be in effect for the first program of the batch sequence. (All pro-
grams in the batch will be treated as a single input file during BASIS, COPY, or
REPLACE processing.)

� If the LIB option is specified for the batch, the NUMBER and SEQUENCE
options cannot be changed during the batch compilation.

PP 5686-�68 IBM COBOL for VSE/ESA 1.1.1 Date �6/16/1998 Time 13:41:27 Page 1

JCL OPTION parameters:

NODECK,LINK,LIST,NOLISTX,NOSYM,TERM,NOXREF

Invocation parameters:

NOTERM

PROCESS(CBL) statements:

CBL FLAG(I,I)

Options in effect: All options are installation defaults unless otherwise noted:

 NOADATA

 ADV

 QUOTE

 NOAWO

 BUFSIZE(4�96)
...

FLAG(I,I) Process option PROGRAM 1
...

OBJECT JCL OPTION statement option
...

 NOTERM INVOCATION option
...

End of compilation for program 1
...

PP 5686-�68 IBM COBOL for VSE/ESA 1.1.1 Date �6/16/1998 Time 13:41:27 Page 23

PROCESS(CBL) statements:

CBL APOST

Options in effect:

 ADV

APOST Process option in effect for PROGRAM 2

 NOAWO

 BUFSIZE(4�96)
...

FLAG(I) Returns to installation option for PROGRAM 2, and subsequent prog
...

OBJECT JCL OPTION statement option remains in effect
...

NOTERM INVOCATION option remains in effect
...

End of compilation for program 2

Figure 73. The Batch Compile Hierarchy For Compiler Options

If the NAME compiler option is in effect for a program in the batch sequence, in
conjunction with the OBJECT compiler option, a linkage editor PHASE control
statement is generated for that program.

210 COBOL/VSE Programming Guide

 Compiling Your Program

Note: The VSE Linkage Editor does not support the link-editing of multiple sepa-
rate phases with one invocation of the linkage editor. The NAME compiler option
should only be specified for the first program in the batch sequence.

If the NAME compiler option is in effect for a program in the batch sequence, in
conjunction with the DECK compiler option, a VSE Librarian CATALOG control
statement is generated for that program. This simplifies the cataloging of separate
object phases.

Figure 74 shows one invocation of the compiler, compiling three programs
(PROG1, PROG2, and PROG3) and creating three object phases.

// JOB jobname
// DLBL IJSYSPH,'ijsysph.file-ID',�,SD
// EXTENT SYSPCH,volser,1,�,start,tracks
 ASSGN SYSPCH,DISK,VOL=volser,SHR
// OPTION DECK,NOLINK

// EXEC IGYCRCTL,SIZE=IGYCRCTL

 CBL NAME

�1�1�� IDENTIFICATION DIVISION.

�1�2�� PROGRAM-ID PROG1.
...

�19��� END PROGRAM PROG1.

 CBL NAME

 �2�1�� IDENTIFICATION DIVISION.

 �2�2�� PROGRAM-ID PROG2.
...

�29��� END PROGRAM PROG2.

 �3�1�� IDENTIFICATION DIVISION.

 �3�2�� PROGRAM-ID PROG3.
...

�39��� END PROGRAM PROG3.

/�

 CLOSE SYSPCH,cuu
// DLBL IJSYSIN,'ijsysph.file-ID',�,SD
// EXTENT SYSIPT,volser
 ASSGN SYSIPT,DISK,VOL=volser,SHR
// EXEC LIBR,PARM='ACCESS SUBLIB=lib.sublib'
/�

 CLOSE SYSIPT,SYSRDR

/&

Figure 74. Example of a Batch Compilation

Notes to Figure 74:

1. The JCL label information for the compiler work files and SYSLNK, if previously
added to the system standard or partition standard label area, need not be
specified in the job stream.

2. PROG1, PROG2 and PROG3 generate separate object phases on SYSPCH,
each preceded by a VSE Librarian CATALOG control statement.

3. SYSPCH is assigned to a direct-access device. The SYSPCH file is then used
as input to the VSE Librarian to catalog the object phases.

4. If the compiler does not reside in the SVA, the sublibrary where the compiler
resides must be defined in a LIBDEF PHASE statement.

If the LANGUAGE option on the CBL/PROCESS statement is diagnosed as an
error, the language selection will revert back to what was in effect prior to the first
CBL/PROCESS statement encountered during compilation. The language in effect

 Chapter 14. Methods of Compilation 211

 Compiling Your Program

during batch compilations will conform to the rules of CBL/PROCESS statement
processing in that environment.

The following example illustrates the behavior of the LANGUAGE compiler option in
a batch environment. The default installation option is uppercase ENGLISH (abbre-
viated to UE), and the invocation option is XX (a nonexistent language).

 Source Language in

 Effect

 --

CBL LANG(JP),FLAG(I,I),AP�ST,SIZE(MAX) |UE| Installation default -- UE

 IDENTIFICATION DIVISION. |JP| Invocation -- XX

 PROGRAM-ID. COMPILE1. |: |

 . . . |: |

 END PROGRAM COMPILE1. |: |

 CBL LANGUAGE(YY) |UE| CBL resets language

 CBL SIZE(2�48K),LANGUAGE(JP),LANG(!!) |: | to UE. LANGUAGE(YY)

IDENTIFICATION DIVISION. |JP| is ignored since it

PROGRAM-ID. COMPILE2. |: | is superseded by (JP).

 . . . |: | (!!) is not alpha-

END PROGRAM COMPILE2. |: | numeric and is

 IDENTIFICATION DIVISION. |: | discarded.

 PROGRAM-ID. COMPILE3. |: |

 . . . |: |

 END PROGRAM COMPILE3. |: |

 CBL LANGUAGE(JP),LANGUAGE(YY) |UE| CBL resets language

 . . . |: | to UE. LANGUAGE(YY)

 . . . |: | supersedes (JP) but

 . . . |: | is nonexistent.

Figure 75. LANGUAGE Compiler Option Example on a Batch Compile

For COMPILE1, the default language uppercase ENGLISH (UE) is in effect when
scanning the invocation options. A diagnostic message is issued in uppercase
English because XX is a nonexistent language identifier. The default UE remains in
effect when scanning the CBL statement. The unrecognized option AP0ST in the
CBL statement is diagnosed in uppercase English because the CBL statement has
not completed processing and UE was the last valid language option. After the
CBL options processing, the language in effect becomes Japanese (JP).

In COMPILE2, CBL statement errors are diagnosed in uppercase English because
the language in effect prior to the first program is used (in this case uppercase
English). If multiple LANGUAGE options are specified, only the last valid language
specified is used. In this example the last valid language is Japanese (JP), and
thus Japanese becomes the language in effect on completion of processing the
CBL options. If diagnostics in Japanese are wanted for the options in the
CBL/PROCESS statements, then the language in effect prior to COMPILE1 must
be Japanese.

In COMPILE3, there is no CBL statement, and the language in effect, Japanese
(JP), is inherited from the previous compilation.

212 COBOL/VSE Programming Guide

 Compiling Your Program

Following COMPILE3, the CBL statement again resets the language in effect to
uppercase English (UE). The language option in the CBL statement resolves the
last specified two character alphanumeric language identifier, which is YY. Since
YY is nonexistent, the language in effect remains uppercase English.

Input and Output Files
Figure 76 lists the function, and allowable device types for each file.

Figure 76 (Page 1 of 2). Files Used for Compilation

File

Type

Function

Allowable
Device Types

SYSIPT
(Required)1

Input Reading the source program Card reader
Magnetic tape
Direct access

SYSLST
(Required)1

SYSLOG
(Optional)

SYSPCH
(Optional)

SYSLNK
(Optional)

SYSADAT
(Optional)

Output Writing the storage map, listings, and messages

Writing diagnostic and progress messages

Punching the object phase deck

Creating an object phase file as output from the compiler
and input to the linkage editor

Writing information about the program compile environment
and program data elements

Printer
Magnetic tape
Direct access

Display console

Card punch
Magnetic tape
Direct access

Direct access

Direct access

IJSYS01
(Required)2

IJSYS02
(Required)2

IJSYS03
(Required)2

IJSYS04
(Required)2

IJSYS05
(Optional)2

IJSYS06
(Required)2

IJSYS07
(Required)2

Work file Work file needed by the compiler during compilation

Work file needed by the compiler during compilation

Work file needed by the compiler during compilation

Work file needed by the compiler during compilation

Work file needed when LIB option is in effect

Work file needed by the compiler during compilation

Work file needed by the compiler for creating listing

Direct access

 Chapter 14. Methods of Compilation 213

 Compiling Your Program

Figure 76 (Page 2 of 2). Files Used for Compilation

File

Type

Function

Allowable
Device Types

Copy libraries
(Optional)1

Library Optional user source program libraries Direct access

Note:

1. See “EXIT” on page 234 for additional information.

2. This file must be a single volume file unless it is defined using the VSE/VSAM Space Management for SAM
Feature.

Required Compiler Files
Basic compilation requires the following files:

� SYSIPT—to provide the source program input

� SYSLST—for the compiler printed output

� IJSYS01, IJSYS02, IJSYS03, IJSYS04, IJSYS06, IJSYS07— for compiler work
files. The logical unit numbers for these compiler work files are SYS001,
SYS002, SYS003, SYS004, SYS006 and SYS007 respectively.
(An optional work file, IJSYS05, with logical unit number SYS005, must be
specified if you are using the LIB compiler option. The LIB compiler option is
required if you have COPY, REPLACE, or BASIS statements in your program).

If you are requesting specific compilation features, specify the following files
through JCL statements:

� SYSLOG—if you are using the TERMINAL compiler option, to get the compiler
progress and diagnostic messages

� SYSPCH—if you are using the DECK compiler option, to request an object
module be produced

� SYSLNK—if you are using the OBJECT compiler option, to request that an
object module be produced for input to the linkage editor

� Copy libraries—if your source program uses the COPY or BASIS statement

� SYSADAT—use the ADATA option to generate the SYSADAT file (containing
data produced by the compiler)

Source Code File: SYSIPT
This file is read by the compiler to obtain your source code. If you include your
source code or BASIS statement in your job stream, it must immediately follow the
EXEC statement that invokes the compiler, and be terminated with a /* statement.
You can, however, use JCL statements to define a file that contains your source
code. For example, to define a direct-access device file, use the DLBL, EXTENT,
and ASSGN statements.

// DLBL IJSYSIN,'file-ID',�,SD
// EXTENT SYSIPT,volser,1,�,start,tracks
// ASSGN SYSIPT,DISK,VOL=volser,SHR

214 COBOL/VSE Programming Guide

 Compiling Your Program

 Output File: SYSLST
This file is used by the compiler to produce a listing. Output may be directed to a
printer, a direct-access device, or a magnetic-tape device. The listing will include
the results of the default or specified options of the PARM parameter (that is, diag-
nostic messages, the object code listing). For example:

// ASSGN SYSLST,PRT1

Directing Compiler Messages to the Console: SYSLOG
SYSLOG can only be assigned permanently, and is usually assigned at system
initialization.

Specifying Libraries: LIBDEF Job Control Statement
Add the LIBDEF job control statements if your program contains COPY or BASIS
statements. These LIBDEF statements define the sublibraries that contain the data
requested by COPY statements (in the source code) or by a BASIS statement in
the input stream.

// LIBDEF SOURCE,SEARCH=(lib.sublib)

Note: You do not need the LIBDEF SOURCE statement if the NOLIB option is in
effect.

Connect multiple sublibraries in the search chain if you have multiple copy or basis
sublibraries. For example:

// LIBDEF SOURCE,SEARCH=(lib.sublib1,lib.sublib2)

Sublibraries are on direct-access storage devices.

Note: The sublibraries should be specified in the search chain in the order in
which you want them to be searched.

Creating Object Code: SYSLNK or SYSPCH
When using the OBJECT compiler option, or DECK compiler option, you can store
the object code on disk or tape. The compiler uses the SYSLNK or SYSPCH files
you define in your JCL to store the object code.

You do not need to define SYSLNK in your JCL if the NOOBJECT option is in
effect.

// DLBL IJSYSLN,'file-ID',�,SD
// EXTENT SYSLNK,volser,1,�,start,tracks
// ASSGN SYSLNK,DISK,VOL=volser,SHR

In the example above, the object phase is created ready to be passed to the
linkage editor.

Note: Your installation may use the DECK option and JCL to define the SYSPCH
file.

An example of defining SYSPCH as a direct-access device file follows.

// DLBL IJSYSPH,'file-ID',�,SD
// EXTENT SYSPCH,volser,1,�,start,tracks
 ASSGN SYSPCH,DISK,VOL=volser,SHR

 Chapter 14. Methods of Compilation 215

 Compiling Your Program

Note: You do not need to define the SYSPCH file if the NODECK option is in
effect.

Creating an Associated Data File : SYSADAT
When using the ADATA compiler option, the compiler uses the SYSADAT file you
define in your JCL to store ADATA information.

An example of defining SYSADAT as a direct-access device file follows.

// DLBL SYSADAT,'file-ID',�,SD
// EXTENT SYS��8,volser,1,�,start,tracks
 ASSGN SYS��8,DISK,VOL=volser,SHR

Controlling Your Compilation
As noted before, the compiler's main job is to translate your COBOL program into
language that the computer can process (object code). The compiler also lists
errors in your source statements and provides supplementary information to help
you debug and tune your program.

Use compiler-directing statements and compiler options to direct and control your
compilation. Each is discussed next.

Using Compiler-Directing Statements
You can put compiler-directing statements in your source program to help direct
compilation. For a description of these statements see “Compiler-Directing
Statements” on page 257. For the syntax of these statements, see COBOL/VSE
Language Reference.

Using Compiler Options
The compiler is installed and set up with default compiler options. These default
options will be used unless you replace them by specifying the wanted compiler
options in one of the following ways, depending on which system you are using for
compilation:

� For certain options, with the OPTION statement in your JCL

� With a PROCESS (or CBL) statement preceding the Identification Division
header

� With the PARM parameter on the EXEC statement in your JCL

Note: You cannot replace any compiler options that your installation has set up as
fixed.

Most of the options come in pairs. You select one or the other. For example, the
option pair for a cross-reference listing is XREF/NOXREF. If you want such a
listing, specify XREF. If you do not want one, specify NOXREF.

Some options have subparameters. For example, if you want 44 lines per page on
your listings, specify LINECOUNT(44).

216 COBOL/VSE Programming Guide

 Compiling Your Program

Precedence of Compiler Options
Compiler options are recognized in the order of precedence below:

Level 1: Installation defaults, fixed by your installation
Level 2: Those on PROCESS (or CBL) statements
Level 3: Those on JCL PARM= parameter on the EXEC statement
Level 4: Those on JCL OPTIONS statement
Level 5: Installation defaults, but not fixed

Options “fixed by your installation” refers to options customized using the options
module IGYCOPT, and specified there as non-overridable. Level 5 refers to
options customized using IGYCOPT but not specified there as non-overridable.

Level 4 refers to either the JCL OPTION statement or the STDOPT statement, and
only applies to those options that can be specified in this manner (for example,
DECK and XREF). The STDOPT JCL statement defines installation default
options, and these can be temporarily overridden by the OPTIONS statement. For
more information, see VSE/ESA System Control Statements.

Within this hierarchy of precedence, there are also rules for conflicting and mutually
exclusive options as described under “Conflicting Compiler Options” on page 218.

Specifying Options on the PROCESS (CBL) Statement
Your programming installation can inhibit the use of PROCESS statements with the
default options phase of the COBOL compiler. When PROCESS statements are
found in a COBOL program where they are not allowed by the installation, error
diagnostics are generated by the COBOL compiler.

You can code compiler options on the PROCESS statement. The PROCESS
statement is placed before the Identification Division header and has the following
format:

PROCESS option1 [,option2] ... [,optionn]
 IDENTIFICATION DIVISION.

One or more blanks must separate PROCESS and the first option. Separate
options with a comma or a blank. The PROCESS statement must be placed before
any comment lines or compiler-directing statements.

There must not be any embedded spaces within options. For example, FLAG(x,y)
may not be written FLAG(x y).

PROCESS can start in columns 1 through 66. A sequence field is allowed in
columns 1 through 6. When used with a sequence field, PROCESS can start in
columns 8 through 66. If used, the sequence field must contain six characters, and
the first character must be numeric.

You can use CBL as a synonym for PROCESS. CBL can start in columns 1
through 70. When used with a sequence field, CBL can start in columns 8 through
70.

You can use more than one PROCESS statement. If multiple PROCESS state-
ments are used, they must follow one another with no intervening statement of any
other type.

Options cannot be continued across multiple PROCESS statements.

 Chapter 14. Methods of Compilation 217

 Compiling Your Program

Specifying Options Using JCL
An example of specifying compiler options using JCL follows:

...

// EXEC PGM=IGYCRCTL,SIZE=IGYCRCTL,PARM='LIST,NOCOMPILE(S), �

 OBJECT,FLAG(E,E)'

Specifying Options, Using the JCL OPTION Statement
An example of specifying compiler options, using the JCL OPTION statement
follows:

...

// OPTION LINK,SYM

// EXEC IGYCRCTL

Compiler Options and their JCL OPTION Statement Equivalents
The following compiler options may be specified by using the equivalent option of
the JCL OPTION statement.

Compiler Option JCL Option
Equivalent

Comments

DECK DECK The DECK compiler option is always spec-
ified using the JCL OPTION statement.

LIST LISTX

MAP SYM

OBJECT LINK
CATAL

The OBJECT compiler option is always
specified using the LINK or CATAL option
of the JCL OPTION statement.

SOURCE LIST

TERMINAL TERM

XREF SXREF
XREF

Use the XREF option of the JCL OPTION
statement if you wish to specify the
XREF(FULL) compiler option. Use the
SXREF option of the JCL OPTION state-
ment if you wish to specify the
XREF(SHORT) compiler option.

Conflicting Compiler Options
The positive form of the compiler option and its negative form, for example, DECK
and NODECK, are opposing options. If you specify both of them on the same level
in the hierarchy listed above, the option specified last takes effect. For example,
within your PROCESS (or CBL) statement or within your JCL PARM= statement,
the option specified last takes effect.

In addition to the directly opposing options, a few of the compiler options are mutu-
ally exclusive. That is, when you specify one of the options in column A of
Figure 77 on page 219, the option in column B is normally ignored, and the option
in column C is forced on.

218 COBOL/VSE Programming Guide

 Compiling Your Program

For example, if you specify both OFFSET and LIST in your PROCESS statement,
in any order, OFFSET takes effect and LIST is ignored. However, results can vary,
depending on the level at which you specify the option. For example, if you specify
OFFSET in your JCL statement but LIST in your PROCESS statement, LIST will
take effect because the options specified in the PROCESS statement and any
options forced on by an option specified in the PROCESS statement have higher
precedence.

What if one of the options from column A is set up as a default for your system and
you want to use a conflicting option from column B? It is possible that an option
may be set up at the installation level as a fixed option, in which case the options it
conflicts with cannot be put into effect by individual programmers. But if the option
from column A is a nonfixed default option, you can put a conflicting option from
column B in effect by specifying it on your PROCESS statement or in your JCL
PARM= statement.

For example:

If OFFSET is your system default (nonfixed) but
You want to use LIST for your program,

you can do so by specifying LIST in your PROCESS statement or JCL PARM=
statement.

For more information on compiler options, including performance and ANSI consid-
erations, see Chapter 15, “Compiler Options” on page 224.

Figure 77. Mutually Exclusive Options at the Same Level of Precedence

A: This is specified B: These are ignored1 C: These are forced on1

TEST
TEST(ALL)
TEST(STMT)
TEST(PATH)
TEST(BLOCK)

OPTIMIZE NOOPTIMIZE

OFFSET LIST NOLIST

CMPR2 FLAGSTD
FLAGSAA
DBCS
DATEPROC

NOFLAGSTD
NOFLAGSAA
NODBCS
NODATEPROC

NOCMPR2 FLAGMIG NOFLAGMIG

WORD FLAGSTD NOFLAGSTD

FLAGSTD FLAGSAA
FLAGMIG
DBCS

NOFLAGSAA
NOFLAGMIG
NODBCS

FLAGSAA FLAGMIG NOFLAGMIG

DBCS FLAGMIG NOFLAGMIG

Note: 1Unless in conflict with a fixed installation default option.

 Chapter 14. Methods of Compilation 219

 Compiling Your Program

Results of Compilation
When the compiler finishes processing your source program, it will have produced
one or more of the following, depending on the compiler options you selected:

Listing output from a compilation will be in the file defined by SYSLST; object
output will be in SYSLNK or SYSPCH. Progress and diagnostic messages may be
directed to SYSLOG, as well as included in SYSLST. ADATA records will be in the
file defined by SYSADAT.

Your immediate concern will be the errors the compiler found in your program.
These are discussed briefly in Compiler-Detected Errors and Messages below.

If the compiler found no errors, you can go to the next step in the process: link-
editing your program. See LE/VSE Programming Guide for information on this
step. (If you used compiler options to suppress object code generation, you must
recompile to obtain it.)

Save the listings you produced during compilation. Their use will come later,
during the test-execution stage of your work, should you need to debug or tune.

Figure 78. Possible Output Produced by the Compiler

Result Option

Listing of your source program SOURCE

List of errors the compiler discovered in your program FLAG

Your object code OBJECT and/or
DECK with
COMPILE

Listing of object code in machine and assembler language LIST

Map of the data items in your program MAP

Map of the relative addresses in your object code OFFSET

Sorted cross-reference listing of procedure-, program-, and data-
names

XREF

A system dump, if compilation ended with abnormal termination DUMP

An Associated-Data File ADATA

Compiler-Detected Errors and Messages
As the compiler processes your source program, it checks for errors you might
have made in violation of the rules of the COBOL/VSE language. For each such
error discovered, the compiler issues a message. These messages are included in
the compilation listing (subject to the FLAG option).

Each message does the following:

� Explains the nature of your error
� Identifies the compiler phase that detected the error
� Identifies the severity level of the error

Wherever possible, the message(s) provide(s) specific instructions for correcting the
error.

220 COBOL/VSE Programming Guide

 Compiling Your Program

Compiler Error Messages
The messages for errors found during processing of compiler options, CBL and
PROCESS statements, or BASIS, COPY and REPLACE statements are displayed
near the top of your listing.

The messages for compilation errors found in your program (ordered by line
number) are displayed near the end of the listing for each program.

A summary of all errors found during compilation is displayed near the bottom of
your listing. Each message issued by the compiler is of the following form:

 Format

LineID Message code Message text

[nnnnnn] IGYppxxxx-l text of message

nnnnnn The number of the source statement of the last line the compiler was
processing. Source statement numbers are listed on the source printout
of your program. If you specified the NUMBER option at compile time,
these are your original source program numbers. If you specified NON-
UMBER, the numbers are those generated by the compiler.

IGY The prefix that identifies this message as coming from the COBOL/VSE
compiler.

pp Two characters that identify which phase of the compiler discovered the
error. As an application programmer, you can ignore this information,
unless you are diagnosing a suspected compiler error. In that case, see
COBOL/VSE Diagnosis Guide.

xxxx A 4-digit number identifies the error message.

l Indicates the severity level of the error: I, W, E, S, or U (see “Compiler
Error Message Codes”).

Remember, if you used the FLAG option to suppress messages, there may be
additional errors in your program.

Compiler Error Message Codes
Errors the compiler can catch fall into five categories of severity:

I Informational This is not an error that affects the running
(Return Code=0) of the program; rather it is a coding

inefficiency or other such condition that you
can choose to change.

W Warning Although the statement in which the condition occurs
(Return Code=4) is syntactically correct, it has the potential for

causing an error when your program is run.

E Error The condition is definitely an error. However, the
(Return Code=8) compiler has tried to correct it for you, and it is

possible that your program will run properly.

 Chapter 14. Methods of Compilation 221

 Compiling Your Program

S Severe The condition is a serious error. The compiler
(Return Code=12) will not attempt to correct the error,

but compilation will continue.

U Unrecoverable The error condition is of such magnitude that the
(Return Code=16) compiler cannot continue.

In the following example, the part of the statement that caused the message to be
issued is enclosed in quotes.

 .

 .

 .

 LineID Message code Message text

2 IGYDS���9-E "PROGRAM" should not begin in area "A". It was processed as if found in area "B".

2 IGYDS1�89-S "PROGRAM" was invalid. Scanning was resumed at the next area "A" item, level-number,

or the start of the next clause.

2 IGYDS��17-E "ID" should begin in area "A". It was processed as if found in area "A".

2 IGYDS1��3-E A "PROGRAM-ID" paragraph was not found. Program name "CBLPGM�1" was assumed.

2 IGYSC1�82-E A period was required. A period was assumed before "ID".

2 IGYDS11�2-E Expected "DIVISION", but found "ALONGPRO". "DIVISION" was assumed before "ALONGPRO".

2 IGYDS1�82-E A period was required. A period was assumed before "ALONGPRO".

2 IGYDS1�89-S "ALONGPRO" was invalid. Scanning was resumed at the next area "A" item, level-number,

or the start of the next clause.

2 IGYDS1��3-E A "PROGRAM-ID" paragraph was not found. Program name "CBLPGM�2" was assumed.

3 IGYPS��17-E "PROCEDURE" should begin in area "A". It was processed as if found in area "A".

34 IGYSC�137-E Program-name "ALONGPRO" did not match the name of any open program. The "END PROGRAM" statement

was assumed to have ended program "CBLPGM�2".

34 IGYSC�136-E Program "CBLPGM�1" required an "END PROGRAM" statement at this point in the program.

An "END PROGRAM" statement was assumed.

Messages Total Informational Warning Error Severe Terminating

 Printed: 12 1� 2

 .

 .

 .

 .

Correcting Your Mistakes
Messages about source coding errors indicate where the error occurred (LineID)
and the text of the message tells you what the problem is. With these, you can
correct your source program and recompile.

Although you should try to correct your errors, it is not absolutely necessary to fix
all of them. A W-level or I-level message could be left in a program without much
risk, and you might well feel that the recoding and compilation needed to remove
the error are not worth the effort. On the other hand, S-level and E-level errors are
in the realm of probable program failure and ought to be corrected.

U-level errors are in a class by themselves. In this case, you have no choice but to
correct the error, because the compiler is forced to terminate early and not produce
complete object code and listing. In contrast with the four lower levels of errors, a

222 COBOL/VSE Programming Guide

 Compiling Your Program

U-level error might not result from a mistake in your source program. It could arise
from a flaw in the compiler itself, or in the system program.

If you decide to correct your compile-time errors, do so by editing your source file.

After correcting your errors, you need to recompile your program. If this second
compilation is successful, you may then go on to the link-editing step. If the com-
piler still finds problems, you should repeat the above procedure until only informa-
tional messages or no messages at all are returned.

Generating a List of All Compiler Error Messages
You can generate a complete listing of compiler diagnostic messages, with their
explanations, by compiling a program with a program-name of ERRMSG specified
in the PROGRAM-ID paragraph. The rest of the program may be omitted. For
example:

 Identification Division.

 Program-ID. ErrMsg.

 Chapter 14. Methods of Compilation 223

 Compiling Your Program

 Chapter 15. Compiler Options

You can direct and control compilation with the following:

 � Compiler options
 � Compiler-directing statements

Compiler options are listed and described in alphabetic order in “Compiler Option
Descriptions” on page 226. Compiler-directing statements are listed at the end of
this chapter on page 257.

Compiler Options Summary
Compiler options control compilation such that various aspects of your program are
affected.

Figure 79 (Page 1 of 2). List of Compiler Options

Aspect of Your Program
Compiler
Option Abbreviations

Found on
Page

Source language APOST None 246

CMPR2 None 228

CURRENCY CURR/NOCURR 229

DBCS None 232

LIB None 240

NUMBER NUM/NONUM 242

QUOTE Q 246

SEQUENCE SEQ/NOSEQ 248

WORD WD/NOWD 255

Date processing DATEPROC DP 231

INTDATE None 238

YEARWINDOW YW 256

Maps and listings LANGUAGE LANG(EN|UE|JA|JP) 239

LINECOUNT LC 240

LIST None 240

MAP None 241

OFFSET OFF/NOOFF 245

SOURCE S/NOS 249

SPACE None 249

TERMINAL TERM/NOTERM 250

VBREF None 254

XREF X/NOX 255

224 Copyright IBM Corp. 1983, 1998

 Compiling Your Program

Figure 79 (Page 2 of 2). List of Compiler Options

Aspect of Your Program
Compiler
Option Abbreviations

Found on
Page

Object deck generation COMPILE C/NOC 228

DECK D/NOD 232

NAME None 242

OBJECT OBJ/NOOBJ 244

Object code control ADV None 227

AWO None 227

FASTSRT FSRT/NOFSRT 234

NUMPROC None 243

OPTIMIZE OPT/NOOPT 245

OUTDD OUT 246

TRUNC None 252

ZWB None 257

Virtual storage usage BUFSIZE BUF 227

SIZE SZ 248

DATA None 230

DYNAM DYN/NODYN 233

RENT None 247

RMODE None 247

Debugging and diagnostics DUMP DU/NODU 232

FLAG F/NOF 234

FLAGMIG None 235

FLAGSAA None 236

FLAGSTD None 236

TEST None 251

SSRANGE SSR/NOSSR 250

Other ADATA None 226

EXIT EX(INX,LIBX,PRTX,
ADX)

415

Default Values for Compiler Options
The default options that were set up when your compiler was installed will be in
effect for your program unless you replace them with other options. (In some
installations, certain compiler options are set up as fixed so that you cannot
replace them. If you have problems, see your system administrator.) To find out
the default compiler options in effect, run a test compilation without specifying any
options. The output listing will list the default options specified by your installation.

 Chapter 15. Compiler Options 225

 Compiling Your Program

 Performance Considerations
There are several performance considerations you should be aware of when using
compiler options. The DYNAM, FASTSRT, OPTIMIZE, NUMPROC(PFD), RENT,
SSRANGE, TEST, and TRUNC compiler options can all affect run-time perform-
ance.

See Chapter 19, “Program Tuning” on page 326 for more details.

Option Settings for COBOL 85 Standard Compilation
The following compiler options are required to conform to the COBOL 85 Standard
specification:

ADV LIB
NOCMPR2 NAME(ALIAS) or NAME(NOALIAS)
NODATEPROC NONUMBER
NODBCS NUMPROC(NOPFD) or NUMPROC(MIG)
DYNAM QUOTE
NOFASTSRT NOSEQUENCE
NOFLAGMIG TRUNC(STD)
NOFLAGSAA NOWORD
FLAGSTD(H) ZWB
INTDATE(ANSI)

Compiler Option Descriptions
The compiler option descriptions that follow are given in alphabetic order. For a list
of compiler options by effect, refer to Figure 79 on page 224.

Note: The defaults listed with the options below are the COBOL/VSE defaults
shipped with the product. They may have been changed by your installation.

 ADATA

��─ ──┬ ┬─ADATA─── ───��
 └ ┘─NOADATA─

Default is: NOADATA

Abbreviations are: None

The ADATA option allows you to produce a file containing program data. From this
file (SYSADAT) information about the compiled program can be extracted. The
SYSADAT file provides a general-use programming interface to the compiler output.
Utilities that previously parsed the compiler output list can now make use of the
SYSADAT records.

Note: You cannot specify this option in a PROCESS (CBL) statement. It can only
be specified:

� On the PARM field of JCL
� As an installation default

226 COBOL/VSE Programming Guide

 Compiling Your Program

 ADV

��─ ──┬ ┬─ADV─── ───��
 └ ┘─NOADV─

Default is: ADV

Abbreviation is: None

ADV is meaningful only if you use WRITE . . . ADVANCING in your source code.

With ADV in effect, the compiler adds one byte to the record length to account for
the printer control character.

ADV conforms to the COBOL 85 Standard.

Use NOADV if you have already adjusted your record length to include one byte for
the printer control character.

 APOST
See “QUOTE/APOST” on page 246.

 AWO

��─ ──┬ ┬─AWO─── ───��
 └ ┘─NOAWO─

Default is: NOAWO

Abbreviation is: None

With AWO specified, the APPLY WRITE-ONLY clause will be in effect if any file
within the program is physical sequential with blocked V-mode records. The clause
will be in effect even if it was not specified within the program.

 BUFSIZE

��─ ──BUFSIZE(──┬ ┬─nnnnn─) ──��
└ ┘──nnnK ─

Default is: 4096

Abbreviation is: BUF

nnnnn
A decimal number that must be at least 256.

nnnK
A decimal number in 1K increments.

Use BUFSIZE to allocate an amount of main storage to the buffer for each compiler

 Chapter 15. Compiler Options 227

 Compiling Your Program

work file (where 1K = 1024 bytes decimal). Usually, a large buffer size will
enhance the performance of the compiler.

If you use both BUFSIZE and SIZE, the amount allocated to buffers is included in
the amount of main storage available for compilation via the SIZE option.

BUFSIZE cannot exceed the track capacity for the device used, nor can it exceed
the maximum allowed by data management services.

 CMPR2

��─ ──┬ ┬─CMPR2─── ───��
 └ ┘─NOCMPR2─

Default is: NOCMPR2

Abbreviations are: None

The CMPR2 option is provided for compatibility with VS COBOL II. Use CMPR2
when you want the compiler to generate code that is compatible with code gener-
ated by VS COBOL II Release 2.

Implementation of the COBOL 85 Standard created some instances where incom-
patibilities with VS COBOL II Release 2 can occur. Use of the CMPR2 and
FLAGMIG options aid in the migration of programs written for VS COBOL II
Release 2 to COBOL/VSE.

NOCMPR2 conforms to the COBOL 85 Standard.

Note: New COBOL/VSE language elements, such as intrinsic functions, are not
supported under CMPR2. For more information, see COBOL/VSE Migration Guide.

 COMPILE

��─ ──┬ ┬─COMPILE──────────────────── ────────────────────────────────��
 └ ┘──NOCOMPILE ──┬ ┬─────────────
 └ ┘ ─(─ ──┬ ┬─W─ ─)─
 ├ ┤─E─
 └ ┘─S─

Default is: NOCOMPILE(S)

Abbreviations are: C / NOC

Use the COMPILE option only if you want to force full compilation even in the pres-
ence of serious errors. All diagnostics and object code will be generated.

Note: You should not attempt to execute the object code generated if the compila-
tion resulted in serious errors—the results could be unpredictable or an abnormal
termination could occur.

Use NOCOMPILE without any subparameter to request a syntax check (only diag-
nostics produced, no object code).

228 COBOL/VSE Programming Guide

 Compiling Your Program

Use NOCOMPILE with W, E, or S for conditional full compilation. For meanings of
error codes, see “Compiler-Detected Errors and Messages” on page 220. Full
compilation (diagnostics and object code) will stop when the compiler finds an error
of the level you specify (or higher), and only syntax checking will continue.

If you specify an unconditional NOCOMPILE, the following options have no effect
because no object code will be produced:

 DECK
 LIST
 OBJECT
 OFFSET
 OPTIMIZE
 SSRANGE
 TEST

Note: These options will be listed even though they will have no effect.

 CURRENCY

��─ ──┬ ┬──CURRENCY(literal) ───��
 └ ┘─NOCURRENCY────────

Default is: NOCURRENCY

Abbreviations are: CURR / NOCURR

The default currency symbol is the dollar sign ($). You can use the CURRENCY
option to specify an alternate default currency symbol to be used for the COBOL
program.

NOCURRENCY specifies that no alternate default currency symbol will be used.

To change the default currency symbol, use the CURRENCY option with literal as
follows:

literal
It must be a valid COBOL nonnumeric literal (including a hex literal) repres-

| enting a single character which must not be any of the following:

� Digits zero (0) through nine (9)
| � Uppercase alphabetic characters A B C D E G N P R S V X Z, or their
| lowercase equivalents

 � The space
� Special characters * + - / , . ; () " = '
� A figurative constant

| � A DBCS literal

| If your program processes only one currency type, you can use the CURRENCY
option as an alternative to the CURRENCY SIGN clause for selecting the currency

| symbol you will use in the PICTURE clause of your program. If your program proc-
| esses more than one currency type, you should use the CURRENCY SIGN clause
| with the WITH PICTURE SYMBOL phrase to specify the different currency sign
| types.

 Chapter 15. Compiler Options 229

 Compiling Your Program

When both the CURRENCY option and the CURRENCY SIGN clause are used in a
| program, the CURRENCY option is ignored. Currency symbols specified in the
| CURRENCY SIGN clause(s) may be used in PICTURE clauses.

When the NOCURRENCY option is in effect and you omit the CURRENCY SIGN
clause, you may only use the dollar sign ($) as the PICTURE symbol for the cur-
rency sign.

Note: The CURRENCY option literal can be delimited by either the quote or the
apostrophe, regardless of the QUOTE/APOST compiler option setting.

 DATA

��─ ── DATA(──┬ ┬─24─) ───��
 └ ┘─31─

Default is: DATA(31)

Abbreviation is: None

LE/VSE provides services that control the storage that is used at run time.
COBOL/VSE uses these services for all storage requests.

For reentrant programs, the DATA(24|31) compiler option, in conjunction with the
HEAP run-time option, controls whether storage for dynamic data areas (such as
Working-Storage and FD record areas) is acquired from below the 16-megabyte
line or from unrestricted storage.

When you specify the run-time option HEAP(BELOW), the DATA(24|31) compiler
option has no effect; the storage for all dynamic data areas is allocated from below
the 16-megabyte line. However, with HEAP(ANYWHERE) as the run-time option,
storage for dynamic data areas is allocated from below the line if you compiled the
program with the DATA(24) compiler option or from unrestricted storage if you com-
piled with the DATA(31) compiler option.

Specify the DATA(24) compiler option for programs running in 31-bit addressing
mode that are passing data parameters to programs in 24-bit addressing mode.
This ensures that the data will be addressable by the called program.

External Data: In addition to affecting how storage is acquired for dynamic data
areas, the DATA(24|31) compiler option can also influence where storage for
external data is obtained. Storage required for external data will be acquired from
unrestricted storage if the following conditions are met:

� The program is compiled with the DATA(31) compiler option.
� The HEAP(ANYWHERE) run-time option is in effect.
� The ALL31(ON) run-time option is in effect.

In all other cases, the storage for external data will be obtained from below the
16-megabyte line. To specify the ALL31(ON) run-time option, all the programs in
the run unit must be capable of running in 31-bit addressing mode.

For full details on run-time options, see the LE/VSE Programming Reference.

230 COBOL/VSE Programming Guide

 Compiling Your Program

 DATEPROC

��─ ──┬ ┬──DATEPROC ──┬ ┬──────────────── ──────────────────────────────��
 │ │└ ┘──(──┬ ┬─FLAG───)
 │ │└ ┘─NOFLAG─
 └ ┘─NODATEPROC───────────────────

Default is: NODATEPROC, or DATEPROC(FLAG) if only DATEPROC is specified

Abbreviations are: DP|NODP

Use the DATEPROC option to enable the millennium language extensions of the
COBOL compiler. For information on using these extensions, see Chapter 22,
“Using the Millennium Language Extensions” on page 366.

Note: VisualAge COBOL Millennium Language Extensions for VSE/ESA (program
number 5686-MLE) must be installed on your system to specify anything other than
NODATEPROC.

DATEPROC(FLAG)
With DATEPROC(FLAG), the millennium language extensions are enabled, and
the compiler will produce a diagnostic message wherever a language element
uses or is affected by the extensions. The message will usually be an
information-level or warning-level message that identifies statements that
involve date-sensitive processing. Additional messages may be generated that
identify errors or possible inconsistencies in the date constructs. For informa-
tion on how to reduce these diagnostic messages, see “Analyzing Date-Related
Diagnostic Messages” on page 380.

Production of diagnostic messges, and their appearance in or after the source
listing, is subject to the setting of the FLAG compiler option.

DATEPROC(NOFLAG)
With DATEPROC(NOFLAG), the millennium language extensions are in effect,
but the compiler will not produce any related messages unless there are errors
or inconsistencies in the COBOL source.

NODATEPROC
NODATEPROC indicates that the extensions are not enabled for this compila-
tion unit. This affects date-related program constructs as follows:

� The DATE FORMAT clause is syntax-checked, but has no effect on the
execution of the program.

� The DATEVAL and UNDATE intrinsic functions have no effect. That is, the
value returned by the intrinsic function is exactly the same as the value of
the argument.

� The YEARWINDOW intrinsic function returns a value of zero.

Notes:

1. Specification of the DATEPROC option requires that the NOCMPR2 option is
also used.

2. NODATEPROC conforms to the COBOL 85 Standard.

 Chapter 15. Compiler Options 231

 Compiling Your Program

 DBCS

��─ ──┬ ┬─DBCS─── ──��
 └ ┘─NODBCS─

Default is: NODBCS

Abbreviations are: None

Use of DBCS causes the compiler to recognize X'0E' (SO) and X'0F' (SI) as shift
codes for the double byte portion of a nonnumeric literal.

With DBCS selected, the double byte portion of the literal is syntax checked and
the literal remains category alphanumeric.

DBCS is ignored if either CMPR2 or FLAGSTD is in effect.

NODBCS conforms to the COBOL 85 Standard.

 DECK

��─ ──┬ ┬─DECK─── ──��
 └ ┘─NODECK─

Default is: NODECK

Abbreviations are: D / NOD

Use DECK to produce object code in the form of 80-column card images. If you
use the DECK option, be certain that SYSPCH is defined in your JCL for compila-
tion.

The DECK compiler option is specified by using the DECK job control option on the
JCL OPTION statement. For more information on how to specify the DECK job
control option, see VSE/ESA System Control Statements.

Note: For compatibility with COBOL/370 under MVS and VM, the DECK or
NODECK option may be specified on your PROCESS (or CBL) statement, or on
the PARM parameter of your JCL EXEC statement. The option will be
syntax-checked, but it will be ignored.

 DUMP

��─ ──┬ ┬─DUMP─── ──��
 └ ┘─NODUMP─

Default is: NODUMP

Abbreviations are: DU / NODU

Note: This option is not intended for general use.

232 COBOL/VSE Programming Guide

 Compiling Your Program

Use DUMP to produce a system dump at compile time for an internal compiler
error. The DUMP option should only be used at the request of an IBM represen-
tative.

The dump, which consists of a listing of the compiler's registers and a storage
dump, is intended primarily for diagnostic personnel for determining errors in the
compiler.

For information on how to interpret the user abend code, see the COBOL/VSE
Diagnosis Guide. If you use the DUMP option, include the DUMP job control option
or the PARTDUMP job control option on the JCL OPTION statement. For more
information on how to specify DUMP and PARTDUMP job control options see
VSE/ESA System Control Statements.

With DUMP, the compiler will not issue a diagnostic message before abnormal ter-
mination processing. Instead, a user abend will be issued with an IGYppnnnn
message. In general, a message IGYppnnnn corresponds to a compile-time user
abend nnnn. However, both IGYpp5nnn and IGYpp1nnn messages produce a user
abend of 1nnn. You can usually distinguish whether the message is really a 5nnn
or a 1nnn by recompiling with the NODUMP option.

Use NODUMP if you want normal termination processing, including:

� Diagnostic messages produced so far in compilation

� A description of the error

� The name of the compiler phase currently executing

� The line number of the COBOL statement being processed when the error was
found (if you have compiled with OPTIMIZE, the line number may not always
be correct; for some errors it will be the last line in the program)

� The contents of the general purpose registers

Note: The use of the DUMP and OPTIMIZE compiler options together may cause
the compiler to produce a system dump instead of the following optimizer
message:

"IGYOP3124-W This statement may cause a program exception at

 execution time."

This situation is not a compiler error. The use of the NODUMP option will
allow the compiler to issue message IGYOP3124-W and continue processing.

 DYNAM

��─ ──┬ ┬─DYNAM─── ───��
 └ ┘─NODYNAM─

Default is: NODYNAM

Abbreviations are: DYN / NODYN

Use DYNAM to cause separately compiled programs invoked through the CALL
literal statement to be loaded dynamically at run time. DYNAM causes dynamic
loads (for CALL) and deletes (for CANCEL) of separately compiled programs at

 Chapter 15. Compiler Options 233

 Compiling Your Program

object time. Any CALL identifier statements that cannot be resolved in your
program are also treated as dynamic calls.

DYNAM conforms to the COBOL 85 Standard.

Note: Do not use DYNAM with CICS.

 EXIT
The EXIT compiler option is discussed in Appendix D, “EXIT Compiler Option” on
page 415.

 FASTSRT

��─ ──┬ ┬─FASTSRT─── ───��
 └ ┘─NOFASTSRT─

Default is: NOFASTSRT

Abbreviations are: FSRT / NOFSRT

FASTSRT allows DFSORT/VSE, or its equivalent, to perform the input and output
instead of COBOL/VSE.

NOFASTSRT conforms to the COBOL 85 Standard.

Refer to “Improving Sort Performance with FASTSRT” on page 184 for further
information regarding the use of the FASTSRT option.

 FLAG

��─ ──┬ ┬──FLAG(x ──┬ ┬────) ───��
│ │└ ┘──,y

 └ ┘─NOFLAG──────────

Default is: FLAG(I)

Abbreviations are: F / NOF

x I, W, E, S, or U

y I, W, E, S, or U

(See “Compiler Error Message Codes” on page 221 for meanings of error codes.)

Use FLAG(x) to produce diagnostic messages for errors of a severity level x or
above at the end of the source listing.

Use FLAG(x,y) to produce diagnostic messages for errors of severity level x or
above at the end of the source listing, with error messages of severity y and above
to be embedded directly in the source listing. The severity coded for y must not be
lower than the severity coded for x. To use FLAG(x,y), you also need to specify
the SOURCE compiler option.

234 COBOL/VSE Programming Guide

 Compiling Your Program

Error messages in the source listing are set off by embedding the statement
number within an arrow that points to the message code. The message code is
then followed by the message text. For example:

���413 MOVE CORR WS-DATE TO HEADER-DATE

==���413==> IGYPS2121-S " WS-DATE " was not defined as a data-name. ...

With FLAG(x,y) selected, messages of severity y and above will be embedded in
the listing following the line that caused the message. (Refer to the notes below for
exceptions.)

Use NOFLAG to suppress error flagging. NOFLAG will not suppress error mes-
sages for compiler options.

Notes:

1. Specifying embedded level-U messages is accepted, but will not produce any
messages in the source. Embedding a level-U message is not recommended.

2. The FLAG option does not affect diagnostic messages produced before the
compiler options are processed.

3. Diagnostic messages produced during processing of compiler options, CBL and
PROCESS statements, or BASIS, COPY and REPLACE statements, are never
embedded in the source listing. All such messages appear at the beginning of
the compiler output.

4. Messages produced during processing of the *CONTROL (*CBL) statement are
not embedded in the source listing.

 FLAGMIG

��─ ──┬ ┬─FLAGMIG─── ───��
 └ ┘─NOFLAGMIG─

Default is: NOFLAGMIG

Abbreviations are: None

The FLAGMIG is provided for compatibility with VS COBOL II. Use FLAGMIG to
identify language elements that may be implemented differently in VS COBOL II
Release 2 than in COBOL/VSE. To use FLAGMIG, you also need to specify the
CMPR2 compiler option.

NOFLAGMIG conforms to the COBOL 85 Standard.

Implementation of the ANSI 1985 Standard created some instances where incom-
patibilities with VS COBOL II Release 2 can occur. Use of the CMPR2 and
FLAGMIG options aid in the migration of programs written for VS COBOL II
Release 2 to COBOL/VSE. For further information on the items that are CMPR2
sensitive and their behavior under CMPR2, see COBOL/VSE Migration Guide.

 Chapter 15. Compiler Options 235

 Compiling Your Program

 FLAGSAA

��─ ──┬ ┬─FLAGSAA─── ───��
 └ ┘─NOFLAGSAA─

Default is: NOFLAGSAA

Abbreviations are: None

Use FLAGSAA to identify language elements that are not defined as part of the
Systems Application Architecture COBOL Level 1 Programming Interface (SAA
COBOL Level 1 CPI) provided by IBM. The purpose of this flagging is to identify
elements that may restrict program portability across IBM systems. The elements
will be flagged with warning (W) level messages at compile time.

To use FLAGSAA, the NOCMPR2 compiler option must be in effect, and FLAGSTD
cannot be specified. If FLAGSTD and FLAGSAA are specified together under
NOCMPR2, FLAGSAA is ignored.

NOFLAGSAA conforms to the COBOL 85 Standard.

See Systems Application Architecture Common Programming Interface COBOL
Reference for more information about SAA and the COBOL interface.

 FLAGSTD

��─ ──┬ ┬──FLAGSTD(x ──┬ ┬──── ──┬ ┬────) ────────────────────────────────��
 │ │└ ┘─yy─ └ ┘─,O─
 └ ┘─NOFLAGSTD──────────────────

Default is: NOFLAGSTD

Abbreviations are: None

x M, I, or H

Specifies the level or subset of Standard COBOL to be regarded as con-
forming.

M Specifies that language elements that are not from the minimum subset are
to be flagged as “nonconforming standard.”

I Specifies that language elements that are not from the minimum or the
intermediate subset are to be flagged as “nonconforming standard.”

H Specifies that the high subset is being used and elements will not be
flagged by subset, and that elements in the IBM Extension category will be
flagged as “nonconforming Standard, IBM extension.”

yy D, N, or S

Specifies, by a single character or combination of any two, the optional
modules to be included in the subset.

D Specifies that elements from Debug module level 1 are not flagged as
“nonconforming standard.”

236 COBOL/VSE Programming Guide

 Compiling Your Program

N Specifies that elements from Segmentation module level 1 are not flagged
as “nonconforming standard.”

S Specifies that elements from Segmentation module level 2 are not flagged
as “nonconforming standard.”

If S is specified, N is included (N is a subset of S).

O Specifies that obsolete language elements are flagged as “obsolete.”

Use FLAGSTD to get informational messages about the Standard COBOL ele-
ments included in your program. To use FLAGSTD, the NOCMPR2 compiler
option must be in effect. You can specify any of the following items for flagging:

� A selected FIPS (Federal Information Processing Standard) COBOL subset

� Any of the optional modules

� Obsolete language elements

� Any combination of subset and optional modules

� Any combination of subset and obsolete elements

� IBM extensions (these are flagged any time FLAGSTD is specified and are
identified as “nonconforming nonstandard”)

The informational messages appear in the source program listing and contain the
following information:

� Identify the element as “obsolete,” “nonconforming standard,” or “noncon-
forming nonstandard” (a language element that is both obsolete and noncon-
forming is flagged as obsolete only).

� Identify the clause, statement, or header that contains the element.

� Identify the source program line and beginning location of the clause, state-
ment, or header that contains the element.

� Identify the subset or optional module to which the element belongs.

FLAGSTD requires the standard set of reserved words.

In the following example, the line number and column where a flagged clause,
statement, or header occurred are shown, as well as the message code and text.
At the bottom is a summary of the total of the flagged items and their type.

 Chapter 15. Compiler Options 237

 Compiling Your Program

LINE.COL CODE FIPS MESSAGE TEXT

IGYDS8211 Comment lines before "IDENTIFICATION DIVISION":

nonconforming nonstandard, IBM extension to

 ANS/ISO 1985.

11.14 IGYDS8111 "GLOBAL clause": nonconforming standard, ANS/ISO

1985 high subset.

59.12 IGYPS8169 "USE FOR DEBUGGING statement": obsolete element

in ANS/ISO 1985.

 FIPS MESSAGES TOTAL STANDARD NONSTANDARD OBSOLETE

 3 1 1 1

 INTDATE

��─ ──INTDATE(──┬ ┬─ANSI───) ───��
 └ ┘─LILIAN─

Default is: INTDATE(ANSI)

INTDATE(ANSI) instructs the compiler to use the ANSI COBOL Standard starting
date for Integer date format dates used with date intrinsic functions. Day 1 is
January 1, 1601.

With INTDATE(ANSI), the date intrinsic functions will return the same results as in
COBOL/VSE Release 1 (without PTF UQ04360).

INTDATE(LILIAN) instructs the compiler to use the LE/VSE Lilian starting date for
integer date format dates used with date intrinsic functions. Day 1 is October 15,
1582.

With INTDATE(LILIAN), the date intrinsic functions will return results compatible
with the LE/VSE date callable services. These results will be different than in
COBOL/VSE Release 1.

Notes:

1. When INTDATE(LILIAN) is in effect, CEECBLDY will not be usable since you
will have no way to turn an ANSI integer into a meaningful date using either
intrinsic functions or callable services. If you code a CALL literal statement with
CEECBLDY as the target of the call with INTDATE(LILIAN) in effect, the com-
piler will diagnose this and convert the call target to CEEDAYS.

2. If your installation default option is INTDATE(LILIAN), you should recompile all
of your COBOL/VSE programs that use Intrinsic Functions to ensure that all of
your code will be using the LILIAN integer date standard. This method is the
safest, because you can store integer dates and pass them between programs,
even between PL/I, COBOL, and C programs, and know that the date proc-
essing will be consistent.

238 COBOL/VSE Programming Guide

 Compiling Your Program

 LANGUAGE

��─ ──LANGUAGE(XXxxxxxx) ──��

Default is: LANGUAGE(UENGLISH)

Abbreviation: LANG(EN|UE|JA|JP)

Use the LANGUAGE option to select the language in which compiler output will be
printed. The information that will be printed in the selected language includes diag-
nostic messages, source listing page and scale headers, FIPS message headers,
message summary headers, compilation summary, and headers and notations that
result from the selection of certain compiler options (MAP, XREF, VBREF, and
FLAGSTD).

XXxxxxxx
Specifies the language for compiler output messages. Entries for XXxxxxxx are
shown in Figure 80 on page 239.

If the LANGUAGE option is changed at compile time (using CBL or PROCESS
statements), some initial text will be printed using the language that was in effect at
the time the compiler was invoked.

Note: The NATLANG run-time option allows you to control the national language
that is to be used for the run-time environment, including error messages,
month names, and day-of-the-week names. The LANGUAGE compiler
option and the NATLANG run-time option act independently of each other.
They can be used together with neither taking precedence over the other.

For details on NATLANG, see the LE/VSE Programming Reference.

Figure 80. Entries for the LANGUAGE Compiler Option (2)

Entry Abbreviation Explanation

ENGLISH EN The output will be printed in mixed-case
English.

JAPANESE (1) JA, JP The output will be printed in the Japanese
language using the Japanese character set.

UENGLISH UE The output will be printed in uppercase
English. This is the default selection.

Notes:

1. To specify a language other than UENGLISH, the appropriate language feature must
be installed.

2. If your installation's system programmer has provided a language other than those
described, you must specify at least the first two characters of this other language's
name.

 Chapter 15. Compiler Options 239

 Compiling Your Program

 LIB

��─ ──┬ ┬─LIB─── ───��
 └ ┘─NOLIB─

Default is: NOLIB

Abbreviations are: None

If your program uses COPY, BASIS, or REPLACE statements, you need to specify
the LIB compiler option. In addition, for COPY and BASIS statements, include in
your JCL the LIBDEF SOURCE statement for the sublibrary or sublibraries from
which the compiler can take the copied code, and also include the JCL statements
for the compiler work file IJSYS05.

LIB conforms to the COBOL 85 Standard.

 LINECOUNT

��─ ──LINECOUNT(nnn) ──��

Default is: LINECOUNT(60)

Abbreviation is: LC

Use LINECOUNT(nnn) to specify the number of lines to be printed on each page of
the compilation listing, or use LINECOUNT(0) to suppress pagination.

nnn must be an integer between 10 and 255, or 0.

If you specify LINECOUNT(0), no page ejects are generated within the compilation
listing.

The compiler uses three lines of nnn for titles. For example, if you specify
LINECOUNT(60), 57 lines of source code are printed on each page of the output
listing.

 LIST

��─ ──┬ ┬─LIST─── ──��
 └ ┘─NOLIST─

Default is: NOLIST

Abbreviations are: None

Use LIST to produce a listing of the assembler-language expansion of your source
code.

You will also get these in your output listing:

 � Global tables

240 COBOL/VSE Programming Guide

 Compiling Your Program

 � Literal pools

� Information about Working-Storage

� Size of the program's Working-Storage, and its location in the object code if the
program is compiled with the NORENT option

LIST and OFFSET are mutually exclusive. If you use both, LIST is ignored.

If you want to limit the assembler listing output, use *CONTROL LIST or NOLIST
statements in your Procedure Division. Your source statements following a
*CONTROL NOLIST are not included in the assembler listing at all, unless a
*CONTROL LIST statement switches the output back to normal LIST format.

The LIST option may also be specified by using the LISTX job control option on the
JCL OPTION statement. For more information on how to specify the LISTX job
control option see VSE/ESA System Control Statements. For a description of the
*CONTROL (*CBL) statement, see COBOL/VSE Language Reference.

For information on using LIST output, see “A Procedure Division Listing with
Assembler Expansion (LIST Output)” on page 310.

 MAP

��─ ──┬ ┬─MAP─── ───��
 └ ┘─NOMAP─

Default is: NOMAP

Abbreviations are: None

Use MAP to produce a listing of the items you defined in the Data Division. Map
output includes:

� Data Division map

 � Global tables

 � Literal pools

� Nested program structure map, and program attributes

� Size of the program's Working-Storage, and its location in the object code if the
program is compiled with the NORENT option

If you want to limit the MAP output, use *CONTROL MAP or NOMAP statements in
your Procedure Division. Your source statements following a *CONTROL NOMAP
are not included in the listing until a *CONTROL MAP statement switches the
output back to normal MAP format. For a description of the *CONTROL (*CBL)
statement, see COBOL/VSE Language Reference.

For information on using MAP output, see “Data Map Listing” on page 305.

By selecting the MAP option, you can also print an embedded MAP report in the
source code listing. The condensed MAP information is printed to the right of data-
name definitions in the File Section, Working-Storage Section, and Linkage Section
of the Data Division.

 Chapter 15. Compiler Options 241

 Compiling Your Program

The MAP option may also be specified by using the SYM job control option on the
JCL OPTION statement. For more information on how to specify the SYM job
control option see VSE/ESA System Control Statements. For a description of the
*CONTROL (*CBL) statement, see COBOL/VSE Language Reference.

For information on using LIST output, see “A Procedure Division Listing with
Assembler Expansion (LIST Output)” on page 310.

 NAME

��─ ──┬ ┬──NAME ──┬ ┬───────────────── ─────────────────────────────────��
 │ │└ ┘──(──┬ ┬─ALIAS───)
 │ │└ ┘─NOALIAS─
 └ ┘─NONAME────────────────────

Default is: NONAME, or NAME(NOALIAS) if only NAME is specified

Abbreviations are: None

Use NAME to generate:

� A VSE Librarian CATALOG statement for each object module, when used in
conjunction with the DECK compiler option

� A linkage editor PHASE statement, when used in conjunction with the OBJECT
compiler option

When NAME is specified, in conjunction with the DECK compiler option, a VSE
Librarian CATALOG statement is produced at the beginning of each object module
deck written to SYSPCH. The format of the CATALOG statement produced is:

CATALOG module.OBJ REPLACE=YES

When NAME is specified, in conjunction with the OBJECT compiler option, a
linkage editor PHASE statement is produced at the beginning of each object
module deck written to SYSLNK. The format of the PHASE statement produced is:

PHASE module,�

Module names are formed using the rules for forming module names from
PROGRAM-ID statements as described in COBOL/VSE Language Reference.

 NUMBER

��─ ──┬ ┬─NUMBER─── ──��
 └ ┘─NONUMBER─

Default is: NONUMBER

Abbreviations are: NUM / NONUM

Use NUMBER if you have line numbers in your source code and want those
numbers to be used in error messages and MAP, LIST, and XREF listings.

If you request NUMBER, columns 1 through 6 are checked to make sure that they
contain only numbers, and the sequence is checked according to numeric collating

242 COBOL/VSE Programming Guide

 Compiling Your Program

sequence. (In contrast, SEQUENCE checks them according to EBCDIC collating
sequence.) When a line number is found to be out of sequence, the compiler
assigns to it a line number with a value one number higher than the line number of
the preceding statement. Sequence-checking continues with the next statement,
based on the newly assigned value of the previous line.

If you use COPY statements and NUMBER is in effect, be sure that your source
program line numbers and the COPY member line numbers are coordinated.

Use NONUMBER if you do not have line numbers in your source code, or if you
want the compiler to ignore the line numbers you do have in your source code.
With NONUMBER in effect, the compiler generates line numbers for your source
statements and uses those numbers as references in listings.

NONUMBER conforms to the COBOL 85 Standard.

 NUMPROC

��─ ──NUMPROC(──┬ ┬─PFD───) ──��
 ├ ┤─NOPFD─
 └ ┘─MIG───

Default is: NUMPROC(NOPFD)

Abbreviations are: None

Use NUMPROC(NOPFD) if you want the compiler to perform invalid sign proc-
essing. This option is not as efficient as NUMPROC(PFD); object code size will be
increased, and there may be an increase in run-time overhead to validate all signed
data.

NUMPROC(NOPFD) and NUMPROC(MIG) conform to the COBOL 85 Standard.

NUMPROC(PFD) is a performance option that can be used to bypass invalid sign
processing. Use this option only if your program data agrees exactly with the fol-
lowing IBM system standards:

External decimal, unsigned—High-order 4 bits of the sign byte contain X'F'.

External decimal, signed overpunch—High-order 4 bits of the sign byte contain
X'C' if the number is positive or 0, X'D' if it is not.

External decimal, separate sign—Separate sign contains the character '+' if the
number is positive or 0, '-' if it is not.

Internal decimal, unsigned—Low-order 4 bits of the low-order byte contain X'F'.

Internal decimal, signed—Low-order 4 bits of the low-order byte contain X'C' if
the number is positive or 0, X'D' if it is not.

Data produced by COBOL/VSE arithmetic statements conforms to the above IBM
system standards. However, the use of REDEFINES and group moves could
change data so that it no longer conforms. If NUMPROC(PFD) is used, the INI-

 Chapter 15. Compiler Options 243

 Compiling Your Program

TIALIZE statement should be used to initialize data fields, rather than using group
moves.

The use of NUMPROC(PFD) can affect class tests for numeric data.
NUMPROC(NOPFD), or NUMPROC(MIG), should be used if a COBOL program
calls programs written in PL/I.

Sign representation is not only affected by the NUMPROC option, but also by the
installation time option NUMCLS. See Figure 19 and Figure 20 on page 81 for
the sign representations recognized by numeric class testing.

Use NUMPROC(MIG) to aid in migrating DOS/VS COBOL programs to
COBOL/VSE. When NUMPROC(MIG) is in effect, the following processing occurs:

� Preferred signs are created only on the output of MOVE statements and arith-
metic operations.

� No explicit sign repair is done on input.

� Some implicit sign repair may occur during conversion.

� Numeric comparisons are performed by a decimal compare, not a logical
compare.

For more information on NUMPROC, see “Sign Representation and Processing” on
page 79.

 OBJECT

��─ ──┬ ┬─OBJECT─── ──��
 └ ┘─NOOBJECT─

Default is: Installation dependent (see below)

Abbreviations are: OBJ / NOOBJ

The OBJECT compiler option is used to produce object code to be used as input
for the linkage editor. If you specify OBJECT, be certain that SYSLNK is defined in
your JCL for compilation.

The OBJECT compiler option is specified by using either the LINK job control
option or the CATAL job control option on the JCL OPTION statement. For more
information on how to specify the LINK and CATAL job control options, see
VSE/ESA System Control Statements.

For compatibility with COBOL for OS/390 & VM, the OBJECT or NOOBJECT option
may be specified on your PROCESS (or CBL) statement, or on the PARM param-
eter of your JCL EXEC statement. The option will be syntax-checked, but it will be
ignored.

244 COBOL/VSE Programming Guide

 Compiling Your Program

 OFFSET

��─ ──┬ ┬─OFFSET─── ──��
 └ ┘─NOOFFSET─

Default is: NOOFFSET

Abbreviations are: OFF / NOOFF

Use OFFSET to produce a condensed Procedure Division listing. With OFFSET,
the procedure portion of the listing will contain line numbers, statement references,
and the location of the first instruction generated for each statement. In addition,
the following are produced:

 � Global tables

 � Literal pools

� Size of the program's Working-Storage, and its location in the object code if the
program is compiled with the NORENT option

OFFSET and LIST are mutually exclusive. If you use both, LIST is ignored.

 OPTIMIZE

��─ ──┬ ┬──OPTIMIZE ──┬ ┬────────────── ────────────────────────────────��
 │ │└ ┘──(──┬ ┬─STD──)
 │ │└ ┘─FULL─
 └ ┘─NOOPTIMIZE─────────────────

Default is: NOOPTIMIZE

Abbreviations are: OPT / NOOPT

Use OPTIMIZE to reduce the run time of your object program; optimization may
also reduce the amount of main storage your object program uses.

If OPTIMIZE is specified without any suboptions, then OPTIMIZE(STD) will be in
effect.

The FULL suboption tells the compiler to discard any unused data items and not to
generate code for any VALUE clauses for these data items. If the OPT(FULL) and
MAP options are specified, then the Base Locator in the Data Division Map will
have a number of XXXX if the data item is not used. The FULL suboption is mutu-
ally exclusive with the CMPR2 option. If OPTIMIZE(FULL) and CMPR2 are both
specified, the OPTIMIZE(STD) and CMPR2 will be in effect.

The OPTIMIZE option is turned off in the case of a severe-level error or higher.
OPTIMIZE and TEST without any suboptions or with the suboption ALL, STMT,
PATH or BLOCK are mutually exclusive. If you use one of these combinations,
OPTIMIZE is ignored.

 Chapter 15. Compiler Options 245

 Compiling Your Program

 OUTDD

��─ ──OUTDD(filename) ───��

Default is: OUTDD(SYSOUT)

Abbreviation is: OUT

filename The filename of the run-time diagnostics file.

Use OUTDD if you want run-time DISPLAY output (to the system logical output
device) to go to a file other than SYSLST.

The filename specifies SYSLST or SYSOUT to direct the output to SYSLST, a
DLBL filename to direct the output to a disk, or the programmer logical unit
(SYS000 to SYS254) to direct the output to an unlabeled tape file or a printer.

Note: The MSGFILE run-time option allows you to specify the filename of the file
to which all run-time diagnostics and reports generated by the RPTOPTS
and RPTSTG run-time options are written. The default supplied by IBM is
MSGFILE(SYSLST). If the OUTDD compiler option and the MSGFILE run-
time option both specify the same filename, the DISPLAY output and error
message information will be routed to the same destination.

LE/VSE does not check the validity of the MSGFILE filename. An invalid
filename results in an error condition on the first attempt to issue a
message.

For details on all the run-time options, see the LE/VSE Programming Refer-
ence.

 QUOTE/APOST

��─ ──┬ ┬─QUOTE─ ───��
 └ ┘─APOST─

Default is: QUOTE

Abbreviations are: Q / APOST

Use QUOTE if you want the quotation mark (") to be the delimiter character for
literals.

QUOTE conforms to the COBOL 85 Standard.

Use APOST if you want the apostrophe (') to be the delimiter character for literals.

246 COBOL/VSE Programming Guide

 Compiling Your Program

 RENT

��─ ──┬ ┬─RENT─── ──��
 └ ┘─NORENT─

Default is: NORENT

Abbreviation is: None

A program compiled as RENT is generated as a reentrant object phase; a program
compiled as NORENT is generated as a nonreentrant object phase. Either may be
invoked as a main program or subprogram.

Note: You must use RENT for programs to be run under CICS.

When a reentrant program is to be run with extended addressing, the DATA(24|31)
option may be used to control whether dynamic data areas are allocated in unre-
stricted storage or in storage acquired from below 16 megabytes. Programs must
be compiled with RENT or RMODE(ANY) if they will be run with extended
addressing in virtual storage above 16 megabytes.

Note: The DATA(24|31) compiler option has no effect for programs compiled with
NORENT.

RENT/NORENT also affects the residency mode under which your program will
run. See the description of the RMODE option. All COBOL/VSE programs have
AMODE(ANY).

 RMODE

��─ ──RMODE(──┬ ┬─AUTO─) ───��
 ├ ┤─24───
 └ ┘─ANY──

Default is: AUTO

Abbreviation is: None

A program compiled with the RMODE(AUTO) option will have RMODE(24) if
NORENT is specified, and RMODE(ANY) if RENT is specified.

A program compiled with the RMODE(24) option will have RMODE(24) whether
NORENT or RENT is specified.

A program compiled with the RMODE(ANY) option will have RMODE(ANY) whether
NORENT or RENT is specified.

COBOL/VSE NORENT programs which are required to pass data to programs
running in AMODE(24) must either be compiled with the RMODE(24) option, or
link-edited with RMODE(24). The data areas for NORENT programs will be above
the line or below the line depending on the RMODE of the program, even if
DATA(24) has been specified. DATA(24) applies to programs compiled with the
RENT option only.

 Chapter 15. Compiler Options 247

 Compiling Your Program

 SEQUENCE

��─ ──┬ ┬─SEQUENCE─── ──��
 └ ┘─NOSEQUENCE─

Default is: SEQUENCE

Abbreviations are: SEQ / NOSEQ

When you use SEQUENCE, the compiler examines columns 1 through 6 of your
source statements to check that the statements are arranged in ascending order
according to their EBCDIC collating sequence. The compiler issues a diagnostic
message if any statements are not in ascending sequence (source statements with
blanks in columns 1 through 6 do not participate in this sequence check and do not
result in messages).

If you use COPY statements and SEQUENCE is in effect, be sure that your source
program sequence fields and the COPY member sequence fields are coordinated.

If you use NUMBER and SEQUENCE, the sequence is checked according to
numeric, rather than EBCDIC, collating sequence.

Use NOSEQUENCE to suppress this checking and the diagnostic messages.

NOSEQUENCE conforms to the COBOL 85 Standard.

 SIZE

��─ ──SIZE(──┬ ┬─nnnnn─) ───��
├ ┤──nnnK ─

 └ ┘─MAX───

Default is: SIZE(MAX)

Abbreviation is: SZ

nnnnnn
A decimal number that must be at least 184320, if the compiler resides in
shared storage (SVA); or 716800, if the compiler does not reside in shared
storage. See your system programmer for guidance.

nnnK
A decimal number in 1K increments. The minimum acceptable value is 180K, if
the compiler resides in shared storage (SVA); or 700K, if the compiler does not
reside in shared storage. See your system programmer for guidance.

MAX
Requests the largest available block of GETVIS storage in the partition for use
during compilation.

Use SIZE to specify amount of GETVIS storage available for compilation
(where 1K = 1024 bytes decimal).

248 COBOL/VSE Programming Guide

 Compiling Your Program

Do not use SIZE(MAX) if, when you invoke the compiler, you require it to leave a
specific amount of unused storage available in the partition. If you specify
SIZE(MAX) in an extended addressing environment, the compiler will use:

� Above the 16-megabyte line—all the storage in the partition

� Below the 16-megabyte line—storage for:

– Work file buffers
– Compiler phases that must be loaded below the line

 SOURCE

��─ ──┬ ┬─SOURCE─── ──��
 └ ┘─NOSOURCE─

Default is: SOURCE

Abbreviations are: S / NOS

Use SOURCE to get a listing of your source program. This listing will include any
statements embedded by PROCESS or COPY statements.

SOURCE must be specified if you want embedded messages in the source listing.

Use NOSOURCE to suppress the source code from the compiler output listing.

If you want to limit the SOURCE output, use *CONTROL SOURCE or NOSOURCE
statements in your Procedure Division. Your source statements following a
*CONTROL NOSOURCE are not included in the listing at all, unless a *CONTROL
SOURCE statement switches the output back to normal SOURCE format.

The SOURCE option may also be specified by using the LIST job control option on
the JCL OPTION statement. For more information on how to specify the LIST job
control option, see VSE/ESA System Control Statements. For a description of the
*CONTROL (*CBL) statement, see the COBOL/VSE Language Reference.

For information on using SOURCE output, see “Listing of Your Source Code—for
Historical Records” on page 304.

 SPACE

��─ ──SPACE(──┬ ┬─1─) ──��
 ├ ┤─2─
 └ ┘─3─

Default is: SPACE(1)

Abbreviation is: None

Use SPACE to select single, double, or triple spacing in your source code listing.

SPACE is meaningful only when SOURCE is in effect.

 Chapter 15. Compiler Options 249

 Compiling Your Program

 SSRANGE

��─ ──┬ ┬─SSRANGE─── ───��
 └ ┘─NOSSRANGE─

Default is: NOSSRANGE

Abbreviations are: SSR / NOSSR

Use SSRANGE to generate code that checks if subscripts (including ALL sub-
scripts) or indexes attempt to reference an area outside the region of the table.
Each subscript or index is not individually checked for validity; rather, the effective
address is checked to ensure that it does not cause a reference outside the region
of the table. Variable-length items will also be checked to ensure that the reference
is within their maximum defined length.

Reference modification expressions will be checked to ensure that:

� The reference modification starting position is equal to or greater than 1.

� The reference modification starting position is not greater than the current
length of the subject data item.

� The reference modification length value (if specified) is equal to or greater than
1.

� The reference modification starting position and length value (if specified) do
not reference an area beyond the end of the subject data item.

If SSRANGE is in effect at compile time, the range-checking code is generated;
range checking can be inhibited at run time by specifying CHECK(OFF) as a run-
time option. This leaves range-checking code dormant within the object code. The
range-checking code can then be optionally used to aid in resolving any unex-
pected errors without recompilation.

If an out-of-range condition is detected, an error message will be displayed and the
program will be terminated.

Note: Remember you will only get range checking if you compile your program
with the SSRANGE option and run it with the CHECK(ON) run-time option.

 TERMINAL

��─ ──┬ ┬─TERMINAL─── ──��
 └ ┘─NOTERMINAL─

Default is: NOTERMINAL

Abbreviations are: TERM / NOTERM

Use TERMINAL to send progress and diagnostic messages to the SYSLOG file.

Use NOTERMINAL if this additional output is not wanted.

250 COBOL/VSE Programming Guide

 Compiling Your Program

The TERMINAL option may also be specified by using the TERM job control option
on the JCL OPTION statement. For more information on how to specify the TERM
job control option see VSE/ESA System Control Statements.

 TEST

��─ ──┬ ┬ ─TEST─ ──┬ ┬─────────────────────────── ───────────────────────��
 │ │└ ┘──(─── ──hook─ , ─── ──symbol─)
 └ ┘─NOTEST──────────────────────────────

Default is: NOTEST

Abbreviations are: None

Use TEST to produce object code that enables Debug Tool/VSE to perfom batch
and interactive debugging. The amount of debugging support available depends on
which TEST suboptions you use. The TEST option also allows you to request that
symbolic variables be included in the formatted dump produced by LE/VSE.

Use NOTEST if you do not want to generate object code with debugging informa-
tion and do not want the formatted dump to include symbolic variables.

TEST has two suboptions; you can specify both, just one of the suboptions, or
neither of the suboptions:

hook The hook-location suboption controls where compiled-in hooks will be
generated to provide information to a debug tool.

NONE Specifies that no hooks will be generated.

BLOCK Specifies that hooks will be generated at all entry and exit
points. A path point is anywhere in a program where the
logic flow is not necessarily sequential or can change. Some
examples of path points are IF-THEN-ELSE constructs,
PERFORM loops, ON SIZE ERROR phrases, and CALL
statements.

PATH Specifies that hooks will be generated at all path points,
including program entry and exit points.

STMT Specifies that hooks will be generated at every statement
and label, as well as at all program entry and exit points. In
addition, if the DATEPROC option is in effect, hooks will be
generated at all date processing statements.

ALL Specifies that hooks will be generated at all statements, all
path points, and at all program entry and exit points (both
outermost and contained programs). In addition, if the
DATEPROC option is in effect, hooks will be generated at all
date processing statements.

symbol The symbol-table suboption controls whether dictionary tables will be
generated.

SYM Specifies that dictionary and calculation tables will be gener-
ated.

 Chapter 15. Compiler Options 251

 Compiling Your Program

NOSYM Specifies that dictionary and calculation tables will not be
generated.

When you specify both suboptions, they may appear in any order. The default
values when TEST is specified without one or both suboptions are ALL and SYM.
Therefore, TEST without any suboptions is equivalent to TEST(ALL,SYM).

Specify the SYM suboption of the TEST compiler option to have symbolic variables
included in the formatted dump produced by LE/VSE.

COBOL/VSE uses the LE/VSE provided dump services to produce dumps that are
consistent in content and format to those produced by other LE/VSE-conforming
member languages. Whether LE/VSE produces a dump for unhandled conditions
depends on the setting of the run-time option TERMTHDACT. If you specify
TERMTHDACT(DUMP), a dump will be generated when a condition of severity 2 or
greater goes unhandled.

For more information about dumps, see LE/VSE Debugging Guide and Run-Time
Messages.

When you specify TEST without a hook-location value or with any one other than
NONE, the NOOPTIMIZE compiler option goes into effect.

The TEST option will be deactivated if you use both the WITH DEBUGGING MODE
clause and the USE FOR DEBUGGING statement, unless you specify the hook-
location suboption NONE. The TEST option will appear in the list of options, but a
diagnostic message will be issued to advise you that because of the conflict, TEST
will not be in effect.

When the DATEPROC option is in effect, the TEST suboptions STMT and ALL
cause hooks to be generated for all date processing statements. A date processing
statement is any statement that references a date field, or any EVALUATE or
SEARCH statement WHEN phrase that references a date field.

Note: Use of the TEST compiler option allows you to use Debug Tool/VSE to help
debug your program. For information, see the Debug Tool/VSE User's Guide and
Reference.

 TRUNC

��─ ──TRUNC(──┬ ┬─STD─) ──��
 ├ ┤─OPT─
 └ ┘─BIN─

Default is: TRUNC(STD)

Abbreviations are: None

TRUNC(STD) conforms to the COBOL 85 Standard, while TRUNC(OPT) and
TRUNC(BIN) are IBM extensions.

Use TRUNC(STD) to control the way arithmetic fields are shortened during MOVE
and arithmetic operations. TRUNC(STD) applies only to USAGE BINARY receiving
fields in MOVE statements and arithmetic expressions. When TRUNC(STD) is in

252 COBOL/VSE Programming Guide

 Compiling Your Program

effect the final result of an arithmetic expression, or the sending field in the MOVE
statement, is shortened to the number of digits in the PICTURE clause of the
BINARY receiving field.

TRUNC(OPT) is a performance option. When TRUNC(OPT) is specified, the com-
piler assumes that the data conforms to PICTURE and USAGE specifications of the
USAGE BINARY receiving fields in MOVE statements and arithmetic expressions.
The results are manipulated in the most optimal way, either truncating to the
number of digits in the PICTURE clause, or to the size of the binary field in storage
(halfword, fullword, or doubleword).

You should use the TRUNC(OPT) option only if you are sure that the data being
moved into the binary areas will not have a value with larger precision than that
defined by the PICTURE clause for the binary item. Otherwise, truncation of high-
order digits may occur. This truncation is performed in the most efficient manner
possible; thus, the results will be dependent on the particular code sequence gener-
ated. It is not possible to predict the truncation without seeing the code sequence
generated for a particular statement.

The TRUNC(BIN) option applies to all COBOL language elements that process
USAGE BINARY data. When TRUNC(BIN) is in effect:

� BINARY receiving fields are cut off only at halfword, fullword, or doubleword
boundaries.

� BINARY sending fields are treated as halfwords, fullwords, or doublewords
when the receiver is numeric; TRUNC(BIN) has no effect when the receiver is
not numeric.

� The full binary content of the field is significant.

� DISPLAY will convert the entire content of the binary field, with no truncation.

Note: TRUNC(BIN) is the recommended option when interfacing with other pro-
ducts that have System/370 format binary data (such as CICS, FORTRAN, and
PLI). This is particularly true if there is a possibility of having more than 9 digits in
a fullword, or more than 4 digits in a halfword.

Example 1:

�1 BIN-VAR PIC 99 USAGE BINARY.
...

MOVE 123451 to BIN-VAR

A halfword of storage is allocated for BIN-VAR. The result of this MOVE statement,
if the program is compiled with the TRUNC(STD) option is 51, the field is shortened
to conform to the Picture clause. If the program is compiled with the TRUNC(BIN)
option, the result is -7621.

Figure 81. Values of the Data Items after the MOVE

 Decimal Hex Display

Sender 123451 00|01|E2|3B

Receiver TRUNC(STD) 51 00|33 51

Receiver TRUNC(OPT) -7621 E2|3B 2J

Receiver TRUNC(BIN) -7621 E2|3B 762J

 Chapter 15. Compiler Options 253

 Compiling Your Program

The reason for the unusual looking answer in the TRUNC(BIN) version is that
nonzero high-order digits were shortened. In this case, the generated code
sequence would merely move the lower halfword quantity X'E23B' to the receiver.
Because the new shortened value overflowed into the sign bit of the binary
halfword, the value becomes a negative number.

This MOVE statement should not be compiled with the TRUNC(OPT) option
because 123451 has greater precision than the PICTURE clause for BIN-VAR. If
TRUNC(OPT) was used, however, the results again would be -7621. This is
because the best performance was gained by not doing a decimal cut off.

Example 2:

 �1 BIN-VAR PIC 9(6) USAGE BINARY
 . . .

MOVE 1234567891 to BIN-VAR

When TRUNC(STD) is specified, the sending data is shortened to six integer digits
to conform to the PICTURE clause of the BINARY receiver.

When TRUNC(OPT) is specified, the compiler assumes the sending data is not
larger than the PICTURE clause precision of the BINARY receiver. The most effi-
cient code sequence in this case performed truncation as if TRUNC(STD) had been
specified.

When TRUNC(BIN) is specified, no truncation occurs because all of the sending
data will fit into the binary fullword allocated for BIN-VAR.

Figure 82. Values of the Data Items after the MOVE

 Decimal Hex Display

Sender 1234567891 49|96|02|D3

Receiver TRUNC(STD) 567891 00|08|AA|53 567891

Receiver TRUNC(OPT) 567891 00|08|AA|53 567891

Receiver TRUNC(BIN) 1234567891 49|96|02|D3 1234567891

 VBREF

��─ ──┬ ┬─VBREF─── ───��
 └ ┘─NOVBREF─

Default is: NOVBREF

Abbreviations are: None

Use VBREF to get a cross-reference among all verb types used in the source
program and the line numbers in which they are used. VBREF also produces a
summary of how many times each verb was used in the program.

Use NOVBREF for more efficient compilation.

254 COBOL/VSE Programming Guide

 Compiling Your Program

 WORD

��─ ──┬ ┬──WORD(xxxx) ──��
 └ ┘─NOWORD─────

Default is: NOWORD

Abbreviations are: WD / NOWD

xxxx
Are the ending characters of the name of the reserved word table (IGYCxxxx)
to be used in your compilation. IGYC are the first 4 standard characters of the
name, and xxxx may be 1 to 4 characters in length.

Use WORD(xxxx) to specify that an alternate reserved word table is to be used
during compilation.

Alternate reserved word tables provide changes to the default reserved word table
supplied by IBM. Your system programmer might have created one or more alter-
nate reserved word tables for your site. See your system programmer for the
names of alternate reserved word tables

COBOL/VSE provides an alternate reserved word table (IGYCCICS) specifically for
CICS applications. It is set up so that COBOL words not supported under CICS
are flagged with an error message. If you want to use this CICS reserved word
table during your compilation, specify the compiler option WORD(CICS). For infor-
mation on the CICS reserved word table, refer to “CICS Reserved Word Table” on
page 390.

NOWORD conforms to the COBOL 85 Standard.

 XREF

��─ ──┬ ┬──XREF ──┬ ┬─────────────── ───────────────────────────────────��
 │ │└ ┘──(──┬ ┬─SHORT─)
 │ │└ ┘─FULL──
 └ ┘─NOXREF──────────────────

Default is: NOXREF

Abbreviations are: X / NOX

You can choose XREF, XREF(FULL), or XREF(SHORT).

Use XREF to get a sorted cross-reference listing. EBCDIC data-names and
procedure-names will be listed in alphanumeric order. DBCS data-names and
procedure-names will be listed based on their physical order in the program, and
will appear before the EBCDIC data-names and procedure-names, unless the
DBCSXREF installation option is selected with a DBCS ordering program.

Also included will be a section listing all the program names that are referenced
within your program, and the line numbers where they are defined. External
program names will be identified as such.

 Chapter 15. Compiler Options 255

 Compiling Your Program

If you use XREF and SOURCE, cross-reference information will also be printed on
the same line as the original source in the listing. Line number references or other
information, will appear on the right hand side of the listing page. On the right of
source lines that reference intrinsic functions, the letters 'INF' will appear with the
line numbers of the location where the function's arguments are defined. Informa-
tion included in the embedded references lets you know if an identifier is undefined
or defined more than once. (UND or DUP will be printed); if an item is implicitly
defined (IMP), as are special registers or figurative constants; and if a program
name is external (EXT).

If you use XREF and NOSOURCE, you will get only the sorted cross-reference
listing.

XREF(SHORT) will print only the explicitly referenced variables in the cross-
reference listing. XREF(SHORT) applies to DBCS data names and procedure-
names as well as EBCDIC names.

NOXREF suppresses this listing.

The XREF and XREF(SHORT) options may also be specified by using the XREF
and SXREF job control option on the JCL OPTION statement. For more informa-
tion on how to specify the XREF and SXREF job control options see VSE/ESA
System Control Statements.

Notes:

1. Group names used in a MOVE CORRESPONDING statement will be listed in
the XREF listing. The elementary names within those groups will also be listed.

2. In the data-name XREF listing, line numbers preceded by the letter “M” indicate
that the data item is explicitly modified by a statement on that line.

3. XREF listings take additional storage

See Chapter 18, “Debugging” on page 292 for sample listings. Instructions on
how to use listings and dumps for debugging are provided in LE/VSE Debugging
Guide and Run-Time Messages.

 YEARWINDOW

��──YEARWINDOW─ ──(base-year) ───────────────────────────────────────��

Default is: YEARWINDOW(1900)

Abbreviation is: YW

Use the YEARWINDOW option to specify the first year of the 100-year window (the
century window) to be applied to windowed date field processing by the COBOL
compiler. For information on using windowed date fields, see Chapter 22, “Using
the Millennium Language Extensions” on page 366.

base-year represents the first year of the 100-year window, and must be specified
as one of the following:

� An unsigned decimal number between 1900 and 1999.

256 COBOL/VSE Programming Guide

 Compiling Your Program

This specifies the starting year of a fixed window. For example,
YEARWINDOW(1930) indicates a century window of 1930–2029.

� A negative integer from -1 through -99.

This indicates a sliding window, where the first year of the window is calculated
from the current run-time date. The number is subtracted from the current year
to give the starting year of the century window. For example,
YEARWINDOW(-80) indicates that the first year of the century window is 80
years before the current year at the time the program is run.

Notes:

1. The YEARWINDOW option has no effect unless the DATEPROC option is also
in effect.

2. At run time, two conditions must be true:

� The century window must have its beginning year in the 1900s
� The current year must lie within the century window for the compilation unit

For example, running a program in 1998 with YEARWINDOW(-99) violates the
first condition, and would result in a run-time error.

 ZWB

��─ ──┬ ┬─ZWB─── ───��
 └ ┘─NOZWB─

Default is: ZWB

Abbreviations are: None

With ZWB, the compiler removes the sign from a signed external decimal
(DISPLAY) field when comparing this field to an alphanumeric elementary field
during execution.

If the external decimal item is a scaled item (contains the symbol 'P' in its
PICTURE character string), its use in comparisons will not be affected by ZWB.
Such items always have their sign removed before the comparison is made to the
alphanumeric field.

ZWB affects program execution logic; that is, the same COBOL source program
can give different results, depending on the option setting.

ZWB conforms to the COBOL 85 Standard.

Use NOZWB if you want to test input numeric fields for SPACES.

 Compiler-Directing Statements
Several statements help you to direct the compilation of your program. For the
definition of these statements, see COBOL/VSE Language Reference.

BASIS statement
This extended source program library statement provides a complete COBOL
program as the source for a compilation.

 Chapter 15. Compiler Options 257

 Compiling Your Program

*CONTROL (*CBL) statement
This statement selectively suppresses or allows output to be produced. The
names *CONTROL and *CBL are synonymous. This statement is described in
“Controlling the Content of the Output Listing” on page 352.

COPY statement
This library statement places prewritten text in a COBOL program. (For more
information on what you need to do at compile time to bring in copied code,
see “Eliminating Repetitive Coding (the COPY Facility)” on page 343.)

DELETE statement
This extended source library statement removes COBOL statements from the
BASIS source program.

EJECT statement
This statement specifies that the next source statement is to be printed at the
top of the next page.

INSERT statement
This library statement adds COBOL statements to the BASIS source program.

PROCESS (CBL) statement
This statement, which is placed before the Identification Division header of an
outermost program, specifies which compiler options are to be used during
compilation of the program. (See page 217 for the format of this statement.)

For details on specifying compiler options with the PROCESS (CBL) statement
and with other methods, see the discussion under “Using Compiler Options” on
page 216.

REPLACE statement
This statement is used to replace source program text.

SERVICE LABEL statement
This statement is generated by the CICS translator to indicate control flow. It is
not intended for general use.

SKIP1/2/3 statement
These statements specify lines to be skipped in the source listing.

TITLE statement
This statement specifies that a title (header) be printed at the top of each page
of the source listing. (See “Listing Header in the Identification Division” on
page 17.)

USE statement
The USE statement provides declaratives to specify the following:

 Error-handling procedures—EXCEPTION/ERROR
User label-handling procedures—LABEL
Debugging lines and sections—DEBUGGING

258 COBOL/VSE Programming Guide

 Advanced Topics

 Part 4. Advanced Topics

This part of the book covers various advanced programming topics. Basic pro-
gramming topics are covered in Part 2, “Coding Your Program” on page 15.

Chapter 16. Subprograms and Data Sharing 260

Chapter 17. Interrupts and Checkpoint/Restart 287

Chapter 18. Debugging . 292

Chapter 19. Program Tuning . 326

Chapter 20. Techniques to Improve Programmer Productivity 343

Chapter 21. The “Year 2000” Problem . 356

Chapter 22. Using the Millennium Language Extensions 366

Chapter 23. Target Environment Considerations 388

 Copyright IBM Corp. 1983, 1998 259

 Advanced Topics

Chapter 16. Subprograms and Data Sharing

Sometimes an application is simple enough to be coded as a single, self-sufficient
program. In many cases, however, an application's solution will consist of several,
separately compiled programs bound together.

A run unit (the COBOL term synonymous with enclave in LE/VSE) includes one or
more object programs and may include object programs written in other
LE/VSE-conforming languages. Interlanguage communication (ILC) between
COBOL and non-COBOL programs is discussed in LE/VSE Writing Interlanguage
Communication Applications. If the first program to be executed in the run unit is a
COBOL program, then that COBOL program is usually the main program. For
information on exceptions to this rule, see LE/VSE Writing Interlanguage Communi-
cation Applications.

When a run unit consists of several, separately compiled programs that call each
other, the programs must be able to communicate with each other. They need to
transfer control and usually need to have access to common data. The following
sections describe the methods that accomplish this interprogram communication
between separately compiled programs.

Another method to achieve interprogram communication is to “nest” COBOL pro-
grams inside each other. This allows all the required subprograms for an applica-
tion to be contained within one program and thereby require only a single
compilation. This method is explained in “Nested Programs” on page 263.

Transferring Control to Another Program
In the Procedure Division, a program can call another program (generally called a
subprogram in COBOL terms), and this called program may itself call yet another
program. The program that calls another program is referred to as the calling
program, and the program it calls is referred to as the called program.

The called COBOL program starts executing at the top of the Procedure Division.
(It is possible to specify another entry point where execution begins, using the
ENTRY label in the called program. However, this is not a recommended practice
in a structured program.)

When the called program processing is completed, the program can either transfer
control back to the calling program or end the run unit.

A called program must not directly or indirectly execute its caller (such as program
X calling program Y; program Y calling program Z; and program Z then calling
program X). This is called a recursive call. If you attempt to execute a recursive
call to a COBOL program, the run unit will end abnormally (abend).

260 Copyright IBM Corp. 1983, 1998

 Advanced Topics

Main Programs and Subprograms
No specific source code statements or options identify a COBOL program to be a
main program or a subprogram. In an LE/VSE environment, if a COBOL program
is the first program in the run unit, then it is the main program. Otherwise, it and all
other COBOL programs in the run unit are subprograms.

Whether a COBOL program is a main program or a subprogram can be significant
for either of two reasons:

� Effect of program termination statements.
� The state the main or subprogram is left in.

Program Termination Statements
The table below shows the action taken for each program termination statement in
both a main program and a subprogram.

Figure 83. Effects of various termination statements

Termination
Statement Main Program Subprogram

EXIT PROGRAM No action taken. Return to calling program without
ending the run unit. An implicit
EXIT PROGRAM statement is
generated if there is no next exe-
cutable statement in a called
program.

STOP RUN Return to calling program1

(Might be the system, and job
will end.)

STOP RUN terminates the run
unit, and deletes all dynamically
called programs in the run unit
and all programs link-edited with
them. (It does not delete the
main program.)

Return directly to the program that
called the main program. (Might
be the operating system, and job
will end.)

GOBACK Return to calling program1

(Might be the operating system,
and job will end.)

Same effect as STOP RUN.

Return to calling program.

Note:

1. If the main program is called by a program written in another language that does not
follow LE/VSE linkage conventions, return will be to this calling program.

State in Which Program is Left
A subprogram is usually left in its last-used state when it terminates with EXIT
PROGRAM or GOBACK. The next time it is called in the run unit, its internal
values will be as they were left, except that return values for PERFORM statements
will be reset to their first values. In contrast, a main program is initialized each time
it is called. There are two exceptions:

� A subprogram that is dynamically called and then canceled will be in the initial
state the next time it is called.

 Chapter 16. Subprograms and Data Sharing 261

 Advanced Topics

� A program with the INITIAL attribute will be in the initial state each time it is
called.

Note: The EXIT PROGRAM statement is sensitive to the CMPR2 compiler option.
For VS COBOL II Release 2 compatibility and migration information, see the
COBOL/VSE Migration Guide.

Making Calls between Programs
You will often want your COBOL/VSE programs to communicate with other COBOL
and non-COBOL programs.

Calls between COBOL Programs
To transfer control from one COBOL/VSE program to another COBOL/VSE
program, you can use one of these methods:

� Calls to nested programs
 � Static calls
 � Dynamic calls

In addition to making calls between COBOL/VSE programs, you can also make
static and dynamic calls between COBOL/VSE and VS COBOL II programs and, in
a non-CICS environment, between COBOL/VSE and DOS/VS COBOL programs.
In a CICS environment, you must use EXEC CICS LINK to transfer control between
COBOL/VSE and DOS/VS COBOL programs.

Dynamic calls from VS COBOL II and COBOL/VSE to DOS/VS COBOL programs
are supported with the following restrictions:

� The DOS/VS COBOL program must be relinked with the COBOL/VSE
Run-Time compatibility library.

� DOS/VS COBOL programs that are segmented cannot be loaded into GETVIS
storage. These are programs that are compiled with LANGLVL(1) and specify
the SEGMENT-LIMIT clause.

� The debug options STATE, FLOW, COUNT and SYMDMP are disabled.

Calls to nested programs allow you to create applications using structured program-
ming techniques. They can also be used in place of PERFORM procedures to
prevent unintentional modification of data items.

Calls to nested programs can be made using either the CALL literal or CALL identi-
fier statement. For more information on nested programs, see “Nested Programs”
on page 263.

A static call is used to invoke a separately compiled program that is link-edited into
the same phase as the calling program. A dynamic call is used to invoke a sepa-
rately compiled program that has been link-edited into a separate phase from the
calling program. In this case, the subprogram phase is loaded into storage the first
time it is called.

Note: Although they may use more storage than dynamic calls, static calls are
executed more quickly.

A static call occurs when you use the CALL literal statement in a program that is
compiled using the NODYNAM compiler option.

262 COBOL/VSE Programming Guide

 Advanced Topics

Use of the CALL identifier statement or CALL literal with the DYNAM compiler
option results in a dynamic call. You should consider using dynamic calls when:

� The subprograms called with a CALL literal are used infrequently or are very
large

� You want to call subprograms in their unused state

� You have an AMODE(24) program in the same run unit with COBOL/VSE pro-
grams that you want to execute in 31-bit addressing mode

� The name of the program to be called is not known until run time

For additional information on static and dynamic calls, see “Static and Dynamic
Calls” on page 266.

Calls between COBOL/VSE and Non-COBOL Programs
LE/VSE provides interlanguage support which allows your COBOL/VSE programs
to call and be called by PL/I VSE and assembler language programs. Whereas
COBOL/VSE programs can only make static calls to PL/I VSE programs, PL/I VSE
programs can make both static and dynamic calls to COBOL/VSE programs.

For full details on interlanguage communication (ILC) and information on the reg-
ister conventions required for assembler calls, see LE/VSE Writing Interlanguage
Communication Applications.

 Nested Programs
Nested programs give you a method to create modular functions for your applica-
tion and maintain structured programming techniques. They can be used as
PERFORM procedures with the additional ability to protect “local” data items.

Nested programs allow for debugging a program before including it in the applica-
tion. You can also compile your application with a single invocation of the compiler.

Structure of Nested Programs
A COBOL program may contain other COBOL programs. The contained pro-
grams may themselves contain yet other programs. A contained program may be
directly or indirectly contained within a program.

Figure 84 on page 264 describes a nested program structure with directly and indi-
rectly contained programs.

 Chapter 16. Subprograms and Data Sharing 263

 Advanced Topics

 ┌─────────Id Division.

X is the outermost program │ Program ─Id. X.

and directly contains X1 and ─────────�│ Procedure Division.

X2, and indirectly contains │ Display "I'm in X"

X11 and X12 │ Call "X1"

 │ Call "X2"

 │ Stop Run.

 │ ┌──────Id Division.

X1 is directly contained │ │ Program─Id. X1.

in X and directly ─────────│─�│ Procedure Division.

contains X11 and X12 │ │ Display "I'm in X1"

 │ │ Call "X11"

 │ │ Call "X12"

 │ │ Exit Program.

 │ │ ┌───Id Division.

X11 is directly │ │ │ Program─Id. X11.

contained in X1 ────────│──│─�│ Procedure Division.

 and indirectly │ │ │ Display "I'm in X11"

contained in X │ │ │ Exit Program.

 │ │ └───End Program X11.

 │ │ ┌───Id Division.

X12 is directly │ │ │ Program─Id. X12.

contained in X1 ────────│──│─�│ Procedure Division.

 and indirectly │ │ │ Display "I'm in X12"

contained in X │ │ │ Exit Program.

 │ │ └───End Program X12.

│ └──────End Program X1.

 │ ┌──────Id Division.

 │ │ Program─Id. X2.

X2 is directly ───────────────────│─�│ Procedure Division.

contained in X │ │ Display "I'm in X2"

 │ │ Exit Program.

│ └──────End Program X2.

└─────────End Program X.

Figure 84. Nested Program Structure with Directly and Indirectly Contained Programs

Conventions for Using Nested Program Structure: There are several con-
ventions that apply when using nested program structures.

1. The Identification Division is required in each program. All other divisions are
optional.

2. Program names must be unique

3. Contained program names may be any valid COBOL word or a nonnumeric
literal.

4. Contained programs cannot have a Configuration Section. The outermost
program must specify any Configuration Section options that may be required.

5. Each contained program is included in the containing program immediately
before its END PROGRAM header (see Figure 84).

6. Contained and containing programs must be terminated by an End Program
header.

Calling Nested Programs: A contained program may only be called by its directly
containing program, unless the contained program is identified as COMMON in its
PROGRAM-ID clause. In that case, the COMMON program may also be called by
any program that is contained (directly or indirectly) within the same program as the
COMMON program. Only contained programs can be COMMON. Recursive calls
are not allowed.

Figure 85 on page 265 shows the outline of a nested structure with some con-
tained programs identified as COMMON.

264 COBOL/VSE Programming Guide

 Advanced Topics

┌───Program─ID. A.

│

 │ ┌───Program─ID. A1.

 │ │

 │ │ ┌───Program─ID. A11.

 │ │ │

 │ │ │ ┌───Program─ID. A111.

 │ │ │ │

 │ │ │ └───End Program A111.

 │ │ └───End Program A11.

 │ │ ┌───Program─ID. A12 is Common.

 │ │ │

 │ │ └───End Program A12.

│ └───End Program A1.

│ ┌───Program─ID. A2 is Common.

 │ │

│ └───End Program A2.

│ ┌───Program─ID. A3 is Common.

 │ │

│ └───End Program A3.

└───End Program A.

Figure 85. A Nested Structure with COMMON Programs

The following table describes the “calling hierarchy” for the structure that is shown
in Figure 85. Notice that programs A12, A2, and A3 are identified as Common and
the resulting differences in calls associated with them.

You should note that:

� A2 cannot call A1 because A1 is not common and is not contained in A2.
� A111 cannot call A11 because that would be a recursive call
� A1 can call A2 because A2 is common
� A1 can call A3 because A3 is common

Scope of Names within a Nested Structure: There are two classes of names
within nested structures— local and global. The class will determine whether a
name is known beyond the scope of the program which declares it. There is also a
specific search sequence for locating the declaration of a name after it is refer-
enced within a program.

Local Names: Names are local unless declared to be otherwise (except the
program name). These local names are not visible or accessible to any program
outside of the one where they were declared; this includes both contained and con-
taining programs.

Figure 86. Calling Hierarchy for Nested Structures with COMMON programs

This Program

Can call
these programs

And can be called
by these programs

A A1, A2, A3 None

A1 A11, A12, A2, A3 A

A11 A111, A12, A2, A3 A1

A111 A12, A2, A3 A11

A12 A2, A3 A1, A11, A111

A2 A3 A, A1, A11, A111, A12, A3

A3 A2 A, A1, A11, A111, A12, A2

 Chapter 16. Subprograms and Data Sharing 265

 Advanced Topics

Global Names: A name that is specified as global (by using the GLOBAL clause)
is visible and accessible to the program in which it is declared, and to all the pro-
grams that are directly and indirectly contained within that program. This allows the
contained programs to share common data and files from the containing program,
simply by referencing the name of the item.

Any item that is subordinate to a global item (including condition names and
indexes) is automatically global.

The same name may be declared with the GLOBAL clause multiple times, pro-
viding that each declaration occurs in a different program. Be aware that masking,
or hiding, a name within a nested structure is possible by having the same name
occur within different programs of the same containing structure. This could pos-
sibly cause some problems when a search for a name declaration is taking place.

Searching for Name Declarations: When a name is referenced within a program, a
search is made to locate the declaration for that name. The search begins within
the program that contains the reference and continues “outward” to containing pro-
grams until a match is found. The search follows this process:

1. Declarations within the program are searched first.

2. If no match is found, then only global declarations are searched in successive
outer containing programs.

3. The search ends when the first matching name is found, otherwise an error
exists if no match is found.

You should note that the search is for a global "name", not for a particular type of
object associated with the name, such as a data item or file connector. The search
stops when any match is found, regardless of the type of object. If the object
declared is of a different type than what was expected, an error condition exists.

Static and Dynamic Calls
The following discussion applies to separately compiled subprograms only, not to
nested (contained) programs. For information about calls within a nested structure,
see “Nested Programs” on page 263.

When a subprogram is called, it may already be in main storage and can be link-
edited in the same phase with the calling program (static call). Or it may be loaded
only at the time it is called (dynamic call). With dynamic loading, the called
program is loaded only when it is needed.

The link-edit process differs, depending on whether your program uses static calls
or dynamic calls. For link-editing information, see the LE/VSE Programming Guide.

Static CALL Statement
A static call occurs when you use the CALL literal statement in a program that is
compiled using the NODYNAM compiler option. With NODYNAM, all calls of the
CALL literal format are handled as static calls.

In the static CALL statement, the calling COBOL program and all called programs
are part of the same phase. When control is transferred to the called program, it is
already resident in storage, and a branch to the called program takes place. Sub-
sequent executions of the CALL statement make the called program available in its

266 COBOL/VSE Programming Guide

 Advanced Topics

last-used state, unless the called program has the INITIAL attribute. If the called
program possesses the INITIAL attribute, it and each program directly or indirectly
contained within it is placed into its initial state every time the called program is
called within a run unit.

If alternate entry points are specified, a static CALL statement can use any alter-
nate entry point to enter the called subprogram.

Dynamic CALL Statement
A dynamic call occurs when you use the CALL literal statement in a program that is
compiled using the DYNAM compiler option, or when you use the CALL identifier
statement. To dynamically call a COBOL program, the program name in the
PROGRAM-ID paragraph or ENTRY statement must be identical to the corre-
sponding phase name that contains the program, and the sublibrary that contains
the phase must be available at run time.

In this form of the CALL statement, the called COBOL subprogram is not link-edited
with the calling program, but is instead link-edited into a separate phase, and, at
run time, is loaded only if and when it is required (that is, when called).

The execution of the dynamic CALL statement to a subprogram that is not resident
in storage results in the loading of that subprogram from secondary storage into the
partition containing the calling program, and a branch to the subprogram.

Thus, the first dynamic CALL to a subprogram within a run unit obtains a fresh
copy of the subprogram. Subsequent calls to the same subprogram (by either the
original caller or by any other subprogram within the same run unit) result in a
branch to the same copy of the subprogram in its last-used state, provided the sub-
program does not possess the INITIAL attribute. Thus, the re-initialization of either
of the following items is your responsibility:

� GO TO statements that have been altered
 � Data items

If the same COBOL program is called under different run units, a separate copy of
Working-Storage is allocated for each run unit.

When a CANCEL statement is issued for a subprogram, the storage occupied by
the subprogram is freed, and a subsequent CALL to the subprogram will function
as though it were the first. A CANCEL statement referring to a called subprogram
can be issued by a program other than the original caller.

A dynamic call can only call the entry point for the phase. If a program has many
entry points (specified using the ENTRY statement), more than one phase could be
built, with a different entry point for each phase. If this is done, there will be one
copy of the working storage for each phase.

When to use a Dynamic Call: Use a dynamic call statement when any of the
following are true:

� You want to simplify maintenance tasks and take advantage of code reusability.

When a subprogram is changed, all application phases that call it statically
must be relinked. However, if the changed subprogram is called dynamically,
then only the changed subprogram needs to be relinked. Thus, dynamic calls

 Chapter 16. Subprograms and Data Sharing 267

 Advanced Topics

make it easier to maintain one copy of a subprogram with a minimum amount
of relinking.

� The subprograms called with CALL literal are used infrequently or are very
large.

If the subprograms are called only on a few conditions, dynamic calls can bring
in the subprogram only when needed.

If the subprograms are very large or there are many of them, use of static calls
might require too much main storage. Less total storage would be required to
call and cancel one, then call and cancel another, than to statically call both.

� You want to call subprograms in their unused state.

This is most easily accomplished by identifying the subprogram with the
INITIAL attribute. With this attribute, the subprogram will be placed in its initial
(unused) state each time it is called.

You can also selectively set the unused state by using the CALL and CANCEL
procedure that is described next. (This is a more cumbersome procedure, but
does provide control of the state, if that is essential). To do this, use a combi-
nation of dynamic CALL and CANCEL statements. When you CANCEL the
subprogram that was initially called by a VS COBOL II or COBOL/VSE
program, the next CALL will cause the subprogram to be reinitialized to its
unused state. The CANCEL command does not take any action to release
storage for subprograms that were dynamically loaded and branched to by
non-COBOL programs.

� You have a DOS/VS COBOL or other AMODE(24) program in the same run
unit with COBOL/VSE programs that you want to execute in 31-bit addressing
mode.

VS COBOL II and COBOL/VSE dynamic CALL processing include AMODE
switching for AMODE(24) programs calling AMODE(31) programs, and vice
versa. To have this implicit AMODE switching occur, you must use the LE/VSE
run-time option, ALL31(OFF). AMODE switching is not performed when
ALL31(ON) is specified. For details on the ALL31 run-time option, see the
LE/VSE Programming Reference.

When AMODE switching is performed, control is passed from the caller to an
LE/VSE library routine. After the switching is performed, control is passed to
the called program, and the library routine's save area will be positioned
between the calling program's save area and the called program's save area.

� The program name to be called is not known until run time.

– In this case, use the format CALL identifier, where identifier is a data item
that will contain the name of the called program at run time. In terms of
practical application, you might use CALL identifier when the program to be
called is variable, depending on conditional processing in your program.

– CALL identifier is always dynamic, even if you use the NODYNAM compiler
option. To make all CALL literal calls in a program dynamic, use the com-
piler option DYNAM.

When you use the NODYNAM option, do not mix a dynamic CALL identifier
and a static CALL literal for the same subprogram. This wastes space because
two copies of the subprogram are loaded into storage, and it does not guar-
antee that the subprogram will be left in its last-used state.

268 COBOL/VSE Programming Guide

 Advanced Topics

Performance Considerations of Static and Dynamic Calls
Because a statically called program is link-edited into the same phase as the calling
program, a static call is faster than a dynamic call. A static call is the preferred
method if your application does not require the services of the dynamic call
described above.

Statically called programs cannot be deleted (using CANCEL), so usage of static
calls might take more main storage. If storage is a concern, think about using
dynamic calls. Storage usage of calls depends on whether:

� The subprogram is called only a few times. A statically called program is
always loaded into storage, regardless of whether or not it is called; a dynam-
ically called program is loaded only when it is called.

� You subsequently delete the dynamically called subprogram with a CANCEL
statement.

A statically called program cannot be deleted, but a dynamically called program
can be deleted. Using a dynamic call and then a CANCEL statement to delete
the dynamically called program after it is no longer needed in the application
(and not after each CALL to it) might require less storage than using a static
call.

CALL Statement Examples
A static CALL statement is illustrated in the following example:

DATA DIVISION.

WORKING-STORAGE SECTION.

�1 RECORD-2 PIC X.

�1 RECORD-1.

 �5 PAY PICTURE S9(5)V99.

 �5 HOURLY-RATE PICTURE S9V99.

 �5 HOURS PICTURE S99V9.

PROCEDURE DIVISION.

CALL "SUBPROG" USING RECORD-1.

CALL "PAYMASTR" USING RECORD-1 RECORD-2.

 STOP RUN.

A dynamic CALL statement is illustrated in the following example:

 Chapter 16. Subprograms and Data Sharing 269

 Advanced Topics

DATA DIVISION.

WORKING-STORAGE SECTION.

77 PGM-NAME PICTURE X(8).

�1 RECORD-2 PIC x.

�1 RECORD-1.

 �5 PAY PICTURE S9(5)V99.

 �5 HOURLY-RATE PICTURE S9V99.

 �5 HOURS PICTURE S99V9.

PROCEDURE DIVISION.

MOVE "SUBPROG" TO PGM-NAME.

CALL PGM-NAME USING RECORD-1.

 CANCEL PGM-NAME.

MOVE "PAYMASTR" TO PGM-NAME.

CALL PGM-NAME USING RECORD-1 RECORD-2.

 STOP RUN.

The following called subprogram is called by each of the two preceding calling pro-
grams:

IDENTIFICATION DIVISION.

PROGRAM-ID. SUBPROG.

DATA DIVISION.

LINKAGE SECTION.

�1 PAYREC.

 1� PAY PICTURE S9(5)V99.

 1� HOURLY-RATE PICTURE S9V99.

 1� HOURS PICTURE S99V9.

77 PAY-CODE PICTURE 9.

PROCEDURE DIVISION USING PAYREC.

 .

 .

 .

 EXIT PROGRAM.

ENTRY "PAYMASTR" USING PAYREC PAY-CODE.

 .

 .

 .

 GOBACK.

Processing begins in the calling program. When the first CALL statement is exe-
cuted, control is transferred to the first statement of the Procedure Division in
SUBPROG, which is the called program.

In each of the CALL statements, the operand of the first USING option is identified
as RECORD-1.

When SUBPROG receives control, the values within RECORD-1 are made avail-
able to SUBPROG; however, in SUBPROG the structure is referred to as PAYREC.

The PICTURE character-strings within PAYREC and PAY-CODE contain the same
number of characters as RECORD-1 and RECORD-2, although the descriptions are
not identical.

270 COBOL/VSE Programming Guide

 Advanced Topics

When processing within SUBPROG reaches the EXIT PROGRAM statement,
control is returned to the calling program. Processing continues in that program
until the second CALL statement is issued.

Note: In a statically linked program, the CANCEL statement would not be valid.

In the example of a dynamically-linked program, two phases, PAYMASTR and
SUBPROG, would need to be built, with entry points of PAYMASTR and
SUBPROG respectively.

With the second CALL statement in the calling program, control is again transferred
to SUBPROG, but this time processing begins at the statement following the
ENTRY statement in SUBPROG. The values within RECORD-1 are again made
available to SUBPROG. In addition, the value in RECORD-2 is now made avail-
able to SUBPROG through the corresponding USING operand PAY-CODE.

When processing reaches the GOBACK statement, control is returned to the calling
program at the statement immediately following the second CALL statement.

When control is transferred the second time from the statically linked program,
SUBPROG is made available in its last-used state (that is, if any values in
SUBPROG storage were changed during the first execution, those changed values
are still in effect). When control is transferred from the dynamically linked program,
however, SUBPROG is made available in its initial state.

In any given execution of these two programs, if the values within RECORD-1 are
changed between the time of the first CALL and the second, the values passed at
the time of the second CALL statement will be the changed, not the original,
values. If the user wants to use the original values, they must be saved.

 Subprogram Linkage
Called subprograms that are invoked at run time by the dynamic CALL statement
must be members of the system phase sublibrary or of a user-supplied private sub-
library.

The static call statement results in the called subprogram being link-edited with the
calling program into one phase.

Static and dynamic CALL statements can both be specified in the same program.
The CALL literal statement results, in this case, in the subprogram invoked being
link-edited with the calling program into one phase. The CALL identifier statement
results in the dynamic invocation of a separate phase.

When a dynamic CALL statement and a static CALL statement to the same subpro-
gram are issued within one program, a second copy of the subprogram is loaded
into storage. Because this doesn't guarantee that the subprogram will be left in its
last-used state, results can be unpredictable.

Converting Static Calls
You can convert static calls (CALL literal from a COBOL/VSE program that has
been compiled with the NODYNAM option) to dynamic calls without recompiling
your application program by using the IGZBRDGE assembler macro. This is
useful, for example, if you would like an existing static COBOL/VSE program which

 Chapter 16. Subprograms and Data Sharing 271

 Advanced Topics

resides below the 16-megabyte line to call a new program which resides above the
16-megabyte line.

This support does not apply to the CICS environment.

The format of the macro is:

 Format

modname IGZBRDGE ENTNMES=(name1,name2,...namen)

where:

modname
Is the name you give to the bridge object module

name1,name2,...namen
Are the names of the programs called by the static program. These names will
be used as entry points in the assembled macro.

Assemble the macro and link-edit the resulting bridge object module with the object
module containing the calling (static) program. (The INCLUDE statement for the
bridge object module must precede the INCLUDE for the static calling program.)
The linkage editor will resolve static calls in the calling (NODYNAM) program to the
entry points in the bridge object module. This has the effect of removing the called
programs from the phase.

When any COBOL/VSE program within the phase issues a static call to a program
with an entry point in the bridge object module, control passes to the entry point in
the bridge object module, and the appropriate program is dynamically loaded and
executed.

For example, given the following programs and desired calling sequence:

COBOLA (compiled NODYNAM)

 to call

 "COBOLB" (compiled DYNAM)

 to call

"COBOLC" (compiled NODYNAM)

 to call

"COBOLD" (compiled NODYNAM)

 to call

 "COBOLE"

the macro would look like this:

MYNAME IGZBRDGE ENTNMES=(COBOLB,COBOLD)

In the example, MYNAME is the name for the bridge object module. Programs COBOLB
and COBOLD are included in the macro because they are dynamically called from
static programs. If you had not used the IGZBRDGE macro in this application, your
phases would have looked like this:

272 COBOL/VSE Programming Guide

 Advanced Topics

┌──────────────┐ ┌──────────────┐

│COBOLA │ │COBOLC │

│(NODYNAM) │ │(NODYNAM) │

│ │ ├──────────────┤

│ │ │COBOLD │

│ │ │(NODYNAM) │

│ │ │ │

│ │ │ │

├──────────────┤ │ │

│COBOLB │ ├──────────────┤

│(DYNAM) │ │COBOLE │

│ │ │ │

│ │ │ │

│ │ │ │

└──────────────┘ └──────────────┘

Figure 87. Example Application Using Static Calls

With the use of the IGZBRDGE macro, your phases will look like this:

┌──────────────┐ ┌──────────────┐

│COBOLA │ │COBOLC │

│(NODYNAM) │ │(NODYNAM) │

│ │ │ │

│ │ └──────────────┘

│ │

│ │ ┌──────────────┐

│ │ │COBOLD │

├──────────────┤ │(NODYNAM) │

│MYNAME │ │ │

│ │ │ │

│ENTRY COBOLB │ │ │

│ENTRY COBOLD │ ├──────────────┤

└──────────────┘ │COBOLE │

 │ │

┌──────────────┐ │ │

│COBOLB │ │ │

│(DYNAM) │ │ │

│ │ └──────────────┘

│ │

│ │

└──────────────┘

Figure 88. Example Application Using Static To Dynamic Call Conversion

If COBOLE had been included on the invocation of the IGZBRDGE macro,
MYNAME would also have included an entry point for COBOLE, and COBOLE
would not be loaded with COBOLD.

Note: Calls through the bridge may be made only by COBOL/VSE programs in a
non-CICS environment.

 Sharing Data
When a run unit consists of several separately-compiled programs that call each
other, the programs must be able to communicate with each other. They also
usually need to have access to common data.

This section discusses the manner in which programs can share data. For the pur-
poses of this discussion, a “subprogram” is any program called by another program.

Passing Data BY REFERENCE or BY CONTENT
BY REFERENCE means that the subprogram is referring to and processing the
data items in the calling program's storage, rather than working on a copy of the
data.

 Chapter 16. Subprograms and Data Sharing 273

 Advanced Topics

BY CONTENT means that the calling program is passing only the contents of the
literal, or identifier. With a CALL . . . BY CONTENT, the called program cannot
change the value of the literal or identifier in the calling program, even if it modifies
the variable in which it received the literal or identifier.

Whether you pass data items BY REFERENCE or BY CONTENT depends on what
you want your program to do with the data:

� If you want the definition of the argument of the CALL statement in the calling
program and the definition of the parameter in the called program to share the
same memory, specify:

CALL ... BY REFERENCE identifier.

Any changes made by the subprogram to the parameter affects the argument
in the calling program.

An identifier in the USING phrase of the CALL . . . BY REFERENCE statement
may be a file-name, in addition to a data-name. If the identifier is the file-name
for a SAM file, the COBOL compiler passes the address of the Define The File
(DTF) as this entry of the parameter list. The identifier may not be a VSAM
file-name.

File-names as CALL operands are allowed by the compiler as an extension.
Any use of the extension generally depends on the specific internal implemen-
tation of the compiler. Control block field settings may change in future
releases. Any changes made to the control block are the user's responsibility
and not supported by IBM.

Note: This mechanism cannot be used for file sharing between COBOL pro-
grams. This is only for passing DTFs to assembler programs. Use EXTERNAL
or GLOBAL files to implement file sharing between COBOL programs.

� If you want to pass the address of a record area to a called program, specify:

CALL ... BY REFERENCE ADDRESS OF record-name.

The subprogram receives the ADDRESS special register for the record-name
you specify.

You must define the record-name as a level-01 or level-77 item in the Linkage
Section of the called and calling programs. A separate ADDRESS special reg-
ister is provided for each record in the Linkage Section.

� If you do not want the definition of the argument of the CALL statement in the
calling program and the definition of the parameter in the called subprogram to
share the same memory, specify:

CALL ... BY CONTENT identifier.

� If you want to pass a literal value to a called program specify:

CALL ... BY CONTENT literal.

The called program cannot change the value of the literal.

� If you want to pass the length of a data item, specify:

CALL ... BY CONTENT LENGTH OF identifier.

The calling program passes the length of the identifier from its LENGTH special
register. When literals are passed BY CONTENT, the called program cannot
change the value.

274 COBOL/VSE Programming Guide

 Advanced Topics

� If you want to pass both a data item and its length to a subprogram, specify a
combination of BY REFERENCE and BY CONTENT, for example:

CALL 'ERRPROC' USING BY REFERENCE A

BY CONTENT LENGTH OF A

Data items in a calling program can be described in the Linkage Section of all the
programs it calls directly or indirectly. In this case, storage for these items is allo-
cated in the highest calling program. That is, program A calls program B, which
calls program C. Data items in program A can be described in the Linkage
Sections of programs B and C, and the one set of data can be made available to
all three programs.

Note: Do not pass parameters allocated in storage above 16 megabytes to
AMODE(24) subprograms; use the DATA(24) option.

Describing Arguments in the Calling Program
In the calling program, the arguments are described in the Data Division in the
same manner as other data items in the Data Division. Unless they are in the
Linkage Section, storage is allocated for these items in the calling program. If you
reference data in a file, the file must be open when the data is referenced. Code
the USING clause of the CALL statement to pass the arguments.

Describing Parameters in the Called Program
In the called program, parameters are described in the Linkage Section. Code the
USING clause after the PROCEDURE-DIVISION header to receive the parameters.

 Calling Program Description Called Program Description

 WORKING─STORAGE SECTION. LINKAGE SECTION.

┌───────────────────────────┐ ┌──────────────────────────┐

│�1 PARAM─LIST. │ │�1 USING─LIST. │

 │ �5 PARTCODE PIC A. ├─────────�│ 1� PART─ID PIC X(5). │

 │ �5 PARTNO PIC X(4). │ │ 1� SALES PIC 9(5). │

 │ �5 U─SALES PIC 9(5). │ │ │

└──────────────────────┬────┘ └────────────────────┬─────┘

 . │ . │

 . │ . │

 . │ . │

 │ │

 PROCEDURE DIVISION. │ PROCEDURE DIVISION

 . │ ┌───────────┐

 . │ USING │USING─LIST.│

 . │ └───────────┘

 │

 CALL CALLED─PROG

 ┌───────────┐

USING │PARAM─LIST.│ In the called program, the code

 └───────────┘ for parts and the part number

are combined into one data item

In the calling program, the code (PART─ID). In the called

for parts (PARTCODE) and the part program, a reference to PART─ID

number (PARTNO) are referred to is the only valid reference to

separately. them.

Figure 89. Common Data Items in Subprogram Linkage

 Chapter 16. Subprograms and Data Sharing 275

 Advanced Topics

 Linkage Section
You must know what is being passed from the calling program and set up the
Linkage Section in the called program to accept it. To the called program, it does
not matter which clause of the CALL statement you use to pass the data (BY REF-
ERENCE or BY CONTENT). In either case, the called program must describe the
data it is receiving. It does this in the Linkage Section.

The number of data-names in the identifier list of a called program must not be
greater than the number of data-names in the identifier list of the calling program.
There is a one-to-one positional correspondence; that is, the first identifier of the
calling program is passed to the first identifier of the called program, and so forth.
The compiler makes no attempt to match arguments and parameters.

Grouping Data to Be Passed
Consider grouping all the data items you want to pass between programs and
putting them under one level-01 item. If you do this, you can pass a single level-01
record between programs. For an example of this method, see Figure 89 on
page 275.

To make the possibility of mismatched records even smaller, put the level-01 record
in a copy library, and copy it in both programs. (That is, copy it in the Working-
Storage Section of the calling program and in the Linkage Section of the called
program.)

Using Pointers to Process a Chained List
You can manipulate pointer data items, which are a special type of data item to
hold addresses, when you want to pass and receive addresses of a variably
located record area. Pointer data items are data items that are either explicitly
defined with the USAGE IS POINTER clause, or are ADDRESS special registers.
A typical application for using pointer data items is in processing a chained list (a
series of records where each one points to the next).

For this example, picture a chained list of data that contains individual salary
records. Figure 90 shows one way to visualize how these records are linked in
storage:

 ┌─────────┐ ┌──────────┐

│ │ │ │

SALARY RECORD │ │

 ┌───────────┴─┐ ┌──────────┴─┐ ┌─────────────┐

 PTR─NEXT─REC │addr of next │ │ │ │NULL invalid │

 │rec │ │ │ │addr │

├─────────────┤ ├────────────┤ . . . ├─────────────┤

 NAME │ │ │ │ │ │

 ├─────────────┤ ├────────────┤ ├─────────────┤

 SALARY │ │ │ │ │ │

 └─────────────┘ └────────────┘ └─────────────┘

Figure 90. Representation of a Chained List Ending with NULL

The first item in each record points to the next record, except for the last record.
The first item in the last record, in order to indicate that it is the last record, con-
tains a null value instead of an address.

276 COBOL/VSE Programming Guide

 Advanced Topics

The high-level logic of an application that processes these records might look
something like this:

OBTAIN ADDRESS OF FIRST RECORD IN CHAINED LIST FROM ROUTINE

CHECK FOR END OF THE CHAINED LIST

DO UNTIL END OF THE CHAINED LIST

 PROCESS RECORD

GO ON TO THE NEXT RECORD

 END

Figure 91 contains an outline of the processing program, LISTS, used in this
example of processing a chained list.

 IDENTIFICATION DIVISION.

 PROGRAM-ID. LISTS.

 ENVIRONMENT DIVISION.

 DATA DIVISION.

 ������

 WORKING-STORAGE SECTION.

77 PTR-FIRST POINTER VALUE IS NULL.

77 DEPT-TOTAL PIC 9(4) VALUE IS �.

 ������

 LINKAGE SECTION.

 �1 SALARY-REC.

 �2 PTR-NEXT-REC POINTER.

 �2 NAME PIC X(2�).

 �2 DEPT PIC 9(4).

 �2 SALARY PIC 9(6).

 �1 DEPT-X PIC 9(4).

 ������

PROCEDURE DIVISION USING DEPT-X.

 ������

� FOR EVERYONE IN THE DEPARTMENT RECEIVED AS DEPT-X,

� GO THROUGH ALL THE RECORDS IN THE CHAINED LIST BASED ON THE

� ADDRESS OBTAINED FROM THE PROGRAM CHAIN-ANCH

� AND CUMULATE THE SALARIES.

� IN EACH RECORD, PTR-NEXT-REC IS A POINTER TO THE NEXT RECORD

� IN THE LIST; IN THE LAST RECORD, PTR-NEXT-REC IS NULL.

� DISPLAY THE TOTAL.

 ������

CALL "CHAIN-ANCH" USING PTR-FIRST

SET ADDRESS OF SALARY-REC TO PTR-FIRST

 ������

PERFORM WITH TEST BEFORE UNTIL ADDRESS OF SALARY-REC = NULL

IF DEPT = DEPT-X

THEN ADD SALARY TO DEPT-TOTAL

 ELSE CONTINUE

 END-IF

SET ADDRESS OF SALARY-REC TO PTR-NEXT-REC

 END-PERFORM

 ������

 DISPLAY DEPT-TOTAL

 GOBACK.

Figure 91. Program for Processing a Chained List

Passing Addresses between Programs
To obtain the address of the first SALARY-REC record area, program LISTS calls
program CHAIN-ANCH:

CALL "CHAIN-ANCH" USING PTR-FIRST

PTR-FIRST is defined in WORKING-STORAGE in the calling program (LISTS) as a
pointer data item:

 Chapter 16. Subprograms and Data Sharing 277

 Advanced Topics

 WORKING-STORAGE SECTION.

�1 PTR-FIRST POINTER VALUE IS NULL.

Upon return from the call to CHAIN-ANCH, PTR-FIRST contains the address of the
first record in the chained list.

PTR-FIRST is initially defined as having a NULL value as a logic check. If some-
thing goes amiss with the call, and PTR-FIRST never receives the value of the
address of the first record in the chain, a NULL value remains in PTR-FIRST and,
according to the logic of the program, the records will not be processed.

NULL is a figurative constant used to assign the value of an invalid address (non-
numeric 0) to pointer items. It can be used in the VALUE IS NULL clause, in the
SET statement, and as one of the operands of a relation condition with a pointer
data item.

The LINKAGE SECTION of the calling program contains the description of the
records in the chained list. It also contains the description of the department code
that is passed, using the USING clause of the CALL statement.

 LINKAGE SECTION.

 �1 SALARY-REC.

 �2 PTR-NEXT-REC POINTER.

 �2 NAME PIC X(2�).

 �2 DEPT PIC 9(4).

 �2 SALARY PIC 9(6).

 �1 DEPT-X PIC 9(4).

To “base” the record description SALARY-REC on the address contained in
PTR-FIRST, use a SET statement:

CALL "CHAIN-ANCH" USING PTR-FIRST

SET ADDRESS OF SALARY-REC TO PTR-FIRST

Checking for the End of the Chained List
The chained list in this example is set up so the last record contains an invalid
address. To do this, the pointer data item in the last record would be assigned the
value NULL.

A pointer data item can be assigned the value NULL in two ways:

� A pointer data item can be defined with a VALUE IS NULL clause in its data
definition.

� NULL can be the sending field in a SET statement.

In the case of a chained list in which the pointer data item in the last record con-
tains a NULL value, the code to check for the end of the list would be:

IF PTR-NEXT-REC = NULL
...

(logic for end of chain)

If you have not reached the end of the list, process the record and move on to the
next record.

278 COBOL/VSE Programming Guide

 Advanced Topics

In the program LISTS, this check for the end of the chained list is accomplished
with a “DO WHILE” structure:

PERFORM WITH TEST BEFORE UNTIL ADDRESS OF SALARY-REC = NULL

IF DEPT = DEPT-X

THEN ADD SALARY TO DEPT-TOTAL

 ELSE CONTINUE

 END-IF

SET ADDRESS OF SALARY-REC TO PTR-NEXT-REC

 END-PERFORM

Continuing Processing the Next Record
To move on to the next record, set the address of the record in the
LINKAGE-SECTION to be equal to the address of the next record. This is accom-
plished through the pointer data item sent as the first field in SALARY-REC:

SET ADDRESS OF SALARY-REC TO PTR-NEXT-REC

Then repeat the record-processing routine, which will process the next record in the
chained list.

A Variation: Incrementing Addresses Received from Another
Program
The data passed from a calling program might contain header information that you
want to ignore (for example, in data received from a CICS application that is not
migrated to the command level).

Because pointer data items are not numeric, you cannot directly perform arithmetic
on them. However, you can use the SET verb to increment the passed address in
order to bypass header information.

You could set up the LINKAGE-SECTION like this:

 LINKAGE SECTION.

 �1 RECORD-A.

 �2 HEADER PIC X(12).

�2 REAL-SALARY-REC PIC X(3�).
...

 �1 SALARY-REC.

 �2 PTR-NEXT-REC POINTER.

 �2 NAME PIC X(2�).

 �2 DEPT PIC 9(4).

 �2 SALARY PIC 9(6).

Within the Procedure Division, “base” the address of SALARY-REC on the address
of REAL-SALARY-REC:

SET ADDRESS OF SALARY-REC TO ADDRESS OF REAL-SALARY-REC

SALARY-REC is now based on the address of RECORD-A + 12.

 Chapter 16. Subprograms and Data Sharing 279

 Advanced Topics

Passing Entry Point Addresses with Procedure Pointers
You can use procedure pointers, data items defined with the USAGE IS
PROCEDURE-POINTER clause, to pass the entry address of a procedure entry
point in a format required by certain LE/VSE callable services.

For example, to have a user-written error handling routine take control when an
exception condition occurs during program execution, you must first pass the entry
address of the routine to CEEHDLER, a condition management LE/VSE callable
service, to have it registered.

Procedure-pointer data items can be set to contain the entry addresses for these
entry points:

� Another non-nested COBOL program

� An alternate entry point in another COBOL program (as defined in an ENTRY
statement)

� A program written in another language

A procedure-pointer data item can only be set using Format 6 of the SET state-
ment; an LE/VSE entry variable is created for the literal or identifier specified and
moved into the procedure-pointer data item. This form of the SET statement
(Format 6) causes the program to be loaded according to the rules of the
DYNAM/NODYNAM compiler option. Therefore, consider these factors when using
procedure-pointer data items:

� If you compile your program with the NODYNAM option and you set your
procedure-pointer item to a literal value (to an actual name of an entry point),
then the value must refer to an entry point in the same phase as your program.
(Otherwise the reference cannot be resolved.)

� If you compile your program with the DYNAM option, or if you set your
procedure-pointer item to a variable that will contain the entry point at run time,
then your procedure-pointer item, whether a literal or variable, must point to an
entry point in a separate phase.

� If you set your procedure-pointer item to an entry address in a dynamically
called phase and your program subsequently CANCELs that dynamically called
phase, then your procedure-pointer item becomes undefined, and reference to
it thereafter is not reliable.

For a complete definition of the USAGE IS PROCEDURE-POINTER clause and the
SET statement, refer to the COBOL/VSE Language Reference.

Passing Return Code Information (RETURN-CODE Special Register)
You can use the RETURN-CODE special register to pass and receive return codes
between programs.

When a COBOL/VSE program returns to its caller, the contents of the
RETURN-CODE special register are stored into register 15. When control is
returned to a COBOL program from a call, the contents of register 15 are stored
into the calling program's RETURN-CODE special register. When control is
returned from a COBOL/VSE program to the operating system, the special register
contents are returned as a user return code.

280 COBOL/VSE Programming Guide

 Advanced Topics

You may need to take this treatment of the RETURN-CODE into consideration
when control is returned to a COBOL/VSE program from a non-COBOL program. If
the non-COBOL program does not use register 15 to pass back the return code,
then the COBOL/VSE program's RETURN-CODE special register may be updated
with an invalid value. Unless you set this special register to a meaningful value
before your COBOL/VSE program returns to the operating system, an invalid return
code will be passed back to the system.

Sharing Data Using the EXTERNAL Clause
Separately compiled programs (including programs within a batch sequence) may
share data items by use of the EXTERNAL clause.

EXTERNAL is specified on the 01-level data description in the Working-Storage
Section of a program, and the following rules apply:

1. Items subordinate to an EXTERNAL group item are themselves EXTERNAL.

2. The name used for the data item cannot be used on another EXTERNAL item
within the same program.

3. The VALUE clause cannot be specified for any group item, or subordinate item,
that is EXTERNAL.

Any COBOL program within the run unit, having the same data description for the
item as the program containing the item, can access and process the data item.
For example, if program A had the following data description:

�1 EXT-ITEM1 PIC 99 EXTERNAL.

program B could access that data item by having the identical data description in its
Working-Storage Section.

Remember, any program that has access to an EXTERNAL data item can change
its value. Do not use this clause for data items you need to protect.

Sharing Files between Programs (EXTERNAL Files)
Using the EXTERNAL clause for files allows separately compiled programs within
the run unit to have access to common files. The example on page 283, shows
some of the advantages of using EXTERNAL files:

� The main program can reference the record area of the file, even though the
main program does not contain any I/O statements.

� Each subprogram can control a single I/O function, such as OPEN, or READ.

� Each program has access to the file.

The following table gives the program (or subprogram) name for the example in
Figure 93 on page 283 and describes its function.

Figure 92 (Page 1 of 2). Program Names for Input-Output Using EXTERNAL Files

Name Function

ef1 This is the main program. It calls all the subprograms, and then verifies
the contents of a record area.

ef1openo This program opens the external file for output and checks the File
Status Code.

 Chapter 16. Subprograms and Data Sharing 281

 Advanced Topics

Additionally, COPY statements ensure that each subprogram contains an identical
description of the file.

The sample program also uses the EXTERNAL clause for a data item in the
Working-Storage Section. This item is used for checking File Status codes, and is
also placed using the COPY statement.

The program uses three Copy Library members:

� The first is named efselect and is placed in the FILE-CONTROL paragraph.

 Select ef1

Assign To ef1

File Status Is efs1

Organization Is Sequential.

� The second is named effile and is placed in the File Section.

Fd ef1 Is External

Record Contains 8� Characters

Recording Mode F.

 1 ef-record-1.

2 ef-item-1 Pic X(8�).

� The third is named efwrkstg and is placed in the Working-Storage Section.

1 efs1 Pic 99 External.

Figure 92 (Page 2 of 2). Program Names for Input-Output Using EXTERNAL Files

Name Function

ef1write This program writes a record to the external file and checks the File
Status Code.

ef1openi This program opens the external file for input and checks the File
Status Code.

ef1read This program reads a record from the external file and checks the File
Status Code.

ef1close This program closes the external file and checks the File Status Code.

282 COBOL/VSE Programming Guide

 Advanced Topics

 Identification Division.

 Program-ID.

 ef1.

 �

� This is the main program that controls the external file

 � processing.

 �

 Environment Division.

 Input-Output Section.

 File-Control.

 Copy efselect.

 Data Division.

 File Section.

 Copy effile.

 Working-Storage Section.

 Copy efwrkstg.

 Procedure Division.

 Call "ef1openo"

 Call "ef1write"

 Call "ef1close"

 Call "ef1openi"

 Call "ef1read"

If ef-record-1 = "First record" Then

Display "First record correct"

 Else

Display "First record incorrect"

Display "Expected: " "First record"

Display "Found : " ef-record-1

 End-If

 Call "ef1close"

 Goback.

End Program ef1.

 Identification Division.

 Program-ID.

 ef1openo.

 �

� This program opens the external file for output.

 �

 Environment Division.

 Input-Output Section.

 File-Control.

 Copy efselect.

 Data Division.

 File Section.

 Copy effile.

 Working-Storage Section.

 Copy efwrkstg.

 Procedure Division.

Open Output ef1

If efs1 Not = �

Display "file status " efs1 " on open output"

 Stop Run

 End-If

 Goback.

End Program ef1openo.

Figure 93 (Part 1 of 3). Input-Output Using EXTERNAL Files

 Chapter 16. Subprograms and Data Sharing 283

 Advanced Topics

 Identification Division.

 Program-ID.

 ef1write.

 �

� This program writes a record to the external file.

 �

 Environment Division.

 Input-Output Section.

 File-Control.

 Copy efselect.

 Data Division.

 File Section.

 Copy effile.

 Working-Storage Section.

 Copy efwrkstg.

 Procedure Division.

Move "First record" to ef-record-1

 Write ef-record-1

If efs1 Not = �

Display "file status " efs1 " on write"

 Stop Run

 End-If

 Goback.

End Program ef1write.

 Identification Division.

 Program-ID.

 ef1openi.

 �

� This program opens the external file for input.

 �

 Environment Division.

 Input-Output Section.

 File-Control.

 Copy efselect.

 Data Division.

 File Section.

 Copy effile.

 Working-Storage Section.

 Copy efwrkstg.

 Procedure Division.

Open Input ef1

If efs1 Not = �

Display "file status " efs1 " on open input"

 Stop Run

 End-If

 Goback.

End Program ef1openi.

Figure 93 (Part 2 of 3). Input-Output Using EXTERNAL Files

284 COBOL/VSE Programming Guide

 Advanced Topics

 Identification Division.

 Program-ID.

 ef1read.

 �

� This program reads a record from the external file.

 �

 Environment Division.

 Input-Output Section.

 File-Control.

 Copy efselect.

 Data Division.

 File Section.

 Copy effile.

 Working-Storage Section.

 Copy efwrkstg.

 Procedure Division.

 Read ef1

If efs1 Not = �

Display "file status " efs1 " on read"

 Stop Run

 End-If

 Goback.

End Program ef1read.

 Identification Division.

 Program-ID.

 ef1close.

 �

� This program closes the external file.

 �

 Environment Division.

 Input-Output Section.

 File-Control.

 Copy efselect.

 Data Division.

 File Section.

 Copy effile.

 Working-Storage Section.

 Copy efwrkstg.

 Procedure Division.

 Close ef1

If efs1 Not = �

Display "file status " efs1 " on close"

 Stop Run

 End-If

 Goback.

End Program ef1close.

Figure 93 (Part 3 of 3). Input-Output Using EXTERNAL Files

 Reentrant Programs
If you intend to have multiple users execute an application program at the same
time, you must make your program reentrant by specifying the RENT option when
you compile your program. (See page 247 for more information on the RENT
option.) As a programmer, you do not need to worry about multiple copies of vari-
ables. The compiler creates the necessary reentrancy controls in your object
module.

The following COBOL/VSE programs must be reentrant:

Programs to be used with CICS
Programs to be executed above 16 megabytes
Programs to be loaded and deleted by a non-COBOL program

 Chapter 16. Subprograms and Data Sharing 285

 Advanced Topics

For reentrant programs, the DATA(24|31) compiler option and the HEAP and
ALL31 run-time options control whether dynamic data areas, such as Working-
Storage, are obtained from storage below 16 megabytes or from unrestricted
storage. For details on how to control where the storage is allocated from, see the
description of the DATA compile-time option on page 230.

Calls to Alternative Entry Points
Static calls to alternative entry points work without restriction. Under VSE you
cannot dynamically call alternate entry points because ALIASes are not supported.
Only the entry point for the phase can be called dynamically.

286 COBOL/VSE Programming Guide

 Advanced Topics

Chapter 17. Interrupts and Checkpoint/Restart

The Checkpoint/Restart feature is designed to be used with programs running for
an extended period of time when interruptions may halt processing before the end
of the job. Because the Checkpoint/Restart feature causes a lot of extra proc-
essing, use it only when you anticipate interruptions caused by machine malfunc-
tions, input/output errors, or intentional operator intervention. Checkpoint/Restart
allows the interrupted program to be restarted at the job step or at a point other
than the beginning of the job step.

The checkpoint routine is invoked from the COBOL phase containing your
program. During execution of your program, the checkpoint routine creates check-
point records at points you specify in your program. The checkpoint record con-
tains information stored in registers and main storage when the program reached
the checkpoint. You specify these checkpoints by using the COBOL RERUN
clause in the Environment Division.

The restart routine restarts an interrupted program. Restart occurs at a specified
checkpoint. The checkpoint record contains all information necessary to restart the
program. Restart can be initiated at any time after the program has been inter-
rupted, as long as the file containing the checkpoint records is available.

The COBOL RERUN clause provides linkage to the system checkpoint routine.
Any cautions and restrictions on the use of the system Checkpoint/Restart feature
also apply to the use of the RERUN clause during the execution of a SORT or
MERGE statement. If restart is attempted with a checkpoint taken by a COBOL
program during a sort or merge operation, an error message is issued and the
restart is canceled. Only checkpoints taken by Sort/Merge II and DFSORT/VSE are
valid. For further information, see “Checkpoint/Restart During DFSORT/VSE” on
page 190.

The Checkpoint/Restart feature is fully described in VSE/ESA System Macros Ref-
erence and VSE/ESA Guide to System Functions.

Getting a Checkpoint
To get a checkpoint, use job control statements and the RERUN EVERY integer-1
RECORDS clause. Associate each RERUN clause with a particular COBOL file.
The RERUN clause indicates that a checkpoint record is to be written onto a check-
point file whenever a specified number of records on that file have been processed.
The VSE Checkpoint/Restart feature does not provide support for the RERUN
EVERY END REEL/UNIT clause. If you code this clause in your program, it will be
treated as a comment.

The checkpoint records are written to the checkpoint file defined by your JCL.
Checkpoints are recorded and numbered sequentially.

 Copyright IBM Corp. 1983, 1998 287

 Advanced Topics

Designing a Checkpoint
Design your checkpoints at critical points in your program so that data can be
easily reconstructed. Ensure that the contents of files are not changed between the
time of the checkpoint and the time of the restart. This can be a problem with
nonsequential files.

In a program using disk files, changes to records in these files will replace previous
information. Design your program so that you can identify previously processed
records. For example, consider a disk file containing loan records that are period-
ically updated for interest due. If a checkpoint is taken, records are updated, and
then the program is interrupted; the program design should include a test so that
the records updated after the last checkpoint will not be updated a second time
when the program is restarted. To do this, you can set up a date field for each
record and update the date each time the record is processed. Then, after the
restart, test the date field to determine whether or not the record was previously
processed.

For efficient repositioning of a print file, take checkpoints on that file only after
printing the last line of a page.

The Checkpoint File
To define checkpoint files, specify the following JCL statements.

 For Tape

// ASSGN SYSnnn,tape-unit

For Direct-Access Devices

// DLBL system-name,'file-ID',�,SD
// EXTENT SYSnnn,volser,1,�,start,tracks
// ASSGN SYSnnn,DISK,VOL=volser,SHR

SYSnnn
The same as the SYSnnn portion of the assignment-name used in the COBOL
RERUN clause.

tape-unit
Identifies the magnetic tape unit.

system-name
The same as the system-name portion of the assignment-name used in the
COBOL RERUN clause.

file-ID
The name given to the file used to record checkpoints, when the file resides on
a direct-access device. This name identifies the checkpoint file to the restart
procedure (see “Restarting a Program” on page 290).

volser
Identifies the direct-access volume by serial number.

start, tracks
Specifies the amount of track space needed for the checkpoint file on a direct-
access device.

288 COBOL/VSE Programming Guide

 Advanced Topics

The following are examples that define checkpoint files.

Note: Checkpoint records for several COBOL files can be written into one check-
point file.

// ASSGN SYS���,TAPE
...

 ENVIRONMENT DIVISION.
...

RERUN ON SYS���-S-CHKPT EVERY

5��� RECORDS OF ACCT-FILE.

Figure 94. Write Checkpoint Records, Using Tape

// DLBL CHEK,'CHECK2',�,SD

// EXTENT SYS�3�,DB���3,1,�,3���,3��

// ASSGN SYS�3�,DISK,VOL=DB���3,SHR
...

 ENVIRONMENT DIVISION.
...

RERUN ON CHEK EVERY

2���� RECORDS OF PAYCODE.

RERUN ON SYS�3�-S-CHEK EVERY

3���� RECORDS OF IN-FILE.

Figure 95. Write Checkpoint Records, Using Disk

 Restrictions
1. VSE/ESA does not support checkpoints being taken by programs executing in

a partition that is larger than 16 megabytes, or in dynamic partitions

2. A checkpoint file must have sequential organization

3. Checkpoints cannot be written to VSAM files

4. Checkpoints cannot be written to 3540 Diskette files

5. Magnetic tape files used to record checkpoints must be unlabeled

6. Checkpoint records cannot be embedded in one of your program files. You
must use a separate file exclusively for checkpoint records

7. Checkpoints during sort operations:

If checkpoints are to be taken on a direct-access device during a sort opera-
tion, add a DLBL statement for SORTCKP in the job control for execution.

If checkpoints are to be taken on a magnetic tape during a sort operation, add
an ASSGN statement for SYS000 in the job control for execution.

Checkpoint records on ASCII-collated sorts can be taken, but the assignment-
name indicating the checkpoint file must not specify an ASCII file.

Messages Generated during Checkpoint
The system checkpoint routine advises the operator of the status of the checkpoints
taken by displaying informative messages on the console.

Each time a checkpoint has been successfully completed, the following message is
displayed:

 Chapter 17. Interrupts and Checkpoint/Restart 289

 Advanced Topics

0C00I CHKPT NO. nnnn WAS TAKEN ON SYSnnn=cuu

nnnn
is the 4-digit number which identifies the checkpoint.

SYSnnn
is the logical unit number and assigned to the device on which checkpoints are
recorded.

cuu
is the physical address of the device on which checkpoints are recorded.

Restarting a Program
The system restart routine:

Retrieves the information recorded in a checkpoint record
Restores the contents of main storage and all registers
Repositions tape files
Restarts the program

In order to restart a program from a checkpoint, the RSTRT job control statement is
used. To restart a program, you must do the following:

1. Have the operator rewind all magnetic tape files that were being used by the
program when the checkpoint was recorded. If a multi-volume magnetic tape
file was being used, have the operator mount, on the primary unit, the volume
of the file that was in use at the time of the checkpoint.

2. Use the same JCL statements to restart the program as you used to run when
the checkpoint was recorded. In place of the EXEC JCL statement, code a
RSTRT JCL statement, specifying:

� The logical unit number of the direct-access device or magnetic tape device
on which the checkpoint records are recorded

� The sequence number of the checkpoint to be used for restart

� The system-name of the checkpoint file, if the checkpoint records were
recorded on a direct-access device

When resubmitting a job, care should be taken that the program is restarted in the
same partition in which it was executing when it was interrupted.

Sample Job Control Procedures for Checkpoint/Restart
Figure 96 illustrates a sequence of job control statements for restarting a job.

// JOB CHECKP

// ASSGN SYS��6,38� CHKPT TAPE

// DLBL FILE1 ...

// DLBL FILE2 ...

// ASSGN ...

// RSTRT SYS��6,��13

/&

Figure 96. Restarting a Job at a Specific Checkpoint

290 COBOL/VSE Programming Guide

 Advanced Topics

The following are the characteristics of the checkpointed program that must be con-
sidered for the restart:

� The job name specified in the JOB statement was CHECKP; the same name
must be used for restart.

� The checkpoint records were recorded on magnetic tape; therefore, no system-
name needs to be specified in the RSTRT statement.

� The logical unit number SYS006 is used for the checkpoint file.

� The sequence number of the last checkpoint record was 0013; this or any pre-
vious checkpoint can be used for the restart.

 Chapter 17. Interrupts and Checkpoint/Restart 291

 Advanced Topics

 Chapter 18. Debugging

COBOL/VSE provides several language elements and facilities to help you deter-
mine the cause of problems in program behavior. This chapter focuses on how to
use source language for debugging and describes some alternative compiler
options that enhance debugging.

If the problem with your program is not easily detected, you might need to analyze
a storage dump of your program. See the LE/VSE Debugging Guide and Run-
Time Messages for information on interpreting dumps. This book also contains
examples demonstrating how to debug COBOL/VSE programs.

Using Source Language to Debug
You can use several COBOL language features to pinpoint the cause of a failure in
your program. If the program is part of a large application already in production,
you will not want to recompile and run the program again to debug. Instead, you
can write a small test case to simulate the part of the program that failed and code
some of these debugging features of the COBOL language in the test case to help
detect the exact cause of the problem:

 � DISPLAY statements
� USE EXCEPTION/ERROR declaratives

 � Class Test
� INITIALIZE or SET Verbs

 � Scope terminators
� File status keys
� USE FOR DEBUGGING declaratives

The rules for using each of these language features are explained in COBOL/VSE
Language Reference.

Tracing Program Logic (DISPLAY Statements)
Adding DISPLAY statements can help you trace through the logic of the program.
If, for example, you determine that the problem appears in an EVALUATE state-
ment or in a set of nested IF statements, DISPLAY statements in each path will
show you how the logic flow is working. If you determine that the problem is being
caused by the way a numeric value is calculated, you can use DISPLAY state-
ments to check the value of some of the interim results.

For example, you might insert code like this into your program:

DISPLAY "ENTER CHECK PROCEDURE"

 .

. (checking procedure routine)

 .

DISPLAY "FINISHED CHECK PROCEDURE"

to determine whether a particular routine started and finished. When you are sure
that the routine works correctly, you can put asterisks in column 7 of the DISPLAY
statement lines, which converts them to comment lines. Alternatively, you might put
a 'D' in column 7 of your DISPLAY (or any other debugging) statements. If you
include the WITH DEBUGGING MODE clause in the ENVIRONMENT DIVISION,
the 'D' in column 7 will be ignored and the DISPLAY statements will be imple-

292 Copyright IBM Corp. 1983, 1998

 Advanced Topics

mented. Without the DEBUGGING MODE clause, the 'D' in column 7 makes the
statement a comment.

Before you put the program into production, delete all the debugging aids you used
and recompile the program. The program will run more efficiently and use less
storage.

Note: The DISPLAY statement cannot be used in programs running under CICS.

Handling Input/Output Errors (USE EXCEPTION/ERROR Declaratives)
If you have determined that the problem lies in one of the I/O procedures in your
program, you can include the USE EXCEPTION/ERROR declarative to help debug
the problem.

If a file fails to open for some reason, the appropriate EXCEPTION/ERROR declar-
ative will be activated. The appropriate declarative may be a specific one for the
file or one specified for the different open attributes—INPUT, OUTPUT, I/O, or
EXTEND.

Each USE AFTER STANDARD ERROR statement must be coded in a separate
section. Each of these sections must be coded immediately after the Declarative
Section keyword of the Procedure Division. The rules for coding the statements are
provided in COBOL/VSE Language Reference.

Validating Data (Class Test)
If you suspect that your program is trying to perform arithmetic on nonnumeric data
or is somehow receiving the wrong type of data on an input record, you can use
the class test to validate the type of data. The class test checks whether data is
alphabetic, alphabetic-lower, alphabetic-upper, DBCS, KANJI, or numeric.

Assessing Switch Problems (INITIALIZE or SET Statements)
Using INITIALIZE or SET statements to initialize a table or variable is useful when
you suspect that the problem may be caused by residual data left in those fields. If
your problem occurs intermittently and not always with the same data, the problem
could be that a switch is not initialized but generally is set to the right value (0 or 1)
by accident. By including a SET statement to ensure that the switch is initialized,
you can either determine that the noninitialized switch is the problem or eliminate
that as a possible cause.

Improving Program Readability (Explicit Scope Terminators)
Scope terminators can help you in debugging because they indicate clearly the end
of a statement. The logic of your program will become more apparent, and there-
fore easier to trace, if you use scope terminators.

Finding Input/Output Errors (File Status Keys)
File status keys can help you determine if your program errors are due to the logic
of your program or if they are I/O errors occurring on a storage media.

To use file status keys as a debugging aid, include a test after each I/O statement
to check for a value other than zero in the status key. If the value is other than
zero, you can expect that you will receive an error message. You can use a
nonzero value as an indication that you should look at the way the I/O procedures

 Chapter 18. Debugging 293

 Advanced Topics

in the program were coded. You can also include procedures to correct the error
based on the value of the status key.

The status key values and their associated meanings are described in Chapter 13,
“Error Handling” on page 192.

Generating Information about Procedures (USE FOR DEBUGGING
Declaratives)

The use of USE FOR DEBUGGING declaratives is another way to generate infor-
mation about your program or test case and how it is executing. The declarative
allows you to include statements in the program and specify when they should be
executed when you run your compiled program. For example, if you want to check
how many times a procedure is executed, you could include a debugging procedure
in the USE FOR DEBUGGING declarative and use a counter to keep track of the
number of times control passes to that procedure.

Each USE FOR DEBUGGING declarative must be coded in a separate section.
This section, or these sections, must be coded in the Declaratives Section of the
Procedure Division. The rules for coding them are provided in COBOL/VSE Lan-
guage Reference.

You can have either debugging lines or debugging statements or both in your
program. Debugging lines are statements within your program and are identified by
a 'D' in column 7. Debugging statements are the statements coded in the Declar-
atives Section of the Procedure Division.

� The debugging statements in a USE FOR DEBUGGING declarative must:

– Be only in the Declarative Section
– Follow the header USE FOR DEBUGGING

� Debugging lines must:

– Have a 'D' in column 7 to identify them

To use debugging lines and sections in your program, you must include both:

1. WITH DEBUGGING MODE on the SOURCE-COMPUTER line in the Environ-
ment Division

2. The DEBUG parameter on the EXEC statement of your JCL

Note: Remember that the TEST compiler option (with any suboption value other
than NONE) and the run-time option DEBUG are mutually exclusive, with DEBUG
taking precedence.

The example in Figure 97 on page 295 shows portions of a program to illustrate
what kind of statements are needed to use a DISPLAY statement and a USE FOR
DEBUGGING declarative to test a program. The DISPLAY statement is used to
generate information on the output file. The USE FOR DEBUGGING declarative is
used in conjunction with using a counter to show how many times a routine was
actually executed.

Note: The adding-to-a-counter technique can be used to check:

� How many times a PERFORM was executed. You will know whether a partic-
ular routine is being used and whether the control structure you are using is
correct.

294 COBOL/VSE Programming Guide

 Advanced Topics

� How many times a loop routine actually executes. This will tell you whether the
loop is executing and whether the number you have used for the loop is accu-
rate.

 Environment Division

Source-Computer. IBM-37� With Debugging Mode.

 .

 .

 .

 Data Division.

 .

 .

 .

 Working-Storage Section.

 .

. (other entries your program needs)
 .

 �1 Trace-Msg PIC X(3�) Value " Trace for Procedure-Name : ".

 �1 Total PIC 9 Value 1.

 .

 .

 .

 Procedure Division.

 Declaratives.

 Debug-Declaratives Section.

Use For Debugging On Some-Routine.

 Debug-Declaratives-Paragraph.

Display Trace-Msg, Debug-Name, Total.

 End Declaratives.

 Main-Program Section.

 .

. (source program statements)
 .

 Perform Some-Routine.

 .

. (source program statements)
 .

 Stop Run.

 Some-Routine.

 .

. (whatever statements you need in this paragraph)
 .

Add 1 To Total.

 Some-Routine-End

Figure 97. Example of Using the WITH DEBUGGING MODE Clause

In Figure 97, the DISPLAY statement specified in the Declaratives Section will
issue this message:

Trace For Procedure-Name : Some-Routine 22

every time the procedure SOME-ROUTINE is executed. The number at the end of
the message, 22, is the value accumulated in the data item, TOTAL; it shows the
number of times SOME-ROUTINE has been executed. The statements in the
debugging declarative are executed before the execution of the named procedure.

Note: Debugging sections are allowed only in the outermost program; they are not
valid in nested programs. Debugging sections are also never triggered by proce-
dures contained in nested programs.

You can also use the DISPLAY statement technique shown above to trace program
execution and show the flow through your program. You do this by changing the
USE FOR DEBUGGING declarative in the Declaratives Section to:

 Chapter 18. Debugging 295

 Advanced Topics

USE FOR DEBUGGING ON ALL PROCEDURES.

and dropping the word TOTAL from the DISPLAY statement. Now, a message will
be displayed before each execution of every nondebugging procedure in the outer-
most program.

Using Compiler Options for Debugging
This section discusses the various compiler options that generate information to
help you find coding mistakes and other errors in your program.

The FLAG Option
The FLAG option lets you select the level of error to be diagnosed during compila-
tion and specify where the syntax-error messages appear in the listing. You should
specify FLAG (I) or FLAG (I,I) to be notified of all errors in your program.

You specify in the first parameter the lowest severity level of the syntax-error mes-
sages to be issued. You can specify in the second parameter, which is optional,
the lowest level of the syntax messages to be embedded in the source listing.

If you specify:

� I (informational) - you get all the messages. I-level messages generate a return
code of zero; RC=0.

� W (warning) - you get all the warning messages and those of a higher severity.
W-level errors generate a return code of four; RC=4.

� E (error) - you get all error messages and those of a higher severity. E-level
errors generate a return code of eight; RC=8.

� S (severe) - you get all severe and U (unrecoverable) messages. S-level errors
generate a return code of twelve; RC=12.

� U (unrecoverable) - you get only unrecoverable messages. U-level errors gen-
erate a return code of sixteen; RC=16.

When you specify the second parameter, the syntax-error messages are embedded
in the source listing at the point where the compiler had enough information avail-
able to detect the error. All embedded messages, except those issued by the
library compiler phase, will directly follow the statement to which they refer. The
number of the statement containing the error is also included with the message.
Embedded messages are repeated with the rest of the diagnostic messages fol-
lowing the source listing.

See Figure 98 on page 297 for an illustration of embedded messages and mes-
sages that appear in the source listing.

Notes:

1. If NOSOURCE is one of your options, the syntax-error messages are included
only in the list at the end of the listing.

2. U-level errors are not embedded in the source listing, as an error of this
severity terminates the compilation.

296 COBOL/VSE Programming Guide

 Advanced Topics

DATA VALIDATION AND UPDATE PROGRAM IGYCARPA Date �6/16/1998 Time 13:41:27 Page 26

 LineID PL SL ----+-�A-1-B--+----2----+----3----+----4----+----5----+----6----+----7-|--+----8 Map and Cross Reference

...

 ���971 ���

���972 ��� I N I T I A L I Z E P A R A G R A P H ��

���973 ��� Open files. Accept date, time and format header lines. ��

 ���974 ��� Load location-table. ��

 ���975 ���

 ���976 1��-initialize-paragraph.

���977 move spaces to ws-transaction-record

���978 move spaces to ws-commuter-record

���979 move zeros to commuter-zipcode

���98� move zeros to commuter-home-phone

���981 move zeros to commuter-work-phone

���982 move zeros to commuter-update-date

���983 open input update-transaction-file

==���983==> IGYPS2�52-S An error was found in the definition of file "LOCATION-FILE". The reference to this file was discarded.

 ���984 location-file

 ���985 i-o commuter-file

 ���986 output print-file

���987 if commuter-file-status not = "��" and not = "97"

 ���988 1 display "1��-OPEN"

���989 1 move 1�� to comp-code

 ���99� 1 perform 5��-vsam-error

 ���991 1 perform 9��-abnormal-termination

 ���992 end-if

���993 accept ws-date from date

==���993==> IGYPS2121-S "WS-DATE" was not defined as a data-name. The statement was discarded.

���994 move corr ws-date to header-date

==���994==> IGYPS2121-S "WS-DATE" was not defined as a data-name. The statement was discarded.

���995 accept ws-time from time

==���995==> IGYPS2121-S "WS-TIME" was not defined as a data-name. The statement was discarded.

���996 move corr ws-time to header-time

==���996==> IGYPS2121-S "WS-TIME" was not defined as a data-name. The statement was discarded.

 ���997 read location-file

==���997==> IGYPS2�53-S An error was found in the definition of file "LOCATION-FILE". This input/output statement was discarded.

 ���998 at end

���999 1 set location-eof to true

 ��1��� end-read

Embedded syntax message in the source listing.

Figure 98 (Part 1 of 2). FLAG(I,I) Output

 Chapter 18. Debugging 297

 Advanced Topics

DATA VALIDATION AND UPDATE PROGRAM IGYCARPA Date �6/16/1998 Time 13:41:27 Page 5�

LineID Message code Message text

193 IGYDS1�5�-E File "LOCATION-FILE" contained no data record descriptions. The file definition was discarded.

889 IGYPS2�52-S An error was found in the definition of file "LOCATION-FILE". The reference to this file was discarded.

Same message on line: 983

993 IGYPS2121-S "WS-DATE" was not defined as a data-name. The statement was discarded.

Same message on line: 994

995 IGYPS2121-S "WS-TIME" was not defined as a data-name. The statement was discarded.

Same message on line: 996

997 IGYPS2�53-S An error was found in the definition of file "LOCATION-FILE". This input/output statement was discarded.

Same message on line: 1��9

 1��8 IGYPS2121-S "LOC-CODE" was not defined as a data-name. The statement was discarded.

 1219 IGYPS2121-S "COMMUTER-SHIFT" was not defined as a data-name. The statement was discarded.

Same message on line: 124�

 122� IGYPS2121-S "COMMUTER-HOME-CODE" was not defined as a data-name. The statement was discarded.

Same message on line: 1241

 1222 IGYPS2121-S "COMMUTER-NAME" was not defined as a data-name. The statement was discarded.

Same message on line: 1243

 1223 IGYPS2121-S "COMMUTER-INITIALS" was not defined as a data-name. The statement was discarded.

Same message on line: 1244

 1233 IGYPS2121-S "WS-NUMERIC-DATE" was not defined as a data-name. The statement was discarded.

Messages Total Informational Warning Error Severe Terminating

Printed: 19 1 18

� Statistics for COBOL program IGYCARPA:

� Source records = 1765

� Data Division statements = 277

� Procedure Division statements = 513

End of compilation 1, program IGYCARPA, highest severity 12.

Return code 12

Some messages apply to more than one COBOL statement.

Figure 98 (Part 2 of 2). FLAG(I,I) Output

The NOCOMPILE Option
Use this option to produce a listing that will help you find your COBOL coding mis-
takes, such as missing definitions, improperly defined data names, and duplicate
data names. You can use NOCOMPILE with or without parameters.

Using NOCOMPILE with Parameters
When you specify NOCOMPILE (x), where x is one of the error levels, your
program will be compiled, if all the errors are of a lower severity than the x level. If
an error of x level or higher occurs, the compilation stops and your program will be
syntax-checked only. You will receive a source listing if you have specified the
SOURCE option.

298 COBOL/VSE Programming Guide

 Advanced Topics

Using NOCOMPILE without Parameters
When you specify NOCOMPILE without parameters, the compiler only syntax-
checks the source program. If you have also specified the SOURCE option, the
compiler will produce a listing after the syntax checking is completed. The compiler
does not produce object code when NOCOMPILE without parameters is in effect.

Note: The following compiler options are suppressed when you specify
NOCOMPILE without parameters: DECK, LIST, OBJECT, OFFSET, OPTIMIZE,
SSRANGE, and TEST.

The SEQUENCE Option
The SEQUENCE option tells the compiler to check your source program and flag
statements that are out of sequence. You can use this option to tell you if a
section of your source program was moved or deleted accidentally.

When you specify SEQUENCE, the compiler checks the source statement numbers
you have supplied to see if they are in ascending order. Two asterisks are placed
alongside any statement numbers out of sequence, and the total number of these
statements is printed out as the first line of the diagnostics following the source
listing.

The XREF Option
The XREF(FULL) option tells the compiler to generate a sorted cross-reference
listing of data-names, procedure-names, and program-names. The cross-reference
will include the line number where the data-name, procedure-name, or program-
name was defined as well as the line numbers of all references.

You may use the cross-reference listing produced by the XREF option to find out
where a data-name, procedure-name, or program-name was defined and refer-
enced.

The XREF(SHORT) option allows you to control the cross-reference listing by
printing only the explicitly referenced variables.

When you specify both the XREF (with FULL or SHORT) and the SOURCE
options, you will get a modified cross-reference printed to the right of the source
listing. This embedded cross-reference gives the line number where the data-name
or procedure-name was defined.

For more information on the XREF option and some example listings, see “A Data-
Name, Procedure-Name, and Program-Name Cross-Reference Listing” on
page 322.

The MAP Option
Use the MAP option to produce a listing of the items you defined in the Data Divi-
sion, plus all implicitly declared items. You can use the MAP output to locate the
contents of a data item in a system dump.

For more information on the MAP option, see “Data Map Listing” on page 305.

 Chapter 18. Debugging 299

 Advanced Topics

Embedded Map Summary
When you specify the MAP option, an embedded MAP summary is generated to
the right of the COBOL source data declaration. An embedded MAP summary con-
tains condensed data MAP information. For more information, see “Embedded
MAP Summary” on page 307.

The SSRANGE Option
You can use the SSRANGE compiler option to check subscripted or indexed data
references, variable-length data references (a reference to a data item that contains
an OCCURS DEPENDING ON clause), and reference-modified data references. If
you specify the SSRANGE compiler option, additional code is generated to perform
the checking at run time.

The subscripted or indexed data reference is checked to determine if the effective
address of the wanted element is within the maximum boundary of the specified
table.

The variable-length data reference is checked to determine if the actual length is
positive and within the maximum defined length for the group data item.

The reference-modified data reference is checked to determine if the offset and
length are positive and the sum of the offset and length are within the maximum
length for the data item.

Remember that even when the SSRANGE option is specified, checking is not per-
formed until run time and then, only if:

� The COBOL statement containing the indexed, subscripted, variable-length, or
reference-modified data item is actually executed, and

� The CHECK(ON) run-time option is specified at run time.

If any check finds that an address is generated that is outside of the address range
of the group data item containing the referenced data, an error message will be
generated and the program will stop executing. The error message identifies the
table or identifier that was being referenced and the line number in the program
where the error occurred. Additional information is provided depending on the type
of reference that caused the error.

If all subscripts, indices, or reference modifiers are literals in a given data reference
and they result in a reference outside of the data item, the error will be diagnosed
at compile time, regardless of what is specified for the SSRANGE compiler option.

Notes:

1. SSRANGE may cause your program's performance to diminish somewhat
because of the extra overhead needed to check each subscripted or indexed
item.

2. The subscripts, indexes, and variable-length items will be checked only if they
are referenced as the object program runs.

3. The SSRANGE compiler option takes effect during run time, unless you have
specified CHECK(OFF) as a run-time option.

300 COBOL/VSE Programming Guide

 Advanced Topics

The TEST Option
To obtain a formatted dump of working-storage, in case your program has ended
abnormally, you should specify the TEST compiler option with the hook-location
suboption of SYM. For details on the TEST suboptions, see the description of the
TEST option on page 251.

Notes:

1. When you specify TEST with a hook-location value of ALL, STMT, PATH, or
BLOCK or without any hook-location value, the OPTIMIZE compiler option is
suppressed.

2. Remember that TEST (with any suboption value other than NONE) and USE
FOR DEBUGGING/WITH DEBUGGING MODE statements are mutually exclu-
sive, with USE FOR DEBUGGING/WITH DEBUGGING MODE taking preced-
ence.

Getting Useful Listing Components
This section introduces the different types of compiler listings produced by
COBOL/VSE. The type of listing produced by the compiler depends on which com-
piler options you specify.

After reading this section you should be familiar with each type of output; you will
know how to request each type and what kind of information is provided in the
output. The debugging procedures outlined in LE/VSE Debugging Guide and Run-
Time Messages illustrate how the different types of output can be used to help you
diagnose program failures.

A Short Listing—the Bare Minimum
If you do not specify any compiler options and the default options are NOSOURCE,
NOXREF, NOVBREF, NOMAP, NOOFFSET, and NOLIST, or if all the compiler
diagnostic options have been turned off, you will get a “short listing.”

The short listing contains diagnostic messages about the compilation, a list of the
options in effect for the program, and statistics about the content of the program.
Figure 99 on page 302 is an example of a short listing.

The listing is explained after Figure 99, and the numbers used in the explanation
correspond to those in the figure. (For illustrative purposes, some errors that cause
diagnostic messages to be issued were deliberately introduced.)

 Chapter 18. Debugging 301

 Advanced Topics

PP 5686-�68 IBM COBOL for VSE/ESA 1.1.1 �1� Date �6/16/1998 Time 13:41:27 Page 1

JCL OPTION parameters: �2�
NODECK,LINK,LIST,NOLISTX,NOSYM,NOTENM,SXREF

Invocation parameters: �3�
OPTIMIZE

PROCESS(CBL) statements:

CBL RENT,NOSOURCE,TEST(ALL) �4�

 �5�
IGYOS4�22-W The "OPTIMIZE" option was discarded due to option conflict resolution. The "TEST" option from "PROCESS/CBL"

statement took precedence.

Options in effect: �6�
 NOADATA

 ADV

 QUOTE

 NOAWO

 BUFSIZE(4�96)

 NOCMPR2

 NOCOMPILE(S)

 NOCURRENCY

 DATA(31)

 NODATEPROC

 NODBCS

 NODECK

 NODUMP

 NODYNAM

 NOEXIT

 NOFASTSRT

 FLAG(I)

 NOFLAGMIG

 NOFLAGSAA

 NOFLAGSTD

 INTDATE(ANSI)

 LANGUAGE(EN)

 NOLIB

 LINECOUNT(6�)

 NOLIST

 NOMAP

 NONAME

 NONUMBER

 NUMPROC(NOPFD)

 OBJECT

 NOOFFSET

 NOOPTIMIZE

 OUTDD(SYSOUT)

 RENT

 RMODE(AUTO)

 SEQUENCE

 SIZE(MAX)

 NOSOURCE

 SPACE(1)

 NOSSRANGE

 TERM

 TEST(ALL,SYM)

 TRUNC(STD)

 NOVBREF

PP 5686-�68 IBM COBOL for VSE/ESA 1.1.1 Date �6/16/1998 Time 13:41:27 Page 2

 NOWORD

 NOXREF

 YEARWINDOW(19��)

 ZWB

Figure 99 (Part 1 of 2). Example of a Short Listing

302 COBOL/VSE Programming Guide

 Advanced Topics

DATA VALIDATION AND UPDATE PROGRAM �7� IGYCARPA Date �6/16/1998 Time 13:41:27 Page 3

LineID Message code Message text �8�

IGYDS�139-W Diagnostic messages were issued during processing of compiler options. These messages are located at the

beginning of the listing.

193 IGYDS1�5�-E File "LOCATION-FILE" contained no data record descriptions. The file definition was discarded.

889 IGYPS2�52-S An error was found in the definition of file "LOCATION-FILE". The reference to this file was discarded.

Same message on line: 983

993 IGYPS2121-S "WS-DATE" was not defined as a data-name. The statement was discarded.

Same message on line: 994

995 IGYPS2121-S "WS-TIME" was not defined as a data-name. The statement was discarded.

Same message on line: 996

997 IGYPS2�53-S An error was found in the definition of file "LOCATION-FILE". This input/output statement was discarded.

Same message on line: 1��9

 1��8 IGYPS2121-S "LOC-CODE" was not defined as a data-name. The statement was discarded.

 1219 IGYPS2121-S "COMMUTER-SHIFT" was not defined as a data-name. The statement was discarded.

Same message on line: 124�

 122� IGYPS2121-S "COMMUTER-HOME-CODE" was not defined as a data-name. The statement was discarded.

Same message on line: 1241

 1222 IGYPS2121-S "COMMUTER-NAME" was not defined as a data-name. The statement was discarded.

Same message on line: 1243

 1223 IGYPS2121-S "COMMUTER-INITIALS" was not defined as a data-name. The statement was discarded.

Same message on line: 1244

 1233 IGYPS2121-S "WS-NUMERIC-DATE" was not defined as a data-name. The statement was discarded.

Messages Total Informational Warning Error Severe Terminating �9�

Printed: 21 2 1 18

� Statistics for COBOL program IGYCARPA: �1��
� Source records = 1765

� Data Division statements = 277

� Procedure Division statements = 513

End of compilation 1, program IGYCARPA, highest severity 12. �11�
Return code 12

Figure 99 (Part 2 of 2). Example of a Short Listing

�1� COBOL/VSE default page header, including compiler level information from
the LVLINFO installation time compiler option

�2� Message about options passed to the compiler for options specified using
the JCL OPTION statement, or the standard options for the partition.

�3� Message about options passed to the compiler at compiler invocation. This
message does not appear if no options were passed.

�4� Options coded in the PROCESS (or CBL) statement.

 Chapter 18. Debugging 303

 Advanced Topics

RENT The program was compiled to be reentrant to copy code
from a library.

NOSOURCE Turning SOURCE off eliminates the COBOL source code
from the COBOL/VSE listing.

TEST(ALL) The program was compiled for use with a debug tool

�5� Deliberate option conflicts were forced by specifying the OPTIMIZE option on
the compiler input parameter list. OPTIMIZE and the TEST(ALL) option
specified on the CBL statement are mutually exclusive. As a result, the
OPTIMIZE option is ignored.

�6� Status of options at the start of this compilation.

�7� Customized page header resulting from the COBOL program TITLE state-
ment.

�8� Program diagnostics. The first message will refer you to the library phase
diagnostics, if there were any. Diagnostics for the library phase are always
presented at the beginning of the listing.

�9� Count of diagnostic messages in this program, grouped by severity level.

�1�� Program statistics for the program IGYCARPA.

�11� Program statistics for the compilation unit. When you perform a batch com-
pilation, the return code is the message severity level for the entire compila-
tion.

Listing of Your Source Code—for Historical Records
By specifying the SOURCE compiler option, you request a copy of your source
code to be included with the compiler output. You will want this output for testing
and debugging your program—and as an historical record once the program is
completely debugged. Figure 100 on page 305 shows an example of SOURCE
output.

Using Your Own Line Numbers
The NUMBER compiler option tells the compiler to use your line numbers in the
compiled program. When you specify the NUMBER option, the compiler does a
sequence check of your source statement line numbers in columns 1 through 6 as
the statements are read in. When a line number is found to be out of sequence,
the compiler assigns to it a number with a value one higher than the line number of
the preceding statement. The new value is flagged with two asterisks. A diag-
nostic message indicating an out of sequence error is also included in the compila-
tion listing.

Figure 100 on page 305 shows an example of the output produced by the
NUMBER compiler option. In the portion of the listing shown, the programmer
numbered two of the statements out of sequence.

304 COBOL/VSE Programming Guide

 Advanced Topics

DATA VALIDATION AND UPDATE PROGRAM �1� IGYCARPA Date �6/16/1998 Time 13:41:27 Page 22

 LineID PL SL ----+-�A-1-B--+----2----+----3----+----4----+----5----+----6----+----7-|--+----8 Cross-Reference �2�
 �3� �4� �5�
 �87���/��

 �871����� D O M A I N L O G I C ��

 �872����� ��

�873����� Initialization. Read and process update transactions until ��

�874����� EOE. Close files and stop run. ��

 �875���

�876�� procedure division.

 �877�� ���-do-main-logic.

�878�� display "PROGRAM IGYCARPA - Beginning"

 �879�� perform �5�-create-vsam-master-file.

�8815� display "perform �5�-create-vsam-master finished".

 �88151�� �88125 perform 1��-initialize-paragraph

�882�� display "perform 1��-initialize-paragraph finished"

�883�� read update-transaction-file into ws-transaction-record

 �884�� at end

1 �885�� set transaction-eof to true

 �886�� end-read

�887�� display "READ completed"

�888�� perform until transaction-eof

1 �889�� display "inside perform until loop"

 1 �89��� perform 2��-edit-update-transaction

1 �891�� display "After perform 2��-edit "

 1 �892�� if no-errors

 2 �893�� perform 3��-update-commuter-record

2 �894�� display "After perform 3��-update "

 1 �8965� else

 �89651�� 2 �896�� perform 4��-print-transaction-errors

2 �897�� display "After perform 4��-errors "

 1 �898�� end-if

 1 �899�� perform 41�-re-initialize-fields

1 �9���� display "After perform 41�-reinitialize"

1 �9�1�� read update-transaction-file into ws-transaction-record

 1 �9�2�� at end

2 �9�3�� set transaction-eof to true

 1 �9�4�� end-read

1 �9�5�� display "After '2nd READ' "

 �9�6�� end-perform

Figure 100. Example of SOURCE and NUMBER Output

�1� COBOL/VSE default page header

�2� The scale line labels Area A, Area B, and source code column numbers

�3� Source code line number assigned by the compiler

�4� Program (PL) and statement (SL) nesting level

�5� Columns 1 through 6 of program (the sequence number area)

Data Map Listing
The MAP compiler option provides you with a mapping of all Data Division items,
plus all implicitly declared variables, of your program. From the MAP output you
can locate specific data items within a storage dump. You can see an example of
MAP output in Figure 101 on page 306. The numbers used in the explanation
below the figure correspond to the numbers used in Figure 101. The terms and
symbols used in MAP output are described in Figure 103 on page 308 and
Figure 104 on page 308, respectively.

 Chapter 18. Debugging 305

 Advanced Topics

DATA VALIDATION AND UPDATE PROGRAM IGYCARPA Date �6/16/1998 Time 13:41:27 Page 49

Data Division Map

 �1�
Data Definition Attribute codes (rightmost column) have the following meanings:

D = Object of OCCURS DEPENDING G = GLOBAL S = Spanned file

E = EXTERNAL O = Has OCCURS clause U = Undefined format file

F = Fixed length file OG= Group has own length definition V = Variable-length file

FB= Fixed length blocked file R = REDEFINES VB= Variable-length blocked file

 �2� �3� �4� �5�
 �6� �7� �8� �1��
Source Hierarchy and Base Hex-Displacement Asmblr Data Data Def

LineID Data Name Locator Blk Structure Definition Data Type Attributes

4 PROGRAM-ID IGYCARPA ---�

 181 FD COMMUTER-FILE VSAM �9�
 183 �1 COMMUTER-RECORD BLF=���� ��� DS �CL8� Group

184 �2 COMMUTER-KEY. BLF=���� ��� � ��� ��� DS 16C Display

185 �2 FILLER. BLF=���� �1� � ��� �1� DS 64C Display

 187 FD COMMUTER-FILE-MST VSAM F

 189 �1 COMMUTER-RECORD-MST BLF=���1 ��� DS �CL8� Group

19� �2 COMMUTER-KEY-MST. BLF=���1 ��� � ��� ��� DS 16C Display

191 �2 FILLER. BLF=���1 �1� � ��� �1� DS 64C Display

 193 FD LOCATION-FILE SAM FB

 198 �1 LOCATION-RECORD BLF=���2 ��� DS �CL8� Group

199 �2 LOC-CODE. BLF=���2 ��� � ��� ��� DS 2C Display

2�� �2 LOC-DESCRIPTION BLF=���2 ��2 � ��� ��2 DS 2�C Display

2�1 �2 FILLER. BLF=���2 �16 � ��� �16 DS 58C Display

 2�4 FD UPDATE-TRANSACTION-FILE SAM FB

 2�9 �1 UPDATE-TRANSACTION-RECORD BLF=���3 ��� DS 8�C Display

 217 FD PRINT-FILE. SAM FB

 222 �1 PRINT-RECORD. BLF=���4 ��� DS 121C Display

 229 �1 WORKING-STORAGE-FOR-IGYCARA BLW=���� ��� DS 1C Display

 231 77 COMP-CODE BLW=���� ��8 DS 2C Binary

 232 77 WS-TYPE BLW=���� �1� DS 3C Display

 235 �1 I-F-STATUS-AREA BLW=���� �18 DS �CL2 Group

236 �2 I-F-FILE-STATUS BLW=���� �18 � ��� ��� DS 2C Display

237 88 I-O-SUCCESSFUL.

 24� �1 STATUS-AREA BLW=���� �2� DS �CL8 Group

241 �2 COMMUTER-FILE-STATUS. BLW=���� �2� � ��� ��� DS 2C Display

242 88 I-O-OKAY.

243 �2 COMMUTER-VSAM-STATUS. BLW=���� �22 � ��� ��2 DS �CL6 Group

244 �3 VSAM-R15-RETURN-CODE. BLW=���� �22 � ��� ��2 DS 2C Binary

 245 77 UNUSED-DATA-ITEM BLW=XXXX �22 � ��� ��2 DS 1�C Display �11�
...

Figure 101. Example of Map Output

�1� Explanations of the data definition attribute codes

�2� Source line number where the data item was defined

�3� Level definition or number. The compiler generates this number in the fol-
lowing way:

� First level of any hierarchy is always 01. Increase 1 for each level— any
item you coded as 02 through 49.

� Level numbers 66, 77, and 88, and the indicators FD and SD, are not
changed.

�4� Data-name that is used in the source file

�5� Base locator used for this data item

�6� Hexadecimal displacement from the beginning of the base locator value

�7� Hexadecimal displacement from the beginning of the containing structure

�8� Pseudo-assembler code showing how the data is defined.

�9� Data definition attribute codes. The definitions are explained at the top of
the Data Division Map.

306 COBOL/VSE Programming Guide

 Advanced Topics

�1�� The data type and use. These terms are explained in Figure 103 on
page 308.

�11� OPT(FULL) was specified and UNUSED-DATA-ITEM was not referred in the
Procedure Division. Therefore UNUSED-DATA-ITEM was deleted, resulting
in the base locator being set to 'XXXX'.

Embedded MAP Summary
An embedded MAP summary is printed by specifying the MAP option when gener-
ating a listing. The summary appears in the listing's right margin for lines within the
Data Division that specify data declarations. Figure 102 describes the fields
included in the embedded map summary.

Note: When both XREF data and an embedded MAP summary exist on the same
line, the embedded MAP summary is printed first.

�����2 Identification Division.

�����3

�����4 Program-ID. IGYCARPA.
...

���177 Data division.

���178 File section.

���179

���18�

���181 FD COMMUTER-FILE

���182 record 8� characters.
...

�1� �2� �3� �4�
���222 �1 print-record pic x(121). BLF=���3+��� 121C

...

���228 Working-storage section.

���229 �1 Working-storage-for-IGYCARA pic x. BLW=����+��� 1C

���23�

���231 77 comp-code pic S9999 comp. BLW=����+��8 2C

���232 77 ws-type pic x(3) value spaces. BLW=����+�1� 3C

���233

���234

���235 �1 i-f-status-area. BLW=����+�18 �CL2

���236 �5 i-f-file-status pic x(2). BLW=����+�18,������� 2C

���237 88 i-o-successful value zeros.

���238

���239

���24� �1 status-area. BLW=����+�2� �CL8

���241 �5 commuter-file-status pic x(2). BLW=����+�2�,������� 2C

���242 88 i-o-okay value zeros.

���243 �5 commuter-vsam-status. BLW=����+�22,������2 �CL6

���244 1� vsam-r15-return-code pic 9(2) comp. BLW=����+�22,������2 2C

���245 1� vsam-function-code pic 9(1) comp. BLW=����+�24,������4 2C

���246 1� vsam-feedback-code pic 9(3) comp. BLW=����+�26,������6 2C

���247

���248 77 update-file-status pic xx. BLW=����+�28 2C

���249

���25� �1 flags. BLW=����+�3� �CL3

���251 �5 transaction-eof-flag pic x value space. BLW=����+�3�,������� 1C

���252 88 transaction-eof value "Y".

���253 �5 location-eof-flag pic x value space. BLW=����+�31,������1 1C

���254 88 location-eof value "Y".

���255 �5 transaction-match-flag pic x. BLW=����+�32,������2 1C
...

���876 procedure division.

���877 ���-do-main-logic.

���878 display "PROGRAM IGYCARPA - Beginning"

���879 perform �5�-create-vsam-master-file.
...

Figure 102. Example of an Embedded MAP Summary

�1� Base locator used for this data item

�2� Hexadecimal displacement from the beginning of the base locator value

�3� Hexadecimal displacement from the beginning of the containing structure

 Chapter 18. Debugging 307

 Advanced Topics

�4� Abbreviated pseudo-assembler code showing how the data is defined

Figure 103. Terms Used in MAP Output

Use Definition Description

GROUP DS 0CLn1 Group Fixed-Length

ALPHABETIC DS nC Alphabetic

ALPHA-EDIT DS nC Alphabetic-Edited

DISPLAY DS nC Alphanumeric

AN-EDIT DS nC Alphanumeric-Edited

GRP-VARLEN DS VLC=n Group Variable-Length

NUM-EDIT DS nC Numeric-Edited

DISP-NUM DS nC External Decimal

BINARY DS 1H2, 1F2,
2F2, 2C, 4C,
or 8C

Binary (Computational)

COMP-1 DS 4C Internal floating-point (single precision)

COMP-2 DS 8C Internal floating-point (double precision)

PACKED-DEC DS nP Internal Decimal (Computational-3)

DBCS DS nC DBCS (Display-1)

DBCS-EDIT DS nC DBCS Edited

INDX-NAME Index-name

INDEX Index

POINTER Pointer

File processing
method (VSAM or
SAM)

 File (FD)

Level name for
RENAMES

 Condition (66)

Level name Condition (77)

Level name for condi-
tion name

 Condition (88)

Sort file definition Sort Definition (SD)

Note:

1 n is the size in bytes, except in variable-length groups, where it is a variable-length cell number.

2 If the SYNCHRONIZED clause appears, these fields are used.

Figure 104 (Page 1 of 2). Symbols Used in LIST and MAP Output

Symbol Definition

BL=n1 Base locator for special registers

BLF=n1 Base locator for files

BLS=n1 Base locator for sort items

IDX=n1 Base locator for index names

BLA=n1 Base locator for function/evaluated data

BLV=n1 Base locator for variably located data

BLX=n1 Base locator for external data

BLL=n1 Base locator for linkage section

BLW=n1 Base locator for working storage

308 COBOL/VSE Programming Guide

 Advanced Topics

Figure 104 (Page 2 of 2). Symbols Used in LIST and MAP Output

Symbol Definition

BLA=n1 Base locator for alphanumeric temporaries

CBL=n1 Base locator for CGT

TGT FDMP TEST
INFO. AREA + nnnn3

FDUMP/TEST information area

SYSLIT AT + nnnn3 Displacement for system literal from beginning of system literal pool

RBKST=n1 Register backstore cell

PSV=n1 Perform save cell number

TGTFIXD + nnnn3 Offset from beginning of fixed portion of TGT

CLLE@= Load list entry address in TGT

TOV=n1 TGT overflow cell number

EVALUATE=n1 Evaluate boolean cell in TGT

TS1=aaaa Temporary storage cell number in subpool 1

FCB=n1 FCB address

TS2=aaaa Temporary storage cell number in subpool 2

GN=n(hhhhh)2 Generated procedure name and its offset in hexadecimal

TS3=aaaa Temporary storage cell number in subpool 3

IDX=n1 Index cell number

TS4=aaaa Temporary storage cell number in subpool 4

ODOSAVE=n1 ODO save cell number

V(routine name) Assembler VCON for external routine

OPT=nnnn3 Optimizer temporary storage cell

VLC=n1 Variable-length name cell number (ODO)

PBL=n1 Base locator for procedure code

VNI=n1 Variable name initialization

PFM=n1 PERFORM n times cells

WHEN=n1 Evaluate WHEN cell number in TGT

PGMLIT AT + nnnn3 Displacement for program literal from beginning of literal pool

Note:

1 n is the number of the entry

2 (hhhhh) is the program offset in hexadecimal

3 nnnn is the offset in decimal from the beginning of the entry

Nested Program Map
The MAP compiler option also supplies you with a nested program map if your
program contains nested programs. The nested program map shows where the
programs are defined and provides program attribute information.

 Chapter 18. Debugging 309

 Advanced Topics

PP 5686-�68 IBM COBOL for VSE/ESA 1.1.1 NESTED Date �6/16/1998 Time 13:41:27 Page 5

Nested Program Map

 �1�

Program Attribute codes (rightmost column) have the following meanings:

C = COMMON

I = INITIAL

U = PROCEDURE DIVISION USING...

 �2� �3� �4� �5�

Source Nesting Program

LineID Level Program Name from PROGRAM-ID paragraph Attributes

2 NESTED. .

12 1 X1. .

2� 2 X11 .

27 2 X12 .

35 1 X2. .

Figure 105. Example of Nested Program Map

�1� Explanations of the program attribute codes

�2� The source line number where the program was defined

�3� Depth of program nesting

�4� The program name

�5� The program attribute codes

A Procedure Division Listing with Assembler Expansion (LIST Output)
The LIST compiler option provides you with a listing of the Procedure Division
along with the assembler coding produced by the COBOL/VSE compiler. This type
of output can be especially helpful when you are trying to find the failing verb in a
program. You can also use this output to find the address in storage of a data item
that was moved during the program.

Getting LIST Output
You request LIST output from the compiler by specifying the LIST compiler option
when you compile your program. You will receive the output if:

� You have specified the COMPILE option (or the NOCOMPILE(x) option is in
effect and an error level x or higher does not occur)

� You did not specify the OFFSET option. OFFSET and LIST are mutually exclu-
sive options with OFFSET taking precedence.

Reading LIST Output
The LIST compiler option produces eight pieces of output:

1. An assembler listing of the initialization code for the program
2. Information on the Program Global Table
3. Information on the Constant Global Table
4. An assembler listing of the source code for the program
5. The location of compiler-generated tables in the object phase
6. A map of the Task Global Table (TGT)
7. Information on the location and size of working storage and control blocks
8. Information on the location of literals and code for dynamic storage use

310 COBOL/VSE Programming Guide

 Advanced Topics

The following examples highlight the parts of the LIST compiler output that may be
useful to you for debugging your program. You do not need to be able to program
in assembler language to understand the output produced by LIST. The comments
which accompany most of the assembler code will provide you with a conceptual
understanding of the functions performed by the code. However, if you find that
you need to interpret a particular instruction and you are unfamiliar with assembler
instructions, you can refer to Enterprise Systems Architecture/370 Reference
Summary for help.

The symbols used in LIST output are defined in Figure 104 on page 308.

Program Initialization Code
A listing of the program initialization code can help you to debug your program.
This piece of output also gives you information on the characteristics of the
COBOL/VSE source program; you can interpret the program signature information
bytes to verify such characteristics as: the compiler options in effect, types of data
items present, and the verbs used in the Procedure Division.

Figure 106 shows an example of program initialization code. Explanations of some
of the fields in the listing follow the figure.

DATA VALIDATION AND UPDATE PROGRAM IGYCARPA Date �6/16/1998 Time 13:41:27 Page 49

 �1� �2� �3� �4�
 ������ IGYCARPA DS �H

 USING �,15

������ 47F� F�E4 B 228(,15) BYPASS CONSTANTS. BRANCH TO @STM

�����4 �� DC AL1(�) ZERO NAME LENGTH FOR DUMPS

�����5 C3C5C5 DC CL3'CEE' CEE EYE CATCHER �5�
�����8 �������� DC F'�' STACK FRAME SIZE

�����C ������14 DC A(@PPA1-IGYCARPA) OFFSET TO PPA1 FROM PRIMARY ENTRY

 ����1� 47F� F��1 B 1(,15) RESERVED

����14 @PPA1 DS �H PPA1 STARTS HERE

����14 4A DC X'4A' OFFSET TO LENGTH OF NAME FROM PPA1

 ����15 CE DC X'CE' CEL SIGNATURE

����16 AC DC X'AC' CEL FLAGS: '1�1�11��'B

����17 �� DC X'��' MEMBER FLAGS FOR COBOL

����18 ������AC DC A(@PPA2) ADDRESS OF PPA2

����1C �������� DC F'�' OFFSET TO THE BDI (NONE)

����2� �������� DC F'�' ADDRESS OF ENTRY POINT DESCRIPTORS

����24 �������� DC F'�' OFFSET FOR STACK OVERFLOW RETURN

����28 @STM DS �H STM STARTS HERE

����28 9�EC D��C STM 14,12,12(13) @STM: SAVE CALLER'S REGISTERS

����2C 411� F�38 LA 1,56(,15) GET ADDRESS OF PARMLIST INTO R1

����3� 98EF F�4C LM 14,15,76(15) LOAD ADDRESSES FROM @BRVAL

����34 �7FF BR 15 DO ANY NECESSARY INITIALIZATION

 ����36 ���� DC H'�' AVAILABLE HALF-WORD

Figure 106 (Part 1 of 2). LIST Output—Program Initialization with Program Signature Highlighted

 Chapter 18. Debugging 311

 Advanced Topics

����38 @MAINENT DS �H PRIMARY ENTRY POINT ADDRESS

����38 �������� DC A(IGYCARPA) @PARMS: 1) PRIMARY ENTRY POINT ADDRESS

����3C ������F4 DC A(PGT) 2) PGT ADDRESS �6�
����4� ����58D� DC A(TGT) 3) TGT ADDRESS �7�
����44 ������6� DC A(�+28) 4) A(@EPNAM)= E. P. NAME ADDRESS

����48 �������� DC A(IGYCARPA) 5) CURRENT ENTRY POINT ADDRESS

����4C ����2322 DC A(START) @BRVAL: 6) PROCEDURE CODE ADDRESS

����5� �������� DC V(IGZCBSN) 7) INITIALIZATION ROUTINE

����54 ������C� DC A(@CEEPARM) 8) ADDRESS OF PARM LIST FOR CEEINT

 ����58 �������� DC AL4'�' AVAILABLE WORD

 ����5C ���� DC AL2'�' AVAILABLE HALF-WORD

����5E ���8 DC X'���8' LENGTH OF PROGRAM NAME

����6� @EPNAM DS �H ENTRY POINT NAME

 ����6� C9C7E8C3C1D9D7C1 DC C'IGYCARPA' PROGRAM NAME �8�
����68 F1F9F9F8 DC CL4'1998' @TIMEVRS: YEAR OF COMPILATION �9�
����6C F�F6F1F6 DC CL4'�616' MONTH/DAY OF COMPILATION �1��
����7� F1F3F4F1 DC CL4'1341' HOURS/MINUTES OF COMPILATION �11�
����74 F2F7 DC CL2'27' SECONDS FOR COMPILATION DATE

����76 F�F1F�F1F�F1 DC CL6'�1�1�1' VERSION/RELEASE/MOD LEVEL OF PROD �12�
 ����7C �������� DC AL4'�' AVAILABLE WORD

����8� ���� DC X'����' INFO. BYTES 28-29

����82 �76C DC X'�76C' SIGNED BINARY YEARWINDOW OPTION VALUE

����84 A�483D44��A1 DC X'A�483D44��A1' INFO. BYTES 1-6 �13�
����8A ��8�D2A8�9�B DC X'��8�D2A8�9�B' INFO. BYTES 7-12

����9� 8D3�6����4�� DC X'8D3�6����4��' INFO. BYTES 13-18

����96 �����18��� DC X'�����18���' INFO. BYTES 19-23

����9B �� DC X'��' COBOL SIGNATURE LEVEL

����9C �����125 DC X'�����125' # DATA DIVISION STATEMENTS �14�
����A� �����2�1 DC X'�����2�1' # PROCEDURE DIVISION STATEMENTS �15�
����A4 2��4�� DC X'2��4��' INFO. BYTES 24-26 �13�

 ����A7 �� DC X'��' RESERVED

����A8 4�4�4�4� DC C' ' USER LEVEL INFO (LVLINFO) �16�
����AC @PPA2 DS �H PPA2 STARTS HERE

����AC �5 DC X'�5' CEL MEMBER IDENTIFIER

����AD �� DC X'��' CEL MEMBER SUB-IDENTIFIER

����AE �� DC X'��' CEL MEMBER DEFINED BYTE

����AF �1 DC X'�1' CONTROL LEVEL OF PROLOG

����B� �������� DC V(CEESTART) VCON FOR LOAD MODULE

����B4 �������� DC F'�' OFFSET TO THE CDI (NONE)

����B8 FFFFFFBC DC A(@TIMEVRS-@PPA2) OFFSET TO TIMESTAMP/VERSION INFO

����BC �������� DC A(IGYCARPA) ADDRESS OF CU PRIMARY ENTRY POINT

����C� @CEEPARM DS �H PARM LIST FOR CEEINT

����C� ������38 DC A(@MAINENT) POINTER TO PRIMARY ENTRY PT ADDR

����C4 �������8 DC A(@PARMCEE-@CEEPARM) OFFSET TO PARAMETERS FOR CEEINT

����C8 @PARMCEE DS �H PARAMETERS FOR CEEINT

����C8 �������6 DC F'6' 1) NUMBER OF ENTRIES IN PARM LIST

����CC ������38 DC A(@MAINENT) 2) POINTER TO PRIMARY ENTRY PT ADDR

����D� �������� DC V(CEESTART) 3) ADDRESS OF CEESTART

����D4 �������� DC V(CEEBETBL) 4) ADDRESS OF CEEBETBL

����D8 �������5 DC F'5' 5) CEL MEMBER IDENTIFIER

����DC �������� DC F'�' 6) FOR CEL MEMBER USE

 ����E� �������� DC F'�' AVAILABLE WORD

 ����E4 �������� DC AL4'�' AVAILABLE WORD

 ����E8 �������� DC AL4'�' AVAILABLE WORD

 ����EC �������� DC AL4'�' AVAILABLE WORD

 ����F� ���� DC AL2'�' AVAILABLE HALF-WORD

Figure 106 (Part 2 of 2). LIST Output—Program Initialization with Program Signature Highlighted

�1� Offset from start of the COBOL program

�2� Hexadecimal representation of assembler instruction

�3� Pseudo assembler code generated for the COBOL program

�4� Comments explaining assembler code

�5� The "eye catcher" indicating COBOL/VSE compiler used to compile this
program

�6� The address of the Program Global Table (PGT)

�7� The address of the Task Global Table (TGT), or the address of the Dynamic
Access Block (DAB) if the program is re-entrant

�8� The program name as used in the Identification Division of the program

�9� The 4-digit year that the program was compiled

�1�� The month and the day that the program was compiled

�11� The time that the program was compiled

312 COBOL/VSE Programming Guide

 Advanced Topics

�12� The version, release, and modification level of the COBOL/VSE compiler
used to compile this program (each represented in two digits)

�13� The program signature information bytes. These provide information about
compiler options, the Data Division, the Environment Division, and the Proce-
dure Division for this program. See Figure 107, Figure 108 on page 314,
Figure 109 on page 315, Figure 110 on page 315, and Figure 111 on
page 316 for bit mappings of the program signature bytes.

�14� The number of statements in the Data Division

�15� The number of statements in the Procedure Division

�16� A 4-byte user-controlled level information field. The value of this field is con-
trolled by the LVLINFO.

Program Signature Information Bytes

Compiler Options in Effect
Figure 107 (Page 1 of 2). Compiler Options In Effect

Byte Bit On Off

1 0 ADV NOADV

1 1 APOST QUOTE

1 2 DATA(31) DATA(24)

1 3 DECK NODECK

1 4 DUMP NODUMP

1 5 DYNAM NODYNAM

1 6 FASTSRT NOFASTSRT

1 7 FDUMP NOFDUMP

2 0 LIB NOLIB

2 1 LIST NOLIST

2 2 MAP NOMAP

2 3 NUM NONUM

2 4 OBJ NOOBJ

2 5 OFFSET NOOFFSET

2 6 OPTIMIZE NOOPTIMIZE

2 7 Filename supplied in OUTDD option
will be used

Default filename for OUTDD will be
used

3 0 NUMPROC(PFD) NUMPROC(NOPFD)

3 1 RENT NORENT

3 2 RES NORES

3 3 SEQUENCE NOSEQUENCE

3 4 SIZE(MAX) SIZE(value)

3 5 SOURCE NOSOURCE

3 6 SSRANGE NOSSRANGE

3 7 TERM NOTERM

4 0 TEST NOTEST

4 1 TRUNC(STD) TRUNC(OPT)

4 2 User-Supplied Reserved Word List Installation Default Reserved Word List

 Chapter 18. Debugging 313

 Advanced Topics

Note: The FDUMP compiler option (see byte 2) provides compatibility with VS
COBOL II.

Figure 107 (Page 2 of 2). Compiler Options In Effect

Byte Bit On Off

4 3 VBREF NOVBREF

4 4 XREF NOXREF

4 5 ZWB NOZWB

4 6 NAME NONAME

4 7 CMPR2 NOCMPR2

5 0 NUMPROC(MIG)

5 1 NUMCLASS NONUMCLASS

5 2 DBCS NODBCS

5 3 AWO NOAWO

5 4 TRUNC(BIN) not TRUNC(BIN)

5 5 ADATA NOADATA

5 6 CURRENCY NOCURRENCY

26 0 RMODE(ANY) RMODE(24)

26 1 TEST(STMT) not TEST(STMT)

26 2 TEST(PATH) not TEST(PATH)

26 3 TEST(BLOCK) not TEST(BLOCK)

26 4 OPT(FULL) OPT(STD) or NOOPT

26 5 INTDATE(LILIAN) INTDATE(ANSI)

27 4 DATEPROC NODATEPROC

Items Present in the Data Division
Figure 108. Items Present in the Data Division

Byte Bit Item

6 0 SAM file descriptor

6 1 VSAM sequential file descriptor

6 2 VSAM indexed file descriptor

6 3 VSAM relative file descriptor

6 4 CODE-SET clause (ASCII files) in file descriptor

6 5 Spanned Records

6 6 PIC G (DBCS item)

6 7 OCCURS DEPENDING ON clause in data description entry

7 0 SYNCHRONIZED clause in data description entry

7 1 JUSTIFIED clause in data description entry

7 2 USAGE IS POINTER item

7 3 Complex OCCURS DEPENDING ON clause

7 4 External floating-point items in the Data Division

7 5 Internal floating-point items in the Data Division

7 6 Reserved

7 7 USAGE IS PROCEDURE-POINTER item

314 COBOL/VSE Programming Guide

 Advanced Topics

Items Present in the Environment Division
Figure 109. Items Present in the Environment Division

Byte Bit Item

8 0 FILE STATUS clause in FILE-CONTROL paragraph

8 1 RERUN clause in I/O-CONTROL paragraph of I/O section.

8 2 UPSI switch defined in SPECIAL-NAMES paragraph

Verbs Present in the Procedure Division
Figure 110 (Page 1 of 2). Verbs Present in the Procedure Division

Byte Bit Item

9 0 ACCEPT

9 1 ADD

9 2 ALTER

9 3 CALL

9 4 CANCEL

9 6 CLOSE

10 0 COMPUTE

10 2 DELETE

10 4 DISPLAY

10 5 DIVIDE

11 1 END-PERFORM

11 2 ENTER

11 3 ENTRY

11 4 EXIT

11 6 GO TO

11 7 IF

12 0 INITIALIZE

12 2 INSPECT

12 3 MERGE

12 4 MOVE

12 5 MULTIPLY

12 6 OPEN

12 7 PERFORM

13 0 READ

13 2 RELEASE

13 3 RETURN

13 4 REWRITE

13 5 SEARCH

13 7 SET

14 0 SORT

14 1 START

14 2 STOP

14 3 STRING

 Chapter 18. Debugging 315

 Advanced Topics

Figure 110 (Page 2 of 2). Verbs Present in the Procedure Division

Byte Bit Item

14 4 SUBTRACT

14 7 UNSTRING

15 0 USE

15 1 WRITE

15 2 CONTINUE

15 3 END-ADD

15 4 END-CALL

15 5 END-COMPUTE

15 6 END-DELETE

15 7 END-DIVIDE

16 0 END-EVALUATE

16 1 END-IF

16 2 END-MULTIPLY

16 3 END-READ

16 4 END-RETURN

16 5 END-REWRITE

16 6 END-SEARCH

16 7 END-START

17 0 END-STRING

17 1 END-SUBTRACT

17 2 END-UNSTRING

17 3 END-WRITE

17 4 GOBACK

17 5 EVALUATE

17 7 SERVICE statement

More Procedure Division Information
Figure 111 (Page 1 of 2). More Procedure Division Information

Byte Bit Item

21 0 Hexadecimal literal

21 1 Altered GO TO

21 2 I/O error declarative

21 3 LABEL declarative

21 4 DEBUGGING declarative

21 5 Program segmentation

21 6 OPEN...EXTEND

21 7 EXIT PROGRAM

22 0 CALL literal

22 1 CALL identifier

22 2 CALL...ON OVERFLOW

22 3 CALL...LENGTH OF

22 4 CALL...ADDRESS OF

316 COBOL/VSE Programming Guide

 Advanced Topics

Note: A return code of greater than 4 from the compiler could mean that some of
the verbs shown as being in the program in information bytes may have been dis-
carded because of an error.

Figure 111 (Page 2 of 2). More Procedure Division Information

Byte Bit Item

22 5 CLOSE...REEL/UNIT

22 6 Exponentiation used

22 7 Floating point items used

23 0 COPY

23 1 BASIS

23 2 DBCS name in program

23 3 SHIFT-OUT and SHIFT-IN in program

23 4-7 Highest error severity at entry to ASM2 phase IGYBINIT

24 0 DBCS literal

24 1 REPLACE

24 2 Reference modification was used

24 3 Nested program

24 4 INITIAL

24 5 COMMON

24 6 SELECT ... OPTIONAL

24 7 EXTERNAL

25 0 GLOBAL

25 1 RECORD IS VARYING

25 2 ACCEPT FROM SYSIPT used in Label Declarative

25 3 DISPLAY UPON SYSLST used in Label Declarative

25 4 DISPLAY UPON SYSPCH used in Label Declarative

25 5 Intrinsic function was used

Assembler Code for Source Program
If, in the course of debugging, you find the address in storage of the instruction that
was executing when the abend occurred, you will want to find the COBOL verb
which corresponds to that instruction. Once you have found the address of the
failing instruction, you can go to the assembler listing and find the verb for which
that instruction was generated.

 Chapter 18. Debugging 317

 Advanced Topics

DATA VALIDATION AND UPDATE PROGRAM IGYCARPA Date �6/16/1998 Time 13:41:27 Page 52

���433 MOVE �1�
���435 READ

���436 SET

 �2� �3� �4� �5� �6�
 ���F26 92E8 A��A MVI 1�(1�),X'E8' LOCATION-EOF-FLAG

 ���F2A GN=13 EQU �

 ���F2A 47F� B426 BC 15,1�62(�,11) GN=75(���EFA)

 ���F2E GN=74 EQU �

���439 IF

 ���F2E 95E8 A��A CLI 1�(1�),X'E8' LOCATION-EOF-FLAG

 ���F32 478� B49� BC 8,1168(�,11) GN=14(���F64)

���44� DISPLAY

 ���F36 582� D�5C L 2,92(�,13) TGTFIXD+92

 ���F3A 58F� 2�2C L 15,44(�,2) V(IGZCDSP)

���F3E 411� 97FF LA 1,2�47(�,9) PGMLIT AT +1999

 ���F42 �5EF BALR 14,15

���443 CALL

 ���F44 413� A�12 LA 3,18(�,1�) COMP-CODE

 ���F48 5�3� D21C ST 3,54�(�,13) TS2=4

 ���F4C 968� D21C OI 54�(13),X'8�' TS2=4

 ���F5� 411� D21C LA 1,54�(�,13) TS2=4

 ���F54 58F� 9��� L 15,�(�,9) V(CEE5ABN)

 ���F58 �5EF BALR 14,15

 ���F5A 5�F� D�78 ST 15,12�(�,13) TGTFIXD+12�

 ���F5E BF38 D�89 ICM 3,8,137(13) TGTFIXD+137

 ���F62 �43� SPM 3,�

 ���F64 GN=14 EQU �

 ���F64 582� D154 L 2,34�(�,13) VN=3

 ���F68 �7F2 BCR 15,2

Figure 112. LIST Output—Assembler Code Generated from Source Code

�1� Source line-number and COBOL verb, paragraph-name or section-name

In line 000436, SET is the COBOL verb. An * before a name indicates that
the name is a paragraph-name or a section name.

�2� Relative location of the object code instruction in the phase, in hexadecimal
notation

�3� The object code instruction, in hexadecimal notation

The first two or four hexadecimal digits are the instruction, while the
remaining digits are the instruction operands. Some instructions have two
operands.

�4� Compiler-generated names (GN) for code sequences

�5� Object code instruction in a form that closely resembles assembler language

�6� Comments about the object code instruction

TGT Memory Map
The Task Global Table (TGT), which is described in greater detail in the LE/VSE
Debugging Guide and Run-Time Messages, contains information about the environ-
ment in which your program is running. Assume you are looking for the number of
file control blocks (FCBs) for your program. You can go to the TGT Memory Map
and find the name of the TGT field that contains the number of FCBs. The offset
into the TGT (number of bytes past the beginning of the TGT) is listed to the left of
the field name in the memory map. You can then go to the start of the TGT, count
off the number of bytes equal to the offset, and find the number of FCBs for your
program.

318 COBOL/VSE Programming Guide

 Advanced Topics

DATA VALIDATION AND UPDATE PROGRAM IGYCARPA Date �6/16/1998 Time 13:41:27 Page 132

��� TGT MEMORY MAP ���

 PGMLOC TGTLOC

 �1� �2� �3�
�1�EA� ������ 72 BYTE SAVE AREA

�1�EE8 ����48 TGT IDENTIFIER

�1�EEC ����4C NEXT AVAILABLE BYTE ADDRESS FOR CEL

�1�EF� ����5� TGT LEVEL INDICATOR

�1�EF1 ����51 RESERVED - 3 SINGLE BYTE FIELDS

�1�EF4 ����54 32 BIT SWITCH

�1�EF8 ����58 POINTER TO RUNCOM

�1�EFC ����5C POINTER TO COBVEC

�1�F�� ����6� POINTER TO PROGRAM DYNAMIC BLOCK TABLE

�1�F�4 ����64 NUMBER OF FCB'S

�1�F�8 ����68 WORKING STORAGE LENGTH

�1�F�C ����6C POINTER TO PREVIOUS TGT IN TGT CHAIN

�1�F1� ����7� ADDRESS OF IGZESMG WORK AREA

�1�F14 ����74 ADDRESS OF 1ST GETMAIN BLOCK (SPACE MGR)

�1�F18 ����78 FULLWORD RETURN CODE

�1�F1A ����7A RETURN CODE SPECIAL REGISTER

�1�F1C ����7C SORT-RETURN SPECIAL REGISTER

�1�F1E ����7E MERGE FILE NUMBER

�1�F2� ����8� ADDRESS OF CEL COMMON ANCHOR AREA

�1�F24 ����84 LENGTH OF TGT

�1�F28 ����88 RESERVED - 1 SINGLE BYTE FIELD

�1�F29 ����89 PROGRAM MASK USED BY THIS PROGRAM

�1�F2A ����8A RESERVED - 2 SINGLE BYTE FIELDS

�1�F2C ����8C NUMBER OF SECONDARY FCB CELLS

�1�F3� ����9� LENGTH OF THE VN(VNI) VECTOR

�1�F34 ����94 COUNT OF NESTED PROGRAMS IN COMPILE UNIT

�1�F38 ����98 DDNAME FOR DISPLAY OUTPUT

�1�F4� ����A� SORT-CONTROL SPECIAL REGISTER

�1�F48 ����A8 POINTER TO COM-REG SPECIAL REGISTER

�1�F4C ����AC CALC ROUTINE REGISTER SAVE AREA

�1�F8� ����E� ALTERNATE COLLATING SEQUENCE TABLE PTR.

�1�F84 ����E4 ADDRESS OF SORT G.N. ADDRESS BLOCK

�1�F88 ����E8 ADDRESS OF PGT

�1�F8C ����EC CURRENT INTERNAL PROGRAM NUMBER

�1�F9� ����F� POINTER TO 1ST IPCB

�1�F94 ����F4 ADDRESS OF THE CLLE FOR THIS PROGRAM

�1�F98 ����F8 POINTER TO ABEND INFORMATION TABLE

�1�F9C ����FC POINTER TO TEST INFO FIELDS IN THE TGT

�1�FA� ���1�� ADDRESS OF START OF COBOL PROGRAM

�1�FA4 ���1�4 POINTER TO VN'S IN CGT

�1�FA8 ���1�8 POINTER TO VN'S IN TGT

�1�FAC ���1�C POINTER TO FIRST PBL IN THE PGT

�1�FB� ���11� POINTER TO FIRST FCB CELL

�1�FB4 ���114 WORKING STORAGE ADDRESS

�1�FB8 ���118 POINTER TO FIRST SECONDARY FCB CELL

��� VARIABLE PORTION OF TGT ���

�1�FBC ���11C BACKSTORE CELL FOR SYMBOLIC REGISTERS

�11�44 ���1A4 BASE LOCATORS FOR SPECIAL REGISTERS

�11�4C ���1AC BASE LOCATORS FOR WORKING-STORAGE �4�
�11�54 ���1B4 BASE LOCATORS FOR LINKAGE-SECTION

�11�58 ���1B8 BASE LOCATORS FOR FILES

�11�6C ���1CC BASE LOCATORS FOR ALPHANUMERIC TEMPS

�11�7� ���1D� CLLE ADDR. CELLS FOR CALL LIT. SUB-PGMS.

�11�8C ���1EC TEST INFORMATION AREA

�11�D� ���23� VARIABLE NAME (VN) CELLS

�1113C ���29C INDEX CELLS

�1116� ���2C� PERFORM SAVE CELLS

�11288 ���3E8 VARIABLE LENGTH CELLS

�11294 ���3F4 ODO SAVE CELLS

�112A� ���4�� FCB CELLS

�112B4 ���414 ALL PARAMETER BLOCK

�11318 ���478 INTERNAL PROGRAM CONTROL BLOCKS

�11328 ���488 TEMPORARY STORAGE-1

�11338 ���498 TEMPORARY STORAGE-2

Figure 113. LIST Output—TGT Memory Map

�1� Hexadecimal offset of the TGT field from the start of the COBOL program

�2� Hexadecimal offset of TGT field from the start of the TGT

 Chapter 18. Debugging 319

 Advanced Topics

�3� Explanation of the contents of the TGT field

�4� TGT fields for the base locators of COBOL data areas

Location and Size of Working Storage
You can use this piece of LIST output to find the location in a storage dump of data
items defined in working storage.

 �1� �2� �3�

WRK-STOR LOCATED AT ��66D8 FOR ����1598 BYTES

Figure 114. LIST Output—Working Storage

�1� Working storage identification

�2� The hexadecimal offset of working storage from the start of the COBOL
program

�3� Length of working storage in hexadecimal

A Condensed Procedure Division Listing
The OFFSET compiler option allows you to request a condensed version of the
Procedure Division. This listing is helpful when you need to verify that you still
have a valid logic path after you move or add Procedure Division sections.

When you specify OFFSET, the compiler generates a condensed verb listing,
global tables, working storage information, and literals. Note that OFFSET and
LIST are mutually exclusive compiler options with OFFSET taking precedence.

DATA VALIDATION AND UPDATE PROGRAM IGYCARPA Date �6/16/1998 Time 13:41:27 Page 54

�1� �2� �3�

LINE # HEXLOC VERB LINE # HEXLOC VERB LINE # HEXLOC VERB

���878 ��2388 DISPLAY ���879 ��239A PERFORM ���88� ��23B6 DISPLAY

���881 ��23C8 PERFORM ���882 ��23E4 DISPLAY ���883 ��23F6 READ

���885 ��2446 SET ���887 ��244A DISPLAY ���888 ��2454 PERFORM

���889 ��246� DISPLAY ���89� ��2472 PERFORM ���891 ��248E DISPLAY

���892 ��24A� IF ���893 ��24AE PERFORM ���894 ��24CA DISPLAY

���896 ��24E4 PERFORM ���897 ��25�� DISPLAY ���899 ��2512 PERFORM

���9�� ��2532 DISPLAY ���9�1 ��2544 READ ���9�3 ��2594 SET

���9�5 ��2598 DISPLAY ���9�7 ��25A6 DISPLAY ���9�8 ��25B8 CLOSE

���91� ��26�C DISPLAY ���916 ��2616 IF ���917 ��262� DISPLAY

���918 ��262A MOVE ���919 ��263� PERFORM ���92� ��264C PERFORM

���926 ��266C PERFORM ���927 ��268C DISPLAY ���928 ��269E PERFORM

���929 ��26BE DISPLAY ���93� ��26D� DISPLAY ���931 ��26DA DISPLAY

���932 ��26E4 DISPLAY ���933 ��26EE STOP ���944 ��26F8 OPEN

Figure 115. Example of OFFSET Compiler Output

The following numbers refer to the numbers in Figure 115.

�1� Line Number

Your line numbers or compiler-generated line numbers are listed.

�2� Offset

The offset, in hexadecimal, from the start of the program, of the code gener-
ated for this verb.

The verbs are listed in the order in which they occur, and once for each time
they are used.

320 COBOL/VSE Programming Guide

 Advanced Topics

�3� Verb used

A Verb Cross-Reference Listing
The VBREF compiler option produces an alphabetic listing of all the verbs in your
program and shows where each is referenced. The output includes each verb
used, a count of the number of times it is used, and the line numbers where the
verb is used. You can use VBREF output as a handy lookup when you need to
find an instance of a particular verb.

DATA VALIDATION AND UPDATE PROGRAM IGYCARPA Date �6/16/1998 Time 13:41:27 Page 49

 �1� �2� �3�

 Count Cross-reference of verbs References

2 ACCEPT 1�12 1�14

2 ADD. 132� 1336

2 CALL 1436 1437

5 CLOSE. 9�8 958 983 1556 1565

2� COMPUTE. 1536 167� 1674 1687 169� 1693 1694 1695 17�8 1712 1716 1721 1726 1731 1739 1743

1748 1753 1758 1763

2 CONTINUE 1�68 1�77

2 DELETE 977 1223

83 DISPLAY. 878 88� 882 887 889 891 894 897 9�� 9�5 9�7 91� 917 927 929 93� 931 932 946 953

955 96� 966 973 979 985 1��7 1�39 1�53 1�57 1�61 1�63 1�7� 1�72 1�79 1�83 1�87

1�9� 1�92 1�94 1�96 1�98 11�� 11�2 11�4 11�7 111� 1112 1113 1118 1127 113� 1138

1141 1143 1147 1198 12�1 1215 1225 1417 1418 1419 142� 1421 1422 1423 1431 1432

1433 1434 1435 1515 1516 1522 1527 1528 155� 1551 1558 1559 1654

2 EVALUATE 1191 1587

1 EXIT 1464

46 IF 892 916 945 952 959 965 972 978 984 1��6 1�38 1�54 1�58 1�8� 1�84 1�89 1111 1126

1137 1144 1155 1158 1161 1164 1167 1171 1175 1178 1181 1197 1214 1224 127� 1277

1295 13�2 1319 1351 136� 1369 1381 1391 1514 1526 1549 1557

 183 MOVE 918 95� 97� 996 997 998 999 1��� 1��1 1��8 1�13 1�15 1�27 1�4� 1�55 1�59 1�66

1�81 1�85 1�91 1�93 1�95 1�97 1�99 11�1 1114 1128 1139 1156 1159 1162 1165 1169

1173 1176 1179 1182 119� 1193 1199 12�5 12�7 121� 1211 1216 1221 1226 1231 1238

1239 124� 1241 1242 1243 1244 1245 1246 1247 1248 1249 125� 1251 1252 1259 126�

1261 1262 1263 1264 1265 1269 1271 1274 1278 128� 1281 1283 1284 1285 1287 1288

1289 129� 1294 1296 1299 13�3 13�5 13�6 13�8 13�9 1321 1324 1329 1331 1333 1337

1343 1344 1345 1346 1347 1348 1349 135� 1352 1353 1357 1358 1361 1363 1364 1366

1368 1371 1372 1373 1374 1378 1379 1382 1384 1385 1387 1392 1394 1398 14�4 14�5

14�6 14�7 14�8 14�9 141� 1411 1445 1448 1453 1456 1475 1476 1477 1478 148� 1481

1482 1487 1494 1519 1532 1537 1538 1539 1547 1581 1591 1596 16�1 16�6 1611 1616

1621 1626 1631 1636 1641 1646 1651 1656 1657 17�9 1713 1718 1723 1728 1733 174�

1745 175� 1755 176� 1765

5 OPEN 944 964 1��2 1473 1513

61 PERFORM. 879 881 888 89� 893 896 899 919 92� 926 928 947 948 954 956 961 962 967 968 974

975 98� 981 986 987 1��9 1�1� 1�25 1�41 1115 1116 1145 1194 1195 12�� 12�2 12�6

12�8 12�9 1212 1217 1218 1222 1227 1228 1232 1276 1286 13�1 131� 1359 137� 138�

1389 1395 1399 1534 154� 1541 1562 1563

8 READ 883 9�1 971 1�16 1�28 11�5 152� 1544

1 REWRITE. 1213

4 SEARCH 1�64 1�73 1444 1452

46 SET. 885 9�3 1�18 1�3� 1�43 1�62 1�71 11�3 11�8 1393 1443 1451 1523 1529 1546 1552

158� 1589 159� 1594 1595 1599 16�� 16�4 16�5 16�9 161� 1614 1615 1619 162� 1624

1625 1629 163� 1634 1635 1639 164� 1644 1645 1649 165� 1669 1673

1 STOP 933

4 STRING 1266 1291 1354 1375

33 WRITE. 951 1196 1322 1323 1325 1326 1327 1328 133� 1332 1335 1484 1489 1492 1495 1497

15�1 1542 1684 1685 1697 1698 1699 177� 1772 1774 1775 1776 1777 1778 1779 178�

Figure 116. Example of VBREF Compiler Output

The numbers in the explanation below correspond to Figure 116.

�1� Number of times the verb is used in the program

�2� Verb

�3� Line numbers where verb is used

 Chapter 18. Debugging 321

 Advanced Topics

A Data-Name, Procedure-Name, and Program-Name Cross-Reference
Listing

The XREF compiler option provides you with sorted cross-reference listings of data-
names, procedure-names, and program-names. The listings also tell you the
location of all references to a particular data-, procedure-, or program-name. This
output will help you find, quickly, a reference to a particular data-, procedure-, or
program-name in your program.

If your program contains DBCS user-defined words, these user-defined words will
be listed before the alphabetic list of EBCDIC user-defined words. The DBCS
user-defined words are listed in physical order according to their appearance in the
COBOL/VSE source program.

Note: Group names in a MOVE CORRESPONDING statement are listed in the
XREF listing. The cross-reference listing includes the group names and all the ele-
mentary names involved in the move.

Using a Sorted Cross-Reference Listing
You can use XREF output to find where you have used a particular data- or
procedure-name. If you need to find all of the statements that modify a particular
data item, you can use the output to determine what line(s) referenced or modified
a data item. With the XREF output, you can also determine the context in which a
procedure is referenced in your program. For example, you can determine whether
a verb was used in a PERFORM block or as part of a USE FOR DEBUGGING
declarative. (The context of the procedure reference is indicated by the characters
preceding the line number.)

322 COBOL/VSE Programming Guide

 Advanced Topics

DATA VALIDATION AND UPDATE PROGRAM IGYCARPA Date �6/16/1998 Time 13:41:27 Page 5�

An "M" preceding a data-name reference indicates that the data-name is modified by this reference.

 �1� �2� �3�

 Defined Cross-reference of data names References

 264 ABEND-ITEM1

 265 ABEND-ITEM2

347 ADD-CODE 1126 1192

381 ADDRESS-ERROR. M1156

28� AREA-CODE. 1266 1291 1354 1375

382 CITY-ERROR M1159

 �4�

Context usage is indicated by the letter preceding a procedure-name reference.

These letters and their meanings are:

A = ALTER (procedure-name)

D = GO TO (procedure-name) DEPENDING ON

E = End of range of (PERFORM) through (procedure-name)

G = GO TO (procedure-name)

P = PERFORM (procedure-name)

T = (ALTER) TO PROCEED TO (procedure-name)

U = USE FOR DEBUGGING (procedure-name)

 �5� �6� �7�

 Defined Cross-reference of procedures References

 877 ���-DO-MAIN-LOGIC

 943 �5�-CREATE-VSAM-MASTER-FILE. . P879

995 1��-INITIALIZE-PARAGRAPH . . . P881

1471 11��-PRINT-I-F-HEADINGS. . . . P926

1511 12��-PRINT-I-F-DATA. P928

1573 121�-GET-MILES-TIME. P154�

1666 122�-STORE-MILES-TIME. P1541

1682 123�-PRINT-SUB-I-F-DATA. . . . P1562

17�6 124�-COMPUTE-SUMMARY P1563

 1�52 2��-EDIT-UPDATE-TRANSACTION. . P89�

1154 21�-EDIT-THE-REST. P1145

1189 3��-UPDATE-COMMUTER-RECORD . . P893

1237 31�-FORMAT-COMMUTER-RECORD . . P1194 P12�9

1258 32�-PRINT-COMMUTER-RECORD. . . P1195 P12�6 P1212 P1222

1318 33�-PRINT-REPORT P12�8 P1232 P1286 P131� P137� P1395 P1399

 1342 4��-PRINT-TRANSACTION-ERRORS . P896

Figure 117. Example of XREF Output—Data-Name Cross-References

The numbers used in the explanation below correspond to the numbers in
Figure 117.

Cross-Reference of Data-Names

�1� Line number where the name was defined

�2� Data-name

�3� Line numbers where the name was used. If an “M” precedes the line
number, the data item was explicitly modified at the location

Cross-Reference of Procedure References

�4� Explanations of the context usage codes for procedure references

�5� Line number where the procedure-name is defined

�6� Procedure-name

�7� Line numbers where the procedure is referenced and the context usage
code for the procedure

 Chapter 18. Debugging 323

 Advanced Topics

The XREF compiler option also provides you with a sorted cross-reference listing of
program names in your main program.

PP 5686-�68 IBM COBOL for VSE/ESA 1.1.1 NESTED Date �6/16/1998 Time 13:41:27 Page 4

 �1� �2� �3�

 Defined Cross-reference of programs References

 EXTERNAL EXTERNAL1. 25

2 X. 41

12 X1 33 7

2� X11. 25 16

27 X12. 32 17

35 X2 4� 8

Figure 118. Example of XREF Output - Program Cross-Reference

The numbers used in the explanation below correspond to the numbers in
Figure 118.

�1� The line number where the program-name was defined. If the program is
external, the word EXTERNAL will be displayed instead of a definition line
number

�2� The program name

�3� Line numbers where the program is referenced

Using an Embedded Cross-Reference
The XREF compiler option also provides you with a modified cross-reference
embedded in the source listing. This embedded cross-reference provides the line
number where the data-name or procedure-name was defined.

324 COBOL/VSE Programming Guide

 Advanced Topics

DATA VALIDATION AND UPDATE PROGRAM IGYCARPA Date �6/16/1998 Time 13:41:27 Page 2

 LineID PL SL ----+-�A-1-B--+----2----+----3----+----4----+----5----+----6----+----7-|--+----8 Map and Cross Reference
...

 ���876 procedure division.

 ���877 ���-do-main-logic.

���878 display "PROGRAM IGYCARPA - Beginning"

 ���879 perform �5�-create-vsam-master-file. 943

���88� display "perform �5�-create-vsam-master finished".

 ���881 perform 1��-initialize-paragraph 995

���882 display "perform 1��-initialize-paragraph finished" �1�
���883 read update-transaction-file into ws-transaction-record 2�4 338

 ���884 at end

���885 1 set transaction-eof to true 252

 ���886 end-read

...

 ���995 1��-initialize-paragraph.

���996 move spaces to ws-transaction-record IMP �2�
���997 move spaces to ws-commuter-record IMP 314

���998 move zeros to commuter-zipcode IMP 325

���999 move zeros to commuter-home-phone IMP 326

��1��� move zeros to commuter-work-phone IMP 327

��1��1 move zeros to commuter-update-date IMP 331

��1��2 open input update-transaction-file 2�4

 ��1��3 location-file 193

 ��1��4 i-o commuter-file 181

 ��1��5 output print-file 217

...

 ��1471 11��-print-i-f-headings.

 ��1472

��1473 open output print-file. 217

 ��1474

��1475 move function when-compiled to when-comp. IFN 696

��1476 move when-comp (5:2) to compile-month. 696 638

��1477 move when-comp (7:2) to compile-day. 696 64�

��1478 move when-comp (3:2) to compile-year. 696 642

 ��1479

��148� move function current-date (5:2) to current-month. IFN �2�
��1481 move function current-date (7:2) to current-day. IFN 649

��1482 move function current-date (3:2) to current-year. IFN 651

 ��1483

��1484 write print-record from i-f-header-line-1 222 633

 ��1485 after new-page. 139

 ��1486

...

Figure 119. Example of an Embedded Cross-Reference

The numbers used in the explanation below correspond to the numbers in
Figure 119.

�1� The line number of the definition of the data-name or procedure-name in the
program.

�2� Special definition symbols. These symbols are:

UND The user name is undefined
DUP The user name is defined more than once
IMP An implicitly defined name, such as special registers and figurative

constants
IFN An intrinsic function reference
EXT An external reference
* The program-name is unresolved because the NOCOMPILE option is

in effect

 Chapter 18. Debugging 325

 Advanced Topics

 Chapter 19. Program Tuning

Improving a program is always possible, but no program deserves limitless effort.

Before getting involved in COBOL details, examine the underlying algorithms for
your program. For top performance, a sound algorithm is essential. The classic
example is sorting, where a simple technique to sort a million items can take hun-
dreds of thousands times longer than one using a sophisticated algorithm.

After deciding on the algorithm, look at the data structures. They should be appro-
priate for the algorithm. When your program frequently accesses data, reduce the
number of steps needed to access the data wherever possible. After you have
improved the algorithm and data structures, consider other details of the COBOL
source code.

The best COBOL programs are those that are easily understood. When a program
is comprehensible, you can assess its performance. If the program has a tangled
control flow, then it will be difficult to both understand and maintain. The optimizer
will also be limited when trying to improve the code.

Note: Although COBOL/VSE allows segmentation language, you will not improve
storage allocation by using it, because COBOL/VSE does not perform overlay.

The information in this chapter will help you write programs that result in better gen-
erated code sequences and that use system services better. This chapter
describes three general areas that affect program performance:

� Coding techniques and considerations
 � Optimization
 � Compiler options

Coding Techniques and Considerations
The performance of your program can generally be improved through careful use of
coding techniques. Some of these techniques also have an influence on the
actions the optimizer takes when trying to improve code efficiency.

Careful consideration and implementation of these techniques will generally have a
positive influence on your program's performance.

 Programming Style
The coding style you use can, in certain circumstances, affect how the optimizer
treats your code.

Structured Programming
The structured programming statements, such as EVALUATE and in-line
PERFORM, make the program more comprehensible and also generate
a linear control flow. This allows the optimizer to operate over larger
regions of the program.

Avoid using the following constructs:

� The ALTER statement

326 Copyright IBM Corp. 1983, 1998

 Advanced Topics

� Backward branches (except as needed for loops for which
PERFORM is unsuitable)

� PERFORM procedures that involve irregular control flow; for
example, a PERFORM procedure such that control cannot pass to
the end of the procedure and therefore cannot return to the
PERFORM statement

Use top-down programming constructs. Out-of-line PERFORM state-
ments are a natural means of implementing top-down programming
techniques. With the optimizer, out-of-line PERFORM statements can
be as efficient as in-line PERFORM statements in many cases, since
the linkage code may be simplified or eliminated altogether.

Factoring Expressions
Factoring can save a lot of computation; for example, this code:

MOVE ZERO TO TOTAL

PERFORM VARYING I FROM 1 BY 1 UNTIL I = 1�

COMPUTE TOTAL = TOTAL + ITEM(I)

END-PERFORM

COMPUTE TOTAL = TOTAL � DISCOUNT

is more efficient than this code:

MOVE ZERO TO TOTAL

PERFORM VARYING I FROM 1 BY 1 UNTIL I = 1�

COMPUTE TOTAL = TOTAL + ITEM(I) � DISCOUNT

END-PERFORM

The optimizer does not do factoring for you.

Symbolic Constants
If you want the optimizer to recognize a data item as a constant
throughout the program, initialize it with a VALUE clause and do not
modify it anywhere in the program.

If you pass a data item to a subprogram BY REFERENCE, the optimizer
considers it to be an external data item and assumes that it is modified
at every subprogram call.

If you move a literal to a data item, the optimizer recognizes it as a con-
stant, but only in a limited region of the program following the MOVE
statement.

Recognizing Constant Calculations
When several items of an expression are constant, ensure that the opti-
mizer is permitted to optimize them. For evaluating expressions, the
compiler is bound by the left-to-right evaluation rules of COBOL. Con-
sequently, either move all the constants to the left end of the
expression, or group them inside parentheses. For example, given that
V1, V2, and V3 are variables and C1, C2, and C3 are constants, the
expressions:

V1 � V2 � V3 � (C1 � C2 � C3)

C1 + C2 + C3 + V1 + V2 + V3

that contain the constant calculations:

C1 � C2 � C3 and C1 + C2 + C3

respectively, are preferable to those that contain none:

 Chapter 19. Program Tuning 327

 Advanced Topics

V1 � V2 � V3 � C1 � C2 � C3

V1 + C1 + V2 + C2 + V3 + C3

Often, in production programming, there is a tendency to place invariant
factors on the right-hand end of expressions. This can result in less
efficient code because optimization is lost.

Recognizing Duplicate Calculations
When several components of different expressions are duplicates, make
sure the compiler is permitted to optimize them. For evaluating arith-
metic expressions, the compiler is bound by the left-to-right evaluation
rules of COBOL. Consequently, either move all the duplicates to the left
ends of the expressions, or group them inside parentheses. Given that
V1 through V5 are all variables, the calculation, V2 � V3 � V4, is a dupli-
cate (known as a common subexpression) between the following two
statements:

COMPUTE A = V1 � (V2 � V3 � V4)

COMPUTE B = V2 � V3 � V4 � V5

In the following example, the common subexpression is V2 + V3:

COMPUTE C = V1 + (V2 + V3)

COMPUTE D = V2 + V3 + V4

There are no common subexpressions in these examples:

COMPUTE A = V1 � V2 � V3 � V4

COMPUTE B = V2 � V3 � V4 � V5

COMPUTE C = V1 + (V2 + V3)

COMPUTE D = V4 + V2 + V3

Given that the optimizer can eliminate duplicate calculations, there is no
need for you to introduce artificial temporaries. The program is often
more comprehensible without them.

Use of Data
In certain circumstances, the use of one data type over another can be more effi-
cient. Using consistent data types can reduce the need for conversions when per-
forming operations on data items.

Computational Data Items
When a data item is used mainly for arithmetic or as a subscript, specify
USAGE BINARY on the data description entry for the item. The hard-
ware operations for manipulating binary data are faster than those for
manipulating decimal data.

Note, however, that if a fixed-point arithmetic statement has intermediate
results with a large precision (number of significant digits), the compiler
will use decimal arithmetic anyway, after converting the operands to
PACKED-DECIMAL form. For fixed-point arithmetic statements, the
compiler will normally use binary arithmetic for simple calculations with
binary operands, if the precision remains at 8 digits or fewer. Above 18
digits, the compiler always uses decimal arithmetic. With a precision of
9 to 18 digits, the compiler may use either form.

For a BINARY data item, the most efficient code is generated if the item
has:

A sign (an S in its PICTURE clause), and

328 COBOL/VSE Programming Guide

 Advanced Topics

8 digits or fewer

When a data item is used for arithmetic, but is larger than 8 digits or is
also used with DISPLAY data items, then PACKED-DECIMAL is a good
choice. The code generated for PACKED-DECIMAL data items can be
as fast as that for BINARY data items in some cases, especially if the
statement is complicated or specifies rounding.

For a PACKED-DECIMAL data item, the most efficient code is gener-
ated if the item has:

� A sign (an S in its PICTURE clause)

� An odd number of digits (9s in the PICTURE clause), so that it occu-
pies an exact number of bytes without a half-byte left over

� 15 digits or fewer, because a library routine call must be used to
multiply or divide larger items

Consistent Kinds of Data
When performing operations on operands of different types, one of the
operands must be converted to the same type as the other. Each con-
version requires several instructions. Also, a substantial amount of code
may have to be executed to make operands conformable; for example,
scaling one of the operands to give it the appropriate number of decimal
places. This can largely be avoided by giving them both the same
usage and also appropriate PICTURE specifications. That is, two
numbers to be compared, added, or subtracted should not only have the
same usage but also the same number of decimal places (9s after the V
in the PICTURE clause).

Implications of External Data
External data items contain every data item in the Linkage Section,
together with any data items that are passed BY REFERENCE to sub-
programs. External data items also refer to any data items that are
defined with the EXTERNAL clause, and also to external (UPSI)
switches. Each level-01 data item in the Linkage Section is separately
addressed. Consequently, the program must load a base register each
time one of these data items is referenced. By contrast, you can refer-
ence each 4K block of data items in the Working-Storage Section from
the same base register. Also, the optimizer must assume that any
called subprogram can modify any external data item and inhibit the
optimization (across subprogram calls) of expressions containing
external data items.

Coding Data Files
When using SAM files, use blocking whenever possible (the BLOCK
CONTAINS clause). This will significantly reduce the file processing
time. See “Block Sizes” on page 139 for additional information.

When writing to variable-length blocked sequential files, use the APPLY
WRITE-ONLY clause for the file or use the AWO compiler option. With
AWO specified, APPLY WRITE-ONLY will be in effect for all files within
the program that are physically sequential with V-mode records. This
can reduce the number of calls to Data Management Services. For
additional information, see “APPLY WRITE-ONLY Clause” on page 24.

When using VSAM files, increase the number of data buffers for
sequential access or index buffers for random access. Also, select a

 Chapter 19. Program Tuning 329

 Advanced Topics

control interval size (CISZ) appropriate for the application (smaller CISZ
results in faster retrieval for the random processing at the expense of
inserts, whereas a larger CISZ is more efficient for sequential proc-
essing). If you use alternate indexes, using access method services to
build them is more efficient than using the AIXBLD run-time option. For
a complete description of this run-time option. see the LE/VSE Pro-
gramming Reference.

For better performance, access the records sequentially and avoid using
multiple alternate indexes when possible. For more suggestions, see
“Considerations for VSAM Performance” on page 173.

Coding Data Types
Avoid using USAGE DISPLAY data items in areas that are heavily used
for calculations. See “Use of Data” on page 328 for additional informa-
tion.

When using COMP-3 data items in calculations, use 15 or fewer digits in
the PICTURE specification to avoid the use of library routines for multi-
plication and division. See “Use of Data” on page 328 for additional
information.

Plan the use of fixed-point and floating-point data types. For more infor-
mation, see “Planning the Use of Fixed-Point and Floating-Point Data
Types.”

Using indexes to address a table is more efficient than using subscripts
since the index already contains the displacement from the start of the
table and does not have to be calculated at run time.

When using subscripts (as opposed to indexes) to address a table, use
a binary (COMP) signed data item with 9 or fewer digits. Additionally, in
some cases, using 4 or fewer digits for the data item may also reduce
CPU time. For additional information, see “Referring to an Item in a
Table” on page 96, “Efficient Coding for Tables” on page 114, and “Use
of Data” on page 328.

When using OCCURS DEPENDING ON (ODO) data items, ensure that
the ODO objects are binary (COMP) to avoid unnecessary conversions
each time the variable-length items are referenced. When using ODO
data items, you may experience performance degradation since special
code must be executed each time a variable length data item is refer-
enced. If you do use variable-length data items, copying them into a
fixed-length data item prior to a period of high-frequency use can reduce
some of this overhead. See page 333 for additional ODO information.

Planning the Use of Fixed-Point and Floating-Point Data Types
You can enhance program performance by carefully determining when to use fixed-
point and floating-point data types.

Arithmetic Expressions
Calculation of arithmetic expressions that are evaluated in floating-point
mode are most efficient when the operands involved require the least
amount of conversion. Using operands that are COMP-1 or COMP-2
produces the most efficient code.

Integer items declared as BINARY or PACKED DECIMAL, with 9 or
fewer digits, can be quickly converted to floating-point data. Also, con-

330 COBOL/VSE Programming Guide

 Advanced Topics

version from a COMP-1 or COMP-2 item to a fixed-point integer with 9
or fewer digits, without SIZE ERROR in effect, is efficient when the
value of the COMP-1 or COMP-2 item is less than 1,000,000,000.

Exponentiations
Exponentiations with large exponents can be evaluated more quickly
and with more accurate results using floating point. For example,

COMPUTE fixed-point1 = fixed-point2 �� 1�����

could be computed more quickly and accurately if coded as

COMPUTE fixed-point1 = fixed-point2 �� 1�����.E+��

since the presence of a floating-point exponent would cause floating-
point arithmetic to be used to compute the exponentiation.

 Table Handling
Table handling operations can be a major part of an application. There are several
techniques that can improve the efficiency of these operations and also influence
the effects of the optimizer.

Subscript Calculations
For the table element reference:

ELEMENT(S1 S2 S3)

where S1, S2, and S3 are subscripts, the compiler must evaluate the fol-
lowing expression:

comp_s1 � d1 + comp_s2 � d2 + comp_s3 � d3 + base_address

where:

comp_s1
The value of S1 after conversion to binary, and so on.

d1, d2, and d3
The strides for each dimension.

The stride of a given dimension is the distance in bytes between
table elements whose occurrence numbers in that dimension differ
by 1 and whose other occurrence numbers are equal. For example,
the stride, d2, of the second dimension in the above example, is the
distance in bytes between ELEMENT(S1 1 S3) and ELEMENT(S1 2
S3).

Although the expression could be evaluated in any order, the compiler
evaluates it in left-to-right order. Thus, the optimizer will find the most
opportunities for eliminating calculations if the constant or duplicate sub-
scripts are the leftmost.

You can further optimize table element references by declaring any sub-
scripts as COMPUTATIONAL.

Recognizing Constant Subscript calculations
Suppose that C1, C2,. . . are constant data items and that V1, V2,. . . are
variable data items. Then, in the following table element reference, only
the individual terms comp_c1 � d2 and comp_c2 � d3 are eliminated as
constant:

ELEMENT(V1 C1 C2)

 Chapter 19. Program Tuning 331

 Advanced Topics

In this table element reference, however, the entire subexpression
comp_c1 � d1 + comp_c2 � d2 is constant.

ELEMENT(C1 C2 V1)

Consequently, try to use your tables so that constant subscripts are the
leftmost subscripts. If all the subscripts are constant, then no subscript
calculation is done at object time, as in the following table element refer-
ence:

ELEMENT(C1 C2 C3)

With the optimizer, the reference can be as efficient as a reference to a
scalar (nontable) item.

Recognizing Duplicate Subscript Calculations
Similar considerations apply to duplicate subscript calculations.
Between the following two table element references, only the individual
terms comp_v3 � d2 and comp_v4 � d3 are common subexpressions:

ELEMENT(V1 V3 V4)

ELEMENT(V2 V3 V4)

However, the entire subexpression comp_v1 � d1 + comp_v2 � d2 is
common between these two table element references:

ELEMENT(V1 V2 V3)

ELEMENT(V1 V2 V4)

So, even when all the subscripts are variables, try to use your tables so
that it is the rightmost subscript that varies most often for references that
occur close to each other in the program. This will also improve the
pattern of storage reference as well as paging.

If all the subscripts are duplicates, then the entire subscript calculation is
a common subexpression, as in the two references:

ELEMENT(V1 V2 V3)

ELEMENT(V1 V2 V3)

So, with the optimizer, the second (and any subsequent) reference to
the same element can be as efficient as a reference to a scalar (non-
table) item.

Recognizing Constant and Duplicate Index Calculations
Index calculations are similar to subscript calculations, except that no
multiplication need be done, since index values have the stride factored
into them. The recommendations for optimizing subscripted references
apply unchanged to indexed references. Index calculations involve
loading the indexes into registers, and these data transfers can be opti-
mized, much as the individual subscript calculation terms are optimized.

Tables with Identical Element Specifications
When subscripting or indexing different tables, it is most efficient if all
tables have the same element length. With equal element lengths, the
stride for the last dimension of the tables will be equal. The rightmost
subscript or index computed for one table can then be reused by the
optimizer for the others. So, consider defining tables to match the
element length of the other tables with which they are involved.

If both the element lengths, and the number of occurrences in each
dimension are equal, then the strides for dimensions other than the last
will also be equal, resulting in greater commonality between their sub-

332 COBOL/VSE Programming Guide

 Advanced Topics

script calculations. The optimizer can then reuse subscripts or indexes
other than the rightmost.

Indexing Preferred to Subscripting
The optimizer can eliminate duplicate subscript (and index) calculations
so that repeated references to an element of a table are equally efficient
with subscripting and indexing. However, the original reference to a par-
ticular table element is more efficient with indexes than with subscripts,
even if the subscripts are COMPUTATIONAL. This is because the
value of an index has the element size factored into it, whereas the
value of a subscript must be multiplied by the element size when the
subscript is used.

Introduction of Artificial Indexing Temporaries
Relative indexing can be more efficient than direct indexing, so there is
no merit in keeping alternative indexes with the offset factored in. This
is because:

ELEMENT (I + 5, J - 3, K + 2)

is no more costly than:

ELEMENT (I5, J3, K2)

except that the second example requires this prerequisite processing:

SET I5 TO I SET I5 UP BY 5

SET J3 TO J SET J3 DOWN BY 3

SET K2 TO K SET K2 UP BY 2

This makes the direct indexing less efficient than the relative indexing.

Implications of OCCURS DEPENDING ON (ODO)
A group item that contains a subordinate OCCURS DEPENDING ON
data item has a variable length.

The program must execute special code every time a variable-length
data item is referenced.

Because this code is out-of-line, it may interrupt optimization. Further-
more, the code to manipulate variable-length data items is substantially
less efficient than that for fixed-size data items and may result in a sig-
nificant increase in processing time. For instance, the code to compare
or move a variable-length data item may involve calling a library routine,
and is significantly slower than the equivalent code for fixed-length data
items.

To avoid unnecessary conversions when variable-length items are refer-
enced, specify BINARY for OCCURS . . . DEPENDING objects.

Copy variable-length data items into fixed-length data items prior to a
period of high-frequency access.

See “Subscripting Using Index-Names (Indexing)” on page 97 for infor-
mation on subscripting and indexing.

 Chapter 19. Program Tuning 333

 Advanced Topics

 Optimization
This section discusses the benefits of the OPTIMIZE compiler option as well as
other compiler features affecting optimization.

The OPTIMIZE Compiler Option
The COBOL/VSE optimizer is activated by specifying the OPTIMIZE compiler
option. The following optimization takes place if you specify OPTIMIZE or
OPTIMIZE(STD):

� Eliminate unnecessary transfers of control or simplify inefficient branches,
including those generated by the compiler that are not evident from looking at
the source program.

� Simplify the compiled code for both a PERFORM statement and a CALL state-
ment to a contained (nested) program. Where possible, the optimizer places
the statements in-line, eliminating the need for linkage code. This optimization
is known as “procedure integration”, and is further discussed below. If proce-
dure integration cannot be done, the optimizer uses the simplest linkage pos-
sible (perhaps as few as two instructions) to get to and from the called
program.

� Eliminate duplicate calculations such as subscript calculations by saving the
results for later reuse.

� Eliminate constant calculations by performing them when the program is com-
piled.

� Aggregate moves of contiguous items (such as those that often occur with the
use of MOVE CORRESPONDING) into a single move. Both the source and
target must be contiguous for the moves to be aggregated.

� Delete from the program, and identify with a warning message, code that can
never be executed (unreachable code elimination).

You can request the following conditions/optimization if you specify the
OPTIMIZE(FULL) option:

� Delete from the program any unused items

To see how the optimizer works on your program, compare the generated code
with and without the OPTIMIZE option. (You can request the assembler language
listing of the generated code by specifying the LIST compiler option.)

For unit testing your programs, you may find it easier to debug code that has not
been optimized. But when the program is ready for final test, specify OPTIMIZE,
so that the tested code and the production code are identical. You may also want
to use the option during development, if a program is used frequently without
recompilation. However, the overhead for OPTIMIZE may outweigh its benefits if
you recompile frequently, unless you are using the assembler language expansion
(LIST option) to fine tune your program.

334 COBOL/VSE Programming Guide

 Advanced Topics

PERFORM Procedure Integration
PERFORM procedure integration is the process whereby a PERFORM statement is
replaced by its performed procedures. The advantage here is that the resulting
program runs faster without the overhead of PERFORM linkage and with more
linear control flow.

Program size: If the performed procedures are invoked by several PERFORM
statements and replace each such PERFORM statement, then the program may
become larger. The optimizer limits this increase to no more than 50 percent, after
which it no longer uses procedure integration. However, if you are concerned
about program size, you may want to prevent procedure integration in specific
instances. You can do this by using a priority number on section names.

If you do not want a PERFORM statement to be replaced by its performed proce-
dures, put the PERFORM statement in one section and put the performed proce-
dures in another section with a different priority number. The optimizer then
chooses the next best optimization for the PERFORM statement; the linkage over-
head can be as few as two instructions.

For example, all the PERFORM statements in the following program will be trans-
formed by procedure integration:

1 SECTION 5.

11. PERFORM 12

 STOP RUN.

12. PERFORM 21

 PERFORM 21.

2 SECTION 5.

21. IF A < 5 THEN

ADD 1 TO A

 DISPLAY A

 END-IF.

The program will be compiled as if it had originally been written:

1 SECTION 5.

11.

12. IF A < 5 THEN

ADD 1 TO A

 DISPLAY A

 END-IF.

IF A < 5 THEN

ADD 1 TO A

 DISPLAY A

 END-IF.

 STOP RUN.

Whereas in this program, only the first PERFORM statement, PERFORM 12, will
be optimized by procedure integration:

 Chapter 19. Program Tuning 335

 Advanced Topics

1 SECTION.

11. PERFORM 12

 STOP RUN.

12. PERFORM 21

 PERFORM 21.

2 SECTION 5.

21. IF A < 5 THEN

ADD 1 TO A

 DISPLAY A

 END-IF.

Unreachable code elimination: Because of procedure integration, one
PERFORM procedure may be repeated several times. As further optimization pro-
ceeds on each copy of the procedure, portions may be found to be unreachable,
depending on the context into which the code was copied. A warning message is
generated for each such occurrence.

Contained Program Procedure Integration
Contained program procedure integration is the process where a CALL to a con-
tained program is replaced by the program code. The advantage here is that the
resulting program runs faster without the overhead of CALL linkage and with more
linear control flow.

Program size: If the contained programs are invoked by several CALL statements
and replace each such CALL statement, then the program may become larger.
The optimizer limits this increase to no more than 50 percent, after which it no
longer uses procedure integration. The optimizer then chooses the next best opti-
mization for the CALL statement; the linkage overhead can be as few as two
instructions.

Unreachable code elimination: As a result of procedure integration, one con-
tained program may be repeated several times. As further optimization proceeds
on each copy of the program, portions may be found to be unreachable, depending
on the context into which the code was copied. When this happens, a warning
message is generated.

Other Compiler Features that Affect Optimization
Another compiler feature that may have a significant influence on the effects of the
optimizer option is the USE FOR DEBUGGING ON ALL PROCEDURES statement.

The ON ALL PROCEDURES option of the USE FOR DEBUGGING statement gen-
erates extra code at each transfer to every procedure-name. It can be very useful
for debugging, but can make the program significantly larger, and can substantially
inhibit optimization.

Additionally, compiler options can also have an effect (see “Compiler Options” on
page 337 for details).

336 COBOL/VSE Programming Guide

 Advanced Topics

 Compiler Options
You may have a customized system that requires certain options for optimum per-
formance. Check with your system programmer to ensure that installed options are
not required before changing defaults. You can see what your system defaults are
by issuing ERRMSG. See “Generating a List of All Compiler Error Messages” on
page 223 for instructions on issuing ERRMSG.

The tuning methods and performance information discussed here are intended to
help you select from various COBOL/VSE options for compiling your programs.

 Important

Make sure that COBOL/VSE serves your needs. Please confer with system
programmers on COBOL/VSE tuning considerations. Doing so will ensure that
the options you choose are appropriate for programs being developed at your
site.

A brief description of each item is followed by performance advantages and disad-
vantages, reference information, and usage notes where applicable. Refer to spec-
ified pages for additional information.

AWO The AWO compiler option allows the file buffer to be written to the output
device. When you use AWO, the APPLY WRITE-ONLY clause is in
effect for all SAM files in the program with V-mode records.

Performance advantages
Using the AWO option can result in a performance savings
because this will generally result in fewer calls to the system
file management routines to handle the I/O.

Performance disadvantages
In general, no performance disadvantages.

Reference information
For a description of the APPLY WRITE-ONLY clause, see
“APPLY WRITE-ONLY Clause” on page 24. For syntax of
the AWO option, see “AWO” on page 227.

DYNAM The DYNAM compiler option dynamically loads subprograms invoked
through the CALL statement at run time.

Performance advantages
Using DYNAM means easier subprogram maintenance since
the application will not have to be relink-edited if the subpro-
gram is changed.

When using the DYNAM option, you can free virtual storage
that is no longer needed by issuing the CANCEL statement.

Performance disadvantages
You pay a slight performance penalty using DYNAM since
the call must go through an LE/VSE routine.

Reference information
For a description of the DYNAM option, see “DYNAM” on
page 233.

 Chapter 19. Program Tuning 337

 Advanced Topics

FASTSRT The FASTSRT compiler option specifies that the DFSORT/VSE product
(or equivalent) will handle all of the I/O.

Performance advantages
FASTSRT eliminates the overhead of returning to
COBOL/VSE after each record is processed.

Performance disadvantages
No performance disadvantages.

Reference information
For more information on improving sort performance, see
“Improving Sort Performance with FASTSRT” on page 184.
The FASTSRT syntax appears in “FASTSRT” on page 234.

Usage notes
Using FASTSRT is recommended when direct work files are
used for the sort work files. Not all sorts are eligible for this
option.

NUMPROC(PFD), (NOPFD), (MIG) Use this compiler option for sign processing
when coding numeric comparisons.

Performance advantages
NUMPROC(PFD) generates significantly more efficient code
for numeric comparisons.

Performance disadvantages
For most references to COMP-3 and DISPLAY numeric data
items, using NUMPROC(MIG) and NUMPROC(NOPFD)
causes extra code to be generated because of sign “fix up”
processing. This extra code may also inhibit some other
types of optimizations.

Reference information
See “Sign Representation and Processing” on page 79 for
sign representation information, and “NUMPROC” on page
243 for the NUMPROC syntax.

Usage notes
When using NUMPROC(PFD), the compiler assumes that the
data has the correct sign and bypasses the sign “fix up”
process. Because not all external data files contain the
proper sign for COMP-3 or DISPLAY signed numeric data,
using NUMPROC(PFD) may not be applicable for all pro-
grams. For performance-sensitive applications, the use of
NUMPROC(PFD) is recommended where possible.

For noneligible programs, using NUMPROC(MIG) has less
sign fixup than NUMPROC(NOPFD).

OPTIMIZE Use the OPTIMIZE compiler option to ensure your code is optimized for
better performance.

Performance advantages
Generally results in more efficient run-time code.

Performance disadvantages
OPTIMIZE requires more processing time for compiles than
NOOPTIMIZE.

338 COBOL/VSE Programming Guide

 Advanced Topics

Reference information
For further description of OPTIMIZE, see “The OPTIMIZE
Compiler Option” on page 334. See “OPTIMIZE” on page
245 for the OPTIMIZE syntax.

Usage notes
NOOPTIMIZE is generally used during program development
when frequent compiles are necessary, and it also allows for
easier debugging. For production runs, however, the use of
OPTIMIZE is recommended.

RENT Use the RENT compiler option to generate a reentrant program.

Performance advantages
Using RENT enables the program to be placed in the Shared
Virtual Area (SVA) for running above the 16-megabyte line
on an extended addressing system.

Performance disadvantages
Using RENT generates additional code to ensure that the
program is reentrant.

Reference information
The syntax for the RENT option appears in “RENT” on
page 247.

RMODE(ANY) The RMODE(ANY) compiler option allows the program to be loaded
anywhere.

Performance advantages
Using the RMODE(ANY) option with NORENT programs
allows the program and its Working-Storage to be located
above the 16-MB line, relieving storage below the line.

Performance disadvantages
In general, no performance disadvantages.

Reference information
For a description of the RMODE compiler option, see
“RMODE” on page 247.

SSRANGE The SSRANGE compiler option verifies that all subscripts, indexes, and
reference modification expressions are within proper bounds.

Performance advantages
No performance advantages.

Performance disadvantages
SSRANGE generates additional code for verifying subscripts.

Reference information
The syntax for the SSRANGE option appears in “SSRANGE”
on page 250.

Usage notes
In general, if you only need to verify the subscripts a few
times in the application instead of at every reference, coding
your own checks may be faster than using the SSRANGE
compiler option. SSRANGE may be turned off at run time
with the CHECK(OFF) run-time option. For performance-

 Chapter 19. Program Tuning 339

 Advanced Topics

sensitive applications, the use of the NOSSRANGE compiler
option is recommended.

TEST The TEST compiler option with any hook-location suboption other than
NONE (i.e. ALL, STMT, PATH, BLOCK) produces object code that can
take full advantage of and be run under a Debug Tool under MVS and
VM.

Performance advantages
No performance advantages.

Performance disadvantages
Since the TEST compiler option with any hook-location sub-
option other than NONE generates additional code, it can
cause significant performance degradation when used in a
production environment (the more compiled-in hooks you
specify, the more additional code is generated and the
greater the performance degradation may be).

Reference information
The syntax for TEST appears in its description under “TEST”
on page 251.

Usage notes
TEST without a hook-location suboption or with any one
other than NONE forces the NOOPTIMIZE compiler option
into effect. For production runs, the use of NOTEST is
recommended. However, if during the production run, you
want a symbolic dump of the variables in a formatted dump if
the program abends, compile with TEST(NONE,SYM).

TRUNC(STD), (OPT), (BIN) This compiler option creates code that will shorten the
receiving fields of arithmetic operations.

Performance advantages
TRUNC(OPT) does not generate extra code and generally
improves performance.

Performance disadvantages
Both TRUNC(BIN) and TRUNC(STD) generate extra code
whenever a BINARY data item is changed. TRUNC(BIN) is
usually the slowest of these options.

Reference information
For a more detailed explanation of the TRUNC option, see
“TRUNC” on page 252.

Usage notes
TRUNC(STD) conforms to the COBOL 85 Standard, whereas
TRUNC(BIN) and TRUNC(OPT) do not. When using
TRUNC(OPT), the compiler assumes that the data conforms
to the PICTURE and USAGE specifications. For
performance-sensitive applications, the use of TRUNC(OPT)
is recommended where possible.

340 COBOL/VSE Programming Guide

 Advanced Topics

Other Product Considerations

CICS
If the application is running under the Customer Information Control
System (CICS), converting EXEC CICS LINKs to COBOL CALLs can
improve transaction response time.

See “COBOL/VSE Programming Considerations for CICS” on page 388
for additional information on coding COBOL programs that run under
CICS.

Performance Tuning Worksheet
This worksheet will help you evaluate your program's performance. If you answer
yes to each question, you are probably improving your performance. However, be
sure you understand the function of each option before considering the perform-
ance trade-off. You may prefer function over improved performance in many
instances.

Figure 120. Performance Tuning Worksheet

AWO Are you using the AWO option when possible? Refer
to page 337.

DYNAM Are you using NODYNAM? Consider the performance
trade-offs. Refer to page 337.

FASTSRT When using direct work files for the sort work files,
have you selected the FASTSRT option? Refer to
page 338.

NUMPROC Are you using NUMPROC(PFD) where possible?
Refer to page 338.

OPTIMIZE Are you using OPTIMIZE for production runs? Refer
to page 338.

RENT Are you using NORENT? Consider the performance
trade-offs. Refer to page 339.

RMODE(ANY) Are you using RMODE(ANY) with your NORENT pro-
grams? Consider the performance trade-offs with
storage usage. Refer to page 339.

SSRANGE Are you using NOSSRANGE for production runs?
Refer to page 339.

TEST Are you using NOTEST for production runs? Refer to
page 340.

TRUNC Are you using TRUNC(OPT) where possible? Refer
to page 340.

 Chapter 19. Program Tuning 341

 Advanced Topics

Run-Time Performance Considerations
In addition to coding techniques and compiler options, the characteristics of your
run-time environment also influence program performance. For information on how
the various run-time options and other run-time considerations control the execution
of your compiled program, see the LE/VSE Programming Guide and LE/VSE Pro-
gramming Reference.

342 COBOL/VSE Programming Guide

 Advanced Topics

Chapter 20. Techniques to Improve Programmer Productivity

Improving your programming productivity can be as valuable to your installation's
resource management as coding effective and efficient programs. The techniques
discussed in this chapter can help reduce some tedious and time-consuming coding
tasks and allow you to use your time and system resources more effectively.

Using these suggestions may not always be possible or practical. Refer to your
organization's guidelines and requirements before using the following techniques.

The techniques described in this chapter are:

� Eliminate repetitive coding using the COPY facility

� Make program changes using the REPLACE statement

� Simplify complex coding using intrinsic functions and callable services

� Find coding errors

� Control the content of the output listing

� Use the Debug Tool to help debug your programs

Eliminating Repetitive Coding (the COPY Facility)
If your program contains frequently used code sequences (such as blocks of
common data items, input/output routines, error routines, or even entire COBOL
programs), write the code sequences once and put them in a COBOL COPY subli-
brary. Then, you can retrieve these code sequences from this library and have
them included in your program at compile time by using the COPY or BASIS state-
ments.

You can use INSERT or DELETE statements, or the REPLACING phrase of the
COPY statement to modify the included text.

Note: If you use the EXIT compiler option to specify a LIBEXIT phase, your
results may differ from those presented in this chapter.

Source books are searched for in the sublibraries specified by the user in the
LIBDEF SOURCE chain.

At compile time, the librarian searches all sublibraries identified by the LIBDEF JCL
statements; for example:

// LIBDEF SOURCE,SEARCH=(lib.sublib)

Retrieving Source Statements

Members of the COPY sublibrary can be retrieved using COPY or BASIS state-
ments.

 Copyright IBM Corp. 1983, 1998 343

 Advanced Topics

 COPY Statement
The COPY statement allows you to include stored source statements in any part of
your program. For example, if the library entry CFILEA consists of the following FD
entries:

BLOCK CONTAINS 2� RECORDS

RECORD CONTAINS 12� CHARACTERS

LABEL RECORDS ARE STANDARD

DATA RECORD IS FILE-OUT.

�1 FILE-OUT PIC X(12�).

you can retrieve the member CFILEA by using the COPY statement in the Data
Division of your source program code as follows:

FD FILEA

 COPY CFILEA.

The library entry is copied into your program, and the resulting program listing looks
as follows:

 FD FILEA

 COPY CFILEA.

C BLOCK CONTAINS 2� RECORDS

C RECORD CONTAINS 12� CHARACTERS

C LABEL RECORDS ARE STANDARD

C DATA RECORD IS FILE-OUT.

C �1 FILE-OUT PIC X(12�).

In the compiler source listing, the COPY statement is printed on a separate line,
and copied lines are preceded by a "C".

Assume that a member named DOWORK was stored with the following statements:

COMPUTE QTY-ON-HAND = TOTAL-USED-NUMBER-ON-HAND

MOVE QTY-ON-HAND to PRINT-AREA

To retrieve the stored member, DOWORK, write:

paragraph-name. COPY DOWORK.

The statements included in the DOWORK procedure will follow the
paragraph-name.

Note: In order for the text copied to have a D inserted in column 7 (debugging line
indicator), the D must appear on the first line of the COPY statement. A COPY
statement itself can never be a debugging line; if it contains a D and WITH
DEBUGGING mode is not specified, the COPY statement will nevertheless be proc-
essed.

 BASIS Statement
Frequently used source programs, such as payroll programs, can be inserted into
the COPY sublibrary. The BASIS statement brings in an entire source program at
compile time. Calling in a program eliminates the need to handle a program each
time you compile it.

You may modify any statement in the source program by referring to its COBOL
sequence number with an INSERT or DELETE statement. The use of BASIS to
support INSERT and DELETE requires that sequence fields contain only numeric
characters.

344 COBOL/VSE Programming Guide

 Advanced Topics

� INSERT adds new source statements after the sequence number indicated.
� DELETE eliminates the statements indicated by the sequence numbers.

You may delete a single statement with one sequence number, or you may delete
more than one statement by indicating the first and last sequence numbers to be
deleted, separated by a hyphen.

Note: The COBOL sequence number is the 6-digit number that you assign in
columns 1 through 6 of the source statements. The COBOL sequence numbers
are used to update COBOL source statements at compile time. Such changes are
in effect for the one compilation only.

For example, assume that a company payroll program is kept as a source program
in the COPY library. The name of the program is PAYROLL. During a particular
year, retirement tax is taken out at a rate of 2.5% each week for all personnel until
earnings exceed $15,000. The coding for accomplishing this is shown in
Figure 121.

���73� Evaluate True

���735 When Annual-Pay Greater Than 15���

���74� Move Zero To Tax-Pay

���745 When Annual-Pay Greater Than 15��� - Base-Pay

���75� Compute Tax-Pay = (15��� - Annual-Pay) � .�25

���755 When Other

���76� Compute Tax-Pay = Base-Pay � .�25

���765 End-Evaluate

���77� Add Base-Pay To Annual-Pay
...

���85� Stop Run.

Figure 121. COBOL Statements for Deducting Retirement Tax

Because of a change in the law, tax is now to be taken out until earnings exceed
$17,800 and a new percentage is to be applied. You can code these changes, as
shown in Figure 122.

...

Basis Payroll

Delete ���735-���76�

���735 When Annual-Pay Greater Than 178��

���74� Move Zero To Tax-Pay

���745 When Annual-Pay Greater Than 178�� - Base-Pay

���75� Compute Tax-Pay = (178�� - Annual-Pay) � .�44

���755 When Other

���76� Compute Tax-Pay = Base-Pay � .�44

Figure 122. Changes to Source Program

The changed program will contain the coding shown in Figure 123 on page 346.
The listing will have “I” in column 7 for inserted lines.

 Chapter 20. Techniques to Improve Programmer Productivity 345

 Advanced Topics

���73� Evaluate True

���735I When Annual-Pay Greater Than 178��

���74�I Move Zero To Tax-Pay

���745I When Annual-Pay Greater Than 178�� - Base-Pay

���75�I Compute Tax-Pay = (178�� - Annual-Pay) � .�44

���755I When Other

���76�I Compute Tax-Pay = Base-Pay � .�44

���765 End-Evaluate

���77� Add Base-Pay To Annual-Pay.
...

���85� Stop Run.

Figure 123. COBOL Statements Changed to Source COPY Library Statements

Changes made through use of the INSERT and DELETE statements remain in
effect for the one compilation only. The copy of PAYROLL in the library is not
changed.

Making a Change to Your Program (the REPLACE Statement)
The REPLACE statement provides you with a means of applying a change to
sections of COBOL source programs without having to manually find all places that
need to be changed. It is an easy method of doing simple string substitutions. It is
similar in action to the COPY statement, except that it acts on the entire source
program, not just on the text in COPY libraries. See COBOL/VSE Language Refer-
ence for the format and syntax of the statement.

You can use the REPLACE statement to resolve any conflict between new
reserved COBOL words and names you have used in your program. For example,
if you have used the name DAY-OF-WEEK for a data item in your program, you will
need to change all the occurrences of that name. To do this, insert the following
REPLACE statement before the first line of your program:

REPLACE ==DAY-OF-WEEK== BY ==WEEKDAY==.

This will replace all occurrences of DAY-OF-WEEK in your program with the new
name WEEKDAY. Because REPLACE statements are processed after any COPY
statements are processed, it will also change any occurrences of DAY-OF-WEEK
that were included in text from COPY libraries.

The rules for using the REPLACE statement are:

� The LIB compiler option must be specified

� REPLACE statements may not introduce COPY statements (although COPY
statements may introduce REPLACE statements)

� REPLACE statements may not modify or introduce other REPLACE statements

� Any REPLACE statement is in effect from the point at which it is specified until:

– it is explicitly turned off
– the occurrence of another REPLACE statement
– the end of the compiled program is reached

346 COBOL/VSE Programming Guide

 Advanced Topics

Simplifying Complex Coding and Other Programming Tasks
By using COBOL/VSE intrinsic functions and LE/VSE Callable Services, you can
avoid having to code a lot of arithmetic or other complex tasks.

 Intrinsic Functions
COBOL/VSE provides various string- and number-manipulation capabilities that can
help you simplify your coding. For more information, see “Built-in (Intrinsic)
Functions” on page 49 and “Numeric Intrinsic Functions” on page 83.

LE/VSE Callable Services
LE/VSE callable services simplify performing arithmetic and many other types of
programming tasks. Invoked with standard CALL statements, there are many
LE/VSE services that help you perform:

 � Condition handling
� Dynamic storage management
� Date and time calculations

 � Mathematical calculations
 � Message handling
� National language support
� General services such as obtaining an LE/VSE formatted dump

To invoke an LE/VSE service, use a CALL statement with the appropriate parame-
ters for that particular service:

Call "CEESSSQT" using argument, feedback-code, result

Where you define the variables in the CALL statement, in the Data Division of your
program with appropriate data definitions required by the particular function you are
calling:

 77 argument comp-1.

77 feedback-code pic x(12) display.

 77 result comp-1.

In this example, LE/VSE service CEESSSQT calculates the value of the square
root of the variable argument and returns this value in the variable result. The
value returned in feedback-code indicates whether the service completed success-
fully. After a call to an LE/VSE service, the RETURN-CODE special register is set
to 0 regardless of whether or not the service completes successfully.

The parameter for the return-code is generally the last parameter in the list, except
for mathematical services where it is the second to last parameter.

For a complete list of, and for detailed information on, the syntax, parameter
descriptions, and usage notes for each LE/VSE callable service, see the LE/VSE
Programming Reference.

 Condition Handling
LE/VSE condition handling provides facilities that allow COBOL/VSE applications to
react to unexpected errors.

Note that you can use language constructs or run-time options to select the level at
which you want to handle each condition. For example, you can decide to handle a

 Chapter 20. Techniques to Improve Programmer Productivity 347

 Advanced Topics

particular error in your COBOL program, let the LE/VSE condition handler take care
of it, or percolate the error so that it is handled by the operating system. Only a
truly catastrophic failure need disrupt your application environment.

In support of LE/VSE condition handling, COBOL/VSE adds support for procedure-
pointer data items, as described under “Passing Entry Point Addresses with Proce-
dure Pointers” on page 280.

Dynamic Storage Services
These services enable you to get, free, and reallocate storage. In addition, you can
create your own user-defined storage pools.

Date and Time Calculations
With the date and time services, you can get the current local time and date in
several formats, as well as perform date and time conversions. Two callable ser-
vices, CEEQCEN and CEESCEN, provide a predictable way to handle 2-digit
years, such as 95 for 1995 or 02 for 2002.

 Mathematical Calculations
Calculations that are easy to perform with this type of callable service include loga-
rithmic, exponential, trigonometric, square root, and integer functions.

Note: COBOL/VSE also supports a set of intrinsic functions that include some of
the same mathematical and date functions. The LE/VSE callable services
and intrinsic functions provide equivalent results for the same functions.
See “Numeric Intrinsic Functions” on page 83 for an overview of numeric
intrinsic functions and “LE/VSE Callable Services” on page 86 for an expla-
nation of the differences between COBOL/VSE intrinsic functions and
LE/VSE date and mathematical services.

 Message Handling
Message handling services include getting, dispatching, and formatting messages.
Messages for non-CICS applications can be directed to files or printers, while CICS
messages are directed to a CICS transient data queue. LE/VSE takes care of split-
ting the message to accommodate the record length of the destination, as well as
presenting the message in the correct national language, such as Japanese or
English.

National Language Support
These services make it easy for your applications to support the language wanted
by application users. You can set the language and country, and obtain default
date, time, number, and currency formats. For example, you might want dates to
appear as 23 June 99, or 6,23,99.

General Callable Services
LE/VSE also offers a set of general callable services, which include the capability to
get an LE/VSE formatted dump.

Depending upon the options you select, the LE/VSE formatted dump may contain
the names and values of variables, as well as information about conditions,
program tracebacks, control blocks, storage, and files. All LE/VSE dumps have a
common, well-labeled, and easy-to-read format.

348 COBOL/VSE Programming Guide

 Advanced Topics

Sample List of LE/VSE Callable Services
The following table gives examples of a few callable services available with
LE/VSE.

Note: Many more services are available than those listed in the table. For a com-
plete list, see the LE/VSE Programming Reference.

Figure 124 (Page 1 of 2). LE/VSE Callable Services Available from COBOL/VSE.

Function Type For Example:

Date and Time CEECBLDY To convert a string representing a date
into a COBOL integer date format. The
COBOL integer date format represents a
date as the number of days since 31
December 1600. The service is compat-
ible with ANSI COBOL intrinsic functions.

CEEQCEN, CEESCEN To query and set the LE/VSE century
window. These two callable services are
valuable when one or more programs use
two digits to express a year. That is, 03,
can easily be interpreted as 2003 and not
1903.

CEEGMTO To calculate the difference between the
local system time and Greenwich Mean
Time.

CEELOCT To get the current local time in your choice
of three formats.

Mathematical
Services

CEESIABS To calculate the absolute value of an
integer.

CEESSNWN To calculate the nearest whole number for
a single-precision floating-point number.

CEESSCOS To calculate the cosine of an angle.

Dynamic Storage
Services

CEEGTST To get storage.

CEECZST To change the size of a previously allo-
cated storage block.

CEEFRST To free storage.

Condition Handling
Services

CEEHDLR To register a user condition handler.

CEESGL To raise or signal a condition.

CEEMRCR, CEEMRCE To indicate where the program will resume
running after the condition handler has
completed.

Message Handling
Services

CEEMOUT To dispatch a message.

CEEMGET To retrieve a message.

National Language
Support Services

CEE5LNG To change or query the current national
language.

CEE5CTY To change or query the current national
country.

CEE5MCS To obtain the default currency symbol for a
given country.

 Chapter 20. Techniques to Improve Programmer Productivity 349

 Advanced Topics

Figure 124 (Page 2 of 2). LE/VSE Callable Services Available from COBOL/VSE.

Function Type For Example:

General Services CEE5DMP To obtain an LE/VSE formatted dump.

CEETEST To start a debug tool, such as that pro-
vided by Debug Tool/VSE.

Using LE/VSE Callable Services—An Example
Many callable services offer the COBOL programmer entirely new function that
would require extensive coding using previous versions of COBOL. Two such ser-
vices are CEEDAYS and CEEDATE, which you can use effectively when you want
to format dates for output.

Figure 125 shows a sample COBOL program that uses LE/VSE services to format
and display a date from the results of a COBOL ACCEPT statement.

 ID DIVISION.

 PROGRAM-ID. HOHOHO.

��

� FUNCTION: DISPLAY TODAY'S DATE IN THE FOLLOWING FORMAT: �

� WWWWWWWWW, MMMMMMMM DD, YYYY �

� �

� I.E. SUNDAY, DECEMBER 25, 1994 �

� �

��

 ENVIRONMENT DIVISION.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 �1 CHRDATE.

�5 CHRDATE-LENGTH PIC S9(4) COMP VALUE 1�.

 �5 CHRDATE-STRING PIC X(1�).

 �1 PICSTR.

 �5 PICSTR-LENGTH PIC S9(4) COMP.

 �5 PICSTR-STRING PIC X(8�).

 77 LILIAN PIC S9(9) COMP.

 77 FORMATTED-DATE PIC X(8�).

 77 DAYSFC PIC X(12).

 77 DATEFC PIC X(12).

Figure 125 (Part 1 of 2). Example with LE/VSE Callable Services

350 COBOL/VSE Programming Guide

 Advanced Topics

 PROCEDURE DIVISION.

���

� USE LE DATE/TIME CALLABLE SERVICES TO PRINT OUT �

� TODAY'S DATE FROM COBOL ACCEPT STATEMENT. �

���

ACCEPT CHRDATE-STRING FROM DATE.

MOVE "YYMMDD" TO PICSTR-STRING.

MOVE 6 TO PICSTR-LENGTH.

CALL "CEEDAYS" USING CHRDATE , PICSTR , LILIAN , DAYSFC.

MOVE " WWWWWWWWWZ, MMMMMMMMMZ DD, YYYY " TO PICSTR-STRING.

MOVE 5� TO PICSTR-LENGTH.

CALL "CEEDATE" USING LILIAN , PICSTR , FORMATTED-DATE ,

 DATEFC.

 DISPLAY "������������������������������".

 DISPLAY FORMATTED-DATE.

 DISPLAY "������������������������������".

 STOP RUN.

Figure 125 (Part 2 of 2). Example with LE/VSE Callable Services

Using CEEDAYS and CEEDATE reduces the code required without LE/VSE.

Finding Coding Errors
Errors fall into two broad classes: those that the compiler can identify when it
examines your source program, and those that surface later when you run the
program. The second type of error, the run-time error, is often harder to track
down.

For ideas on diagnosing and correcting run-time errors, see LE/VSE Debugging
Guide and Run-Time Messages.

Checking for Errors, Using NOCOMPILE
After you have completed your design reviews and desk-checked your
coding, you can check your program for syntax errors with the
NOCOMPILE option. For information on how to specify a compiler
option such as NOCOMPILE, see “Using Compiler Options” on
page 216.

Errors the Compiler Can Identify
The compiler detects errors that are not dependent on run-time logic.
While it can correct some of the errors it finds, the compiler cannot
correct all of them. If your compilation fails, you need to fix the source
program and compile it again.

Common coding mistakes include:

 � Misspellings

� Faulty punctuation (especially missing, extra, or misplaced periods)

� Not observing COBOL formatting rules (Area A and Area B)

� Incorrect or incomplete syntax

� Using reserved words in data-definitions or paragraph headers

 Chapter 20. Techniques to Improve Programmer Productivity 351

 Advanced Topics

Sometimes mistakes go unnoticed at compile time because the state-
ment makes sense to the compiler, even though it is not what you
intended. These errors surface at run time.

Errors the Compiler Cannot Identify
Check for these mistakes in your program logic:

� Failing to match the record description in your source program with
the record format on the file to be read. For example, a numeric
field that should contain zero (numeric) actually contains blanks
(alphanumeric).

� Trying to perform calculations on invalid data.

� Moving data into an item that is too small for it.

� Moving a group item to another group item when the subordinate
data descriptions are incompatible.

� Specifying a USAGE clause for a redefining data item that is dif-
ferent from the USAGE specified for the item redefined, and not
keeping track of the changed USAGE.

� Specifying subscript values that are not within the bounds of the
table. (You can use the SSRANGE compiler option to check for this
type of error.)

� Attempting an illogical I/O operation, such as reading a file that is
opened OUTPUT, or closing a file that is not opened. (Test the file
status code after each input/output.)

� Not defining a sign field for items that may hold negative values.
(The sign is lost and what should have been a negative number
becomes a positive number.)

� Not initializing the items in the Working-Storage Section with a value
before using them.

� Not initializing counters and indexes.

� In a called program, incorrectly matching the data descriptions in the
Linkage Section with those of the calling program.

� In the calling program, incorrectly identifying the data to be passed.

Controlling the Content of the Output Listing
The *CONTROL (*CBL) statement is an output listing control statement. With the
SOURCE, MAP, and LIST compiler options, this statement selectively suppresses
or allows production of output. The names *CONTROL and *CBL are synony-
mous; wherever one appears in the explanation that follows, the other may be sub-
stituted.

The characters *CONTROL or *CBL may start in any column, beginning with
column 7, followed by at least one space or comma and one or more option key
words. The option keywords must be separated by one or more spaces or
commas. The *CONTROL statement must be the only statement on the line and
may be terminated with a period. Continuation is not allowed.

352 COBOL/VSE Programming Guide

 Advanced Topics

Note: *CONTROL does not turn options on and off. It only allows listing control
for those listing options in effect for the compilation. The keywords that may
appear are: SOURCE and NOSOURCE, MAP and NOMAP, LIST and NOLIST.

The source line containing the *CONTROL statement does not appear in the
source listing.

Your installation may set certain options to have fixed values that cannot be
replaced for individual applications. These fixed options take precedence over
options specified using:

PARM statement in JCL
JCL OPTION statement

 PROCESS statement (synonym: CBL)
 *CONTROL (*CBL)

(See “Using Compiler Options” on page 216 for more information on the order of
precedence of compiler options.)

The requested options are handled in the following manner:

� If an option or its negation appears more than once in a *CONTROL statement,
the last occurrence of the option keyword is used.

� If the corresponding option has been requested as a parameter to the compiler,
then a *CONTROL statement with the negation of the option keyword must
precede the portions of the source program for which listing output is to be
inhibited. Listing output then resumes when a *CONTROL statement with the
affirmative option keyword is encountered.

� If the negation of the corresponding option has been requested as a parameter
to the compiler, the output of that type is always inhibited.

Selective Source Listing
Production or suppression of a listing of the input source program lines is controlled
by the *CONTROL SOURCE and *CONTROL NOSOURCE statements (or *CBL
SOURCE and *CBL NOSOURCE).

If any *CONTROL NOSOURCE or *CBL NOSOURCE statement is encountered
and SOURCE has been requested as a parameter to the compiler, the following
informational (I-level) message is issued:

Printing of the source code has been suppressed.

The source program text is displayed as follows:

� If NUM is not requested, the sequence field is printed to the left of the listing.

� If NUM is requested, the sequence field is blank, unless sequence is violated
(in which case the sequence field appears to the left of the listing).

The entire line is displayed in the body of the listing.

 Chapter 20. Techniques to Improve Programmer Productivity 353

 Advanced Topics

Storage Mapping in the Data Division
Parts of the MAP listing and embedded MAP summary can be selected or inhibited
by use of *CONTROL MAP or *CONTROL NOMAP statements (*CBL MAP or
*CBL NOMAP statements) interspersed throughout the source.

For example, if the Data Division listing has the following format:

�CONTROL NOMAP �CBL NOMAP

 �1 A �1 A

 �2 B �2 B

�CONTROL MAP �CBL MAP

then A and B will not appear in the MAP listing, and the embedded MAP summa-
ries for A and B will not appear in the right margin of the source listing. For exam-
ples of MAP and embedded MAP listings, see “Data Map Listing” on page 305.

Object Code in the Procedure Division
You can control the selective listing of generated object code with the *CONTROL
LIST and *CONTROL NOLIST statements (*CBL LIST and *CBL NOLIST).

� User-defined names are displayed

� The sequence field and COBOL statement are placed on a separate line to
make room for the user-defined names.

� One or two operands participating in the machine instructions are displayed on
the right. An asterisk immediately follows the data-names that are defined in
more than one structure (thus, made unique by qualification in the source
program).

� The relative location of any generated label appearing as an operand is dis-
played in parentheses. (This is done because the target label may be far
removed from the reference, especially in structured programming.)

� Internal clauses of COBOL statements are displayed in the statement line
format.

 Debug Tool/VSE
Debug Tool/VSE provides these productivity enhancements:

� Debug Tool/VSE sessions can be in interactive full-screen mode, or in batch
mode.

During an interactive full-screen mode session, you can use Debug Tool/VSE's
full-screen services and session panel windows on a 3270 device to debug
your program as it is running.

 � COBOL-like commands.

For each high-level language supported, commands for coding actions to be
taken at breakpoints are provided in a syntax similar to that programming lan-
guage.

 � Mixed-language debugging.

You can debug an application that contains programs written in different lan-
guages. Debug Tool/VSE automatically determines the language of the
program or subprogram being run.

354 COBOL/VSE Programming Guide

 Advanced Topics

For more information, see the Debug Tool/VSE User's Guide and Reference.

 Chapter 20. Techniques to Improve Programmer Productivity 355

 Advanced Topics

Chapter 21. The “Year 2000” Problem

This chapter provides some information on date processing problems associated
with the year 2000, and recommends some solutions that you can adopt to help
resolve them.

Date Processing Problems
Many applications use two digits rather than four to represent the year in date
fields, and assume that these values represent years from 1900 to 1999. This
compact date format works well for the 1900s, but it does not work for the year
2000 and beyond because these applications interpret “00” as 1900 rather than
2000, producing incorrect results.

This chapter outlines a number of approaches you can adopt to resolve problems
of this nature, and points to facilities available in the COBOL compiler and in the
LE/VSE callable services that can assist you.

For more information on the new features of the COBOL language that can help
resolve date-related problems, see Chapter 22, “Using the Millennium Language
Extensions” on page 366.

For more information about Year 2000 issues, and IBM software products that can
help you identify and resolve their related problems, visit the website at:
http://www.software.ibm.com/year2000.

Year 2000 Solutions
There are several solutions to the Year 2000 problem. Many of these solutions
refer to a “century window”. A century window is a 100-year interval, such as
1950–2049, within which any 2-digit year is unique. For example, with a century
window of 1930–2029, 2-digit years would be interpreted as follows:

Year values from 00 through 29 are interpreted as years 2000–2029
Year values from 30 through 99 are interpreted as years 1930–1999

The solutions outlined in this chapter are:

� The Full Field Expansion Solution (the long-term approach)

� The Internal Bridging Solution

� The Century Window Solution

� The Mixed Field Expansion and Century Window Solution

� The Century Encoding/Compression Solution

� The Integer Format Date Solution

Each of these is discussed in more detail below.

356 Copyright IBM Corp. 1983, 1998

 Advanced Topics

The Full Field Expansion Solution
To take your programs through to the year 9999, you must eventually rewrite appli-
cations and rebuild databases and files to use 4-digit year fields rather than 2-digit
year fields.

The field expansion method is a long-term solution and is the recommended
approach to addressing the Year 2000 problem. To achieve this field expansion,
you need to develop a program to read in the old data, convert it, and write it back
into a copy of the original file or data base that has been expanded to hold the
4-digit year data. All new data would then go into the new file or database. All of
your application programs that use those files and databases need to be changed
to act on the new 4-digit year date fields instead of the 2-digit year fields.

Your conversion program needs to use a century window when expanding 2-digit
years to 4 digits, to ensure that the output dates are correct.

There are several ways to use COBOL/VSE to help convert your databases or files
from 2-digit year dates to 4-digit year dates, with a century window being taken into
account:

DATEPROC processing
Use the DATEPROC compiler option and the DATE FORMAT clause to
define date fields, and use MOVE statements to expand the dates based on
the century window specified by the yearwindow compiler option. For
example:

�5 Date-Short Pic x(6) Date Format yyxxxx.
...

�5 Date-Long Pic x(8) Date Format yyyyxxxx.
...

Move Date-Short to Date-Long.

For more information, see Chapter 22, “Using the Millennium Language
Extensions” on page 366.

COBOL coding
You can move a 2-digit year date field to an expanded receiving field, and
“hard code” a century component as part of the move. For example:

�5 Date-Short Pic x(6) Date Format yyxxxx.
...

�5 Date-Long Pic x(8) Date Format yyyyxxxx.
...

String "19" Date-Short Delimited by Size

 Into Date-Long.

The hard-coded century component assumes a century window of
1900–1999 in this example, but you can add code to recognize different date
ranges and assign a different century based on the value of Date-Short. For
example, the following code expands the date based on a century window of
1930–2029:

 Chapter 21. The “Year 2000” Problem 357

 Advanced Topics

�5 Date-Short Pic x(6) Date Format yyxxxx.
...

�5 Date-Long Pic x(8) Date Format yyyyxxxx.
...

 77 Century Pic x(2).
...

If Date-Short Less than "3�����" Then

Move "2�" to Century

 Else

Move "19" to Century

 End-If.

String Century Date-Short Delimited by Size

 Into Date-Long.

Intrinsic functions
Three intrinsic functions are available to expand 2-digit year dates into 4-digit
year dates, with the window being specified as an argument to the function.
The functions are:

DATE-TO-YYYYMMDD
Expand a Gregorian date with a 2-digit year to the same date with a
4-digit year.

DAY-TO-YYYYDDD
Expand a Julian date with a 2-digit year to the same date with a
4-digit year.

YEAR-TO-YYYY
Expand a 2-digit year to a 4-digit year.

With these functions, you specify the century window to be used when
expanding the year. For full details and syntax of these functions, see
COBOL/VSE Language Reference.

Callable services
LE/VSE provides a number of callable services to manipulate and convert
dates. Some of these services can accept a date with a 2-digit year as
input, and in this case, the callable services will apply the LE/VSE century
window. The following services either affect or can be affected by this
century window:

CEECBLDY Convert a date to a COBOL integer number of days.

CEEDAYS Convert a date to a Lilian integer number of days.

CEEQCEN Query the LE/VSE century window.

CEESCEN Change the LE/VSE century window.

CEESECS Convert a date and time stamp into a number of Lilian seconds.

For full details on these and other callable services, see the LE/VSE Pro-
gramming Reference.

For additional information about the century window feature of the LE/VSE
callable services, see rhe LE/VSE Programming Guide.

Advantages:

� The code changes are straightforward.

� Minimum testing is required and possibly no need for simulation of future dates
on dedicated machines.

358 COBOL/VSE Programming Guide

 Advanced Topics

� Faster resulting code.

� The issue is addressed once and for all.

� Maintenance will become cheaper.

Disadvantages:

� Databases and files must be changed.

The Internal Bridging Solution
This solution involves keeping the dates in your files and databases as 2-digit year
dates, and expanding them into other data items in your program.

In your application progams, you need to add some data items to hold the 4-digit
year dates, and some processing logic to expand and contract the date fields. The
resultant program will be structured like this:

1. Read the input files with 2-digit year dates.

2. Declare “shadow” data items that contain 4-digit year dates, and expand the
2-digit year fields into these work fields.

3. Use the 4-digit year dates for all date processing in the program.

4. Copy (window) the 4-digit year date fields back to 2-digit format for the output
process.

5. Write the 2-digit year dates to the output files.

There are several ways to use COBOL/VSE to achieve the field expansion and win-
dowing needed for this solution.

For date field expansion:

� Use the DATEPROC compiler option and the DATE FORMAT clause to define
the dates in the input records as windowed date fields, and the work fields as
expanded date fields. Perform expanded MOVEs or stores using MOVE or
COMPUTE statements.

� Use the intrinsic functions DATE-TO-YYYYMMDD, DAY-TO-YYYYDDD, and
YEAR-TO-YYYY to copy and expand date fields from the input records to work
fields.

� Use the LE/VSE callable services CEEDAYS and CEEDATE.

For date windowing:

� Simply MOVE the last 2 digits of the year back to the 2-digit year date fields.
You should also add some code to check that the date is still within the century
window, and take some error action if it is not. For example, if the 4-digit year
field contains 2010 and the century window is 1905–2004, the date is outside
the century window, and to simply store the last 2 digits would be incorrect.

� With the DATEPROC compiler option and the DATE FORMAT clause, copy the
expanded date fields back to windowed date fields. If you use a COMPUTE
statement to do this, you can use the ON SIZE ERROR phrase to ensure that
the date remains within the century window, or to take some action if it doesn't.
For details, see “ON SIZE ERROR Phrase” on page 376.

 Chapter 21. The “Year 2000” Problem 359

 Advanced Topics

Advantages:

� Databases and files need not be changed.

� The code changes are straightforward.

� Good interim step towards a full field expansion solution.

� Faster resulting code.

Disadvantages:

� Some risk of data corruption.

� Short- to medium-term solution only.

The Century Window Solution
The century window solution allows 2-digit years to be interpreted in a 100-year
window (because each 2-digit number can only occur once in any 100-year period).

There are several ways to use COBOL/VSE to help you achieve this:

� Use the DATEPROC compiler option and the DATE FORMAT clause to define
date fields. This provides an automated windowing capability using the century
window defined by the YEARWINDOW compiler option.

For more information, see Chapter 22, “Using the Millennium Language
Extensions” on page 366.

� Use the intrinsic functions DATE-TO-YYYYMMDD, DAY-TO-YYYYDDD, and
YEAR-TO-YYYY to interpret date fields based on a century window. The
century window is specified as an argument to the intrinsic function. For
example:

If Function YEAR-TO-YYYY (Current-Year, 48) Greater Than

Function YEAR-TO-YYYY (Due-Year, 48) Then

Display "Due date has passed."

 End-If.

In this example, the century window begins 48 years prior to the year at the
time the program is being run. If the program is running in 1998, then the
century window is 1950–2049. This would allow a Current-Year value of 00 to
be “greater” than a Due-Year value of 99.

� Insert IF statements around the references to date fields in your program, to
determine how to apply a century component. For example, the following code
implements a century window of 1940–2039:

If YY-1 less than "4�" Then

Move "2�" to CC-1

 Else

Move "19" to CC-1

 End-If.

� Use the LE/VSE callable services to manipulate date fields using a century
window defined by the CEESCEN service.

You cannot use the century window forever because a 2-digit year can only be
unique in a given 100-year period. Over time you will need more than 100 years
for your data window—in fact, many companies need more than 100 years now.
For example, the century window cannot solve the problem of trying to figure out
how old a customer is if the customer is older than 100 years and you only have

360 COBOL/VSE Programming Guide

 Advanced Topics

2-digit year dates. For these issues and others you need to adopt The Full Field
Expansion Solution.

Advantages:

� No database or file changes.

Disadvantages: The following disadvantages apply to the Century Window solution
regardless of which method you use to implement it:

� Performance will be slower due to increased logic.

� More testing is required to validate changes, and simulation of future dates on
dedicated machines is essential.

� Very difficult to manage across applications.

� The problem is not permanently solved and it will become necessary to change
date programs and databases to use 4-digit years eventually.

In addition, if you do not use the DATEPROC and DATE FORMAT method, the
following disadvantages apply:

� Risk of performing incorrect translations.

� Code changes are more error-prone and require more expertise.

� Increased maintenance costs.

The Mixed Field Expansion and Century Window Solution
You don't have to convert all of your files and databases at one time. Where a
data base is shared by many applications, it might be more convenient to keep any
dates that it contains in 2-digit year form. But where a file is used by a limited
number of programs, it is best to eliminate the 2-digit year constraint as soon as
possible.

For those dates that are still in 2-digit year form, you can use internal bridging or
century windowing, both of which are described in detail in “The Internal Bridging
Solution” on page 359, and “The Century Window Solution” on page 360, respec-
tively.

You change the data descriptions for dates that you have expanded to 4-digit year
form, and then use any of the techniques described in “The Full Field Expansion
Solution” for processing them.

The DATEPROC compiler option is a particularly convenient way of implementing
this solution, since it directly supports the use of both expanded and windowed date
fields within a single statement.

The mixed solution has the advantages and disadvantages of the individual tech-
niques that are discussed in these sections. In addition, the mixed solution has the
advantage that files and databases can be changed as convenient, and kept
unmodified otherwise.

 Chapter 21. The “Year 2000” Problem 361

 Advanced Topics

The Century Encoding/Compression Solution
The century encoding/compression solution involves encoding/compressing
numbers greater than 99 into existing 2-byte date fields. (For example, using
hexadecimal rather than decimal digits.) This means rewriting applications to cor-
rectly interpret encoded/compressed values in the database.

This solution is the least desirable way to address the Year 2000 problem.

Advantages:

� Uses existing 2-byte date fields.

Disadvantages:

� Performance will be slower due to increased logic.

� More testing is required to validate changes and simulation of future dates on
dedicated machines is essential.

� Very difficult to manage across applications.

� Code changes are more error-prone and require more expertise.

� Increased maintenance costs.

� The problem is not permanently solved and it will become necessary to change
date programs and databases to use 4-digit years eventually.

� Cannot be read in dumps or listings.

� Must be translated whenever externalized.

� Risk of performing incorrect translations.

The Integer Format Date Solution
Integer dates specify a number of days from some point in the past.

Integer dates are provided by COBOL intrinsic functions and by the LE/VSE call-
able services.

This solution is not the recommended way to address the Year 2000 problem.
Instead, use the The Full Field Expansion Solution described on page 357.

Advantages:

� Uses only 4 bytes to store a date.

Disadvantages:

� Performance will be slower due to increased logic.

� More testing is required to validate changes and simulation of future dates on
dedicated machines is essential.

� Very difficult to manage across applications.

� Code changes are more error-prone and require more expertise.

� Increased maintenance costs.

� The problem is not permanently solved and it will become necessary to change
date programs and databases to use 4-digit years eventually.

362 COBOL/VSE Programming Guide

 Advanced Topics

� Cannot be read in dumps or listings.

� Must be translated whenever externalized.

� Risk of performing incorrect translations.

� There are too many different integer format starting dates:

– CICS and SQL/DS start with January 1, 1900
– PL/I does not support integer date values
– C starts with January 1, 1970
– COBOL starts with January 1, 1601
– LE/VSE callable services start with October 15, 1582 (Lilian integer dates)

There will be no problems with integer dates if conversion to and from integer is
done using the same method in the same program. There will only be prob-
lems if the integer values are stored or passed between programs. These
problems could still be avoided by:

– Not using the value returned by CEECBLDY as input to other LE/VSE call-
able services; CEECBLDY returns an ANSI COBOL integer date that can
be used with COBOL intrinsic functions.

– Only using LE/VSE callable services, or only COBOL intrinsic functions, for
getting and manipulating 4-digit year dates.

– Using the INTDATE(LILIAN) compiler option. This will cause the intrinsic
functions to return Lilian integer dates that will be compatible with LE/VSE
date callable services (and different from the results returned in
COBOL/VSE Release 1).

When INTDATE(LILIAN) is in effect, CEECBLDY will not be usable,
because you will have no way to turn an ANSI integer into a meaningful
date using either intrinsic functions or callable services. If you code a
CALL 'literal' statement with CEECBLDY as the target of the call, and
INTDATE(LILIAN) is in effect, the compiler will diagnose this and convert
the call target to CEEDAYS.

This method is the safest of the three, because you can store integer
dates, pass them between programs, and even pass them from PL/I to
COBOL to C programs and have no problems, as long as all programs use
LE/VSE callable services for date processing.

For more information on the INTDATE compiler option, see “INTDATE” on
page 238.

 Performance Considerations
Any implementation of a solution to the year 2000 problem will have some impact
on the performance of your application. This section discusses some of the per-
formance aspects that you should consider.

 Performance Comparison
The following implementation methods are listed in order of least performance
impact to most performance impact.

 Chapter 21. The “Year 2000” Problem 363

 Advanced Topics

Full field expansion
The best performance can be obtained by expanding all of the dates in your
files as a one-time task, and thereafter using the 4-digit year date fields in all
processing.

Mixed field expansion and DATEPROC windowing
If the dates in your files have not yet been expanded, the best performance
can be obtained by expanding the date fields as they are read from the files,
and using these expanded dates in the main processing body of the
program. In this way, the expansion process is only performed once for
each date field.

Mixed field expansion and manual windowing
You can expand your input date fields manually, using combinations of
COBOL coding, intrinsic functions, and callable services to apply the century
window. This has more performance impact than DATEPROC windowing,
even though the expansion process is still only performed once for each date
field.

DATEPROC windowing
The millennium language extensions provide a windowing method that is
designed to be efficient. However, the action of viewing a windowed date
field for a COBOL IF or MOVE statement still imposes some processor over-
head.

Manual windowing
Date windowing using COBOL IF statements adds a level of complexity to
the program, and adds some processor overhead because of the extra
COBOL statements. Typically the overhead of an IF statement of this form
is more than the overhead of the automatic DATEPROC windowing process.

How to Get 4-digit Year Dates
Many COBOL programs need to obtain the date at the time of execution, to use as
“Date-Of-...” fields in output files or reports, or to compare against other dates read
from input files. COBOL provides a number of methods of obtaining the current
date with a 4-digit year. The simplest of these are:

The intrinsic function CURRENT-DATE
Retrieves the date in Gregorian form, and can also retrieve the current time
and the offset from Greenwich Mean Time.

ACCEPT identifier FROM DATE YYYYMMDD
Retrieves the date in Gregorian form.

ACCEPT identifier FROM DAY YYYYDDD
Retrieves the date in Julian form.

The CEELOCT callable service
Retrieves the date in three different forms, including Gregorian with a 4-digit
year.

364 COBOL/VSE Programming Guide

 Advanced Topics

Using Callable Services with DOS/VS COBOL and VS COBOL II
If you are using DOS/VS COBOL or VS COBOL II, support for the LE/VSE
date/time callable services is limited, as follows:

DOS/VS COBOL There is no support for LE/VSE date/time callable services.

VS COBOL II You cannot use static calls from VS COBOL II programs to any
LE/VSE callable services. You can use DYNAMIC calls from VS
COBOL II programs to any of the following date/time callable
services to process dates:

 CEECBLDY CEEISEC
 CEEDATE CEELOCT
 CEEDATM CEEQCEN
 CEEDAYS CEESCEN
 CEEDYWK CEESECI
 CEEGMT CEESECS
 CEEGMTO CEE5CTY

 Chapter 21. The “Year 2000” Problem 365

 Advanced Topics

Chapter 22. Using the Millennium Language Extensions

This chapter provides information on the millennium language extensions that have
been incorporated into COBOL/VSE to assist with Year 2000 processing.

 Description
The term “Millennium Language Extensions” refers collectively to the features of
COBOL/VSE that are activated by the DATEPROC compiler option to help with
Year 2000 date logic problems.

Note: The millennium language extensions can only be enabled if your system
has the product VisualAge COBOL Millennium Language Extensions for VSE/ESA
(5686-MLE) installed with your compiler.

The DATEPROC compiler option enables special date-oriented processing of identi-
fied date fields, and the YEARWINDOW compiler option specifies the 100-year
window (the century window) to be used for the interpretation of 2-digit windowed
years. For a description of the DATEPROC compiler option, see “DATEPROC” on
page 231. For a description of the YEARWINDOW compiler option, see
“YEARWINDOW” on page 256.

The extensions, when enabled, include:

� The DATE FORMAT clause. This is added to items in the Data Division to
identify date fields, and to specify the location of the year component within the
date.

� The reinterpretation of the function return value as a date field, for the following
intrinsic functions:

 DATE-OF-INTEGER
 DATE-TO-YYYYMMDD
 DAY-OF-INTEGER
 DAY-TO-YYYYDDD
 YEAR-TO-YYYY

� The reinterpretation as a date field of the conceptual data items DATE, DATE
YYYYMMDD, DAY, and DAY YYYYDDD in the following forms of the ACCEPT
statement:

ACCEPT identifier FROM DATE
ACCEPT identifier FROM DATE YYYYMMDD
ACCEPT identifier FROM DAY
ACCEPT identifier FROM DAY YYYYDDD

� The intrinsic functions UNDATE and DATEVAL, used for selective reinterpreta-
tion of date fields and non-dates.

� The intrinsic function YEARWINDOW, which retrieves the starting year of the
century window set by the YEARWINDOW compiler option.

This chapter describes how you can use these new facilities to help solve date
logic problems in your COBOL programs.

366 Copyright IBM Corp. 1983, 1998

 Advanced Topics

 Getting Started
With the millennium language extensions, you can make simple changes to your
COBOL programs to define date fields, and the compiler recognizes and acts on
those dates using a century window to ensure consistency.

A century window is a 100-year interval, such as 1950–2049, within which any
2-digit year is unique. For windowed date fields, the century window start date is
specified by the YEARWINDOW compiler option. When the DATEPROC option is
in effect, the compiler applies this window to 2-digit year, or windowed, date fields
in the program. For example, with a century window of 1930–2029, COBOL inter-
prets 2-digit years as:

Year values from 00 through 29 are interpreted as years 2000–2029
Year values from 30 through 99 are interpreted as years 1930–1999

To implement date windowing using COBOL date processing, you define the
century window with the YEARWINDOW compiler option, and identify the date
fields in your program with DATE FORMAT clauses. The compiler then automat-
ically applies the century window to operations on those dates. It is often possible
to implement a solution in which the windowing process is fully automatic; that is,
you simply identify the fields that contain windowed dates, and you do not need any
extra program logic to implement the windowing.

Implementing Date Processing
Following is a list of simple steps that you need to follow in order to implement
automatic date recognition in a COBOL program:

� Use the DATEPROC compiler option to enable the process. You specify this
as either DATEPROC(FLAG) to get some helpful diagnostic messages, or
DATEPROC(NOFLAG). For full information, see “DATEPROC” on page 231.

� Use the YEARWINDOW compiler option to set the century window. There are
two ways of doing this:

– For a fixed window, specify a 4-digit year between 1900 and 1999 as the
YEARWINDOW option value. For example, YEARWINDOW(1950) defines
a fixed window of 1950–2049.

– For a sliding window, specify a negative integer from -1 through -99 as the
YEARWINDOW option value. For example, YEARWINDOW(-48) defines a
sliding window that starts 48 years before the year that the program is
running. So if the program is running in 1998, the century window is
1950–2049, and in 1999 it automatically becomes 1951–2050, and so on.
For a full description and syntax, see “YEARWINDOW” on page 256.

� Add the DATE FORMAT clause to the data description entries of those data
items in the program that contain dates that you want the compiler to recognize
as windowed or expanded dates. For a full description of the DATE FORMAT
clause, see the COBOL/VSE Language Reference.

� To expand dates, use MOVE or COMPUTE statements to copy the contents of
windowed date fields to expanded date fields.

� If necessary, use the DATEVAL and UNDATE intrinsic functions, to convert
between date fields and non-dates. For a full description of these functions,
see the COBOL/VSE Language Reference.

 Chapter 22. Using the Millennium Language Extensions 367

 Advanced Topics

� Compile the program with the DATEPROC(FLAG) option, and review the diag-
nostic messages to see if date processing has produced any unexpected side
effects (see “Analyzing Date-Related Diagnostic Messages” on page 380).
When the compilation has only Information-level diagnostics, you can recompile
with the DATEPROC(NOFLAG) option to produce a “clean” listing.

This provides a simple implementation of date windowing and expansion capabili-
ties in a COBOL program.

Resolving Date-Related Logic Problems
This section discusses three approaches that you can adopt to assist with date-
related processing problems, and shows how you can use the millennium language
extensions with each approach to achieve a solution.

These and other approaches are discussed in conceptual terms in “Year 2000
Solutions” on page 356. The description here concentrates on the application of
COBOL date processing capabilities as a tool to implement the solutions.

The approaches outlined here are:

� Basic Remediation (the century window solution)

 � Internal Bridging

� Full Field Expansion

 Basic Remediation
The simplest method of ensuring that your programs will continue to function
through the year 2000 is to implement a century window solution.

With this method, you define a century window, and specify the fields that contain
windowed dates. The compiler then interprets the 2-digit years in those date fields
according to the century window.

The following sample code shows how a program can be modified to use this auto-
matic date windowing capability. The program checks whether a video tape was
returned on time:

CBL DATEPROC(FLAG),YEARWINDOW(-6�)
...

 �1 Loan-Record.

 �5 Member-Number Pic X(8).

 �5 Tape-ID Pic X(8).

�5 Date-Due-Back Pic X(6) Date Format yyxxxx.
�5 Date-Returned Pic X(6) Date Format yyxxxx.
...

If Date-Returned Greater than Date-Due-Back Then

 Perform Fine-Member.

In this example, there are no changes to the Procedure Division from the program's
previous version. The addition of the DATE FORMAT clause on the two date fields
means that the compiler recognizes them as windowed date fields, and therefore
applies the century window when processing the IF statement. For example, if
Date-Due-Back contains “000102” (January 2, 2000) and Date-Returned contains

368 COBOL/VSE Programming Guide

 Advanced Topics

“991231” (December 31, 1999), Date-Returned is less than (earlier than) Date-Due-
Back, so the program does not perform the Fine-Member paragraph.

Advantages:

� Fast and easy to implement.

� No change to the program's logic, therefore less testing required.

� This solution will allow your programs to function into and beyond the year
2000.

Disadvantages:

� This should be regarded as a short-term solution, not as a permanent fix.

� There may be some performance degradation introduced by the date win-
dowing functions.

� Implementation of this solution is application-dependent. It will not suit all appli-
cations.

 Internal Bridging
If your files and databases have not yet been converted to 4-digit year dates, but
you prefer to use 4-digit expanded-year logic in your programs, you can use an
internal bridge technique to process the dates as 4-digit years. Your program will
be structured as follows:

1. Read the input files with 2-digit year dates.

2. Declare these 2-digit dates as windowed date fields and move them to
expanded date fields, so that the compiler automatically expands them to
4-digit year dates.

3. In the main body of the program, use the 4-digit year dates for all date proc-
essing.

4. Window the dates back to 2-digit years.

5. Write the 2-digit year dates to the output files.

This process provides a convenient migration path to a full expanded-date solution,
and also may have performance advantages over using windowed dates. For more
information, see “Performance Considerations” on page 363.

Using this technique, your changes to the program logic are minimal. You simply
add statements to expand and contract the dates, and change those statements
that refer to dates to use the 4-digit year date fields in Working-Storage instead of
the 2-digit year fields in the records.

Because you are converting the dates back to 2-digit years for output, you should
allow for the possibility of the year being outside the century window. For example,
if a date field contains the year 2005, but the century window is 1905–2004, then
the date is outside the window, and simply moving it to a 2-digit year field would be
incorrect. To protect against this, you can use a COMPUTE statement to store the
date, with the ON SIZE ERROR phrase to detect whether or not the date is within
the century window. For more details, see “ON SIZE ERROR Phrase” on
page 376.

 Chapter 22. Using the Millennium Language Extensions 369

 Advanced Topics

The following example shows how a program can be changed to implement an
internal bridge method:

CBL DATEPROC(FLAG),YEARWINDOW(-6�)
...

 File Section.

 FD Customer-File.

 �1 Cust-Record.

�5 Cust-Number Pic 9(9) Binary.
...

�5 Cust-Date Pic 9(6) Date Format yyxxxx.
 Working-Storage Section.

77 Exp-Cust-Date Pic 9(8) Date Format yyyyxxxx.
...

 Procedure Division.

Open I-O Customer-File.

 Read Customer-File.

Move Cust-Date to Exp-Cust-Date.
...

 �===�

� Use expanded date in the rest of the program logic �

 �===�
...

Compute Cust-Date = Exp-Cust-Date
 On Size Error Display "Exp-Cust-Date outside
 century window"
 End-Compute
 Rewrite Cust-Record.

Advantages:

� Straightforward changes to the program logic, therefore testing is easy.

� This solution will allow your programs to function into and beyond the year
2000.

� This is a good incremental step towards a full expanded-year solution.

 � Good performance.

Disadvantages:

� Some risk of data corruption.

Full Field Expansion
The full field expansion solution involves explicitly expanding 2-digit year date fields
to contain full 4-digit years in your files and databases, and then using those fields
in expanded form in your programs. This is the only method by which you can be
assured of reliable date processing for all applications.

The millennium language extensions allow you to progressively move towards a full
date field expansion solution, using the following steps:

1. Apply the short-term (basic remediation) solution, and use this until you have
the resources to implement a more permanent solution.

2. Apply the internal bridging scheme. This allows you to use expanded dates in
your programs while your files continue to hold dates in 2-digit year form. This
in turn will allow you to progress more easily to a full field expansion solution,

370 COBOL/VSE Programming Guide

 Advanced Topics

because there will be no further changes to the logic in the main body of the
programs.

3. Change the file layouts and database definitions to use 4-digit year dates.

4. Change your COBOL copybooks to reflect these 4-digit year date fields.

5. Run a utility program (or special-purpose COBOL program) to copy from the old
format files to the new format. For a sample program, see Figure 126.

6. Recompile your programs and perform regression testing and date testing.

After you have completed the first two steps, the remaining steps in the sequence
can be repeated any number of times. You do not need to change every date field
in every file at the same time. Using this method, you can select files for progres-
sive conversion based on criteria such as business needs or interfaces with other
applications.

When you use this method, you will need to write special-purpose programs to
convert your files to expanded-date form. Figure 126 shows a simple program that
copies from one file to another while expanding the date fields. Note that the
record length of the output file is larger than that of the input file because the dates
are expanded.

CBL LIB,QUOTE,NOOPT,DATEPROC(FLAG),YEARWINDOW(-8�)

 ��

�� CONVERT - Read a file, convert the date ��

�� fields to expanded form, write ��

�� the expanded records to a new ��

 �� file. ��

 ��

 IDENTIFICATION DIVISION.

 PROGRAM-ID. CONVERT.

 ENVIRONMENT DIVISION.

 INPUT-OUTPUT SECTION.

 FILE-CONTROL.

 SELECT INPUT-FILE

ASSIGN TO INFILE

FILE STATUS IS INPUT-FILE-STATUS.

 SELECT OUTPUT-FILE

ASSIGN TO OUTFILE

FILE STATUS IS OUTPUT-FILE-STATUS.

Figure 126 (Part 1 of 2). Expanding File Dates

 Chapter 22. Using the Millennium Language Extensions 371

 Advanced Topics

 DATA DIVISION.

 FILE SECTION.

 FD INPUT-FILE

RECORDING MODE IS F.

 �1 INPUT-RECORD.

 �3 CUST-NAME.

�5 FIRST-NAME PIC X(1�).

 �5 LAST-NAME PIC X(15).

 �3 ACCOUNT-NUM PIC 9(8).

�3 DUE-DATE PIC X(6) DATE FORMAT YYXXXX. �1�
�3 REMINDER-DATE PIC X(6) DATE FORMAT YYXXXX.

�3 DUE-AMOUNT PIC S9(5)V99 COMP-3.

 FD OUTPUT-FILE

RECORDING MODE IS F.

 �1 OUTPUT-RECORD.

 �3 CUST-NAME.

�5 FIRST-NAME PIC X(1�).

 �5 LAST-NAME PIC X(15).

 �3 ACCOUNT-NUM PIC 9(8).

�3 DUE-DATE PIC X(8) DATE FORMAT YYYYXXXX. �2�
�3 REMINDER-DATE PIC X(8) DATE FORMAT YYYYXXXX.

�3 DUE-AMOUNT PIC S9(5)V99 COMP-3.

 WORKING-STORAGE SECTION.

 �1 INPUT-FILE-STATUS PIC 99.

�1 OUTPUT-FILE-STATUS PIC 99.

 PROCEDURE DIVISION.

OPEN INPUT INPUT-FILE.

OPEN OUTPUT OUTPUT-FILE.

 READ-RECORD.

 READ INPUT-FILE

AT END GO TO CLOSE-FILES.

MOVE CORRESPONDING INPUT-RECORD TO OUTPUT-RECORD. �3�
 WRITE OUTPUT-RECORD.

GO TO READ-RECORD.

 CLOSE-FILES.

 CLOSE INPUT-FILE.

 CLOSE OUTPUT-FILE.

 EXIT PROGRAM.

END PROGRAM CONVERT.

Figure 126 (Part 2 of 2). Expanding File Dates

The following notes apply to Figure 126 on page 371.

�1� The fields DUE-DATE and REMINDER-DATE in the input record are both
Gregorian dates with 2-digit year components. They have been defined with a
DATE FORMAT clause in this program so that the compiler will recognize them
as windowed date fields.

�2� The output record contains the same two fields in expanded date format. They
have been defined with a DATE FORMAT clause so that the compiler will treat
them as 4-digit year date fields.

�3� The MOVE CORRESPONDING statement moves each item in
INPUT-RECORD individually to its matching item in OUTPUT-RECORD.
When the two windowed date fields are moved to the corresponding expanded

372 COBOL/VSE Programming Guide

 Advanced Topics

date fields, the compiler will expand the year values using the current century
window.

Advantages:

� This is a permanent solution; no more changes are required. This solution will
allow your programs to function into and beyond the year 2000.

 � Best performance.

� Maintenance will be easier.

Disadvantages:

� Need to ensure that changes to databases, copybooks, and programs are all
synchronized.

 Programming Techniques
This section describes the techniques you can use in your programs to take advan-
tage of date processing, and the effects of using date fields on COBOL language
elements.

For full details of COBOL syntax and restrictions, see the COBOL/VSE Language
Reference.

 Date Comparisons
When you compare two date fields, the two dates must be compatible; that is, they
must have the same number of non-year characters (see “Compatible Dates” on
page 384). The number of digits for the year component need not be the same.
For example:

77 Todays-Date Pic X(8) Date Format yyyyxxxx.

 �1 Loan-Record.

�5 Date-Due-Back Pic X(6) Date Format yyxxxx.
...

If Date-Due-Back Greater than Todays-Date Then...

In this example, a windowed date field is compared to an expanded date field, so
the century window is applied to Date-Due-Back.

Note that Todays-Date must have a DATE FORMAT clause in this case to define it
as an expanded date field. If it did not, it would be treated as a non-date field, and
would therefore be considered to have the same number of year digits as Date-
Due-Back. The compiler would apply the assumed century window to it, which
would create an inconsistent comparison. For more information, see “The
Assumed Window” on page 386.

Level 88 Condition-Name
If a windowed date field has an 88-level condition-name associated with it, the
literal in the VALUE clause is windowed against the century window for the compi-
lation unit rather than the assumed century window of 1900–1999. For example:

�5 Date-Due Pic 9(6) Date Format yyxxxx.

 88 Date-Target Value �5122�.

If the century window is 1950–2049 and the contents of Date-Due is 051220
(representing December 20, 2005), then the condition

 Chapter 22. Using the Millennium Language Extensions 373

 Advanced Topics

 If Date-Target

would evaluate to TRUE, but the condition

If Date-Due = �5122�

would evaluate to FALSE. This is because the literal 051220 is treated as a non-
date, and therefore windowed against the assumed century window of 1900–1999
to represent December 20, 1905. But where the same literal is specified in the
VALUE clause of an 88-level condition-name, it becomes part of the data item to
which it is attached. Because this data item is a windowed date field, the century
window is applied whenever it is referenced.

You can also use the DATEVAL intrinsic function in a comparison expression to
convert a literal to a date field, and the output from the intrinsic function will then be
treated as either a windowed or expanded date field to ensure a consistent compar-
ison. For example, using the above definitions, both of these conditions

If Date-Due = Function DATEVAL (�5122� "YYXXXX")

If Date-Due = Function DATEVAL (2��5122� "YYYYXXXX")

would evaluate to TRUE. For more information on the DATEVAL intrinsic function,
see “DATEVAL” on page 379.

Restriction: With a level-88 condition name, you can also specify the THRU
option on the VALUE clause, for example:

�5 Year-Field Pic 99 Date Format yy.

88 In-Range Value 98 Thru �6.

With this form, the windowed value of the second item must be greater than the
windowed value of the first item. However, the compiler can only verify this if the
YEARWINDOW compiler option specifies a fixed century window (for example,
YEARWINDOW(1940) rather than YEARWINDOW(-60)).

For this reason, if the YEARWINDOW compiler option specifies a sliding century
window, you cannot use the THRU option on the VALUE clause of a level-88 condi-
tion name.

 Sign Condition
Some applications use special values such as zeros in date fields to act as a
“trigger,” that is, to signify that some special processing is required. For example,
in an Orders file, a value of zero in Order-Date might signify that the record is a
customer totals record rather than an order record. The program compares the
date to zero, as follows:

 �1 Order-Record.

�5 Order-Date Pic S9(5) Comp-3 Date Format yyxxx.
...

If Order-Date Equal Zero Then...

However, this comparison is not valid because the literal value Zero is a non-date,
and is therefore windowed against the assumed century window to give a value of
1900000 (for more information, see “Treatment of Non-Dates” on page 385).

In this case, you can use a sign condition, as follows:

If Order-Date Is Zero Then...

374 COBOL/VSE Programming Guide

 Advanced Topics

instead of a literal comparison. With a sign condition, Order-Date is treated as a
non-date, and the century window is not considered.

Notes:

1. This only applies if the operand in the sign condition is a simple identifier rather
than an arithmetic expression. If an expression is specified, the expression is
evaluated first, with the century window being applied where appropriate. The
sign condition is then compared to the results of the expression.

2. You could also use the UNDATE intrinsic function to achieve the same result.
For details, see “UNDATE” on page 380.

 Arithmetic Expressions
You can perform arithmetic operations on numeric date fields in the same manner
as any numeric data item, and, where appropriate, the century window will be used
in the calculation. However, there are some restrictions on where date fields can
be used in arithmetic expressions.

Arithmetic operations that include date fields are restricted to:

� Adding a non-date to a date field

� Subtracting a non-date from a date field

� Subtracting a date field from a compatible date field to give a non-date result

The following arithmetic operations are not allowed:

� Any operation between incompatible date fields

� Adding two date fields

� Subtracting a date field from a non-date

� Unary minus, applied to a date field

� Multiplication, division, or exponentiation of or by a date field

Windowed Date Fields
Where a windowed date field participates in an arithmetic operation, it is processed
as if the value of the year component of the field were first incremented by 1900 or
2000, depending on the century window. For example:

 �1 Review-Record.

�3 Last-Review-Year Pic 99 Date Format yy.

�3 Next-Review-Year Pic 99 Date Format yy.
...

Add 1� to Last-Review-Year Giving Next-Review-Year.

If the century window is 1910–2009, and the value of Last-Review-Year is 98, then
the computation proceeds as if Last-Review-Year is first incremented by 1900 to
give 1998. Then the ADD operation is performed, giving a result of 2008. This is
stored in Next-Review-Year as 08.

 Chapter 22. Using the Millennium Language Extensions 375

 Advanced Topics

Order of Evaluation
Because of the restrictions on date fields in arithmetic expressions, you may find
that programs that previously compiled successfully now produce diagnostic mes-
sages when some of the data items are changed to date fields.

Consider the following example:

 �1 Dates-Record.

�3 Start-Year-1 Pic 99 Date Format yy.

�3 End-Year-1 Pic 99 Date Format yy.

�3 Start-Year-2 Pic 99 Date Format yy.

�3 End-Year-2 Pic 99 Date Format yy.
...

Compute End-Year-2 = Start-Year-2 + End-Year-1 - Start-Year-1.

In this example, the first arithmetic expression evaluated is:

Start-Year-2 + End-Year-1

However, this is the addition of two date fields, which is not permitted. To resolve
this, you should use parentheses to isolate those parts of the arithmetic expression
that are allowed. For example:

Compute End-Year-2 = Start-Year-2 + (End-Year-1 - Start-Year-1).

In this case, the first arithmetic expression evaluated is:

End-Year-1 - Start-Year-1

This is the subtraction of one date field from another, which is permitted, and gives
a non-date result. This non-date result is then added to the date field End-Year-1,
giving a date field result which is stored in End-Year-2.

ON SIZE ERROR Phrase
In the example in “Windowed Date Fields” on page 375, the result of 2008 falls
within the century window of 1910–2009, so a value of 08 in Next-Review-Year will
be recognized as 2008 by subsequent statements in the program.

However, the statement:

Add 2� to Last-Review-Year Giving Next-Review-Year.

would give a result of 2018. As this falls outside the range of the century window,
if the result is stored in Next-Review-Year it would be incorrect, because later refer-
ences to Next-Review-Year would interpret it as 1918. In this case, the result of
the operation depends on whether the ON SIZE ERROR phrase is specified on the
ADD statement, as follows:

� If SIZE ERROR is specified, the receiving field is not changed, and the SIZE
ERROR imperative statement is executed.

� If SIZE ERROR is not specified, the result is stored in the receiving field with
the left-hand digits truncated.

This is an important consideration when developing an internal bridging solution to
resolve a date processing problem (see “Internal Bridging” on page 369). When
you contract a 4-digit year date field back to 2 digits to write it to the output file, you
need to ensure that the date falls within the century window, and that therefore the
2-digit year date will be represented correctly in the field.

376 COBOL/VSE Programming Guide

 Advanced Topics

You can achieve this using a COMPUTE statement to do the contraction, with a
SIZE ERROR phrase to handle the out-of-window condition. For example:

Compute Output-Date-YY = Work-Date-YYYY

On Size Error Go To Out-of-Window-Error-Proc.

Note: SIZE ERROR processing for windowed date receivers recognizes any year
value that falls outside the century window. That is, a year value less than the
starting year of the century window raises the SIZE ERROR condition, as does a
year value greater than the ending year of the century window.

Sorting and Merging
Note: DFSORT/VSE is the IBM sort/merge licensed program. Wherever
DFSORT/VSE is mentioned, any other equivalent sort/merge product can be used.

If your version of DFSORT/VSE supports the Y2PAST option and the field identi-
fiers Y2C, Y2D, and Y2Z, you can perform sort and merge operations using win-
dowed date fields as sort keys. The fields will be sorted on their windowed date
sequence, with the century window being taken into account for the sort process.

The following example shows a sort of a transaction file, with the transaction
records being sorted by date and time within account number. The field Trans-
Date is a windowed Julian date field.

 SD Transaction-File

Record Contains 29 Characters

Data Record is Transaction-Record.

 �1 Transaction-Record.

 �5 Trans-Account Pic 9(8).

 �5 Trans-Type Pic X.

�5 Trans-Date Pic 9(5) Date Format yyxxx.

 �5 Trans-Time Pic 9(6).

 �5 Trans-Amount Pic 9(7)V99.
 . . .

 Sort Transaction-File

On Ascending Key Trans-Account

 Trans-Date

 Trans-Time

 Using Input-File

 Giving Sorted-File.

COBOL passes the relevant information to DFSORT/VSE in order for it to perform
the sorting operation properly. In addition to the information that is always passed
to DFSORT/VSE, COBOL also passes:

� The century window as the Y2PAST sort option
� The windowed year field and date format of Trans-Date

DFSORT/VSE then uses this information to perform the sorting process.

For information on DFSORT/VSE and the Y2PAST option, see the DFSORT/VSE
Application Programming Guide.

 Chapter 22. Using the Millennium Language Extensions 377

 Advanced Topics

Other Date Formats
To be eligible for automatic windowing, a date field should contain a 2-digit year as
the first or only part of the field. The remainder of the field, if present, must be
between 2 and 4 characters, but its content is not important. For example, it can
contain a 3-digit Julian day, or a 2-character identifier of some event specific to the
enterprise.

If there are date fields in your application that do not fit these criteria, then you may
have to make some code changes to define just the year part of the date as a date
field with the DATE FORMAT clause. Some examples of these types of date
formats are:

� A 3-character field consisting of a 2-digit year and a single character to repre-
sent the month (A–L representing 1–12). This is not supported because date
fields can have only zero, 2, 3, or 4 non-year characters.

� A Gregorian date of the form DDMMYY. This is not supported because the
year component is not the first part of the date.

If you need to use date windowing in cases like these, you will need to add some
code to isolate the year portion of the date.

In the following example, the two date fields contain dates of the form DDMMYY:

�3 Last-Review-Date Pic 9(6).

�3 Next-Review-Date Pic 9(6).
...

Add 1 to Last-Review-Date Giving Next-Review-Date.

In this example, if Last-Review-Date contains 230197 (January 23, 1997), then
Next-Review-Date will contain 230198 (January 23, 1998) after the ADD statement
is executed. This is a simple method of setting the next date for an annual review.
However, if Last-Review-Date contains 230199, then adding 1 gives 230200, which
is not the desired result.

Because the year is not the first part of these date fields, the DATE FORMAT
clause cannot be applied without some code to isolate the year component. In the
next example, the year component of both date fields has been isolated so that
COBOL can apply the century window and maintain consistent results:

 �3 Last-Review-Date.

�5 Last-R-DDMM Pic 9(4).

�5 Last-R-YY Pic 99 Date Format yy.

�3 Next-Review-Date Pic 9(6).

�5 Next-R-DDMM Pic 9(4).

�5 Next-R-YY Pic 99 Date Format yy.
...

Move Last-R-DDMM to Next-R-DDMM.

Add 1 to Last-R-YY Giving Next-R-YY.

Controlling Date Processing Explicitly
There may be times when you want COBOL data items to be treated as date fields
only under certain conditions, or only in specific parts of the program. Or your
application may contain 2-digit year date fields that cannot be declared as win-
dowed date fields because of some interaction with another software product. For
example, if a date field is used in a context where it is only recognized by its true

378 COBOL/VSE Programming Guide

 Advanced Topics

binary contents without further interpretation, the date in this field cannot be win-
dowed. This includes:

� A key on a VSAM file
� A search field in a database system such as DL/I or SQL/DS
� A key field in a CICS command

Conversely, there may be times when you want a date field to be treated as a
non-date in specific parts of the program.

COBOL provides two intrinsic functions to cater for these conditions:

DATEVAL Converts a non-date into a date field.

UNDATE Converts a date field into a non-date.

 DATEVAL
You can use the DATEVAL intrinsic function to convert a non-date into a date field,
so that COBOL will apply the relevant date processing to the field. The first argu-
ment to the function is the non-date to be converted, and the second argument
specifies the date format. The second argument is a literal string with a specifica-
tion similar to that of the date pattern in the DATE FORMAT clause.

As an example, assume that a program contains a field Date-Copied, and that this
field is referenced many times in the program, but most of these references simply
move it between records or reformat it for printing. Only one reference relies on it
containing a date, for comparison with another date.

In this case, it is better to leave the field as a non-date, and use the DATEVAL
intrinsic function in the comparison statement. For example:

�3 Date-Distributed Pic 9(6) Date Format yyxxxx.

 �3 Date-Copied Pic 9(6).
 . . .

If FUNCTION DATEVAL(Date-Copied "YYXXXX") Less than

 Date-Distributed ...

In this example, the DATEVAL intrinsic function converts Date-Copied into a date
field so that the comparison will be meaningful.

In most cases, the compiler makes the correct assumption about the interpretation
of a non-date, but accompanies this assumption with a warning-level diagnostic
message. This typically happens when a windowed date is compared to a literal:

�3 When-Made Pic x(6) Date Format yyxxxx.
...

If When-Made = "85�7�1" Perform Warranty-Check.

The literal is assumed to be a compatible windowed date but with a century window
of 1900–1999, thus representing July 15, 1985. You can use the DATEVAL
intrinsic function to make the year of the literal date explicit, and eliminate the
warning message:

If When-Made = Function Dateval("1985�7�1" "YYYYXXXX")

 Perform Warranty-Check.

For a full description and syntax of the DATEVAL intrinsic function, see the
COBOL/VSE Language Reference.

 Chapter 22. Using the Millennium Language Extensions 379

 Advanced Topics

 UNDATE
The UNDATE intrinsic function converts a date field to a non-date, so that it can be
referenced without any date processing.

In the following example, the field Invoice-Date in Invoice-Record is a windowed
Julian date. In some records, it contains a value of "00999" to indicate that this is
not a “true” invoice record, but a record containing file control information.

Invoice-Date has been given a DATE FORMAT clause because most of its refer-
ences in the program are date-specific. However, in the instance where it is
checked for the existence of a control record, the value of "00" in the year compo-
nent will lead to some confusion. A year of "00" in Invoice-Date will represent a
“true” year of either 1900 or 2000, depending on the century window. This is com-
pared to a non-date (the literal "00999" in the example), which will always be win-
dowed against the assumed century window and will therefore always represent the
year 1900.

To ensure a consistent comparison, you should use the UNDATE intrinsic function
to convert Invoice-Date to a non-date. This means that the IF statement is not
comparing any date fields, so it does not need to apply any windowing. For
example:

 �1 Invoice-Record.

�3 Invoice-Date Pic x(5) Date Format yyxxx.
...

If FUNCTION UNDATE(Invoice-Date) Equal "��999" ...

For a full description and syntax of the UNDATE intrinsic function, see the
COBOL/VSE Language Reference.

Analyzing Date-Related Diagnostic Messages
When the DATEPROC(FLAG) compiler option is in effect, the compiler produces
diagnostic messages for every statement that defines or references a date field. As
with all compiler-generated messages, each date-related message has one of the
following severity levels:

� Information-level, to draw your attention to the definition or use of a date field.

� Warning-level, to indicate that the compiler has had to make an assumption
about a date field or non-date because of inadequate information coded in the
program, or to indicate the location of date logic that should be manually
checked for correctness. Compilation proceeds, with any assumptions contin-
uing to be applied.

� Error-level, to indicate that the usage of the date field is incorrect. Compilation
continues, but run-time results are unpredictable.

� Severe-level, to indicate that the usage of the date field is incorrect. The state-
ment that generated this error is discarded from the compilation.

You should always eliminate error-level and severe-level messages from your
program by correcting the use of the date fields in the affected statements.
Warning-level messages deserve special attention because the assumptions that
the compiler makes may not be correct.

Your approach to warning-level diagnostic messages should be:

380 COBOL/VSE Programming Guide

 Advanced Topics

1. Avoidance. Be specific in your program changes, so that the compiler does not
need to make assumptions about your intended use of date fields (see
“Avoiding Warning-Level Messages” on page 381).

2. Analysis. Examine each diagnostic message, and either eliminate it, or, where
you consider it to be unavoidable, ensure that the compiler's assumptions are
correct (see “Analyzing Warning-Level Messages”).

Avoiding Warning-Level Messages
To avoid warning-level diagnostic messages, follow these simple guidelines:

� Don't specify a date field in a context where a date field doesn't make sense,
such as a FILE STATUS, PASSWORD, ASSIGN USING, LABEL RECORD, or
LINAGE item. If you do, you'll get a warning-level message and the date field
will be treated as a non-date.

� Ensure that implicit or explicit aliases for date fields are compatible, such as in
a group item that consists solely of a date field.

� Ensure that if a date field is defined with a VALUE clause, the value is compat-
ible with the date field definition.

� Use the DATEVAL intrinsic function if you want a non-date treated as a date
field, such as when moving a non-date to a date field, or comparing a win-
dowed date field with a non-date and you want a windowed date comparison.
If you don't use DATEVAL, the compiler will make an assumption about the use
of the non-date, and produce a warning-level diagnostic message. Even if the
assumption is correct, you may want to use DATEVAL just to eliminate the
message. For more information on the DATEVAL intrinsic function, see
“DATEVAL” on page 379.

� Use the UNDATE intrinsic function if you want a date field treated as a non-
date, such as moving a date field to a non-date, or comparing a non-date and a
windowed date field and you don't want a windowed comparison. For more
information on the UNDATE intrinsic function, see “UNDATE” on page 380.

Analyzing Warning-Level Messages
The following guidelines will help you to analyze date-related warning-level diag-
nostic messages:

� The diagnostic messages may indicate some date data items that should have
had a DATE FORMAT clause but were missed. You should either add DATE
FORMAT clauses to these items, or use the DATEVAL intrinsic function in ref-
erences to them.

� Pay particular attention to the usage of literals in relation conditions involving
date fields or in arithmetic expressions that include date fields. Note that the
DATEVAL function may be used on literals (as well as non-date data items) to
specify a DATE FORMAT pattern to be used, and the UNDATE function may
be used to enable a date field to be used in a context where date-oriented
behavior is not desired.

� With the REDEFINES and RENAMES clauses, the compiler may produce a
warning-level diagnostic message if a date field and a non-date occupy the
same storage location. You should check these cases carefully to confirm that
all uses of the various aliased data items are correct, and that none of the per-
ceived non-date redefinitions actually are dates or can adversely affect the date
logic in the program.

 Chapter 22. Using the Millennium Language Extensions 381

 Advanced Topics

Other Potential Problems
When you change a COBOL program to make use of the millennium language
extensions, you may find that some parts of the program need special attention to
resolve unforeseen changes in behavior. This section outlines some of those areas
that you may need to consider.

Packed Decimal Fields
COMPUTATIONAL-3 fields (packed decimal format) are often defined as having an
odd number of digits, even if the field will not be used to hold a number of that
magnitude. This is because the internal representation of packed decimal numbers
always allows for an odd number of digits (for details of internal representation, see
“Internal Representation of Numeric Items” on page 77).

A field that holds a 6-digit Gregorian date, for example, may be declared as PIC
S9(6) COMP-3, and this will reserve four bytes of storage. But the programmer
may have declared the field as PIC S9(7), knowing that this would reserve the
same four bytes, with the high-order digit always containing a zero.

If you simply add a DATE FORMAT YYXXXX clause to this field, the compiler will
give you a diagnostic message because the number of digits in the PICTURE
clause does not match the size of the date format specification. In this case, you
need to check carefully each use of the field. If the high-order digit is never used,
you can simply change the field definition to PIC S9(6). If it is used (for example, if
the same field can hold a value other than a date), you need to take some other
action. Other actions you can take include:

� Using a REDEFINES clause to define the field as both a date and a non-date
(this will also produce a warning-level diagnostic message)

� Defining another Working-Storage field to hold the date, and moving the
numeric field to the new field

� Not adding a DATE FORMAT clause to the data item, and using the DATEVAL
intrinsic function when referring to it as a date field

 Contracting Moves
When you move an expanded alphanumeric date field to a windowed date field, the
move does not follow the normal COBOL conventions for alphanumeric moves.
When both the sending and receiving fields are date fields, the move is right-
justified, not left-justified as normal. For an expanded-to-windowed (contracting)
move, this means that the leading two digits of the year are truncated.

Depending on the contents of the sending field, the results of such a move may be
incorrect. For example:

77 Year-Of-Birth-Exp Pic x(4) Date Format yyyy.

77 Year-Of-Birth-Win Pic xx Date Format yy.
...

Move Year-Of-Birth-Exp to Year-Of-Birth-Win.

If Year-Of-Birth-Exp contains "1925", Year-Of-Birth-Win will contain "25".
However, if the century window is 1930–2029, subsequent references to Year-Of-
Birth-Win will treat it as 2025, which is incorrect.

382 COBOL/VSE Programming Guide

 Advanced Topics

 Principles
To gain the most benefit from the millennium language extensions, it is important to
understand the reasons for their introduction into the COBOL language, and the
rationale behind their design. In particular, there are some apparent inconsisten-
cies that only make sense with an understanding of what the extensions are, and
what they are not.

You should not consider using the extensions in new applications, or in enhance-
ments to existing applications, unless the applications are using old data that
cannot be expanded until later.

The extensions do not provide fully-specified or complete date-oriented data types,
with semantics that recognize, for example, the month and day parts of Gregorian
dates. They do however provide special semantics for the year part of dates.

The millennium language extensions focus on a few key principles:

1. Programs to be re-compiled with date semantics are fully-tested and valuable
assets of the enterprise. Their only relevant limitation is that any 2-digit years
in the programs are restricted to the range 1900–1999.

2. No special processing is done for the non-year part of dates. That is why the
non-year part of the supported date formats is denoted by Xs. To do otherwise
might change the meaning of existing programs. The only date-sensitive
semantics that are provided involve automatically expanding (and contracting)
the 2-digit year part of dates with respect to the century window for the
program.

3. Dates with 4-digit year parts are generally only of interest when used in combi-
nation with windowed dates. Otherwise there is little difference between 4-digit
year dates and non-dates.

 Objectives
Based on these principles, the millennium language extensions are designed to
meet a number of objectives. You should evaluate the objectives that you need to
meet in order to resolve your date processing problems, and compare them against
the objectives of the millennium language extensions, to determine how your appli-
cation can benefit from them.

The objectives of the millennium language extensions are as follows:

1. The primary objective is to extend the useful life of your application programs,
as they are currently specified, into the twenty-first century.

2. Source changes to accomplish this must be held to the bare minimum, prefer-
ably limited to augmenting the declarations of date fields in the Data Division.
To implement basic remediation of date problems, you should not be required
to make any changes to the program logic in the Procedure Division.

3. The existing semantics of the programs will not be changed by the addition of
date fields. For example, where a date is expressed as a literal, as in:

If Expiry-Date Greater Than 98�1�1 ...

the literal is considered to be compatible (windowed or expanded) with the date
field to which it is compared. Further, because the existing program assumes
that 2-digit year dates expressed as literals are in the range 1900–1999, the

 Chapter 22. Using the Millennium Language Extensions 383

 Advanced Topics

extensions do not change this assumption (see “The Assumed Window” on
page 386).

4. The windowing feature is not intended for long-term use. Its intention is to
extend the useful life of applications through the year 2000, as a start towards
a long-term solution that can be implemented later.

5. The expanded date field feature is intended for long-term use, as an aid for
expanding date fields in files and databases.

 Concepts
With these principles and objectives in mind, you can better understand some of
the concepts of the millennium language extensions, and how they interact with
other parts of COBOL. This section describes some of these concepts.

 Date Semantics
All arithmetic, whether performed on date fields or not, acts only on the numeric
contents of the fields; date semantics for the non-year parts of date fields are not
provided. For example, adding 1 to a windowed Gregorian date field that contains
the value 980831 gives a result of 980832, not 980901.

However, date semantics are provided for the year parts of date fields. For
example, if the century window is 1950–2049, and the value of windowed date field
TwoDigitYear is 49, then the following ADD statement will result in the SIZE
ERROR imperative statement being executed:

Add 1 to TwoDigitYear

on Size Error Perform CenturyWindowOverflow

 End-Add

 Compatible Dates
The meaning of the term compatible dates depends on the COBOL division in
which the usage occurs, as follows:

� The Data Division usage is concerned with the declaration of date fields, and
the rules governing COBOL language elements such as subordinate data items
and the REDEFINES clause. In the following example, Review-Date and
Review-Year are compatible because Review-Year can be declared as a subor-
dinate data item to Review-Date:

 �1 Review-Record.

�3 Review-Date Date Format yyxxxx.

�5 Review-Year Pic XX Date Format yy.

�5 Review-M-D Pic XXXX.

For full details, see the COBOL/VSE Language Reference.

� The Procedure Division usage is concerned with how date fields can be used
together in operations such as comparisons, moves, and arithmetic
expressions. To be considered compatible, date fields must have the same
number of non-year characters. For example, a field with DATE FORMAT
YYXXXX is compatible with another field that has the same DATE FORMAT,
and with a YYYYXXXX field, but not with a YYXXX field.

The remainder of this discussion relates to the Procedure Division usage of com-
patible dates.

384 COBOL/VSE Programming Guide

 Advanced Topics

You can perform operations on date fields, or on a combination of date fields and
non-dates, provided that the date fields in the operation are compatible. For
example, with the following definitions:

�1 Date-Gregorian-Win Pic 9(6) Packed Date Format yyxxxx.

�1 Date-Julian-Win Pic 9(5) Packed Date Format yyxxx.

�1 Date-Gregorian-Exp Pic 9(8) Packed Date Format yyyyxxxx.

The statement:

If Date-Gregorian-Win Less than Date-Julian-Win ...

is inconsistent because the number of non-year digits is different between the two
fields. The statement:

If Date-Gregorian-Win Less than Date-Gregorian-Exp ...

is accepted because the number of non-year digits is the same for both fields. In
this case the century window is applied to the windowed date field
(Date-Gregorian-Win) to ensure that the comparison is meaningful.

Where a non-date is used in conjunction with a date field, the non-date is either
assumed to be compatible with the date field, or treated as a simple numeric value,
as described in the following section.

Treatment of Non-Dates
The simplest kind of non-date is just a literal value. The following items are also
non-dates:

� A data item whose data description does not include a DATE FORMAT clause.

� The results (intermediate or final) of some arithmetic expressions. For
example, the difference of two date fields is a non-date, wheras the sum of a
date field and a non-date is a date field.

� The output from the UNDATE intrinsic function.

When you use a non-date in conjunction with a date field, the compiler interprets
the non-date as either a date whose format is compatible with the date field, or a
simple numeric value. This interpretation depends on the context in which the date
field and non-date are used, as follows:

Comparison
Where a date field is compared to a non-date, the non-date is considered to
be compatible with the date field in the number of year and non-year charac-
ters. In the following example:

�1 Date-1 Pic 9(6) Date Format yyxxxx.
...

If Date-1 Greater than 971231 ...

Because the non-date literal 971231 is being compared to a windowed date
field, it is treated as if it had the same DATE FORMAT as Date-1, but with a
base year of 1900.

Arithmetic operations
In all supported arithmetic operations, non-date fields are treated as simple
numeric values. In the following example:

 Chapter 22. Using the Millennium Language Extensions 385

 Advanced Topics

�1 Date-2 Pic 9(6) Date Format yyxxxx.
...

Add 1���� to Date-2.

the numeric value 10000 is added to the Gregorian date in Date-2, effec-
tively adding one year to the date.

MOVE statement
Moving a date field to a non-date is not supported. However, you can use
the UNDATE intrinsic function to achieve this. For more information, see
“UNDATE” on page 380.

When you move a non-date to a date field, the sending field is assumed to
be compatible with the receiving field in the number of year and non-year
characters. For example, when you move a non-date to a windowed date
field, the non-date field is assumed to contain a compatible date with a
2-digit year.

The Assumed Window
Where the program operates on windowed date fields, the compiler applies the
century window for the compilation unit; that is, the one defined by the
YEARWINDOW compiler option. Where a windowed date field is used in conjunc-
tion with a non-date, and the context demands that the non-date also be treated as
a windowed date, the compiler uses an assumed century window to resolve the
non-date field.

The assumed century window is 1900–1999, which is typically not the same as the
century window for the compilation unit.

In many cases, particularly for literal non-dates, this assumed century window will
be the correct choice. For example, in the construct:

 �1 Manufacturing-Record.

�3 Makers-Date Pic X(6) Date Format yyxxxx.
...

If Makers-Date Greater than "72�1�1" ...

the literal should retain its original meaning of January 1, 1972, and not change to
2072 if the century window is, for example, 1975–2074. Even if the assumption is
correct, it is better to make the year explicit, and also eliminate the warning-level
diagnostic message that accompanies application of the assumed century window,
by using the DATEVAL intrinsic function:

If Makers-Date Greater than

Function Dateval("1972�1�1" "YYYYXXXX") ...

In other cases however, the assumption may not be correct. For example:

 �1 Project-Controls.

 �3 Date-Target Pic 9(6).
 . . .

 �1 Progress-Record.

�3 Date-Complete Pic 9(6) Date Format yyxxxx.
...

If Date-Complete Less than Date-Target ...

For this example, assume that Project-Controls is in a COPY member that is used
by other applications that have not yet been upgraded for Year 2000 processing,

386 COBOL/VSE Programming Guide

 Advanced Topics

and therefore Date-Target cannot have a DATE FORMAT clause. In the example,
if:

� The century window is 1910–2009,
� Date-Complete is 991202 (Gregorian date: December 2, 1999), and
� Date-Target is 000115 (Gregorian date: January 15, 2000),

then:

� Date-Complete is earlier than (less than) Date-Target.

However, because Date-Target does not have a DATE FORMAT clause, it is a
non-date, so the century window applied to it is the assumed century window of
1900–1999, which means that it is processed as January 15, 1900. So Date-
Complete will be greater than Date-Target, which is not the desired result.

In this case, you should use the DATEVAL intrinsic function to convert Date-Target
to a date field for this comparison. For example:

If Date-Complete Less than

Function Dateval (Date-Target "YYXXXX") ...

For more information on the DATEVAL intrinsic function, see “DATEVAL” on
page 379.

 Chapter 22. Using the Millennium Language Extensions 387

 Advanced Topics

Chapter 23. Target Environment Considerations

For certain COBOL/VSE functions and features, there are requirements based on
the particular environment in which your program will run. These are outlined
briefly in the sections that follow.

For detailed information on developing applications for specialized subsystems, you
should refer to the publication for the particular system of interest, as listed in the
“Bibliography” on page 448.

COBOL/VSE Programming Considerations for CICS
When developing COBOL/VSE programs that run under CICS, certain consider-
ations and restrictions apply. A discussion of these coding considerations and
restrictions follows. For additional information on developing programs to run under
CICS, consult the CICS application programming guide appropriate for your CICS
environment (see “Bibliography” on page 448 for a list of CICS books).

For information on the run-time considerations and restrictions of running
COBOL/VSE programs under CICS, see the LE/VSE Programming Guide.

If you have written DOS/VS COBOL programs that run under CICS, see
COBOL/VSE Migration Guide for information on differences between DOS/VS
COBOL and COBOL/VSE under CICS.

Developing a COBOL/VSE Program for CICS
COBOL/VSE programs written for CICS can run under CICS/VSE Version 2
Release 3 or later.

The following list summarizes the unique considerations of developing and running
COBOL/VSE programs for and under CICS, respectively. Each of these is dis-
cussed in greater detail in subsequent sections.

� Coding input/output in CICS

CICS handles all input/output between the application program and devices
(including terminals). Therefore, instead of using COBOL input/output state-
ments to perform input/output, use CICS commands.

 � Compiler Options

When coding for CICS, certain compiler options are either required or recom-
mended.

� CICS Reserved Word Table

The CICS reserved word table supplied by IBM can be used during compilation
to flag certain COBOL language elements not supported under CICS.

� Using CICS HANDLE with COBOL/VSE Programs

There are certain considerations to be aware of when using a CICS HANDLE
command to handle conditions, aids, and abends caused by a COBOL/VSE
subprogram.

� CICS coding restrictions

388 Copyright IBM Corp. 1983, 1998

 Advanced Topics

Certain COBOL statements are not allowed under CICS.

� Translating CICS commands into COBOL

The CICS translator interprets CICS commands and generates COBOL code.

� Compiling CICS Code

The COBOL/VSE compiler compiles the code generated by the CICS trans-
lator. COBOL/VSE programs that use CICS commands must be link-edited
with the CICS stub.

� Calls under CICS

Certain CALL restrictions and requirements must be observed if your program
is to run under CICS.

After compilation and link-edit, there are other steps needed before the COBOL
program can run under CICS. For example, CICS tables must be updated.
However, these CICS topics are beyond this book's focus. More information can
be found in the appropriate CICS application programming guide (see
“Bibliography” on page 448 for a list of CICS books).

CICS Commands and the Procedure Division
To code your program, you need to know how to code CICS commands within the
Procedure Division. Processing logic must be written in COBOL.

CICS commands are statements you include in the Procedure Division of your
application program. They have the following basic format:

EXEC CICS command name and command options
 END-EXEC

Coding Input/Output in CICS
All input/output is handled through CICS commands. Therefore, you do not
describe files or code any OPEN, CLOSE, READ, START, REWRITE, WRITE,
DELETE, ACCEPT or DISPLAY statements. Instead, you use CICS commands to
retrieve, update, insert, and delete data.

 Compiler Options
Required Options: When coding for CICS, these compiler options are required:

 RENT
 NODYNAM

LIB (if the program has a COPY or BASIS statement in it)

Note: The CICS translator always inserts a line into COBOL/VSE programs that
specifies:

CBL RES,RENT,NODYNAM,LIB

There is no longer a RES compiler option for COBOL/VSE. If you specify it,
you will receive an informational message.

Recommended Options: TRUNC(BIN) is recommended for those applications
that use binary data items that may contain more than 9 digits in a fullword or more
than 4 digits in a halfword.

 Chapter 23. Target Environment Considerations 389

 Advanced Topics

WORD(CICS) is recommended if you want those COBOL language elements not
supported under CICS to be flagged at compile time.

Options with No Effect: These compiler options have no effect under CICS:

 ADV
 FASTSRT
 OUTDD

For detailed information on individual compiler options, see pages 224–257.

CICS Reserved Word Table
COBOL/VSE provides an alternate reserved word table (IGYCCICS) specifically for
CICS application programs. It is set up so that COBOL words not supported under
CICS are flagged by the compiler with an error message.

Contents of the table: In addition to the COBOL words restricted by the default
reserved word table supplied by IBM, the CICS reserved word table restricts as
supplied by IBM the following COBOL words:

 SORT Users

If you intend to use the SORT statement under CICS (COBOL/VSE supports an
interface for the SORT statement under CICS), you must modify the CICS
reserved word table before using it. The words underlined above must be
removed from the list of words marked as restricted, because they are required
for the SORT function.

For instructions on how to customize the CICS reserved word table, refer to the
COBOL/VSE Installation and Customization Guide or see your system pro-
grammer.

How to Use the Table: Specify the compiler option WORD(CICS) if you want the
CICS reserved word table to be used during your compilation. For a description of
the WORD compiler option, refer to page 255.

ACCEPT
CLOSE
DELETE
DISPLAY
FD
FILE

FILE-CONTROL
INPUT-OUTPUT
I-O-CONTROL
MERGE
OPEN
READ

RERUN
REWRITE
SD
SORT
START
WRITE

Using CICS HANDLE with COBOL/VSE Programs

Effect of the CBLPSHPOP Run-time Option
The setting of the CBLPSHPOP run-time option affects the state of the HANDLE
specifications when calling a COBOL/VSE subprogram. For more information
about the CBLPSHPOP run-time option see the LE/VSE Programming Reference.

390 COBOL/VSE Programming Guide

 Advanced Topics

CBLPSHPOP(ON): When CBLPSHPOP is ON, the LE/VSE run time performs the
following when a COBOL/VSE subprogram is called:

� As part of program initialization, the run time does an EXEC CICS PUSH
HANDLE.

� As part of program termination, the run time does an EXEC CICS POP
HANDLE.

Therefore with CBLPSHPOP(ON), when a COBOL/VSE program calls another
COBOL/VSE program, the calling program's HANDLE specifications are sus-
pended. The default actions for HANDLE apply until the called program issues its
own HANDLE commands. The effects of the calling program's HANDLE specifica-
tions are reinstated upon return.

Note: HANDLE conditions are not suspended when calling a nested program.

It is recommended that you run with CBLPSHPOP(ON) if any of your called
COBOL/VSE subprograms uses one or more of the following CICS commands:

� CICS HANDLE CONDITION
� CICS HANDLE AID
� CICS HANDLE ABEND
� CICS IGNORE CONDITION
� CICS PUSH HANDLE
� CICS POP HANDLE

CBLPSHPOP(OFF): When CBLPSHPOP is OFF, the LE/VSE run time will not
perform the CICS PUSH/POP on a call to a COBOL/VSE subprogram.

In this case, when a COBOL/VSE program calls another COBOL/VSE program, the
calling program's HANDLE specifications are not suspended.

CICS HANDLE Restrictions
COBOL/VSE does not support the use of the CICS HANDLE command with the
LABEL option to handle conditions, aids, and abends in a program which were
caused by another program invoked using the COBOL CALL statement. Attempts
to perform cross program branching due to the use of the CICS HANDLE command
with the LABEL option will result in a transaction abend.

Note: If a condition, aid, or abend occurs in a nested program, then the LABEL for
the condition, aid, or abend must be in the same nested program; otherwise unpre-
dictable results will occur.

Figure 127 on page 392 illustrates CICS HANDLE in COBOL programs. Program
A has a CICS HANDLE CONDITION command and program B has no CICS
HANDLE commands. Program A calls program B; Program A also calls nested
program A1.

The following illustrates how a condition is handled in three example scenarios.

�1� CBLPSHPOP(ON): If the CICS READ command in program B causes a
condition, the condition will not be handled by program A (the handle specifi-
cations have been suspended because the run time performed a CICS
PUSH HANDLE); the condition will turn into a transaction abend.

 Chapter 23. Target Environment Considerations 391

 Advanced Topics

�2� CBLPSHPOP(OFF): If the CICS READ command in program B causes a
condition, the condition will not be handled by program A (the run time will
diagnose the attempt to perform cross program branching due to the use of
a CICS HANDLE command with the LABEL option); the condition will turn
into a transaction abend.

�3� If the CICS READ command in nested program A1 causes a condition, the
flow of control goes to label ERR-1 and unpredictable results will occur.

 ���

 � Program A �

 ���

 ID DIVISION.

 PROGRAM-ID. A.

 .

 .

 PROCEDURE DIVISION.

EXEC CICS HANDLE CONDITION

 ERROR(ERR-1)

 END-EXEC.

CALL 'B' USING DFHEIBLK DFHCOMMAREA.

CALL 'A1' USING DFHEIBLK DFHCOMMAREA.

 .

 .

 THE-END.

EXEC CICS RETURN END-EXEC.

 ERR-1.

 .

 .

� Nested program A1.

 ID DIVISION.

 PROGRAM-ID. A1.

 PROCEDURE DIVISION.

EXEC CICS READ �3�
 FILE('LEDGER')

 INTO(RECORD)

 RIDFLD(ACCTNO)

 END-EXEC.

END PROGRAM A1.

END PROGRAM A.

 ���

 � Program B �

 ���

 ID DIVISION.

 PROGRAM-ID. B.

 .

 .

 PROCEDURE DIVISION.

EXEC CICS READ �1� �2�
 FILE('MASTER')

 INTO(RECORD)

 RIDFLD(ACCTNO)

 END-EXEC.

 .

 .

END PROGRAM B.

Figure 127. CICS HANDLE in COBOL Programs

392 COBOL/VSE Programming Guide

 Advanced Topics

 Coding Restrictions
The following restrictions should be followed when coding COBOL/VSE programs
that run under CICS:

� Do not use EXEC, CICS, DLI, and END-EXEC for variable names.

� Do not use the FILE-CONTROL entry in the Environment Division, unless it is
being used for a SORT statement.

� Do not use the FILE SECTION of the Data Division, unless it is being used for
a SORT statement.

� Do not use user-specified parameters to the main program.

� Do not use USE declaratives (except USE FOR DEBUGGING).

� Do not use these COBOL language statements:

ACCEPT (Format 1 or 2—see “System Date under CICS” on page 394)
 CLOSE
 DELETE
 DISPLAY
 MERGE
 OPEN
 READ
 RERUN
 REWRITE
 START
 STOP literal
 WRITE

� The following restrictions apply to a COBOL/VSE program running above the
16-megabyte line:

1. BMS (Basic Mapping Support) maps, map sets, and partition sets resident
above the 16-megabyte line are not supported.

2. If the receiving program is link-edited with AMODE=31, addresses passed
must be 31 bits long, or 24 bits long with the leftmost byte set to zeros.

3. If the receiving program is link-edited with AMODE=24, addresses passed
must be 24 bits long.

� The ON OVERFLOW phrase and ON EXCEPTION phrase of the CALL state-
ment are supported under CICS with the following exception:

– If the COBOL/VSE program has been compiled with the CMPR2 compiler
option, there are no conditions under CICS which will cause the statement
specified by the ON OVERFLOW to be executed.

� If you use the CICS HANDLE CONDITION or HANDLE AID commands, the
LABEL specified for the CICS HANDLE command must be in the same Proce-
dure Division as the CICS command that causes branching to the CICS
HANDLE label.

 � Calls

– For the list of CALL restrictions and requirements, see “Calls under CICS”
on page 395.

 Chapter 23. Target Environment Considerations 393

 Advanced Topics

� REPLACE statements that contain EXEC commands must occur after the PRO-
CEDURE DIVISION statement of the program for the EXEC commands to be
translated.

� When coding nested (contained) programs, you must pass the DFHEIB and
DFHCOMMAREA parameters to any nested programs that contain EXEC com-
mands and/or references to the EIB (EXEC Interface Block). The same param-
eters must also be passed to any program that forms part of the control
hierarchy between such a program and its top level program.

� The space character is not interchangeable with a comma or semicolon within
EXEC commands: You must use the space as a word separator.

COBOL 85 Standard Considerations
CICS/VSE features the translator option, ANSI85, that supports most of the new
language features introduced by the COBOL 85 Standard. The ANSI85 translator
option supports the following language features:

� Blank lines intervening in literals
� Sequence numbers containing any character
� Lowercase characters supported in all COBOL words

 � REPLACE statement
 � Batch compilation
 � Nested programs
 � Reference modification
 � GLOBAL variables
� Interchangeability of comma, semicolon, and space
� Symbolic character definition

See the CICS/VSE Application Programming Guide for detailed information on the
ANSI85 translator support.

Translating CICS Commands into COBOL
The CICS translator takes your source program, and converts the EXEC CICS
commands to COBOL code. The translator replaces each EXEC CICS command
with one or more COBOL statements, one of which is a CALL statement.

Compiling and Link-Editing CICS Code
The CICS translator generates a CBL statement to force the following compiler
options for your program: RES, RENT, NODYNAM, and LIB. You cannot replace
these compiler options with options passed when you invoke the compiler (for
example, with PARM=...).

The input file for the compiler is the file you received as a result of the translation,
which is SYSPCH by default.

For information on link-edit considerations, see the LE/VSE Programming Guide.

System Date under CICS
You should not use a Format 1 ACCEPT statement in a CICS program. Format 2
ACCEPT is supported with the four-digit year options; that is:

ACCEPT identifier FROM DATE YYYYMMDD
ACCEPT identifier FROM DAY YYYYDDD

394 COBOL/VSE Programming Guide

 Advanced Topics

The recommended ways of retrieving the system date in a CICS program are these
forms of the ACCEPT statement, and the CURRENT-DATE intrinsic function.
These methods work in both CICS and non-CICS environments.

Note: The following forms of the ACCEPT statement to receive 2-digit year dates
are not supported under CICS:

ACCEPT identifier FROM DATE
ACCEPT identifier FROM DAY

Calls under CICS
If your COBOL/VSE program runs under CICS, observe these CALL restrictions
and requirements:

� You can make calls to and from VS COBOL II and/or COBOL/VSE programs.

� You can call a pre LE-conforming assembler-language program from a
COBOL/VSE program. You cannot call a COBOL/VSE or a VS COBOL II
program from a pre LE-conforming assembler-language program.

� Calls to LE-conforming assembler-language programs are supported. Calls
from LE-conforming assembler-language programs are supported with the
restriction that the assembler-language program is not a main program.

� The NODYNAM compiler option must be used if the COBOL/VSE program has
been translated by the CICS translator.

� CALL identifier can be used with the NODYNAM compiler option to dynamically
call a program. Called programs can contain any function supported by CICS
for the language.

� If you are calling a COBOL/VSE program that has been translated, you must
pass the EIB and COMMAREA as the first two parameters in the CALL state-
ment.

� COBOL/VSE and VS COBOL II programs cannot CALL or be CALLed by
DOS/VS COBOL programs. EXEC CICS LINK must be used instead.

� Support for interlanguage communication (ILC) with other HLL languages is
available. For more detailed information on ILC, see LE/VSE Writing Interlan-
guage Communication Applications. Where ILC is not supported, you can use
CICS LINK, XCTL, and RETURN instead.

COBOL/VSE Programming Considerations for DL/I
Although much of the coding of a COBOL/VSE program will be the same when
running under DL/I, you should be aware of the following recommendations and
restrictions.

Using CEETDLI to Interface to DL/I
With COBOL/VSE you can invoke DL/I facilities using the following interfaces:

 � CBLTDLI Call
� The LE/VSE callable service CEETDLI

Calls to CEETDLI are coded the same way as calls to CBLTDLI, and CEETDLI
performs essentially the same function as CBLTDLI. However, CEETDLI does offer
increased condition handling capabilities.

 Chapter 23. Target Environment Considerations 395

 Advanced Topics

For a complete description of CEETDLI, including its syntax, see the LE/VSE Pro-
gramming Reference. For considerations on condition handling under DL/I, see the
LE/VSE Programming Guide.

For Mixed COBOL/VSE, VS COBOL II, and DOS/VS COBOL
Applications

In an application with any mixture of COBOL/VSE, VS COBOL II, and DOS/VS
COBOL programs, the following compiler options are recommended:

� RENT for COBOL/VSE programs
� RENT and RES for VS COBOL II programs

COBOL/VSE Programming Considerations for SQL/DS
In general, most of the coding for your COBOL/VSE programs will be the same
when you want to use SQL/DS. However, to retrieve, update, insert, and delete
SQL/DS services, you must use SQL statements.

When SQL/DS completes processing an SQL statement, it passes the return code
back in the communications area and not in Register 15. Therefore, the
COBOL/VSE RETURN-CODE special register may contain an invalid value.
Because a COBOL/VSE program stores its RETURN-CODE special register into
Register 15 before it returns to its caller, your COBOL/VSE program should set the
RETURN-CODE special register to a meaningful value before returning to its caller.

For details on embedding SQL statements in COBOL programs, see SQL/DS Appli-
cation Programming Guide.

396 COBOL/VSE Programming Guide

 Part 5. Appendixes

 Copyright IBM Corp. 1983, 1998 397

 COBOL/VSE Compiler Limits

Appendix A. COBOL/VSE Compiler Limits

The following table lists the compiler limits for COBOL/VSE programs. Other oper-
ating systems may impose further limits. The numbers are guidelines to the limits.

Figure 128 (Page 1 of 3). COBOL/VSE Compiler Limits

Language Element Limit(s)

Size of program 999,999 lines

Number of literals
Total length of literals

4,194,3031

4,194,303 bytes1

Reserved Word Table entries 1536

COPY REPLACING ... BY ...
(items per COPY statement)

Number of COPY libraries
Block size of COPY library

N/A

N/A
32,767 bytes

Identification Division

Environment Division

Configuration Section

SPECIAL-NAMES paragraph

function-name IS
UPSI-n ... (switches)
alphabet-name IS ...
literal THRU/ALSO ...

18
0-7
N/A
256

Input-Output Section

FILE-CONTROL paragraph

SELECT file-name ...
ASSIGN system-name ...
ALTERNATE RECORD KEY
 data-name ...
RECORD KEY length
RESERVE integer (buffers)

65,535
N/A2

253
N/A3

2554

I-O-CONTROL paragraph

RERUN ON system-name ...
 integer RECORDS
SAME RECORD AREA

FOR file-name ...
SAME SORT/MERGE AREA
MULTIPLE FILE ... file-name

32,767
16,777,215
255
255
N/A2

N/A2

Note: The MULTIPLE FILE
TAPE phrase is ignored.

Data Division

File Section

398 Copyright IBM Corp. 1983, 1998

 COBOL/VSE Compiler Limits

Figure 128 (Page 2 of 3). COBOL/VSE Compiler Limits

Language Element Limit(s)

FD file-name ...
LABEL data-name ...

(if no optional clauses)
Label record length
DATA RECORD dnm ...
BLOCK CONTAINS integer
RECORD CONTAINS integer

 Item length
SD file-name ...

DATA RECORD dnm ...
Sort record length

65,535
255

80 bytes
N/A2

1,048,5755

1,048,5755

1,048,575 bytes5

65,535
N/A2

32,751 bytes

Working-Storage Section
items without the EXTERNAL attribute
items with the EXTERNAL attribute

134,217,727 bytes
134,217,727 bytes

77 data-names
01-49 data-names
88 condition-name ...
VALUE literal ...
66 RENAMES ...
PICTURE character string

Numeric item digit positions
Num-edit character positions

PICTURE replication ()
PIC repl (editing)
DBCS Picture replication ()
Group item size:
 File section
Elementary item size
VALUE initialization

(Total length of all value literals)
OCCURS integer

Total number of ODOs
 Table size

Table element size
ASC/DES KEY ...

(per OCCURS clause)
 Total length

INDEXED BY ... (index names)
(per OCCURS clause)

Total num of indexes (index names)
Size of relative index

16,777,215 bytes
16,777,215 bytes
N/A
N/A
N/A
30
18
249
16,777,215
32,767
8,388,607

1,048,575 bytes
16,777,215 bytes
16,777,215 bytes

16,777,215
4,194,3031

16,777,215 bytes
8,388,607 bytes

12 KEYS
256 bytes

12
65,535
32,765

Linkage Section 134,217,727 bytes

Total 01 + 77 (data items) N/A

Procedure Division

 Appendix A. COBOL/VSE Compiler Limits 399

 Intermediate Results

Figure 128 (Page 3 of 3). COBOL/VSE Compiler Limits

Language Element Limit(s)

Procedure + constant area
USING identifier ...

Procedure-names
Subscripted data-names per verb
Verbs per line (TEST)

ADD identifier ...
ALTER pn1 TO pn2 ...
CALL ... BY CONTENT id
CALL id/lit
 USING id/lit...
CALL literal ...

Active programs in run unit
number of names called (DYN)

CANCEL id/lit ...
CLOSE file-name ...
COMPUTE identifier ...
DISPLAY id/lit ...
DIVIDE identifier ...
ENTRY USING id/lit ...
EVALUATE ... subjects
EVALUATE ... WHEN clauses
GO pn ... DEPENDING
INSPECT TALLY/REPL clauses
MERGE file-name ASC/DES KEY ...

Total key length
USING file-name ...

MOVE id/lit TO id ...
MULTIPLY identifier ...
OPEN file-name
PERFORM
SEARCH ... WHEN ...
SET index/id ... TO
SET index ... UP/DOWN
SORT file-name ASC/DES KEY

Total key length
USING file-name ...

STRING identifier ...
DELIMITED id/lit ...

UNSTRING
DELIMITED id/lit OR id/lit ...
INTO id/lit ...

USE ... ON file-name ...

4,194,303 bytes1

32,767
1,048,5751

32,767
7
N/A
4,194,3031

2,147,483,647 bytes

16380
4,194,3031

32,767
N/A
N/A
N/A
N/A
N/A
N/A
N/A
64
256
255
N/A
N/A
3,072 bytes6

97

N/A
N/A
N/A
4,194,303
N/A
N/A
N/A
N/A
3,072 bytes6

97

N/A
N/A

255
N/A
N/A

Note:

1 Items included in 4,194,303 byte limit for procedure plus constant area.
2 Treated as comment; there is no limit.
3 No compiler limit, but VSAM limits it to 255 bytes.
4 The SAM limit is 2.
5 Compiler limit shown, but SAM limits it to 32,767 bytes.
6 For DFSORT/VSE, the limit is 3,072 bytes.
7 For DFSORT/VSE, the limit is 9 files.

400 COBOL/VSE Programming Guide

 Intermediate Results

Appendix B. Intermediate Results and Arithmetic Precision

The compiler treats arithmetic statements as a succession of operations, performed
according to operator precedence, and sets up an intermediate field to contain the
results of these operations.

Intermediate results are possible in the following cases:

� In an ADD or SUBTRACT statement containing multiple operands immediately
following the verb

� In a COMPUTE statement specifying a series of arithmetic operations or mul-
tiple result fields

� In arithmetic expressions contained in conditional statements and reference
modification specifications

� In the GIVING option with multiple result fields for the ADD, SUBTRACT, MUL-
TIPLY, or DIVIDE statements

� In a statement with an intrinsic function used as an operand

For a discussion on when the compiler uses fixed-point or floating-point arithmetic,
refer to “Fixed-Point versus Floating-Point Arithmetic” on page 88.

Calculating Precision of Intermediate Results
The compiler uses algorithms to determine the number of integer and decimal
places reserved for intermediate results.

In the following discussion of how the compiler determines the number of integer
and decimal places reserved for intermediate results, these abbreviations are used:

i The number of integer places carried for an intermediate result.

If the ROUNDED option is used, one more integer may be added for
accuracy, if necessary.

d The number of decimal places carried for an intermediate result.

dmax In a particular statement, the largest of:

� The number of decimal places needed for the final result field(s)

� The maximum number of decimal places defined for any operand,
except divisors or exponents

� The outer-dmax for any function operand

inner-dmax
The inner-dmax for a function is the largest of:

� The number of decimal places defined for any of its elementary argu-
ments

� The dmax for any of its arithmetic expression arguments

� The outer-dmax for any of its embedded functions

 Copyright IBM Corp. 1983, 1998 401

 Intermediate Results

outer-dmax
The number that determines how a function result contributes to oper-
ations outside of its own evaluation (e.g., if the function is an operand in
an arithmetic expression or an argument to another function).

op1 The first operand in a generated arithmetic statement. For division, op1
is the divisor.

op2 The second operand in a generated arithmetic statement. For division,
op2 is the dividend.

i1,i2 The number of integer places in op1 and op2, respectively.

d1,d2 The number of decimal places defined for op1 and op2, respectively.

ir The Intermediate Result field obtained from the execution of a generated
arithmetic statement or operation. ir1, ir2,. . ., represent successive
intermediate results. These intermediate results are generated either in
registers or in storage locations. Successive intermediate results may
have the same location.

The compiler treats each statement as a succession of operations. For example,
the following statement:

COMPUTE Y = A + B � C - D / E + F �� G

is calculated as:

** F BY G yielding ir1
MULTIPLY B BY C yielding ir2
DIVIDE E INTO D yielding ir3
ADD A TO ir2 yielding ir4
SUBTRACT ir3 FROM ir4 yielding ir5
ADD ir5 TO ir1 yielding Y

Fixed-Point Data and Intermediate Results
The number of integer and decimal places in an intermediate result can be deter-
mined by using the following guidelines:

Note: You must define the operands of any arithmetic statements with enough
decimal places to give the required accuracy in the final result.

Figure 130 indicates the action of the compiler when handling intermediate results
for fixed-point numbers.

Figure 129. Determining the Precision of an Intermediate Result

Operation Integer Places Decimal Places

+ or - (i1 or i2) + 1, whichever is
greater

d1 or d2, whichever is
greater

* i1 + i2 d1 + d2

/ i2 + d1 (d2 - d1) or dmax, whichever
is greater

402 COBOL/VSE Programming Guide

 Intermediate Results

Figure 130. Determining When the Compiler May Shorten Intermediate Results

Value of
i + d

Value of
 d

Value of
i + dmax

Action Taken

 <30
 =30

Any value Any value i integer and d decimal places are carried
for ir.

 >30 <dmax
=dmax

Any value 30-d integer and d decimal places are
carried for ir.

>dmax <30
=30

i integer and 30-i decimal places are
carried for ir.

>30 30-dmax integer and dmax decimal places
are carried for ir.

Exponentiations Evaluated in Fixed-Point Arithmetic
Exponentiation is represented by the expression op1 ** op2. Based on the charac-
teristics of op2, the compiler handles exponentiation of fixed-point numbers in one
of three ways.

� When op2 is expressed with decimals, floating-point rules (see “Floating-Point
Data and Intermediate Results” on page 406) are used to calculate the
exponentiation.

� When op2 is an integral literal or constant, the value d is computed as

d = d1 * |op2|

When op1 is a data-name or variable, the value i is computed as

i = i1 * |op2|

When op1 is a literal or constant, the actual value of op1 ** |op2| is computed
and i is set equal to the number of integers in that value.

Having calculated i and d, the compiler takes the action indicated in the fol-
lowing figure to handle intermediate results:

If op2 is negative, then the value of 1 is divided by the result produced by the
preliminary calculation described above. The values of i and d that are used
are calculated using the rules for division found on page 402.

Figure 131. Determining When the Compiler May Shorten Intermediate Results for
Exponentiation

Value of
i + d

Other
Conditions

Action Taken

 <30 Any i integer and d decimal places are carried for ir.

 =30 op1 has an odd
number of digits

i integer and d decimal places are carried for ir.

op1 has an even
number of digits

The exponentiation is treated the same as it is when
op2 is an integral data-name or a variable, except in
the case of a 30-digit integer raised to the power of
literal 1, where the calculation is done according to the
rules for op1 with an odd number of digits.

 >30 Any The exponentiation is treated the same as it is when
op2 is an integral data-name or a variable.

 Appendix B. Intermediate Results and Arithmetic Precision 403

 Intermediate Results

� When op2 is an integral data-name or a variable, then dmax decimals and
30-dmax integers are used. In this case, op1 is multiplied by itself (|op2| - 1)
times. For example, the following statement:

COMPUTE Y = A ** B, where B has a value of 4

is calculated as:

MULTIPLY A BY A yielding ir1
MULTIPLY ir1 BY A yielding ir2
MULTIPLY ir2 BY A yielding ir3
MOVE ir3 TO ir4 which has dmax decimals

The values of i and d that are used for the above multiplications are calculated
using the rules for multiplication found on page 402.

If B is positive, Y = ir4.

If B is negative, however,

DIVIDE ir4 INTO 1 yielding ir5, which has dmax decimals
Y = ir5

In the case where op2 = 0, the answer is 1. (Note that division-by-0 and
exponentiation SIZE ERROR conditions apply. See COBOL/VSE Language
Reference for specific information on the SIZE ERROR option.)

Fixed-point exponents with more than 9 significant digits are always shortened to 9
digits. If the exponent is a literal or constant, an E-level compiler diagnostic
message is issued; otherwise, an informational message is issued at run time.

Shortened Intermediate Results
Whenever the number of digits in a decimal number is greater than 30, the field is
shortened to 30 digits. You will get a warning message when you compile the
program. If truncation occurs at run time, a message is issued and execution con-
tinues.

If you think an intermediate result field might exceed 30 digits, you can use floating-
point operands (COMP-1 and COMP-2) to avoid truncation.

Binary Data and Intermediate Results
If an operation involving binary operands requires intermediate results greater than
18 digits, the compiler converts the operands to internal decimal before performing
the operation. If the result field is binary, the result will be converted from internal
decimal to binary.

Binary items are used most efficiently when the intermediate result is not greater
than 9 digits.

Intrinsic Functions Evaluated in Fixed-Point Arithmetic
Integer functions and mixed functions can both return an integer result. The inner-
dmax and outer-dmax values are determined by the characteristics of the function.

Integer Functions: These functions always return an integer, and the outer-dmax
will always be zero. For those functions whose arguments must be integer, the
inner-dmax will also always be zero. The following table summarizes the precision
of the function results:

404 COBOL/VSE Programming Guide

 Intermediate Results

Mixed Functions: When the compiler treats a mixed function as fixed-point arith-
metic, the result will be either integer or fixed point with decimals (when any argu-
ment is floating point, the function becomes a floating-point function and will follow
floating-point rules). For MAX, MIN, RANGE, REM, and SUM, the outer-dmax is
always equal to the inner-dmax. To determine the precision of the result returned
for these functions, apply the rules for fixed-point arithmetic to each step in the
algorithm used to calculate the function result.

MAX and MIN

1. Assign the first argument to your function result.
2. For each remaining argument:

a. Compare the algebraic value of your function result with the argument.
b. For MAX assign the greater of the two, and for MIN assign the lesser of

the two to your function result.

RANGE

1. Use the steps for MAX to select your maximum argument
2. Use the steps for MIN to select your minimum argument
3. Subtract the minimum argument from the maximum
4. Assign the difference to your function result

Figure 132. Precision of Integer Intrinsic Functions

Function

Inner-
Dmax

Outer-
Dmax

Function Result

DATE-OF-INTEGER 0 0 8-digit integer

DAY-OF-INTEGER 0 0 7-digit integer

FACTORIAL 0 0 fixed-point, 30-digit integer

INTEGER-OF-DATE 0 0 7-digit integer

INTEGER-OF-DAY 0 0 7- digit integer

LENGTH n/a 0 9- digit integer

MOD 0 0 integer with as many digits as min(i1 i2)

ORD n/a 0 3-digit integer

ORD-MAX 0 9-digit integer

ORD-MIN 0 9-digit integer

INTEGER 0 With a fixed-point argument, result will
be fixed-point integer with one more
integer digit than the argument. With a
floating-point argument, result will be
fixed point, 30-digit integer.

INTEGER-PART 0 With a fixed-point argument, result will
be fixed-point integer with the same
number of integer digits as the argu-
ment. With a floating-point argument,
result will be fixed-point, 30-digit integer.

 Appendix B. Intermediate Results and Arithmetic Precision 405

 Intermediate Results

REM

1. Divide argument-1 by argument-2
2. Remove all noninteger digits from the result of step 1
3. Multiply the result of step 2 by argument-2
4. Subtract the result of step 3 from argument-1
5. Assign the difference to your function result

SUM

1. Assign the value 0 to your function result
2. For each argument:

a. Add the argument to your function result
b. Assign the sum to your function result

Floating-Point Data and Intermediate Results
Floating-point instructions are used to compute an arithmetic expression if any of
the following conditions are true:

� A receiver or operand in the expression is COMP-1, COMP-2, external floating-
point data, or a floating-point literal

� An exponent contains decimal places

� An exponent is an expression that contains an exponentiation or divide oper-
ator and dmax is greater than zero

� An intrinsic numeric function is a floating-point function

If any operation in an arithmetic expression is computed in floating point, the entire
expression is computed as though all operands were converted to floating point and
the operations evaluated using floating-point instructions.

If an expression is computed in floating point, double precision floating point is used
if any receiver or operand in the expression is not COMP-1, or if a multiplication or
exponentiation operation appears in the expression. Whenever double precision
floating point is used for one operation in an arithmetic expression, then all oper-
ations in the expression are computed as though double precision floating-point
instructions were used.

Note: If a floating-point operation has an intermediate result field in which expo-
nent overflow occurs, the job will be abnormally terminated.

Exponentiations Evaluated in Floating-Point Arithmetic
Floating-point exponentiations are always evaluated using double precision floating-
point arithmetic

The value of a negative number raised to a fractional power is undefined. For
example, (-2) ** 3 is equal to -8, but (-2) ** (3.000001) is not defined. When an
exponentiation is evaluated in floating point and there is a possibility that the value
of the exponentiation will be undefined (as in the example above), then the value of
the exponent is evaluated at run time to determine whether or not it is actually an
integer.

406 COBOL/VSE Programming Guide

 Intermediate Results

Intrinsic Functions Evaluated in Floating-Point Arithmetic
The floating-point numeric functions will always return a double precision floating-
point value. For a list of the floating-point, fixed-point and mixed functions see
“Numeric Intrinsic Functions” on page 83.

Note: Remember that mixed functions with floating-point arguments will be evalu-
ated using floating-point arithmetic.

ON SIZE ERROR and Intermediate Results
When the CMPR2 compiler option is in effect, the ON SIZE ERROR option for
MULTIPLY and DIVIDE applies to both intermediate and final results. For the other
arithmetic operations, the ON SIZE ERROR option applies only to the final calcu-
lated results.

Arithmetic Expressions in Nonarithmetic Statements
Arithmetic expressions may appear in contexts other than arithmetic statements, for
example, the IF verb. In such statements, the rules for intermediate results, floating
point, and double precision floating point apply, with the following modifications:

� Abbreviated IF statements are treated as though the statements were unabbre-
viated.

� An explicit relation condition exists when a required relational operator is used
to define the comparison between two operands (herein referred to as
comparands). In an explicit relation condition where one or both of the
comparands is an arithmetic expression, the rules for intermediate results are
determined taking into consideration the attributes of both comparands. That is
to say, dmax is defined to be the maximum number of decimal places defined
for any operand of either comparand, except divisors and exponents. The rules
for floating point and double precision floating point apply if any of the following
conditions are true:

– Any operand in either comparand is COMP-1, COMP-2, external floating-
point data, or a floating-point literal

– An exponent contains decimal places

– An exponent is an expression that contains an exponentiation or divide
operator and dmax is greater than zero

For example, in the statement:

IF operand-1 = expression-1 THEN . . .

where operand-1 is a data-name defined to be COMP-2, and expression-1

contains only fixed-point operands, the rules for floating-point arithmetic apply
to expression-1 since it is being compared to a floating-point operand,

� When the comparison between an arithmetic expression and either a data item
or another arithmetic expression is defined without the use of a relational oper-
ator, then no explicit relation condition is said to exist. In this case, the arith-
metic expression is evaluated without regard to the attributes of the operand
with which the comparison is being made. For example, in the statement

 Appendix B. Intermediate Results and Arithmetic Precision 407

 Cross-System Portability

 EVALUATE expression-1

WHEN expression-2 THRU expression-3

 WHEN expression-4
...

 END-EVALUATE

each arithmetic expression is evaluated in fixed-point or floating-point arithmetic
based on its own characteristics.

408 COBOL/VSE Programming Guide

 Cross-System Portability

Appendix C. Coding Your Program for Cross-System
Portability

 Compatible Compilers

This appendix outlines the level of compatibility between:

IBM COBOL for VSE/ESA Version 1 Release 1, and

COBOL/370 Version 1 Release 1.

Subsequent changes to either of these products, whether by PTF, new release
or modification levels, or replacement products, may have affected the level of
compatibility outlined here.

COBOL/VSE Release 1 allows you to compile a COBOL/VSE program under
VSE/ESA, and run the object program under VSE/ESA, OS/390, MVS, or VM.
Similarly, the object program produced when a COBOL program is compiled by
COBOL/370 under OS/390, MVS, or VM can be executed under OS/390, MVS,
VM, or VSE/ESA.

When you migrate a COBOL object program from one operating system environ-
ment to another, you must:

� Link-edit the object program using the target system linkage editor

� Run the program with the appropriate Language Environment installed on the
target system

The appropriate Language Environment products are:

� For VSE/ESA, IBM Language Environment for VSE/ESA (LE/VSE)

� For OS/390, MVS, and VM, IBM SAA AD/Cycle Language Environment/370

This appendix contains information that will help you prepare your program for
cross-system execution.

Compiling under VSE and Running under OS/390, MVS, or VM
Programs compiled using COBOL/VSE Release 1 can be executed in the following
systems and subsystems with Language Environment/370 Version 1 Release 2 and
later releases. The operating systems are:

 OS/390
 MVS/ESA
 VM/ESA

Within this appendix, the generic term MVS is used to indicate an OS/390 or
MVS/ESA system. The generic term VM is used to indicate a VM/ESA system.

COBOL/VSE programs can be executed under the following subsystems:

 CICS/VSE
 CICS/ESA
 IMS/ESA

 Copyright IBM Corp. 1983, 1998 409

 Cross-System Portability

COBOL/370 under OS/390, MVS, and VM provides all the features provided by
COBOL/VSE under VSE/ESA.

Compiler Options that Affect Portability
If you intend to run your COBOL/VSE programs under MVS or VM, you should
carefully consider the compiler options you specify. The following compiler options
will affect the way your program will run under MVS or VM. They will also help you
to prepare your object programs for execution under MVS or VM. For a description
of how to specify these options, see “Using Compiler Options” on page 216.

 DECK
Use the DECK compiler option to produce an object program in a format that is
suitable for migration to MVS or VM. The object program produced when the
OBJECT compiler option is specified is not suitable for migration from VSE to MVS
or VM. For information on how to migrate the object program, see “Migrating
Object Programs to MVS or VM” or “Migrating Object Programs to VSE/ESA” on
page 413.

 OUTDD
When you run a COBOL/VSE program under MVS or VM, the OUTDD compiler
option is used to specify the name of the file for run-time DISPLAY output.

If you do not specify the OUTDD compiler option, the default is SYSOUT.

Migrating Object Programs to MVS or VM
“Compiler Options that Affect Portability” describes the compiler options that you
should specify if you wish to produce an object program that can be migrated from
VSE to MVS or VM. Once you have produced an object program, you need to
copy it from your VSE system to the target system. How you do this depends upon
the environment in which you work and the communications facilities available.

The procedure described in the following examples, uses a tape file to copy the
object program. This procedure allows you to copy an object program from a
stand-alone VSE system to a stand-alone MVS or VM system. If your VSE system
runs as a guest operating system under VM, or if you have communications facili-
ties between your VSE system and your target system, your site may have different
procedures for copying object programs. See your system programmer for more
information.

The following examples illustrate general job control procedures for saving and
copying your object program.

Saving Your Object Program
The object program produced by the COBOL/VSE compiler can be saved in a VSE
Librarian sublibrary. You can do this by specifying the following statements:

410 COBOL/VSE Programming Guide

 Cross-System Portability

// JOB jobname
...

// DLBL IJSYSPH,'ijsysph.file-ID',�,SD
// EXTENT SYSPCH,volser,1,�,start,tracks
 ASSGN SYSPCH,DISK,VOL=volser,SHR
...

// OPTION DECK

// EXEC IGYCRCTL,SIZE=IGYCRCTL,PARM='NAME(NOALIAS)'

 CLOSE SYSPCH,PUNCH

// DLBL IJSYSIN,'ijsysph.file-ID',�,SD
// EXTENT SYSIPT,volser,1,�,start,tracks
 ASSGN SYSIPT,DISK,VOL=volser,SHR
// EXEC LIBR,PARM='ACCESS SUBLIB=lib.sublib'
/�

 CLOSE SYSIPT,SYSRDR

/&

Copying Your Object Program to Tape
The object program saved in the previous example can now be copied to a tape
file. In order to remove the control characters from the first character position of
the SYSPCH output, you should use a VSE system utility such as DITTO. The
following job steps produce a blocked output tape file containing the object
program.

// JOB jobname
�

� STEP 1: ASSIGN SYSPCH TO A DISK FILE

� WRITE THE REQUIRED DITTO CT COMMAND TO SYSPCH

�

// DLBL IJSYSPH,'ijsysph.file-ID',�,SD
// EXTENT SYSPCH,volser,1,�,start,tracks
 ASSGN SYSPCH,DISK,VOL=volser,SHR
// UPSI 1

// EXEC DITTO

$$DITTO SET HEADERPG=NO

$$DITTO CC

$$DITTO CT OUTPUT=SYSnnn,BLKFACTOR=blkfac
/�

$$DITTO EOJ

�

� STEP 2: PUNCH THE OBJECT PROGRAM TO SYSPCH

� (USE FORMAT=NOHEADER TO REMOVE THE LIBRARIAN

� CATALOG STATEMENT)

�

// EXEC LIBR

 ACCESS SUBLIB=lib.sublib
PUNCH progname.OBJ FORMAT=NOHEADER EOF=YES

/�

 CLOSE SYSPCH,PUNCH

 Appendix C. Coding Your Program for Cross-System Portability 411

 Cross-System Portability

�

� STEP 3: ASSGN SYSIPT TO THE SYSPCH DISK FILE

� COPY THE OBJECT PROGRAM TO TAPE (WITHOUT CC)

� (THE DITTO COMMAND IS ON SYSIPT DISK FILE)

�

// DLBL IJSYSIN,'ijsysph.file-ID',�,SD
// EXTENT SYSIPT,volser,1,�,start,tracks
 ASSGN SYSIPT,DISK,VOL=volser,SHR
// ASSGN SYSnnn,cuu
// MTC REW,SYSnnn
// MTC WTM,SYSnnn
// MTC REW,SYSnnn
// UPSI 1

// EXEC DITTO

/�

// MTC RUN,SYSnnn
 CLOSE SYSIPT,SYSRDR

/&

Copying Your Object Program to VM
Once you have copied the object program to a tape, you can transfer the program
to your target system. You can use the following CMS commands to define the
input and output files, and to copy the object program to your A disk.

FILEDEF INMOVE TAPn (RECFM FB LRECL 8� BLKSIZE nnn
FILEDEF OUTMOVE DISK fn TEXT A1 (RECFM F LRECL 8�
MOVEFILE

Copying Your Object Program to MVS
Use an MVS system utility such as IEBGENER to copy the object program into a
partitioned data set (PDS). This JCL example assumes the PDS was previously
allocated.

//jobname JOB

// EXEC PGM=IEBGENER

//SYSPRINT DD SYSOUT=�

//SYSUT1 DD UNIT=TAPE,DISP=(OLD),LABEL=(,NL),

// DCB=(RECFM=FB,LRECL=8�,BLKSIZE=nnn)
//SYSUT2 DD DSN=dataset(progname),DISP=SHR
//SYSIN DD DUMMY

//�

Once you have copied the object program to a tape, you can transfer the program
to your target system.

Compiling under MVS or VM and Running under VSE
COBOL/370 programs that are compatible with Language Environment/370
Release 2 are also compatible with IBM Language Environment for VSE/ESA.

COBOL/370 programs, compiled under MVS or VM, can be executed under
VSE/ESA and under the CICS/VSE subsystem.

COBOL/370 under VSE/ESA offers all the features of COBOL/370 under MVS or
VM.

412 COBOL/VSE Programming Guide

 Cross-System Portability

Compiler Options that Affect Portability
If you intend to run your COBOL/370 programs under VSE/ESA, you should care-
fully consider the compiler options you specify. The following compiler options will
help you to prepare your object programs for migration to VSE/ESA. For a
description of how to specify these options, see “Using Compiler Options” on
page 216.

 OUTDD
When you run a COBOL/370 program under VSE, the OUTDD compiler option is
used to specify the name of the file for run-time DISPLAY output.

If you do not specify the OUTDD compiler option, the default is SYSOUT.

 NONAME
The link-edit NAME statement generated by the NAME compiler option is system
specific, and is not suitable for migration. Specify the default option NONAME.

Migrating Object Programs to VSE/ESA
Once you have produced an object program, you need to copy it from your MVS or
VM system to the target system. How you do this depends upon the environment
in which you work and the communications facilities available.

The procedure described in the following examples, uses a tape file to copy the
object program. This procedure allows you to copy an object program from a
stand-alone MVS or VM system to a stand-alone VSE/ESA system. If your VSE
system runs as a guest operating operating system under VM, or if you have com-
munications facilities between your MVS or VM system and your target system,
your site may have different procedures for copying object programs. See your
system programmer for more information.

Copying Your Object Program from VM
You can use the following CMS commands to copy the object program from your A
disk to tape.

FILEDEF INMOVE DISK fn TEXT A1 (LRECL 8� BLKSIZE 8� RECFM FB

FILEDEF OUTMOVE TAPn (LRECL 8� RECFM FB BLKSZIE nnn
MOVEFILE

Once you have copied the object program to tape, you can transfer the object
program to the target VSE/ESA system.

Copying Your Object Program from MVS
Use an MVS system utility such as IEBGENER to copy the object program from a
partitioned data set (PDS) to tape.

//jobname JOB

// EXEC PGM=IEBGENER

//SYSPRINT DD SYSOUT=�

//SYSUT1 DD DSN=dataset(progname),DISP=SHR
//SYSUT2 DD UNIT=TAPE,DISP=NEW,LABEL=(,NL),

// DCB=(RECFM=F,LRECL=8�)

//SYSIN DD DUMMY

//�

 Appendix C. Coding Your Program for Cross-System Portability 413

 Cross-System Portability

Once you have copied the object program to a tape, you can transfer the program
to your target VSE/ESA system.

Copying Your Object Program from Tape
The object program saved in the previous example can now be copied from the
tape file.

// JOB jobname
�

� ASSIGN SYSIPT TO A TAPE FILE

� CATALOG THE OBJECT PROGRAM IN A VSE SUBLIBRARY

�

// ASSGN SYSIPT,TAPE

// EXEC LIBR,PARM='ACCESS S=lib.sublib;CATALOG name.OBJ REPLACE=YES'
/�

/&

414 COBOL/VSE Programming Guide

 EXIT Compiler Option

Appendix D. EXIT Compiler Option

This appendix gives the syntax of the EXIT compiler option, and shows how you
can write compiler exit routines. These routines can be used to replace the compil-
er's standard input and output routines for:

� Reading primary input (COBOL source, normally from SYSIPT)

� Reading secondary input (COPY or BASIS processing, normally read from a
VSE Librarian sublibrary)

� Writing printed output (normally to SYSLST)

� Writing the SYSADATA file (normally to the filename specified in the SYSADAT
DLBL statement)

Syntax and Parameters

 ┌ ┐─,─────────────────────────
��─ ──┬ ┬──EXIT(───

┴┬ ┬──INEXIT(──┬ ┬────── mod1) ─) ─────────────────────��

 │ ││ │└ ┘ ─str1─
 │ │├ ┤─NOINEXIT────────────────

│ │├ ┤──LIBEXIT(──┬ ┬────── mod2)
 │ ││ │└ ┘ ─str2─
 │ │├ ┤─NOLIBEXIT───────────────

│ │├ ┤──PRTEXIT(──┬ ┬────── mod3)
 │ ││ │└ ┘ ─str3─
 │ │├ ┤─NOPRTEXIT───────────────

│ │├ ┤──ADEXIT(──┬ ┬────── mod4) ─
 │ ││ │└ ┘ ─str4─
 │ │└ ┘─NOADEXIT────────────────
 └ ┘─NOEXIT────────────────────────────────

Default is: NOEXIT

Abbreviations are: EX(INX,LIBX,PRTX,ADX)

Negative abbreviations are: EX(NOINX,NOLIBX,NOPRTX,NOADX)

For the EXIT option, the suboptions INEXIT, LIBEXIT, PRTEXIT, and ADEXIT also
have a negative form with associated abbreviations. They are:

 NOINEXIT (NOINX)
 NOLIBEXIT (NOLIBX)
 NOPRTEXIT (NOPRTX)
 NOADEXIT (NOADX)

Use the EXIT option to allow the compiler to accept user-supplied phases in place
of SYSIPT, copy sublibraries, and SYSLST, and a user-supplied phase to inspect
ADATA records. Any combination of exits may be specified.

Note: The EXIT option cannot be specified in a PROCESS (CBL) statement. It
can only be specified at invocation in the PARM field of JCL, or at installation time.

INEXIT(['str1',]mod1)
The compiler obtains source code from a user-supplied phase (where “mod1” is
the phase name), instead of SYSIPT.

 Copyright IBM Corp. 1983, 1998 415

 EXIT Compiler Option

LIBEXIT(['str2',]mod2)
The compiler obtains copy code from a user-supplied phase (where “mod2” is
the phase name), instead of a VSE Librarian sublibrary. For use with either
COPY or BASIS statements.

PRTEXIT(['str3',]mod3)
The compiler passes printer destined output to the user-supplied phase (where
“mod3” is the phase name), instead of SYSLST.

ADEXIT(['str4',]mod4)
Specifies that a user-supplied associated-data (SYSADAT) exit is to be used
for the compilation, (where mod4 is the phase name).

The phase names mod1, mod2, mod3, and mod4, can refer to the same phase.

The suboptions 'str1', 'str2', 'str3', and 'str4', are optional. They are
character strings up to 64 characters in length and enclosed in apostrophes, that
are passed to the exit phase. Any character is allowed, but included apostrophes
must be doubled, and lowercase characters are folded to uppercase.

Character String Formats
The format of the string, as it appears to the user exit phase, is:

┌──────┬───┐

│ LL │ string │

└──────┴───┘

where LL is a halfword (on a halfword boundary) containing the length of the string.
If the string suboption is not specified, LL contains zero.

User-Exit Work Area
When an exit is used, the compiler provides a user-exit work area that can be
used to save the address of GETVIS storage obtained by the exit phase. This
allows the phase to be reentrant.

The user-exit work area is four fullwords, residing on a fullword boundary, that is
initialized to binary zeros before the first exit routine is invoked. The address of the
work area is passed to the exit phase in a parameter list. After initialization, the
compiler makes no further reference to the work area, so you will need to establish
your own conventions for the use of the work area if more than one exit is active
during the compilation. For example, the INEXIT phase uses the first word in the
work area, the LIBEXIT phase uses the second word, the PRTEXIT phase uses the
third word, and the ADEXIT phase uses the fourth word.

 Linkage Conventions
Your EXIT phases should use COBOL/VSE standard linkage conventions between
COBOL programs, between library routines, and between COBOL programs and
library routines. You need to be aware of these conventions in order to trace the
call chain correctly.

When a call is made to a program or to a routine, the registers are set up as
follows:

416 COBOL/VSE Programming Guide

 EXIT Compiler Option

R1 Points to the parameter list passed to the called program or library routine.
R13 Points to the register save area provided by the calling program or routine.
R14 Holds the return address of the calling program or routine.
R15 Holds the address of the called program or routine.

 Using INEXIT
When INEXIT is specified, the compiler loads the exit phase (mod1) during initializa-
tion, and invokes the phase using the OPEN operation code (op code). This allows
the phase to prepare its source for processing and then pass the status of the
OPEN request back to the compiler. Subsequently, each time the compiler
requires a source statement, the exit phase is invoked with the GET op code. The
exit phase then returns either the address and length of the next statement or the
end-of-data indication (if no more source statements exist). When end-of-data is
presented, the compiler invokes the exit phase with the CLOSE op code so that the
phase can release any resources that are related to its input.

The compiler uses a parameter list to communicate with the exit phase. The
parameter list consists of 10 fullwords containing addresses, and Register 1 con-
tains the address of the parameter list. Notice that Return Code, Data Length, and
Data, are placed by the exit phase for return to the compiler; and the other items
are passed from the compiler to the exit phase. Figure 133 shows the contents of
the parameter list and a description of each item.

Figure 133 (Page 1 of 2). Parameter List for INEXIT

Offset

Contains
Address of

Description of Item

00 User-exit type Halfword identifying which user-exit is to perform
the operation.
1=INEXIT

04 Operation code Halfword indicating the type of operation.
0=OPEN; 1=CLOSE; 2=GET

08 Return code Fullword, placed by the exit phase, indicating
success of the requested operation.
0=Operation was successful
4=End-of-data
12=Operation failed

12 User-exit work area Four fullword work area provided by the compiler,
for use by user exit phase.

16 Data length Fullword, placed by the exit phase, specifying the
length of the record being returned by the GET
operation (must be 80).

20 Data
or

'str1'

Fullword, placed by the exit phase, containing the
address of the record in a user-owned buffer, for
the GET operation.

'str1' applies only to OPEN. The first halfword
(on a halfword boundary) contains the length of
the string, followed by the string.

24 Not used

28 Not used

 Appendix D. EXIT Compiler Option 417

 EXIT Compiler Option

Figure 133 (Page 2 of 2). Parameter List for INEXIT

Offset

Contains
Address of

Description of Item

32 Not used

36 Not used

 Using LIBEXIT
When LIBEXIT is specified, the compiler loads the exit phase (mod2) during initial-
ization. The exit phase is used in place of the VSE Librarian sublibraries. Calls
are made to the phase by the compiler to obtain copy text whenever COPY or
BASIS statements are encountered.

Note: If LIBEXIT is specified, the LIB compiler option must be in effect.

The initial call invokes the phase with an OPEN op code. This allows the phase to
prepare the specified library-name for processing. The OPEN op code is also
issued the first time a new library-name is specified. The exit phase returns the
status of the OPEN request to the compiler by passing a return code.

Once a library-name has successfully opened, the exit phase is then invoked with a
FIND op code. The exit phase establishes positioning at the requested text-name
(or basis-name) in the specified library-name. This becomes the “active copy
source.” When positioning is complete, the exit phase passes an appropriate return
code to the compiler.

The compiler then invokes the exit phase with a GET op code, and the exit phase
passes the compiler the length and address of the record to be copied from the
“active copy source.” The GET operation is repeated until the end-of-data indicator
is passed to the compiler.

When end-of-data is presented, the compiler will issue a CLOSE op code request
so that the exit phase can release any resources related to its input.

Nested COPY Statements
Any record from the “active copy source” can contain a COPY statement. When
this occurs, the compiler issues a request based on the following:

� If the requested library-name from the nested COPY statement was not previ-
ously opened, the compiler invokes the exit phase with an OPEN op code, fol-
lowed by a FIND op code for the new text-name.

� If the requested library-name is already open, then the compiler issues the
FIND op code for the newly requested text-name (an OPEN is not issued in
this case).

Note that the compiler will not allow recursive calls to text-name.

When the exit phase receives the OPEN or FIND request, it should “push” its
control information concerning the “active copy source” onto a stack and then com-
plete the requested action (OPEN or FIND). The newly requested text-name (or
basis-name) now becomes the “active copy source.”

418 COBOL/VSE Programming Guide

 EXIT Compiler Option

Processing continues in the normal manner with a series of GET requests until the
end-of-data indicator is passed to the compiler.

At end-of-data for the nested “active copy source,” the exit phase should “pop” its
control information from the stack. The next request from the compiler will be a
FIND, so that the exit phase can reestablish positioning at the previous “active copy
source.”

The compiler now invokes the exit phase with a GET request, and the exit phase
must pass the same record that was passed previously from this copy source.
The compiler verifies that the same record was passed, and then the processing
continues with GET requests until the end-of-data indicator is passed.

Figure 134 shows the contents of the parameter list used for LIBEXIT, and a
description of each item.

Figure 134 (Page 1 of 2). Parameter List for LIBEXIT

Offset

Contains
Address of

Description of Item

00 User-exit type Halfword identifying which user-exit is to perform
the operation.
2=LIBEXIT

04 Operation code Halfword indicating the type of operation.
0=OPEN; 1=CLOSE; 2=GET; 4=FIND

08 Return code Fullword, placed by the exit phase, indicating
success of the requested operation.
0=Operation was successful
4=End-of-data
12=Operation failed

12 User-exit work area Four fullword work area provided by the compiler
for use by user exit phase.

16 Data length Fullword, placed by the exit phase, specifying the
length of the record being returned by the GET
operation (must be 80).

20 Data
or

'str2'

Fullword, placed by the exit phase, containing the
address of the record in a user-owned buffer, for
the GET operation.

'str2' applies only to OPEN. The first halfword
(on a halfword boundary) contains the length of
the string, followed by the string.

24 System
library-name

8-character area containing the library-name from
the COPY statement. Processing and conversion
rules for a program-name are applied. Padded
with blanks if required. Applies to OPEN, CLOSE,
and FIND.

28 System
text-name

8-character area containing the text-name from
the COPY statement (basis-name from BASIS
statement). Processing and conversion rules for a
program-name are applied. Padded with blanks if
required. Applies only to FIND.

 Appendix D. EXIT Compiler Option 419

 EXIT Compiler Option

Figure 134 (Page 2 of 2). Parameter List for LIBEXIT

Offset

Contains
Address of

Description of Item

32 Library-name 30-character area containing the full library-name
from the COPY statement. Padded with blanks if
required, and used as-is (not folded to upper-
case). Applies to OPEN, CLOSE, and FIND.

36 Text-name 30-character area containing the full text-name
from the COPY statement. Padded with blanks if
required, and used as-is (not folded to upper-
case). Applies only to FIND.

 Using PRTEXIT
When PRTEXIT is specified, the compiler loads the exit phase (mod3) during initial-
ization. The exit phase is used in place of the SYSLST file.

The compiler invokes the phase using the OPEN operation code (op code). This
allows the phase to prepare its output destination for processing and then pass the
status of the OPEN request back to the compiler. Subsequently, each time the
compiler has to print a line, the exit phase is invoked with the PUT op code. The
compiler supplies the address and length of the record that is to be printed, and the
exit phase returns the status of the PUT request to the compiler by a return code.
The first byte of the record to be printed contains an ANSI printer control character.

Before the compilation is ended, the compiler invokes the exit phase with the
CLOSE op code so that the phase can release any resources that are related to its
output destination.

Figure 135 shows the contents of the parameter list used for PRTEXIT, and a
description of each item.

Figure 135 (Page 1 of 2). Parameter List for PRTEXIT

Offset

Contains
Address of

Description of Item

00 User-exit type Halfword identifying which user-exit is to perform
the operation.
3=PRTEXIT

04 Operation code Halfword indicating the type of operation.
0=OPEN; 1=CLOSE; 3=PUT

08 Return code Fullword, placed by the exit phase, indicating
success of the requested operation.
0=Operation was successful
12=Operation failed

12 User-exit work area Four fullword work area provided by the compiler,
for use by user exit phase.

16 Data length Fullword, specifying the length of the record being
supplied by the PUT operation (the compiler sets
this value to 133).

420 COBOL/VSE Programming Guide

 EXIT Compiler Option

Figure 135 (Page 2 of 2). Parameter List for PRTEXIT

Offset

Contains
Address of

Description of Item

20 Data buffer
or

'str3'

Fullword, containing the address of the data buffer
where the compiler has placed the record to be
printed by the PUT operation.

'str3' applies only to OPEN. The first halfword
(on a halfword boundary) contains the length of
the string, followed by the string.

24 Not used

28 Not used

32 Not used

36 Not used

 Using ADEXIT
When ADEXIT is specified, the compiler loads the exit phase (mod4) during initial-
ization.

The compiler invokes the phase using the OPEN operation code (op code). This
allows the phase to prepare for processing and then pass the status of the OPEN
request back to the compiler. Subsequently, each time the compiler has written a
record to the SYSADAT file, the exit phase is invoked with the PUT op code. The
compiler supplies the address and length of the record that has been written to the
SYSADAT file, and the exit phase returns the status of the PUT request to the
compiler by a return code.

The ADATA exit is a 'read-only' exit. That is, the exit may only inspect the data
record passed to it. It may not change the contents of the record written to the
SYSADAT file.

The exit may be written to select data from the ADATA records presented to the
exit, and to write that data to a file that is maintained by the exit.

Before the compilation is ended, the compiler invokes the exit phase with the
CLOSE op code so that the phase can release any resources that it may hold.

Figure 136 shows the contents of the parameter list used for ADEXIT, and a
description of each item.

Figure 136 (Page 1 of 2). Parameter List for ADEXIT

Offset

Contains
Address of

Description of Item

00 User-exit type Halfword identifying which user-exit is to perform
the operation.
4=ADEXIT

04 Operation code Halfword indicating the type of operation.
0=OPEN; 1=CLOSE; 3=PUT

 Appendix D. EXIT Compiler Option 421

 EXIT Compiler Option

Figure 136 (Page 2 of 2). Parameter List for ADEXIT

Offset

Contains
Address of

Description of Item

08 Return code Fullword, placed by the exit phase, indicating
success of the requested operation.
0=Operation was successful
12=Operation failed

12 User-exit work area Four fullword work area provided by the compiler,
for use by user exit phase.

16 Data length Fullword, specifying the length of the record being
supplied by the PUT operation.

20 Data buffer
or

'str4'

Fullword, containing the address of the data buffer
where the compiler has placed the record that
may be inspected through the PUT operation.

'str4' applies only to OPEN. The first halfword
(on a halfword boundary) contains the length of
the string, followed by the string.

24 Not used

28 Not used

32 Not used

36 Not used

 Error Handling
The compiler will report error messages whenever an exit phase cannot be loaded,
or if an exit phase returns an “operation failed” or inappropriate return code.

Message IGYSI5008 is written to the operator and the compiler terminates with a
return code = 16, when any of the following occur:

� An exit phase cannot be loaded
� A nonzero return code is received from INEXIT during an OPEN request
� A nonzero return code is received from PRTEXIT during an OPEN request
� A nonzero return code is received from ADEXIT during an OPEN request

The exit type and operation (OPEN or LOAD) is identified in the message.

Any other error from INEXIT, PRTEXIT, or ADEXIT will cause the compiler to termi-
nate.

The following conditions are detected and reported by the compiler:

5203 PUT request to SYSLST user exit failed with return code "nn".

5204 Record address not set by "exit-name" user-exit.

5205 GET request from SYSIPT user-exit failed with return code "nn".

5206 Record length not set by "exit-name" user-exit.

5224 A PUT request to the ADEXIT user-exit failed with return code "nn".

422 COBOL/VSE Programming Guide

 EXIT Compiler Option

An Example SYSIPT User-Exit
Figure 137 shows an example of a SYSIPT user-exit phase written using
COBOL/VSE.

 ���

 � �

 � Name: SKELINX �

 � �

� Function: Example of a SYSIPT user-exit written �

� in the COBOL language. �

 � �

 �---�

 � �

� LINKAGE NOTE: Link with run-time options phase, �

� CEEUOPT CSECT, that contains at least �

 � the following: �

 � �

 � CEEUOPT CSECT �

 � CEEUOPT AMODE ANY �

 � CEEUOPT RMODE ANY �

 � CEEXOPT RTEREUS=(ON) �

 � END �

 � �

 ���

 Identification Division.

 Program-ID. Skelinx.

 Environment Division.

 Data Division.

 Working-Storage Section.

 � ���

 � � �

 � � Local variables. �

 � � �

 � ���

 77 Operation Pic 9(4) Comp.

 � ���

 � � �

� � Definition of the User-Exit Parameter List, which �

� � is passed from the COBOL compiler to the user-exit �

� � passed from the COBOL compiler to the user-exit �

 � � phase. �

 � � �

 � ���

 Linkage Section.

 �1 Exit-Type Pic 9(4) Comp.

 �1 Exit-Operation Pic 9(4) Comp.

 �1 Exit-ReturnCode Pic 9(5) Comp.

Figure 137 (Part 1 of 4). Example SYSIPT User-Exit

 Appendix D. EXIT Compiler Option 423

 EXIT Compiler Option

 �1 Exit-WorkArea.

 �5 Sysipt-Slot Pic 9(5) Comp.

 �5 Libexit-slot Pic 9(5) Comp.

 �5 Syslst-slot Pic 9(5) Comp.

�5 Reserved-Slot Pic 9(5) Comp.

 �1 Exit-DataLength Pic 9(5) Comp.

 �1 Exit-DataArea Pic 9(9) Comp.

 �1 Exit-Open-Parm Redefines Exit-DataArea.

 �5 String-Len Pic 9(4) Comp.

 �5 Open-String Pic X(64).

 �1 Exit-Print-Line Redefines Exit-DataArea Pic X(133).

 �1 Exit-Library Pic X(8).

 �1 Exit-Systext Pic X(8).

 �1 Exit-CBLLibrary Pic X(3�).

 �1 Exit-CBLText Pic X(3�).

 ���

 � �

� Begin PROCEDURE DIVISION �

 � �

� Invoke the section to handle the exit. �

 � �

 ���

Procedure Division Using Exit-Type Exit-Operation

 Exit-ReturnCode Exit-WorkArea

 Exit-DataLength Exit-DataArea

 Exit-Library Exit-Systext

 Exit-CBLLibrary Exit-CBLText.

Add 1 To Exit-Operation Giving Operation

Go To Handle-Sysipt

 Handle-Library

 Handle-Syslst

 Handle-Adata

Depending On Exit-Type.

Move 16 To Exit-ReturnCode

 Goback.

Figure 137 (Part 2 of 4). Example SYSIPT User-Exit

424 COBOL/VSE Programming Guide

 EXIT Compiler Option

 ���

� S Y S I N E X I T P R O C E S S O R �

 ���

 Handle-Sysipt.

Go To Sysipt-Open

 Sysipt-Close

 Sysipt-Get

Depending On Operation.

Move 16 To Exit-ReturnCode

 Goback.

 Sysipt-Open.

 � --

� Prepare for reading source

 � --

 Goback.

 Sysipt-Close.

 � --

 � Release resources

 � --

 Goback.

 Sysipt-Get.

 � --

� Retrieve next source record

 � --

 � --

� The following can be used to return the address of the

� record to the compiler.

 � --

Call "GETADDRESS" Using

By Reference Record-Variable

By Reference Exit-DataArea

 � --

� Set length of record in User-Exit Parameter List

 � --

Move 8� To Exit-DataLength

 Goback.

 ���

� L I B R A R Y E X I T P R O C E S S O R �

 ���

 Handle-Library.

Display "���� This phase for SYSIPT only"

Move 16 To Exit-ReturnCode

 Goback.

Figure 137 (Part 3 of 4). Example SYSIPT User-Exit

 Appendix D. EXIT Compiler Option 425

 Sample Programs

 ���

� S Y S P R I N T E X I T P R O C E S S O R �

 ���

 Handle-Syslst.

Display "���� This phase for SYSIPT only"

Move 16 To Exit-ReturnCode

 Goback.

 ���

� A D A T A E X I T P R O C E S S O R �

 ���

 Handle-Adata.

Display "���� This phase for SYSIPT only"

Move 16 To Exit-ReturnCode

 Goback.

 ���

 ���

 �� ��

�� Internal program to obtain the address of an ��

�� item in the caller's WORKING-STORAGE SECTION ��

 �� ��

 ���

 ���

 Identification Division.

 Program-ID. GetAddress.

 Environment Division.

 Data Division.

 Linkage Section.

 �1 The-Item Pic X(8�).

 �1 Its-Address Pointer.

Procedure Division Using The-Item Its-Address.

Set Its-Address To Address Of The-Item.

 Goback.

End Program GetAddress.

End Program Skelinx.

Figure 137 (Part 4 of 4). Example SYSIPT User-Exit

426 COBOL/VSE Programming Guide

 IGYTCARA Sample Program

 Appendix E. Sample Programs

This appendix contains information about the sample programs which are included
on your product tape:

� Overview of the program
� Hierarchy chart or program chart
� Format and sample of the input data
� Sample of reports produced
� Information on how to run the program
� List of the language elements and concepts that are illustrated

Pseudocode and other comments regarding these programs are included in the
program prologue which you can obtain in a program listing.

The sample programs in this section demonstrate many language elements and
concepts of COBOL/VSE:

� IGYTCARA -provides an example of using SAM files and VSAM indexed files
and illustrates using many COBOL intrinsic functions.

� IGYTSALE -illustrates many of the LE/VSE callable services features.

Overview of the IGYTCARA
A company with several local offices wants to establish employee carpools. This
batch application needs to perform two tasks:

1. Produce reports of employees who can share rides from the same home
location to the same work location.

2. Update the carpool data to:

� Add data for new employees
� Change information for participating employees
� Delete employee records
� List invalid update requests

Data Validation and Update
Using SAM files and VSAM indexed files, this program:

� Validates transaction file entries (sequential file processing)
� Updates a master file (indexed file processing)

 Copyright IBM Corp. 1983, 1998 427

 IGYTCARA Sample Program

Hierarchy Chart for IGYTCARA
 ���

 ┌───────────────┐

 │ │

 │ DO MAIN │

 │ LOGIC │

 │ │

 │ │

 └───────┬───────┘

 │

 │

│ 5� 5�� 6��

│ ┌───────────────┐ ┌───────────────┐ ┌───────────────┐

 │ │ │ │ │ │ │

 │ │ CREATE VSAM │ │ VSAM │ │ ABEND DUMP │

├────────┤ MASTER FILE ├────────┤ ERROR ├────────┤ ON WRITE │

 │ │ │ │ │ │ │

 │ │ │ │ │ │ │

│ └───────────────┘ └───────────────┘ └───────────────┘

 │

 │

 │

 │ ┌─┐

 ┌─────────────────────────────────────┬───────────────────┴───────────────────────────────────┬────────────────────────────────────┤A│

 │ 1�� │ 2�� │ 3�� └─┘

 ┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐

 │ │ │ │ │ │

 │ INITIALIZE │ │ EDIT │ │ UPDATE │

 │ PARAGRAPH │ │ UPDATE │ │ COMMUTER │

│ │ │ TRANSACTION │ │ RECORD │

 │ │ │ │ │ │

 └───────┬───────┘ └───────┬───────┘ └───────┬───────┘

 │ │ │

 │ │ │

 │ │ │

 │ │ │

 │ │ │

 │ ┌────────┴────────┐ ┌─────────────────┬────────┴────────┬─────────────────┐

 │ 5�� │ 5�� │ 21� │ 31� │ 32� │ 33� │ 5��

┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐

 │ │ │ │ │ │ │ │ │ │ │ │ │ │

│ VSAM │ │ VSAM │ │ EDIT │ │ FORMAT │ │ PRINT │ │ PRINT │ │ VSAM │

│ ERROR │ │ ERROR │ │ THE │ │ COMMUTER │ │ COMMUTER │ │ REPORT │ │ ERROR │

│ │ │ │ │ REST │ │ RECORD │ │ RECORD │ │ │ │ │

 │ │ │ │ │ │ │ │ │ │ │ │ │ │

└───────┬───────┘ └───────────────┘ └───────┬───────┘ └───────────────┘ └───────┬───────┘ └───────────────┘ └───────┬───────┘

 │ │ │ │

 │ │ │ │

 │ │ │ │

 │ │ │ │

 │ │ ┌─────────────────┼─────────────────┐ │

 │ 9�� │ 9�� │ 33� │ 7�� │ 8�� │ 6��

┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐

 │ │ │ │ │ │ │ │ │ │ │ │

│ ABNORMAL │ │ ABNORMAL │ │ PRINT │ │ FIND HOME │ │ FIND WORK │ │ ABEND DUMP │

│ TERMINATION │ │ TERMINATION │ │ REPORT │ │ JUNCTION │ │ JUNCTION │ │ ON WRITE │

 │ │ │ │ │ │ │ │ │ │ │ │

 │ │ │ │ │ │ │ │ │ │ │ │

└───────────────┘ └───────────────┘ └───────────────┘ └───────────────┘ └───────────────┘ └───────────────┘

┌─┐

│A├──────────┬─────────────────────┬─────────────────────┬─────────────────────┬─────────────────────┐

└─┘ │ 4�� │ 5�� │ 41� │ 11�� │ 12��

 ┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐

 │ │ │ │ │ │ │ │ │ │

│ PRINT │ │ RE-INITIALIZE │ │ PRINT │ │ PRINT │ │ PRINT │

│ TRANSACTION │ │ FIELDS │ │ I/F │ │ I/F │ │ I/F │

 │ ERRORS │ │ │ │ FIELDS │ │ HEADINGS │ │ DATA │

 │ │ │ │ │ │ │ │ │ │

 └───────┬───────┘ └───────────────┘ └───────────────┘ └───────────────┘ └───────────────┘

 │

 │

 │

 │

 │

 ├─────────────────────┬─────────────────────┐

 │ 33� │ 7�� │ 8��

 ┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐

 │ │ │ │ │ │

 │ PRINT │ │ FIND HOME │ │ FIND WORK │

 │ REPORT │ │ JUNCTION │ │ JUNCTION │

 │ │ │ │ │ │

 │ │ │ │ │ │

 └───────────────┘ └───────────────┘ └───────────────┘

428 COBOL/VSE Programming Guide

 IGYTCARA Sample Program

Input Data for IGYTCARA
As input to our program, the company collected information from interested
employees, coded the information, and produced an input file. (Spaces between
fields are left out, just as they would be in your input file.)

A1�111ROBERTS AB1�21 CRYSTAL COURTSAN FRANCISCOCA999�1415555�19�4155551387H1W1D

�� � �└─────────┘└────────────────────────────────────┘└────────┘└────────┘└┘└┘�

││ │ │ � � � � � � │

││ │ │ │ │ │ │ │ │ │

12 3 4 5 6 7 8 9 1� 11

Figure 138. Format of Input File for IGYTCARA

Where:

 1. Transaction code
 2. Shift
 3. Home code
 4. Work code
 5. Commuter name
 6. Home address
 7. Home phone
 8. Work phone
9. Home location junction

10. Work location junction
11. Driving status code

Figure 139 shows a sample section of the input file.

A1�111ROBERTS AB1�21 CRYSTAL COURTSAN FRANCISCOCA999�1415555�19�4155551387H1W1D

A2�212KAHN DE789 EMILY LANE SAN FRANCISCOCA99921415555189�4155552589H2W2D

P48899 99ASDFG���555789�123ASDFGHJ T

R1�111ROBERTS AB1221 CRYSTAL COURTSAN FRANCISCOCA999�1415555�19�4155551387H1W1D

A2�212KAHN DE789 EMILY LANE SAN FRANCISCOCA99921415555189�4155552589H2W2D

D2�212KAHN DE

D2�212KAHN DE

A2�212KAHN DE789 EMILY LANE SAN FRANCISCOCA99921415555189�4155552589H2W2D

A1�111BONNICK FD1�25 FIFTH AVENUE SAN FRANCISCOCA999�5415555959�4155557895H8W3

A1�111PETERSON SW435 THIRD AVENUE SAN FRANCISCOCA999�5415555469�4155553717H3W4

Figure 139. Example of IGYTCARA Input Data

 Appendix E. Sample Programs 429

 IGYTCARA Sample Program

Report Produced by IGYTCARA
Figure 140 shows a sample of what the output report produced by IGYTCARA
might look like. Your actual output may vary slightly in appearance, depending on
your system.

REPORT #: IGYTCARA COMMUTER FILE UPDATE LIST PAGE #: 1

PROGRAM #: IGYTCARA RUN TIME: 18:57 RUN DATE: �4/21/95

==

| RE-| SHIFT | | | | |STA-|

TRANS|CORD|HOME CODE| COMMUTER | HOME | HOME PHONE | HOME LOCATION JUNCTION |TUS | TRANS. ERROR

CODE |TYPE|WORK CODE| NAME | ADDRESS | WORK PHONE | WORK LOCATION JUNCTION |CODE|

==

 A NEW 1 �1 11 ROBERTS AB 1�21 CRYSTAL COURT (415) 555-�19� RODNEY/CRYSTAL D

SAN FRANCISCO CA 999�1 (415) 555-1387 BAYFAIR PLAZA

--

 A NEW 2 �2 12 KAHN DE 789 EMILY LANE (415) 555-189� COYOTE D

SAN FRANCISCO CA 99921 (415) 555-2589 14TH STREET/166TH AVENUE

--

 P 4 88 99 (���) 555-789� HOME CODE ' ' NOT FOUND. T

99 ASDFG (123) ASD-FGHJ WORK CODE ' ' NOT FOUND. TRANSACT. CODE

 SHIFT CODE

HOME LOC. CODE

WORK LOC. CODE

 LAST NAME

 INITIALS

 ADDRESS

 CITY

 STATE CODE

 ZIPCODE

 HOME PHONE

 WORK PHONE

 HOME JUNCTION

 WORK JUNCTION

 DRIVING STATUS

--

 R OLD 1 �1 11 ROBERTS AB 1�21 CRYSTAL COURT (415) 555-�19� RODNEY/CRYSTAL D

SAN FRANCISCO CA 999�1 (415) 555-1387 BAYFAIR PLAZA

NEW 1 �1 11 ROBERTS AB 1221 CRYSTAL COURT (415) 555-�19� RODNEY/CRYSTAL D

SAN FRANCISCO CA 999�1 (415) 555-1387 BAYFAIR PLAZA

--

 A 2 �2 12 KAHN DE 789 EMILY LANE (415) 555-189� COYOTE D

SAN FRANCISCO CA 99921 (415) 555-2589 14TH STREET/166TH AVENUE DUPLICATE REC.

--

 D OLD 2 �2 12 KAHN DE 789 EMILY LANE (415) 555-189� COYOTE D

SAN FRANCISCO CA 99921 (415) 555-2589 14TH STREET/166TH AVENUE

--

 D 2 �2 12 KAHN DE REC. NOT FOUND

 .

 .

 .

Figure 140. Example of IGYTCARA Output Report

430 COBOL/VSE Programming Guide

 IGYTCARA Sample Program

 Running IGYTCARA
The job control statements described later in this section will perform a combined
compile, link-edit, and run of the IGYTCARA program. If you wish to only compile,
or compile and link-edit the program, then you will need to modify these job control
statements.

All the files required by the IGYTCARA program, and the source programs, are
supplied on the product installation tape. The files (IGYTCODE and IGYTRANX),
and the source program (IGYTCARA) are members in the sublibrary into which
COBOL/VSE was installed.

Note: You should check with your system programmer to get copies of these
members.

 Compiler Options
These options must be in effect, either by installation default, or in addition to the
CBL statement in the source file for IGYTCARA:

NOADV
NOCMPR2
NODYNAM
NONAME
NONUMBER
QUOTE
SEQUENCE

With these options in effect, the program will not cause any diagnostic messages to
be issued. The sequence number string provided in the source file will be useful
for searching for the language elements that are listed in Figure 148 on page 444.

Running the Job
To run IGYTCARA, the following functions need to be performed using JCL:

� Define a VSAM cluster for use by IGYTCARA
� Load data into temporary transaction files

 � Compile IGYTCARA
� Link-edit the object phases produced by the compilation

 � Execute IGYTCARA

You will need to insert your own system/installation specific information in the fields
that are shown in lowercase letters (volume serial number, catalog name, cluster
prefix). You will also need to provide a default model for SAM ESDS files in your
VSAM catalog. See your system programmer for assistance. We have used the
name IGYTCAR.MASTFILE in these examples, you can use another name if you
wish.

1. Use the following JCL to create the required VSAM cluster:

 Appendix E. Sample Programs 431

 IGYTCARA Sample Program

// JOB CREATE

// EXEC IDCAMS,SIZE=AUTO

 DELETE your-prefix.IGYTCAR.MASTFILE -

 PURGE -

 CATALOG(your-cat-name)

 DEFINE CLUSTER -

 (NAME(your-prefix.IGYTCAR.MASTFILE) -

 VOLUME(your-volume-serial) -

 INDEXED -

 RECSZ(8� 8�) -

 KEYS(16 �) -

 RECORDS(1�� 2�)) -

 CATALOG(your-cat-name)

/�

/&

Note: A delete is issued before the VSAM cluster is created. This eliminates
any existing cluster.

2. Use the following JCL to load data into the temporary transaction files.

// JOB LOAD

// DLBL INPUT2,'your-prefix.IGYTRANX',�,VSAM,CAT=your-cat-name, C

 RECSIZE=8�,RECORDS=5�,DISP=(NEW,KEEP)

// DLBL LOCCODE,'your-prefix.IGYTCODE',�,VSAM,CAT=your-cat-name, C

 RECSIZE=8�,RECORDS=5�,DISP=(NEW,KEEP)

// UPSI 1

// EXEC DITTO

$$DITTO SET HEADERPG=NO

$$DITTO CSQ FILEOUT=INPUT2,CISIZE=4���
...

IGYTRANX.Z member in the COBOL/VSE sublibrary
...

/�

$$DITTO CSQ FILEOUT=LOCCODE,CISIZE=4���
...

IGYTCODE.Z member in the COBOL/VSE sublibrary
...

/�

$$DITTO EOJ

/&

3. Use the following JCL to compile IGYTCARA, link-edit the object phases, and
execute IGYTCARA. Your installation may have standard labels for the com-
piler work files, and SYSLNK. See your system programmer.

432 COBOL/VSE Programming Guide

 IGYTCARA Sample Program

// JOB IGYTCARA

// OPTION NODUMP,LINK

// LIBDEF �,SEARCH=(PRD2.PROD,PRD2.SCEEBASE) <- Compiler and Run Time

// DLBL IJSYS�1,'your-prefix.IJSYS�1',�,VSAM,RECSIZE=4�96, C

 RECORDS=(5�,1��),DISP=(NEW,DELETE),CAT=your-cat-name

// DLBL IJSYS�2,'your-prefix.IJSYS�2',�,VSAM,RECSIZE=4�96, C

 RECORDS=(5�,1��),DISP=(NEW,DELETE),CAT=your-cat-name

// DLBL IJSYS�3,'your-prefix.IJSYS�3',�,VSAM,RECSIZE=4�96, C

 RECORDS=(5�,1��),DISP=(NEW,DELETE),CAT=your-cat-name

// DLBL IJSYS�4,'your-prefix.IJSYS�4',�,VSAM,RECSIZE=4�96, C

 RECORDS=(5�,1��),DISP=(NEW,DELETE),CAT=your-cat-name

// DLBL IJSYS�6,'your-prefix.IJSYS�6',�,VSAM,RECSIZE=4�96, C

 RECORDS=(5�,1��),DISP=(NEW,DELETE),CAT=your-cat-name

// DLBL IJSYS�7,'your-prefix.IJSYS�7',�,VSAM,RECSIZE=4�96, C

 RECORDS=(5�,1��),DISP=(NEW,DELETE),CAT=your-cat-name

// DLBL IJSYSLN,'your-prefix.IJSYSLN',�,VSAM,RECSIZE=322, C

 RECORDS=(4��,6��),CAT=your-cat-name

// EXEC IGYCRCTL,SIZE=IGYCRCTL
...

IGYTCARA.C member in the distribution library
...

/�

// EXEC LNKEDT

// ASSGN SYS�12,SYSIPT

// ASSGN SYS�14,SYSLST

// DLBL LOCCODE,'your-prefix.IGYTCODE',�,VSAM,CAT=your-cat-name, C

 DISP=(OLD,DELETE)

// DLBL UPDTRAN,'your-prefix.IGYTRANX',�,VSAM,CAT=your-cat-name, C

 DISP=(OLD,DELETE)

// DLBL COMMUTR,'your-prefix.IGYTCAR.MASTFILE',�,VSAM,CAT=your-cat-name

// EXEC ,SIZE=256K

/�

/&

 Appendix E. Sample Programs 433

 IGYTSALE Sample Program

Overview of IGYTSALE
A sporting goods distributor wants to track product sales and sales commissions.
This nested program application needs to perform the following tasks:

1. Keep a record of the product line, customers, and number of salespeople. This
data is stored in a file called IGYTABLE.

2. Maintain a file which records valid transactions and transaction errors. All
invalid transactions are flagged and the results are printed in a report. Trans-
actions to be processed are in a file called IGYTRANA.

3. Process transactions and report sales by location.

4. Record an individual's sales performance and commission and print the results
in a report.

Program Chart for IGYTSALE
 ┌─────────────────┐

 │ │

 │ │

 │ IGYTSALE │

 │ │

 │ │

 └────────┬────────┘

 │

 │

 │

 │

 │

 ┌─────────────────────────────┬───────────────────────┼──────────────────────────┬───────────────────────────────┐

 │ │ │ │ COMMON │ COMMON

 ┌────────┴────────┐ ┌────────┴────────┐ ┌────────┴────────┐ ┌────────┴────────┐ ┌────────┴───────┐

 │ │ │ │ │ │ │ │ │ │

 │ PROCESS │ │ PRINT │ │ PRINT │ │ TABLE │ │ ERROR │

│ TRANSACTIONS │ │ PRODUCT │ │ SALESPERSON │ │ MANAGER │ │ ROUTINE │

│ │ │ BY AREA │ │ SALES │ │ │ │ │

 │ │ │ │ │ │ │ │ │ │

 └────────┬────────┘ └─────────────────┘ └─────────────────┘ └────────┬────────┘ └────────────────┘

 │ │

 │ │

 │ │

 │ │

 │ │

 ┌────────────────────┼────────────────────┐ ┌─────────┴──────────┐

 │ INITIAL │ │ │ │

┌────────┴────────┐ ┌────────┴────────┐ ┌────────┴────────┐ ┌────────┴────────┐ ┌────────┴───────┐

│ │ │ │ │ │ │ │ │ │

│ TRANSACTION │ │ ACCUMULATE │ │ ACCUMULATE │ │ BUILD │ │ SEARCH │

│ EDIT │ │ PRODUCT │ │ SALESPERSON │ │ SORTED │ │ TABLES │

│ │ │ BY AREA │ │ SALES │ │ TABLES │ │ │

│ │ │ │ │ │ │ │ │ │

└────────┬────────┘ └─────────────────┘ └─────────────────┘ └─────────────────┘ └────────────────┘

 │

 │

 │

 │

 │

 ├────────────────────┐

 │ │

┌────────┴────────┐ ┌────────┴────────┐

│ │ │ │

│ PRINT │ │ PRINT │

│ EDITED │ │ RESPONSE TIME │

│ TRANSACTION │ │ │

│ │ │ │

└─────────────────┘ └─────────────────┘

434 COBOL/VSE Programming Guide

 IGYTSALE Sample Program

Nested Program Map for IGYTSALE

 ┌─── IGYTSALE

 │

 │ ┌── Process-Transactions.

 │ │

│ │ ┌── Transaction-edit is Initial.

│ │ │

│ │ │ ┌── Print-edited-Transactions and Response-Time.

│ │ │ │

│ │ │ └── End Program Print-edited-transactions.

│ │ │

│ │ └── End Program Transaction-edit.

 │ │

│ │ ┌── Accumulate-product-by-area.

│ │ │

│ │ └── End Program Accumulate-product-by-area.

 │ │

│ │ ┌── Accumulate-salesperson-sales.

│ │ │

│ │ └── End Program Accumulate-salesperson-sales.

 │ │

│ └── End Program Process-transactions.

 │

 │ ┌── Print-product-by-area

 │ │

│ └── End Program Print-product-by-area

 │

 │ ┌── Print-salesperson-sales.

 │ │

│ └── End Program Print-salesperson-sales.

 │

│ ┌── Table-Manager is Common.

 │ │

│ │ ┌── Build-sorted-tables.

│ │ │

│ │ └── End Program Build-sorted-tables.

 │ │

│ │ ┌── Search-tables.

│ │ │

│ │ └── End Program Search-tables.

 │ │

│ └── End Program Table-manager.

 │

│ ┌── Error-routine is Common.

 │ │

│ └── End Program Error-routine.

 │

└─── End Program IGYTSALE.

 Appendix E. Sample Programs 435

 IGYTSALE Sample Program

Input Data for IGYTSALE
As input to our program, the distributor collected information about its customers,
salespeople and products, coded the information, and produced an input file. This
input file, called IGYTABLE, is loaded into three separate tables for use during
transaction processing.

C1�The Sportsman

�└┘└──────────────────┘

│� �

││ │

12 3

P�4Basketballs ���222�

�└┘└──────────────────┘└─────┘

│� � �

││ │ │

14 5 6

S1122Chuck Morgan �5278��84425

�└──┘└─────────────┘└────┘└────┘

│ � � � �

│ │ │ │ │

1 7 8 9 1�

Figure 141. Format of Input File IGYTABLE

Where:

 1. Record type
 2. Customer code
 3. Customer name
 4. Product code
 5. Product description
6. Product unit price

 7. Salesperson number
 8. Salesperson name
9. Date of hire

10. Commission rate

The value of field 1 (C, P, or S) determines the format of the input record.
Figure 142 on page 437 shows a sample section of IGYTABLE.

436 COBOL/VSE Programming Guide

 IGYTSALE Sample Program

S1111Edyth Phillips �62484�42327

S1122Chuck Morgan �5278��84425

S1133Art Tung �22882�61728

S1144Billy Jim Bob �1�27212115�

S1155Chris Preston 122�83�53377

S1166Willie Al Roz 1112761�����

P�1Footballs ����62�

P�2Football Equipment ��32�8�

P�3Football Uniform ���491�

P�4Basketballs ���222�

P�5Basketball Rim/Board���883�

P�6Basketball Uniform ���422�

C�1L. A. Sports

C�2Gear Up

C�3Play Outdoors

C�4Sports 4 You

C�5Sports R US

C�6Stay Active

C�7Sport Shop

C�8Stay Sporty

C�9Hot Sports

C1�The Sportsman

C11Playing Ball

C12Sports Play
...

Figure 142. Sample Input from IGYTABLE

In addition, the distributor collected information about sales transactions. Each
transaction represents an individual salesperson's sales to a particular customer.
The customer may purchase from 1 to 8 items during each transaction. The trans-
action information is coded and put in an input file, called IGYTRANA.

B1112399�111�123314SAN DIEGO 1166�99�11142355�5�26�2��27�5��11�52225�1��14��1�

└────┘�└──────────┘└──────────┘└──┘└┘└───────────┘└┘└──┘└┘└──┘└┘└──┘└┘└──┘└┘└──┘

 � │ � � � � � � � � � � � � � � �

 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │

 1 2 3 4 5 6 7 8 9 8 9 8 9 8 9 8 9

Figure 143. Format of Input File IGYTRANA

Where:

1. Sales order number
2. Invoiced items (number of different items ordered)
3. Date of sale (year month day hour minutes seconds)

 4. Sales area
 5. Salesperson number
 6. Customer code
7. Date of shipment (year month day hour minutes seconds)

 8. Product code
 9. Quantity sold

Fields 8 and 9 occur 1 to 8 times depending on the number of different items
ordered (field 2). Figure 144 on page 438 shows a sample section of IGYTRANA.

 Appendix E. Sample Programs 437

 IGYTSALE Sample Program

A����119��227�1�1�1CNTRL VALLEY11442�9��228223�15259999

A����419��31�1��53�CNTRL VALLEY11441�9��4�3�5211�15��99

A����519��4182224�9CNTRL VALLEY1144129��419235118�599��

A����619��523151�1�CNTRL VALLEY11442�9��623�1�91525���4

 499�324591515SAN DIEGO 11615 26�2��1322��11�522�451��

B1111449�1111��33�1SAN DIEGO 1166159�1114�2151�26�2��1322��11�522�411��

A����719�1115��32�5CNTRL VALLEY11332�9�111722144512��23

C��12549��1181�1527SF BAY AREA 1133159��12��5�31216�2��1122��25�522145111

B1111649�12�1132�13SF BAY AREA 1133159�12�3132215�6�2��1�22��11�522�451�2

B1111739�12�1�7�833SAN Diego 1165669�12�318�95533�2�o1322��12�522�411��

B1111849�1221191544SAN DIEGO 1166149�12232355�116�2��1422��13�522�4�3��

B1111949�121�211544SAN DIEGO 1122129�1214�155�2�6�2��1522��16�522�5�5��

B1112�49�1212���816SAN DIEGO 1122�49�121315331�15�2���522��16�522�4�1��

B1112149�12�1131544SAN DIEGO 1133�29�12�3�325�712�2��1122��14�52225�1��

B1112249�1112�73312SAN DIEGO 11221�9�1113�833121��2��1622��26�52225�1��

B1112399�111�123314SAN DIEGO 1166�99�11142355�526�2��27�5��11�52225�1��14��1�

B1112429�131351����SAN DIEGO 116611 1 �2���422��12�a221411��

B1112549�1215�1251�SAN DIEGO 1166159�1216�2251�11�2��1622��13�522141111

B1112619�1111����34SAN DIEGO 1133169�1113��3�3�26��22

B1112719�111�1541��SAN DIEGO 1122129�111317����122���
...

Figure 144. Sample Input from IGYJTRANA

438 COBOL/VSE Programming Guide

 IGYTSALE Sample Program

Reports Produced by IGYTSALE
The following figures are samples of IGYTSALE output. The program records
transaction errors (Figure 145), sales by product and area (Figure 146 on
page 440), and individual sales performance and commissions (Figure 147 on
page 441). Your actual output may vary slightly in appearance, depending on your
system.

 Day of Report: FRIDAY C O B O L S P O R T S �4/21/95 18:4� Page: 1

Invalid Edited Transactions

Sales Inv. Sales Sales Sales Cust. Product And Quantity Sold Ship

 Order Items Time Stamp Area Pers Code Time Stamp

----- ----- ------------ ----------- ----- ----- ------------------------- ------------

4 99�324591515 SAN DIEGO 116 15 6�2��1322��11�522�451�� 2 Error Descriptions

-Sales order number is missing

-Date of sale time stamp is invalid

-Salesperson number not numeric

-Product code not in product-table

-Date of ship time stamp is invalid

B11117 3 9�12�1�7�833 SAN Diego 1165 66 33�2�o1322��12�522�411�� 9�12�318�955 Error Descriptions

-Sales area not in area-table

-Salesperson not in sales-per-table

-Customer code not in customer-table

-Product code not in product-table

-Quantity sold not numeric

B11123 9 9�111�123314 SAN DIEGO 1166 �9 26�2��27�5��11�52225�1��14��1� 9�11142355�5 Error Descriptions

-Invoiced items is invalid

-Product and quantity not checked

-Date of ship time stamp is invalid

B11124 2 9�131351���� SAN DIEGO 1166 11 1 �2���422��12�a221411�� Error Descriptions

-Date of sale time stamp is invalid

-Product code is invalid

-Date of ship time stamp is invalid

 133 8111911���� LOS ANGELES 1166 1� �4�11211�21�16�3212511�4 Error Descriptions

-Sales order number is invalid

-Invoiced items is invalid

-Date of sale time stamp is invalid

-Product and quantity not checked

-Date of ship time stamp is invalid

 C11133 4 9�111944 1166 1� �4�11211�21�16�3212511�4 Error Descriptions

-Date of sale time stamp is invalid

-Sales area is missing

-Date of ship time stamp is invalid

C11138 4 9�1117�9153� LOS ANGELES 1155 1132��1�2�1�26�32125���4 9�1119�9173� Error Descriptions

-Customer code is invalid

 D����9 9 9�12�1222222 CNTRL COAST 115 19 141 1131221 9�12�2��2424 Error Descriptions

-Invoiced items is invalid

-Salesperson number not numeric

-Product and quantity not checked

 There were ���41 records processed in this program

Figure 145. Example of IGYTSALE Invalid Edited Transaction Report

 Appendix E. Sample Programs 439

 IGYTSALE Sample Program

 Day of Report: FRIDAY C O B O L S P O R T S �4/21/95 18:4� Page: 1

Sales Analysis By Product By Area

Areas of Sale

 | | CNTRL COAST | CNTRL VALLEY | LOS ANGELES | NORTH COAST | SAN DIEGO | SF BAY AREA | |

| Product Codes | | | | | | | Product Totals |

 ==

 |Product Number �4 | | | | | | | |

|Basketballs | | | | | | | |

| Units Sold | | | 433 | | 26�4 | 51�2 | 8139 |

| Unit Price | | | 22.2� | | 22.2� | 22.2� | |

 | Amount of Sale | | | $9,612.6� | | $57,8�8.8� | $113,264.4� | $18�,685.8� |

 --

 |Product Number �5 | | | | | | | |

 |Basketball Rim/Board| | | | | | | |

 | Units Sold | | 99�� | 212� | 11 | 27�� | | 14731 |

 | Unit Price | | 88.3� | 88.3� | 88.3� | 88.3� | | |

 | Amount of Sale | | $874,17�.�� | $187,196.�� | $971.3� | $238,41�.�� | | $1,3��,747.3� |

 --

 |Product Number �6 | | | | | | | |

 |Basketball Uniform | | | | | | | |

| Units Sold | | | | 99� | 2�� | 2�� | 139� |

| Unit Price | | | | 42.2� | 42.2� | 42.2� | |

 | Amount of Sale | | | | $41,778.�� | $8,44�.�� | $8,44�.�� | $58,658.�� |

 --

 |Product Number 1� | | | | | | | |

 |Baseball Cage | | | | | | | |

 | Units Sold | 45 | | 345� | 16 | 2�� | 332� | 7�31 |

| Unit Price | 89�.�� | | 89�.�� | 89�.�� | 89�.�� | 89�.�� | |

 | Amount of Sale | $4�,�5�.�� | |$3,�7�,5��.�� | $14,24�.�� | $178,���.�� |$2,954,8��.�� | $6,257,59�.�� |

 --

 |Product Number 11 | | | | | | | |

 |Baseball Uniform | | | | | | | |

 | Units Sold | 1���3 | | 3578 | | 2922 | 2746 | 19249 |

 | Unit Price | 45.7� | | 45.7� | | 45.7� | 45.7� | |

 | Amount of Sale | $457,137.1� | | $163,514.6� | | $133,535.4� | $125,492.2� | $879,679.3� |

 --

 |Product Number 12 | | | | | | | |

|Softballs | | | | | | | |

 | Units Sold | 1� | 137 | 2564 | 13 | 22�� | 22 | 4946 |

 | Unit Price | 1.4� | 1.4� | 1.4� | 1.4� | 1.4� | 1.4� | |

 .

 .

 | Units Sold | 44 | | 465 | 16 | 6165 | 2�� | 689� |

 | Unit Price | 45.7� | | 45.7� | 45.7� | 45.7� | 45.7� | |

 | Amount of Sale | $2,�1�.8� | | $21,25�.5� | $731.2� | $281,74�.5� | $9,14�.�� | $314,873.�� |

 --

 |Product Number 25 | | | | | | | |

|RacketBalls | | | | | | | |

 | Units Sold | 1��1 | 1���3 | 11�8 | 8989 | 2�� | 522 | 21823 |

 | Unit Price | �.6� | �.6� | �.6� | �.6� | �.6� | �.6� | |

 | Amount of Sale | $6��.6� | $6,��1.8� | $664.8� | $5,393.4� | $12�.�� | $313.2� | $13,�93.8� |

 --

 |Product Number 26 | | | | | | | |

 |Racketball Rackets | | | | | | | |

 | Units Sold | 21 | | 862 | 194 | 944 | 31 | 2�52 |

 | Unit Price | 12.7� | | 12.7� | 12.7� | 12.7� | 12.7� | |

 | Amount of Sale | $266.7� | | $1�,947.4� | $2,463.8� | $11,988.8� | $393.7� | $26,�6�.4� |

 --

 ==

 | Total Units Sold | 165�3 | 2�139 | 2��16 | 15346 | 29812 | 17394 � 11921� �

 | Total Sales |$1,441,929.4� | $968,473.6� |$5,29�,487.5� | $128,198.7� |$3,163,713.9� |$3,274,945.7� � $14,267,748.8� �

Figure 146. Example of IGYTSALE Sales Analysis By Product By Area Report

440 COBOL/VSE Programming Guide

 IGYTSALE Sample Program

 Day of Report: FRIDAY C O B O L S P O R T S �4/21/95 18:4� Page: 1

Sales and Commission Report

 Salesperson: Billy Jim Bob

 Customers: Number of Products Total for Discount Discount Commission

Orders Ordered Order (if any) Amount Earned

 -------------------- --------- -------- -------------- -------- ----------- -----------

 Sports Stop 3 1�117 $6,161.4� 2.25% $138.63 $746.45

 The Sportsman 1 99 $88,11�.�� 5.�6% $4,458.36 $1�,674.52

 Sports Play 1 99�� $874,17�.�� 7.59% $66,349.5� $1�5,9�5.69

--------- -------- -------------- ----------- -----------

 Totals: 5 2�116 $968,441.4� $7�,946.49 $117,326.66

 Salesperson: Willie Al Roz

 Customers: Number of Products Total for Discount Discount Commission

Orders Ordered Order (if any) Amount Earned

 -------------------- --------- -------- -------------- -------- ----------- -----------

 Winners Club 4 13998 $1,572,775.9� 7.59% $119,373.69 $157,277.59

 Winning Sports 1 3222 $48,777.2� 3.38% $1,648.66 $4,877.72

 The Sportsman 1 1747 $27,415.5� 3.38% $926.64 $2,741.55

 Play Outdoors 1 251� $18,579.6� 3.38% $627.99 $1,857.96

--------- -------- -------------- ----------- -----------

 Totals: 7 21477 $1,667,548.2� $122,576.98 $166,754.82

 Salesperson: Art Tung

 Customers: Number of Products Total for Discount Discount Commission

Orders Ordered Order (if any) Amount Earned

 -------------------- --------- -------- -------------- -------- ----------- -----------

 Sports Stop 1 23 $32.2� 2.25% $.72 $1.98

 Winners Club 2 16�57 $2,274,885.�� 7.59% $172,663.77 $14�,424.1�

 Gear Up 1 3�22 $1�7,144.�� 7.59% $8,132.22 $6,613.78

 Sports Club 1 22 $279.4� 2.25% $6.28 $17.24

 Sports Fans Shop 1 1�44 $2�,447.3� 3.38% $691.11 $1,262.17

 L. A. Sports 1 1163 $979,198.1� 7.59% $74,321.13 $6�,443.94

--------- -------- -------------- ----------- -----------

 Totals: 7 21331 $3,381,986.�� $255,815.23 $2�8,763.21

 Salesperson: Chuck Morgan

 Customers: Number of Products Total for Discount Discount Commission

Orders Ordered Order (if any) Amount Earned

 -------------------- --------- -------- -------------- -------- ----------- -----------

 Sports Play 3 7422 $3,817,245.4� 7.59% $289,728.92 $322,27�.94

 .

 .

 .

 Salesperson: Edyth Phillips

 Customers: Number of Products Total for Discount Discount Commission

Orders Ordered Order (if any) Amount Earned

 -------------------- --------- -------- -------------- -------- ----------- -----------

 Sports Play 2 3575 $92,4�9.9� 5.�6% $4,675.94 $3,911.43

 Winning Sports 1 11945 $56,651.4� 5.�6% $2,866.56 $2,397.88

--------- -------- -------------- ----------- -----------

 Totals: 3 1552� $149,�61.3� $7,542.5� $6,3�9.31

 Grand Totals: 33 11921� $14,267,748.8� $1,�68,�31.6� $1,114,529.39

Figure 147. Example of IGYTSALE Sales and Commission Report

 Appendix E. Sample Programs 441

 IGYTSALE Sample Program

 Running IGYTSALE
The job control statements described later in this section will perform a combined
compile, link-edit, and execute of the IGYTSALE program. If you wish only to
compile, or compile and link-edit the program, then you will need to modify these
job control statements.

All the files required by the IGYTSALE program, the source programs, and the copy
members, are supplied on the product installation tape. The files (IGYTABLE and
IGYTRANA), the source program (IGYTSALE) and the copy members (IGYTCRC,
IGYTPRC, and IGYTSRC) are members in the sublibrary into which COBOL/VSE
was installed.

Note: You should check with your system programmer to get copies of these
members.

 Compiler Options
These options must be in effect, either by installation default, or in addition to the
CBL statement in the source file for IGYTSALE:

LIB
NOCMPR2
NOFLAGMIG
NONUMBER
QUOTE
SEQUENCE

With these options in effect, the program will not cause any diagnostic messages to
be issued. The sequence number string provided in the source file will be useful
for searching for the elements that are listed in Figure 148 on page 444.

Running the Job
To run IGYTSALE , the following functions need to be performed using JCL:

� Load data into temporary transaction files
� Compile, link-edit and run the program IGYTSALE

You will need to insert your own system/installation specific information in the fields
that are shown in lowercase letters (catalog name, file-ID prefix, sublibrary name).
You will also need to provide a default model for SAM ESDS files in your VSAM
catalog. See your system programmer for assistance.

1. Use the following JCL to load data into the temporary transaction files.

442 COBOL/VSE Programming Guide

 IGYTSALE Sample Program

// JOB LOAD

// DLBL IGYTRAN,'your-prefix.IGYTRANA',�,VSAM,CAT=your-cat-name, C

 RECSIZE=8�,RECORDS=5�,DISP=(NEW,KEEP)

// DLBL IGYTABLE,'your-prefix.IGYTABLE',�,VSAM,CAT=your-cat-name, C

 RECSIZE=8�,RECORDS=5�,DISP=(NEW,KEEP)

// UPSI 1

// EXEC DITTO

$$DITTO SET HEADERPG=NO

$$DITTO CSQ FILEOUT=IGYTRAN,CISIZE=4���
...

IGYTRANA.Z member in the COBOL/VSE sublibrary
...

/�

$$DITTO CSQ FILEOUT=IGYTABLE,CISIZE=4���
...

IGYTABLE.Z member in the COBOL/VSE sublibrary
...

/�

$$DITTO EOJ

/&

2. Use the following JCL to compile, link-edit and run the IGYTSALE program.
Your installation may have standard labels for the compiler work files, and
SYSLNK. See your system programmer.

// JOB IGYTSALE

// LIBDEF �,SEARCH=(PRD2.PROD,PRD2.SCEEBASE) <- Compiler and Run Time

// DLBL IJSYS�1,'your-prefix.IJSYS�1',�,VSAM,RECSIZE=4�96, C

 RECORDS=(5�,1��),DISP=(NEW,DELETE),CAT=your-cat-name

// DLBL IJSYS�2,'your-prefix.IJSYS�2',�,VSAM,RECSIZE=4�96, C

 RECORDS=(5�,1��),DISP=(NEW,DELETE),CAT=your-cat-name

// DLBL IJSYS�3,'your-prefix.IJSYS�3',�,VSAM,RECSIZE=4�96, C

 RECORDS=(5�,1��),DISP=(NEW,DELETE),CAT=your-cat-name

// DLBL IJSYS�4,'your-prefix.IJSYS�4',�,VSAM,RECSIZE=4�96, C

 RECORDS=(5�,1��),DISP=(NEW,DELETE),CAT=your-cat-name

// DLBL IJSYS�5,'your-prefix.IJSYS�5',�,VSAM,RECSIZE=4�96, C

 RECORDS=(5�,1��),DISP=(NEW,DELETE),CAT=your-cat-name

// DLBL IJSYS�6,'your-prefix.IJSYS�6',�,VSAM,RECSIZE=4�96, C

 RECORDS=(5�,1��),DISP=(NEW,DELETE),CAT=your-cat-name

// DLBL IJSYS�7,'your-prefix.IJSYS�7',�,VSAM,RECSIZE=4�96, C

 RECORDS=(5�,1��),DISP=(NEW,DELETE),CAT=your-cat-name

// DLBL IJSYSLN,'your-prefix.IJSYSLN',�,VSAM,RECSIZE=322, C

 RECORDS=(4��,6��),CAT=your-cat-name

// DLBL IGYTRAN,'your-prefix.IGYTRANA',�,VSAM,CAT=your-cat-name, C

 DISP=(OLD,DELETE)

// DLBL IGYTABL,'your-prefix.IGYTABLE',�,VSAM,CAT=your-cat-name, C

 DISP=(OLD,DELETE)

// ASSGN SYS�14,SYSLST

// EXEC IGYCRCTL,SIZE=IGYCRCTL,GO
...

IGYTSALE.C member in the COBOL/VSE sublibrary
...

/�

/&

 Appendix E. Sample Programs 443

 IGYTSALE Sample Program

Language Elements and Concepts that Are Illustrated
Figure 148 lists the language elements and programming concepts that are illus-
trated in the sample programs. The language element or concept is described, and
the sequence string (special character string that appears in the sequence field of
the source file that can be used as a search argument for locating the elements in
the listing) is shown.

To find the applicable language element for a sample program, locate that pro-
gram's abbreviation in the sequence string in Figure 148.

Sample Program

IGYTCARA IA

IGYTSALE IS

Figure 148 (Page 1 of 4). Sample Program Language Elements and Concepts

Language Element or Concept Sequence String

ACCEPT ... FROM DAY-OF-WEEK IS0900

ACCEPT ... FROM DATE IS0901

ACCEPT ... FROM TIME IS0902

ADD ... TO IS4550

AFTER ADVANCING IS2700

AFTER PAGE IS2600

ALL IS4200

ASSIGN IS1101

AUTHOR IA0040

CALL IS0800

Callable Services (LE/VSE)
CEEDATM - format date/time output
CEEDCOD - feedback code check from service call
CEEGMTO - UTC offset from local time
CEELOCT - local date and time
CEESECS - convert date/time stamp to seconds

IS0875, IS2575
IS0905
IS0904
IS0850
IS2350, IS2550

CLOSE files IS1900

Comma, semicolon, and space Interchangeable IS3500, IS3600

COMMON statement for Nested Programs IS4600

Complex OCCURS DEPENDING ON IS0700, IS3700

COMPUTE IS4501

COMPUTE ROUNDED IS4500

CONFIGURATION SECTION IA0970

CONFIGURATION SECTION (optional) IS0200

CONTINUE statement IA5310, IA5380

COPY statement IS0500

DATA DIVISION (optional) IS5100

Data validation IA5130-6190

444 COBOL/VSE Programming Guide

 IGYTSALE Sample Program

Figure 148 (Page 2 of 4). Sample Program Language Elements and Concepts

Language Element or Concept Sequence String

“Do-until” (PERFORM ... TEST AFTER) IA4900-5010, IA7690-7770

“Do-while” (PERFORM ... TEST BEFORE) IS1660

END-ADD IS2900

END-COMPUTE IS4510

END-EVALUATE IA6590, IS2450

END-IF IS1680

END-MULTIPLY IS3100

END-PERFORM IS1700

END PROGRAM IA9990

END-READ IS1800

END-SEARCH IS3400

ENVIRONMENT DIVISION (optional) IS0200

Error handling, termination of program IA4620, IA5080, IA7800-7980

EVALUATE statement IA6270-6590

EVALUATE ... ALSO IS2400

EXIT PROGRAM Need Not Be Only Statement in Para-
graph

IS2000

Exponentiation IS4500

EXTERNAL clause IS1200

FILE-CONTROL entry for sequential file IA1190-1300

FILE-CONTROL entry for VSAM indexed file IA1070-1180

FILE SECTION (optional) IS0200

FILE STATUS code check IA4600-4630, IA4760-4790

FILLER (optional) IS0400

Flags, level-88, definition IA1730-1800, IA2440-2480,
IA2710

Flags, level-88, testing IA4430, IA5200-5250

FLOATING POINT IS4400

GLOBAL statement IS0300

INITIAL statement for Nested Programs IS2300

INITIALIZE IS2500

Initializing a table in the Data Division IA2920-4260

In-line PERFORM statement IA4410-4520

I-O-CONTROL Paragraphs (optional) IS0200

INPUT-OUTPUT SECTION (optional) IS0200

 Appendix E. Sample Programs 445

 IGYTSALE Sample Program

Figure 148 (Page 3 of 4). Sample Program Language Elements and Concepts

Language Element or Concept Sequence String

Intrinsic Functions
 CURRENT-DATE
 MAX
 MEAN
 MEDIAN
 MIN
 STANDARD-DEVIATION
 UPPER-CASE
 VARIANCE
 WHEN-COMPILED

IA9005
IA9235
IA9215
IA9220
IA9240
IA9230
IA9015
IA9225
IA9000

IS (optional in all clauses) IS0700

LABEL RECORDS (optional) IS1150

LINKAGE SECTION IS4900

Mixing of indexes and subscripts IS3500

Mnemonic names IA1000

MOVE IS0903

MOVE CORRESPONDING statement IA4810, IA4830

MULTIPLY ... GIVING IS3000

Nested IF statement, using END-IF IA5460-5830

Nested Program IS1000

NEXT SENTENCE IS4300

NOT AT END IS1600

NULL IS4800

OBJECT-COMPUTER (optional) IS0200

OCCURS DEPENDING ON IS0710

ODO uses maximum length for receiving item IS1550

OPEN INPUT IS1400

OPEN OUTPUT IS1500

ORGANIZATION (optional) IS1100

Page eject IA7180-7210

PERFORM ... WITH TEST AFTER (“Do-Until”) IA4900-5010, IA7690-7770

PERFORM ... WITH TEST BEFORE (“Do-While”) IS1660

PERFORM ... UNTIL IS5000

PERFORM ... VARYING statement IA7690-7770

POINTER function IS4700

Print file FD entry IA1570-1620

Print report IA7100-7360

PROGRAM-ID (30 characters allowed) IS0120

READ .. INTO ... AT END IS1550

REDEFINES statement IA1940, IA2060, IA2890,
IA3320

446 COBOL/VSE Programming Guide

 IGYTSALE Sample Program

Figure 148 (Page 4 of 4). Sample Program Language Elements and Concepts

Language Element or Concept Sequence String

Reference modification IS2425

Relational operator <= (Less Than or Equal) IS4400

Relational operator >= (Greater Than or Equal) IS2425

Relative subscripting IS4000

REPLACE IS4100

SEARCH statement IS3300

SELECT IS1100

Sequence number can contain any character IA, IS

Sequential file processing IA4480-4510, IA4840-4870

Sequential table search, using PERFORM IA7690-7770

Sequential table search, using SEARCH IA5270-5320, IA5340-5390

SET INDEX IS3200

SET ... TO TRUE statement IA4390, IA4500, IA4860,
IA4980

SOURCE-COMPUTER (optional) IS0200

SPECIAL-NAMES paragraph (optional) IS0200

STRING statement IA6950, IA7050

Support for lowercase letters IS0100

TALLY IS1650

TITLE statement for nested programs IS0100

Update commuter record IA6200-6610

USAGE BINARY IS1300

USAGE PACKED-DECIMAL IS1301

VALUE with OCCURS IS0600

VALUE SPACE (S) IS0601

VALUE ZERO (S) (ES) IS0600

Variable-length table control variable IA5100

Variable-length table definition IA2090-2210

Variable-length table loading IA4840-4990

VSAM indexed file key definition IA1170

VSAM return code display IA7800-7900

WORKING-STORAGE SECTION IS0250

 Appendix E. Sample Programs 447

 Bibliography

IBM COBOL for VSE/ESA
General Information, GC26-8068

Migration Guide, GC26-8070

Installation and Customization Guide, SC26-8071

Programming Guide, SC26-8072

Language Reference, SC26-8073

Reference Summary, SX26-3834

Diagnosis Guide, SC26-8528

Licensed Program Specifications, GC26-8069

IBM VisualAge COBOL
Millennium Language Extensions
for VSE/ESA

Installation and Customization Guide, SC26-8071

COBOL Millennium Language Extensions Guide,
GC26-9266

Fact Sheet, GC26-9321

Licensed Program Specifications, GC26-9417

 Language Environment
Publications

Fact Sheet, GC33-6679

Concepts Guide, GC33-6680

Installation and Customization Guide, SC33-6682

Programming Guide, SC33-6684

Programming Reference, SC33-6685

Debugging Guide and Run-Time Messages,
SC33-6681

Licensed Program Specifications, GC33-6683

Run-Time Migration Guide, SC33-6687

Writing Interlanguage Communication Applications,
SC33-6686

C Run-Time Library Reference, SC33-6689

C Run-Time Programming Guide, SC33-6688

 Related Publications

 Debug Tool/VSE

User's Guide and Reference, SC26-8797

Installation and Customization Guide, SC26-8798

 CICS/VSE

Application Programming Guide, SC33-0712

Application Programmer's Reference, SC33-0713

 DL/I DOS/VS

Application Programming: CALL and RQDLI Inter-
faces, SH12-5411

Application Programming: High-Level Programming
Interface, SH24-5009

 DFSORT/VSE

Application Programming Guide, SC26-7040

Messages, Codes and Diagnosis Guide, SC26-7132

 SQL/DS

Application Programming Guide for VSE,
SH09-8098

VS COBOL II

Application Programming Guide for VSE,
SC26-4697

 VSE/ESA VSAM

VSE/ESA Commands and Macros, SC33-6532

VSE/ESA Programmer's Reference, SC33-6535

VSE/ESA Version 1 Release 4

 Planning, SC33-6503

 Administration, SC33-6505

Guide to System Functions, SC33-6511

System Control Statements, SC33-6513

System Macros User's Guide, SC33-6515

System Macros Reference, SC33-6516

System Utilities, SC33-6517

Messages and Codes Vol.1 & 2, SC33-6507

VSE/ESA Version 2

 Planning, SC33-6603

 Administration, SC33-6605

V2R3 Enhancements, SC33-6629

Guide to System Functions, SC33-6611

448 Copyright IBM Corp. 1983, 1998

System Control Statements, SC33-6613

System Macros User's Guide, SC33-6615

System Macros Reference, SC33-6616

System Utilities, SC33-6617

Messages and Codes Vol. 1, SC33-6698

Messages and Codes Vol. 2, SC33-6699

 Softcopy Publications

These collections contain the COBOL/VSE and
LE/VSE-conforming language product publications:

VSE Collection, SK2T-0060

Application Development Collection, SK2T-1237

You can order these publications from Mechanicsburg
through your local IBM representative.

 Bibliography 449

 Glossary

The terms in this glossary are defined in accordance
with their meaning in COBOL. These terms may or
may not have the same meaning in other languages.

IBM is grateful to the American National Standards
Institute (ANSI) for permission to reprint its definitions
from the following publications:

� American National Standard Programming Lan-
guage COBOL, ANSI X3.23-1985 (Copyright 1985
American National Standards Institute, Inc.), which
was prepared by Technical Committee X3J4, which
had the task of revising American National Standard
COBOL, X3.23-1974.

� American National Dictionary for Information Proc-
essing Systems (Copyright 1982 by the Computer
and Business Equipment Manufacturers Associ-
ation).

American National Standard definitions are preceded by
an asterisk (*).

A
* abbreviated combined relation condition. The
combined condition that results from the explicit omis-
sion of a common subject or a common subject and
common relational operator in a consecutive sequence
of relation conditions.

abend. Abnormal termination of program.

* access mode. The manner in which records are to
be operated upon within a file.

* actual decimal point. The physical representation,
using the decimal point characters period (.) or comma
(,), of the decimal point position in a data item.

* alphabet-name. A user-defined word, in the
SPECIAL-NAMES paragraph of the Environment Divi-
sion, that assigns a name to a specific character set
and/or collating sequence.

* alphabetic character. A letter or a space character.

* alphanumeric character. Any character in the
computer’s character set.

alphanumeric-edited character. A character within an
alphanumeric character string that contains at least one
B, 0 (zero), or / (slash).

* alphanumeric function. A function whose value
contains a string of one or more characters from the
computer's character set.

* alternate record key. A key, other than the prime
record key, whose contents identify a record within an
indexed file.

ANSI (American National Standards Institute). An
organization consisting of producers, consumers, and
general interest groups, that establishes the procedures
by which accredited organizations create and maintain
voluntary industry standards in the United States.

* argument.. An identifier, a literal, an arithmetic
expression, or a function identifier that specifies a value
to be used in the evaluation of a function.

* arithmetic expression. An identifier of a numeric
elementary item, a numeric literal, such identifiers and
literals separated by arithmetic operators, two arithmetic
expressions separated by an arithmetic operator, or an
arithmetic expression enclosed in parentheses.

* arithmetic operation. The process caused by the
execution of an arithmetic statement, or the evaluation
of an arithmetic expression, that results in a mathemat-
ically correct solution to the arguments presented.

* arithmetic operator. A single character, or a fixed
two-character combination that belongs to the following
set:

Character Meaning
 + addition
 − subtraction
 * multiplication
 / division
 ** exponentiation

* arithmetic statement. A statement that causes an
arithmetic operation to be executed. The arithmetic
statements are the ADD, COMPUTE, DIVIDE, MUL-
TIPLY, and SUBTRACT statements.

array. In LE/VSE, an aggregate consisting of data
objects, each of which may be uniquely referenced by
subscripting. Roughly analogous to a COBOL table.

* ascending key. A key upon the values of which data
is ordered, starting with the lowest value of the key up
to the highest value of the key, in accordance with the
rules for comparing data items.

ASCII. American National Standard Code for Informa-
tion Interchange. The standard code, using a coded
character set consisting of 7-bit coded characters (8 bits
including parity check), used for information interchange
between data processing systems, data communication

450 Copyright IBM Corp. 1983, 1998

systems, and associated equipment. The ASCII set
consists of control characters and graphic characters.

Note: IBM has defined an extension to ASCII code
(characters 128-255).

assignment-name. A name that identifies the organ-
ization of a COBOL file and the name by which it is
known to the system.

* assumed decimal point. A decimal point position
that does not involve the existence of an actual char-
acter in a data item. The assumed decimal point has
logical meaning with no physical representation.

* AT END condition. A condition caused:

1. During the execution of a READ statement for a
sequentially accessed file, when no next logical
record exists in the file, or when the number of sig-
nificant digits in the relative record number is larger
than the size of the relative key data item, or when
an optional input file is not present.

2. During the execution of a RETURN statement,
when no next logical record exists for the associ-
ated sort or merge file.

3. During the execution of a SEARCH statement,
when the search operation terminates without satis-
fying the condition specified in any of the associated
WHEN phrases.

B
binary item. A numeric data item represented in
binary notation (on the base 2 numbering system).
Binary items have a decimal equivalent consisting of the
decimal digits 0 through 9, plus an operational sign.
The leftmost bit of the item is the operational sign.

binary search. A dichotomizing search in which, at
each step of the search, the set of data elements is
divided by two; some appropriate action is taken in the
case of an odd number.

* block. A physical unit of data that normally contains
one or more logical records. For mass storage files, a
block may contain a portion of a logical record. The
size of a block has no direct relationship to the size of
the file within which the block is contained or to the size
of the logical record(s) that are either contained within
the block or that overlap the block. The term is synony-
mous with physical record.

breakpoint. A place in a computer program, usually
specified by an instruction, where its execution may be
interrupted by external intervention or by a monitor
program.

buffer. A portion of storage used to hold input or
output data temporarily.

byte. A string consisting of a certain number of bits,
usually eight, treated as a unit, and representing a char-
acter.

C
callable services. In LE/VSE, a set of services that
can be invoked by a COBOL program using the con-
ventional LE/VSE-defined call interface, and usable by
all programs sharing the LE/VSE conventions.

called program. A program that is the object of a
CALL statement.

* calling program. A program that executes a CALL
to another program.

case structure. A program processing logic in which a
series of conditions is tested in order to make a choice
between a number of resulting actions.

century window. A century window is a 100-year
interval within which any 2-digit year is unique. There
are several types of century window available to
COBOL programmers:

1. For windowed date fields, the YEARWINDOW com-
piler option

2. For windowing intrinsic functions
DATE-TO-YYYYMMDD, DAY-TO-YYYYDDD, and
YEAR-TO-YYYY, it is specified by argument-2

3. For LE/VSE callable services, it is specified in
CEESCEN

* character. The basic indivisible unit of the language.

character position. The amount of physical storage
required to store a single standard data format char-
acter described as USAGE IS DISPLAY.

character set. All the valid characters for a program-
ming language or a computer system.

* character string. A sequence of contiguous charac-
ters that form a COBOL word, a literal, a PICTURE
character string, or a comment-entry. Must be delimited
by separators.

checkpoint. A point at which information about the
status of a job and the system can be recorded so that
the job step can be later restarted.

* class condition. The proposition, for which a truth
value can be determined, that the content of an item is
wholly alphabetic, is wholly numeric, or consists exclu-
sively of those characters listed in the definition of a
class-name.

 Glossary 451

* class-name. A user-defined word defined in the
SPECIAL-NAMES paragraph of the Environment Divi-
sion that assigns a name to the proposition for which a
truth value can be defined, that the content of a data
item consists exclusively of those characters listed in
the definition of the class-name.

* clause. An ordered set of consecutive COBOL char-
acter strings whose purpose is to specify an attribute of
an entry.

CMS (Conversational Monitor System). A virtual
machine operating system that provides general interac-
tive, time-sharing, problem solving, and program devel-
opment capabilities, and that operates only under the
control of the VM/SP control program.

* COBOL character set. The complete COBOL char-
acter set consists of the characters listed below:

 Character Meaning
 0,1...,9 digit
 A,B,...,Z uppercase letter
 a,b,...,z lowercase letter
 ␣ space
 + plus sign
 − minus sign (hyphen)
 * asterisk
 / slant (virgule, slash)
 = equal sign

| $ default currency sign
 , comma (decimal point)
 ; semicolon
 . period (decimal point, full stop)
 " quotation mark
 (left parenthesis
) right parenthesis
 > greater than symbol
 < less than symbol
 : colon

* COBOL word. See “word.”

* collating sequence. The sequence in which the
characters that are acceptable to a computer are
ordered for purposes of sorting, merging, comparing,
and for processing indexed files sequentially.

* column. A character position within a print line. The
columns are numbered from 1, by 1, starting at the left-
most character position of the print line and extending
to the rightmost position of the print line.

* combined condition. A condition that is the result of
connecting two or more conditions with the AND or the
OR logical operator.

* comment-entry. An entry in the Identification Divi-
sion that may be any combination of characters from
the computer’s character set.

* comment line. A source program line represented
by an asterisk (*) in the indicator area of the line and
any characters from the computer’s character set in
area A and area B of that line. The comment line
serves only for documentation in a program. A special
form of comment line represented by a slant (/) in the
indicator area of the line and any characters from the
computer’s character set in area A and area B of that
line causes page ejection prior to printing the comment.

* common program. A program which, despite being
directly contained within another program, may be
called from any program directly or indirectly contained
in that other program.

compatible date field. The meaning of the term “com-
patible,” when applied to date fields, depends on the
COBOL division in which the usage occurs:

 � Data Division

Two date fields are compatible if they have identical
USAGE and meet at least one of the following
conditions:

– They have the same date format.

– Both are windowed date fields, where one con-
sists only of a windowed year, date format YY.

– Both are expanded date fields, where one con-
sists only of an expanded year, date format
YYYY.

– One has date format YYXXXX, the other,
YYXX.

– One has date format YYYYXXXX, the other,
YYYYXX.

A windowed date field can be subordinate to an
expanded date group data item. The two date
fields are compatible if the subordinate date field
has USAGE DISPLAY, starts two bytes after the
start of the group expanded date field, and the two
fields meet at least one of the following conditions:

– The subordinate date field has a DATE
FORMAT pattern with the same number of Xs
as the DATE FORMAT pattern of the group
date field.

– The subordinate date field has DATE FORMAT
YY.

– The group date field has DATE FORMAT
YYYYXXXX and the subordinate date field has
DATE FORMAT YYXX.

 � Procedure Division

Two date fields are compatible if they have the
same date format except for the year part, which
may be windowed or expanded. For example, a
windowed date field with date format YYXXX is
compatible with:

452 COBOL/VSE Programming Guide

– Another windowed date field with date format
YYXXX

– An expanded date field with date format
YYYYXXX

* compile. (1) To translate a program expressed in a
high-level language into a program expressed in an
intermediate language, assembly language, or a com-
puter language. (2) To prepare a machine language
program from a computer program written in another
programming language by making use of the overall
logic structure of the program, or generating more than
one computer instruction for each symbolic statement,
or both, as well as performing the function of an assem-
bler.

* compile time. The time at which a COBOL source
program is translated, by a COBOL compiler, to a
COBOL object program.

compiler. A program that translates a program written
in a higher level language into a machine language
object program.

compiler directing statement. A statement, beginning
with a compiler directing verb, that causes the compiler
to take a specific action during compilation. The SAA*

compiler directing statements are COPY, EJECT,
SKIP1/2/3, TITLE, and USE. The non-SAA compiler-
directing statements are: REPLACE, BASIS, INSERT,
and DELETE.

* complex condition. A condition in which one or
more logical operators act upon one or more conditions.
(See also “negated simple condition,” and “combined
condition,” “negated combined condition.”)

* computer-name. A system-name that identifies the
computer upon which the program is to be compiled or
run.

* condition. A status of a program at run time for
which a truth value can be determined. Where the term
‘condition’ (condition-1, condition-2,...) appears in these
language specifications in or in reference to ‘condition’
(condition-1, condition-2,...) of a general format, it is a
conditional expression consisting of either a simple con-
dition optionally parenthesized, or a combined condition
consisting of the syntactically correct combination of
simple conditions, logical operators, and parentheses,
for which a truth value can be determined.

* conditional expression. A simple condition or a
complex condition specified in an EVALUATE, IF,
PERFORM, or SEARCH statement. (See also “simple
condition” and “complex condition.”)

* conditional phrase. A conditional phrase specifies
the action to be taken upon determination of the truth
value of a condition resulting from the execution of a
conditional statement.

* conditional statement. A statement specifying that
the truth value of a condition is to be determined and
that the subsequent action of the object program is
dependent on this truth value.

* conditional variable. A data item one or more
values of which has a condition-name assigned to it.

* condition-name. A user-defined word that assigns a
name to a subset of values that a conditional variable
may assume; or a user-defined word assigned to a
status of an implementor defined switch or device.
When ‘condition-name’ is used in the general formats, it
represents a unique data item reference consisting of a
syntactically correct combination of a ‘condition-name’,
together with qualifiers and subscripts, as required for
uniqueness of reference.

* condition-name condition. The proposition, for
which a truth value can be determined, that the value of
a conditional variable is a member of the set of values
attributed to a condition-name associated with the con-
ditional variable.

* Configuration Section. A section of the Environ-
ment Division that describes overall specifications of
source and object programs.

CONSOLE. A COBOL environment-name associated
with the operator console.

* contiguous items. Items that are described by con-
secutive entries in the Data Division, and that bear a
definite hierarchic relationship to each other.

* counter. A data item used for storing numbers or
number representations in a manner that permits these
numbers to be increased or decreased by the value of
another number, or to be changed or reset to zero or to
an arbitrary positive or negative value.

cross-reference listing. The portion of the compiler
listing that contains information on where files, fields,
and indicators are defined, referenced, and modified in
a program.

| currency sign value. A character-string that identifies
| the monetary units stored in a numeric-edited item.
| Typical examples are '$', 'USD', and 'EUR'. A cur-
| rency sign value can be defined by either the CUR-
| RENCY compiler option or the CURRENCY SIGN
| clause in the SPECIAL-NAMES paragraph of the Envi-
| ronment Division. If the CURRENCY SIGN clause is
| not specified and the NOCURRENCY compiler option is
| in effect, the dollar sign ($) is used as the default cur-
| rency sign value. See also “currency symbol.”

| currency symbol. A character used in a PICTURE
| clause to indicate the position of a currency sign value
| in a numeric-edited item. A currency symbol can be

 Glossary 453

| defined by either the CURRENCY compiler option or by
| the CURRENCY SIGN clause in the SPECIAL-NAMES
| paragraph of the Environment Division. If the CUR-
| RENCY SIGN clause is not specified and the
| NOCURRENCY compiler option is in effect, the dollar
| sign ($) is used as the default currency sign value and
| currency symbol. Multiple currency symbols and cur-
| rency sign values can be defined. See also “currency
| sign value.”

* current record. In file processing the record that is
available in the record area associated with a file.

* current volume pointer. A conceptual entity that
points to the current volume of a sequential file.

D
* data clause. A clause, appearing in a data
description entry in the Data Division of a COBOL
program, that provides information describing a partic-
ular attribute of a data item.

* data description entry. An entry, in the Data Divi-
sion of a COBOL program, that contains a level-number
followed by a data-name, if required, and then followed
by a set of data clauses, as required.

Data Division. One of the four main components of a
COBOL program. The Data Division describes the data
to be processed by the object program: files to be used
and the records contained within them; internal
Working-Storage records that will be needed; data to be
made available in more than one program in the
COBOL run unit.

* data item. A unit of data (excluding literals) defined
by a COBOL program or by the rules for function evalu-
ation.

* data-name. A user-defined word that names a data
item described in a data description entry. When used
in the general formats, ‘data-name’ represents a word
that must not be reference-modified, subscripted or
qualified unless specifically permitted by the rules for
the format.

date field. Any of the following:

� A data item whose data description entry includes a
DATE FORMAT clause.

� A value returned by one of the following intrinsic
functions:

 DATE-OF-INTEGER
 DATE-TO-YYYYMMDD
 DATEVAL
 DAY-OF-INTEGER
 DAY-TO-YYYYDDD

 YEAR-TO-YYYY
 YEARWINDOW

� The conceptual data items DATE, DATE
YYYYMMDD, DAY, and DAY YYYYDDD in the
Format 2 ACCEPT statement.

� The result of certain arithmetic operations.

The term date field refers to both “expanded date field”
and “windowed date field.” See also “non-date.”

date format. The date pattern of a date field, specified
either:

� Explicitly, by the DATE FORMAT clause or
DATEVAL intrinsic function

or

� Implicitly, by statements and intrinsic functions that
return date fields.

DBCS (Double-Byte Character Set). See “Double-
Byte Character Set (DBCS).”

* debugging line. A debugging line is any line with a
‘D’ in the indicator area of the line.

* debugging section. A section that contains a USE
FOR DEBUGGING statement.

* declarative sentence. A compiler directing sentence
consisting of a single USE statement terminated by the
separator period.

* declaratives. A set of one or more special purpose
sections, written at the beginning of the Procedure Divi-
sion, the first of which is preceded by the keyword
DECLARATIVES and the last of which is followed by
the keywords END DECLARATIVES. A declarative
contains a section header, followed by a USE compiler
directing sentence, followed by a set of zero, one, or
more associated paragraphs.

* de-edit. The logical removal of all editing characters
from a numeric edited data item in order to determine
that item's unedited numeric value.

* delimited scope statement. Any statement that
includes its explicit scope terminator.

* delimiter. A character or a sequence of contiguous
characters that identify the end of a string of characters
and separate that string of characters from the following
string of characters. A delimiter is not part of the string
of characters that it delimits.

* descending key. A key upon the values of which
data is ordered starting with the highest value of key
down to the lowest value of key, in accordance with the
rules for comparing data items.

454 COBOL/VSE Programming Guide

digit. Any of the numerals from 0 through 9. In
COBOL, the term is not used in reference to any other
symbol.

* digit position. The amount of physical storage
required to store a single digit. This amount may vary
depending on the usage specified in the data
description entry that defines the data item.

* direct access. The facility to obtain data from
storage devices or to enter data into a storage device in
such a way that the process depends only on the
location of that data and not on a reference to data pre-
viously accessed.

* division. A collection of zero, one or more sections
or paragraphs, called the division body, that are formed
and combined in accordance with a specific set of rules.
Each division consists of the division header and the
related division body. There are four (4) divisions in a
COBOL program: Identification, Environment, Data,
and Procedure.

* division header. A combination of words followed by
a separator period that indicates the beginning of a divi-
sion. The division headers in a COBOL program are:

 IDENTIFICATION DIVISION.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 PROCEDURE DIVISION.

Double-Byte Character Set (DBCS). A set of charac-
ters in which each character is represented by two
bytes. Languages such as Japanese, Chinese, and
Korean, which contain more symbols than can be
represented by 256 code points, require Double-Byte
Character Sets. Since each character requires two
bytes, entering, displaying, and printing DBCS charac-
ters requires hardware and supporting software which
are DBCS-capable.

* dynamic access. An access mode in which specific
logical records can be obtained from or placed into a
mass storage file in a nonsequential manner and
obtained from a file in a sequential manner during the
scope of the same OPEN statement.

Dynamic Storage Area (DSA). Dynamically acquired
storage containing a register save area and an area
available for dynamic storage allocation (such as
program variables). DSAs are generally allocated within
STACK segments managed by LE/VSE.

E
* EBCDIC (Extended Binary-Coded Decimal Inter-
change Code). A coded character set consisting of
8-bit coded characters.

EBCDIC character. Any one of the symbols included
in the 8-bit EBCDIC (Extended Binary-Coded-Decimal
Interchange Code) set.

edited data item. A data item that has been modified
by suppressing zeros and/or inserting editing charac-
ters.

* editing character. A single character or a fixed two-
character combination belonging to the following set:

Character Meaning
 ␣ space
 0 zero
 + plus
 − minus
 CR credit
 DB debit
 Z zero suppress
 * check protect

| $ default currency sign
 , comma (decimal point)
 . period (decimal point)
 / slant (virgule, slash)

element (text element). One logical unit of a string of
text, such as the description of a single data item or
verb, preceded by a unique code identifying the element
type.

* elementary item. A data item that is described as
not being further logically subdivided.

enclave. In LE/VSE, an independent collection of rou-
tines, one of which is designated as the main program.
An enclave is roughly analogous to a COBOL program
which contains called programs.

* end of Procedure Division. The physical position of
a COBOL source program after which no further proce-
dures appear.

* end program header. A combination of words, fol-
lowed by a separator period, that indicates the end of a
COBOL source program. The end program header is:

END PROGRAM program-name.

* entry. Any descriptive set of consecutive clauses ter-
minated by a separator period and written in the Identifi-
cation Division, Environment Division, or Data Division
of a COBOL program.

* environment clause. A clause that appears as part
of an Environment Division entry.

 Glossary 455

Environment Division. One of the four main compo-
nent parts of a COBOL program. The Environment
Division describes the computers upon which the
source program is compiled and those on which the
object program is executed, and provides a linkage
between the logical concept of files and their records,
and the physical aspects of the devices on which files
are stored.

environment-name. A name, specified by IBM, that
identifies system logical units, printer and card punch
control characters, report codes, and/or program
switches. Valid environment-names for SAA COBOL
are SYSIN, SYSOUT, CONSOLE, C01, CSP, and
UPSI-0 through UPSI-7. When an environment-name is
associated with a mnemonic-name in the Environment
Division, the mnemonic-name may then be substituted
in any format in which such substitution is valid.

execution time. See “run time.”

execution-time environment. See “run-time environ-
ment.”

expanded date field. A date field containing an
expanded (4-digit) year. See also “date field” and
“expanded year.”

expanded year. Four digits representing a year,
including the century (for example, 1998). Appears in
expanded date fields. Compare with “windowed year.”

* explicit scope terminator. A reserved word which
terminates the scope of a particular Procedure Division
statement.

exponent. A number, indicating the power to which
another number (the base) is to be raised. Positive
exponents denote multiplication, negative exponents
denote division, fractional exponents denote a root of a
quantity. In COBOL, an exponential expression is indi-
cated with the symbol ‘**’ followed by the exponent.

* expression. An arithmetic or conditional expression.

* extend mode. The state of a file after execution of
an OPEN statement, with the EXTEND phrase specified
for that file, and before the execution of a CLOSE state-
ment, without the REEL or UNIT phrase for that file.

* external data. The data described in a program as
external data items and external file connectors.

* external data item. A data item which is described
as part of an external record in one or more programs
of a run unit and which itself may be referenced from
any program in which it is described.

* external data record. A logical record which is
described in one or more programs of a run unit and

whose constituent data items may be referenced from
any program in which they are described.

external decimal item. A format for representing
numbers in which the digit is contained in bits 4 through
7 and the sign is contained in bits 0 through 3 of the
rightmost byte. Bits 0 through 3 of all other bytes
contain 1’s (hex F). For example, the decimal value of
+123 is represented as 1111 0001 1111 0010 1111
0011. (Also know as “zoned decimal item.”)

* external file connector. A file connector which is
accessible to one or more object programs in the run
unit.

* external switch. A hardware or software device,
defined and named by the implementor, which is used
to indicate that one of two alternate states exists.

F
* figurative constant. A compiler-generated value ref-
erenced through the use of certain reserved words.

* file. A collection of logical records.

* file attribute conflict condition. An unsuccessful
attempt has been made to execute an input-output
operation on a file and the file attributes, as specified
for that file in the program, do not match the fixed attri-
butes for that file.

* file clause. A clause that appears as part of any of
the following Data Division entries: file description entry
(FD entry) and sort-merge file description entry (SD
entry).

* file connector. A storage area which contains infor-
mation about a file and is used as the linkage between
a file-name and a physical file and between a file-name
and its associated record area.

File-Control. The name of an Environment Division
paragraph in which the data files for a given source
program are declared.

* file control entry. A SELECT clause and all its sub-
ordinate clauses which declare the relevant physical
attributes of a file.

* file description entry. An entry in the File Section of
the Data Division that contains the level indicator FD,
followed by a file-name, and then followed by a set of
file clauses as required.

* file-name. A user-defined word that names a file
connector described in a file description entry or a sort-
merge file description entry within the File Section of the
Data Division.

456 COBOL/VSE Programming Guide

* file organization. The permanent logical file struc-
ture established at the time that a file is created.

*file position indicator. A conceptual entity that con-
tains the value of the current key within the key of refer-
ence for an indexed file, or the record number of the
current record for a sequential file, or the relative record
number of the current record for a relative file, or indi-
cates that no next logical record exists, or that an
optional input file is not present, or that the at end con-
dition already exists, or that no valid next record has
been established.

* file section. The section of the Data Division that
contains file description entries and sort-merge file
description entries together with their associated record
descriptions.

* fixed file attributes. Information about a file which is
established when a file is created and cannot subse-
quently be changed during the existence of the file.
These attributes include the organization of the file
(sequential, relative, or indexed), the prime record key,
the alternate record keys, the code set, the minimum
and maximum record size, the record type (fixed or vari-
able), the collating sequence of the keys for indexed
files, the blocking factor, the padding character, and the
record delimiter.

* fixed length record. A record associated with a file
whose file description or sort-merge description entry
requires that all records contain the same number of
character positions.

fixed-point number. A numeric data item defined with
a PICTURE clause that specifies the location of an
optional sign, the number of digits it contains, and the
location of an optional decimal point. The format may
be either binary, packed decimal, or external decimal.

floating-point number. A numeric data item con-
taining a fraction and an exponent. Its value is obtained
by multiplying the fraction by the base of the numeric
data item raised to the power specified by the exponent.

* format. A specific arrangement of a set of data.

* function. A temporary data item whose value is
determined at the time the function is referenced during
the execution of a statement.

* function identifier. A syntactically correct combina-
tion of character strings and separators that references
a function. The data item represented by a function is
uniquely identified by a function-name with its argu-
ments, if any. A function identifier may include a refer-
ence modifier. A function identifier that references an
alphanumeric function may be specified anywhere in the
general formats that an identifier may be specified,
subject to certain restrictions. A function identifier that

references an integer or numeric function may be refer-
enced anywhere in the general formats that an arith-
metic expression may be specified.

function-name. A word that names the mechanism
whose invocation, along with required arguments, deter-
mines the value of a function.

G
* global name. A name which is declared in only one
program but which may be referenced from that
program and from any program contained within that
program. Condition-names, data-names, file-names,
record-names, report-names, and some special regis-
ters may be global names.

* group item. A data item that contains subordinate
data items.

H
header label. (1) A file label that precedes the data
records on a unit of recording media. (2) Synonym for
beginning-of-file label.

* high order end. The leftmost character of a string of
characters.

I
IBM COBOL extension. Certain COBOL syntax and
semantics supported by IBM compilers in addition to
those described in ANSI Standard.

Identification Division. One of the four main compo-
nent parts of a COBOL program. The Identification
Division identifies the source program and the object
program. The Identification Division may include the
following documentation: author name, installation, or
date.

* identifier. A syntactically correct combination of
character strings and separators that names a data
item. When referencing a data item which is not a func-
tion, an identifier consists of a data-name, together with
its qualifiers, subscripts, and reference modifier, as
required for uniqueness of reference. When referencing
a data item which is a function, a function identifier is
used.

* imperative statement. A statement that either
begins with an imperative verb and specifies an uncon-
ditional action to be taken or is a conditional statement
that is delimited by its explicit scope terminator (delim-
ited scope statement). An imperative statement may
consist of a sequence of imperative statements.

 Glossary 457

* implicit scope terminator. A separator period which
terminates the scope of any preceding unterminated
statement, or a phrase of a statement which by its
occurrence indicates the end of the scope of any state-
ment contained within the preceding phrase.

* index. A computer storage area or register, the
content of which represents the identification of a partic-
ular element in a table.

* index data item. A data item in which the values
associated with an index-name can be stored in a form
specified by the implementor.

indexed data-name. An identifier that contains a data-
name, followed by one or more index-names enclosed
in parentheses.

* indexed file. A file with indexed organization.

* indexed organization. The permanent logical file
structure in which each record is identified by the value
of one or more keys within that record.

indexing. Synonymous with subscripting using index-
names.

* index-name. A user-defined word that names an
index associated with a specific table.

* initial program. A program that is placed into an
initial state every time the program is called in a run
unit.

* initial state. The state of a program when it is first
called in a run unit.

* input file. A file that is opened in the INPUT mode.

* input mode. The state of a file after execution of an
OPEN statement, with the INPUT phrase specified, for
that file and before the execution of a CLOSE state-
ment, without the REEL or UNIT phrase for that file.

* input-output file. A file that is opened in the I-O
mode.

* Input-Output Section. The section of the Environ-
ment Division that names the files and the external
media required by an object program and that provides
information required for transmission and handling of
data during execution of the object program.

* Input-Output statement. A statement that causes
files to be processed by performing operations upon
individual records or upon the file as a unit. The input-
output statements are: ACCEPT (with the identifier
phrase), CLOSE, DELETE, DISABLE, DISPLAY,
ENABLE, OPEN, PURGE, READ, RECEIVE,
REWRITE, SEND, SET (with the TO ON or TO OFF
phrase), START, and WRITE.

* input procedure. A set of statements, to which
control is given during the execution of a SORT state-
ment, for the purpose of controlling the release of speci-
fied records to be sorted.

* integer. (1) A numeric literal that does not include
any digit positions to the right of the decimal point.

(2) A numeric data item defined in the Data Division
that does not include any digit positions to the right of
the decimal point.

(3) A numeric function whose definition provides that all
digits to the right of the decimal point are zero in the
returned value for any possible evaluation of the func-
tion.

integer function. A function whose category is
numeric and whose definition does not include any digit
positions to the right of the decimal point.

intermediate result. An intermediate field containing
the results of a succession of arithmetic operations.

* internal data. The data described in a program
excluding all external data items and external file con-
nectors. Items described in the Linkage Section of a
program are treated as internal data.

* internal data item. A data item which is described in
one program in a run unit. An internal data item may
have a global name.

internal decimal item. A format in which each byte in
a field except the rightmost byte represents two numeric
digits. The rightmost byte contains one digit and the
sign. For example, the decimal value +123 is repres-
ented as 0001 0010 0011 1111. (Also known as
packed decimal.)

* internal file connector. A file connector which is
accessible to only one object program in the run unit.

* intra-record data structure. The entire collection of
groups and elementary data items from a logical record
which is defined by a contiguous subset of the data
description entries which describe that record. These
data description entries include all entries whose level-
number is greater than the level-number of the first data
description entry describing the intra-record data struc-
ture.

* invalid key condition. A condition, at object time,
caused when a specific value of the key associated with
an indexed or relative file is determined to be invalid.

* I-O-CONTROL. The name of an Environment Divi-
sion paragraph in which object program requirements
for rerun points, sharing of same areas by several data
files, and multiple file storage on a single input-output
device are specified.

458 COBOL/VSE Programming Guide

* I-O-CONTROL entry. An entry in the I-O-CONTROL
paragraph of the Environment Division which contains
clauses which provide information required for the trans-
mission and handling of data on named files during the
execution of a program.

* I-O-Mode. The state of a file after execution of an
OPEN statement, with the I-O phrase specified, for that
file and before the execution of a CLOSE statement
without the REEL or UNIT phase for that file.

* I-O status. A conceptual entity which contains the
two-character value indicating the resulting status of an
input-output operation. This value is made available to
the program through the use of the FILE STATUS
clause in the file control entry for the file.

iteration structure. A program processing logic in
which a series of statements is repeated while a condi-
tion is true or until a condition is true.

K
K. When referring to storage capacity, two to the tenth
power; 1024 in decimal notation.

* key. A data item that identifies the location of a
record, or a set of data items which serve to identify the
ordering of data.

* key of reference. The key, either prime or alternate,
currently being used to access records within an
indexed file.

* keyword. A reserved word or function-name whose
presence is required when the format in which the word
appears is used in a source program.

kilobyte (KB). One kilobyte equals 1024 bytes.

L
* language-name. A system-name that specifies a
particular programming language.

LE-conforming. A characteristic of compiler products
(C for VSE/ESA, COBOL for VSE/ESA, PL/I for
VSE/ESA) that produce object code conforming to the
Language Environment format.

* letter. A character belonging to one of the following
two sets:

1. Uppercase letters: A, B, C, D, E, F, G, H, I, J, K, L,
M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z

2. Lowercase letters: a, b, c, d, e, f, g, h, i, j, k, l, m, n,
o, p, q, r, s, t, u, v, w, x, y, z.

* level indicator. Two alphabetic characters that iden-
tify a specific type of file or a position in a hierarchy.
The level indicators in the Data Division are: CD, FD,
and SD.

* level-number. A user-defined word, expressed as a
two digit number, which indicates the hierarchical posi-
tion of a data item or the special properties of a data
description entry. Level-numbers in the range from 1
through 49 indicate the position of a data item in the
hierarchic structure of a logical record. Level-numbers
in the range 1 through 9 may be written either as a
single digit or as a zero followed by a significant digit.
Level-numbers 66, 77 and 88 identify special properties
of a data description entry.

* library-name. A user-defined word that names a
COBOL library that is to be used by the compiler for a
given source program compilation.

* library text. A sequence of text words, comment
lines, the separator space, or the separator pseudo-text
delimiter in a COBOL library.

* LINAGE-COUNTER. A special register whose value
points to the current position within the page body.

Linkage Section. The section in the Data Division of
the called program that describes data items available
from the calling program. These data items may be
referred to by both the calling and called program.

literal. A character string whose value is specified
either by the ordered set of characters comprising the
string, or by the use of a figurative constant.

* logical operator. One of the reserved words AND,
OR, or NOT. In the formation of a condition, either
AND, or OR, or both can be used as logical
connectives. NOT can be used for logical negation.

* logical record. The most inclusive data item. The
level-number for a record is 01. A record may be either
an elementary item or a group of items. The term is
synonymous with record.

* low order end. The rightmost character of a string of
characters.

M
main program. In a hierarchy of programs and sub-
routines, the first program to receive control when the
programs are run.

* mass storage. A storage medium in which data may
be organized and maintained in both a sequential and
nonsequential manner.

 Glossary 459

* mass storage device. A device having a large
storage capacity; for example, magnetic disk, magnetic
drum.

* mass storage file. A collection of records that is
assigned to a mass storage medium.

* megabyte (M). One megabyte equals 1,048,576
bytes.

* merge file. A collection of records to be merged by a
MERGE statement. The merge file is created and can
be used only by the merge function.

* mnemonic-name. A user-defined word that is asso-
ciated in the Environment Division with a specified
implementor-name.

multitasking. Mode of operation that provides for the
concurrent, or interleaved, execution of two or more
tasks. In LE/370, synonymous with multithreading.

N
name. A word containing not more than 30 characters
that defines a COBOL operand.

* native character set. The implementor-defined char-
acter set associated with the computer specified in the
OBJECT-COMPUTER paragraph.

* native collating sequence. The implementor-defined
collating sequence associated with the computer speci-
fied in the OBJECT-COMPUTER paragraph.

* negated combined condition. The ‘NOT’ logical
operator immediately followed by a parenthesized com-
bined condition.

* negated simple condition. The ‘NOT’ logical oper-
ator immediately followed by a simple condition.

nested program. A program that is directly contained
within another program.

* next executable sentence. The next sentence to
which control will be transferred after execution of the
current statement is complete.

* next executable statement. The next statement to
which control will be transferred after execution of the
current statement is complete.

* next record. The record that logically follows the
current record of a file.

* noncontiguous items. Elementary data items in the
Working-Storage and Linkage Sections that bear no
hierarchic relationship to other data items.

non-date. Any of the following:

� A data item whose data description entry does not
include the DATE FORMAT clause

 � A literal

� A reference-modified date field

� The result of certain arithmetic operations that may
include date field operands; for example, the differ-
ence between two compatible dates.

The value of a non-date may or may not represent a
date.

* nonnumeric item. A data item whose description
permits its content to contain any combination of char-
acters taken from the computer’s character set. Certain
categories of nonnumeric items may be formed from
more restricted character sets.

* nonnumeric literal. A literal bounded by quotation
marks. The string of characters may include any char-
acter in the computer’s character set.

null. Figurative constant used to assign the value of
an invalid address to pointer data items. NULLS can be
used wherever NULL can be used.

* numeric character. A character that belongs to the
following set of digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

numeric-edited item. A numeric item that is in such a
form that it may be used in printed output. It may
consist of external decimal digits from 0 through 9, the
decimal point, commas, the dollar sign, editing sign
control symbols, plus other editing symbols.

* numeric function. A function whose class and cate-
gory are numeric but which for some possible evalu-
ation does not satisfy the requirements of integer
functions.

* numeric item. A data item whose description
restricts its content to a value represented by characters
chosen from the digits from ‘0’ through ‘9’; if signed, the
item may also contain a ‘+’, ‘−’, or other representation
of an operational sign.

* numeric literal. A literal containing one or more
numeric characters that also contain either a decimal
point, or an algebraic sign, or both. The decimal point
must not be the rightmost character. The algebraic
sign, if present, must be the leftmost character.

460 COBOL/VSE Programming Guide

O
object code. Output from a compiler or assembler
which is itself executable machine code or is suitable
for processing to produce executable machine code.

* OBJECT-COMPUTER. The name of an Environment
Division paragraph in which the computer environment,
within which the object program is executed, is
described.

* object computer entry. An entry in the
OBJECT-COMPUTER paragraph of the Environment
Division which contains clauses which describe the
computer environment in which the object program is to
be executed.

object deck. A portion of an object program suitable
as input to a linkage editor. Synonymous with object
module and text deck.

object module. Synonym for object deck or text deck.

* object of entry. A set of operands and reserved
words, within a Data Division entry of a COBOL
program, that immediately follows the subject of the
entry.

* object program. A set or group of executable
machine language instructions and other material
designed to interact with data to provide problem sol-
utions. In this context, an object program is generally
the machine language result of the operation of a
COBOL compiler on a source program. Where there is
no danger of ambiguity, the word ‘program’ alone may
be used in place of the phrase ‘object program.’

* object time. The time at which an object program is
executed. The term is synonymous with execution time.

* obsolete element. A COBOL language element in
Standard COBOL that is to be deleted from the next
revision of Standard COBOL.

* open mode. The state of a file after execution of an
OPEN statement for that file and before the execution
of a CLOSE statement without the REEL or UNIT
phrase for that file. The particular open mode is speci-
fied in the OPEN statement as either INPUT, OUTPUT,
I-O or EXTEND.

* operand. Whereas the general definition of operand
is “that component which is operated upon,” for the pur-
poses of this document, any lowercase word (or words)
that appears in a statement or entry format may be con-
sidered to be an operand and, as such, is an implied
reference to the data indicated by the operand.

* operational sign. An algebraic sign, associated with
a numeric data item or a numeric literal, to indicate
whether its value is positive or negative.

* optional file. A file which is declared as being not
necessarily present each time the object program is
executed. The object program causes an interrogation
for the presence or absence of the file.

* optional word. A reserved word that is included in a
specific format only to improve the readability of the lan-
guage and whose presence is optional to the user when
the format in which the word appears is used in a
source program.

OS/2 (Operating System/2). A multi-tasking oper-
ating system for the IBM Personal Computer family that
allows you to run both DOS mode and OS/2 mode pro-
grams.

* output file. A file that is opened in either the
OUTPUT mode or EXTEND mode.

* output mode. The state of a file after execution of
an OPEN statement, with the OUTPUT or EXTEND
phrase specified, for that file and before the execution
of a CLOSE statement without the REEL or UNIT
phrase for that file.

* output procedure. A set of statements to which
control is given during execution of a SORT statement
after the sort function is completed, or during execution
of a MERGE statement after the merge function
reaches a point at which it can select the next record in
merged order when requested.

overflow condition. A condition that occurs when a
portion of the result of an operation exceeds the
capacity of the intended unit of storage.

P
packed decimal item. See “internal decimal item.”

* padding character. An alphanumeric character used
to fill the unused character positions in a physical
record.

page. A vertical division of output data representing a
physical separation of such data, the separation being
based on internal logical requirements and/or external
characteristics of the output medium.

* page body. That part of the logical page in which
lines can be written and/or spaced.

* paragraph. In the Procedure Division, a paragraph-
name followed by a separator period and by zero, one,
or more sentences. In the Identification and Environ-

 Glossary 461

ment Divisions, a paragraph header followed by zero,
one, or more entries.

* paragraph header. A reserved word, followed by the
separator period, that indicates the beginning of a para-
graph in the Identification and Environment Divisions.
The permissible paragraph headers in the Identification
Division are:

PROGRAM-ID.

AUTHOR.

INSTALLATION.

DATE-WRITTEN.

DATE-COMPILED.

SECURITY.

The permissible paragraph headers in the Environment
Division are:

SOURCE-COMPUTER.

OBJECT-COMPUTER.

SPECIAL-NAMES.

FILE-CONTROL.

I-O-CONTROL.

* paragraph-name. A user-defined word that identifies
and begins a paragraph in the Procedure Division.

parameter. Parameters are used to pass data values
between calling and called programs.

password. A unique string of characters that a
program, computer operator, or user must supply to
meet security requirements before gaining access to
data.

* phrase. A phrase is an ordered set of one or more
consecutive COBOL character strings that form a
portion of a COBOL procedural statement or of a
COBOL clause.

* physical record. See “block.”

pointer data item. A data item in which address
values can be stored. Data items are explicitly defined
as pointers with the USAGE IS POINTER clause.
ADDRESS OF special registers are implicitly defined as
pointer data items. Pointer data items can be com-
pared for equality or moved to other pointer data items.

portability. The ability to transfer an application
program from one application platform to another with
relatively few changes to the source program.

* prime record key. A key whose contents uniquely
identify a record within an indexed file.

* priority-number. A user-defined word which classi-
fies sections in the Procedure Division for purposes of
segmentation. Segment-numbers may contain only the
characters '0','1', ... , '9'. A segment-number may be
expressed either as a one or two digit number.

* procedure. A paragraph or group of logically succes-
sive paragraphs, or a section or group of logically suc-
cessive sections, within the Procedure Division.

* procedure branching statement. A statement that
causes the explicit transfer of control to a statement
other than the next executable statement in the
sequence in which the statements are written in the
source program. The procedure branching statements
are: ALTER, CALL, EXIT, EXIT PROGRAM, GO TO,
MERGE, (with the OUTPUT PROCEDURE phrase),
PERFORM and SORT (with the INPUT PROCEDURE
or OUTPUT PROCEDURE phrase).

Procedure Division. One of the four main component
parts of a COBOL program. The Procedure Division
contains instructions for solving a problem. The Proce-
dure Division may contain imperative statements, condi-
tional statements, compiler directing statements,
paragraphs, procedures, and sections.

* procedure-name. A user-defined word that is used
to name a paragraph or section in the Procedure Divi-
sion. It consists of a paragraph-name (which may be
qualified), or a section-name.

procedure-pointer data item. A data item in which a
pointer to an entry point can be stored. A data item
defined with the USAGE IS PROCEDURE-POINTER
clause contains the address of a procedure entry point.

* program identification entry. An entry in the
PROGRAM-ID paragraph of the Identification Division
which contains clauses that specify the program-name
and assign selected program attributes to the program.

* program-name. In the Identification Division and the
end program header, a user-defined word that identifies
a COBOL source program.

* pseudo-text. A sequence of text words, comment
lines, or the separator space in a source program or
COBOL library bounded by, but not including, pseudo-
text delimiters.

* pseudo-text delimiter. Two contiguous equal sign
characters (==) used to delimit pseudo-text.

* punctuation character. A character that belongs to
the following set:

 Character Meaning

 , comma
 ; semicolon
 : colon
 . period (full stop)
 " quotation mark
 (left parenthesis
) right parenthesis
 ␣ space

462 COBOL/VSE Programming Guide

 = equal sign

Q
* qualified data-name. An identifier that contains a
data-name followed by one or more sets of either of the
connectives OF and IN followed by a data-name qual-
ifier.

* qualifier.

1. A data-name or a name associated with a level indi-
cator which is used in a reference either together
with another data-name which is the name of an
item that is subordinate to the qualifier or together
with a condition-name.

2. A section-name that is used in a reference together
with a paragraph-name specified in that section.

3. A library-name that is used in a reference together
with a text-name associated with that library.

R
* random access. An access mode in which the
program-specified value of a key data item identifies the
logical record that is obtained from, deleted from, or
placed into a relative or indexed file.

* record. See “logical record.”

* record area. A storage area allocated for the
purpose of processing the record described in a record
description entry in the File Section of the Data Division.
In the File Section, the current number of character
positions in the record area is determined by the explicit
or implicit RECORD clause.

* record description. See “record description entry.”

* record description entry. The total set of data
description entries associated with a particular record.
The term is synonymous with record description.

recording mode. The format of the logical records in
a file. Recording mode can be F (fixed-length), V
(variable-length), S (spanned), or U (undefined).

record key. A key whose contents identify a record
within an indexed file. Within an indexed file in SAA
COBOL, a record key is the prime record key.

* record-name. A user-defined word that names a
record described in a record description entry in the
Data Division of a COBOL program.

* record number. The ordinal number of a record in
the file whose organization is sequential.

reel. A discrete portion of a storage medium, the
dimensions of which are determined by each
implementor, that contains part of a file, all of a file, or
any number of files. The term is synonymous with unit
and volume.

reentrant. The attribute of a program or routine that
allows more than one user to share a single copy of a
phase.

* reference format. A format that provides a standard
method for describing COBOL source programs.

reference modification. A method of defining a new
alphanumeric data item by specifying the leftmost char-
acter and length relative to the leftmost character of
another alphanumeric data item.

* reference modifier. A syntactically correct combina-
tion of character strings and separators that defines a
unique data item. It includes a delimiting left paren-
thesis separator, the leftmost character position, a colon
separator, optionally a length, and a delimiting right
parenthesis separator.

* relation. See “relational operator.” or “relation con-
dition”

* relational operator. A reserved word, a relation
character, a group of consecutive reserved words, or a
group of consecutive reserved words and relation char-
acters used in the construction of a relation condition.
The permissible operators and their meanings are:

Operator Meaning
IS GREATER THAN Greater than
IS > Greater than
IS NOT GREATER THAN Not greater than
IS NOT > Not greater than

IS LESS THAN Less than
IS < Less than
IS NOT LESS THAN Not less than
IS NOT < Not less than

IS EQUAL TO Equal to
IS = Equal to
IS NOT EQUAL TO Not equal to
IS NOT = Not equal to

IS GREATER THAN OR EQUAL TO

Greater than or equal to
IS >= Greater than or equal to

IS LESS THAN OR EQUAL TO

Less than or equal to
IS <= Less than or equal to

* relation character. A character that belongs to the
following set:

 Glossary 463

Character Meaning

 > greater than
 < less than
 = equal to

* relation condition. The proposition, for which a truth
value can be determined, that the value of an arithmetic
expression, data item, nonnumeric literal, or index-name
has a specific relationship to the value of another arith-
metic expression, data item, nonnumeric literal, or index
name. (See also “relational operator.”)

* relative file. A file with relative organization.

* relative key. A key whose contents identify a logical
record in a relative file.

* relative organization. The permanent logical file
structure in which each record is uniquely identified by
an integer value greater than zero, which specifies the
record’s logical ordinal position in the file.

* relative record number. The ordinal number of a
record in a file whose organization is relative. This
number is treated as a numeric literal which is an
integer.

* reserved word. A COBOL word specified in the list
of words that may be used in a COBOL source
program, but that must not appear in the program as
user-defined words or system-names.

* resource. A facility or service, controlled by the oper-
ating system, that can be used by an executing
program.

* resultant identifier. A user-defined data item that is
to contain the result of an arithmetic operation.

routine. A set of statements in a COBOL program that
causes the computer to perform an operation or series
of related operations. In LE/VSE, refers to either a pro-
cedure, function, or subroutine.

* routine-name. A user-defined word that identifies a
procedure written in a language other than COBOL.

* run time. The time at which an object program is
executed. The term is synonymous with object time.

run-time environment. The environment in which a
COBOL program executes.

* run unit. One or more object programs which
interact with one another and which function, at object
time, as an entity to provide problem solutions.

S
SAM (Sequential Access Method). An extended
version of the basic sequential access method (BSAM).
When this method is used, a queue is formed of input
data blocks that are awaiting processing or of output
data blocks that have been processed and are awaiting
transfer to auxiliary storage or to an output device.

SBCS (Single Byte Character Set). See "Single Byte
Character Set (SBCS)".

scope terminator. A COBOL reserved word that
marks the end of certain Procedure Division statements.
It may be either explicit (END-ADD, for example) or
implicit (separator period).

* section. A set of zero, one or more paragraphs or
entities, called a section body, the first of which is pre-
ceded by a section header. Each section consists of
the section header and the related section body.

* section header. A combination of words followed by
a separator period that indicates the beginning of a
section in the Environment, Data, and Procedure Divi-
sions. In the Environment and Data Divisions, a section
header contains reserved words followed by a separator
period. The permissible section headers in the Environ-
ment Division are:

CONFIGURATION SECTION.

INPUT-OUTPUT SECTION.

The permissible section headers in the Data Division
are:

FILE SECTION.

WORKING-STORAGE SECTION.

LINKAGE SECTION.

In the Procedure Division, a section header contains a
section-name, followed by the reserved word SECTION,
followed by a separator period.

* section-name. A user-defined word that names a
section in the Procedure Division.

selection structure. A program processing logic in
which one or another series of statements is executed,
depending on whether a condition is true or false.

* sentence. A sequence of one or more statements,
the last of which is terminated by a separator period.

* separately-compiled program. A program which,
together with its contained programs, is compiled sepa-
rately from all other programs.

* separator. A character or two contiguous characters
used to delimit character strings.

464 COBOL/VSE Programming Guide

* separator comma. A comma (,) followed by a space
used to delimit character strings.

* separator period. A period (.) followed by a space
used to delimit character strings.

* separator semicolon. A semicolon (;) followed by a
space used to delimit character strings.

sequence structure. A program processing logic in
which a series of statements is executed in sequential
order.

* sequential access. An access mode in which logical
records are obtained from or placed into a file in a con-
secutive predecessor-to-successor logical record
sequence determined by the order of records in the file.

* sequential file. A file with sequential organization.

* sequential organization. The permanent logical file
structure in which a record is identified by a
predecessor-successor relationship established when
the record is placed into the file.

serial search. A search in which the members of a set
are consecutively examined, beginning with the first
member and ending with the last.

* 77-level-description-entry. A data description entry
that describes a noncontiguous data item with the level-
number 77.

* sign condition. The proposition, for which a truth
value can be determined, that the algebraic value of a
data item or an arithmetic expression is either less than,
greater than, or equal to zero.

* simple condition. Any single condition chosen from
the set:

 Relation condition
 Class condition
 Condition-name condition
 Switch-status condition
 Sign condition

Single Byte Character Set (SBCS). A set of charac-
ters in which each character is represented by a single
byte. See also "EBCDIC (Extended Binary-Coded
Decimal Interchange Code)."

slack bytes. Bytes inserted between data items or
records to ensure correct alignment of some numeric
items. Slack bytes contain no meaningful data. In some
cases, they are inserted by the compiler; in others, it is
the responsibility of the programmer to insert them. The
SYNCHRONIZED clause instructs the compiler to insert
slack bytes when they are needed for proper alignment.
Slack bytes between records are inserted by the pro-
grammer.

* sort file. A collection of records to be sorted by a
SORT statement. The sort file is created and can be
used by the sort function only.

* sort-merge file description entry. An entry in the
File Section of the Data Division that contains the level
indicator SD, followed by a file-name, and then followed
by a set of file clauses as required.

* SOURCE-COMPUTER. The name of an Environment
Division paragraph in which the computer environment,
within which the source program is compiled, is
described.

* source computer entry. An entry in the
SOURCE-COMPUTER paragraph of the Environment
Division which contains clauses which describe the
computer environment in which the source program is
to be compiled.

* source item. An identifier designated by a SOURCE
clause that provides the value of a printable item.

source program. Although it is recognized that a
source program may be represented by other forms and
symbols, in this document it always refers to a syntac-
tically correct set of COBOL statements. A COBOL
source program commences with the Identification Divi-
sion or a COPY statement. A COBOL source program
is terminated by the end program header, if specified, or
by the absence of additional source program lines.

* special character. A character that belongs to the
following set:

Character Meaning

 + plus sign
 − minus sign (hyphen)
 * asterisk
 / slant (virgule, slash)
 = equal sign

| $ default currency sign
 , comma (decimal point)
 ; semicolon
 . period (decimal point, full stop)
 " quotation mark
 (left parenthesis
) right parenthesis
 > greater than symbol
 < less than symbol
 : colon

* special-character word. A reserved word that is an
arithmetic operator or a relation character.

SPECIAL-NAMES. The name of an Environment Divi-
sion paragraph in which environment-names are related
to user-specified mnemonic-names.

 Glossary 465

* special names entry. An entry in the
SPECIAL-NAMES paragraph of the Environment Divi-

| sion which provides means for specifying the currency
| sign values and currency symbols; choosing the

decimal point; specifying symbolic characters; relating
implementor-names to user-specified mnemonic-names;
relating alphabet-names to character sets or collating
sequences; and relating class-names to sets of charac-
ters.

* special registers. Certain compiler generated
storage areas whose primary use is to store information
produced in conjunction with the use of a specific
COBOL feature.

* standard data format. The concept used in
describing the characteristics of data in a COBOL Data
Division under which the characteristics or properties of
the data are expressed in a form oriented to the
appearance of the data on a printed page of infinite
length and breadth, rather than a form oriented to the
manner in which the data is stored internally in the com-
puter, or on a particular external medium.

* statement. A syntactically valid combination of
words, literals, and separators,beginning with a verb,
written in a COBOL source program.

structured programming. A technique for organizing
and coding a computer program in which the program
includes a hierarchy of segments, each segment having
a single entry point and a single exit point. Control is
passed downward through the structure without uncon-
ditional branches to higher levels of the hierarchy.

* subject of entry. An operand or reserved word that
appears immediately following the level indicator or the
level-number in a Data Division entry.

* subprogram. See “called program.”

* subscript. An occurrence number represented by
either an integer, a data-name optionally followed by an
integer with the operator + or -, or an index-name
optionally followed by an integer with the operator + or
-, that identifies a particular element in a table. A sub-
script may be the word ALL when the subscripted iden-
tifier is used as a function argument for a function
allowing a variable number of arguments.

* subscripted data-name. An identifier that conatins a
data-name followed by one or more subscripts enclosed
in parentheses.

switch-status condition. The proposition, for which a
truth value can be determined, that an UPSI switch,
capable of being set to an ‘on’ or ‘off’ status, has been
set to a specific status.

* symbolic-character. A user-defined word that speci-
fies a user-defined figurative constant.

syntax. (1) The relationship among characters or
groups of characters, independent of their meanings or
the manner of their interpretation and use. (2) The
structure of expressions in a language. (3) The rules
governing the structure of a language. (4) The relation-
ship among symbols. (5) The rules for the construction
of a statement.

* system-name. A COBOL word that is used to com-
municate with the operating environment.

T
* table. A set of logically consecutive items of data
that are defined in the Data Division by means of the
OCCURS clause.

* table element. A data item that belongs to the set of
repeated items comprising a table.

text deck. Synonym for object deck or object module.

* text-name. A user-defined word that identifies library
text.

* text word. A character or a sequence of contiguous
characters between margin A and margin R in a
COBOL library, source program, or in pseudo-text which
is:

� A separator, except for: space; a pseudo-text delim-
iter; and the opening and closing delimiters for non-
numeric literals. The right parenthesis and left
parenthesis characters, regardless of context within
the library, source program, or pseudo-text, are
always considered text words.

� A literal including, in the case of nonnumeric literals,
the opening quotation mark and the closing quota-
tion mark that bound the literal.

� Any other sequence of contiguous COBOL charac-
ters except comment lines and the word ‘COPY’
bounded by separators which is neither a separator
nor a literal.

top-down design. The design of a computer program
using a hierarchic structure in which related functions
are performed at each level of the structure.

top-down development. See “structured
programming.”

trailer-label. (1) A file that follows the data records on
a unit of recording medium. (2) Synonym for end-of-file
label.

* truth value. The representation of the result of the
evaluation of a condition in terms of one of two values:
true or false.

466 COBOL/VSE Programming Guide

U
* unary operator. A plus (+) or a minus (-) sign, that
precedes a variable or a left parenthesis in an arith-
metic expression and that has the effect of multiplying
the expression by +1 or -1, respectively.

unit. A module of direct access, the dimensions of
which are determined by IBM.

* unsuccessful execution. The attempted execution
of a statement that does not result in the execution of
all the operations specified by that statement. The
unsuccessful execution of a statement does not affect
any data referenced by that statement, but may affect
status indicators.

UPSI switch. A program switch that performs the func-
tions of a hardware switch. Eight are provided: UPSI-0
through UPSI-7.

* user-defined word. A COBOL word that must be
supplied by the user to satisfy the format of a clause or
statement.

V
* variable. A data item whose value may be changed
by execution of the object program. A variable used in
an arithmetic expression must be a numeric elementary
item.

* variable length record. A record associated with a
file whose file description or sort-merge description
entry permits records to contain a varying number of
character positions.

* variable occurrence data item. A variable occur-
rence data item is a table element which is repeated a
variable number of times. Such an item must contain
an OCCURS DEPENDING ON clause in its data
description entry, or be subordinate to such an item.

* verb. A word that expresses an action to be taken by
a COBOL compiler or object program.

volume. A module of external storage. For tape
devices it is a reel; for direct-access devices it is a unit.

volume switch procedures. System specific proce-
dures executed automatically when the end of a unit or
reel has been reached before end-of-file has been
reached.

VSAM (Virtual Storage Access Method). A high-
performance mass storage access method. Three
types of data organization are available: entry
sequenced files (ESDS), key sequenced data sets
(KSDS), and relative record data sets (RRDS). Their
COBOL equivalents are, respectively: sequential,
indexed, and relative organizations.

VSE/ESA (Virtual Storage Extended/Enterprise
Systems Architecture). An IBM operating system that
manages multiple address spaces (partitions), up to a
maximum combined virtual storage size of 256 million
bytes. Address spaces of up to 2 GB are now sup-
ported (approx. 2048 megabytes).

W
windowed date field. A date field containing a win-
dowed (2-digit) year. See also “date field” and “win-
dowed year.”

windowed year. Two digits representing a year within
a century window (for example, 98). Appears in win-
dowed date fields. See also “century window.”

Compare with “expanded year.”

* word. A character string of not more than 30 charac-
ters which forms a user-defined word, a system-name,
a reserved word, or a function-name.

* Working-Storage Section. The section of the Data
Division that describes working storage data items, con-
tains either noncontiguous items or working storage
records or both.

Z
zoned decimal item. See “external decimal item.”

 Glossary 467

 Index

Special Characters
*CBL statement 258, 352
*CONTROL statement 258, 352

Numerics
31-bit addressing mode

dynamic call 268

A
abbreviations, compiler options 224, 225
abend, compile-time 232
ACCEPT statement 48
access method services

build alternate indexes in advance 173
defining VSAM files 168
invoking dynamically 172
loading a VSAM file 163

access mode
See file access mode

ADATA compiler option 226
adding records

to SAM files 145
to VSAM files 165

ADDRESS special register, CALL statement 274
addresses

comparing 52
incrementing 279
manipulating 52
NULL value 278
passing between programs 52, 277
passing entry point addresses 280

ADV compiler option 27, 227
aggregate xxi
AIXBLD run-time option

dynamically invoking access method services 172
effect on performance 330

ALL subscript 84, 113
ALL31 run-time option 230, 268
ALPHABET clause, establishing collating sequence 19
alphanumeric date fields, contracting 382
alphanumeric intrinsic function

See intrinsic functions
alphanumeric literal

DBCS to alphanumeric conversion 66
with double-byte characters 63

ALTER statement, not recommended 36
alternate collating sequence 20, 179
alternate entry point 286
alternate index

creating 169

alternate index (continued)
example of 171
password for 167
path 171
performance considerations 173

ALTERNATE RECORD KEY 158, 170
alternate reserved word table 255, 390
alternate reserved word table. 255
AMODE processing 268
analyzing diagnostic messages 380
ANNUITY intrinsic function 85
ANSI Standard

See COBOL 85 Standard
APOST compiler option 246
APPLY WRITE-ONLY clause 24
argument

describing in calling program 275
intrinsic functions as 51

arithmetic
COMPUTE statement simpler to code 82
COMPUTE versus MOVE statements 48
error handling 193
statements 31
with intrinsic functions 48, 83
with LE/VSE callable services 48

arithmetic comparisons 90
arithmetic evaluation

data format conversion 78
examples 88, 90
fixed-point versus floating-point 88
intermediate results 401
performance tips 330
precision 401

arithmetic expression
as reference modifier 60
description of 82
in nonarithmetic statement 407
in parentheses 83

arithmetic expressions
with MLE 375

arithmetic operations
with MLE 385

array xxi
array element xxi
artificial indexing temporaries 333
ASCII

alphabet,SAM 150
file labels 151
record formats,SAM 150
standard labels 151
tape files,SAM 150
user labels 151

468 Copyright IBM Corp. 1983, 1998

ASCII files
CODE-SET clause 27
OPTCD= parameter in DCB 27

assembler expansion of Procedure Division 317
assembler language

calls from (in CICS) 395
limit output (*CONTROL LIST or *CBL LIST) 241
limit output (*CONTROL MAP or *CBL MAP) 241
LIST option 240, 334
listing 240, 334

ASSIGN clause
corresponds to filename 22
SAM files 133

assigning values to data items 44
assumed century window for non-dates 386
AT END (end-of-file) 197
avoiding coding errors 326
AWO compiler option

APPLY WRITE-ONLY clause performance 24
description 227
performance considerations 337

B
backward branches 327
base cluster name 171
base locator 306, 307
basis libraries 215
BASIS statement

description 257, 344
example 345

batch compiling 209
BINARY 328, 330

general description 75
synonyms 74
using efficiently 75

binary data item
defining 328
general description 75
intermediate results 404
uses for 328
using efficiently 75

binary search of a table 111
BLOCK CONTAINS clause

CMPR2 and SAM ESDS files 139
File Section entry 25
no meaning for VSAM files 158
SAM files 134, 139

block size
SAM ESDS files 139
SAM files 134, 135, 139, 142

blocking factor 135
blocking records 139
blocking SAM files 139
books

related 448

branch, implicit 39
bridge macro 271
buffer, optimum use of 24
BUFSIZE compiler option 227

C
calculation

arithmetic data items 328
constant data items 327
duplicate 328
subscript 331

CALL statement
See also calls
. . . USING 275
AMODE processing 268
BY CONTENT 274
BY REFERENCE 274
CICS restrictions 395
dynamic 267
exception condition 203
for error handling 203
identifier 268
literal 266
overflow condition 203
static 266, 268
structured programming 41
to alternative entry points 286
to invoke LE/VSE callable services 49, 347
top-down coding 41
using DYNAM compiler option 268
using NODYNAM compiler option 268
with CANCEL 268
with ON EXCEPTION 203
with ON OVERFLOW 32, 203

calls
See also CALL statement
31-bit addressing mode 268
AMODE switching for 24-bit programs 268
between COBOL and non-COBOL programs 263
between COBOL programs 262
bridge macro 271
CICS restrictions 395
converting static 271
dynamic 262, 266
exception condition 203
IGZBRDGE macro 271
interlanguage 10, 263
Linkage Section 276
overflow condition 203
passing arguments 275
passing data 273
receiving parameters 275
recursive 260
static 262, 266
to LE/VSE callable services 49, 347

 Index 469

CANCEL statement
with dynamic CALL 268

case structure 36
CBL (PROCESS) statement

See PROCESS (CBL) statement
CBL statement (*CBL)

See *CBL statement
CBLPSPOP run-time option 390
century encoding/compression

using as solution to the year 2000 problem 362
century window

assumed for non-dates 386
fixed 367
sliding 367
using as solution to the year 2000 problem 360

chained list processing 276
changing

characters to numbers 68
code, REPLACE statement 346
file-name 23
title on source listing 17

CHAR intrinsic function 69
CHECK(OFF) run-time option 250, 300, 339
checking for valid data 80
checkpoint

restart during DFSORT/VSE 190
CICS

CALL statement 395
calls 395
CICS HANDLE, using 390
COBOL 85 Standard considerations 394
coding input/output 389
coding restrictions 393
commands and the Procedure Division 389
compiler options for 389
compiler restrictions 389, 393
compiling under 394
link-editing under 394
performance considerations 341
programming considerations 388
programs 388
reserved word table 390
sorting 190
system date 394

CISZ (control interval size), performance
considerations 173, 330

class condition 80, 117
class test 80, 117, 293
CLOSE statement 144, 159
closing files

automatic 147, 167
SAM 147
VSAM 167

closing files, automatic
SAM 147
VSAM 167

CMPR2 behavior
BLOCK CONTAINS and SAM ESDS files 139

CMPR2 compiler option
description 228
mutually exclusive with 219
no support for intrinsic functions 50

COBOL 85 Standard
considerations for CICS 394
definition xvi
extensions supported by COBOL/VSE 6
support of 2

COBOL/VSE
extensions supported 6
product features 2

code
copy 343
optimized 334

code pages
euro currency support 92

CODE-SET clause
description 27
File Section entry 27

coding
condition tests 118
Data Division 24
data item names 28
decisions 115, 117
efficient 326
Environment Division 18
errors, avoiding 351
EVALUATE statement 36
file input/output overview 123
for SAM files 133
for VSAM files 157
Identification Division 16
IF statement 115
indentation 28
input/output 389
input/output overview 125
input/output statements

for SAM files 144
for VSAM files 159

loops 117, 120
prefixes 28
Procedure Division 30
programs to run under CICS 388
programs to run under DL/I 395
restrictions for programs for CICS 393
suffixes 28
tables 94
techniques 24, 27, 326
test conditions 118
top-down 16

collating sequence
alternate 20
ASCII 20

470 COBOL/VSE Programming Guide

collating sequence (continued)
EBCDIC 20
HIGH-VALUE 19
ISO 7-bit code 20
LOW-VALUE 19
MERGE 20
nonnumeric comparisons 19
SEARCH ALL 19
SORT 20
specifying 19
symbolic character in the 21
the ordinal position of a character 69

columns in tables 95
command format used in this book xvii
COMMON attribute 16, 264
common run-time environment 2
COMP (COMPUTATIONAL) 75
COMP-1 (COMPUTATIONAL-1) 76
COMP-2 (COMPUTATIONAL-2) 76
COMP-3 (COMPUTATIONAL-3) 76
COMP-4 (COMPUTATIONAL-4) 75
compatible dates

with MLE 384
compilation

CICS 394
COBOL 85 Standard 226
error messages 220
results 220
statistics 304

COMPILE compiler option
description 228
use NOCOMPILE to find syntax errors 298

compile-time dump, generating 232
compiler

calculation of intermediate results 401
errors 351
limits 6, 30

compiler error messages
choosing severity to be flagged 296
embedding in source listing 296
error return code (E) 221
format of 221
generating list of 223
informational return code (I) 221
severe return code (S) 222
severity codes 221
unrecoverable return code (U) 222
warning return code (W) 221

compiler limits
table 398

compiler messages
analyzing 380

compiler options
abbreviations 224, 225
ADATA 226
ADV 27, 227

compiler options (continued)
APOST/QUOTE 246
AWO 227, 337
BUFSIZE 227
CMPR2 228
COBOL 85 Standard conforming 226
COBOL/VSE

DECK 410
NONAME 413
OUTDD 410, 413

COMPILE 228
conflicting 219
controlling compilation 216
CURRENCY 229
DATA(24|31) 230
DATEPROC 231
DBCS 232
DECK 232
default values 225
DUMP 232
DYNAM 233, 337
EXIT 415
FASTSRT 184, 234, 338
FLAG 234, 296
FLAGMIG 235
FLAGSAA 236
FLAGSTD 236
for debugging 296
in effect 313
INTDATE 238
LANGUAGE 239
LIB 240, 304
LINECOUNT 240
LIST 240, 310
list of 224
MAP 241, 299, 305
mutually exclusive 219
NAME 242
NOCOMPILE 298
NOSOURCE 304
NUMBER 242, 304
NUMPROC(PFD|NOPFD|MIG) 80, 243, 338
OBJECT 244
OFFSET 245, 320
on compiler invocation 303
OPTIMIZE 245, 334, 338
OUTDD 246
performance considerations 226
precedence of 217
QUOTE/APOST 246
RENT 247, 339
RMODE 247, 339
SEQUENCE 248, 299
settings for standard compilation 226
SIZE 248
SOURCE 249, 304

 Index 471

compiler options (continued)
SPACE 249
specifying using OPTION in JCL 218
SSRANGE 250, 300, 339
status 304
TERMINAL 250
TEST 251, 301, 304, 340
TRUNC(STD|OPT|BIN) 252, 340
under CICS 389
under DL/I 393
VBREF 254, 321
when coding for CICS 389
WORD 255
XREF 255, 299, 322
YEARWINDOW 256
ZWB 257

compiler-directing statements
*CBL 352
*CONTROL 352
assigning a NULL value 278
BASIS 257, 344
COPY 258
DELETE 258
description 278
EJECT 258
INSERT 258
list 32
overview 32, 257
PROCESS (CBL) 258
REPLACE 258
SERVICE LABEL 258
SET statement, in 278
SKIP1/2/3 258
USE 258
value to designate end of list 278

compiling
control of 216

completion code, sort 181
complex OCCURS DEPENDING ON

basic forms of 106
complex ODO item 107
variably located data item 107
variably located group 107

COMPUTATIONAL (COMP) 75, 328
COMPUTATIONAL-1 (COMP-1) 76, 330
COMPUTATIONAL-2 (COMP-2) 76, 330
COMPUTATIONAL-3 (COMP-3) 76
COMPUTATIONAL-3 date fields, potential

problems 382
COMPUTATIONAL-4 (COMP-4) 75, 328
COMPUTE statement

versus MOVE statement 48
concatenating data items 54
condensed PROCEDURE DIVISION listing,

description 320

condition handling 181, 280, 347
condition testing 118
conditional expression

EVALUATE statement 117
IF statement 115
PERFORM statement 116

conditional statement
in EVALUATE statement 117
list of 32
overview 32
with NOT phrase 32

Configuration Section 18
conflicting compiler options 219
constant

calculations 327
data items 44, 327
establish with VALUE clause 44
figurative 44

contained program integration 336
continuation

entry 187
of processing 199
of program 194, 197
syntax-checking 229

CONTINUE statement 115
contracting alphanumeric dates 382
control

compilation 216
in nested programs 264
program flow 115
transfer 260

control interval size (CISZ), performance
considerations 173, 330

CONTROL statement (*CONTROL)
See *CONTROL statement

conversion of data formats 78
converting data items

characters to numbers 68
INSPECT statement 62
reversing order of characters 68
to integers 61
to uppercase or lowercase 68
with intrinsic functions 67

copy
libraries 214, 215, 344

COPY statement 344
copying, code 343
counting data items 62
creating

listings 352
SAM files 141

cross-reference
data- and procedure-names 322
embedded 324
program-name 324
special definition symbols 325

472 COBOL/VSE Programming Guide

cross-reference (continued)
verbs 321

cross-reference list
compilation 254, 255
data-names 255
procedure names 255
VBREF 254
verb types 254
XREF 255

cross-system portability 409
CRP (file position indicator) 161, 164
CURRENCY compiler option 229
currency signs

euro 92
hex literals 91
multiple-character 91
using 91

current date
how to obtain 364

CURRENT-DATE intrinsic function 85

D
D format record 135
DASD (direct-access storage device) 173
data

See also numeric data
areas, dynamic 233
checking validity 80
concatenating 54
conversion, DBCS to nonnumeric 63
conversion, nonnumeric to DBCS 63
efficient execution 326
format conversion 78
format, numeric types 74
grouping 276
incompatible 80
initializing 45
joining 54
moving 47
naming 26
numeric 73
passing 273
record size 25
splitting 56
validation 80

data definition 306
data definition attribute codes 306
data description entry, description 25
Data Division

coding 24
description 24
entries for SAM files 134
entries for VSAM files 158
FD entry 24
File Section 24

Data Division (continued)
items present in 314
limits 30
Linkage Section 29
listing 305
mapping of items 305
OCCURS clause 94
restrictions 30
Working-Storage Section 27

data item
alphanumeric with double-byte characters 63
assigning a value to 44
common, in subprogram linkage 275
concatenating 54
constant 44
converting 62
converting characters to numbers 68
converting to uppercase/lowercase 68
converting with intrinsic functions 67
counting 62
DBCS 63
elementary 43
evaluating with intrinsic functions 69
finding the smallest/largest in group 70
group 43
index 94
initializing 45
literal 43
map 220
moving 47
names 28
nonnumeric with double-byte characters 63
numeric 73
pointer 52
prefixes 28
procedure-pointer 53
reference modification 58
referencing substrings 58
replacing 62
reversing characters 68
splitting 56
subordinate 43
suffixes 28
variably located 107

DATA RECORDS clause 25
data- and procedure-name cross reference,

description 322
data-manipulation

DBCS data 63
nonnumeric data 54
statement list 31

data-name
cross-reference list 220
FILE STATUS 23
group data entries 28
in MAP listing 306

 Index 473

data-name (continued)
OMITTED 25
password for VSAM files 167
reference modification 177

DATA(24|31) compiler option 230
date and time operations, LE/VSE callable

services 348
date arithmetic 384
date comparisons

with MLE 373
date field expansion 370

advantages 373
using intrinsic functions 358

date fields
potential problems 382

DATE FORMAT clause 367
date operations

intrinsic functions 50
date processing with internal bridges

advantages 370
date windowing

advantages 369
how to control 378
the MLE approach 367
using intrinsic functions 360
when not supported 378

DATE-COMPILED paragraph 17
DATE-OF-INTEGER intrinsic function 85
DATE-WRITTEN paragraph 18
DATEPROC compiler option 231

mutually exclusive with 219
DATEVAL intrinsic function 379
DBCS (Double-Byte Character Data) 63
DBCS compiler option 219, 232
DBCS data (Double-Byte Character Data) 63
DBCS delimiter 246
DBCS user-defined words, listed in XREF output 322
DCBS PICTURE replication, compiler limit 399
DD control statement

define file 22
DEBUG run-time option 294
Debug Tool

compiler options for maximum support 301
Debug Tool/VSE

description 354
debugging

compiler options affecting 225
useful compiler options 296
using COBOL language features 292

debugging, language features
class test 293
debugging declaratives 294
error declaratives 293
file status keys 293
INITIALIZE statements 293
scope terminators 293

debugging, language features (continued)
SET statements 293

DECK compiler option 232, 410
declarative procedures

EXCEPTION/ERROR 198, 293
LABEL 149
USE FOR DEBUGGING 294

defining
files, overview 22, 123
SAM files

in COBOL programs 133
sort files 183
VSAM files 168

in COBOL programs 157
DELETE statement 159, 258
deleting records from VSAM file 166
delimited scope statement

description of 32
nested 33

DEPENDING ON option 135, 159
depth in tables 95
describing

data 27
files 25
the computer 18

determining program requirements 9
developing programs 8
device, types 213
DFSORT/VSE 183
diagnostic messages

analyzing 380
diagnostics, program 304
direct-access

direct indexing 97
file organization 124
storage device (DASD) 173

DISPLAY (USAGE IS) 75
DISPLAY statement

compiler limit 400
showing data on an output device 48
showing data on terminal 48
using in debugging 292

DL/I
coding programs under 395
mixed COBOL/VSE, VS COBOL II, and DOS/VS

COBOL applications 396
performance considerations 396

DLBL control statement
See also JCL (job control language)
creating SAM files 141

do loop 40
do-until 40
do-while 40
documentation

related 448

474 COBOL/VSE Programming Guide

documentation of program 18
Double Byte Character Set delimiter 246
Double-Byte Character Data (DBCS) 63
dump

creating a formatted dump 192
creating a system dump 193
generating compile-time 232
with DUMP compiler option 220, 232
with symbolic variables 192

DUMP compiler option 220, 232
duplicate calculations 328
DYNAM compiler option

description 233
performance considerations 337

dynamic call 266

E
E-level error message 296
efficiency 326
EJECT statement, description 258
embedded cross-reference 324, 325
embedded error messages 296
embedded MAP summary 300, 307
empty VSAM file, opening 162
enclave xxi, 10, 260
end-of-file phrase (AT END) 197
entry point

alternate 286
ENTRY label 260
passing entry address of 53
passing entry addresses of 280
procedure-pointer data item 53, 280

entry-sequenced files
See ESDS (entry-sequenced files)

Environment Division
collating sequence coding 19
compiler limits

table 398
Configuration Section 18
description 18
entries for SAM files 133
entries for VSAM files 157
Input-Output Section 21
items present in, program initialization code 315

environment-name 18
environment, execution 2
error

arithmetic 193
avoiding 351
caught by compiler 351
coding 351
compiler options, conflicting 219
example of message table 101
formatting 351
handling 192

error (continued)
handling for input/output 132
listing 220
messages, compiler

choosing severity to be flagged 296
embedding in source listing 296
format of 221
generating list of 223
severity codes 221

misspellings 351
processing, VSAM files 161
processing,SAM files 144
punctuation 351
reserved word 351
run-time 352
syntax 351

ESDS (entry-sequenced files)
See also VSAM files
file access mode 156

euro currency sign 92
EVALUATE statement

case structure 36, 117
structured programming 326

evaluating data item contents
class test 80, 117
INSPECT statement 62
intrinsic functions 69

examples, format rules in this book xviii
exception condition 203
EXCEPTION/ERROR declarative

description 198
SAM error processing 144
status key 199
VSAM error processing 161

EXEC control statement 19
execution time

performance considerations 342
EXIT compiler option

description 415
EXIT PROGRAM statement

in subprogram 261
expanded IF statement 115
explicit scope terminator 33
exponentiation

evaluated in fixed-point arithmetic 403
evaluated in floating-point arithmetic 406
performance tips 331

extensions to COBOL 85 Standard 6
EXTERNAL clause

example for files 127, 281
for data items 281
for files 27
used for input/output 127, 281

external data
performance considerations 329
sharing 29, 281

 Index 475

external data (continued)
storage location of 230

external decimal data item 75
external file 27, 281
external floating-point data item 75

F
F format record 134
factoring expressions 327
FASTSRT compiler option

description 234
improves sort performance 184, 338
information messages 186
requirements 184, 188

FD (file description) entry 25
features, COBOL/VSE 2
field expansion

using as solution to the year 2000 problem 357
figurative constant 44
file

availability 140
used interchangeably for file 21

file access mode
dynamic 156
for indexed files (KSDS) 156
for relative files (RRDS) 156
for sequential files (ESDS) 156
performance considerations 173
random 156
sequential 156
summary table of 125, 157

file availability
VSAM files 168

file conversion
with millennium language extensions 371

file description (FD) entry 25
file organization

comparison of ESDS, KSDS, RRDS 155
indexed 124, 153
overview 123
relative 124
relative-record 154
SAM 133
sequential 123, 153
summary table of 125
VSAM 153

file position indicator (CRP) 161, 164
File Section

BLOCK CONTAINS clause 25
CODE-SET clause 25, 27
DATA RECORDS clause 25
description 25
EXTERNAL clause 27
FD entry 25
GLOBAL clause 27

File Section (continued)
LABEL RECORDS clause 25
LINAGE clause 25
OMITTED 25
RECORD CONTAINS clause 25
record description 26
RECORD IS VARYING 25
RECORDING MODE clause 25
VALUE OF 25

FILE STATUS clause
description 132
description and format 23
SAM error processing 144
using 198
VSAM error processing 161
VSAM file loading 163
with VSAM return code 201

file status key
checking for successful OPEN 198
set for error handling 132, 293
to check for I/O errors 198
used with VSAM return code 201
values and meaning 200

file-name
change 23
specification 25

FILEDEF command
example of defining files 22

files
See also data sets
See also SAM files
See also VSAM files
associating program files to external files 18
COBOL coding

Data Division entries 134, 158
Environment Division entries 133, 157
input/output statements 144, 159
overview 125

description of optional 144, 162
improving sort performance 184
labels 151
overview 124
processing

SAM 133
VSAM 152

usage explanation 23
used interchangeably for file 21

finding the length of data items 71
finding the smallest or largest data item 70
fixed century window 367
fixed-length record format 158
fixed-length records

SAM 134
SAM ASCII tape 150
VSAM 153, 155, 158

476 COBOL/VSE Programming Guide

fixed-point arithmetic
comparisons 90
evaluation 88
example evaluations 90

fixed-point data
binary 75
conversions between fixed- and floating-point

data 78
external decimal 75
intermediate results 402
packed decimal 76
planning use of 330

fixed-point exponentiation 403
FLAG compiler option

compiler output 297
description 234, 296

FLAGMIG compiler option
description 235
mutually exclusive with 219

flags 118
FLAGSAA compiler option

description 236
mutually exclusive with 219

FLAGSTD compiler option
description 236
mutually exclusive with 219

floating-point arithmetic
comparisons 90
evaluation 88
example evaluations 90

floating-point data
conversions between fixed- and floating-point

data 78
external floating-point 75
intermediate results 406
internal 76
planning use of 330

floating-point exponentiation 406
format

used for examples in this book xviii
format notation, rules for xvii, 64
format of record

fixed-length 134, 158
for SAM ASCII tape 150
format D 135, 150
format F 134, 150
format S 137
format U 138, 150
format V 135, 150
spanned 137
undefined 138
variable-length 135, 158

formatted dump
See dump

four-digit year dates 356

full date field expansion
advantages 373

function
See intrinsic functions

function identifier 49
function-name 49

G
GLOBAL clause for files 27
global names 266
glossary of terms 450
GO TO MORE-LABELS 150
GO TO statement, not recommended 36
GOBACK statement

in main program 261
in subprogram 261

group item
description of 43
initializing 46
variably located 107

grouping data 28, 276

H
header on listing 17
HEAP run-time option 230
hex literal as currency sign 91

I
I-level error message 296
Identification Division

coding 17
DATE-COMPILED paragraph 17
errors 18
listing header example 17
PROGRAM-ID paragraph 16
required paragraphs 16
TITLE statement 17

IF statement
coding 115
nested 115
with null branch 115

IGZBRDGE macro 271
IGZCA2D service routine 63
IGZCD2A service routine 66
IGZSRTCD file 186
IJSYS workfiles

required for compilation 214
used in compilation for input/output files 213

ILC (interlanguage communication) 10, 263
imperative statement, list 31
implicit scope terminator 34
in-line PERFORM 39

 Index 477

incompatible data 80
incrementing addresses 279
indentation 28
index data item 98
index key, detecting faulty 202
index range checking 300
index-name subscripting 97
index, table 94
INDEXED BY phrase

compiler limit 399
indexed file organization 124, 153
indexing

example 103
preferred to subscripting 333
restrictions 99
tables 97

INEXIT suboption 415
informational return code (I) 221
INITIAL attribute 16, 261, 268
INITIALIZE statement

example of 45
loading table values 99
using for debugging 293

initializing
a table 100
group item 46
variables 45

input
coding for SAM files 144
coding for VSAM files 159
coding in CICS 389
from the terminal 48
overview 123

input procedure
FASTSRT option not effective 185, 188
requires RELEASE or RELEASE FROM 180
restrictions 181
using 179

Input-Output Section 21
input/output

checking for errors 198
coding overview 125
introduction 123
logic flow after error 195, 196
processing errors for SAM files 144, 194
processing errors for VSAM files 161, 194

input/output coding
AT END (end-of-file) phrase 197
checking for successful operation 198
checking VSAM return codes 201
detecting faulty index key 202
error handling techniques 194
EXCEPTION/ERROR declaratives 198

input/output statement list 31
INSERT statement 258

INSPECT statement 62
inspecting data 62
INTDATE compiler option 238
integer format date

using as solution to the year 2000 problem 362
INTEGER intrinsic function 61
INTEGER-OF-DATE intrinsic function 85
interlanguage communication (ILC) 10, 263
intermediate results 401
internal bridges

advantages 370
for date processing 369

internal bridging
date processing solution 359

internal floating-point data
bytes required 76
defining 76
uses for 76

intrinsic functions
alphanumeric functions 50
as argument 51
as reference modifier 61
CMPR2 not allowed 50
converting character data items 67
DATEVAL 379
description of 49
evaluating data items 69
example of

ANNUITY 85
CHAR 69
CURRENT-DATE 85
INTEGER 61
INTEGER-OF-DATE 85
LENGTH 70, 71, 84
LOG 86
LOWER-CASE 68
MAX 70, 114
MEAN 86
MEDIAN 86, 114
MIN 61
NUMVAL 68
NUMVAL-C 68, 84
ORD 69
ORD-MAX 70, 114
PRESENT-VALUE 85
RANGE 86, 114
REM 86
REVERSE 68
SQRT 86
SUM 114
UPPER-CASE 68
WHEN-COMPILED 71

intermediate results 404, 407
list of, by type 51
nested 51
not allowed with CMPR2 50

478 COBOL/VSE Programming Guide

intrinsic functions (continued)
numeric functions

differences from LE/VSE callable services 87
equivalent LE/VSE callable services 86
examples of 84
nested 84
special registers as arguments 84
table elements as arguments 84
type of—integer, floating-point, mixed 83
uses for 83

processing table elements 113
reference modification of 60
simplifies coding 347
types of 50
UNDATE 380

INVALID KEY phrase 202
invoking

LE/VSE callable services 49, 347
ISAM file 152
item length, compiler limit 399

J
JCL (job control language)

See also DLBL control statement
FASTSRT requirement 184
for compilation 207
for SAM files 142
for Sort 183
for VSAM files 172

JCL control statement
defining sort files 183

job control sample, checkpoint/restart 290
job stream 260

K
Kanji 117
key-sequenced files

See KSDS (key-sequenced files)
KSDS (key-sequenced files)

See also VSAM files
file access mode 156
organization 153

L
LABEL declarative

GO TO MORE-LABELS 149
handling user labels 149

LABEL RECORDS clause
File Section entry 25
SAM files 149

labels
ASCII file 151
format, standard 148

labels (continued)
processing,SAM files 148
standard user 149

LANGUAGE compiler option 239
language features for debugging

See also debugging, language features
DISPLAY statements 292

last-used state 261
LE/VSE callable services

condition handling 280, 347
corresponding intrinsic functions 87
date processing 358, 360
differences from intrinsic functions 87
dynamic storage services 348
equivalent intrinsic functions 86
example of using 350
feed-back code 347
for date and time calculations 49, 348
for date and time computations 86
for mathematics 49, 86, 348
invoking with a CALL statement 49, 347
message handling 348
national language support 348
overview 347
passing entry point parameters 53, 280
procedure-pointer data item 53, 280
return code 347
RETURN-CODE special register 347
sample list of 349
to assign values 49
types of 347

LENGTH intrinsic function
example 71, 84
variable length results 70
versus LENGTH OF special register 71

length of data items, finding 71
LENGTH OF special register 71, 274
level

88 item 118
number 28

level definition 306
LIB compiler option 240
LIBDEF job control statement 215
LIBEXIT suboption 416
libraries 215
limits of the compiler 6, 30, 398
LINAGE clause 25
line number 305
line numbers, on listing 304
LINECOUNT compiler option 240
link-edit

CICS 394
Linkage Section

description 276
GLOBAL clause 30
run unit 29

 Index 479

LIST compiler option
assembler code for source program 317
compiler output 311, 313
conflict with OFFSET option 310
description 240
getting output 310
location and size of working storage 320
mutually exclusive with 219
reading output 310
symbols used in output 308
terms used in output 308
TGT memory map 318

listings
assembler expansion of procedure division 310,

317
compiler options affecting 225
condensed Procedure Division 320
data- and procedure-name cross reference 322
embedded MAP summary 307
embeded cross-reference 324
generating a short listing 301
including your source code 304
line numbers, user-supplied 304
mapping Data Division Items 305
sorted cross reference of program names 324
terms used in MAP output 308
verb cross-reference 321
with error messages embedded 296

literal
data item 43

loading a table, dynamically 100
local name 265
LOG intrinsic function 86
logical record

description 123
fixed-length format 134, 158
variable-length format 135, 158

loops
coding 120
conditional 121
do 40
executed a definite number of times 121
in a table 121

LOWER-CASE intrinsic function 68
lowercase 68

M
main program

and subprograms 261
in run unit 260

manipulating addresses 52
manuals

related 448
map

data items 220

map (continued)
relative addresses 220

MAP compiler option 299, 305
embedded MAP summary 307
example 306, 310
mapping of Data Division items 241
nested program map 309
symbols used in output 308
terms used in output 308

mapping of Data Division items 305
maps and listings 224

compiler options affecting 224
mathematics

intrinsic functions 84, 86
LE/VSE callable services 87, 348

MAX intrinsic function 70, 114
MEAN intrinsic function 86, 114
MEDIAN intrinsic function 86, 114
memory map, TGT 318
MEMORY SIZE clause 19
merge

concepts 175
description 175
files, describing 175
pass control statements to 186
storage use 189
successful 181
windowed date fields as merge keys 377

MERGE statement
description 177

message handling, LE/VSE callable services 348
messages

compiler error
choosing severity to be flagged 296
embedding in source listing 296
format of 221
generating list of 223
severity codes 221

migration
aids

for converting static calls 271
CMPR2 compiler option 228
FLAGMIG compiler option 235

millennium bug 366
millennium language extensions 366

assumed century window 386
compatible dates 384
compiler options affecting 224
concepts 384
date windowing 367
DATEPROC compiler option 231
non-dates 385
objectives 383
performance aspects 363
principles 383
YEARWINDOW compiler option 256

480 COBOL/VSE Programming Guide

MIN intrinsic function 61, 70
mixed COBOL/VSE, VS COBOL II, and DOS/VS

COBOL applications
coding under DL/I 396

mixed DBCS/EBCDIC literal 64
alphanumeric to DBCS conversion 64
conversion 63

mixed literal
alphanumeric to DBCS data conversion 64
conversion 63
DBCS to alphanumeric conversion 66

MLE 366
mnemonic-name

SPECIAL-NAMES paragraph 18
modular programs 10
MOVE statement

description 47
no ON SIZE ERROR support 48
overlapping items 47
versus COMPUTE statement 48

moving data 47
MSGFILE run-time option 48, 246
multiple currency signs 92
multiple-character currency signs 91
MVS/ESA support 409

N
NAME compiler option 16, 242
naming

conventions 29
data items 28
files 22
programs 16

National Language Support 239
nested COPY statement 41
nested delimited scope statements 33
nested IF statement

CONTINUE statement 115
description 115
EVALUATE statement preferred 115
with null branches 115

nested intrinsic functions 51, 84
nested program integration 336
nested program map 309
nested programs

calling 264
conventions for using 264
description 263
map 309
scope of names 265
structure 263
transfer of control 264

nesting level
program 305, 310
statement 305

NOCOMPILE compiler option
use of to find syntax errors 298

NODECK compiler option 410
NODYNAM compiler option

static calls 266
non-dates

with MLE 385
NONAME compiler option 413
nonnumeric literal

alphanumeric to DBCS conversion 64
conversion of mixed DBCS/EBCDIC 63
DBCS to alphanumeric conversion 66
with double-byte characters 63

NOOPTIMIZE compiler option 245
null branch 115
NUMBER compiler option 242, 304
number of literals, compiler limit 398
NUMCLS installation option 81
numeric

operands, data movement for 47
numeric class test 80
numeric data

binary 75
USAGE IS BINARY 75
USAGE IS COMPUTATIONAL (COMP) 75
USAGE IS COMPUTATIONAL-4 (COMP-4) 75

conversions between fixed- and floating-point
data 78

conversions between fixed-point data 78
editing symbols 74
external decimal 75

USAGE IS DISPLAY 75
external floating-point

USAGE IS DISPLAY 75
format conversions between fixed- and

floating-point 78
internal floating-point 76

USAGE IS COMPUTATIONAL-1 (COMP-1) 76
USAGE IS COMPUTATIONAL-2 (COMP-2) 76

internal storage formats 74
overview 73
packed-decimal 76

USAGE IS COMPUTATIONAL-3 (COMP-3) 76
USAGE IS PACKED-DECIMAL 76

PICTURE clause 73, 74
numeric editing symbol 74
numeric intrinsic functions

differences from LE/VSE callable services 87
equivalent LE/VSE callable services 86
example of

ANNUITY 85
CURRENT-DATE 85
INTEGER 61
INTEGER-OF-DATE 85
LENGTH 70, 84
LOG 86
MAX 70, 114

 Index 481

numeric intrinsic functions (continued)
example of (continued)

MEAN 86
MEDIAN 86, 114
MIN 61
NUMVAL 68
NUMVAL-C 68, 84
ORD 69
ORD-MAX 114
PRESENT-VALUE 85
RANGE 86, 114
REM 86
SQRT 86
SUM 114

nested 84
special registers as arguments 84
table elements as arguments 84
types of—integer, floating-point, mixed 83
uses for 83

numeric-edited data item 74
NUMPROC(PFD|NOPFD|MIG) compiler option

affected by NUMCLS 81
description 243
effect on sign processing 80
performance considerations 338

NUMVAL intrinsic function 68
NUMVAL-C intrinsic function 68, 84

O
object code

compilation 220
generation 228
listing 220

object code control
compiler options affecting 225

OBJECT compiler option
description 244
mutually exclusive with 219

object deck generation
compiler options affecting 225

OBJECT-COMPUTER paragraph 19
objectives of millennium language extensions 383
OCCURS clause 94, 333
OCCURS DEPENDING ON (ODO) clause

complex 106
optimization 333
simple 103
variable-length records 135, 159
variable-length tables 103

ODO (OCCURS DEPENDING ON) clause
optimization 333
simple 103
variable-length tables 103

OFFSET compiler option 219, 245, 320

OMITTED clause 25
ON SIZE ERROR

intermediate and final results 407
no support for MOVE statement 48

ON SIZE ERROR phrase
with windowed date fields 376

OPEN statement
file availability 127, 144, 162
file status key 198
SAM files 144
VSAM files 159

opening files
SAM 144
VSAM 162

optimization
avoid ALTER statement 326
avoid backward branches 327
BINARY data items 328
consistent data 329
constant calculations 327
constant data items 327
contained program integration 336
duplicate calculations 328
effect of compiler options on 336
effect on performance 326
external data 329
factor expressions 327
indexing 333
nested program integration 336
OCCURS DEPENDING ON 333
out-of-line PERFORM 327
PACKED-DECIMAL data items 329
performance implications 333
procedure integration 335
recognizing index calculations 332
structured programming 326
subscript calculations 331
subscripting 333
table elements 332
top-down programming 327
unreachable code 334, 336

OPTIMIZE compiler option
description 245, 334
effect on performance 334
mutually exclusive with 219
performance considerations 338

optimizer 334
optional files 144, 162
optional words xvii
options

See compiler options
ORD intrinsic function 69
ORD-MAX intrinsic function 70, 114
ORD-MIN intrinsic function 70
order of evaluation

compiler options 219

482 COBOL/VSE Programming Guide

OS/390 support 409
out-of-line PERFORM 39
OUTDD compiler option 48, 246, 410, 413
output

coding for SAM files 144
coding for VSAM files 159
coding in CICS 389
overview 123

output device
displaying data on 48

output procedure
FASTSRT option not effective 185, 188
requires RETURN or RETURN INTO statement 181
restrictions 181
using 180

overflow condition 193, 203
overlapping items in a MOVE 47
Overview of cross-system portability

P
packed decimal data item

date fields, potential problems 382
defining 329
general description 76
uses for 329
using efficiently 76

PACKED-DECIMAL 329, 330
general description 76
synonym 74
using efficiently 76

page
control 146
depth 25

page header 303, 304, 305
paragraph

grouping 122
introduction 30

parameter
describing in called program 275

PARM parameter 19
partial listings 352
passing addresses between programs 277
passing data between programs

BY CONTENT 273
BY REFERENCE 273
called program 275
calling program 275
EXTERNAL data 281
language used 275

password
alternate index 167

PASSWORD clause 167
passwords for VSAM files 167
path point 251

PERFORM statement
. . .THRU 122
coding loops 120
executed a definite number of times 121
for a table 101
in-line 39
indexing 99
out-of-line 39
subscripting 99
TEST AFTER 40
TEST BEFORE 40
TIMES 121
top-down programming 41
UNTIL 121
VARYING 121
VARYING WITH TEST AFTER 121
WITH TEST AFTER . . . UNTIL 121
WITH TEST BEFORE . . . UNTIL 121

performance
AIXBLD run-time option 330
APPLY WRITE-ONLY clause 24
AWO compiler option 337
blocking SAM files 139
coding 326
coding tables 114
compiler option considerations 226
data usage 328
DYNAM compiler option 337
effect of compiler options on 336
FASTSRT compiler option 338
in a CICS environment 341
mixed-level COBOL applications 396
NUMPROC compiler option 80
NUMPROC(PFD|NOPFD|MIG) compiler option 338
OCCURS DEPENDING ON 333
OPTIMIZE compiler option 334, 338
optimizer 334
planning arithmetic evaluations 330
programming style 326
RENT compiler option 339
RMODE compiler option 339
run-time considerations 342
SSRANGE compiler option 339
table handling 331
TEST compiler option 340
TRUNC(STD|OPT|BIN) compiler option 252, 340
tuning worksheet 341
use of arithmetic expressions 330
use of exponentiations 331
variable subscript data format 97
VSAM file considerations 173
worksheet 341

period, as scope terminator 34
physical

block 123
record 25, 123

 Index 483

PICTURE clause
numeric data 73
rules 28

PICTURE replication, compiler limit 399
pointer data item

allowed in COBOL statements 52
description of 52
incrementing addresses with 279
manipulating addresses 52
NULL value 278
used to pass addresses 277
used to process chained list 276

porting your program 73
potential problems with date fields 382
preferred sign 79
prefixes, data items 28
PRESENT-VALUE intrinsic function 85
preserving original sequence in a sort 183
priority numbers, segmentation 326
procedure and data-name cross reference,

description 322
Procedure Division

additional information 316
description 30
statements

compiler-directing 32
conditional 32
delimited scope 32
imperative 31

terminology 30
verbs present in 315

procedure integration 335
procedure-pointer data item

entry address for entry point 53
passing parameters to callable services 53, 280

PROCESS (CBL) statement
CBL as synonym 217
conflicting options in 218
format 217
multiple 217
precedence of options 217
specifying compiler options 217

processing
chained list 276
labels for SAM files 148
tables 101

product features, COBOL/VSE 2
productivity, improving programming 343
program

attribute codes 310
decisions

EVALUATE statement 117
IF statement 115
loops 121
PERFORM statement 121
switches and flags 118

program (continued)
design, top-down 10
development, steps 8
diagnostics 304
initialization code 311
limitations 326
main 261
nesting level 305
reentrant 285
requirements, determining 9
signature information bytes 313
size 10
statistics 304
structure 10, 16
sub 261
testing 12

PROGRAM COLLATING SEQUENCE clause 19
program size, compiler limit 398
program termination

actions taken in main and subprogram 261
statements 261

PROGRAM-ID paragraph
COMMON attribute 16
description 16
INITIAL attribute 16

program-name cross-reference 324
programming

modular programs 11
productivity 343
style 11

protecting VSAM files 167
PRTEXIT suboption 416
publications

related 448

Q
QUOTE compiler option 246

R
railroad track format, how to read xvii
random numbers, generating 87
RANGE intrinsic function 86, 114
read a block of records 139
READ INTO... 136, 159
READ NEXT statement 159
READ statement 144, 159
reading records from VSAM files

dynamically 164
randomly 164
sequentially 164

receiving field 56
recognizing index calculations 332
record

description 25, 26

484 COBOL/VSE Programming Guide

record (continued)
format 123

fixed-length 134, 158
format D 135, 150
format F 134, 150
format S 137
format U 138, 150
format V 135, 150
SAM ASCII tape 150
spanned 137
undefined 138
variable-length 135, 158

RECORD CONTAINS clause
File Section entry 25

RECORDING MODE clause
fixed-length records,SAM 134
SAM files 25
to specify record format 134
variable-length records,SAM 135

recursive calls 260
reentrant programs 285
reference modification

example 59
of an intrinsic function, example 60
of DBCS data 63
out-of-range values 59
tables 62, 99

reference modifier
arithmetic expression as 60
intrinsic function as 61
variables as 60

relate items to system-names 18
relation condition 117
relative file organization 124
relative-record files

See RRDS (relative-record files)
RELEASE FROM statement

compared to RELEASE 180
example 180

RELEASE statement
compared to RELEASE FROM 180
with SORT 176, 180

REM intrinsic function 86
RENAMES clause

compiler limit 399
RENT compiler option

description 247
performance considerations 339

REPLACE statement 346
replacing

data items 62
records in SAM file 146
records in VSAM file 166

representation
data 42, 80
sign 79

required words xvii
RERUN clause

checkpoint/restart 190
RERUN clause, checkpoint/restart 287
reserved word table

alternate, CICS 390
selecting an alternate 255

restart routine 287
restarting a program 290
restrictions

CICS coding 21
coding programs for CICS 393
DL/I coding 393
indexing 99
input/output procedures 181
subscripting 99

retrieving 141
return code

error (E), compiler message 221
feed-back code from LE/VSE services 347
from SQL/DS 396
informational (I), compiler message 221
RETURN-CODE special register 280, 347
severe (S), compiler message 222
unrecoverable (U), compiler message 222
VSAM files 201
warning (W), compiler message 221
when control returns to operating system 280

RETURN INTO statement 181
RETURN statement 181
RETURN-CODE special register

considerations for SQL/DS 396
value after call to LE/VSE service 347
when control returns to operating system 280

REVERSE intrinsic function 68
reverse order of tape files 145
reversing characters 68
REWRITE statement 144, 159
RMODE compiler option

description 247
performance considerations 339

rows in tables 95
RRDS (relative-record files)

See also VSAM files
file access mode 156
fixed-length records 155
organization 153, 154
performance considerations 173
variable-length records 155

rules for syntax notation xvii
run time

changing file-name 23
common environment and support 2
performance considerations 342

run unit 10, 260

 Index 485

run-time options
AIXBLD 330
ALL31 230, 268
CBLPSPOP 390
CHECK(OFF) 250, 339
DEBUG 294
HEAP 230
TRAP 194

S
S format record 137
S-level error message 296
SAM

file availability 140
SAM (Sequential Access Method) 133
SAM files

adding records to 145
ASCII tape file 150
ASSIGN clause 133
BLOCK CONTAINS clause 139
block size 139
blocking enhances performance 139
blocking records 139
closing to prevent reopening 145
creating files 141
Data Division entries 134
defining 141
DLBL statement for 141
Environment Division entries 133
input/output error processing 144, 194
input/output statements for 144
job control language (JCL) 142
label processing 148
logic flow after I/O error 195, 196
opening 144
processing files 133
processing files in reverse order 145
replacing records 146
SAM OPEN NO REWIND 145
updating files 145
writing to a printer 146

Sample Program 427
saving time

COPY statement 25
scalar xxi
scope of statements 35
scope terminator

aids in debugging 293
explicit 32, 33
implicit 34

SD (Sort File Description) entry 175
SEARCH ALL statement

binary search 111
indexing 97, 110
ordered table 111

SEARCH statement
examples 112
indexing 97, 99
nesting 110
serial search 110
subscripting 99

searching a table 110
section

description of 30
grouping 122

segmentation 326
segmenting printer files 147
SELECT clause

ASSIGN clause 22
naming files 22
vary input/output file 23

SELECT OPTIONAL 127, 144, 162
selective source listing 353
sending field 56
sentence 30
separate digit sign 73
SEQUENCE compiler option 248, 299
Sequential Access Method (SAM) 133
sequential file organization 123
sequential storage device 124
serial search 110
SERVICE LABEL statement, description 258
SET condition-name TO TRUE statement

description 119
example 40, 122

SET statement
for procedure-pointer data items 280
using for debugging 293

setting
run-time conditions 19
status indicators 18
switches and flags 119

severe return code (S) 222
sharing

See also passing data
data 29, 265, 281
files 27, 265, 281

sign condition 117, 374
sign representation 79
size

considerations on program design 10
of printed page, control 146

SIZE compiler option 248
skip a block of records 139
SKIP1/2/3 statement, description 258
sliding century window 367
sort

alternate collating sequence 179
checkpoint/restart 190
concepts 175
criteria 178

486 COBOL/VSE Programming Guide

sort (continued)
description 175
FASTSRT compiler option 184
files needed 183
files, describing 175
JCL statements 183
messages 182
more than one 183
pass control statements to 186
performance 184
preserving original sequence 183
restriction on length of sort keys 179
restrictions on input/output procedures 181
special registers 188
storage use 189
successful 181
terminating 182
under CICS 190
using input procedures 179
using output procedures 180
variable-length records 186
windowed date fields 179
windowed date fields as sort keys 377
Y2PAST DFSORT/VSE option 377

Sort File Description (SD) entry
description 175
example 177

SORT statement
description 176
restrictions for CICS applications 191
under CICS 190

SORT-CONTROL special register 189
SORT-CORE-SIZE special register 189
SORT-FILE-SIZE special register 189
SORT-MESSAGE special register 189
SORT-MODE-SIZE special register 189
SORT-RETURN special register 182, 189
SORTCKP JCL statement 190
source

code file 214
code, listing 249
program listing 220

source code
changing with REPLACE statement 346
line number 305, 306, 310
listing, description 304

SOURCE compiler option 249, 304
source language

compiler options affecting 224
SOURCE-COMPUTER paragraph 19
SPACE compiler option 249
spanned record format 137
spanned records 137
special feature specification 18
special register

ADDRESS 274

special register (continued)
arguments in intrinsic functions 84
LENGTH OF 71, 274
WHEN-COMPILED 71

SPECIAL-NAMES paragraph
for collating sequence 19, 20
relating environment and mnemonic names 19
SAM files 150

splitting data items 56
SQRT intrinsic function 86
SSRANGE compiler option

CHECK(OFF) run-time option 339
description 250, 300
performance considerations 339

stack frame xxi
stacked words xvii
STANDARD clause, FD entry 25
standard label format 148
standard label,SAM 151
START statement 159
statement

compiler-directing 32
conditional 32
definition 30
delimited scope 32
explicit scope terminator 33
imperative 31
implicit scope terminator 34

statement nesting level 305
statements, scope of 35
static call 266
statistics

intrinsic functions 86
status indicator 19
status key

See also file status key
importance of in VSAM 161
set for error handling 23

STOP RUN statement
in main program 261
in subprogram 261

STOP with literal, avoid 36
storage

device
direct-access 124
sequential 124

management, LE/VSE callable services 348
mapping 354
use during sort 189

STRING statement
description 54
example of 54
overflow condition 193
with DBCS data 63

structure, group item 43

 Index 487

structured programming
COBOL language implementation 30
constructs 36
practices 35
Procedure Division 30
programming style 11

stub, temporary 41
subordination 28
subprogram

and main program 261
definition of 261
execution 41
linkage 260, 271
linkage, common data items 275
termination

effects 261
subscript calculations 331
subscript range checking 300
subscripting

example of processing a table 103
index-names 97
literal 96
reference modification 99
relative 97
restrictions 99
variable 97

substrings
See also reference modification
of data 58
referencing table items 62

suffixes, data items 28
SUM intrinsic function 114
suppress output 352
switch-status condition 117
switches 118
SYMBOLIC CHARACTER clause 21
symbolic constant 327
symbols used in LIST and MAP output 308
syntax errors

finding with NOCOMPILE compiler option 298
syntax notation, rules for xvii
SYSIPT

description 214
required for compilation of input/output files 213

SYSLNK
determining when to define 215
optional for compilation of input/output files 213

SYSLOG
optional for compilation of input/output files 213
when assigned 215

SYSLST
producing listings 215
required for compilation of input/output files 213

SYSPCH
optional for compilation of input/output files 213
storing object code 215

system date
under CICS 394

system logical output device 48
system-name 18
Systems Application Architecture, FLAGSAA compiler

option 236

T
table

assigning values 100
columns 95
defining 94
depth 95
dynamically loading 100
efficient coding 331
efficient coding of 114
handling 94
handling for performance 331
identical element specifications 332
index 94
initialize 100
intrinsic functions 113
loading values in 99
looping through 121
making reference 96
one-dimensional 95
reference modification 99
referencing table entry substrings 62
rows 95
searching 110
subscripts 96
three-dimensional 95
two-dimensional 95
variable-length 103

table, compiler limit 399
TALLYING option 62
tape files, reverse order 145
terminal

displaying output on 48
receiving input from 48

TERMINAL compiler option 250
termination 261
terminology

commonly used LE/VSE terms xxi
VSAM 152

terms used in MAP output 308
test

conditions 40
data 117
for values 117
numeric operand 117
UPSI switch 117

TEST AFTER 40
TEST BEFORE 40

488 COBOL/VSE Programming Guide

TEST compiler option 400
compiler options for maximum support 251
conflict with other options 219, 301
description 251
for full advantage of Debug Tool 301
performance considerations 340

TGT memory map 318
TITLE statement

controlling header on listing 17
description 258

titles
controlling header on listing 17

top-down programming
CALL statement 41
constructs to avoid 327
nested COPY statement 41
PERFORM statement 41
program design 10
recommended constructs 41

total length of literals, compiler limit 398
transferring control

between COBOL and non-COBOL programs 263
between COBOL programs 262
called program 260
calling program 260
main and subprograms 261
nested programs 263

translating CICS into COBOL 394
TRAP run-time option 194
TRUNC compiler option 76
TRUNC(STD|OPT|BIN) compiler option 252, 340
trunction, binary 76
tuning considerations, performance 337

U
U format record 138
U-level error message 296
UNDATE intrinsic function 380
undefined record format 138
undefined records 138, 150
unreachable code 334, 336
unrecoverable return code (U) 222
UNSTRING statement

description 56
example 56
overflow condition 193
with DBCS data 63

updating VSAM records 165
UPON phrase of DISPLAY statement 48
UPPER-CASE intrinsic function 68
uppercase 68
UPSI

switches 19
USAGE clause

incompatible data 80

USAGE clause (continued)
IS INDEX 98

USE . . . LABEL declarative 149
USE AFTER STANDARD LABEL 151
USE EXCEPTION/ERROR declaratives 293
USE FOR DEBUGGING declaratives 294
USE statement

DEBUGGING declarative
compiler-directing 258

description 258
EXCEPTION/ERROR declarative

compiler-directing 258
LABEL declarative 149
LABEL declarative, compiler-directing 258

user label
exits 151
SAM 151
standard 149

user-defined condition 117
user-exit work area 416
USING option 19, 27

V
V format record 135
valid data 80
VALUE clause

assigning table values 100
compiler limit 399
Data Description entry 101

VALUE initialization, compiler limit 399
VALUE IS NULL 278
VALUE OF clause 25
variable

as reference modifier 60
variable-length records

OCCURS DEPENDING ON (ODO) clause 333
SAM 135
sorting 186
VSAM 153, 155, 158

variable-length table 103
variables

represented with a data-name 42
variably located data item 107
variably located group 107
VBREF compiler option 254, 321
verb cross-reference listing

description 321
verbs used in program 321
vertical positioning 146
virtual storage

compiler options affecting 225
Virtual Storage Access Method (VSAM)

See VSAM files
VM/ESA support 409

 Index 489

VSAM (Virtual Storage Access Method)
See VSAM files

VSAM files
adding records to 165
coding input/output statements 159
comparison of file organizations 155
creating alternate indexes 169
Data Division entries 158
defining files 168
deleting records from 166
dynamically loading 163
empty 162
Environment Division entries 157
file availability 168
file position indicator (CRP) 161, 164
file status key 161
input/output error processing 161, 194
JCL 172
loading randomly 163
loading records into 162
logic flow after I/O error 195
opening 162
performance considerations 173
processing files 152
protecting with password 167
reading records from 164
replacing records in 166
return codes 201
updating records 165
with access method services 163

VSAM terminology
comparison to non-VSAM terms 152
DAM file 152
ESDS for SAM 152
KSDS for ISAM 152
RRDS for DAM 152

VSE/ESA
compiling under 206

VSE/POWER
segmenting printer files 147
writing spooled output 146

W
W-level error message 296
warning return code (W) 221
warning-level messages

analyzing 380
WHEN phrase

EVALUATE statement 36
SEARCH statement 110

WHEN-COMPILED intrinsic function
example 71
versus WHEN-COMPILED special register 71

WHEN-COMPILED special register 71

windowed date fields 179
WITH DEBUGGING MODE clause 19
WITH DUPLICATES phrase 158
WORD compiler option 255
work files

required for compilation 213
required if using LIB option 214

working storage
defining program data 27
finding location and size of in storage 320
storage location for data 230

Working-Storage Section
description 27
EXTERNAL clause 29
GLOBAL clause 29

write a block of records 139
WRITE ADVANCING statement 146
WRITE statement 144, 159

X
XREF compiler option 299, 322

Y
year 2000 Problem

century encoding/compression solution 362
century window solution 360
explanation 356
field expansion solution 357
integer format date solution 362
internal bridging 359
mixed solution 361

year 2000 problem extensions 366
year expansion

using intrinsic functions 358
year field expansion 370
year windowing

advantages 369
how to control 378
the MLE approach 367
using intrinsic functions 360
when not supported 378

YEARWINDOW
compiler option 256

Z
zero comparison 374
ZWB compiler option 257

490 COBOL/VSE Programming Guide

We'd Like to Hear from You

IBM COBOL for VSE/ESA
Programming Guide
Release 1

Publication No. SC26-8072-02

Please use one of the following ways to send us your comments about this book:

� Mail—Use the Readers' Comments form on the next page. If you are sending the form
from a country other than the United States, give it to your local IBM branch office or
IBM representative for mailing.

� Fax—Use the Readers' Comments form on the next page and fax it to this U.S. number:
800-426-7773.

� Electronic mail—Use one of the following network IDs:

– IBMLink: HLASMPUB at STLVM27
 – Internet: COMMENTS@VNET.IBM.COM

Be sure to include the following with your comments:

– Title and publication number of this book
– Your name, address, and telephone number if you would like a reply

Your comments should pertain only to the information in this book and the way the informa-
tion is presented. To request additional publications, or to comment on other IBM informa-
tion or the function of IBM products, please give your comments to your IBM representative
or to your IBM authorized remarketer.

IBM may use or distribute your comments without obligation.

 Readers' Comments

IBM COBOL for VSE/ESA
Programming Guide
Release 1

Publication No. SC26-8072-02

How satisfied are you with the information in this book?

Please tell us how we can improve this book:

May we contact you to discuss your comments? � Yes � No

Name Address

Company or Organization

Phone No.

Very
Satisfied Satisfied Neutral Dissatisfied

Very
Dissatisfied

Technically accurate � � � � �
Complete � � � � �
Easy to find � � � � �
Easy to understand � � � � �
Well organized � � � � �
Applicable to your tasks � � � � �
Grammatically correct and consistent � � � � �
Graphically well designed � � � � �
Overall satisfaction � � � � �

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments
SC26-8072-02 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department HHX/H1
555 Bailey Avenue
SAN JOSE, CA 95141-1099

Fold and Tape Please do not staple Fold and Tape

SC26-8072-02

IBM

File Number: S370-40
Program Number: 5686-068

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

COBOL for VSE/ESA

SC26-8528 Diagnosis Guide
GC26-8068 General Information
GC26-8069 Licensed Program Specifications
SC26-8073 Language Reference
GC26-8070 Migration Guide
SC26-8072 Programming Guide
SC26-8071 Installation and Customization Guide
SX26-3834 Reference Summary

VisualAge COBOL Millennium Language Extensions for VSE/ESA

SC26-8071 Installation and Customization Guide
GC26-9266 COBOL Millennium Language Extensions Guide
GC26-9321 Fact Sheet
GC26-9417 Licensed Program Specifications

SC26-8�72-�2

S
pine inform

ation:

IB
M

IB
M

 C
O

B
O

L
 for V

SE
/E

SA
P

rogram
m

ing G
uide

R
elease 1

	Contents
	Notices
	Programming Interfaces
	Trademarks

	About This Book
	Abbreviated Terms
	Syntax Notation
	How Examples Are Shown
	Publications Provided with COBOL/VSE
	Language Environment for VSE/ESA Publications
	Comparison of Commonly Used LE/VSE and COBOL/VSE Terms

	Summary of Changes
	Changes in Modification Level 1
	Changes in the Third Edition

	Part 1. Overview of COBOL/VSE Programming
	Chapter 1. Product Features
	COBOL/VSE Features
	Major IBM Extensions

	Chapter 2. Program Development Process
	Create Program Specifications
	Determining Requirements
	Computer Environment
	Inputs
	Outputs or Responses

	Designing a Solution
	Top-Down Design
	Modularity

	Code and Compile Your Program
	Code Your Program
	Programming Style

	Compile Your Program

	Link and Run Your Program with Test Data
	Do the Results Meet Specifications?
	Put Your Program into Use

	Part 2. Coding Your Program
	Chapter 3. Program Structure
	The Identification Division
	Listing Header in the Identification Division
	Errors to Watch for in the Identification Division

	The Environment Division
	Configuration Section
	Describe the Computer
	Set Status Indicators
	Specify the Collating Sequence
	Specify Currency Sign
	Comma / Period Interchange
	Specify Symbolic Characters
	Specify a User-Defined Class

	Input-Output Section
	Set Status Keys for Error Handling
	Vary the Input/Output File at Run Time
	MULTIPLE FILE TAPE Clause
	APPLY WRITE-ONLY Clause

	The Data Division
	File Section (Data Used in Input/Output Operations)
	The FD File Name
	Record Descriptions in the File Section
	The CODE-SET Clause
	Sharing Files Using the EXTERNAL and GLOBAL Clauses

	Working-Storage Section (Data Developed for Internal Processing)
	Keep Indentation Consistent
	Group Data Entries
	Use Standard Data Item Names
	Use Meaningful Prefixes or Suffixes
	Use the EXTERNAL clause
	Use the GLOBAL clause

	Linkage Section (Data from Another Program)
	Separately Compiled Programs
	Nested Programs

	Limits in the Data Division

	The Procedure Division
	Procedure Division Structure
	Imperative Statements
	Conditional Statements
	Compiler-Directing Statements
	Delimited Scope Statements
	Explicit Scope Terminators
	Implicit Scope Terminators
	Scope of Statements

	Structured Programming Practices
	COBOL Tools for Structured Programming
	EVALUATE Statement
	In-Line PERFORM Statement
	TEST BEFORE or TEST AFTER Loop

	COBOL Tools for Top-Down Coding

	Chapter 4. Data Representation and Assignment
	Variables, Structures, Literals, and Constants
	Variables (Data Items)
	Structures (Group Items and Records)
	Literals
	Constants (Data Items with a VALUE)
	Figurative Constants

	Assignment and Terminal Interactions
	Initializing a Variable (INITIALIZE Statement)
	Initializing a Structure (INITIALIZE Statement)
	Assigning Values to Variables or Structures (MOVE Statement)
	Assigning Terminal Input to Variables (ACCEPT Statement)
	Displaying Data Values (DISPLAY Statement)
	Where the DISPLAY Output Goes

	Assigning Arithmetic Results
	Assigning Results of COBOL/VSE and LE/VSE Calculations (COMPUTE Statement)

	Built-in (Intrinsic) Functions
	Nesting Functions
	Substrings of Function Identifiers
	Additional Information on Intrinsic Functions

	Arrays (Tables) and Pointers
	Arrays (Tables)
	Pointers
	Procedure Pointers

	Chapter 5. String Handling
	Joining Data Items (STRING Statement)
	STRING Statement Example

	Splitting Data Items (UNSTRING Statement)
	UNSTRING Statement Example

	Referencing Substrings of Data Items (Reference Modifiers)
	A Sample Problem
	Without Reference Modification
	With Reference Modification
	With Reference Modification of an Intrinsic Function

	Using Variables as Reference Modifiers
	Using Arithmetic Expressions as Reference Modifiers
	Using Intrinsic Functions as Reference Modifiers
	Referencing Substrings of Table Items

	Tallying and Replacing Data Items (INSPECT Statement)
	INSPECT Statement Examples

	Using Double-Byte Character (DBCS) Data
	Nonnumeric to DBCS Data Conversion
	DBCS to Nonnumeric Data Conversion

	Converting Data Items (Intrinsic Functions)
	Converting to Uppercase or Lowercase (UPPER-CASE, LOWER-CASE)
	Converting to Reverse Order (REVERSE)
	Converting to Numbers (NUMVAL, NUMVAL-C)

	Evaluating Data Items (Intrinsic Functions)
	Evaluating Single Characters for Collating Sequence (CHAR, ORD)
	Finding the Largest or Smallest Data Item (MAX, MIN, ORD-MAX, ORD-MIN)
	Returning Variable-Length Results with Alphanumeric Functions

	Finding the Length of Data Items (LENGTH)

	Finding the Date of Compilation (WHEN-COMPILED)

	Chapter 6. Numbers and Arithmetic
	General COBOL View of Numbers (PICTURE clause)
	Defining Numeric Items
	Separate Sign Position (for Portability)
	Extra Positions for Displayable Symbols (Numeric Editing)
	How to Use Numeric-Edited Items as Numbers

	Computational Data Representation (USAGE Clause)
	External Decimal (USAGE DISPLAY) Items
	What USAGE DISPLAY Items Are For
	Should You Use Them for Arithmetic

	External Floating-Point (USAGE DISPLAY) Items
	Binary Items
	How Much Storage BINARY Occupies
	Why Use Binary
	Truncation of Binary Data (TRUNC Compiler Option)

	Packed Decimal (PACKED-DECIMAL or COMP-3) Items
	Why Use Packed Decimal

	Floating-Point (COMP-1 and COMP-2) Items
	Internal Representation of Numeric Items

	Data Format Conversions
	What Conversion Means
	Conversion Takes Time
	Conversions and Precision
	Conversions Where Loss of Precision Is Possible

	Sign Representation and Processing
	NUMPROC Compiler Option
	NUMPROC(PFD)
	NUMPROC(NOPFD)
	NUMPROC(MIG)

	Checking for Incompatible Data (Numeric Class Test)
	How to Do a Numeric Class Test
	Interaction of NUMPROC and NUMCLS Options

	Performing Arithmetic
	COMPUTE and Other Arithmetic Statements
	When to Use Other Arithmetic Statements

	Arithmetic Expressions
	Numeric Intrinsic Functions
	Types of Numeric Functions
	Nesting Functions and Arithmetic Expressions
	ALL Subscripting and Special Registers
	Intrinsic Function Examples

	LE/VSE Callable Services
	Math-Oriented Callable Services and Intrinsic Functions
	Date Callable Services and Intrinsic Functions

	Fixed-Point versus Floating-Point Arithmetic
	Floating-Point Evaluations
	Fixed-Point Evaluations
	Arithmetic Comparisons (Relation Conditions)
	Examples of Fixed-Point and Floating-Point Evaluations

	Using Currency Signs
	Specifying Currency Signs
	Using Hex Literals for Currency Signs

	Multiple Currency Signs
	Euro Currency Sign

	Chapter 7. Handling Tables (Arrays)
	Defining a Table (OCCURS Clause)
	One Dimension
	Two Dimensions
	Three Dimensions

	Referring to an Item in a Table
	Subscripting
	Subscripting Using Index-Names (Indexing)
	Referring to a Substring of a Table Item

	Putting Values in a Table
	Loading the Table Dynamically
	Initializing the Table (INITIALIZE Statement)
	Assigning Values When You Define the Table (VALUE Clause)

	Creating Variable-Length Tables (DEPENDING ON Clause)
	ODO Object outside the Group
	ODO Object and Subject Contained in Sending Group Item
	ODO Object and Subject Contained in Receiving Group Item
	Complex OCCURS DEPENDING ON

	Searching a Table (SEARCH Statement)
	Serial Search
	Binary Search (SEARCH ALL Statement)
	SEARCH Statement Examples

	Processing Table Items (Intrinsic Functions)
	Efficient Coding for Tables

	Chapter 8. Selection and Iteration
	Selection (IF and EVALUATE Statements)
	IF Statement
	IF Statement with a Null Branch
	Nested IF Statements

	EVALUATE statement
	Conditional Expressions
	Condition-Names (Switches and Flags)
	Resetting Condition-Names (Switches and Flags)

	Iterative Loops (PERFORM Statement)
	Coding a Loop to Be Executed a Definite Number of Times
	Conditional Looping
	Looping through a Table
	Executing a Group of Paragraphs or Sections

	Chapter 9. File Input/Output Overview
	File Organization and Input/Output Devices
	Sequential File Organization
	Indexed File Organization
	Relative File Organization
	File Organization on Sequential-Only Devices
	File Organization on Direct-Access Storage Devices
	COBOL Input/Output Coding

	File Availability
	Input-Output Using EXTERNAL Files
	Checking for Input/Output Errors

	Chapter 10. Processing SAM Files
	COBOL Coding for SAM Files
	Environment Division Entries for SAM Files
	Data Division Entries for SAM Files
	Fixed-Length Records (Format F)
	Variable-Length Records (Format V or D)
	Spanned Records (Format S)
	Undefined Records (Format U)
	Block Sizes

	Availability of SAM Files
	Creating SAM Files
	Retrieving SAM Files
	Job Control Language for SAM Files
	Ensuring File Attributes Match Your Program
	Coding Input/Output Statements for SAM Files
	Error Processing for SAM
	Opening a SAM File
	Processing Multiple Tape Files
	Adding Records to a SAM File
	Updating a SAM File
	Writing Your File to a Printer or VSE/POWER Spool File
	Closing a SAM File

	Processing Labels for SAM Files
	Standard Label Format
	Standard User Labels
	LABEL Declarative

	Processing SAM ASCII Tape Files
	Specify the ASCII Alphabet
	Specify the Record Formats
	Process ASCII File Labels
	Processing SAM 3540-Diskette Unit Files

	Chapter 11. Processing VSAM Files
	VSAM Terminology
	VSAM File Organization
	VSAM Sequential File Organization
	VSAM Indexed File Organization
	VSAM Relative-Record File Organization
	Relative-Record File Organization with Fixed-Length Records
	Relative-Record File Organization with Variable-Length Records

	File Access Modes
	COBOL Coding for VSAM Files
	Environment Division Entries for VSAM Files
	Data Division Entries for VSAM Files
	Fixed-Length Records
	Variable-Length Records

	Coding Input/Output Statements for VSAM Files
	File Position Indicator
	Error Processing for VSAM
	Opening a File (ESDS, KSDS, or RRDS)
	Opening an Empty File
	Opening a Loaded File (a File with Records)

	Reading Records from a VSAM File
	Updating Records in a VSAM File
	Adding Records to a VSAM file
	Adding Records Sequentially
	Adding Records Randomly or Dynamically

	Replacing Records in a VSAM File
	Deleting Records from a VSAM File
	Closing VSAM Files
	Protecting VSAM Files with a Password
	Availability of VSAM Files
	Defining VSAM Files (Access Method Services)
	Creating Alternate Indexes
	Defining the Alternate Index
	Defining Alternate Index Paths
	Building the Alternate Index

	Dynamically Invoking Access Method Services
	Job Control Language for VSAM files

	Considerations for VSAM Performance

	Chapter 12. File Sorting and Merging
	Describing the Files
	The SORT Statement
	The MERGE Statement

	Specifying the Sort Criteria
	Restrictions on Sort-Key Length
	Alternate Collating Sequences
	Windowed Date Fields

	Coding the Input Procedure
	Coding the Output Procedure
	Restrictions on Input/Output Procedures
	Determining Whether the Sort or Merge Was Successful
	Premature Termination of a Sort or Merge Operation
	Performing More than One Operation in a Program
	Preserving the Original Sequence of Records with Equal Keys
	Coding Run-Time JCL for SORT
	Improving Sort Performance with FASTSRT
	Information Messages for FASTSRT

	Sorting Variable-Length Records
	Passing Control Statements to DFSORT/VSE
	Format of the Control Statements
	Specifying Control Statements Source
	Specifying SORT or MERGE Control Statements

	Using Control Statements
	SORT Special Registers
	Storage Use During a Sort or Merge Operation
	Checkpoint/Restart During DFSORT/VSE
	SORTING under CICS
	CICS SORT Application Restrictions

	Chapter 13. Error Handling
	User-Initiated Dumps (CALLs to LE/VSE)
	STRING and UNSTRING Operations
	Arithmetic Operations
	Example of Checking for Division by Zero

	Input/Output Error Handling Techniques
	End-of-File Phrase (AT END)
	EXCEPTION/ERROR Declarative
	File Status Key
	VSAM Return Code (VSAM Files Only)
	INVALID KEY Phrase

	CALL Statements
	User-Written Error-Handling Routines

	Part 3. Compiling Your Program
	Chapter 14. Methods of Compilation
	Coding Compilation JCL
	Batch Compiling
	Input and Output Files
	Required Compiler Files
	Source Code File: SYSIPT
	Output File: SYSLST
	Directing Compiler Messages to the Console: SYSLOG
	Specifying Libraries: LIBDEF Job Control Statement
	Creating Object Code: SYSLNK or SYSPCH
	Creating an Associated Data File : SYSADAT

	Controlling Your Compilation
	Using Compiler-Directing Statements
	Using Compiler Options
	Precedence of Compiler Options
	Specifying Options on the PROCESS (CBL) Statement
	Specifying Options Using JCL
	Specifying Options, Using the JCL OPTION Statement

	Compiler Options and their JCL OPTION Statement Equivalents
	Conflicting Compiler Options

	Results of Compilation
	Compiler-Detected Errors and Messages
	Compiler Error Messages
	Compiler Error Message Codes
	Correcting Your Mistakes
	Generating a List of All Compiler Error Messages

	Chapter 15. Compiler Options
	Compiler Options Summary
	Default Values for Compiler Options
	Performance Considerations
	Option Settings for COBOL 85 Standard Compilation

	Compiler Option Descriptions
	ADATA
	ADV
	APOST
	AWO
	BUFSIZE
	CMPR2
	COMPILE
	CURRENCY
	DATA
	DATEPROC
	DBCS
	DECK
	DUMP
	DYNAM
	EXIT
	FASTSRT
	FLAG
	FLAGMIG
	FLAGSAA
	FLAGSTD
	INTDATE
	LANGUAGE
	LIB
	LINECOUNT
	LIST
	MAP
	NAME
	NUMBER
	NUMPROC
	OBJECT
	OFFSET
	OPTIMIZE
	OUTDD
	QUOTE/APOST
	RENT
	RMODE
	SEQUENCE
	SIZE
	SOURCE
	SPACE
	SSRANGE
	TERMINAL
	TEST
	TRUNC
	VBREF
	WORD
	XREF
	YEARWINDOW
	ZWB

	Compiler-Directing Statements

	Part 4. Advanced Topics
	Chapter 16. Subprograms and Data Sharing
	Transferring Control to Another Program
	Main Programs and Subprograms
	Program Termination Statements
	State in Which Program is Left

	Making Calls between Programs
	Calls between COBOL Programs
	Calls between COBOL/VSE and Non-COBOL Programs

	Nested Programs
	Structure of Nested Programs

	Static and Dynamic Calls
	Static CALL Statement
	Dynamic CALL Statement
	Performance Considerations of Static and Dynamic Calls

	CALL Statement Examples
	Subprogram Linkage
	Converting Static Calls

	Sharing Data
	Passing Data BY REFERENCE or BY CONTENT
	Describing Arguments in the Calling Program
	Describing Parameters in the Called Program

	Linkage Section
	Grouping Data to Be Passed
	Using Pointers to Process a Chained List
	Passing Addresses between Programs
	Checking for the End of the Chained List
	Continuing Processing the Next Record
	A Variation: Incrementing Addresses Received from Another Program

	Passing Entry Point Addresses with Procedure Pointers
	Passing Return Code Information (RETURN-CODE Special Register)
	Sharing Data Using the EXTERNAL Clause
	Sharing Files between Programs (EXTERNAL Files)

	Reentrant Programs
	Calls to Alternative Entry Points

	Chapter 17. Interrupts and Checkpoint/Restart
	Getting a Checkpoint
	Designing a Checkpoint
	The Checkpoint File
	Restrictions
	Messages Generated during Checkpoint

	Restarting a Program
	Sample Job Control Procedures for Checkpoint/Restart

	Chapter 18. Debugging
	Using Source Language to Debug
	Tracing Program Logic (DISPLAY Statements)
	Handling Input/Output Errors (USE EXCEPTION/ERROR Declaratives)
	Validating Data (Class Test)
	Assessing Switch Problems (INITIALIZE or SET Statements)
	Improving Program Readability (Explicit Scope Terminators)
	Finding Input/Output Errors (File Status Keys)
	Generating Information about Procedures (USE FOR DEBUGGING Declaratives)

	Using Compiler Options for Debugging
	The FLAG Option
	The NOCOMPILE Option
	Using NOCOMPILE with Parameters
	Using NOCOMPILE without Parameters

	The SEQUENCE Option
	The XREF Option
	The MAP Option
	Embedded Map Summary

	The SSRANGE Option
	The TEST Option

	Getting Useful Listing Components
	A Short Listing—the Bare Minimum
	Listing of Your Source Code—for Historical Records
	Using Your Own Line Numbers
	Data Map Listing
	Embedded MAP Summary
	Nested Program Map

	A Procedure Division Listing with Assembler Expansion (LIST Output)
	Getting LIST Output
	Reading LIST Output
	Program Initialization Code

	Program Signature Information Bytes
	Compiler Options in Effect
	Items Present in the Data Division
	Items Present in the Environment Division
	Verbs Present in the Procedure Division
	More Procedure Division Information
	Assembler Code for Source Program
	TGT Memory Map
	Location and Size of Working Storage

	A Condensed Procedure Division Listing
	A Verb Cross-Reference Listing
	A Data-Name, Procedure-Name, and Program-Name Cross-Reference Listing
	Using a Sorted Cross-Reference Listing
	Using an Embedded Cross-Reference

	Chapter 19. Program Tuning
	Coding Techniques and Considerations
	Programming Style
	Use of Data
	Planning the Use of Fixed-Point and Floating-Point Data Types
	Table Handling

	Optimization
	The OPTIMIZE Compiler Option
	PERFORM Procedure Integration
	Contained Program Procedure Integration

	Other Compiler Features that Affect Optimization

	Compiler Options
	Other Product Considerations
	Performance Tuning Worksheet
	Run-Time Performance Considerations

	Chapter 20. Techniques to Improve Programmer Productivity
	Eliminating Repetitive Coding (the COPY Facility)
	COPY Statement
	BASIS Statement

	Making a Change to Your Program (the REPLACE Statement)
	Simplifying Complex Coding and Other Programming Tasks
	Intrinsic Functions
	LE/VSE Callable Services
	Condition Handling
	Dynamic Storage Services
	Date and Time Calculations
	Mathematical Calculations
	Message Handling
	National Language Support
	General Callable Services
	Sample List of LE/VSE Callable Services
	Using LE/VSE Callable Services—An Example

	Finding Coding Errors
	Controlling the Content of the Output Listing
	Selective Source Listing
	Storage Mapping in the Data Division
	Object Code in the Procedure Division

	Debug Tool/VSE

	Chapter 21. The "Year 2000" Problem
	Date Processing Problems
	Year 2000 Solutions
	The Full Field Expansion Solution
	The Internal Bridging Solution
	The Century Window Solution
	The Mixed Field Expansion and Century Window Solution
	The Century Encoding/Compression Solution
	The Integer Format Date Solution

	Performance Considerations
	Performance Comparison

	How to Get 4-digit Year Dates
	Using Callable Services with DOS/VS COBOL and VS COBOL II

	Chapter 22. Using the Millennium Language Extensions
	Description
	Getting Started
	Implementing Date Processing

	Resolving Date-Related Logic Problems
	Basic Remediation
	Internal Bridging
	Full Field Expansion

	Programming Techniques
	Date Comparisons
	Level 88 Condition-Name
	Sign Condition

	Arithmetic Expressions
	Windowed Date Fields
	Order of Evaluation
	ON SIZE ERROR Phrase

	Sorting and Merging
	Other Date Formats
	Controlling Date Processing Explicitly
	DATEVAL
	UNDATE

	Analyzing Date-Related Diagnostic Messages
	Avoiding Warning-Level Messages
	Analyzing Warning-Level Messages

	Other Potential Problems
	Packed Decimal Fields
	Contracting Moves

	Principles
	Objectives

	Concepts
	Date Semantics
	Compatible Dates
	Treatment of Non-Dates
	The Assumed Window

	Chapter 23. Target Environment Considerations
	COBOL/VSE Programming Considerations for CICS
	Developing a COBOL/VSE Program for CICS
	CICS Commands and the Procedure Division

	Coding Input/Output in CICS
	Compiler Options
	CICS Reserved Word Table
	Using CICS HANDLE with COBOL/VSE Programs
	Effect of the CBLPSHPOP Run-time Option
	CICS HANDLE Restrictions

	Coding Restrictions
	COBOL 85 Standard Considerations

	Translating CICS Commands into COBOL
	Compiling and Link-Editing CICS Code
	System Date under CICS
	Calls under CICS

	COBOL/VSE Programming Considerations for DL/I
	Using CEETDLI to Interface to DL/I
	For Mixed COBOL/VSE, VS COBOL II, and DOS/VS COBOL Applications

	COBOL/VSE Programming Considerations for SQL/DS

	Part 5. Appendixes
	Appendix A. COBOL/VSE Compiler Limits
	Appendix B. Intermediate Results and Arithmetic Precision
	Calculating Precision of Intermediate Results
	Fixed-Point Data and Intermediate Results
	Exponentiations Evaluated in Fixed-Point Arithmetic
	Shortened Intermediate Results
	Binary Data and Intermediate Results
	Intrinsic Functions Evaluated in Fixed-Point Arithmetic

	Floating-Point Data and Intermediate Results
	Exponentiations Evaluated in Floating-Point Arithmetic
	Intrinsic Functions Evaluated in Floating-Point Arithmetic

	ON SIZE ERROR and Intermediate Results
	Arithmetic Expressions in Nonarithmetic Statements

	Appendix C. Coding Your Program for Cross-System Portability
	Compiling under VSE and Running under OS/390, MVS, or VM
	Compiler Options that Affect Portability
	DECK
	OUTDD

	Migrating Object Programs to MVS or VM
	Saving Your Object Program
	Copying Your Object Program to Tape
	Copying Your Object Program to VM
	Copying Your Object Program to MVS

	Compiling under MVS or VM and Running under VSE
	Compiler Options that Affect Portability
	OUTDD
	NONAME

	Migrating Object Programs to VSE/ESA
	Copying Your Object Program from VM
	Copying Your Object Program from MVS
	Copying Your Object Program from Tape

	Appendix D. EXIT Compiler Option
	Syntax and Parameters
	Character String Formats
	User-Exit Work Area
	Linkage Conventions
	Using INEXIT
	Using LIBEXIT
	Nested COPY Statements

	Using PRTEXIT
	Using ADEXIT
	Error Handling
	An Example SYSIPT User-Exit

	Appendix E. Sample Programs
	Overview of the IGYTCARA
	Data Validation and Update

	Hierarchy Chart for IGYTCARA
	Input Data for IGYTCARA
	Report Produced by IGYTCARA
	Running IGYTCARA
	Compiler Options
	Running the Job

	Overview of IGYTSALE
	Program Chart for IGYTSALE
	Nested Program Map for IGYTSALE
	Input Data for IGYTSALE
	Reports Produced by IGYTSALE
	Running IGYTSALE
	Compiler Options
	Running the Job

	Language Elements and Concepts that Are Illustrated

	Bibliography
	IBM COBOL for VSE/ESA
	IBM VisualAge COBOL Millennium Language Extensions for VSE/ESA
	Language Environment Publications
	Related Publications
	Softcopy Publications

	Glossary
	Index

