IBM PL/I for VSE/ESA $C26-8056-00
Migration Guide

Release 1

This keyline indicates size
and position of graphic
only, keyline does not print.

IBM PL/I for VSE/ESA
Migration Guide

Release 1

SC26-8056-00

— Note!

Before using this information and the product it supports, be sure to read the general information under “Notices”
on page V.

First Edition (April 1995)

This edition applies to Version 1 Release 1 of IBM PL/I for VSE/ESA, 5686-069, and to any subsequent releases until otherwise
indicated in new editions or technical newsletters. Make sure you are using the correct edition for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address below.

A form for readers' comments is provided at the back of this publication. If the form has been removed, address your comments to:

IBM Corporation, Department J58
P.O. Box 49023

San Jose, CA, 95161-9023
United States of America

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1964, 1995. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Notices v
Programming interface %
Trademarks L Vi
About this book vii
Using your documentation Vil
Where to look for more information Vi
Chapter 1. Considerations before migrating to PL/IVSE 1
Product configuration 1
PL/I VSE and LE/VSE library names 1
Differences in output 2
Differences in PL/I I/O support 3
Indexed sequential data sets L 3
Card devices 3
Unlabeled tapes 4
Extents for regional datasets 4
The MEDIUM ENVIRONMENT option 4
Format of REGIONAL(3) datasets 5
Differences in PLIDUMP 6
Differences in using PLIDUMP 6
Differences in the output produced by PLIDUMP 6
Differences in condition handling 7
Other condition handling 8
Differences in interlanguage communication 8
COBOL 8
Assembler 8
General ILC considerations 9
Identifying programs with ILC 9
Differences in preinitialized programs 10
Retuning for better performance and storageuse 10
Performance considerations for PL/I applications 10
Differences in run-time options 11
Features of DOS PL/I that are not supported by PLIVSE 13
Debugging 13
Some types of interlanguage communication (ILC) 13
DOS PL/I Optimizing Compiler modules 13
Using PLICALLA and PLICALLB 14
Input/output support 14
Miscellaneous compatibility considerations 15
Chapter 2. Installation considerations 16
Installation requirements 16
Renamed product parts 16
Changing invocation names 16
User-replaceable modules 16
Chapter 3. Compile-time considerations 17
Dependency on LE/VSE 17
Differences in compile-time options 17

© Copyright IBM Corp. 1964, 1995 i

iv

Compile and link JCL 18

Large arrays and aggregates 18
Compatibility considerations for DOS PL/l source code 20
Differences in user returncodes L 20
Differences in processing for FILE OPEN errors 21
Selecting math routines 21
Storage report changes 21
Compiler message changes 21
New compiler messages 22
Changed compiler messages 22
Compiler messages that are no longervald 22
Messages that PL/I issues for errors in the PLIXOPT string 23
Chapter 4. Subsystem considerations 24
CICS considerations 24
The System Initialization Table 24
Changing the Processing Program Table 24
Error handling 24
Macro-level interface 24
Link-edit changes 25
SYSTEM(CICS) compile-time option 25
Run-time output 25
Abend codes used by PL/lunder CICS 25
Transaction abend handling 25
Shared Library support 25
DL/l considerations 26
Interfaces to DL/l 26
Compile and link considerations 26
Storage usage considerationso 26
Condition handling 27
SQL/DS considerations 28
Compilingand linking 28
Condition handling 28
Bibliography 29
IBM PL/I for VSE/ESA publications 29
IBM Language Environment for VSE/ESA publications 29
VSE/ESA publications 29
Related publications 29
Softcopy publications 29
Index 30

PL/I VSE Migration Guide

Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any of the
intellectual property rights of IBM may be used instead of the IBM product,
program, or service. The evaluation and verification of operation in conjunction with
other products, except those expressly designated by IBM, are the responsibility of
the user.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594, U.S.A.

Programming interface

This book is intended to help the customer migrate from previous releases of the
DOS PL/I Optimizing Compiler to IBM PL/I for VSE/ESA (PL/I VSE). This book
primarily documents General-use Programming Interface and Associated Guidance
Information provided by PL/I VSE.

General-use programming interfaces allow the customer to write programs that
obtain the services of PL/I VSE.

However, this book also documents Product-sensitive Programming Interface and
Associated Guidance Information provided by PL/I VSE.

Product-sensitive programming interfaces allow the customer installation to perform
tasks such as diagnosing, modifying, monitoring, repairing, tailoring, or tuning of
PL/I VSE. Use of such interfaces creates dependencies on the detailed design or
implementation of the IBM software product. Product-sensitive programming
interfaces should be used only for these specialized purposes. Because of their
dependencies on detailed design and implementation, it is to be expected that
programs written to such interfaces may need to be changed in order to run with
new product releases or versions, or as a result of service.

Product-sensitive Programming Interface and Associated Guidance Information is
identified where it occurs, either by an introductory statement to a chapter or
section or by the following marking:

| Product-sensitive programming interface

Product-sensitive Programming Interface and Associated Guidance Information...

| End of Product-sensitive programming interface

© Copyright IBM Corp. 1964, 1995 \Y

Trademarks

The following terms, denoted by an asterisk (*) in this publication, are trademarks of
the IBM Corporation in the United States or other countries or both:

CICS SQL/DS

IBM VSE/ESA
Language Environment

Vi PL/I VSE Migration Guide

About this book

This book contains information to help you migrate applications from the DOS PL/I
Optimizing Compiler (DOS PL/I) to IBM* PL/I for VSE/ESA* (PL/I VSE). It suggests
solutions to problems that arise because of differences in support between DOS
PL/I and PL/I VSE.

This book is for system programmers, application programmers, and IBM support
personnel who are involved in PL/I product migration. Prerequisite knowledge for
using this book is:

¢ A general understanding of the VSE/ESA operating system
* Some knowledge of the PL/I language and options

This book also refers to facilities and services provided by IBM Language
Environment* for VSE/ESA (LE/VSE). A general understanding of LE/VSE
concepts is also required for readers of this book.

Using your documentation

The publications provided with PL/I VSE are designed to help you do PL/I
programming under VSE. Each publication helps you perform a different task.

Where to look for more information
For information about the PL/I VSE library, see Table 1.

Table 1. How to use the publications you receive with PL/I VSE

To... Use...

Evaluate the product Fact Sheet

Understand warranty information Licensed Program Specifications
Install the compiler Installation and Customization Guide
Understand product changes and Migration Guide

adapt programs to PL/I VSE

Prepare and test your programs Programming Guide

and get details on compiler options

Get details on PL/I syntax and Language Reference

specifications of language Reference Summary

elements

Diagnose compiler problems and Diagnosis Guide

report them to IBM

Get details on compile-time Compile-Time Messages and Codes
messagesl

Note:

1. For details on run-time messages, see the LE/VSE library.

You might also require information about IBM* Language Environment* for
VSE/ESA* (LE/VSE). For information about the LE/VSE library, see Table 2 on
page Viii.

© Copyright IBM Corp. 1964, 1995 Vil

viii

Table 2. How to use the publications you receive with LE/VSE

To...

Use...

Evaluate Language Environment

Fact Sheet
Concepts Guide

Install LE/VSE

Installation and Customization Guide

Understand the LE/VSE program
models and concepts

Concepts Guide
Programming Guide

Prepare your LE/VSE-conforming
applications and find syntax for
run-time options and callable
services

Programming Guide
Reference Summary

Debug your LE/VSE-conforming
application and get details on
run-time messages

Debugging Guide and Run-Time Messages

Diagnose problems that occur in
your LE/VSE-conforming
application

Diagnosis Guide

Understand warranty information

Licensed Program Specifications

For the complete titles and order numbers of these and other related publications,

see the “Bibliography” on page 29.

PL/I VSE Migration Guide

Chapter 1. Considerations before migrating to PL/lI VSE

This chapter discusses issues you should consider before you install PL/I VSE and
the run-time product LE/VSE. Items discussed in this chapter can affect your
decision to migrate applications to PL/I VSE and LE/VSE. This chapter includes
the following sections:

e Product configuration

e Differences in output

e Differences in PL/I /O support

e Differences in PLIDUMP

» Differences in condition handling

o Differences in interlanguage communication

e Differences in preinitialized programs

¢ Retuning for better performance and storage use
» Differences in run-time options

e Features of DOS PL/I that are not supported by PL/I| VSE
¢ Miscellaneous compatibility considerations

Product configuration

LE/VSE must be available before you can compile, link-edit, or run a PL/I VSE
application. The PL/I VSE compiler must have access to LE/VSE at compile time.

PL/I VSE and LE/VSE library names

As shown in Table 3, PL/I VSE is shipped as a single library and LE/VSE is
shipped as two libraries.

Table 3. VSE libraries shipped with PL/I VSE and LE/VSE

Library Description Shipped with
PRD2.PROD PL/I VSE PL/I VSE
PRD2.SCEEBASE LE/VSE modules needed at compile, LE/VSE

link-edit, and run time (including CICS/VSE)

The LE/VSE library PRD2.SCEEBASE must always be available to compile, link,
and run PL/I VSE applications. If you use existing JCL, you will need to change
the LIBDEF statements to include PRD2.SCEEBASE, unless your partitions have
permanent LIBDEFs defined.

© Copyright IBM Corp. 1964, 1995 1

Differences in output

Output from PL/I applications is different in the following ways:

2

PL/I VSE Migration Guide

User return codes are now supported, and returned to VSE. This might affect
the behaviour of batch job streams. See “Differences in user return codes” on
page 20 for details.

By default, run-time messages now go to the LE/VSE MSGFILE destination
rather than to the SYSPRINT STREAM PRINT file. Run-time user output still
goes to SYSPRINT. If you want your run-time messages to go to SYSPRINT,
specify the MSGFILE(SYSPRINT) run-time option.

For more information, see the LE/VSE Programming Guide.

PL/I VSE now directs output for run-time messages and messages from ON
condition SNAP to MSGFILE by way of LE/VSE. These messages are no
longer directed to the PL/I SYSPRINT stream.

The format and content of run-time messages are different. If you have
applications that analyze run-time output, you must change the applications to
allow for the changes. The changes include:

— The message number in the message prefix is now four digits instead of
three digits.

The message severity in the message prefix can now be I, W, E, S, or C.

The message text of some of the messages has been enhanced.

Some new messages have been introduced.

For more information, see the LE/VSE Programming Guide and the LE/VSE
Debugging Guide and Run-Time Messages.

The output produced by PLIDUMP has changed. For detailed information, see
“Differences in PLIDUMP” on page 6.

The output of the run-time storage report has changed. For more information,
see the LE/VSE Programming Guide.

The PLIXHD declaration is no longer used to provide the heading for the
run-time storage report. You can use the CEE5RPH callable service of
LE/VSE to specify the heading. If you do not use CEE5RPH, the heading
includes the enclave name, date, and time of execution.

Run-time error messages now give offset values that are relative to the start of
the external procedure, rather than relative to the start of the block that
contains the statement.

Differences in PL/I I1/O support

Some devices and data set types that were supported by DOS PL/I are no longer
supported, and the implementation of some types of data set support has changed.

Indexed sequential data sets

Card devices

PL/I VSE does not support indexed sequential data sets. If INDEXED appears in
the ENVIRONMENT option of a PL/I file, PL/I VSE will treat it as a VSAM KSDS.
The following ENVIRONMENT options are related to indexed sequential data sets,
and will be ignored if specified:

ADDBUF (n)

EXTENTNUMBER(n)

HIGHINDEX (device-type)
INDEXAREA[(index-area-size)]
INDEXED

INDEXMULTIPLE

KEYLOC(n)

NOWRITE

OFLTRACKS (n)

PL/I VSE does not support the following ENVIRONMENT options related to direct
control of card devices:

ASSOCIATE (filename)
COLBIN
FUNCTION(function)
OMR

RCE

STACKER(n)

This affects the following devices:

e |IBM 2560 Card Read Punch

e |IBM 3505 Card Reader

e |IBM 3525 Card Punch with optional features
e |IBM 5425 Card Read Punch

It is still possible to use these devices in PL/I VSE, provided only a single function
of the device is used, and the cards use standard 80-column EBCDIC coding. For
example, a PL/I file declared as

FILE RECORD SEQUENTIAL ENV(F RECSIZE(80) MEDIUM(SYS014))

can be used to read cards from an IBM 2560 Card Read Punch, but the 2560
cannot be used at the same time (via the ASSOCIATE option) for punching or
printing on cards.

Chapter 1. Considerations before migrating to PL/I VSE

3

If you need to use any of these unsupported functions, you can implement them
with an assembler subroutine that can be called from a PL/I program. PL/I VSE
provides a sample program and subroutine that can be used as a base for
implementing these facilities. The sample routines are:

IELCARDR
This is a PL/I program that reads cards and copies the data to a disk file. It
does not contain a file declaration for the card file—it reads the cards by calling
an assembler subroutine.

IELCARDG
This is an assembler subroutine that processes the cards. It contains a
DTFCD macro for the card file. The DTF specifies MODE=E for standard
EBCDIC card coding, but this can be changed to allow for special features
such as optical mark reading or column binary mode. Comments in the
assembler code indicate which DTF parameters relate to the DOS PL/I
ENVIRONMENT options.

Note: These programs are provided as samples only. They should not be used in
a production environment without modification and thorough testing.

Unlabeled tapes

PL/I VSE does not support the NOLABEL ENVIRONMENT option. To determine
whether a tape file is labeled or not, PL/I checks if label information was provided in
the run-time JCL. If there is a TLBL statement for the file, and the device
assignment that matches the MEDIUM ENVIRONMENT option is a tape device,
then PL/I treats the tape as labeled. If there is no TLBL statement and the device
assignment that matches the MEDIUM ENVIRONMENT option is a tape, then PL/I
treats it as an unlabeled data set.

The NOTAPEMK option still applies, but it relates to an unlabeled tape as
described above, rather than to the NOLABEL option.

Extents for regional data sets

PL/I VSE ignores the EXTENTNUMBER ENVIRONMENT option. The number of
extents for a regional data set is determined at run time from the JCL.

The MEDIUM ENVIRONMENT option

4

PL/I VSE ignores the device-type specification in the MEDIUM ENVIRONMENT
option. PL/l will attempt to resolve all device specifications at run time rather than
compile time.

The entire MEDIUM option can be omitted if the data set resides on DASD. PL/I
relates the file name with the DLBL statement at run time, and resolves the logical
unit number from the EXTENT statement.

PL/I VSE Migration Guide

Format of REGIONAL(3) data sets

When a REGIONAL(3) data set with F-format records is created, PL/I VSE formats
the data set by writing dummy records in all the unused record locations. This
ensures that all tracks in the data set are filled with fixed-length records, either real
or dummy. When the data set is accessed, PL/I VSE expects the data set to be
formatted in this way. Records are added by converting dummy records to real,
and deleted by converting real records to dummy.

DOS PL/I differs from this in that there are no dummy records—the formatting
process consists of clearing all the tracks of the data set by writing a capacity
record at the beginning of each track. Records are added by writing into the first
available space on the relevant track, and deletion is not supported.

— Data set conversion

PL/I VSE programs can read REGIONAL(3) data sets created by DOS PL/I, but
any attempt to update the data set will fail. REGIONAL(3) F-format data sets
created with DOS PL/I must be reformatted.

Note: The COMPAT ENVIRONMENT option allows PL/I VSE to create and
use REGIONAL(3) F-format data sets in the same way as DOS PL/I. However,
if you recompile all your DOS PL/I applications with PL/I VSE, then we
recommend that you also migrate your DOS PL/I-created REGIONAL(3)
F-format data sets to the PL/I VSE format.

PL/I VSE provides a sample program to reformat REGIONAL(3) data sets. The
program is called IELREG3C, and it contains:

¢ A REGIONAL(3) INPUT file (REG3IN). This is the data set created by DOS
PL/I that is to be converted.

¢ A REGIONAL(3) OUTPUT file (REG30OUT). The program will create and
format this data set, and copy the input data to it. This data set will then be
suitable for accessing by PL/I VSE programs.

» Preprocessor variables %R3RECLEN and %R3KEYLEN. These contain the
data set record length and key length. You must change these and recompile
the program for each data set to be converted.

e Space to insert code to calculate the region number. Before each record is
written to the output data set, the program needs to calculate the region
number for the record, and include it in the key. The output file has the
DIRECT attribute, so the region numbers do not need to be presented in
ascending sequence.

The program should be run for each data set when you convert from DOS PL/I to
PL/I VSE.

The program source code contains comments to assist you to make the relevant
changes.

Chapter 1. Considerations before migrating to PL/I VSE 5

Differences in PLIDUMP

PLIDUMP now produces an LE/VSE-style dump. The way you use PLIDUMP is
slightly different, and the dump output is significantly different.

In the following description, the term compile unit refers to the primary entry point of
the external procedure. Compile unit name refers to the name of the external
procedure.

Differences in using PLIDUMP
The way you use PLIDUMP has changed:

The dump output filename can be CEEDUMP, PLIDUMP, or PLIDUMP. If you
do not define one of these files, LE/VSE sends the dump output to SYSLST.
The record length for the data set associated with the dump output file must be
at least 133 bytes to prevent dump records from wrapping, not the 121 bytes
required by DOS PL/I.

If you use ILC, the dump file can also contain output related to COBOL/VSE.

The identifier character string is limited to 60 bytes, and will be truncated if
necessary. DOS PL/I supported 90 bytes for the identifier character string.

Differences in the output produced by PLIDUMP
The format of the output produced by PLIDUMP has changed in the following ways:

6

PL/I VSE Migration Guide

The traceback section lists the compile unit name associated with each entry
point name. When the entry point is a secondary entry point, the primary entry
point name associated with the actual entry point is not listed.

The traceback section contains offsets relative to the address of the compile
unit, and offsets relative to the address of the real entry point.

Diagnostic messages are in a separate section; they are no longer part of the
traceback section.

Condition handler save areas no longer appear in the traceback section of the
dump. If you specify the BLOCKS ('B") option of PLIDUMP, the condition
handler save areas appear in the Block section of the dump. If you do not
specify the BLOCKS option, the condition handler save areas do not appear in
the dump.

When you specify the STORAGE ('H') option, the hex dump output is directed
to a dump sublibrary if OPTION SYSDUMP is in effect and a dump sublibrary is
defined for the partition (by a LIBDEF DUMP command). This is separate from
the output for the other PLIDUMP options.

Run-time messages now contain offsets relative to the compile unit. You can
use these offsets to help you find the statement that is in error. To do this,
match the compile unit offset from the message with the offset given in the
pseudo-assembler listing that the compiler produces when you specify the LIST
compile-time option.

Messages in SNAP dumps and in the traceback section of PL/I dumps contain
offsets relative to the entry point of the procedure. The offset table gives the
offset of each statement in the program. Thus, you can readily identify the
corresponding statement by looking up a given offset in the table.

If the program was compiled with the TEST compile-time option, and a BEGIN
block has a label, the BEGIN block is identified as “Label:BEGIN block.”
Otherwise, the BEGIN block is identified as “%BLOCKnNN,” where nn is the
block count for the BEGIN block.

Compiler-generated ILC subroutines now appear in the traceback section.
They are identified as the compile unit name concatenated with the suffix ILC.

PL/I library routines that have LE/VSE-defined Program Prologue Areas (PPAS)
are identified by name in the dump. If the library routines do not have LE/VSE
PPAs, they are identified as “Library(PL/I).”

PLIDUMP now conforms to National Language Support standards.

Differences in condition handling

In general, PL/I VSE condition handling continues to operate as it did for DOS PLI/I.
However, its behavior might be slightly different in the following ways:

¢ The diagnostic message for an ERROR condition is issued only if there is no

ERROR ON-unit established, or if the ERROR ON-unit does not recover from
the condition by using a GOTO out of block. Therefore, you can use a GOTO
out of the ERROR ON-unit to avoid a message for a PL/I ERROR condition.

However, for PL/I conditions whose implicit action includes printing a message
and raising the ERROR condition, the message is issued before control is
given to an established ERROR ON-unit.

Table 4 summarizes the differences in condition handling between DOS PL/I
and PL/I VSE.

Table 4. ERROR ON-unit messages—DOS PL/I and PL/I VSE

ERROR ON-unit

ERROR ON-unit

Condition No ON-units no GOTO GOTO
ERROR condition raised1 DOS PL/I message message prior to message prior to
ON-unit ON-unit
PL/I VSE message message after no message
ON-unit
ZERODIVIDE condition DOS PL/I message message prior to message prior to
raised? ON-unit ON-unit
PL/I VSE message message prior to message prior to
ON-unit ON-unit
Notes:

1. Taking the square root of a negative number, data exception, etc.
2. With no ZERODIVIDE ON-unit; thus, implicit action is taken. Message is printed, ERROR

condition is raised.

ON ERROR SNAP provides a SNAP traceback message that is issued before
the ERROR ON-unit gains control. The SNAP traceback message is not
identical to a regular ERROR message.

Chapter 1. Considerations before migrating to PL/I VSE

e The ERRCOUNT run-time option controls the maximum number of severe
errors that are processed before the program terminates. For example,
ERRCOUNT(3) specifies that the program terminates if more than three severe
errors are encountered. To maintain compatibility, specify ERRCOUNT(0),
which specifies that there is no limit. For more information, see the LE/VSE
Programming Guide.

e PL/I run-time message numbers are now in the form IBMnnnnx, where nnnn
represents the message number and x represents the severity of the message.

* The condition-handling behavior of the LINK from assembler is now clearly
defined. For detailed information, see the LE/VSE Programming Guide.

Note: With EXEC CICS LINK under CICS, the ON-unit for FINISH in the
parent enclave might not receive control.

Other condition handling

PL/I VSE handles other conditions according to LE/VSE semantics. For more
information, see the LE/VSE Programming Guide.

Differences in interlanguage communication

COBOL

Assembler

In the LE/VSE environment, interlanguage communication (ILC) with PL/I VSE is
supported only for COBOL and Assembler.

ILC between PL/I VSE and COBOL is supported only if the COBOL routines were
compiled with:

e VS COBOL Il Release 3.2 or later
or
¢ IBM COBOL for VSE/ESA

If you have any programs that contain both COBOL and PL/I routines, and the
COBOL routines were compiled with an earlier release of COBOL, then when you
recompile any of the PL/I routines with PL/I VSE, you must also recompile all of the
COBOL routines with one of the supported COBOL compilers. (This is in addition
to recompiling all of the PL/I routines, because DOS PL/I routines are also not
supported by LE/VSE.)

PL/I ILC with COBOL is now reentrant. To write reentrant ILC applications, you
must specify OPTIONS(REENTRANT) for all of your external procedures and
ensure that you do not modify static variables. You must recompile all procedures
that communicate with COBOL, using PL/I VSE, and you must re-link the
application with LE/VSE.

The format of PL/I locator/descriptor blocks has changed. If any PL/I programs call
assembler subroutines without specifying OPTIONS(ASSEMBLER), you will need to
change the assembler routines to handle the new format locator/descriptors. For a
description of the format of locator/descriptor blocks, see PL/I VSE Programming
Guide.

Assembler routines are no longer required to preserve the contents of register 12
for PL/I error handling.

8 PL/I VSE Migration Guide

For assembler programs calling PL/l subroutines, there are differences in the entry
points used, and in how the PL/I environment is initialized. Entry points PLICALLA
and PLICALLB are no longer supported, and entry points PLISTART and PLIMAIN
are now called CEESTART and CEEMAIN. For details on LE/VSE environment
initialization, see the LE/VSE Programming Guide.

General ILC considerations
Some PL/I applications that use ILC might behave differently under LE/VSE:

e Condition handling might behave differently. The major causes of differences
in condition handling are that the INTER option is now ignored, and that PL/I
condition handling facilities can deal with conditions occurring in non-PL/I
routines whether you specify INTER or not.

e With DOS PL/I applications that used ILC, the environment initialization and
termination of the involved languages, including PL/I, could occur multiple
times. With LE/VSE, there is only one run-time environment, and
language-specific initialization and termination occurs only once. Changes in
behavior that you might see include opening and closing of files, releasing of
allocated storage, and establishing ON-units.

For a complete description of how ILC works in the LE/VSE run-time environment,
see the LE/VSE Programming Guide.

Identifying programs with ILC

| Product-sensitive programming interface

You can use the CSECT names in your existing phases to help identify PL/I
programs that have ILC. By searching for certain CSECT names, you can identify
some phases that contain features that need special consideration when
recompiling with PL/I VSE. Table 5 shows the names of CSECTS that contain ILC
support code.

Note: Some ILC features cannot be identified by searching for CSECT names.

Table 5. Using CSECTs to identify problem load modules

CSECT Module type

name

IBMBILC1 ILC load module

IBMBIEC1 ILC module in which PL/I calls COBOL

IBMBIEF1 ILC module in which PL/I calls FORTRAN

IBMBIEP1 ILC module in which COBOL, FORTRAN, or RPG calls PL/I

End of Product-sensitive programming interface

Chapter 1. Considerations before migrating to PL/I VSE 9

Differences in preinitialized programs

The PL/I preinitialized program interface using the PLICALLA and PLICALLB entry
points is no longer supported. The PL/I environment can only be preinitialized with
LE/VSE services. See the LE/VSE Programming Guide for details.

PL/I VSE does not support the following techniques for PL/l environment
initialization:
e An assembler program calls a PL/I MAIN program using entry point PLICALLA
or PLICALLB. This initializes the PL/I environment, and then the PL/I program
reinvokes the assembler routine. The assembler routine can then call the

same or other PL/I routines multiple times without re-establishing the PL/I
environment.

e An assembler routine mimics PL/I by including a PLIMAIN entry point which
contains the address of a PL/I procedure. This allows the assembler routine to
call any number of PL/I subroutines, without the need for a MAIN procedure.

Note: The PLICALLB entry point is still available for use by DL/I programs, but its
parameters have changed. Any user-written assembler programs that call
PLICALLB will not work under PL/I VSE.

Retuning for better performance and storage use

After migrating your applications to PL/I VSE, you should retune them to maximize
performance and storage efficiency. This section provides an overview of
performance tuning considerations. For more information on tools you can use to
tune your programs, see the PL/I VSE Programming Guide.

Performance considerations for PL/I applications

10

When an existing DOS PL/I application is recompiled with PL/I VSE, run-time
performance is generally comparable to the run-time performance of the same
application running under DOS PL/l. However, storage usage increases. The
amount of increase depends on the specification of the storage options.

Though there are specific areas where performance with LE/VSE improves, there
are a few areas where performance with LE/VSE is degraded. Performance
considerations vary depending on the characteristics of an application. This section
summarizes some of the performance considerations for compatibility and
migration. This summary is not exhaustive.

You can experience better run-time performance compared to DOS PL/I in the
following areas:

e ILC between COBOL and PL/I
e many of the LE/VSE math routines

You might experience slower run-time performance compared to DOS PL/I in the
following areas:

e Condition handling
e LE/VSE math routines that use degrees
e CICS support, especially EXEC CICS LINK

PL/I VSE Migration Guide

When applications are re-linked with LE/VSE, the size of the phases usually
decreases. Resident routines are no longer link-edited into your executable
phases; for each resident routine that formerly would have been present, a small
stub is link-edited into the phase. The stub accesses the formerly resident routine.

If you use the IBM-supplied default storage options for LE/VSE, PL/I VSE
applications use approximately one megabyte more storage during run-time than
DOS PL/I. You can decrease the required storage by reducing the default storage
values. You can find out how much storage your application actually needs by
using the RPTSTG(ON) run-time option.

Table 6 shows recommended storage values for batch applications under LE/VSE.
These values apply to both PL/I VSE and COBOL/VSE applications.

Table 6. Recommended storage values for batch
applications under LE/VSE

STACK initial size 128K
STACK increment size 64K
LIBSTACK initial size 16K
LIBSTACK increment size 8K
HEAP initial size 32K
HEAP increment size 32K
ANYHEAP initial size 16K
ANYHEAP increment size 8K
BELOWHEAP initial size 8K
BELOWHEAP increment size 4K

The RPTSTG(ON) option tells you how much storage your application uses in the
various LE/VSE storage classes (STACK, HEAP, LIBSTACK, and so on). It also
tells you your application's minimum storage requirements and the number of
GETVIS and FREEVIS requests done to obtain storage. You might want to tune
your application to minimize the number of GETVIS and FREEVIS requests
performed. Also, before putting the application into production, be sure to specify
the RPTSTG(OFF) option so that no storage report is generated.

Condition handling can impact performance. For example, if truncation or overflow
occurs repeatedly, the work required to handle this condition can increase
execution time. For optimal performance, ensure that truncation does not occur.

Differences in run-time options

LE/VSE run-time options replace PL/I run-time options. Most PL/I run-time options
have an equivalent LE/VSE run-time option that provides the same function. This
section describes differences in the use of run-time options.

You should adapt your applications to allow for the following differences:

» LE/VSE recognizes run-time options specified in the PLIXOPT string. However,
for easier future migration, you should delete all PLIXOPT strings from your
programs and specify run-time options in your JCL. See the PL/I VSE
Programming Guide for details.

Chapter 1. Considerations before migrating to PL/l VSE 11

12

e The COUNT option is ignored.
e The FLOW option is ignored.

e The ERRCOUNT option limits the number of errors that are handled at run
time. ERRCOUNT(0) specifies that there is no limit, which is equivalent to the
way DOS PL/I worked.

e The DEPTHCONDLMT run-time option limits the extent to which conditions can
be nested. To maintain compatibility, specify DEPTHCONDLMT(0), which
means there is an unlimited depth.

e The RPTSTG option replaces the REPORT option.

e The TRAP option replaces both SPIE and STAE. Either SPIE or STAE (or
both) will map to the TRAP(ON) option; NOSPIE and NOSTAE, specified
together, map to the TRAP(OFF) option.

e The STACK and HEAP options together replace ISASIZE. STACK controls the
initial allocation for LIFO storage, and HEAP controls non-LIFO storage.

e The HEAP option is always in effect. This means that when you allocate
storage for BASED and CONTROLLED variables, the storage always comes
from HEAP storage. The storage does not come from a PL/I Initial Storage
Area (ISA). HEAP(,,BELOW) is required for AMODE 24 applications.

¢ The XUFLOW option determines whether the UNDERFLOW condition is raised
when underflow occurs. XUFLOW(AUTO) preserves PL/I semantics with
regard to raising the UNDERFLOW condition.

Table 7 maps the DOS PL/I run-time options to the equivalent LE/VSE options.

Table 7. PL/I and LE/VSE run-time options

DOS PL/I LE/VSE

COUNT|NOCOUNT None

FLOW|NOFLOW None

ISASIZE(init_size) STACK(init_size) for LIFO storage
HEAP(init_size) for non-LIFO storage

REPORT RPTSTG(ON)

NOREPORT RPTSTG(OFF)

SPIE STAE TRAP(ON)

NOSPIE NOSTAE TRAP(OFF)

The following run-time options provide compatibility with the DOS PL/I defaults:

ERRCOUNT(0)
DEPTHCONDLMT(0)
TRAP(ON)
XUFLOW(AUTO | ON)

For more information about run-time options, see the LE/VSE Programming Guide.

PL/I VSE Migration Guide

Features of DOS PL/I that are not supported by PL/I VSE

This section summarizes the major features of the DOS PL/I Optimizing Compiler
that are not supported by PL/I VSE:

e Debugging

e Some types of interlanguage communication
DOS PL/I Optimizing Compiler modules
Using PLICALLA and PLICALLB

e Input/output support

Debugging
PL/I VSE does not support these DOS PL/I debugging features:

e The CHECK condition

e The COUNT compile-time option
e The COUNT run-time option

e The FLOW compile-time option
e The FLOW run-time option

Note: Conceptually, the PL/l NOCOUNT and NOFLOW options are always in
effect during compilation and at run time.

Some types of interlanguage communication (ILC)
PL/I VSE does not support these DOS PL/I ILC features:

e Communication with FORTRAN
e Communication with DOS/VS COBOL
e Communication with RPG

These restrictions are not diagnosed at run time.

If you do not know whether your existing phases contain ILC, you can check them
for the CSECT names that identify ILC support. For more information, see
“Identifying programs with ILC” on page 9.

DOS PL/I Optimizing Compiler modules

Executable modules

LE/VSE does not support DOS PL/I phases. However, your DOS PL/I phases can
continue to co-exist with PL/I VSE on your VSE/ESA system, provided you retain
the DOS PL/I Transient Library. Phases shipped with LE/VSE and PL/I VSE have
different names than those shipped with the DOS PL/I Transient Library, so your
old programs will continue to run.

However, LE/VSE does not support phases that were compiled and linked with the
DOS PL/I compiler, so your DOS PL/l programs must run as separate job steps,
not in an LE/VSE environment. Programs compiled and linked under LE/VSE can
not FETCH modules that were compiled with DOS PL/I.

Chapter 1. Considerations before migrating to PL/| VSE 13

Object modules

Object modules compiled with DOS PL/I can not be link-edited with modules
compiled with PL/I VSE. When you recompile a module with PL/I VSE, you must
ensure that all modules linked with that module have been recompiled, so that no
DOS PL/I object modules are included in the executable program.

Using PLICALLA and PLICALLB

PL/I VSE does not support the entry points PLICALLA or PLICALLB (except that
PLICALLB is still supported for DL/I as a special case—see “DL/I considerations”
on page 26 for details). If you wish to call preinitialized PL/I programs from
assembler language routines you should use LE/VSE-defined preinitialization
services.

Under LE/VSE, if you attempt to enter PL/l via PLICALLA or PLICALLB, your
program will abend.

For more information about PL/I-defined preinitialized programs, see “Differences in
preinitialized programs” on page 10 and the LE/VSE Programming Guide.

Input/output support

14

PL/I VSE does not support the following devices and data set types:

Indexed sequential data sets
PL/I VSE does not support indexed sequential data sets in native mode. If a file
declaration has the INDEXED attribute, PL/I VSE will treat the file as a VSAM
KSDS.

Card devices
PL/I VSE does not support the following ENVIRONMENT options related to card
devices:

ASSOCIATE(filename)
COLBIN
FUNCTION(function)
OMR

RCE

STACKER(n)

Direct control of card devices such as the IBM 2560 Card Read Punch is not
possible in PL/I VSE. However, PL/I VSE provides a sample assembler
subroutine that can be called from a PL/I program to provide these functions.
For details, see “Card devices” on page 3.

See “Differences in PL/I /0O support” on page 3 for a description of the changes in
PL/I I/O support.

PL/I VSE Migration Guide

Miscellaneous compatibility considerations

The following interfaces are not supported by PL/I VSE. In general, LE/VSE
provides similar functions, and you should convert your programs to use the
LE/VSE services.

Entry points PLICALLA and PLICALLB
Entry points PLICALLA and PLICALLB are no longer supported. To call a PL/I
program from Assembler, you should use the functions provided by LE/VSE.
See the LE/VSE Programming Guide for details.

Entry points PLISTART and PLIMAIN
The compiler no longer generates the entry points PLISTART and PLIMAIN. The
entry point names are now CEESTART and CEEMAIN.

Under LE/VSE, assembler programs can no longer mimic PL/I main procedures
by including an entry point called PLIMAIN. If you have assembler main
programs calling PL/l subroutines, you must use standard LE/VSE services.

Linkage conventions
With LE/VSE, assembler programs that call a PL/I routine must follow the calling
conventions defined by LE/VSE. That is, register 13 must point to a save area,
save areas should be properly back-chained, and the first word of the save area
should be zero. For detailed information, see the LE/VSE Programming Guide.

When a CICS program of any language issues an EXEC CICS LINK or EXEC
CICS XCTL to a PL/I main procedure, an LE/VSE enclave is created. The main
procedure operates in the newly created enclave. If the calling program is
LE/VSE-enabled, it is already running in its own enclave, so the new enclave is
said to be nested. For more information about the behavior of enclaves, see the
LE/VSE Programming Guide.

In a batch environment, enclave nesting is not supported, so it is not possible to
call a PL/I main procedure unless the calling program is not already
LE/VSE-enabled. In this case, the LE/VSE environment must be initialized
before the program calls the PL/I main procedure. When the PL/l program is
called, a new LE/VSE enclave is created and the PL/I program runs in the new
enclave. The LE/VSE Programming Guide give details on initializing the LE/VSE
environment.

Chapter 1. Considerations before migrating to PL/| VSE 15

Chapter 2. Installation considerations

This chapter contains detailed information about installation. It outlines issues you
must consider when you install PL/I VSE. This chapter includes the following
sections:

¢ |Installation requirements
* Renamed product parts
* User-replaceable modules

Installation requirements
You must install LE/VSE before you install PL/I VSE. LE/VSE must be available
whenever you compile, link-edit, or run a PL/I VSE program.

For more information about installation requirements, see the LE/VSE Programming
Guide and PL/I VSE Installation and Customization Guide.

Renamed product parts
The prefix for the PL/I VSE compiler modules is IEL1.

In addition, the following name changes have been made:

e For each DOS PL/I resident library module IBMBxxxx, there are two
corresponding modules:

— A library stub IBMSxxxx that is link-edited with your program
— A run-time module IBMRxxxx that is loaded dynamically if needed

e All DOS PL/I IBMFxxxx modules for CICS specifics are now shipped with
LE/VSE, and are called IBMYXXxxX.

Changing invocation names
You should change PL/I invocation names when you migrate to PL/I VSE.

In your compile JCL, you should change your EXEC statement to use the program
name IEL1AA instead of PLIOPT.

User-replaceable modules

The replacement of module IBMBEER with a user-written module to handle CICS
transaction abends is no longer supported. See “Transaction abend handling” on
page 25 for details.

16 © Copyright IBM Corp. 1964, 1995

Chapter 3. Compile-time considerations

This chapter describes the following compile-time considerations:

e Dependency on LE/VSE

e Differences in compile-time options

e Compile and link JCL

e Large arrays and aggregates

e Compatibility considerations for DOS PL/I source

e Differences in user return codes

e Selecting math routines

e Storage report changes

e Compiler message changes

e Messages that PL/I issues for errors in the PLIXOPT string

Dependency on LE/VSE

LE/VSE must be available whenever you compile a PL/I VSE application.

Differences in compile-time options

The following DOS PL/I compile-time options are no longer supported. If you
specify them, the compiler will ignore them.

CATALOG('name")

CHARSET ([48]60] [EBCDIC|BCD])
COUNT | NOCOUNT

DECK|NODECK

DUMP | NODUMP

DYNBUF | NODYNBUF

FLOW[(n,m)] |NOFLOW
LIMSCONV | NOLIMSCONV
LINK|NOLINK[(W|E|ST)
WORKFILE (device)

In some cases there is no equivalent option in PL/I VSE, and in some cases there
is an option that provides a similar function. Each option is listed here with a note
about its replacement. For full details of the new compile-time options, see the PL/I
VSE Programming Guide.

CATALOG("'name')
The name of the object module is now supplied by the NAME
compiler option.

CHARSET([48|60][EBCDIC|BCD])
There is no equivalent option.

COUNT|NOCOUNT
There is no equivalent option.

DECK|NODECK
The JCL OPTION DECK statement tells the compiler to produce an
object deck on SYSPCH.

DYNBUF|NODYNBUF
There is no equivalent option.

© Copyright IBM Corp. 1964, 1995 17

FLOWI[(n,m)]|INOFLOW
There is no equivalent option.

LIMSCONV|NOLIMSCONV
There is no equivalent option.

LINK The JCL OPTION statement is now used instead of the compiler LINK
option. Use OPTION LINK to link-edit a temporary phase, and
OPTION CATAL for a permanent phase. With OPTION CATAL, you
can also use the NAME compiler option to generate a PHASE
statement for the linkage editor.

NOLINK[(W|E|S)]
PL/I VSE does not contain an equivalent option. If you want to
bypass execution of the linkage editor when there are errors in the
compile, you can use conditional JCL statements. See “Compile and
link JCL” for details.

WORKFILE(device)
There is no equivalent option.

Compile and link JCL

In DOS PL/I, the NOLINK compile-time option specified the highest severity level of
compiler errors that could occur before the link-edit would be disallowed. The
compiler disallowed the link-edit by resetting the relevant JCL option (OPTION LINK
or CATAL), and this caused the link to fail with a STATEMENT OUT OF
SEQUENCE message.

PL/I VSE will unconditionally reset the LINK option if it encounters an error of
severity S (severe) or higher (return code 12 or higher). This is equivalent to
NOLINK(S) in DOS PL/I.

However, PL/I VSE will also set the system return code to indicate the highest
severity error that occurred in the compile. If you want to suppress the link-edit
step of a compile job for errors of lower severity, you can test the return code in
your JCL. For example:

// EXEC IEL1AA
(program source)

/*

// IF $RC LT 8 THEN

// EXEC LNKEDT

This will bypass the linkedit step if the compiler detects any errors of severity E or
higher. This is equivalent to NOLINK(E) in DOS PL/I.

The PL/I VSE Programming Guide contains a list of the compiler return codes and
error severity levels.

Large arrays and aggregates

18

To allow for larger arrays and aggregates, PL/I now uses FIXED BIN(31) subscripts
instead of FIXED BIN(15). This should have minimal effect on your existing
programs because PL/I will convert your FIXED BIN(15) subscripts internally to
FIXED BIN(31) before using them to resolve array references.

PL/I VSE Migration Guide

However, some of the array-handling and storage control built-in functions now
return FIXED BIN(31) values instead of FIXED BIN(15), and you should check your
programs for the use of these functions. The built-in functions that are changed
are:

ALLOCATION
DIM

HBOUND
LBOUND

Programs that rely on the format of the data returned by these built-in functions will
need to be changed. Figure 1 shows the differences in data format for these
built-in functions between DOS PL/I and PL/I VSE.

/* Built-in functions DIM, HBOUND, LBOUND and ALLOCATION return */
/* fullword values when compiled with PL/I VSE and return halfword */
/* values when compiled with DOS PL/I. */

DC510: PROC OPTIONS(MAIN);

DCL BA219(25:28) BIT(4) AUTOMATIC VARYING ALIGNED;
DCL BU114(2,2) BIT(80) CONTROLLED UNALIGNED;

ALLOCATE BU114;
CALL INT;

INT: PROC;
DCL BA221(4) BIT(15) ALIGNED INIT(HBOUND(BA219,1),
LBOUND (BA219,1),
ALLOCATION(BU114));
BA221(4) = ALLOCATION(BU114);
PUT DATA ((BA221(I) DO I = 1 TO 4));

DCL BA222(4) BIT(31) ALIGNED INIT(HBOUND(BA219,1),
LBOUND(BA219,1),
ALLOCATION(BU114));

BA222(4) = ALLOCATION(BU114);

PUT DATA ((BA222(I) DO I = 1 TO 4));

END INT;

END DC510;

Run-time output if compiled with DOS PL/I:

BA221(1)='000000000011100"'B BA221(2)="'000000000011001"'B
BA221(3)="'000000000000001"'B BA221(4)="'000000000000001"'B;
BA222(1)="'0000000000111000000000000000000'B BA222(2)="'0000000000110010000000000000000'B
BA222(3)="'0000000000000010000000000000000'B BA222(4)="'0000000000000010000000000000000'B;

Run-time output if compiled with PL/I VSE:

BA221(1)="'000000000000000"'B BA221(2)="'000000000000000"'B
BA221(3)="'000000000000000'B BA221(4)="'000000000000000'B;
BA222(1)="'0000000000000000000000000011100'B BA222(2)="'0000000000000000000000000011001'B
BA222(3)="'0000000000000000000000000000001'B BA222(4)="'0000000000000000000000000000001'B;

Figure 1. Differences in built-in functions between DOS PL/I and PL/I VSE

Chapter 3. Compile-time considerations 19

Compatibility considerations for DOS PL/I source code

Source code compatibility with DOS PL/I is supported with the following exceptions:

CHARSET(48 and BCD) is no longer supported.

Graphic DBCS varies slightly from old EGCS in that the shift-in and shift-out
code points are fixed.

Processing of %INCLUDE statements now delimits text inclusions with “begin”
and “end” comments.

The preprocessor now treats character codes outside the range of '40'X
through 'FF'X as delimiters if they are not part of a string constant.

Suffixes that follow string constants are not replaced by the
preprocessor—whether these are legal PL/I suffixes or not—unless there is a
delimiter between the ending quotation mark of the string and the first letter of
the suffix. For example:

%DCL (GX, XX) CHAR;

%6X="||FX';
%XX="1]2z2";
DATA = 'STRING'GX;
DATA = 'STRING'XX;
DATA = 'STRING' GX;
DATA = 'STRING' XX;

under DOS PL/I produces the source:

DATA = 'STRING'||FX;
DATA = 'STRING'||ZZ;
DATA = 'STRING' ||FX;
DATA = 'STRING' |]|ZZ;

whereas, under PL/I VSE it produces:

DATA = 'STRING'GX;
DATA = 'STRING'XX;
DATA = 'STRING' ||FX;
DATA = 'STRING' |]|ZZ;

Differences in user return codes

PL/I will now pass the latest return code back to the operating system at the end of
the job step. The return code used will be the last one set by a CALL PLIRETC
statement. This will affect the running of your jobs if your JCL contains any
conditional job steps that depend on the $RC value of prior steps.

20

PLIRETC is also recognized if it is called from the main procedure. DOS PL/I
always ignored calls to PLIRETC unless they came from a subordinate procedure.

The PL/I built-in functions that support user return codes now have a precision of
FIXED BIN(31) under PL/I. This change affects the following:

PL/I VSE Migration Guide

You can use the PLIRETC built-in subroutine to set return codes with a value
greater than 999 under PL/I VSE.

In DOS PL/I, PLIRETC accepted FIXED BIN(31) values, but, if the value was
greater than 999, PLIRETC reset the value to 999 and issued an informational
message.

e The PLIRETYV built-in function returns a value of precision FIXED BIN(31)
instead of FIXED BIN(15).

If your program depends on the precision of the above built-in functions, you might
need to make changes to your source application.

Differences in processing for FILE OPEN errors

In DOS PL/I, a failure in file open processing such as 'NO FORMAT 1 LABEL' causes
the program to abend. However, PL/I VSE intercepts operating system open
failures and drives the PL/I UNDEFINEDFILE condition. If the application has not
been coded to recover from open failures, the job step terminates with a return
code 3000. This may result in differences in JCL processing. For example, JCL set
up to handle file allocation failures through abend processing may need to be
changed to operate on return code processing.

Selecting math routines

You can choose to use math routines that produce results consistent with either
DOS PL/I or with LE/VSE. This choice also affects PL/I language elements, such
as exponentiation.

You can obtain results consistent with DOS PL/I by specifying an INCLUDE
statement in your link-edit JCL as follows:

INCLUDE IBMSDOSM

For more information, see the PL/I VSE Programming Guide.

Storage report changes

The PLIXHD variable is no longer used as the heading in storage reports. The
identifier PLIXHD is no longer special; you can declare it and use it as you would
declare and use any other variable.

To supply a heading for the run-time storage reports, use the CEE5RPH callable
service of LE/VSE. See the LE/VSE Programming Guide for details.

Compiler message changes

This section lists the numbers of PL/I compiler messages that have changed. For
detailed descriptions of messages, see PL/I| VSE Compile-Time Messages and
Codes.

Notes:

1. Compiler messages can be presented in a long form or a short form depending
on the setting of the compile-time option LMESSAGE or SMESSAGE. Except
for the changes listed below, the long form is the same as the corresponding
DOS PL/I message.

2. The messages produced for run-time options specified in the PLIXOPT string
are different. In most cases, these messages now refer you to the description
of a similar LE/VSE run-time message. For more information about messages

Chapter 3. Compile-time considerations 21

produced for run-time options specified in the PLIXOPT string, see “Messages
that PL/I issues for errors in the PLIXOPT string” on page 23.

3. The severity of the preprocessor messages IEL0115I, IEL0163I, and IEL0201I
has been reduced to W.

New compiler messages
The following compiler messages have been added:

IELOO25I IELO148I IELO560I IELO669I
IELOO26I IELO149I IELO583I IELO670I
IELOO30I IELO205I IELO584I IELO983I
IELOO31I IELO2271 IELO585I IELO985I
IELOO32I IELO369I IELO586I IELO989I
IELOO33I IELO376I IELO5871 IEL0990I
IELOO35I IELO378I IELO588I IELO995I
IELOO36I IELO379I IELO589I IEL2232]
IELOO371 IELO383I IELO590I IEL22611
IELOO38I IELO384I IELO5911 IEL2262]
IELOO39I IELO478I IELO592I IEL2263lI
IELO040I IELO5371 IELO593I IEL2264I
IELOO41I IEL0540I IELO594I IEL2270I
IELOO42I IELO548I IELO595I IEL22711
IELOO48I IELO5571 IELO596I IEL2272]
IELOO59I IELO558I IELO5971 IEL2273I

IEL22741

Changed compiler messages
The following compiler messages have been changed:

IELO024I IELO047I

Compiler messages that are no longer valid
The following compiler messages are no longer valid:

IELOO0O7I IELO701I IELO822I IELO845I
IELOOOS8I IELO728I IELO823I IELO846I
IELOO10I IELO729I IELO824I IELO847I
IELOO17I IELO732I IELO825I IELO965I
IELOO20I IELO733lI IELO826I IELO972I
IELOO211 IELO734I IELO829I IELO973lI
IELO022I IELO736I IELO831lI IELO974I
IELOO29I IELO7371 IELO832I IELO975I
IELOO44I IELO738lI IELO833I IELO976I
IELOOG2I IELO739I IELO839I IELO977I
IELOOG3I IELO813lI IELO841lI IELO978I
IELOO6G4I IELO814I IELO842I IELO979I
IELO1671 IELO815I IELO843lI IEL0980I
IELO5471 IELO821I IELO844I IEL0981I

22 PL/I VSE Migration Guide

Messages that PL/l issues for errors in the PLIXOPT string

The PLIXOPT variable is a varying-length character string that contains run-time
options you can specify at compile time. The messages that the compiler produces
to diagnose errors in these options have changed. In most cases, the PL/I
messages now list an associated LE/VSE message that you should read for more
information about the error.

The following messages describe different types of problems that can occur with
the run-time options specified in a PLIXOPT string.

Message IEL0950I (Warning)
A severe error occurred in the PLIXOPT string. Generally, this message
indicates that the error is severe enough to cause the parsing of the string to fail.

You must correct the errors that cause this message.

Message IEL0951I (Warning)
An error occurred in a run-time option in the PLIXOPT string. This message
indicates that the string contains an item that is not a valid run-time option. This
message is issued for items that are not recognized as valid run-time options,
including run-time options that are no longer supported.

You must correct the errors that cause this message.

Message IEL0952I (Informational)
A possible problem exists with a run-time option in the PLIXOPT string. This
message is issued for PL/I run-time options that have been replaced with similar
LE/VSE run-time options. The PL/I options are automatically converted to the
appropriate LE/VSE options, but some of the LE/VSE options might not function
exactly as the PL/I options did.

You should convert these PL/I options to the appropriate LE/VSE option, and
check to see if the LE/VSE option is different from the PL/I option.

Message IEL0953I (Informational)
A possible incompatibility exists in the support for a run-time option in the
PLIXOPT string. This message is issued for PL/I run-time options that have
been replaced by similar LE/VSE run-time options, but might not be supported
exactly as DOS PL/I supported them.

For example, this message is issued for the PL/I NOSPIE and NOSTAE options
because both options map to the LE/VSE TRAP option. TRAP(ON) implies both
SPIE and STAE, and TRAP(OFF) implies both NOSPIE and NOSTAE; under
LE/VSE, there is no support that is equivalent to the support that DOS PL/I
provided for the combinations SPIE and NOSTAE, or NOSPIE and STAE.

Chapter 3. Compile-time considerations 23

Chapter 4. Subsystem considerations

This chapter discusses considerations for the following subsystems:

« CICS
« DL/
+ SQL/DS*

CICS considerations

LE/VSE provides the CICS support required for PL/I VSE, with CICS/VSE

Version 3 Release 2 or later. You can also run DOS PL/I Release 6 programs in
the same CICS partition, subject to some system and subsystem support
differences. This section summarizes the system and subsystem migration
considerations for applications running under CICS.

The System Initialization Table

PL/I VSE does not need the specification PLI=YES in the System Initialization
Table (SIT). PL/I VSE programs are supported in CICS by LE/VSE functions, not
by a CICS-PL/I interface. However, you should keep the PLI=YES specification to
continue support for your DOS PL/I programs. When all of these have been
recompiled with PL/I VSE, you can remove PLI=YES from the SIT.

Changing the Processing Program Table

Error handling

If your CICS Processing Program Table (PPT) already contains entries for the DOS
PL/I transient library, you should keep these entries so that your DOS PL/I CICS
programs will continue to run. You can delete these entries when all of your DOS
PL/I programs have been recompiled with PL/I VSE.

In addition to these entries, you should add the PPT entries supplied by IBM
Language Environment for VSE/ESA to support your PL/I VSE programs. For more
information about adding these entries, see the LE/VSE Installation and
Customization Guide.

The PPT entries for your application programs need to specify PL/I as their
programming language (PGMLANG=PLI or LANGUAGE(PLI) in the DEFINE
PROGRAM command).

A diagnostic message is issued only if there is no ERROR ON-unit established in
the program, or the ERROR ON-unit does not recover from the condition by using a
GOTO out of block. For more information, see the LE/VSE Programming Guide.

Macro-level interface

24

The CICS macro-level interface is no longer supported.

© Copyright IBM Corp. 1964, 1995

Link-edit changes

The PL/I-CICS interface modules DFHPL1I and DFHEPI have been replaced by an
LE/VSE-CICS module DFHELII. You must change your link-edit JCL to include
DFHELII instead of DFHPL1l and DFHEPI.

The CICS PL/I shared library is no longer supported, so you must remove all
INCLUDE PLISHRE statements from your link-edit JCL.

SYSTEM(CICS) compile-time option
The default SYSTEM compile-time option is SYSTEM(VSE). However, because in
CICS programs the parameter to the main PL/I procedure is not a varying-length
character string, the compiler will generate a diagnostic message if SYSTEM(VSE)

is specified or defaulted. To prevent this, you should compile all CICS programs
with SYSTEM(CICS).

Run-time output

All PL/I run-time output, including messages, output to SYSPRINT, and output
resulting from PLIDUMP and ON condition SNAP invocations is now transmitted to
a CICS transient data queue CESE. LE/VSE ignores the MSGFILE option under
CICS. Figure 2 shows the format of the output data queue.

ASA | Terminal |Transaction| B | Date/Time B | Data
id id YYYYMMDDHHMMSS
1 4 4 1 14 1| 132

Figure 2. PL/I output data queue

In addition, PL/I transient queues CPLI and CPLD are no longer used. You only
need to keep your Destination Control Table (DCT) entries for CPLI and CPLD for
co-existence with DOS PL/I.

Abend codes used by PL/l under CICS

The APLx abend codes that were issued under DOS PL/l Release 6 are no longer
issued. Instead, LE/VSE-defined abend codes are issued. For more information
about LE/VSE abend codes, see the LE/VSE Debugging Guide and Run-Time
Messages.

Transaction abend handling

PL/I no longer calls the IBMBEER abend facility when a program is terminated as a
result of the ERROR condition being raised. If you want to control the abend
handling and allocation of abend codes, you will need to use standard CICS and
LE/VSE services. See the LE/VSE Programming Guide for details.

Shared Library support
The DOS PL/I Shared Library is no longer supported under PL/I VSE and LE/VSE.

When recompiling your CICS programs with PL/I VSE, you must remove the
INCLUDE PLISHRE statements from your link-edit JCL.

Chapter 4. Subsystem considerations 25

DL/l considerations

LE/VSE provides DL/I support for PL/I VSE, with DL/l DOS/VS Version 1
Release 10 or higher. This section summarizes the migration considerations for
DL/l applications.

Interfaces to DL/I

The following DL/I interfaces called from PL/I remain supported:

e PLITDLI
e EXEC DLI

Compile and link considerations

All DL/I batch application programs should be compiled with the SYSTEM(DLI) or
SYSTEM(DL1) compile-time option. DL/I CICS programs should be compiled with
SYSTEM(CICS). All other considerations for DL/I CICS programs are covered in
the preceding CICS discussion. The remainder of this section is concerned only
with DL/I batch programs.

CALL-level programs
The JCL used for compiling and linking DL/l batch programs remains the same as
before, except that the PL/I compiler name is IEL1AA, not PLIOPT.

Note that the PLICALLB entry point is still used, but its parameters have changed.
DL/l should be the only user of PLICALLB—if you have any assembler programs
that use PLICALLB, you should change them to use standard LE/VSE initialization
procedures. See the LE/VSE Programming Guide for details.

Command-level programs
The JCL used for compiling and linking EXEC DLI batch programs remains the
same as before, with two differences:

e The PL/I compiler name is now IEL1AA, not PLIOPT.

e The interface module IBMBPJRA is a DOS PL/lI module. The equivalent
module in PL/I VSE is IBMRPJRA. You will need to change the
INCLUDE IBMBPJRA statement in your link-edit JCL to INCLUDE IBMRPJRA.

Storage usage considerations

26

DL/l Version 1 Release 10 is the minimum release required for LE/VSE
applications. There is also a PTF for DL/l V1R10 to allow 31-bit addressing. If the
DL/l software at your installation does not have this enabling PTF, then all DL/I
application programs need to ensure that the parameters and data areas passed to
DL/l reside below the 16-megabyte line.

PL/I programs compiled with PL/I VSE will normally be link-edited with AMODE(31)
and RMODE(ANY), which will not guarantee that the program's DL/l parameters
are below the line.

The technique used to place the parameters below the line differs depending on the
PL/I storage class used for the parameters. You should check the variables used
as DL/I parameters and data areas in your PL/l programs, and use the following
techniques to ensure that they are placed below the line. (Run-time options
mentioned here are described in full in the LE/VSE Programming Guide.)

PL/I VSE Migration Guide

Static storage
PL/I static storage is held as part of the link-edited phase. If your program has DL/I
parameters in static storage, you should link-edit the program with RMODE(24).

Automatic storage

The allocation of automatic storage is controlled by the LE/VSE STACK run-time
option. To ensure that automatic storage is allocated below the line, specify
STACK(,,BELOW).

Controlled storage

The allocation of controlled storage is governed by the LE/VSE HEAP run-time
option. To ensure that this storage is allocated below the line, specify
HEAP(,,BELOW).

Based storage
The allocation of based storage depends on how the program manages the based
variable:

 |If the based variable is allocated in an AREA variable, its storage class is
inherited from the area that contains it.

 |f the variable is allocated, but not in an AREA variable, its allocation is
governed by the LE/VSE HEAP run-time option in the same manner as
controlled storage.

 |f the variable is never allocated, its storage class will be that of the variable
that its locator is pointing to.

Condition handling
The method of handling abnormal conditions in the DL/I environment has changed.
LE/VSE now gets control whenever an abnormal condition occurs, and processes
the condition according to the run-time options that are specified. Then, if
abnormal termination is to occur, LE/VSE will pass control to DL/I's abend
processing routine, and DL/I will ensure that all relevant data base backout and
cleanup processing is completed.

To ensure that this happens correctly, the following LE/VSE run-time options should
be specified:

TRAP(ON)
This is the default. It fully enables the LE/VSE condition handler.

ABTERMENC(ABEND)
This is not the default. It specifies that LE/VSE terminates the enclave with an
abend, ensuring that DL/I will get control to do its cleanup processing. If
ABTERMENC(RETCODE) is specified or defaulted, the installation must have
an assembler exit routine that sets a flag specifying that abend processing is to
occur. (The exit routine is called CEEBXITA, and is described in the LE/VSE
Programming Guide.)

Note: DL/l still requires that UPSI bit 7 be set to O to enable it to perform its
cleanup processing. For details, see the DL/I DOS/VS Application Programming
publications.

For more information on LE/VSE run-time options, see the LE/VSE Programming
Guide.

Chapter 4. Subsystem considerations 27

SQL/DS considerations

PL/I VSE and LE/VSE support applications that access SQL/DS data bases, both in
CICS and as VSE batch programs.

Compiling and linking

There is no change to the way that SQL/DS programs are compiled and link-edited,
except that the compile JCL should execute program IEL1AA instead of PLIOPT.

Condition handling

28

SQL/DS must be allowed to handle any conditions that can result in abnormal
termination of the PL/I program, so that it can perform any data base backout and
cleanup procedures. How this is specified will depend on the environment under
which the program is run.

In a VSE batch environment, in single-user mode, you must specify the LE/VSE
TRAP(OFF) run-time option. This ensures that SQL/DS will be given control in the
event of an error, so that it can perform any necessary data base cleanup.

In VSE batch multiple-user mode, all the data base processing is handled by the
SQL/DS partition, so the PL/I program should run with TRAP(ON) to allow LE/VSE
to perform its own error handling.

In a CICS environment, the LE/VSE TRAP(ON) option is always in effect. Any
abnormal conditions are handled by LE/VSE and CICS, and the CICS transaction
backout facility is used to clean up SQL/DS data bases.

PL/I VSE Migration Guide

Bibliography

IBM PL/I for VSE/ESA
publications
Fact Sheet, GC26-8052
Installation and Customization Guide, SC26-8057
Licensed Program Specifications, GC26-8055
Language Reference, SC26-8054
Compile-Time Messages and Codes, SC26-8059
Diagnosis Guide, SC26-8058
Migration Guide, SC26-8056
Programming Guide, SC26-8053
Reference Summary, SX26-3836

IBM Language Environment for
VSE/ESA publications

Concepts Guide, GC26-8063

Fact Sheet, GC26-8062

Debugging Guide and Run-Time Messages,
SC26-8066

Diagnosis Guide, SC26-8060

Installation and Customization Guide, SC26-8064
Licensed Program Specifications, GC26-8061
Programming Guide, SC26-8065

Reference Summary, SX26-3835

VSE/ESA publications

VSE/ESA Version 1
Administration, SC33-6505
Messages and Codes, SC33-6507
System Control Statements, SC33-6513
System Utilities, SC33-6517
System Macros Reference, SC33-6516
Guide to System Functions, SC33-6511
VSE/VSAM Commands and Macros, SC33-6532
VSE/VSAM User's Guide, SC33-6535

© Copyright IBM Corp. 1964, 1995

VSE/ESA Version 2
Administration, SC33-6605
Messages and Codes, SC33-6607
System Control Statements, SC33-6613
System Utilities, SC33-6617
System Macros Reference, SC33-6616
Guide to System Functions, SC33-6611
VSE/VSAM Commands and Macros, SC33-6631
VSE/VSAM User's Guide, SC33-6632

Related publications

CICS/VSE
Application Programming Guide, SC33-0712
Application Programming Reference, SC33-0713

System Definition and Operations Guide,
SC33-0706

Resource Definition, SC33-0708

DFSORT for VSE/ESA
Application Programming Guide, SC26-7040

Sort/Merge |l
DOS/VS VM/SP Sort/Merge Version 2 Application
Programming Guide, SC33-4044

DL/I DOS/VS

Application Programming: High Level Programming
Interface, SH24-5009

Application Programming: CALL and RQDLI
Interfaces, SH12-5411

SQL/DS

SQL/Data System Application Programming Guide
for VSE, SH09-8098

Softcopy publications

These collections contain the LE/VSE and
LE/VSE-conforming language product publications:
VSE Collection, SK2T-0060

Application Development Collection, SK2T-1237

29

Index

A

abend codes
CICS considerations 25
ABTERMENC run-time option, DL/l programs 27
ADDBUF environment option 3
ALLOCATION built-in function 19
assembler considerations, ILC 8
assembler invocation of PL/I 14
ASSOCIATE environment option 3, 14
automatic storage, DL/I programs 27

B

based storage, DL/l programs 27
built-in functions

array-handling 19

PLIRETV 20

storage control 19
built-in subroutines

PLIRETC 20

C

card devices, support for 3
CATALOG compile-time option 17
CEE5RPH callable service 2, 21
CEEBXITA exit routine
for DL/I abend handling 27
CEEDUMP 6
CHARSET compile-time option 17
CHECK condition 13
CICS considerations
abend codes used by PL/I 25
Destination Control Table 25
discussion of 24
error handling 24
link-edit changes 25
macro-level interface 24
Processing Program Table 24
run-time output 25
Shared Library support 25
SYSTEM compile-time option 25
System Initialization Table 24
transient queues 25
VSE library 1
COBOL considerations, ILC 8
COLBIN environment option 3, 14
COMPAT environment option 5
compatibility considerations
DOS PL/I source code 20
miscellaneous 15
preprocessor 20

30

compile and link JCL 18
compile unit
definition of 6
name, definition of 6
compile-time considerations
compile-time options 17
compiler messages
changed 22
discussion of changes 21
new 22
no longer valid 22
installing LE/VSE 17
large arrays and aggregates 18
storage reports 21
user return codes 20
compiler invocation name
for VSE JCL, IEL1AA 16
compiler messages
changed 22
compile-time considerations 21
discussion of changes 21
new 22
no longer valid 22
condition handling
discussion of 7
DL/l programs 27
performance impact 11
SQL/DS programs 28
conditional link-edit 18
controlled storage, DL/I programs 27
converting REGIONAL(3) data sets 5
COUNT compile-time option 17
COUNT run-time option 11, 13
CSECTs
discussion of 9
using 9

D

debugging 13
DECK compile-time option 17
DEPTHCONDLMT run-time option 12
Destination Control Table (DCT) 25
device type, MEDIUM option 4
DFHELII

for EXEC CICS programs 25
DFHEPI

for EXEC CICS programs 25
DFHPL1I

for EXEC CICS programs 25
DIM built-in function 19

© Copyright IBM Corp. 1964, 1995

DL/l considerations
discussion of 26
EXEC DLI programs 26
interfaces 26
interfaces to 26
storage usage 26
SYSTEM compile-time option 26
DOS PL/I
phases 13
source code compatibility 20
transient library
in the CICS PPT 24
unsupported features
CHARSET compile-time option 17
CHECK condition 13
COUNT compile-time option 13, 17
COUNT run-time option 13
DOS PL/I phases 13
DUMP compile-time option 17
DYNBUF compile-time option 17
FLOW compile-time option 13, 17
FLOW run-time option 13
interlanguage communication with DOS/VS
COBOL 13
interlanguage communication with FORTRAN 13
interlanguage communication with RPG 13
LIMSCONV compile-time option 17
overview 13
PLICALLA 14
PLICALLB 14
WORKFILE compile-time option 17
DUMP compile-time option 17
DYNBUF compile-time option 17

E

entry point
PLIMAIN 15
PLISTART 15

ERRCOUNT run-time option 12

error handling, CICS considerations 24

EXEC DLI interface 26

EXEC DLI programs 26

EXTENTNUMBER environment option
indexed sequential data sets 3
regional data sets 4

extents for regional data sets 4

F
FETCHed modules
support for 13
FILE OPEN errors, differences in processing 21
FLOW compile-time option 17
FLOW run-time option 11, 13

format of REGIONAL(3) data sets 5
FUNCTION environment option 3, 14

H

HBOUND built-in function 19
HEAP run-time option 12

DL/I programs 27
HIGHINDEX environment option 3

1/0 support, differences in 3
IBMBEER 16, 25
IBMBPJRA DL/l interface module 26
IEL1 prefix 16
IEL1AA
compiler invocation name
changing 16, 26, 28
for PL/ VSE 16
IELCARDG sample assembler subroutine 4
IELCARDR sample PL/I program 4
IELREG3C sample program 5
ILC (interlanguage communication)
CSECTs
discussion of 9
using 9
differences in 8
enabled languages 8
identifying programs with 9
support for 13
INDEXAREA environment option 3
INDEXED environment option 3
indexed sequential data sets 3, 14
INDEXMULTIPLE environment option 3
installation considerations
differences in output 2
discussion of 1
product configuration, LE/VSE 1
product configuration, SCEEBASE 1
renamed product parts 16
requirements 16
user-replaceable modules 16
installing LE/VSE, compile-time considerations 17
INTER option 9
interlanguage communication (ILC)
CSECTs
discussion of 9
using 9
differences in 8
enabled languages 8
identifying programs with 9
support for 13
invocation names, changing 16
ISASIZE run-time option 12

Index

31

J P

JCL performance
compile and link 18 considerations for PL/I applications 10
differences in processing FILE OPEN errors 21 recommended storage values 11
retuning for 10
K phases
DOS PL/I support 13
KEYLOC environment option 3 PLICALLA entry point
support for 9, 14, 15
L PLICALLB entry point
DL/l considerations 26
support for 9, 14, 15
PLIDUMP
CEEDUMP 6
changesto 6
output produced by 6
output under CICS 25
using 6
PLIMAIN
assembler ILC considerations 9
M description of 15
PLIOPT
compiler invocation hame
changing 16, 26, 28

large arrays and aggregates, compile-time
considerations 18

LBOUND built-in function 19
LIMSCONV compile-time option 17
LINK compile-time option 17
link-edit considerations

CICS 25

math routines, selecting 21

macro-level interface, CICS considerations 24
math routines, selecting 21
MEDIUM environment option 4

messages PLIRETC 20

compiler PLISHRE 25
changed 22 PLISTART . .
discussion of changes 21 assembler ILC considerations 9
new 22 description of 15
no longer valid 22 PLITDLI DL/I interface 26

PLIXOPT string errors PLIXHD 2,21
discussion of 23 PLIXOPT string
IEL0O9501 23 messages issued
IEL09511 23 discussion of 23
IEL09521 23 IELO9501 23
IEL0953I 23 IEL09511 23

miscellaneous compatibility considerations 15 IEL0952I 23

MSGFILE option, under CICS 25 ~ |ELO9531 23
preinitialized programs 10

preprocessor compatibility 20

N Processing Program Table 24
NOLABEL environment option 4 product configuration 1
NOLINK compile-time option 17 product parts, renamed 16
NOTAPEMK environment option 4 programs, preinitialized 10

NOWRITE environment option 3

R

O RCE environment option 3, 14
OFLTRACKS environment option 3 REGIONAL(3) data sets, reformatting 5
OMR environment option 3, 14 REPORT run-time option 12
open failures, differences in JCL processing 21 retuning
output discussion of 10

differences in 2 performance considerations 10

from PLIDUMP, differences in 6 RPSTG run-time option 12

32 PL/Il VSE Migration Guide

run-time options
compatibility with DOS PL/I 12
differences in 11
run-time output, CICS considerations 25
run-time performance, tuning 10

S

sample program for converting REGIONAL(3) data

sets 5
sample programs for card device support 4
SCEEBASE, installation considerations 1
Shared Library support
CICS considerations 25
source code compatibility 20
SPIE run-time option 12
SQL/DS considerations 28
STACK run-time option 12
DL/l programs 27
STACKER environment option 3, 14
STAE run-time option 12
static storage, DL/l programs 27
storage
reports, compile-time considerations 21
usage
DL/l programs 26
retuning for 10
values
recommended 11
RPTSTG option 11
subsystem considerations
CICS 24
DL/l 26
SQL/DS 28
SYSTEM compile-time option
CICS considerations 25
DL/l considerations 26
System Initialization Table 24

T

tape data sets, unlabeled 4
transient data destinations 25
TRAP run-time option 12
DL/l programs 27
SQL/DS programs 28
tuning
run-time performance 10

U

UNDEFINEDFILE condition 21
UNDERFLOW condition 12
unlabeled tape data sets 4
unsupported DOS PL/I features
Assembler invocation of PL/I 14

unsupported DOS PL/I features (continued)

debugging
CHECK condition 13

COUNT compile-time option 13

COUNT run-time option 13

FLOW compile-time option 13

FLOW run-time option 13
DOS PL/I phases 13
interlanguage communication

with DOS/VS COBOL 13

with FORTRAN 13

with RPG 13
overview 13

user return codes, compile-time considerations 20

user-replaceable modules
installation considerations 16

W

WORKFILE compile-time option 17

X

XUFLOW run-time option 12

Index

33

We'd Like to Hear from You

IBM PL/I for VSE/ESA
Migration Guide
Release 1

Publication No. SC26-8056-00

Please use one of the following ways to send us your comments about this book:

¢ Mail—Use the Readers' Comments form on the next page. If you are sending the form
from a country other than the United States, give it to your local IBM branch office or
IBM representative for mailing.

¢ Fax—Use the Readers' Comments form on the next page and fax it to this U.S. number:
800-426-7773.

¢ Electronic mail—Use one of the following network IDs:
— Internet: COMMENTS@VNET.IBM.COM
Be sure to include the following with your comments:
— Title and publication number of this book
— Your name, address, and telephone number if you would like a reply

Your comments should pertain only to the information in this book and the way the
information is presented. To request additional publications, or to comment on other IBM
information or the function of IBM products, please give your comments to your IBM
representative or to your IBM authorized remarketer.

IBM may use or distribute your comments without obligation.

Readers' Comments

IBM PL/I for VSE/ESA
Migration Guide
Release 1

Publication No. SC26-8056-00

How satisfied are you with the information in this book?

Very Very
Satisfied Satisfied Neutral Dissatisfied Dissatisfied
Technically accurate O | O | |
Complete O | O] |
Easy to find]] O] |
Easy to understand m]] O O O
Well organized O] O]]
Applicable to your tasks O | O | |
Grammatically correct and consistent]] O |]
Graphically well designed O] O] |
Overall satisfaction O] O] |

Please tell us how we can improve this book:

May we contact you to discuss your comments? O Yes O No

Name Address

Company or Organization

Phone No.

Readers' Comments
SC26-8056-00

Fold and Tape

Please do not staple

Fold and Tape

BUSINESS REPLY MAIL

FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

Department J58

International Business Machines Corporation
PO BOX 49023

SAN JOSE CA 95161-9945

NO POSTAGE
NECESSARY

IF MAILED IN THE
UNITED STATES

Cut or Fold
Along Line

Fold and Tape

SC26-8056-00

Please do not staple

Fold and Tape

Cut or Fold
Along Line

File Number: S370-34
Program Number: 5686-069

Printed in U.S.A.

IBM PL/I for VSE/ESA Publications

GC26-8052 Fact Sheet

GC26-8055 Licensed Program Specifications
SC26-8056 Migration Guide

SC26-8057 Installation and Customization Guide
SC26-8053 Programming Guide

SC26-8054 Language Reference

SX26-3836 Reference Summary

SC26-8058 Diagnosis Guide

SC26-8059 Compile-Time Messages and Codes

SC26-8056-00

