

IBM C for VSE/ESA ���

Language Reference
Release 1

 SC09-2425-00

IBM C for VSE/ESA ���

Language Reference
Release 1

 SC09-2425-00

 Note!

Before using this information and the product it supports, be sure to read the general information under “Notices”
on page vii.

First Edition (December 1996)

This edition applies to Version 1, Release 1, Modification Level 0, of IBM C for VSE/ESA (Program 5686-A01); Version 1, Release 4,
Modification Level 0, of IBM Language Environment for VSE/ESA (Program 5686-094); the VSE C Language Run-Time Support
feature of VSE/ESA Version 2 Release 2 (Program 5690-VSE); and to all subsequent releases and modifications until otherwise
indicated in new editions. Make sure you are using the correct edition for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address given below.

A form for readers’ comments is provided at the back of this publication. If the form has been removed, address your comments to:

IBM Canada Ltd. Laboratory
Information Development
2G/345/1150/TOR
1150 Eglinton Avenue East
North York, Ontario, Canada M3C 1H7

You can also send your comments by facsimile (attention: RCF Coordinator), or you can send your comments electronically to IBM.
See “Communicating Your Comments to IBM” for a description of the methods. This page immediately precedes the Readers’
Comment Form at the back of this publication.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1994, 1996. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . vii
Programming Interface Information . vii
Standards . vii
Trademarks . viii

About This Book . ix
The C Language . ix
IBM Language Environment for VSE/ESA . x
Using Your Documentation . x

Softcopy Examples . xi
How to Read the Syntax Diagrams . xii

Chapter 1. Introduction to C . 1
Overview of the C Language . 1
C Source Programs . 1
C Source Files . 2
Program Execution . 4
main() . 4
Command-Line Arguments . 5

Chapter 2. Elements of C . 7
Character Set . 7
Trigraphs . 8
Escape Sequences . 9
Comments . 10
Keywords . 12
Identifiers . 12

Scope . 13
Linkage . 15
Storage Duration . 17
Name Spaces . 17
External Name Mapping in C/VSE . 18
Long Name Support in C/VSE . 19

Types . 20
Object Types . 20
Function Types . 21
Incomplete Types . 21

Constants . 21
Integer Constants . 22
Floating-Point Constants . 24
Fixed-Point Decimal Constants . 25
Character Constants . 26
String Constants . 28
Enumeration Constants . 29

Chapter 3. Declarations and Definitions . 31
Declarations . 31

Block Scope Data Declarations . 32
File Scope Data Declarations . 32

Storage Class Specifiers . 33

© Copyright IBM Corp. 1994, 1996 iii

auto Storage Class Specifier . 34
extern Storage Class Specifier . 36
register Storage Class Specifier . 41
static Storage Class Specifier . 42

Type Specifiers . 44
Characters . 44
Floating-Point . 45
Fixed-Point Decimal Data Types . 46
Integers . 47
void Type . 49
Structures . 49
Unions . 59
Enumerations . 63
Tags . 66

Qualifiers . 67
volatile and const Type Qualifiers . 67
_Packed Object Qualifier . 68

Declarators . 70
Arrays . 71
Pointers . 78
Functions . 83

typedefs . 90
Initializers . 91
C Data Mapping . 92

Chapter 4. Expressions and Operators . 93
Grouping and Evaluating Expressions . 93
Lvalue . 95
Constant Expression . 96
Primary Expression . 97

Parenthesized Expression () . 97
Function Call () . 98
Calling Functions and Passing Arguments . 98
Array Element Specification (Array Subscript) [] 101
Structure and Union Member Specification . −> 101

Unary Expression . 102
Increment ++ . 102
Decrement −− . 102
Unary Plus + . 103
Unary Minus − . 103
Logical Negation ! . 103
Bitwise Negation ˜ . 103
Address & . 104
Indirection * . 104
Cast . 104
Size of an Object . 105
digitsof and precisionof . 106

Binary Expression . 106
Multiplication * . 106
Division / . 107
Remainder % . 107
Addition + . 107
Subtraction − . 108
Bitwise Left and Right Shift << >> . 108

iv C/VSE V1R1 Language Reference

Relational < > <= >= . 109
Equality == != . 110
Bitwise AND & . 110
Bitwise Exclusive OR ^ . 111
Bitwise Inclusive OR | . 111
Logical AND && . 112
Logical OR || . 112

Conditional Expression ? : . 113
Assignment Expression . 114

Simple Assignment = . 115
Compound Assignment . 116

Comma Expression , . 116
Conversions . 117

Usual Arithmetic Conversions . 117
Type Conversions . 118

Chapter 5. C Language Statements . 127
Labels . 127
Block . 127
break . 129
continue . 131
do . 133
Expression . 134
for . 134
goto . 136
if . 137
Null . 139
return . 139
switch . 140
while . 144

Chapter 6. Preprocessor Directives . 147
Preprocessor Directive Format . 147
#define . 148

Object-Like Macro Definition . 148
Function-Like Macro Definition . 148

#undef . 151
Predefined Macros . 151

Other Macros . 153
Operator . 154
Operator . 155
#error . 156
#include . 156
Conditional Compilation . 157

#if, #elif . 158
#ifdef . 159
#ifndef . 159
#else . 160
#endif . 160

#line . 161
(Null Directive) . 162
#pragma . 162

chars . 165
checkout . 165

 Contents v

comment . 165
csect . 166
filetag . 167
inline . 167
langlvl . 169
linkage . 170
longname . 171
map . 171
margins . 172
options . 173
page . 173
pagesize . 173
runopts . 174
sequence . 174
skip . 175
strings . 175
subtitle . 175
target . 175
title . 176
variable . 176

Appendix A. Conforming to ANSI Standards 177
Implementation-Defined Behavior . 177

Identifiers . 177
Characters . 177
String Conversion . 178
Integers . 178
Floating Point . 179
Arrays and Pointers . 179
Registers . 180
Structures, Unions, Enumerations, Bitfields 180
Declarators . 180
Statements . 180
Preprocessing Directives . 181
Library Functions . 181
Error Handling . 183
Signals . 183
Translation Limits . 184
Streams, Records, and Files . 185
Memory Management . 186
Environment . 186
Localization . 187
Time . 187

Bibliography . 189
IBM C for VSE/ESA Publications . 189
IBM Language Environment for VSE/ESA Publications 189
Softcopy Publications . 189

Glossary . 191

Index . 201

vi C/VSE V1R1 Language Reference

 Notices

Any reference to an IBM licensed program in this publication is not intended to
state or imply that only IBM’s licensed program may be used. Any functionally
equivalent product, program, or service that does not infringe any of IBM’s
intellectual property rights may be used instead of the IBM product, program, or
service. Evaluation and verification of operation in conjunction with other products,
except those expressly designated by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594, USA.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independent created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact IBM Canada Ltd., Department 071,
1150 Eglinton Avenue East, North York, Ontario M3C 1H7, Canada. Such
information may be available, subject to appropriate terms and conditions, including
in some cases payment of a fee.

This publication contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

Programming Interface Information
This book is intended to help the customer program with the IBM C for VSE/ESA
language. This book documents General-Use Programming Interfaces and
associated guidance information provided by the IBM C for VSE/ESA and IBM
Language Environment for VSE/ESA products.

General-Use Programming Interfaces allow the customer to write programs that
obtain the services of the IBM C for VSE/ESA compiler and IBM Language
Environment for VSE/ESA.

 Standards
Extracts are reprinted from IEEE Std 1003.1—1990, IEEE Standard Information
Technology—Portable Operating System Interface (POSIX)—Part 1: System
Application Program Interface (API) [C language], copyright 1990 by the Institute of
Electrical and Electronic Engineers, Inc.

Extracts are reprinted from IEEE P1003.1a Draft 6 July 1991, Draft Revision to
Information Technology—Portable Operating System Interface (POSIX), Part 1:
System Application Program Interface (API) [C Language], copyright 1992 by the
Institute of Electrical and Electronic Engineers, Inc.

© Copyright IBM Corp. 1994, 1996 vii

Extracts are reprinted from IEEE Std 1003.2—1992, IEEE Standard Information
Technology—Portable Operating System Interface (POSIX)—Part 2: Shells and
Utilities, copyright 1990 by the Institute of Electrical and Electronic Engineers, Inc.

Extracts are reprinted from IEEE Std P1003.4a/D6—1992, IEEE Draft Standard
Information Technology—Portable Operating System Interface (POSIX)—Part 1:
System Application Program Interface (API)—Amendment 2: Threads Extension [C
language], copyright 1990 by the Institute of Electrical and Electronic Engineers,
Inc.

Extracts from ISO/IEC 9899:1990 have been reproduced with the permission of the
International Organization for Standardization, ISO, and the International
Electrotechnical Commission, IEC. The complete standard can be obtained from
any ISO or IEC member or from the ISO or IEC Central Offices, Case Postal, 1211
Geneva 20, Switzerland. Copyright remains with ISO and IEC.

Portions of this book are extracted from X/Open Specification, Programming
Languages, Issue 3, copyright 1988, 1989, February 1992, by the X/Open
Company Limited, with the permission of X/Open Company Limited. No further
reproduction of this material is permitted without the written notice from the X/Open
Company Ltd, UK.

 Trademarks
The following terms are trademarks or service marks of the IBM Corporation in the
United States or other countries or both:

The following terms are trademarks of other companies:

ANSI American National Standards Institute
IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronic Engineers
ISO International Organization for Standardization
POSIX Institute of Electrical and Electronic Engineers
X/Open X/Open Company Ltd.

AIX/6000
C/370
CICS
CICS/VSE

IBM
Language Environment
OS/2
OS/390

OS/400
SAA
System/370
VSE/ESA

viii C/VSE V1R1 Language Reference

About This Book

This book provides you with a description of the IBM C for VSE/ESA (C/VSE)
language definition as implemented for the IBM Language Environment for
VSE/ESA (LE/VSE) environment. It is intended for use by programmers who need
to understand the support provided by the C/VSE compiler.

Note: References to LE/VSE also apply to the VSE C Language Run-Time
Support feature of VSE/ESA Version 2 Release 2.

Implementation-defined behavior is any action that is not defined by the standards
but by the implementing compiler and library. Refer to the LE/VSE C Run-Time
Programming Guide for information about implementation-defined behavior in the
LE/VSE environment.

Undefined behavior is any action, by the compiler and library on an erroneous
program, that does not result in any expected manner. You should not write any
programs to rely on such behavior.

Unspecified behavior is any other action by the compiler and library that is not
defined by the standards.

The C Language
The C language is a general purpose, function-oriented programming language that
allows a programmer to create applications quickly and easily. C provides
high-level control statements and data types as do other structured programming
languages, and it also provides many of the benefits of a low-level language.
Using the C/VSE language, you can write portable code conforming to the ANSI
standard.

IBM offers the C language on other platforms, such as the OS/2, AIX/6000,
OS/400, OS/390, and VM operating systems.

The elements of the C/VSE implementation include:

� All elements of the joint ISO and IEC standard: ISO/IEC 9899:1990 (E)
� ANSI/ISO 9899:1990[1992] (formerly ANSI X3.159-1989 C)
� Locale based internationalization support as defined in: ISO/IEC DIS

9945-2:1992/IEEE POSIX 1003.2-1992 Draft 12 (There are some limitations
to fully-compliant behavior as noted in the LE/VSE C Run-Time
Programming Guide.)

� Extended multibyte and wide character utilities as defined by a subset of the
Programming Language C Amendment 1, which will be ISO/IEC
9899:1990/Amendment 1:1994(E)

© Copyright IBM Corp. 1994, 1996 ix

IBM Language Environment for VSE/ESA
C/VSE exploits the C run-time environment and library of run-time callable services
provided by IBM Language Environment for VSE/ESA (LE/VSE).

LE/VSE establishes a common run-time environment and common run-time callable
services for language products, user programs, and other products.

The common execution environment is made up of data items and services
performed by library routines available to a particular application running in the
environment. The services that LE/VSE provides to your application may include:

� Services that satisfy basic requirements common to most applications. These
include support for the initialization and termination of applications, allocation of
storage, support for interlanguage communication (ILC), and condition handling.

� Extended services often needed by applications. These functions are
contained within a library of callable routines, and include interfaces to
operating system functions and a variety of other commonly used functions.

� Run-time options that help the execution, performance tuning, performance,
and diagnosis of your application.

� Access to language-specific library routines, such as the C functions.

Using Your Documentation
The publications in the C/VSE and LE/VSE libraries are designed to help you
develop C/VSE applications that run with LE/VSE. Each publication helps you
perform a different task. For a complete list of publications you might need, see
“Bibliography” on page 189. Table 1 lists the publications in the C/VSE library.

Table 2 on page xi lists the publications in the LE/VSE library. These include
publications designed to help you develop and debug your C/VSE applications,
diagnose run-time problems that occur in your C/VSE applications, and use
C/VSE-related utilities.

Table 1. How to Use C/VSE Publications

To... Use...

Plan for, install, customize, and
maintain C/VSE

Installation and Customization
Guide

GC09-2422

Migrate VSE applications from C/370
to C/VSE

Migration Guide SC09-2423

Get details on C/VSE syntax and
specifications of language elements

Language Reference SC09-2425

Find syntax for compile-time options;
compile your C/VSE applications; get
details on compile-time messages

User's Guide SC09-2424

Diagnose compiler problems and
report them to IBM

Diagnosis Guide GC09-2426

Understand warranty information Licensed Program Specifications GC09-2421

x C/VSE V1R1 Language Reference

Table 2. How to Use LE/VSE Publications

To... Use...

Evaluate LE/VSE Fact Sheet
Concepts Guide

GC33-6679
GC33-6680

Plan for, install, customize, and
maintain LE/VSE

Installation and Customization
Guide

SC33-6682

Understand the LE/VSE program
models and concepts

Concepts Guide
Programming Guide

GC33-6680
SC33-6684

Find syntax for LE/VSE run-time
options and callable services

Programming Reference SC33-6685

Develop your C/VSE applications Programming Guide
C Run-Time Programming Guide
C Run-Time Library Reference

SC33-6684
SC33-6688
SC33-6689

Develop interlanguage communication
(ILC) applications

Writing Interlanguage
Communication Applications

SC33-6686

Debug your C/VSE applications and
get details on run-time messages

Debugging Guide and Run-Time
Messages

SC33-6681

Migrate applications to LE/VSE Run-Time Migration Guide SC33-6687

Diagnose run-time problems that
occur in your C/VSE applications

Debugging Guide and Run-Time
Messages

SC33-6681

Use C/VSE-related utilities C Run-Time Programming Guide SC33-6688

Understand warranty information Licensed Program Specifications GC33-6683

 Softcopy Examples
Most examples in the following books are available in machine-readable form:

� C/VSE Installation and Customization Guide, GC09-2422
� C/VSE User's Guide, SC09-2424
� C/VSE Language Reference, SC09-2425

Softcopy examples are indicated in the book by a label in the form, EDCXbnnn. The
b refers to the book:

� I is the C/VSE Installation and Customization Guide
� U is the C/VSE User's Guide
� R is the C/VSE Language Reference

Softcopy examples are installed on your system along with C/VSE, in the sublibrary
PRD2.DBASE.

Example member names are the same as the labels indicated in the book.

Contact your system programmer if the default names are not used at your
installation.

 About This Book xi

How to Read the Syntax Diagrams
In this book, syntax for commands, directives, and statements is described using
the following structure:

� Read the syntax diagrams from left to right, from top to bottom, following the
path of the line.

A double right-arrowhead indicates the beginning of a command, directive, or
statement; the single right-arrowhead indicates that it is continued on the next
line. (In the following diagrams, statement is used to represent a command,
directive, or statement.)

��──statement──�

The following indicates a continuation; the opposing arrowheads indicate the
end of a command, directive, or statement.

�──statement──��

Diagrams of syntactical units other than complete commands, directives, or
statements look like this:

�──statement──�

� Required items are on the horizontal line (the main path).

��──statement──required_item──��

� IBM-supplied default items are above the main path.

 ┌ ┐─default_item─
��──statement─ ──┴ ┴────────────── ─��

� Optional items are below the main path.

��──statement─ ──┬ ┬─────────────── ─��
 └ ┘─optional_item─

� If you can choose from two or more items, they are vertical in a stack.

If you must choose one of the items, one item of the stack is on the main path.

��──statement─ ──┬ ┬─required_choice1─ ─��
 └ ┘─required_choice2─

If choosing one of the items is optional, the entire stack is below the main path.

��──statement─ ──┬ ┬────────────────── ─��
 ├ ┤─optional_choice1─
 └ ┘─optional_choice2─

� An arrow returning to the left above a line indicates an item that you can
repeat.

 ┌ ┐───────────────────
��──statement─ ───� ┴─repeatable_item─ ─��

or

xii C/VSE V1R1 Language Reference

��──statement─ ──┬ ┬───────────────────── ─��
 │ │┌ ┐───────────────────
 └ ┘ ───� ┴─repeatable_item─

A repeat arrow above a stack indicates that you can make more than one
choice from the stacked items, or repeat a single choice.

� Keywords are in non-italic letters and should be entered exactly as shown (for
example, pragma). They must be spelled exactly as shown. Variables are in
italics and lowercase letters (for example, identifier). They represent
user-supplied names or values.

� Keywords that appear in mixed-case letters (for example, AGGregate) indicate
that the keyword can be abbreviated (AGG) or entered in full (AGGREGATE).

� If punctuation marks, parentheses, arithmetic operators, or other
non-alphanumeric characters are shown, you must enter them as part of the
syntax.

Note: The white space is not always required between tokens but you should
include at least one blank space between tokens unless otherwise specified.

The following syntax diagram example shows the syntax for the #pragma comment
directive.

��──#────(1, 2)─pragma───(3) ─comment───(4) ─(───(5) ─�

�─ ──┬ ┬─compiler───(6) ──────────────────────────── ─)─────(9, 10) ─��
 ├ ┤─date───────────────────────────────────
 ├ ┤─timestamp──────────────────────────────
 └ ┘ ──┬ ┬─copyright─ ──┬ ┬─────────────────────
 └ ┘─user────── └ ┘─,───(7) ──"characters"──(8)

Notes:
1 This is the start of the syntax diagram.
2 The symbol # must appear first.
3 The keyword pragma must follow the # symbol.
4 The keyword comment must follow the keyword pragma.
5 An opening parenthesis must follow the keyword comment.
6 The comment type must be entered only as one of the following: compiler, date,

timestamp, copyright, or user.
7 If the comment type is copyright or user, and an optional character string is

following, a comma must be present after the comment type.
8 A character string must follow the comma. The character string must be

enclosed in double quotation marks.
9 A closing parenthesis is required.
10 This is the end of the syntax diagram.

The following examples of the #pragma comment directive are syntactically correct
according to the diagram shown above:

 #pragma comment(date)
 #pragma comment(user)

#pragma comment(copyright,"This text will appear in the module")

 About This Book xiii

xiv C/VSE V1R1 Language Reference

 Source Programs

Chapter 1. Introduction to C

This chapter introduces you to the C programming language and shows you how to
structure C language source programs. Refer to the LE/VSE C Run-Time
Programming Guide for information about implementation-defined behavior in the
C/VSE environment.

Overview of the C Language
C is a programming language designed for a wide variety of programming tasks. It
is used for system-level code, text processing, graphics, and in many other
application areas.

The C language contains a concise set of statements, with functionality added
through its library. This division enables C to be both flexible and efficient. An
additional benefit is that the language is highly consistent across different operating
systems.

The C library contains functions for input and output, mathematics, exception
handling, string and character manipulation, dynamic memory management, as well
as date and time manipulation. Use of this library helps to maintain program
portability, because the underlying implementation details for the various operations
need not concern the programmer. Details about the C library can be found in the
LE/VSE C Run-Time Library Reference.

C supports numerous data types, including characters, integers, floating-point
numbers and pointers—each in a variety of forms. In addition, C also supports
arrays, structures (records), unions, and enumerations.

C Source Programs
A C source program is a collection of one or more directives, declarations, and
statements contained in one or more source files.

Statements Specify the action to be performed.

Directives Instruct the C preprocessor to act on the text of the program.

Declarations Establish names and define characteristics such as scope, data
type and linkage.

Definitions Are declarations that allocate storage for data objects or define a
body for functions. An object definition allocates storage and may
optionally initialize the object.

A function definition contains the function body. The function body is a compound
statement that can contain declarations and statements that define what the
function does. The function definition declares the function name, its parameters,
and the data type of the value it returns.

The order and scope of declarations affect how you can use variables and
functions in statements. In particular, an identifier can be used only after it is
declared.

© Copyright IBM Corp. 1994, 1996 1

 Source Files

A program must contain at least one function definition. If the program contains
only one function definition, the function must be called main(). If the program
contains more than one function definition, only one of the functions can be called
main(). The main() function is the first function called when a program is run.

This is the source code of a simple C program:

 EDCXRAAA

 /� Example of a simple C program �/
#include <stdio.h> /� standard library header that

contains I/O function declarations
such as printf used below �/

#include <math.h> /� standard library header that
contains math function declarations
such as cos used below �/

#define NUM 46.� /� Preprocessor directive �/

double x = 45.�; /� Global variable
 definitions �/

double y = NUM;

int main(void) /� Function definition
for main function �/

{
double z; /� Internal variable �/

 double w; /� definitions �/

z = cos(x); /� cos is declared in math.h as
double cos(double arg) �/

w = cos(y);
printf ("cosine of x is %f\n", z); /� printf is declared in �/
printf ("cosine of y is %f\n", w); /� stdio.h as �/

/� int printf (const char �, ...) �/
}

This source program defines main(), the global variables x and y, and the local
variables z and w. The source program declares a reference to the functions cos()
and printf().

C Source Files
A C source file is a text file that contains all or part of your C program. It can
include any of the functions that the program needs. To create an executable
object module, you compile the separate source files individually and then link them
as one program. With the #include directive, you can combine source files into
larger source files. The resulting collection of files constitutes a compilation unit.

A source file contains any combination of directives, declarations, and definitions.
You can split items such as function definitions and large data structures between
text files, but you cannot split them between object files. Before the source file is
compiled, the preprocessor filters out preprocessor directives that may change the
files. As a result of the preprocessing stage, preprocessor directives are
completed, macros are expanded, and a source file is created containing C
statements, completed directives, declarations, and definitions.

2 C/VSE V1R1 Language Reference

 Source Files

Sometimes you may find it useful to place variable definitions in one source file and
declare references to those variables in any source files that use them. This
procedure makes definitions easy to find and change, if necessary. You can also
organize constants and macros into separate files and include them into source
files as required.

Directives in a source file apply to that source file and its included files only. Each
directive applies only to the part of the file following the directive.

The following example is a C program in two source files. The main() and max()
functions are in separate files. The execution of the program begins with the
main() function.

 EDCXRAAB

 /� Example of a C program in two source files
File 1 of 2 - file 2 is EDCXRMAX �/

#include <stdio.h>

#define ONE 1
#define TWO 2
#define THREE 3

extern int max(int, int); /� Function declaration �/

int main(int argc, char � argv[]) /� Function definition �/
{

int u, w, x, y, z;

u = 5;
z = 2;
w = max(u, ONE);
x = max(w,TWO);
y = max(x,THREE);
z = max(y,z);

printf("w is %d, x is %d, y is %d, z is %d",w,x,y,z);
}

 EDCXRMAX

 /� Example of a C program in two source files
File 2 of 2 - file 1 is EDCXRAAB �/

int max (int a,int b) /� Function definition �/
{

if (a > b)
 return (a);
 else
 return (b);
}

The first source file declares the function max(), but does not define it. Function
max() is referenced in source file 1 and defined in source file 2. Four statements in
main() are function calls of max().

The lines beginning with a number sign (#) are preprocessor directives that direct
the preprocessor to replace the identifiers ONE, TWO, and THREE with the numbers 1,
2, and 3. The directives do not apply to the second source file.

 Chapter 1. Introduction to C 3

 main

The second source file contains the function definition for max(), which is called
four times in main(). After you compile the source files, you can link and run them
as a single program.

 Program Execution
Every program must have a function called main(). Programs usually contain other
functions as well.

The main() function is the starting point for running a program. The statements
within the main() function are executed sequentially. They may be calls to other
functions. A program usually stops running at the end of the main() function,
although it can stop at other points in the program.

You can make your program more modular by creating separate functions to
perform a specific task or set of tasks. The main() function calls these functions to
perform the tasks. Whenever a function call is made, the statements are executed
sequentially starting with the first statement in the function. The function returns
control to the calling function at the return statement or at the end of the function.

You can declare any function to have parameters. When functions are called, they
receive values for their parameters from the arguments passed by the calling
functions. You can declare parameters for the main() function so you can pass
values to main() from the command line. The command line that starts the
program can pass such values as described in “main().”

 main()
When you begin the execution of a program, the system automatically calls the
function main(). Every program must have one function named main(), with the
name main written in lowercase letters. A main() function has the form:

��─ ──┬ ┬───── ─main─ ─(─ ──┬ ┬─────────────────────────────── ─)──�
 └ ┘ ─int─ ├ ┤─void──────────────────────────
 └ ┘─int──argc──,──char──�─ ──argv[]

�──block_statement──��

The function main() can declare either no or two parameters. Although any name
can be given to these parameters, they are usually referred to as argc and argv.
The first parameter, argc (argument count), has type int and indicates how many
arguments were entered on the command line when the program was invoked.
The second parameter, argv (argument vector), has type array of pointers to char
array objects. char objects are null-terminated strings.

The value of argc indicates the number of pointers in the array argv. If a program
name is available, the first element in argv points to a character array that contains
the program name or the invocation name of the program that is being executed. If
the name cannot be determined, the first element in argv points to a null character.
This name is counted as one of the arguments to the function main(). For

4 C/VSE V1R1 Language Reference

 Command-Line Arguments

example, if only the program name is entered on the command line, argc has a
value of 1 and argv[0] points to the program name.

Regardless of the number of arguments entered on the command line, argv[argc]
always contains NULL.

The following program backward prints the arguments entered on a command line
such that the last argument is printed first:

#include <stdio.h>
int main(int argc, char �argv[])
{
while (--argc > �)
printf(“%s ”, argv[argc]);

}

If you invoke this program from a command line with the following:

backward string1 string2

The output generated is:

string2 string1

The arguments argc and argv would contain the following values:

Object Value

argc 3
argv[�] pointer to string “backward”
argv[1] pointer to string “string1”
argv[2] pointer to string “string2”
argv[3] NULL

 Command-Line Arguments
Command-line arguments are treated differently in different environments:

Under Batch

argc Returns the number of strings in the argument line
argv[�] Returns the program name in uppercase
argv[1 to n] Returns the arguments as they were entered

Under DL/I

 argc Returns 1
argv[�] Is a null pointer

Under CICS

 argc Returns 1
argv[�] Returns the transaction ID

You pass command-line arguments to a C/VSE application using the PARM
parameter of the JCL EXEC statement or, if you are calling a C/VSE application
from another C/VSE application, using the parameter string of the system() library
function.

For more information on passing command-line arguments, see the C/VSE User's
Guide.

 Chapter 1. Introduction to C 5

 Command-Line Arguments

 Related Information
� “Calling Functions and Passing Arguments” on page 98
� “Function Declarator” on page 85
� “Type Specifiers” on page 44
� “Identifiers” on page 12
� “Block” on page 127

6 C/VSE V1R1 Language Reference

 Character Set

Chapter 2. Elements of C

This chapter describes the basic elements of the C programming language.

 � “Character Set”
� “Trigraphs” on page 8
� “Escape Sequences” on page 9
� “Comments” on page 10
� “Keywords” on page 12
� “Identifiers” on page 12
� “Types” on page 20
� “Constants” on page 21

 Character Set
This is the basic character set that must be available at both compile time and run
time. It defines the source character set (characters used for writing the source
code), and the execution character set (characters recognized at run time).

The C/VSE set supports the basic character set which maps onto the source and
the execution character sets. This basic character set always consists of:

� The uppercase and lowercase letters of the English alphabet:

a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

� The decimal digits � through 9:

� 1 2 3 4 5 6 7 8 9

� The following graphic characters:

! " # % & ' () � +
, - . / : ; < ═ > ?
[\] _ { } ˜ ^ |

� The space character.

� The control characters representing horizontal tab, vertical tab, form feed, and
end of string.

The execution character set also includes control characters representing alert,
backspace, carriage return, and newline.

In a source file, a record contains one line of source text; the end of a record
indicates the end of a source line.

The encoding of the following characters

! # ` [] \ { } ˜ ^ |

from the basic character set may vary between source character sets and between
execution character sets. The C/VSE compiler normalizes the encoding of source
files indicated by the #pragma filetag directive to the character set specified with
the LOCALE option. Such normalized encoding is also used for execution character
set encoding.

Depending on the EBCDIC encoding used in your installation, the two characters ^
and | may be expressed as ¬ and ¦, respectively. In this documentation, the ^ and

© Copyright IBM Corp. 1994, 1996 7

 Trigraphs

| symbols will be referred to as the circumflex and vertical bar, respectively. If the
NOLOCALE option is specified, normalization is not performed, and character set
encoding is assumed to be that of the IBM-1047 character set. In this case both
the broken and unbroken vertical bars are recognized as the vertical bar, and the
circumflex and logical not sign are recognized as the circumflex. For a detailed
description of the #pragma filetag directive and the LOCALE option, refer to
“Internationalization: Locales and Character Sets” in the LE/VSE C Run-Time
Programming Guide.

The compiler recognizes and supports the additional characters (the extended
character set) which can be meaningfully used in string literals and character
constants. The support for extended characters includes the multibyte character
sets. Also, any sequence of characters is allowed in comments.

Uppercase and lowercase letters are treated as distinct characters. If a lowercase
a is specified as part of an identifier name, you cannot substitute an uppercase A in
its place; you must use the lowercase letter.

Multibyte characters are represented on the System/370 system using Shiftout
<SO> and Shiftin <SI> pairs. Strings are of the form:

<SO> x y z <SI>

or mixed

<SO> x <SI> y z
x <SO> y <SI> z

where each character between the <SO> and <SI> pairs is represented by two
bytes. Multibyte characters are restricted to character constants, string constants,
and comments. Refer to the LE/VSE C Run-Time Library Reference for a
discussion on strings passed to library routines, and to “Character Constants” on
page 26 of this book for information on character constants.

For the environments that do not support the entire character set, you can use
trigraphs as alternative symbols to represent some characters.

 Trigraphs
Some characters from the C character set are not available in all environments, or
have an internal representation that is not consistent across EBCDIC systems. You
can enter these characters into a C source program using a sequence of three
characters called a trigraph.

At compile time, the compiler translates the trigraphs found in string literals and
character constants into the decimal values of characters they represent in the
coded character set selected by the LOCALE compile-time option.

Note: C/VSE will compile source files that were edited using different encoding of
character sets. However, the compilation of source files that were edited with the
following is not supported:

� A character set that does not support all the characters (or trigraphs) specified
above

� A character set for which there is no one-to-one mapping between it and the
character set above.

8 C/VSE V1R1 Language Reference

 Escape Sequences

The trigraph sequences are:

Note: The exclamation mark (!) is a variant character. Its recognition depends on
whether or not the LOCALE option is active. For more information on variant
characters, refer to the LE/VSE C Run-Time Programming Guide.

??= #
??([
??)]
??< {
??> }
??/ \
??' ^
??! |
??- ˜

 Example
some_array??(i??) = n;

represents

some_array[i] = n;

 Escape Sequences
An escape sequence contains a backslash (\) symbol followed by either:

� One of the escape sequence characters: a, b, f, n, r, t, v, ', ", ?, \

or

� An octal or hexadecimal number. A hexadecimal escape sequence contains an
x followed by one or more hexadecimal digits (0-9, A-F, a-f). An octal escape
sequence contains one or more octal digits (0-7).

The value of the hexadecimal or octal number specifies the value of the desired
character or wide character.

You can represent any member of the character set used at run time by an escape
sequence. For example, you can use escape sequences to place such characters
as tab, carriage return, and backspace into an output stream. An escape sequence
has the form:

��─ ─\─ ──┬ ┬─escape_sequence_character─ ─��
 ├ ┤─octal_digits──────────────
 └ ┘─x──hexadecimal_digits─────

The C language escape sequences and the characters they represent are listed in
Table 3 on page 10.

You can place an escape sequence in a character constant or in a string constant.
If an escape sequence is not recognized, a warning message is issued. The
program compiles, but the compiler removes the backslash (\) and uses the
character following it.

 Chapter 2. Elements of C 9

 Comments

Table 3. Escape Sequences

Escape Sequence Character Represented

\a Alert (bell)
\b Backspace
\f Form feed (new page)
\n Newline
\r Carriage return
\t Horizontal tab
\v Vertical tab
\' Single quotation mark
\" Double quotation mark
\? Question mark
\\ Backslash
Note: The line continuation sequence (\ followed by a newline character), which is used in
C language character strings to indicate that the current line continues on the next line, is
not an escape sequence. See “Preprocessor Directive Format” on page 147 for more
information on the line continuation character.

 Value
The value of an escape sequence represents the member of the character set used
at run time. For example, on a system that uses the ASCII character codes, the
letter V is represented by the escape sequence \x56. On a system using EBCDIC
character codes, the letter V is represented by \xE5.

In string and character sequences, when you want the backslash to represent itself
(rather than the beginning of an escape sequence), you must use a \\ backslash
escape sequence.

 Related Information
� “Character Constants” on page 26
� “String Constants” on page 28

 Comments
You can use comments to document code. Comments are notes in the source
code that are replaced by one space character when the code is compiled.
Comments are otherwise ignored.

Comments begin with the /� characters, end with the �/ characters, and can span
more than one line. You can place comments anywhere the C language allows
white space. White space includes space, tab, form feed, and newline characters.

Note: The /� or �/ characters found in a character constant or string literal do not
start or end comments.

10 C/VSE V1R1 Language Reference

 Comments

In the following program, line 6 is a comment:

1 #include <stdio.h>
2
3 int main(void)
4 {
5 printf("This program has a comment.\n");
6 /� printf("This is a comment line and will not print.\n"); �/
7 }

Because the comment on line 6 is equivalent to a space, the output of this program
is:

This program has a comment.

Note that /�...�/ found in a string literal is not interpreted as a comment.
For example, line 6 in the following program is not a comment.

1 #include <stdio.h>
2
3 int main(void)
4 {
5 printf("This program does not have \
6 /� NOT A COMMENT �/ a comment.\n");
7 }

The output of the program is:

This program does not have /� NOT A COMMENT �/ a comment.

You cannot nest comments. Each comment ends at the first occurrence of �/.

In the following example, the comments are shaded:

1 �/��A�program�with�nested�comments.��/�
2
3 #include <stdio.h>
4
5 int main(void)
6 {
7 test_function();
8 }
9
1� int test_function(void)
11 {
12 int number;
13 char letter;
14 �/��
15 �number�=�55;�
16 �letter�=�'A';�
17 �/��number�=�44;��/�
18 �/
19 return 999;
2� }

In test_function(), the compiler reads the /� in line 14 through the �/ in line 17
as a comment and line 18 as C language code, causing errors at line 18. To avoid
commenting over comments already in the source code, you can use conditional
compilation preprocessor directives to cause the compiler to bypass sections of a C
program.

 Chapter 2. Elements of C 11

 Identifiers

Note: Under C/VSE, if you use the SSCOM option, the compiler recognizes two
slashes (//) as the beginning of a comment that terminates at the end of the line.
For more information on the SSCOM option, refer to the C/VSE User's Guide.

Multibyte characters can also be included within a comment.

 Keywords
The C language reserves some words for special usage, known as keywords. You
cannot use them as identifiers. Although you can use them for macro names, it is
not recommended that you do so. Only the exact spellings of the words as
specified below are reserved. For example, auto is reserved but AUTO is not.

The following table lists the C language keywords:

Table 4. The C Language Keywords

_Packed
auto
break
case
char
const
continue
default
do

double
else
enum
extern
float
for
goto
if

int
long
register
return
short
signed
sizeof
static

struct
switch
typedef
union
unsigned
void
volatile
while

 Identifiers
Identifiers provide names for functions, data objects, labels, tags, parameters,
macros, and typedefs. For more information on name spaces, see “Name Spaces”
on page 17. An identifier has the form:

 ┌ ┐──────────────
��─ ──┬ ┬─letter─ ───� ┴──┬ ┬──────── ─��
 └ ┘─_────── ├ ┤─letter─
 ├ ┤─digit──
 └ ┘─_──────

There is no limit to the number of characters in an identifier. However, only the first
several characters of identifiers are significant. The following table shows the
minimal character lengths of identifiers that are recognized. Some compilers may
allow longer identifiers.

For identifiers, uppercase and lowercase letters are viewed as different symbols.
Thus, PROFIT and profit represent different data objects.

Identifier Minimum Number of Significant Characters

Static data objects 255
Static function names 255
External data objects 8
External function names 8

12 C/VSE V1R1 Language Reference

 Identifiers

Note: If you do not use the prelinker and long name support provided for the
C/VSE compiler, a message will be emitted if you use both STOCKONHOLD and
stockonhold as external identifiers. The linker will interpret STOCKONHOLD and
stockonhold as the same external data object STOCKONH. For more information on
longname support, see “longname” on page 171. For more information on the
prelinker, see the LE/VSE Programming Guide. Also see “External Name Mapping
in C/VSE” on page 18 and “Long Name Support in C/VSE” on page 19. For
complete portability, never use different case representations to refer to the same
object.

Do not create identifiers that begin with an underscore (_) for function names and
variable names because they may conflict with C/VSE internal names.

Although the names of system calls and library functions are not reserved words, if
you do not include the appropriate header files, avoid using them as identifiers.
Duplication of a predefined name can lead to confusion for the maintainers of your
code and can cause errors at link time or run time. If you include a library in a
program, be aware of the function names in that library to avoid name duplications.
For more information on identifiers, refer to “External Name Mapping in C/VSE” on
page 18, and the LE/VSE C Run-Time Library Reference.

You should always include the appropriate header files when using standard library
functions.

 Scope
An identifier is the name used to designate a function or data object. An identifier
becomes visible with its declaration. Identifiers are described on page 12.

The region where an identifier is visible is referred to as the identifier’s scope. The
four kinds of scope are:

 � Block
 � Function
 � File
 � Function prototype

The scope of an identifier is determined by where the identifier is declared.

Block scope The declaration of the identifier is located inside a block. A
block starts with an opening brace ({) and ends with a closing
brace (}). An identifier with block scope is visible from the point
where it is declared to the closing brace that ends the block.

You can nest block visibility. A block nested inside a block can
contain declarations that redeclare variables declared in the
outer block. The new declaration of the variable applies to the
inner block. The original declaration is restored when program
control returns to the outer block. A variable from the outer
block is visible inside inner blocks that do not redefine the
variable.

Function scope The only identifier with function scope is a label name. A label
is implicitly declared by its appearance in the program text. A
goto statement transfers control to the label specified on the
goto statement. The label is visible to any goto statement that
appears in the same function as the label.

 Chapter 2. Elements of C 13

 Identifiers

File scope The declaration of the identifier appears outside of any block.
It is visible from the point where it is declared to the end of the
source file. If source files are included by #include
preprocessor directives, those files are considered to be part of
the source and the identifier will be visible to all included files
that appear after the declaration of the identifier. The identifier
can be declared again as a block scope variable. The new
declaration replaces the file-scope declaration until the end of
the block.

Function prototype scope
The declaration of the identifier appears within the list of
parameters in a function prototype. It is visible from the point
where it is declared to the closing parenthesis of the prototype
declaration.

In the following example, the variable x, defined on line 1, is different from the x
defined on line 2. The variable defined on line 2 has function prototype scope and
is visible only up to the closing parenthesis of the prototype declaration. Visibility of
the variable x defined on line 1 resumes after the end of the prototype declaration.

1 int x = 4; /� variable x defined with file scope �/
2 long myfunc(int x, long y); /� variable x has function �/
3 /� prototype scope �/
4 int main(void)
5 {
6 /� . . . �/
7 }

Functions with static storage class are visible only in the source file in which they
are defined. All other functions can be globally visible. For more information on
static storage class, see “static Storage Class Specifier” on page 42.

The program in Figure 1 on page 15 illustrates blocks, nesting, and scope. The
example shows two kinds of scope: file and block. Assuming that the function
printf() is defined elsewhere, the main() function prints the values 1, 2, 3, �,
3, 2, 1 on separate lines. Each instance of i represents a different variable.

14 C/VSE V1R1 Language Reference

 Identifiers

int i = 1; /� i defined at file scope �/

int main(int argc, char � argv[])
 ┌────── {
 │
 │ printf("%d\n", i); /� Prints 1 �/
 │
 │ ┌──── {
 │ │ int i = 2, j = 3; /� i and j defined at
 │ │ block scope �/
 │ │ printf("%d\n%d\n", i, j); /� Prints 2, 3 �/
 │ │
 │ │ ┌── {
 │ │ │ int i = �; /� i is redefined in a nested block �/
 │ │ │ /� previous definitions of i are hidden �/
 │ │ │ printf("%d\n%d\n", i, j); /� Prints �, 3 �/
 │ │ └── }
 │ │
 │ │ printf("%d\n", i); /� Prints 2 �/
 │ │
 │ └──── }
 │
 │ printf("%d\n", i); /� Prints 1 �/
 │
 └────── }

Figure 1. Example of Blocks, Nesting, and Scope

 Linkage
The association or lack of association between two identical identifiers is known as
linkage. A C identifier can have one of the following kinds of linkage:

Internal linkage
Identical identifiers within a single source file refer to the same data
object or function.

External linkage
Identical identifiers in separately compiled files refer to the same data
object or function.

No linkage
Each identifier refers to a unique object.

In Figure 2, the variable b is declared in Source File 2 as extern and refers to the
same data object as in Source File 1. It has external linkage.

If the declaration of an identifier with file scope contains the keyword static, it has
internal linkage. In Figure 2, all references to the variable a in Source File 1 refer
to the same data object. The variable a in Source File 2 refers to a different data
object than a in Source File 1.

 Chapter 2. Elements of C 15

 Identifiers

Source File 1 Source File 2
┌────────────────────┐ ┌─────────────────┐
│ │ different data objects │ │
│ static int a = 1;�─┼────────────────────────────┼─�static int a; │
│ │ same data object │ │
│ int b = 1; �─┼────────────────────────────┼─�extern int b; │
│ │ │ │
│ int main(void) │ │ myfunc(void) │
│ { │ │ { │
│ │ │ │
│ a = 5; │ │ │
│ │ │ │
│ } │ │ } │
└────────────────────┘ └─────────────────┘

Figure 2. Example of External and Internal Linkage

If the declaration of an identifier has the keyword extern and if there is a previous
declaration of the identifier at file scope, the identifier has the same linkage as the
first declaration. If a definition of the identifier is not visible within the file scope, the
identifier has external linkage. In Figure 3, the variable x has internal linkage
because the first declaration of x occurs in file try.h and the storage class static
is specified. The variable y in Figure 3 has external linkage because a previous
declaration of the identifier y is not visible within the same file scope.

Source File 1 Include File try.h
┌────────────────────┐ ┌─────────────────┐
│ #include "try.h" │ same data object │ │
│ extern int x; �─┼────────────────────────────┼─�static int x; │
│ extern char y; │ │ . │
│ │ │ . │
│ int main(void) │ │ . │
│ { │ │ │
│ . │ └─────────────────┘
│ . │
│ . │
│ } │
└────────────────────┘

Figure 3. Example of Linkage Using the Keyword extern

If an identifier is declared without a storage class specifier at file scope, it has
external linkage.

An identifier that falls into one of the following categories has no linkage:

� An identifier that does not represent an object or a function. For example, a C
label is neither an object nor a function.

� An identifier that represents a function parameter.
� An identifier declared inside a block without the keyword extern.

You can make identifiers refer to the same object or function in other source files
with appropriate extern declarations, as described in Chapter 3, “Declarations and
Definitions” on page 31.

16 C/VSE V1R1 Language Reference

 Identifiers

 Storage Duration
Storage duration determines how long storage for an object exists. An object has
either static storage duration or automatic storage class depending on its
declaration.

An object with static storage duration has storage allocated for it at initialization;
storage remains available until program termination. All objects with file scope
have static storage duration. An object has static storage duration if it has internal
or external linkage or if it contains the keyword static. All other objects have
automatic storage.

Storage for an object with automatic storage class is allocated and removed
according to the scope of the identifier. For example, storage for an object
declared at block scope is allocated when the identifier is declared and removed
when the closing brace of the block is reached. An object has automatic storage
duration if it is declared with no linkage and does not have the static storage class
specifier.

 Name Spaces
In any C program, identifiers refer to functions, data objects, labels, tags,
parameters, macros, and typedefs. The same identifier can be used for more than
one class of identifier, as long as you follow the rules outlined in this section.

Name spaces are categories used to group similar types of identifiers.

You must assign unique names within each name space to avoid conflict. The
same identifier can be used to declare different objects as long as each identifier is
unique within its name space. The context of an identifier within a program lets the
compiler resolve its name space without ambiguity.

Identifiers in the same name space can be redefined within enclosed program
blocks as described in “Scope” on page 13.

Within each of the following four categories of name spaces, the identifiers must be
unique.

� These identifiers must be unique within a single scope:

 – Function names
 – Variable names
– Names of function parameters

 – Enumeration constants
– Type definition names

� Tags of these types must be unique within a single scope:

 – Enumerations
 – Structures
 – Unions

� Members of structures and unions must be unique within a single structure or
union.

� Statement labels have function scope and must be unique within a function.

 Chapter 2. Elements of C 17

 Identifiers

Structure tags, structure members, and variable names are in three different name
spaces; no conflict occurs among the three items named student in the following
example:

struct student /� structure tag �/
{

char student[2�]; /� structure member �/
 int class;
 int id;
} student; /� structure variable �/

Each occurrence of student is interpreted by its context in the program. For
example, when student appears after the keyword struct, it is a structure tag.
When student appears after either of the member selection operators . or ->, the
name refers to the structure member. (See Chapter 4, “Expressions and
Operators” on page 93 to find out how to refer to members of union or structure
variables.) In other contexts, the identifier student refers to the structure variable.

External Name Mapping in C/VSE
The names of variables or functions used in source code that has external linkage
are mapped to names used in the object module. When you compile a program
with C/VSE, refer to the following as a guide for using names of variables or
functions with external linkage:

� Do not use names of the library functions for user-defined functions.

� Some functions in the C run-time environment begin with two underscores (_ _).
Do not use an underscore as the first letter of an identifier.

� Each _ is mapped to @ for external names, except when a program is being
compiled with the LONGNAME compile-time option, in which case the _ remains as
an _.

� Three sets of environment functions have names beginning with IBM, CEE, and
PLI; avoid using these names. To prevent conflicts between run-time functions
and user-defined names, the C/VSE compiler changes all static or extern
variable names that begin with IBM, CEE, and PLI (in your C source program) to
IB$, CE$, and PL$, respectively in the object module. If you are using
interlanguage calls, avoid using these prefixes because the compiler of the
calling or called language may or may not change these prefixes in the same
manner as C/VSE. All of this is completely integrated into the C/VSE compiler
and Debug Tool for VSE/ESA, so it is not apparent.

To call an external program or access an external variable that begins with IBM,
CEE, and PLI, use the #pragma map preprocessor directive. The following is an
example of #pragma map forcing an external name to be IBMENTRY.

 #pragma map(ibmentry,"IBMENTRY")

For more information on the #pragma map directive, see “map” on page 171.

18 C/VSE V1R1 Language Reference

 Identifiers

Long Name Support in C/VSE
When programs are compiled with C/VSE, the compiler, by default, maps _ to @,
truncates external names to 8 characters, and changes them to uppercase because
linkage editors support external names only up to a maximum of 8 characters. For
example, when the following program is compiled with no options:

int test_name[4] = { 4, 8, 9, 1� };
int test_namesum;

int main(void) {
 int i;

for (i = �; i < 4; i++)
test_namesum += test_name[i];

printf("sum is %d\n", test_namesum);
}

The following message is displayed:

ERROR EDC�248 External name TEST_NAM cannot be redefined.

The external names test_namesum and test_name are changed to uppercase and
truncated to 8 characters. If the CHECKOUT compile-time option is specified, the
compiler generates two warning messages to this effect:

WARNING EDC�244 External name test_namesum has been truncated to TEST_NAM.
WARNING EDC�244 External name test_name has been truncated to TEST_NAM.

Because the truncated names are now the same, the compiler produces the
EDC�248 error message and terminates the compilation. The program will not
compile.

If the previous program is compiled with the LONGNAME compile-time option, no
warning or error messages are produced. However, the additional step of
prelinking the program is required.

The LONGNAME compile-time option supports mixed case external names of up to
255 characters.

Object modules produced by compiling with LONGNAME options have external names
that are L-names (Long names). Object modules produced by compiling with
NOLONGNAME options have external names that are S-names (Short names).
L-names are mixed case and up to 255 characters long; S-names are uppercase
and up to 8 characters long.

There are two alternatives if you want to use external names longer than 8
characters in your source code:

� Use the #pragma map to map long external names in the source code to 8
characters or fewer in the object module.

 #pragma map(verylongname,"sname")

� Use the long name support provided by the compile-time option LONGNAME. To
use the long name support, you must:

– Use the LONGNAME compile-time option when compiling your program

– Use the prelinker before creating an executable module. See the LE/VSE
Programming Guide for more information on the prelinker.

 Chapter 2. Elements of C 19

 Types

 Types
A type is the interpretation of a value which can be stored in an object or returned
by a function call.

Values stored in objects or returned by functions are accessed by expressions.
The meaning of these values is determined by the types associated with each
expression.

Types may be divided into three categories: object types (which fully describe
objects), function types (which describe functions), and incomplete types (which
describe objects, without including their sizes).

 Object Types
The supported object types are:

char type
Defaults to unsigned char and is capable of storing any member of a
basic character set (see “Character Set” on page 7)

signed integer types
signed char, signed short int, signed int, signed long int

unsigned integer types
unsigned char, unsigned short int, unsigned int, unsigned long int

floating point types
float, double, long double

fixed-point decimal types
decimal with the length and number of positions after the decimal point
specified (this type is an extension to the ANSI standard, and is only
available when LANGLVL is set to EXTENDED)

enumeration type
Specifies a set of constant values of type int

array type
Specifies a set of objects, each of the same type, which are
contiguously allocated

structure type
Specifies a set of objects of possibly distinct types which are allocated
sequentially

union type
Describes a set of overlapping objects of possibly different types

pointer type
Describes an object whose value is used to access another object or
invoke a function

20 C/VSE V1R1 Language Reference

 Constants

 Function Types
Function types describe a segment of code that is characterized by the number and
type of parameters passed to it, and the type of value returned by it.

 Incomplete Types
The incomplete types are:

void Can never be completed

array of unknown size
Can be completed by the later declaration of the same identifier with its
size specified

structure or union of unspecified content
Can be completed by later declaration of the same structure or union
tag with its content defined

For example, the following are incomplete types:

struct struct_type �p;
extern int a[];

void is an incomplete type that cannot be completed.

An array of unknown size is completed for an identifier of that type by specifying
the size in a later declaration.

A structure or union of unknown content is completed for all declarations of that
type by declaring the same structure or union tag with its content later in the same
scope.

The following is an example of completing a structure type that was incomplete
when it was first declared:

struct employee;

struct employee
 {
 char �name;
 int age;
 int salary;
 } company[2��];

 Constants
The C language contains the following types of constants:

 � Integer
 � Floating-point
 � Fixed-point decimal
 � Character
 � String
 � Enumeration

A constant is data with a value that does not change during the execution of a
program. The value of any constant must be in the range of representable values
for its type.

 Chapter 2. Elements of C 21

 Constants

Note: Any plus or minus unary operator sign preceding a constant expression is
not part of the constant expression.

For more information on data types, see “Type Specifiers” on page 44.

 Integer Constants
Integer constants can have one of the following values:

 � Decimal
 � Octal
 � Hexadecimal

They have these forms:

��─ ──┬ ┬─decimal_constant───── ──┬ ┬────────────── ─��
 ├ ┤─octal_constant─────── ├ ┤ ──┬ ┬─l─ ──┬ ┬───

 └ ┘─hexadecimal_constant─ │ │└ ┘─L─ ├ ┤─u─
 │ │└ ┘─U─
 └ ┘ ──┬ ┬─u─ ──┬ ┬───

 └ ┘─U─ ├ ┤─l─
 └ ┘─L─

 Data Type
The data type of an integer constant is determined by the constant’s value.
Table 5 describes the integer constant and a list of possible data types for that
constant. The first data type in the list that can contain the constant value will be
associated with the constant.

A plus (+) or minus (-) symbol can precede the constant. It is treated as a unary
operator rather than as part of the constant value.

Table 5. Data Types for Integer Constants

Constant Data Type

unsuffixed decimal int, long int, unsigned long int

unsuffixed octal int, unsigned int, long int, unsigned long int

unsuffixed hexadecimal int, unsigned int, long int, unsigned long int

suffixed by u or U unsigned int, unsigned long int

suffixed by l or L long int, unsigned long int

suffixed by both u or U,
and l or L

unsigned long int

 Related Information
� “Decimal Constants” on page 23
� “Octal Constants” on page 24
� “Hexadecimal Constants” on page 23
� “Integers” on page 47

22 C/VSE V1R1 Language Reference

 Constants

 Decimal Constants
A decimal constant contains any of the digits � through 9. A decimal constant has
the form:

��─ ─digit_1_to_9─ ──┬ ┬────────────────── ─��
 │ │┌ ┐────────────────
 └ ┘ ───� ┴─digit_�_to_9─

Note: The first digit cannot be �. An integer constant beginning with the digit � is
interpreted as an octal constant, rather than as a decimal constant.

 Data Type
See Table 5 on page 22 for a complete description of the data types of decimal
constants.

 Examples
485976
433132211
2�
5

 Related Information
� “Integer Constants” on page 22
� “Octal Constants” on page 24
� “Hexadecimal Constants” on page 23
� “Integers” on page 47

 Hexadecimal Constants
A hexadecimal constant begins with the � digit followed by either an x or X. After
the �x or �X, you can place any combination of the digits � through 9 and the letters
a through f or A through F. When used to represent a hexadecimal constant, the
lowercase letters are equivalent to their corresponding uppercase letters. A
hexadecimal constant has the form:

 ┌ ┐───────────────────
��─ ──┬ ┬──�x── ───� ┴┬ ┬─digit_�_to_9── ─��
 └ ┘──�X── ├ ┤─letter_A_to_F─
 └ ┘─letter_a_to_f─

 Data Type
See Table 5 on page 22 for a complete description of the data types of
hexadecimal constants.

 Examples
�x3b24
�XF96
�x21
�x3AA
�X29b
�X4bD

 Chapter 2. Elements of C 23

 Constants

 Related Information
� “Integer Constants” on page 22
� “Decimal Constants” on page 23
� “Octal Constants” on page 24
� “Integers” on page 47

 Octal Constants
An octal constant begins with the digit � and contains any of the digits � through 7.
An octal constant has the form:

��─ ─�─ ──┬ ┬────────────────── ─��
 │ │┌ ┐────────────────
 └ ┘ ───� ┴─digit_�_to_7─

 Data Type
See Table 5 on page 22 for a complete description of the data types of octal
constants.

 Examples
�
�125
�34673
�3245

 Related Information
� “Integer Constants” on page 22
� “Decimal Constants” on page 23
� “Hexadecimal Constants” on page 23
� “Integers” on page 47

 Floating-Point Constants
A floating-point constant consists of an integral part, a decimal point, a fractional
part, an exponent part, and an optional suffix. Both the integral and fractional parts
are made up of decimal digits. You can omit either the integral part or the
fractional part, but not both. You can omit either the decimal point or the exponent
part, but not both.
A floating-point constant has the form:

 ┌ ┐─────────
��─ ──┬ ┬ ──┬ ┬ ──┬ ┬─────────── ─.─ ───� ┴─digit─ ──┬ ┬────────── ──┬ ┬─── ─��
 │ ││ ││ │┌ ┐───────── └ ┘─exponent─ ├ ┤─f─
 │ ││ │└ ┘───� ┴─digit─ ├ ┤─F─
 │ ││ │┌ ┐───────── ├ ┤─l─
 │ │└ ┘ ───� ┴─digit─ ─.──────────────── └ ┘─L─
 │ │┌ ┐─────────
 └ ┘ ───� ┴─digit─ ─exponent───────────────────────────

24 C/VSE V1R1 Language Reference

 Constants

The exponent part consists of e or E, followed optionally by a sign and a decimal
number. An exponent has the form:

 ┌ ┐─────────
��─ ──┬ ┬─e─ ──┬ ┬─── ───� ┴─digit─ ─��

 └ ┘─E─ ├ ┤─+─
 └ ┘─–─

 Value
The floating-point constant 8.45e+3 evaluates as follows:

8.45 � 1�3 = 845�.�

The representation of a floating-point number on a system is unspecified by the
standards. If a floating-point constant is too large or too small, the result is
undefined.

 Data Type
The suffix f or F indicates a type of float, and the suffix l or L indicates a type of
long double. If a suffix is not specified, the floating-point constant has a type
double.

A plus (+) or minus (-) symbol can precede a floating-point constant. However, it is
not part of the constant; it is interpreted as a unary operator.

 Examples
Floating-Point
Constant

Value

5.3876e4 53,876
4e-11 �.����������4
1e+5 1��,���
7.321E-3 �.��7321
3.2E+4 32,���
�.5e-6 �.������5
�.45 �.45
6.e1� 6�,���,���,���

 Related Information
� “Floating-Point” on page 45

Fixed-Point Decimal Constants
Fixed-point decimal constants are a C/VSE extension to ANSI C. This type is
available when LANGLVL is set to EXTENDED.

A fixed-point decimal constant has a numeric part and a suffix that specifies its
type. The numeric part can include a digit sequence representing the
whole-number part, followed by a decimal point (.), followed by a digit sequence
representing the fraction part. Either the integral part or the fractional part, or both
must be present.

 Chapter 2. Elements of C 25

 Constants

A fixed-point constant has the form:

 ┌ ┐────────────────
��─ ──┬ ┬ ─.─ ───� ┴─digit_�_to_9─ ────────────────── ──┬ ┬─D─ ─��
 │ │┌ ┐──────────────── ┌ ┐──────────────── └ ┘─d─
 ├ ┤ ───� ┴─digit_�_to_9─ ─.─ ───� ┴─digit_�_to_9─
 │ │┌ ┐────────────────
 ├ ┤ ───� ┴─digit_�_to_9─ ─.───────────────────
 │ │┌ ┐────────────────
 └ ┘ ───� ┴─digit_�_to_9─ ─────────────────────

A fixed-point constant has two attributes:

Number of digits (size)
Number of decimal places (precision)

 Data Type
The suffix D or d indicates a fixed-point constant.

 Examples

For more information on fixed-point decimal data types, see the LE/VSE C
Run-Time Programming Guide.

Fixed-Point Constant (size, precision)

123456789�123456D (16, �)
12345678.12345678D (16, 8)
12345678.d (8, �)
.123456789�d (1�, 1�)
12345.99d (7, 2)
���123.99�d (9, 3)
�.��D (3, 2)

 Character Constants
A character constant consists of a sequence of characters or escape sequences
enclosed in single quotation marks. A character constant has the form:

 ┌ ┐───────────────────────
��─ ──┬ ┬─── ─'─ ───� ┴──┬ ┬─character─────── ─'──��
 └ ┘ ─L─ └ ┘─escape_sequence─

At least one character or escape sequence must appear in the character constant.
The prefix L indicates a wide-character constant; no prefix indicates an integer
character constant. A character constant must appear on a single source line.

The character constant can contain any character from the C character set, with the
following restrictions:

Single quotation mark
Use the backslash followed by a single quotation mark \' to represent the single
quotation mark.

Newline character
Use the backslash followed by the newline character \n to represent the newline
escape sequence.

26 C/VSE V1R1 Language Reference

 Constants

Backslash character
Use the backslash followed by a second backslash \\ to represent the backslash
escape sequence.

 Value
The value of a character constant containing a single character is the numeric
representation of the character in the character set used at run time. The value of
a wide-character constant containing a single multibyte character is the code for
that character, as defined by the mbtowc function. If the character constant
contains more than one character, the last 4 bytes represent the character
constant.

 Data Type
A character constant has type int. A wide-character constant is represented by a
double-byte character of type wchar_t, as defined in the <stddef.h> include file.
Multibyte characters represent character sets that go beyond the single-byte
character set. Each multibyte character can contain up to 4 bytes.

 Examples
'a' '\''
'�' '('
'x' '\n'
'7' '\117'
'C'

The following example, using character constants and wide-character constants,
shows what happens when the character constant contains more than one
character:

 EDCXRAAD

 /� Example of how to use character constants �/

#include <stdio.h>
#include <stdlib.h>

char ch1 = 'd';
char ch2 = 'abcd';
char ch3 = '\2�4';
char ch4 = '\x84';
wchar_t wch1 = L'd';
wchar_t wch2 = L'abcd';
wchar_t wch3 = L'\2�4';
wchar_t wch4 = L'\x84';

 Chapter 2. Elements of C 27

 Constants

int main(void)
 {
 printf("ch1 = %c, ch2 = %c\n", ch1, ch2);
 printf("ch3 = %c, ch4 = %c\n", ch3, ch4);
printf("wch1 = %lc, wch2 = %lc\n", wch1, wch2);
printf("wch3 = %lc, wch4 = %lc\n", wch3, wch4);

 }

This example produces the following output:

ch1 = d, ch2 = d
ch3 = d, ch4 = d
wch1 = d, wch2 = d
wch3 = d, wch4 = d

 Related Information
� “String Constants” on page 28
� “Escape Sequences” on page 9
� “Integers” on page 47

 String Constants
A string constant or literal contains a sequence of characters or escape sequences
enclosed in double quotation marks. A string constant has the form:

 ┌ ┐───────────────────────
��─ ──┬ ┬─── ─"─ ───� ┴──┬ ┬───────────────── ─"──��
 └ ┘ ─L─ ├ ┤─character───────
 └ ┘─escape_sequence─

The prefix L indicates a wide-character string literal; no prefix indicates a character
string literal.

A null (\�) character is appended to each string. For a wide-character string, the
value � of type wchar_t is appended. By convention, programs recognize the end
of a string by finding the null character.

The string constant can contain any character from the C character set, with the
following restrictions:

Double quotation mark
Use the escape sequence \" to represent the double quotation mark. You can
represent the single quotation mark by itself '.

Newline character
Use the escape sequence \n to represent a newline character as part of the string.

Another way to continue a string is to have two or more consecutive strings.
Adjacent string literals are concatenated to produce a single string. The null
character of the first string will no longer exist after the concatenation. You cannot
concatenate a wide-string constant with a character-string constant.

Multiple spaces contained within a string constant are retained.

Backslash character
Use the escape sequence \\ to represent a backslash character as part of the
string.

28 C/VSE V1R1 Language Reference

 Constants

Note: When you modify string literals, the resulting behavior depends on whether
your strings are stored in writable static. See “#pragma” on page 162 for more
information on #pragma strings that can be used to specify whether your string
literals are read-only or writable. String literals are writable by default.

 Data Type
A character string constant has type array of char and static storage duration. A
wide character constant has type array of wchar_t and static storage duration.

char titles[] = "Bach’s \"Jesu, Joy of Man's Desiring\"";
char �mail_addr = "Last Name First Name MI Street Address \

City Province Postal code ";
char �temp_string = "abc" "def" "ghi"; /� �temp_string = "abcdefghi\�" �/

 Examples
The following example shows string literals used in the strcpy(), strcat(), and
printf() functions.

 EDCXRAAE

 /� Example of how to use string literals in functions �/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

char ch1[2�];
char ch2[2�] = "Example!!";

int main(void)
 {
strcpy(ch1, "My ");

 strcat(ch1, ch2);
printf("ch1 = %s\n", ch1);

 }

This example produces the following output:

ch1 = My Example!!

 Related Information
� “Character Constants” on page 26
� “Escape Sequences” on page 9
� “Characters” on page 44
� “Arrays” on page 71

 Enumeration Constants
When you define an enumeration data type, you specify a set of identifiers that the
data type represents. Each identifier in this set is an enumeration constant.

 Value
Each enumeration constant has an integer value. You can use an enumeration
constant anywhere an integer constant is allowed. The value of the constant is
determined in the following way:

1. An equal sign (=) and a constant expression after the enumeration constant
give an explicit value to the constant. The identifier represents the value of the
constant expression.

 Chapter 2. Elements of C 29

 Constants

2. If no explicit value is assigned, the leftmost constant in the list receives the
value zero (�).

3. Identifiers with no explicitly assigned values receive the integer value that is
one greater than the value represented by the previous identifier.

 Data Type
An enumeration constant has type int.

 Examples
The following data type declarations list oats, wheat, barley, corn, and rice as
enumeration constants. The number under each constant shows the integer value.

enum grain { oats, wheat, barley, corn, rice };
/� � 1 2 3 4 �/

enum grain { oats=1, wheat, barley, corn, rice };
/� 1 2 3 4 5 �/

enum grain { oats, wheat=1�, barley, corn=2�, rice };
 /� � 1� 11 2� 21 �/

It is possible to associate the same integer with two different enumeration
constants. For example, the following definition is valid. The identifiers suspend
and hold have the same integer value.

enum status { run, delete=5, suspend, resume, hold=6 };
 /� � 5 6 7 6 �/

 Related Information
� “Enumerations” on page 63
� “Integers” on page 47

30 C/VSE V1R1 Language Reference

 Declarations

Chapter 3. Declarations and Definitions

This chapter describes the C language definitions and declarations for data objects
and functions. A declaration establishes the names and characteristics of data
objects and functions used in a program. A definition is a declaration that allocates
storage for data objects or specifies the body for a function.

The following table shows examples of declarations and definitions. The identifiers
declared in the first column do not allocate storage; they refer to a corresponding
definition. The identifiers declared in the second column allocate storage; they are
both declarations and definitions.

Function declarations are described in “Function Declarations” on page 89.

Table 6. Examples of Declarations and Definitions

Declarations Declarations and Definitions

extern double pi; double pi = 3.14159265;

float square(float x); float square(float x) { return x�x; }

struct payroll; struct payroll {
 char �name;
 float salary;
 } employee;

 Declarations
A declaration introduces an identifier and specifies the following properties
associated with it:

� Scope, which describes the visibility of an identifier in a block or source file.
See “Scope” on page 13.

� Storage duration, which describes when storage for a data object is allocated
and freed.

� Linkage, which describes the association between two identical identifiers. See
“Linkage” on page 15 for more information.

� Type, which describes the kind of data the object is to represent.

In C, the lexical order of elements of declaration is as follows:

� Storage duration and linkage specification, described in “Storage Class
Specifiers” on page 33

� Type qualifiers and qualifiers, described in “Qualifiers” on page 67
� Type specification, described in “Type Specifiers” on page 44
� Declarators, which introduce identifiers and derived types such as arrays,

pointers, and functions, described in “Declarators” on page 70
� Initializers, which initialize storage with initial values, described in “Initializers”

on page 91.

The positioning of declarations in the source code determines the scope or visibility
and possibly the assumed storage duration and linkage of the identifier.

© Copyright IBM Corp. 1994, 1996 31

 Declarations

Block Scope Data Declarations
A block scope data declaration can only be placed at the beginning of a block. It
declares a variable and makes that variable accessible to the current block. All
block scope declarations that do not have the extern storage class specifier are
definitions and allocate storage for that object.

You can declare a data object with block scope to any one of the following storage
class specifiers:

 � auto
 � register
 � static
 � extern

If you do not specify a storage class specifier in a block-scope data declaration, the
default storage class specifier auto is used. If you specify a storage class specifier,
you can omit the type specifier. If you omit the type specifier, all variables declared
in that declaration will have the type int.

Initialization of Variables
You cannot initialize a variable that is declared in a block scope data declaration
and has the extern storage class specifier.

The types of variables you can initialize and the values that uninitialized variables
receive vary for each storage class specifier.

Storage for Objects
Declarations with the auto or register storage class specifier result in automatic
storage duration. Declarations with the extern or static storage class specifier
result in static storage duration.

 Related Information
� “auto Storage Class Specifier” on page 34
� “static Storage Class Specifier” on page 42
� “Declarators” on page 70
� “Initializers” on page 91
� “Type Specifiers” on page 44

File Scope Data Declarations
A file scope data declaration appears outside any block. It describes a variable
and makes that variable accessible to all functions that are in the same file and
whose definitions appear after the declaration.

A file scope data definition is a data declaration at file scope that also causes the
system to allocate storage for that variable. All objects whose identifiers are
declared at file scope have static storage duration.

You can use a file scope data declaration to declare variables that you want
several functions to access.

The only storage class specifiers you can place in a file scope data declaration are
static and extern. If you specify static, all variables declared in it have internal

32 C/VSE V1R1 Language Reference

 Storage Class Specifiers

linkage. If you do not specify static, all variables declared in it have external
linkage.

If you specify the storage class static or extern, you can omit the type specifier.
If you omit the type specifier, all variables defined in that declaration receive the
type int.

Initialization of Variables
You can initialize any object with file scope. If you do not initialize a file scope
variable, its initial value is zero of the appropriate type. If you do initialize it, the
initializer must be described by a constant expression, or it must reduce to the
address of a previously declared variable at file scope, possibly modified by a
constant expression. Initialization of all variables at file scope takes place before
the main() function begins execution.

Storage for Objects
All objects with file scope data declarations have static storage duration. The
system allocates memory for all file scope variables when the program begins
execution and frees it when the program is finished executing.

 Related Information
� “extern Storage Class Specifier” on page 36
� “static Storage Class Specifier” on page 42
� “Declarators” on page 70
� “Initializers” on page 91
� “Type Specifiers” on page 44

Storage Class Specifiers
This section describes C language object declarations, the storage durations
associated with the objects, and the linkage of their identifiers. The storage class
specifier used within the declaration determines the following:

� Whether the object has internal, external, or no linkage.

� Whether the storage duration of the object is static class (storage for the object
is maintained throughout program execution) or automatic class (storage for the
object is maintained only during the execution of the block in which the
identifier of the object is defined).

� Whether the object is to be stored in memory or in a register, if available.

� Whether the object is initialized with the default value of zero of the appropriate
type or an indeterminate default initial value.

For a function, the storage class specifier determines the function’s linkage.

 Chapter 3. Declarations and Definitions 33

 Storage Class Specifiers

auto Storage Class Specifier
The auto storage class specifier enables you to define a variable with automatic
storage; its use and storage are restricted to the current block. The storage class
keyword auto is optional in a data declaration and forbidden in a parameter
declaration. A variable having the auto storage class specifier must be declared
within a block. It cannot be used for file scope declarations.

The following example lines declare variables having the auto storage class
specifier:

auto int counter;
auto char letter = 'k';

Initialization of Variables
You can initialize any auto variable except parameters. If you do not initialize an
automatic object, its value is undefined. If you provide an initial value, the
expression representing the initial value can be any valid C expression. For
aggregates or unions, the initial value must be a valid constant expression. The
object is then set to that initial value each time the program block that contains the
object’s definition is entered.

Note: If you use the goto statement to jump into the middle of a block, automatic
variables within that block are not initialized.

Storage for Objects
Objects with the auto storage class specifier have automatic storage duration.
Each time a block is entered, storage for auto objects defined in that block is made
available. When the block is exited, the objects are no longer available for use.

If an auto object is defined within a function that is recursively invoked, memory is
allocated for the object at each invocation of the block.

 Usage
Declaring variables with the auto storage class specifier can decrease the amount
of memory required for program execution, because auto variables require storage
only while they actually are needed.

 Examples
The following program shows the scope and initialization of auto variables. The
function main() defines two variables, each named auto_var. The first definition
occurs on line 8. The second definition occurs in a nested block on line 11. While
the nested block is executed, only the auto_var created by the second definition is
available. During the rest of the program, only the auto_var created by the first
definition is available.

34 C/VSE V1R1 Language Reference

 Storage Class Specifiers

 EDCXRAAF

 1 /� Example of how to use auto variables �/
 2
 3 #include <stdio.h>
 4
 5 int main(void)
 6 {
 7 void call_func(int passed_var);
 8 auto int auto_var = 1; /� first definition of auto_var �/
 9
1� {
11 int auto_var = 2; /� second definition of auto_var �/
12 printf("inner auto_var = %d\n", auto_var);
13 }
14 call_func(auto_var);
15 printf("outer auto_var = %d\n", auto_var);
16 }
17
18 void call_func(int passed_var)
19 {
2� printf("passed_var = %d\n", passed_var);
21 passed_var = 3;
22 printf("passed_var = %d\n", passed_var);
23 }

This example produces the following output:

inner auto_var = 2
passed_var = 1
passed_var = 3
outer auto_var = 1

The following example uses an array that has the storage class auto to pass a
character string to the function sort(). The C language views an array name that
appears without subscripts (for example, string, instead of string[�]) as a pointer.
Thus, sort() receives the address of the character string, rather than the contents
of the array. The address enables sort() to change the values of the elements in
the array.

 Chapter 3. Declarations and Definitions 35

 Storage Class Specifiers

 EDCXRAAG

 /� Example of how to pass an array name to a function
This example sorts a string �/

#include <stdio.h>

int main(void)
{

void sort(char �array, int n);
 char string[75];
 int length;
 printf("Enter letters:\n");
 scanf("%74s", string);

length = strlen(string);
 sort(string,length);

printf("The sorted string is: %s\n", string);
}

void sort(char �array, int n)
{

int gap, i, j, temp;

for (gap = n / 2; gap > �; gap /= 2)
for (i = gap; i < n; i++)

for (j = i - gap; j >= � && array[j] > array[j + gap];
j -= gap)

 {
temp = array[j];
array[j] = array[j + gap];
array[j + gap] = temp;

 }
}

When the program is run, interaction with the program could produce:

Output Enter letters:

Input zyfab

Output The sorted string is: abfyz

 Related Information
� “register Storage Class Specifier” on page 41
� “Block Scope Data Declarations” on page 32
� “Address &” on page 104

extern Storage Class Specifier
The extern storage class specifier enables you to declare objects and functions
that several source files can use. All object declarations that occur outside a
function and that do not contain a storage class specifier declare identifiers with
external linkage. All function definitions that do not specify a storage class define
functions with external linkage.

You can distinguish an extern declaration from an extern definition by the
presence of the keyword extern and the absence of an initializer. If the keyword
extern is absent or if there is an initializer, the declaration is also a definition;
otherwise, it is just a declaration. An extern definition can appear only outside a
function definition. Only one definition of an external variable is allowed, and that
declaration is the definition of the storage for the variable.

36 C/VSE V1R1 Language Reference

 Storage Class Specifiers

If a declaration for an identifier already exists at file scope, any extern declaration
of the same identifier found within a block refers to that same object. If no other
declaration for the identifier exists at file scope, the identifier has external linkage.

 Declaration
An extern declaration can appear outside a function or at the beginning of a block.
If the declaration describes a function or appears outside a function and describes
an object with external linkage, the keyword extern is optional.

If you choose not to specify a storage class specifier, the function will have external
linkage. So if you include a declaration for the same function with the storage class
specifier static before the declaration with no storage class specifier, an error will
be noted because of the incompatible declarations. If you had included the extern
storage class specifier on the original declaration, there would be no error and the
function would have external linkage.

Initialization of Variables
You can initialize any object with the extern storage class specifier at file scope.
You can initialize an extern object with an initializer that must either:

� Appear as part of the definition. The initial value must be described by a
constant expression.

� Reduce to the address of a previously declared object with static storage
duration. This object may be modified by a constant expression.

If you do not initialize an extern variable, its initial value is zero of the appropriate
type. Initialization of an extern object is completed by the start of program
execution.

Storage for Objects
extern objects have static storage duration. Memory is allocated for extern objects
before the main() function begins execution. When the program finishes
executing, the storage is freed.

Controlling External Static
Certain program variables with the extern storage class may be constant and never
written to. If this is the case, it is not necessary to have a copy of these variables
made for every user of the program. In addition, there may be a need to share
constant program variables between C and another language.

 Chapter 3. Declarations and Definitions 37

 Storage Class Specifiers

extern Example 1
The following program fragment shows how to force an external program variable
to be part of the program that includes executable code and constant data by using
the #pragma variable(varname, NORENT) directive:

#pragma options(RENT)

#pragma variable(rates, NORENT)
extern float rates[5] = { 3.2, 83.3, 13.4, 3.6, 5.� };

extern float totals[5];

int main(void) {
...
}

In this example, the source file is to be compiled with the RENT option. The variable
rates is included with the executable code because #pragma variable(rates,
NORENT) has been specified. The variable totals is included with the writable
static. Each user has his/her own copy of the array totals, and the array rates is
shared between all users of the program. This sharing may yield a performance
and storage benefit.

The #pragma variable(varname, NORENT) does not apply to, and has no effect on,
program variables with the static storage class. Program variables with the
static storage class are always included with the writable static. An informational
message appears if you write to a nonreentrant variable when the CHECKOUT
compile-time option is specified.

When #pragma variable(varname, NORENT) is specified for a variable, care must be
taken to ensure that this variable is never written to. Program exceptions or
unpredictable program behavior may result should this be the case. In addition,
#pragma variable(varname, NORENT) must be included in every source file where
the variable is referenced or defined.

For more information on the RENT and NORENT compile-time options, refer to the
C/VSE User's Guide.

 Example 2
The following program shows the linkage of extern objects and functions. The
extern object total is declared on line 11 of File 1 and on line 10 of File 2. The
definition of the external object total appears in File 3. The extern function
tally() is defined in File 2. The function tally() can be placed in the same file
as main() or in a different file. Because main() precedes these definitions and
uses both total() and tally(), main() declares tally() on line 11 and total()
on line 12.

38 C/VSE V1R1 Language Reference

 Storage Class Specifiers

 EDCXRAH1

 1 /� Example shows the linkage of extern objects/functions
 2 File 1 of 3 - other files are EDCXRAH2, EDCXRAH3
 3 In this file, the program receives the price of an item,
 4 adds the tax, and prints the total cost of the item �/
 5
 6 #include <stdio.h>
 7
 8 int main(void)
9 { /� begin main �/
1� void tally(void); /� declaration of function tally �/
11 extern float total; /� first declaration of total �/
12
13 printf("Enter the purchase amount: \n");
14 tally();
15 printf("\nWith tax, the total is: %.2f\n", total);
16 } /� end main �/

 EDCXRAH2

 1 /� Example shows the linkage of extern objects/functions
 2 File 2 of 3 - other files are EDCXRAH1, EDCXRAH3
 3 this file defines the function tally �/
 4
5 #define tax_rate �.�5
 6
 7 void tally(void)
8 { /� begin tally �/
 9 float tax;
1� extern float total; /� second declaration of total �/
11
12 scanf("%f", &total);
13 tax = tax_rate � total;
14 total += tax;
15 } /� end tally �/

 EDCXRAH3

 1 /� Example shows the linkage of extern objects/functions
 2 File 3 of 3 - other files are EDCXRAH1, EDCXRAH2 �/
 3 float total;

The following program shows extern variables used by two functions. Because
both functions main() and sort() can access and change the values of the extern
variables string and length, main() does not have to pass parameters to sort().

 Chapter 3. Declarations and Definitions 39

 Storage Class Specifiers

 EDCXRAAI

 /� Example shows how extern variables are used by two functions �/

#include <stdio.h>

char string[75];
int length;

int main(void)
{
 void sort(void);

 printf("Enter letters:\n");
 scanf("%s", string);

length = strlen(string);
 sort();

printf("The sorted string is: %s\n", string);
}

void sort(void)
{

int gap, i, j, temp;

for (gap = length / 2; gap > �; gap /= 2)
for (i = gap; i < length; i++)

for (j = i - gap;
j >= � && string[j] > string[j + gap];
j -= gap)

 {
temp = string[j];
string[j] = string[j + gap];
string[j + gap] = temp;

 }
}

When this program is run, interaction with the previous program could produce:

Output Enter letters:

Input zyfab

Output The sorted string is: abfyz

The following program shows a static variable var1 that is defined at file scope
and then declared with the storage class specifier extern. The second declaration
refers to the first definition of var1 and so it has internal linkage.

static int var1;
...
extern int var1;

 Related Information
� “File Scope Data Declarations” on page 32
� “Function Definition” on page 83
� “Function Declarator” on page 85
� “Constant Expression” on page 96

40 C/VSE V1R1 Language Reference

 Storage Class Specifiers

register Storage Class Specifier
The register storage class specifier indicates to the compiler within a block scope
data definition or a parameter declaration that the object being described will be
heavily used (such as a loop control variable). The compiler may use this
information to place the object into a machine register for fast access storage. The
storage class keyword register is required in a data definition and in a parameter
declaration that describes an object having the register storage class. An object
having the register storage class specifier must be defined within a block or
declared as a parameter to a function.

The following example lines define automatic storage duration objects using the
register storage class specifier:

register int score1 = �, score2 = �;
register unsigned char code = 'A';
register int �element = &order[�];

Initialization of Variables
You can initialize any register auto storage objects except parameters.

Storage for Objects
Objects with the register storage class specifier have automatic storage duration.
Each time a block is entered, storage for register objects defined in that block is
made available. When the block is exited, the objects are no longer available for
use.

If a register object is defined within a function that is recursively invoked, the
system allocates memory for the variable at each invocation of the block.

The register storage class specifier indicates that the object is heavily used and
indicates to the compiler that the value of the object should reside in a machine
register. Because of the limited size and number of registers available on most
systems, few variables can be stored in registers at the same time.

If the compiler does not allocate a machine register for a register object, the
object is treated as having the storage class specifier auto. In C programs, even if
a register variable is treated as a variable with storage class auto, the address of
the variable cannot be taken.

 Restrictions
You cannot apply the & (address) operator to register variables.

You cannot use the register storage class specifier on file scope data
declarations.

 Usage
The compiler treats the register attribute as a suggestion under the OPTIMIZE(1)
optimization level. Under OPTIMIZE(�), the register attribute is ignored. For more
information on improving code quality using optimization, refer to the LE/VSE C
Run-Time Programming Guide.

 Chapter 3. Declarations and Definitions 41

 Storage Class Specifiers

 Related Information
� “auto Storage Class Specifier” on page 34
� “Block Scope Data Declarations” on page 32
� “Function Declarator” on page 85
� “Address &” on page 104

static Storage Class Specifier
The static storage class specifier enables you to define objects with static storage
duration and internal linkage, or to define functions with internal linkage.

An object having the static storage class specifier can be defined within a block or
at file scope. If the definition occurs within a block, the object has no linkage. If
the definition occurs at file scope, the object has internal linkage.

Initialization of Variables
You can initialize any static object. If you do not provide an initial value, the
object receives the value of zero of the appropriate type. If you initialize a static
object, the initializer must be described by a constant expression or must reduce to
the address of a previously declared extern or static object, possibly modified by
a constant expression.

Storage for Objects
Objects with the static storage class specifier have static storage duration. The
storage for a static variable is made available when the program begins
execution. When the program finishes executing, the memory is freed.

 Restrictions
You cannot declare a static function at block scope.

 Usage
You can use static variables when you need an object that retains its value from
one execution of a block to the next execution of that block. Using the static
storage class specifier keeps the system from reinitializing the object each time the
block in which the object is defined is executed.

 Examples
The following program shows the linkage of static identifiers at file scope. This
program uses two different external static identifiers named stat_var. The first
definition occurs in File 1. The second definition occurs in File 2. The main()
function references the object defined in File 1. The var_print() function
references the object defined in File 2.

42 C/VSE V1R1 Language Reference

 Storage Class Specifiers

 EDCXRAJ1

 /� Example of how to use file scope static variables
File 1 of 2 - other file is EDCXRAJ2 �/

#include <stdio.h>
extern void var_print(void);
static stat_var = 1;

int main(void)
{

printf("file1 stat_var = %d\n", stat_var);
 var_print();

printf("FILE1 stat_var = %d\n", stat_var);
}

 EDCXRAJ2

 /� Example of how to use file scope static variables
File 2 of 2 - other file is EDCXRAJ1 �/

static int stat_var = 2;

void var_print(void)
{

printf("file2 stat_var = %d\n", stat_var);
}

This example produces the following output:

file1 stat_var = 1
file2 stat_var = 2
FILE1 stat_var = 1

The following program shows the linkage of static identifiers with block scope.
The function test() defines the static variable stat_var. stat_var retains its
storage throughout the program, even though test() is the only function that can
reference stat_var.

 EDCXRAAK

 /� Example of how to use block scope static variables �/

#include <stdio.h>

int main(void)
{
 void test(void);
 int counter;

for (counter = 1; counter <= 4; ++counter)
 test();
}

 Chapter 3. Declarations and Definitions 43

 Type Specifiers

void test(void)
{

static int stat_var = �;
auto int auto_var = �;

 stat_var++;
 auto_var++;

printf("stat_var = %d auto_var = %d\n", stat_var, auto_var);
}

This example produces the following output:

stat_var = 1 auto_var = 1
stat_var = 2 auto_var = 1
stat_var = 3 auto_var = 1
stat_var = 4 auto_var = 1

 Related Information
� “Block Scope Data Declarations” on page 32
� “File Scope Data Declarations” on page 32
� “Function Definition” on page 83
� “Function Declarator” on page 85

 Type Specifiers
The C data types are:

 � Characters
 � Floating-point
 � Fixed-point decimals
 � Integers
 � Void
 � Structures
 � Unions
 � Enumerations

From these types, you can derive the following:

 � Arrays
 � Pointers
 � Functions

 Characters
The C language has three character data types: char, signed char, and unsigned
char. These data types provide enough storage to hold any member of the
character set used at run time.

char is represented as an unsigned char. For information on changing this default,
see “chars” on page 165. If it does not matter whether a char data object is
signed or unsigned, you can declare the object as having the data type char;
otherwise, explicitly declare signed char or unsigned char. When a char (signed
or unsigned) is widened to an int, its value is preserved.

44 C/VSE V1R1 Language Reference

 Type Specifiers

To declare a data object having a character data type, place a char specifier in the
type specifier position of the declaration. The char specifier has the form:

��─ ──┬ ┬────────── ─char──��
 ├ ┤─unsigned─
 └ ┘─signed───

The declarator for a simple character declaration is an identifier. You can initialize
a simple character with a character constant or with an expression that evaluates to
an integer.

 Examples
The following example defines the identifier end_of_string as a constant object of
type char having the initial value \� (the null character):

const char end_of_string = '\�';

The following example defines the unsigned char variable switches as having the
initial value 3:

unsigned char switches = 3;

You can use the char specifier in variable definitions to define such variables as
arrays of characters, pointers to characters, and arrays of pointers to characters.

The following example defines string_pointer as a pointer to a character:

char �string_pointer;

The following example defines name as a pointer to a character. After initialization,
name points to the first letter in the character string "Johnny":

char �name = "Johnny";

The following example defines a one-dimensional array of pointers to characters.
The array has three elements. Initially they are a pointer to the string "Venus", a
pointer to "Jupiter", and a pointer to "Saturn":

static char �planets[] = { "Venus", "Jupiter", "Saturn" };

 Related Information
� “Arrays” on page 71
� “Pointers” on page 78
� “Character Constants” on page 26
� “Assignment Expression” on page 114

 Floating-Point
The C language defines three types of floating-point variables: float, double, and
long double. They are defined in the header file float.h.

In C/VSE, a float occupies 4 bytes in storage, a double occupies 8 bytes, and a
long double occupies 16 bytes. Thus, the following expression always evaluates to
1 (true):

sizeof(float) <= sizeof(double) && sizeof(double) <= sizeof(long double)

 Chapter 3. Declarations and Definitions 45

 Type Specifiers

To declare a data object having a floating-point type, use the float specifier. The
float specifier has the form:

��─ ──┬ ┬─float─────── ─��
 ├ ┤─double──────
 └ ┘─long double─

The declarator for a simple floating-point declaration is an identifier. You can
initialize a simple floating-point variable with a float constant or with a variable or
expression that evaluates to an integer or floating-point number. (The storage
class of a variable determines how you can initialize the variable.)

 Examples
The following example defines the identifier pi for an object of type double:

double pi;

The following example defines the float variable real_number with the initial value
1��.55: The float constant 1��.55 is of type double, but using it to initialize float
variable real_number converts it to a float.

static float real_number = 1��.55;

The following example defines the float variable float_var with the initial value
�.�143:

float float_var = 1.43e-2;

The following example declares the long double variable maximum:

extern long double maximum;

The following example defines the array table with 20 elements of type double:

double table[2�];

 Related Information
� “Floating-Point Constants” on page 24
� “Assignment Expression” on page 114
� “Integers” on page 47
� “Floating Point” on page 179

Fixed-Point Decimal Data Types
Use the type specifier decimal(n,p) to declare fixed-point decimal variables and to
initialize them with fixed-point decimal constants. decimal is a macro defined in
decimal.h. Remember to include decimal.h if you use fixed-point decimals in your
program.

Fixed-point decimal types are classified as arithmetic types. decimal(n,p)
designates a decimal number with n digits, and p decimal places. n is the total
number of digits for the integral and decimal parts combined, and p is the number
of digits for the decimal part only. For example, decimal(5,2) represents a number,
such as, 123.45 where n=5 and p=2. The value for p is optional. If it is left out,
the default value is �.

46 C/VSE V1R1 Language Reference

 Type Specifiers

n and p have a range of allowed values according to the following rules:

p ≤ n
1 ≤ n ≤ DEC_DIG
� ≤ p ≤ DEC_PRECISION

Note: DEC_DIG (the maximum number of digits n) and DEC_PRECISION (the
maximum precision p) are defined in decimal.h. Currently, a maximum of 31 digits
is used for both limits.

The following example shows how you can declare a variable as a fixed-point
decimal data type:

decimal(1�,2) x;
decimal(5,�) y;
decimal(5) z;
decimal(18,1�) �ptr;
decimal(8,2) arr[1��];

In the previous example:

� x can have values between -99999999.99D and +99999999.99D.
� y and z can have values between -99999D and +99999D.
� ptr is a pointer to type decimal(18,10).
� arr is an array of 100 elements, where each element is of type decimal(8,2).

The syntax for the fixed-point decimal type specifier is as follows:

��──decimal──(──constant_expression─ ──┬ ┬────────────────────── ─)──��
└ ┘──,constant_expression

The constant expression is evaluated as a positive integral constant expression.
The second constant expression is optional. If it is left out, the default value is 0.
decimal(n,0) and decimal(n) are type compatible.

 Integers
C/VSE supports six types of integer variables:

� short int, short, signed short, or signed short int

� signed int or int (In some cases, no type specifier is needed; see “Block
Scope Data Declarations” on page 32 and “File Scope Data Declarations” on
page 32.)

� long int, long, signed long, or signed long int

� unsigned short int or unsigned short

� unsigned or unsigned int

� unsigned long int or unsigned long

The storage size of a short type is less than or equal to the storage size of an int
variable, and the storage size of an int variable is less than or equal to the storage
size of a long variable. Thus, the following expression always evaluates to 1 (true):

sizeof(short) <= sizeof(int) && sizeof(int) <= sizeof(long)

 Chapter 3. Declarations and Definitions 47

 Type Specifiers

Two sizes for integer data types are provided. Objects having type short are 2
bytes of storage long. Objects having type long are 4 bytes of storage long. An
int represents the most efficient data storage size on the system (the word-size of
the machine) and receives 4 bytes of storage.

The unsigned prefix indicates that the value of the object is a nonnegative integer.
Each unsigned type provides the same size storage as its signed equivalent. For
example, int reserves the same storage as unsigned int. Because a signed type
reserves a sign bit, an unsigned type can hold a larger positive integer than the
equivalent signed type.

To declare a data object having an integer data type, place an int specifier in the
type specifier position of the declaration. The int specifier has the form:

��─ ──┬ ┬────────── ──┬ ┬──┬ ┬─────── ─int─ ─��
 ├ ┤─unsigned─ │ │├ ┤─short─
 └ ┘─signed─── │ │└ ┘─long──
 ├ ┤─short──────────
 └ ┘─long───────────

The declarator for a simple integer definition or declaration is an identifier. You can
initialize a simple integer definition with an integer constant or with an expression
that evaluates to a value that can be assigned to an integer. (The storage class of
a variable determines how you can initialize the variable.)

 Examples
The following example defines the short int variable flag:

short int flag;

The following example defines the int variable result:

int result;

The following example defines the unsigned long int variable ss_number as having
the initial value 438888834:

unsigned long ss_number = 438888834ul;

The following example defines the identifier sum for an object of type int. The
initial value of sum is the result of the expression a + b:

extern int a, b;
auto sum = a + b;

 Related Information
� “Integer Constants” on page 22
� “Decimal Constants” on page 23
� “Octal Constants” on page 24
� “Hexadecimal Constants” on page 23

48 C/VSE V1R1 Language Reference

 Type Specifiers

 void Type
void is a data type that always represents an empty set of values. The keyword for
this type is void. When a function does not return a value, use void as the type
specifier in the function definition and declaration. The only object that can be
declared with the type specifier void is a pointer.

 Example
In line 5 of the following example, the function find_max() is declared as having
type void. Lines 14 through 23 contain the complete definition of find_max().

Note: The use of the sizeof operator in line 11 is a standard method of
determining the number of elements in an array.

 EDCXRAAM

 1 /� Example use of void data type �/
 2
 3 #include <stdio.h>
 4 /� declaration of function find_max �/
 5 extern void find_max(int x[], int j);
 6
 7 int main(void)
 8 {
 9 static int numbers[] = { 99, 54, -1�2, 89 };
1�
11 find_max(numbers, (sizeof(numbers) / sizeof(numbers[�])));
12 }
13 void find_max(int x[], int j)
14 { /� begin definition of function find_max �/
15 int i, temp = x[�];
16
17 for (i = 1; i < j; i++)
18 {
19 if (x[i] > temp)
2� temp = x[i];
21 }
22 printf("max number = %d\n", temp);
23 } /� end definition of function find_max �/

 Related Information
� “Cast” on page 104
� “Integers” on page 178

 Structures
A structure contains an ordered group of data objects. Unlike the elements of an
array, the data objects within a structure can have varied data types. Each data
object in a structure is a member or field.

You can use structures to group logically related objects. For example, if you want
to allocate storage for the components of one address, you can define the following
variables:

int street_no;
char �street_name;
char �city;
char �prov;
char �postal_code;

 Chapter 3. Declarations and Definitions 49

 Type Specifiers

If you want to allocate storage for more than one address, however, you can group
the components of each address by defining a structure data type and defining
several variables having the structure data type:

 1 struct address {
 2 int street_no;
 3 char �street_name;
 4 char �city;
 5 char �prov;
 6 char �postal_code;
 7 };
 8 struct address perm_address;
 9 struct address temp_address;
1� struct address �p_perm_address = &perm_address;

Lines 1 through 7 declare the structure tag address. Line 8 defines the variable
perm_address, and line 9 defines the variable temp_address, both of which are
instances of the structure address. Both perm_address and temp_address contain
the members described in lines 2 through 6. Line 10 defines a pointer
p_perm_address, which points to a structure of type address. p_perm_address is
initialized to point to perm_address.

You can reference a member of a structure by specifying the structure variable
name with the . (period) or a pointer to a struct with the -> and the member name.
For example, both of the following:

perm_address.prov = "Ontario";
p_perm_address -> prov = "Ontario";

assign a pointer to the string "Ontario" to the pointer prov that is in the structure
perm_address.

All references to structures must be fully qualified. Therefore, in the preceding
example, you cannot reference the fourth field by prov alone. You must reference
this field by perm_address.prov.

You cannot declare a structure with members of incomplete types.

Declaring a Structure Data Type
A structure type declaration does not allocate storage. It describes the members
that are part of the structure.

You can declare structures having any storage class. The C/VSE compiler treats
structures declared with the register storage class specifier as automatic
structures.

A structure type declaration contains the struct keyword followed by an optional
identifier (the structure tag) and a brace-enclosed list of members.

A structure declaration has the form:

��─ ──┬ ┬───────── ─struct─ ──┬ ┬─identifier────────────────────────── ─��
 └ ┘ ─_Packed─ │ │┌ ┐─────────────
 └ ┘ ──┬ ┬──────────── ─{─ ───� ┴─member──;─ ─}─
 └ ┘ ─identifier─

50 C/VSE V1R1 Language Reference

 Type Specifiers

The keyword struct followed by the identifier (tag) names the data type. If you do
not provide a tag, you must place all variable definitions that refer to that data type
within the statement that defines the data type.

A structure variable definition contains a storage class keyword, the struct
keyword, a structure tag, a declarator, and an optional identifier. The structure tag
indicates the data type of the structure variable.

The list of members provides the data type with a description of the values that can
be stored in the structure.

A member has the form:

 ┌ ┐─,───────────────────────────────────────
��─ ─type_specifier─ ───� ┴──┬ ┬─declarator────────────────────────── ─��
 └ ┘ ──┬ ┬──────────── ─:──const_expression─
 └ ┘ ─declarator─

A member that does not represent a bit field can be of any data type and can have
the volatile or const qualifier. For more information on qualifiers, refer to
“Qualifiers” on page 67. If a : (colon) and a constant expression follow the
declarator, the member represents a bit field. For more information on bit fields,
refer to “Declaring and Using Bit Fields” on page 58.

Identifiers used as aggregate or member names can be redefined to represent
different objects in the same scope without conflicting. You cannot use the name
of a member more than once in a structure type, but you can use the same
member name in another structure type that is defined within the same scope.

You cannot declare a structure type that contains itself as a member but you can
declare a structure type that contains a pointer to itself as a member.

Example of Declaring a Structure Type and Structure Variables
You can place a type definition and a variable declaration in one statement by
placing a declarator and an initializer (optional) after the type definition. If you want
to specify a storage class specifier for the variable, you must place the storage
class specifier at the beginning of the statement. For example:

static struct {
 int street_no;
 char �street_name;
 char �city;
 char �prov;
 char �postal_code;

} perm_address, temp_address;

The preceding example does not name the structure data type. Thus,
perm_address and temp_address are the only structure variables that will have this
data type. If an identifier is placed after struct, additional variable definitions of
this data type can be made later in the program.

The structure type (or tag) cannot have the volatile qualifier, but a member or a
structure variable can be defined as having the volatile qualifier.

 Chapter 3. Declarations and Definitions 51

 Type Specifiers

For example:

static struct class1 {
 char descript[2�];

volatile long code;
 short complete;

} volatile file1, file2;
struct class1 subfile;

This example gives the volatile qualifier to the structures file1 and file2, and to
the structure member subfile.code.

Initializers of Structures
The initializer contains an = (equal sign) followed by a brace-enclosed
comma-separated list of values. You do not have to initialize all members of a
structure.

The following definition shows a completely initialized structure:

struct address {
 int street_no;
 char �street_name;
 char �city;
 char �prov;
 char �postal_code;
 };
static struct address perm_address =

{ 9876, "Goto St.", "Cville", "Ontario", "X9X 1A1"};

The values of perm_address are:

Member Value
perm_address.street_no 9876
perm_address.street_name address of string "Goto St."
perm_address.city address of string "Cville"
perm_address.prov address of string "Ontario"
perm_address.postal_code address of string "X9X 1A1"

The following definition shows a partially initialized structure:

struct address {
 int street_no;
 char �street_name;
 char �city;
 char �prov;
 char �postal_code;
 };
struct address temp_address =

{ 321, "Aggregate Ave.", "Structown", "Ontario" };

The values of temp_address are:

Member Value
temp_address.street_no 321
temp_address.street_name address of string "Aggregate Ave."
temp_address.city address of string "Structown"
temp_address.prov address of string "Ontario"
temp_address.postal_code depends on the storage class (see note below)

52 C/VSE V1R1 Language Reference

 Type Specifiers

Note: The initial value of temp_address.postal_code depends on the storage class
associated with the member. See “Storage Class Specifiers” on page 33 for
details on the initialization of different storage classes.

The following is an example of using an abstract data type ControlBlock without
knowing the details of the internals of the data type.

The advantage of this style of programming is that as long as the interface to the
data type remains the same, the code that uses that interface does not have to
change if the internal structure of the data type changes.

cblock.c defines the data type ControlBlock and the functions that are the
interface to ControlBlock. The internal structure of ControlBlock and the interface
functions are not declared.

 /� Example of an abstract data type
File 1 of 2 - other file is cblock.c �/

#include "cblock.c"

main()
{
 ControlBlock� ctl;

ctl = GetControlBlock(); /� allocate and return a control block �/

UpdateControlBlock(ctl, 27); /� update the control block with 27 �/

UseControlBlock(ctl); /� use the updated control block �/
}

 /� cblock.c - Example of an abstract data type
File 2 of 2 �/

#ifndef __INTERFACE__
 #define __INTERFACE__

typedef struct ControlBlock_T ControlBlock;

 ControlBlock� GetControlBlock();
int UpdateControlBlock(ControlBlock�, int);

 int UseControlBlock(ControlBlock�);

#endif

 Example
The following program finds the sum of the integer numbers in a linked list.

 Chapter 3. Declarations and Definitions 53

 Type Specifiers

 EDCXRAAS

 /� Example of a linked list �/

#include <stdio.h>

struct record {
 int number;

struct record �next_num;
 };

int main(void)
{

struct record name1, name2, name3;
struct record �recd_pointer = &name1;
int sum = �;

name1.number = 144;
name2.number = 2�3;
name3.number = 488;

name1.next_num = &name2;
name2.next_num = &name3;
name3.next_num = NULL;

while (recd_pointer != NULL)
 {

sum += recd_pointer->number;
recd_pointer = recd_pointer->next_num;

 }
printf("Sum = %d\n", sum);

}

The structure type record contains two members: number (an integer) and next_num
(a pointer to a structure variable of type record).

The record type variables name1, name2, and name3 are assigned the following
values:

Member Name Value
name1.number 144
name1.next_num The address of name2

name2.number 2�3
name2.next_num The address of name3

name3.number 488
name3.next_num NULL (Indicating the end of the linked list)

The variable recd_pointer is a pointer to a structure of type record. recd_pointer
is initialized to the address of name1 (the beginning of the linked list).

The while loop causes the linked list to be scanned until recd_pointer equals
NULL. This statement advances the pointer to the next object in the list:

recd_pointer = recd_pointer->next_num;

54 C/VSE V1R1 Language Reference

 Type Specifiers

 Packed Structures
C/VSE supports both packed (_Packed attribute) and unpacked structures.

Data elements of a structure are stored in memory on an address boundary specific
for that data type. For example, a double value is stored in memory on a
doubleword (8-byte) boundary. Gaps may be left in memory between elements of
a structure to align elements on their natural boundaries. You can reduce the
padding of bytes within a structure by using the _Packed qualifier on the structure
declaration.

 Structure Alignment
Unpacked structures are mapped as follows:

1. A structure is placed on the strictest boundary required by any of its elements.

2. Each subsequent data element is placed on its natural boundary.

3. Bit fields are packed starting from bit 0 (the high order bit).

In the following example, the two integers x and y take 7 bits in a single byte.
The C/VSE compiler places 1 unused bit after the bit field, before the char is
placed on a byte boundary.

struct {
 double a ;

int x : 3 ; /� bit field �/
int y : 4 ; /� bit field �/
/� there will be 1 unused bit right here �/

 char b ;
 } axyb;

In the following example, C/VSE places 25 unused bits after the bit field, before
the integer is placed on a fullword boundary.

struct {
 double a ;

int x : 3 ; /� bit field �/
int y : 4 ; /� bit field �/
/� there will be 25 unused bits right here �/

 int b ;
 };

4. A fullword boundary is forced by a construct:

 int :� ;

Structures and members having the _Packed attribute are not always aligned on
natural boundaries. Alignment of fields within a structure can be determined by
using the AGGREGATE compile-time option.

 Chapter 3. Declarations and Definitions 55

 Type Specifiers

Example 1: The following example illustrates the alignment of structures and
structure members in memory for _Packed and nonpacked structures.

struct ss {
 int a;
 char b;
 struct {
 short w;
 char x;
 short y;
 short z;
 } nested;
 };

struct ss n_array[2];
_Packed struct ss p_array[2];

The unqualified array n_array maps into memory as follows:

�───────────────────────── n_array[�] ────────────────────────�
│ �───────── nested ────────────� │
│ a │ b │ │ w │ x │ │ y │ z │padding│ a

 └───────────────┴───┴───┴───────┴───┴───┴───────┴───────┴───────┴────
� 4 5 6 8 9 1� 12 14 16

Note: The 6th, 10th, 15th, and 16th bytes are padding.

The packed array, p_array, is padded with fewer bytes. The p_array has the
following organization:

�────────────────── p_array[�] ───────────────────�
│ �────────── nested ───────────�│
│ a │ b │ w │ x │ │ y │ z │ a │

 └───────────────┴───┴───────┴───┴───┴───────┴───────┴───────────────┘
� 4 5 7 8 9 11 13 17

Note: The 9th byte is padding.

In the previous example, the _Packed qualifier only applies to the first level of
members, and not to elements of imbedded structures. All the members of the
external structure ss (a, b, and nested) are aligned on byte boundaries. Members
of the internal structure nested (w, x, y, and z) are mapped on their normal
nonpacked boundaries. To pack the internal structure nested, you must explicitly
specify the _Packed keyword when nested is defined.

Finally, because this is a packed array, the array elements only have to be aligned
on byte boundaries. There is no extra padding at the end of each array element.

56 C/VSE V1R1 Language Reference

 Type Specifiers

Example 2: If the _Packed structure contains bit fields, the member following the
bit fields always starts on a byte boundary. That is, structure members that are not
bit fields never begin in the middle of a byte.

struct ss {
int a : 1;
int b : 1;
int c : 1;

 short d;
 };

struct ss normal;
_Packed struct ss packed;

The memory layout of the nonpacked structure normal is as follows:

Note: The offsets shown in this map are expressed in bits, not bytes.

│a│b│c│ padding │ d │
 └─┴─┘
bits � 1 2 3 16 32

Note: The 4th through 16th bits are padding.

The bit-field elements are put into the first three bits of the structure. Because the
structure is not packed, the next non-bitfield member, d, is aligned on a 2-byte
(16-bit) boundary; hence, 13 bits of padding are to the right of c.

The memory layout (in bits) of the packed structure packed is as follows:

│a│b│c│ │ d │
 └─┴─┘

� 1 2 3 8 24

Note: The 4th through 8th bits are padding.

As in the nonpacked structure, the first three members are put into the first three
bits of the packed structure. However, because the _Packed qualifier was specified,
the next non-bitfield member, d, is aligned on the next byte boundary, not the next
halfword (16-bit) boundary.

Example 3: This example shows the layout of packed structures containing
pointers.

_Packed struct {
 char a;
 char �b;
 double c;
 char d;
 } ptrstruct;

For C/VSE, pointer alignment is not required. Assuming that pointers are all 32 bits
long, the memory layout for ptrstruct is:

│ a │ b │ c │ d │
 └───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┘
 � 1 5 13 14

Because all of the members only have to be aligned on byte boundaries, the
alignment requirement of the entire structure becomes 1 byte.

 Chapter 3. Declarations and Definitions 57

 Type Specifiers

 Related Information
� “Structure and Union Member Specification . −>” on page 101
� “Declarators” on page 70
� “Initializers” on page 91
� “C Data Mapping” on page 92

Declaring and Using Bit Fields
A structure can contain bit fields that allow you to access individual bits. You can
use bit fields for data that requires just a few bits of storage. A bit field declaration
contains a type specifier followed by an optional declarator, a colon, a constant
expression, and a semicolon. The constant expression specifies how many bits the
field reserves. A bit field that is declared as having a length of � causes the next
field to be aligned on the next integer boundary. For a _Packed structure, a bit field
of length � causes the next field to be aligned on the next byte boundary. Bit-fields
with a length of � must be unnamed.

For portability, do not use bit fields greater than 32 bits in size.

You cannot define an array of bit fields, or take the address of a bit field.

You can declare a bit field as type int, signed int, or unsigned int. Bit fields of
the type int default to type unsigned int.

If a series of bit fields does not add up to the size of an int, padding can take
place. The amount of padding is determined by the alignment characteristics of the
members of the structure. In some instances, bit fields can cross word boundaries.

The following example declares the identifier kitchen to be of type struct on_off:

struct on_off {
unsigned light : 1;
unsigned toaster : 1;

 int count;
unsigned ac : 4;
unsigned : 4;
unsigned clock : 1;
unsigned : �;
unsigned flag : 1;

} kitchen ;

58 C/VSE V1R1 Language Reference

 Type Specifiers

The structure kitchen contains eight members. The following table describes the
storage that each member occupies:

Member Name Storage Occupied
light 1 bit
toaster 1 bit

padding to next int boundary
count The size of an int
ac 4 bits

4 bits
clock 1 bit

padding to next int boundary
flag 1 bit

flag will be aligned on the boundary of the next word,
because it follows a zero bitfield.

any unnamed padding as necessary to achieve the
appropriate alignment were the structure to be an
element of an array

You cannot reference the second field by toaster. You must reference this field by
kitchen.toaster.

The following expression sets the light field to 1:

kitchen.light = 1;

When you assign to a bit field a value that is out of its range, the bit pattern is
preserved and the appropriate bits are assigned. The following expression sets the
toaster field of the kitchen structure to � because only the least significant bit is
assigned to the toaster field:

kitchen.toaster = 2;

 Unions
A union is an object that can hold any one of a set of named members. The
members of the named set can be of any data type. Members are overlaid in
storage.

Declaring a Union
The storage allocated for a union is the storage required for the largest member of
the union (plus any padding that is required so that the union will end at a natural
boundary of its strictest member).

A union type declaration contains the union keyword followed by an identifier, which
is called the union tag and is optional, and a brace-enclosed list of members.

The following diagram shows the form of a union type declaration:

 ┌ ┐─────────────
��─ ──┬ ┬─────────── ─union─ ──┬ ┬──────────── ─{─ ───� ┴─member──;─ ─}──��
 └ ┘ ─qualifier─ └ ┘ ─identifier─

 Chapter 3. Declarations and Definitions 59

 Type Specifiers

The identifier is a tag given to the union specified by the member list. If you
specify a tag, any subsequent declaration of the union (in the same scope) can be
made by declaring the tag and omitting the member list. If you do not specify a
tag, you must place all variable definitions that refer to that union within the
statement that defines the data type.

The list of members provides the data type with a description of the objects that
can be stored in the union.

A member has the form:

 ┌ ┐─,───────────────────────────────────────
��─ ─type_specifier─ ───� ┴──┬ ┬─declarator────────────────────────── ─��
 └ ┘ ──┬ ┬──────────── ─:──const_expression─
 └ ┘ ─declarator─

You can reference one of the possible members of a union as you reference a
member of a structure. For example:

union {
 char birthday[9];

int sex:1; /� � = male; 1 = female �/
 float weight;
 } people;

people.birthday[�] = '\n';

assigns '\n' to the first element in the character array birthday, a member of the
union people. At any given time, a union can represent only one of its members.
In the preceding example, the union people will contain either sex, birthday, or
weight but never more than one of these. For example, the following is not
recommended.

1 people.birthday = "25/1�/67";
2 people.sex = 1;
3 printf("%d\n", people.weight);

The assignment on line 2 overwrites the assignment on line 1, so that the printf
function will print a meaningless value for people.weight.

Example of Defining a Variable That Has Union Data Type
A union variable definition contains the union keyword, a union tag, and a
declarator. The union tag defines the data type of the union variable.

Type Specifier: The type specifier contains the keyword union followed by the
name of the union type. You must declare the union data type before you can
define a union having that type.

You can define a union data type and a union of that type in the same statement
by placing the variable declarator after the data type definition.

Declarator: The declarator is an identifier, possibly with the volatile or const
qualifier.

60 C/VSE V1R1 Language Reference

 Type Specifiers

Initializer: You can initialize only the first member of a union.

The following example shows how you would initialize the first union member
birthday of the union variable people:

union {
 char birthday[9];
 int age;
 float weight;

} people = "�4/�6/57";

Defining a Union Type and a Union Variable
You can place a type definition and a variable definition in one statement by placing
a declarator after the type definition. If you want to specify a storage class specifier
for the variable, you must place the storage class specifier at the beginning of the
statement.

Defining a Packed Union
You can use _Packed to qualify a union. However, the memory layout of the union
members is not affected. Each member starts at offset zero. The _Packed qualifier
does affect the total alignment restriction of the whole union. Consider the
following example:

union uu {
 short a;
 struct {
 char x;
 char y;
 char z;
 } b;
};

union uu n_array[2];
_Packed union uu p_array[2];

Each of the elements in the nonpacked n_array is of type union uu. Because the
array is nonpacked, each element has an alignment restriction of 2 bytes (the
largest alignment requirement among the union members is that of short a), and
there is 1 byte of padding at the end of each element to enforce this requirement.

The layout in memory is as follows:

�───── n_array[�] ────� �───── n_array[1] ────�
│ │ │
│ a │ │ a │ │
│ x │ y │ z │ │ x │ y │ z │ │

 └─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┘
� 1 2 3 4 5 6 7 8

Note: The 4th and 8th bytes are padding.

Now consider the packed array p_array. Because each of its elements is of type
_Packed union uu, the alignment restriction of every element is the byte boundary.
Therefore, each element has a length of only 3 bytes, instead of the 4 bytes in the
previous example.

�── p_array[�] ─� �── p_array[1] ─�
│ │ │
│ a │ │ a │ │
│ x │ y │ z │ x │ y │ z │

 └─────┴─────┴─────┴─────┴─────┴─────┘
� 1 2 3 4 5 6

 Chapter 3. Declarations and Definitions 61

 Type Specifiers

 Examples
The following example defines a union data type (not named) and a union variable
(named length). The member of length can be a long int, a float, or a double.

union {
 float meters;
 double centimeters;
 long inches;
 } length;

The following example defines the union type data as containing one member. The
member can be named charctr, whole, or real. The second statement defines
two data type variables: input and output.

union data {
 char charctr;
 int whole;
 float real;
 };
union data input, output;

The following statement assigns a character to input:

input.charctr = 'h';

The following statement assigns a floating-point number to member output:

output.real = 9.2;

The following example defines an array of structures named records. Each
element of records contains three members: the integer id_num, the integer
type_of_input, and the union variable input. input has the union data type
defined in the previous example.

struct {
 int id_num;
 int type_of_input;

union data input;
 } records[1�];

The following statement assigns a character to the structure member input of the
first element of records:

records[�].input.charctr = 'g';

The following shows a struct with a nested enumerated variable and a union:

enum possible_shape { circle, square };

struct shape_info {
enum possible_shape shape;

 union {
 int radius;
 int diameter;
 } size;
 };

62 C/VSE V1R1 Language Reference

 Type Specifiers

 Related Information
� “Structure and Union Member Specification . −>” on page 101
� “Declarators” on page 70
� “Initializers” on page 91
� “C Data Mapping” on page 92

 Enumerations
An enumeration data type represents a set of values that you declare. You can
define an enumeration data type and all variables that have that enumeration type
in one statement, or you can separate the declaration of the enumeration data type
from all variable definitions. The identifier associated with the data type (not an
object) is a tag. C maps enumeration data items to one of the following minimum
applicable types:

 � Signed char
 � Signed short
 � Signed int

Declaring an Enumeration Data Type
An enumeration type declaration contains the enum keyword followed by an identifier
(the enumeration tag) and a brace-enclosed list of enumerators. Each enumerator
is separated by a comma. An enumeration type declaration has the form:

 ┌ ┐─,──────────
��─ ─enum─ ──┬ ┬──────────── ─{─ ───� ┴─enumerator─ ─}──��
 └ ┘ ─identifier─

The keyword enum, followed by the identifier, names the data type (like the tag on a
struct data type). The list of enumerators provides the data type with a set of
values. Each enumerator represents an integer value. To conserve space, the
compiler may store enumerations in spaces smaller than the size of an int. An
enumerator has the form:

��──identifier─ ──┬ ┬────────────────────────── ─��
 └ ┘─ ═ ──constant_expression─

The identifier in an enumerator is called an enumeration constant. You can use it
anywhere an integer constant is allowed.
The value of an enumeration constant is determined by the following rules:

1. If an = (equal sign) and a constant expression follow the identifier, the identifier
represents the value of the constant expression.

2. If the enumerator is the leftmost value in the list, the identifier represents the
value �.

3. Otherwise, the identifier represents the integer value that is one greater than
the value represented by the preceding enumerator.

 Chapter 3. Declarations and Definitions 63

 Type Specifiers

The following example declares the enumeration tag status:

enum status { run, create, delete=5, suspend };
/� � 1 5 6 �/

The number under each constant shows the integer value.

Each enumerator identifier must be unique within the block or the file where the
enumeration data type is declared. In the following example, the declarations of
average on line 4 and of poor on line 5 cause compiler error messages:

 1 func()
 2 {
 3 enum score { poor, average, good };
 4 enum rating { below, average, above };
 5 int poor;
 6 }

Example of Defining a Variable That Has an Enumeration Type
An enumeration variable definition contains a storage class specifier (optional), a
type specifier, a declarator, and an initializer (optional). The type specifier contains
the keyword enum followed by the name of the enumeration data type. You must
declare the enumeration data type before you can define a variable having that
type.

The first line of the following example declares the enumeration tag grain. The
second line defines the variable g_food and gives g_food the initial value of barley
(2). The type specifier enum grain indicates that the value of g_food is a member
of the enumerated data type grain:

enum grain { oats, wheat, barley, corn, rice };
enum grain g_food = barley;

The initializer for an enumeration variable contains the = symbol followed by an
expression. The expression must evaluate to an int value.

Example of Defining an Enumeration Type and Enumeration
Objects
You can place a type definition and a variable definition in one statement by placing
a declarator and an optional initializer after the type definition.
If you want to specify a storage class specifier for the variable, you must place the
storage class specifier at the beginning of the declaration. For example:

register enum score { poor=1, average, good } rating = good;

This example is equivalent to the following two declarations:

enum score { poor=1, average, good };
register enum score rating = good;

Both examples define the enumeration data type score and the variable rating.
rating has the storage class specifier register, the data type enum score, and the
initial value 3 (or good).

64 C/VSE V1R1 Language Reference

 Type Specifiers

If you combine a data type definition with the definitions of all variables having that
data type, you can leave the data type unnamed. For example:

enum { Sunday, Monday, Tuesday, Wednesday, Thursday, Friday,
Saturday } weekday;

This example defines the variable weekday, which can be assigned any of the
specified enumeration constants.

 Example
The following program receives an integer as input. The output is a sentence that
gives the French name for the weekday that is associated with the integer. If the
integer is not associated with a weekday, the program prints "C'est le mauvais
jour."

 EDCXRAAN

 /� Example of an enumeration �/

#include <stdio.h>

enum days {
Monday=1, Tuesday, Wednesday,
Thursday, Friday, Saturday, Sunday

 } weekday;

int main(void)
{
 int num;

printf("Enter an integer for the day of the week. "
 "Mon=1,...,Sun=7\n");
 scanf("%d", &num);
 weekday=num;
 french(weekday);
}

 Chapter 3. Declarations and Definitions 65

 Type Specifiers

french(weekday)
enum days weekday;
{
 switch (weekday)
 {
 case Monday:

printf("Le jour de la semaine est lundi.\n");
 break;
 case Tuesday:

printf("Le jour de la semaine est mardi.\n");
 break;
 case Wednesday:

printf("Le jour de la semaine est mercredi.\n");
 break;
 case Thursday:

printf("Le jour de la semaine est jeudi.\n");
 break;
 case Friday:

printf("Le jour de la semaine est vendredi.\n");
 break;
 case Saturday:

printf("Le jour de la semaine est samedi.\n");
 break;
 case Sunday:

printf("Le jour de la semaine est dimanche.\n");
 break;
 default:

printf("C'est le mauvais jour.\n");
 }
}

 Related Information
� “Enumeration Constants” on page 29
� “Constant Expression” on page 96
� “Identifiers” on page 12

 Tags
Tags uniquely identify struct, union or enum types. Tags can be declared together
with the content of the structure or union or with the enumerators list, or they can
be declared separately to specify an incomplete type (struct, union, or enum).

 Related Information
� “Structures” on page 49
� “Unions” on page 59
� “Enumerations” on page 63

66 C/VSE V1R1 Language Reference

 Qualifiers

 Qualifiers

volatile and const Type Qualifiers
The volatile qualifier maintains the intent of the original expression with respect to
the order of stores and fetches of volatile objects. The volatile qualifier is
useful for data objects having values that may be changed in ways unknown to
your program (such as the system clock). Portions of an expression that reference
volatile objects are not to be optimized.

The const qualifier explicitly declares a data object as a data item that cannot be
changed. Its value is set at initialization. You cannot use const data objects in
expressions requiring a modifiable lvalue. For example, a const data object
cannot appear on the left-hand side of an assignment statement.

For information on lvalues, refer to “Lvalue” on page 95.

For a volatile or const pointer, you must place the keyword between the � and
the identifier. For example:

int � volatile x; /� x is a volatile pointer to an int �/
int � const y = &z; /� y is a const pointer to the int variable z �/

For a pointer to a volatile or const data object, the type specifier, qualifier, and
storage class can be in any order. For example:

volatile int �x; /� x is a pointer to a volatile int �/
or
int volatile �x; /� x is a pointer to a volatile int �/

const int �y; /� y is a pointer to a const int �/
or
int const �y; /� y is a pointer to a const int �/

In the following example, the pointer to y is a constant. You can change the value
that y points to, but you cannot change the value of y.

int � const y;

In the following example, the value that y points to is a constant integer and cannot
be changed. However, you can change the content of y.

const int � y;

For other types of volatile and const variables, the position of the keyword within
the definition (or declaration) is less important. For example:

volatile struct omega {
 int limit;
 char code;
 } group;

provides the same storage as:

struct omega {
 int limit;
 char code;

} volatile group;

In both examples, only the structure variable group receives the volatile qualifier.
Similarly, if you specified the const keyword instead of volatile, only the structure

 Chapter 3. Declarations and Definitions 67

 Qualifiers

variable group receives the const qualifier. The const and volatile qualifiers when
applied to a structure or union also apply to the members of the structure or union.

Although enumeration, structure, and union variables can receive the volatile or
const qualifier, enumeration, structure, and union tags do not carry the volatile or
const qualifier. For example, the blue structure does not carry the volatile
qualifier:

volatile struct whale {
 int weight;
 char name[8];
 } killer;
struct whale blue;

The keyword volatile or const cannot separate the keywords enum, struct, and
union from their tags.

You cannot declare or define a volatile or const function but you can define or
declare a function that returns a pointer to a volatile or const object.

You can place more than one qualifier on a declaration but you cannot specify the
same qualifier more than once on a declaration.

These type qualifiers are only meaningful on expressions that are lvalues.

_Packed Object Qualifier
The _Packed qualifier removes padding between members of structures and unions,
whenever possible. However, the storage saved using packed structures and
unions may come at the expense of run-time performance. Most machines access
data more efficiently if it is aligned on appropriate boundaries. With packed
structures and unions, members are generally not aligned on natural boundaries,
and the result is that member-accessing operations (using the . and -> operators)
are slower.

_Packed can only be used with structs or unions. If you use _Packed with other
types, an error message is generated and the qualifier has no effect on the
declarator it qualifies. Packed and nonpacked structures and unions have different
storage layouts. However, a packed structure or union can be assigned to a
nonpacked structure or union of the same type, and nonpacked structure or union
can be assigned to a packed structure or union. Comparisons between packed
and nonpacked structures or unions of the same type are prohibited.

If you specify the _Packed qualifier on a structure or union that contains a structure
or union as a member, the qualifier is not passed on to the contained structure or
union.

68 C/VSE V1R1 Language Reference

 Qualifiers

 Examples
The following example uses a _Packed qualifier to create a packed structure:

struct s1
 {
 char c1;
 int i1;

} u; /� NOT packed �/

struct s1 v; /� NOT packed �/
_Packed struct s1 w; /� packed �/

_Packed struct s2
 {
 char c2;
 int i2;
 } a; /� packed �/

struct s2 b; /� NOT packed !!! �/
_Packed struct s2 c; /� packed �/

The following table describes some declarators:

Table 7. Example Declarators

Example Description

int owner owner is an int data object.
int �node node is a pointer to an int data object.
int names[126] names is an array of 126 int elements.
int �action() action() is a function returning a pointer to

an int.
volatile int min min is an int that has the volatile

qualifier.
int � volatile volume volume is a volatile pointer to an int.
volatile int � next next is a pointer to a volatile int.
volatile int � sequence[5] sequence is an array of five pointers to

volatile int objects.
extern const volatile int
op_system_clock

op_system_clock is a constant and volatile
integer with static storage duration and
external linkage.

_Packed struct struct_type s s is a packed structure of type
struct_type.

 Related Information
� “Arrays” on page 71
� “Enumerations” on page 63
� “Pointers” on page 78
� “Structures” on page 49
� “Unions” on page 59

 Chapter 3. Declarations and Definitions 69

 Declarators

 Declarators
A declarator designates a data object or function. Declarators appear in all data
definitions and declarations and in some type definitions. A declarator has the
form:

��─ ──┬ ┬──┬ ┬─────── ──┬ ┬─identifier─────── ───────────────── ─�
 │ ││ │┌ ┐───── └ ┘─(──declarator──)─
 │ │└ ┘ ───� ┴─�─
 └ ┘ ──┬ ┬────────── ──┬ ┬─────── ──┬ ┬─identifier──────────
 ├ ┤─const──── │ │┌ ┐───── └ ┘─(──subdeclarator──)─
 ├ ┤─volatile─ └ ┘ ───� ┴─�─
 └ ┘─_Packed──

�─ ──┬ ┬────────────────────────── ─��
 ├ ┤─(──)─────────────────────
 │ │┌ ┐────────────────────────
 └ ┘───� ┴─subscript_declarator─

You cannot declare or define a volatile or const function.

A declarator can contain a subdeclarator. A subdeclarator has the form:

��─ ──┬ ┬───────────────────── ──┬ ┬─identifier────────── ─�
 │ │┌ ┐─────────────────── └ ┘─(──subdeclarator──)─
 └ ┘ ───� ┴──┬ ┬────────── ─�─
 ├ ┤─volatile─
 └ ┘─const────

�─ ──┬ ┬────────────────────── ─��
 └ ┘─subscript_declarator─

A subscript declarator describes the number of dimensions in an array and the
number of elements in each dimension. A subscript declarator has the form:

��──[─ ──┬ ┬───────────────────── ─]──�
 └ ┘─constant_expression─

�─ ──┬ ┬─────────────────────────────── ─��
 │ │┌ ┐─────────────────────────────
 └ ┘───� ┴─[──constant_expression──]─

A simple declarator consists of an identifier, which names a data object. For
example, the following block scope data declaration uses initial as the
declarator:

auto char initial;

The data object initial has the storage class auto and the data type char.

You can define or declare an aggregate by using a declarator that contains an
identifier, which names the data object, and some combination of symbols and
identifiers, which describes the type of data that the object represents. An
aggregate is a structure, union, or array.

70 C/VSE V1R1 Language Reference

 Declarators

The following declaration uses compute[5] as the declarator:

extern long int compute[5];

Table 7 on page 69 provides more examples of declarators.

Related Information

� “volatile and const Type Qualifiers” on page 67
� “_Packed Object Qualifier” on page 68
� “Declarations and Definitions” on page 31

 � “Arrays”
� “Enumerations” on page 63
� “Pointers” on page 78
� “Structures” on page 49
� “Unions” on page 59
� “Fixed-Point Decimal Data Types” on page 46

 Arrays
An array is an ordered group of data objects. Each data object is called an
element. All elements within an array have the same data type. An array element
is placed on its natural boundary. You can pad the data where the array is a
structure or a union.

Type Specifiers of Arrays
You can use any type specifier in an array declaration. Thus, array elements can
be of any data type, except function. An array type specifier can be an arithmetic
type, a pointer, a complete structure or union type, or another array.

Declarators of Arrays
The declarator contains an identifier followed by a subscript declarator. The
identifier can be preceded by an asterisk (�), making the variable an array of
pointers.

The subscript declarator describes the number of dimensions in the array and the
number of elements in each dimension. A subscript declarator has the form:

��──[─ ──┬ ┬───────────────────── ─]──�
 └ ┘─constant_expression─

�─ ──┬ ┬─────────────────────────────── ─��
 │ │┌ ┐─────────────────────────────
 └ ┘───� ┴─[──constant_expression──]─

Each bracketed expression describes a different dimension. The constant
expression must have an integral value. The value of the constant expression
determines the number of elements in that dimension. The following example
defines a one-dimensional array that contains four elements having type char:

char list[4];

 Chapter 3. Declarations and Definitions 71

 Declarators

The first subscript of each dimension is �. Thus, the array list contains the
elements:

list[�]
list[1]
list[2]
list[3]

The following example defines a two-dimensional array that contains six elements
of type int:

int roster[3][2];

Multidimensional arrays are stored in row-major order; when elements are
referenced in order of increasing storage location, the last subscript varies the
fastest. For example, the elements of array roster are stored in the order:

roster[�][�]
roster[�][1]
roster[1][�]
roster[1][1]
roster[2][�]
roster[2][1]

In storage, the elements of roster would be stored as:

│ │ │
 └───────────────┴───────────────┴───────────────
� � �
│ │ │
roster[�][�] roster[�][1] roster[1][�]

You can leave the first (and only the first) set of subscript brackets empty in:

� Array definitions that contain initializations
 � extern declarations
 � Parameter declarations

In array definitions that leave the first set of subscript brackets empty, the compiler
uses the initializer to determine the number of elements in the first dimension. In a
one-dimensional array, the number of initialized elements becomes the total
number of elements. In a multidimensional array, the compiler compares the
initializer to the subscript declarator to determine the number of elements in the first
dimension.

Initializers of Arrays
The initializer contains the = symbol followed by a brace-enclosed
comma-separated list of constant expressions. You do not need to initialize all
elements in an array. Elements that are not initialized (in extern and static
definitions only) receive the value �.

The following definition shows a completely initialized one-dimensional array:

static int number[3] = { 5, 7, 2 };

72 C/VSE V1R1 Language Reference

 Declarators

The array number contains the following values:

Element Value
number[�] 5
number[1] 7
number[2] 2

The following definition shows a partially initialized one-dimensional array:

static int number1[3] = { 5, 7 };

The values of number1 are:

Element Value
number1[�] 5
number1[1] 7
number1[2] �

The following one-dimensional array definition shows the number of initialized
elements in the array defining the number of elements in the array subscript.

static int item[] = { 1, 2, 3, 4, 5 };

The compiler gives item the five initialized elements:

Element Value
item[�] 1
item[1] 2
item[2] 3
item[3] 4
item[4] 5

You can initialize a one-dimensional character array by specifying:

� A brace-enclosed comma-separated list of constants, each of which can be
contained in a character

� A string constant (braces surrounding the constant are optional)

If you specify a string constant, the null character (\�) is placed at the end of the
string if there is room or if the array dimensions are not specified.

The following definitions show character array initializations:

static char name1[] = { 'J', 'a', 'n' };
static char name2[] = { "Jan" };
static char name3[4] = "Jan";

 Chapter 3. Declarations and Definitions 73

 Declarators

These definitions create the following elements:

Note that the following definition would result in the loss of the null character:

static char name[3]="Jan";

You can initialize a multidimensional array by:

� Listing the values of all elements you want to initialize, in the order that the
compiler assigns the values. The compiler assigns values by increasing the
subscript of the last dimension fastest. This form of a multidimensional array
initialization looks like a one-dimensional array initialization. The following
definition completely initializes the array month_days:

static month_days[2][12] =
{
 31, 28, 31, 3�, 31, 3�, 31, 31, 3�, 31, 3�, 31,
 31, 29, 31, 3�, 31, 3�, 31, 31, 3�, 31, 3�, 31
};

� Using braces to group the values of the elements you want initialized. You can
place braces around each element or around any nesting level of elements.
The following definition contains two elements in the first dimension. (You can
consider these elements as rows.) The initialization contains braces around
each of these two elements:

static int month_days[2][12] =
{
 { 31, 28, 31, 3�, 31, 3�, 31, 31, 3�, 31, 3�, 31 },
 { 31, 29, 31, 3�, 31, 3�, 31, 31, 3�, 31, 3�, 31 }
};

You can use nested braces to initialize dimensions and elements in a dimension
selectively.

The following definition explicitly initializes six elements in a 12-element array:

static int matrix[3][4] =
 {
 {1, 2},
 {3, 4},
 {5, 6}
 };

Element Value Element Value Element Value

name1[�] J name2[�] J name3[�] J
name1[1] a name2[1] a name3[1] a
name1[2] n name2[2] n name3[2] n
 name2[3] \� name3[3] \�

74 C/VSE V1R1 Language Reference

 Declarators

The initial values of matrix are:

Note: When using braces, you should place braces around each dimension (fully
braced), or only use one set of braces to enclose the entire set of initializers
(unbraced). Avoid putting braces around some elements and not others. An
unsubscripted array name (for example, region instead of region[4]) represents a
pointer whose value is the address of the first element of the array. For more
information, see “Primary Expression” on page 97.

Whenever an array is used in a context (such as a parameter) where it cannot be
used as an array, the identifier is treated as a pointer. The two exceptions are
when an array is used as an operand of the sizeof or as the address (&) operator.

You cannot have more initializers than the number of elements in the array.

The following example shows a parameter declaration for a one-dimensional array:

test(int y[])
{
...
}

Element Value Element Value

matrix[�][�] 1 matrix[1][2] �
matrix[�][1] 2 matrix[1][3] �
matrix[�][2] � matrix[2][�] 5
matrix[�][3] � matrix[2][1] 6
matrix[1][�] 3 matrix[2][2] �
matrix[1][1] 4 matrix[2][3] �

 Examples
The following program defines a floating-point array called prices.

The first for statement prints the values of the elements of prices. The second
for statement adds 5% to the value of each element of prices, and assigns the
result to total, and prints the value of total.

 Chapter 3. Declarations and Definitions 75

 Declarators

 EDCXRAAO

 /� Example of a one-dimensional array �/

#include <stdio.h>
#define ARR_SIZE 5

int main(void)
{
static float const prices[ARR_SIZE] = { 1.41, 1.5�, 3.75, 5.��, .86 };
auto float total;

 int i;

for (i = �; i < ARR_SIZE; i++)
 {

printf("price = $%.2f\n", prices[i]);
 }

 printf("\n");

for (i = �; i < ARR_SIZE; i++)
 {

total = prices[i] � 1.�5;

printf("total = $%.2f\n", total);
 }
}

This example produces the following output:

price = $1.41
price = $1.5�
price = $3.75
price = $5.��
price = $�.86

total = $1.48
total = $1.57
total = $3.94
total = $5.25
total = $�.9�

The following program defines the multidimensional array salary_tbl. A for loop
prints the values of salary_tbl.

76 C/VSE V1R1 Language Reference

 Declarators

 EDCXRAAP

 /� Example of a multidimensional array �/

#include <stdio.h>
#define NUM_ROW 3
#define NUM_COLUMN 5

int main(void)
{
static int salary_tbl[NUM_ROW][NUM_COLUMN] =

 {
{ 5��, 55�, 6��, 65�, 7�� },
{ 6��, 67�, 74�, 81�, 88� },
{ 74�, 84�, 94�, 1�4�, 114� }

 };
int grade , step;

for (grade = �; grade < NUM_ROW; ++grade)
for (step = �; step < NUM_COLUMN; ++step)

 {
printf("salary_tbl[%d] [%d] = %d\n", grade, step,

 salary_tbl[grade] [step]);
 }
}

This example produces the following output:

salary_tbl[�] [�] = 5��
salary_tbl[�] [1] = 55�
salary_tbl[�] [2] = 6��
salary_tbl[�] [3] = 65�
salary_tbl[�] [4] = 7��
salary_tbl[1] [�] = 6��
salary_tbl[1] [1] = 67�
salary_tbl[1] [2] = 74�
salary_tbl[1] [3] = 81�
salary_tbl[1] [4] = 88�
salary_tbl[2] [�] = 74�
salary_tbl[2] [1] = 84�
salary_tbl[2] [2] = 94�
salary_tbl[2] [3] = 1�4�
salary_tbl[2] [4] = 114�

 Related Information
� “Pointers” on page 78
� “Array Element Specification (Array Subscript) []” on page 101
� “String Constants” on page 28
� “Declarators” on page 70
� “Initializers” on page 91
� “Conversions” on page 117

 Chapter 3. Declarations and Definitions 77

 Declarators

 Pointers
A pointer type variable holds the address of a data object or a function. A pointer
can refer to an object of any one data type but cannot point to an object having the
register storage class specifier or to a bit field. Some common uses for pointers
are:

� To pass the address of a variable to a function. By referencing a variable
through its address, a function can change the contents of that variable. See
“Calling Functions and Passing Arguments” on page 98.

� To access dynamic data structures such as linked lists, trees, and queues.
� To access elements of an array or members of a structure.
� To access an array of characters as a string.

Declarators of Pointers
The following example declares pcoat as a pointer to an object having type long:

extern long �pcoat;

If the keyword volatile appears before the �, the declarator describes a pointer to
a volatile object. If the keyword volatile comes between the � and the identifier,
the declarator describes a volatile pointer.

The keyword const operates in the same manner as the volatile keyword
described in the preceding paragraph. In the following example, pvolt is a
constant pointer to an object having type short:

short � const pvolt;

The following example declares pnut as a pointer to an int object having the
volatile qualifier:

extern int volatile �pnut;

The following example defines psoup as a volatile pointer to an object having
type float:

float � volatile psoup;

The following example defines pfowl as a pointer to an enumeration object of type
bird:

enum bird �pfowl;

The following example declares x as a pointer to a function that returns a char
object:

char (�x)(void);

Initializers of Pointers
When you use pointers in an assignment operation, you must ensure that the types
of the pointers in the operation are compatible.

78 C/VSE V1R1 Language Reference

 Declarators

The following example shows compatible declarations for the assignment operation:

float subtotal;
float � sub_ptr;
...
sub_ptr = &subtotal;
printf("The subtotal is %f\n", �sub_ptr);

The next example shows incompatible declarations for the assignment operation:

double league;
int � minor;
...
minor = &league; /� error �/

The initializer is an = (equal sign) followed by the expression that represents the
address that the pointer is to contain. The following example defines the variables
total and speed as having type double and amount as having type pointer to a
double. The pointer amount is initialized to point to total:

double total, speed, �amount = &total;

The compiler converts an unsubscripted array name to a pointer to the first element
in the array. You can assign the address of the first element of an array to a
pointer by specifying the name of the array. The following two sets of definitions
are equivalent. Both define the pointer student and initialize student to the
address of the first element in class:

int class[8�];
int �student = class;

is equivalent to:

int class[8�];
int �student = &class[�];

You can assign the address of the first character in a string constant to a pointer by
specifying the string constant in the initializer. The following example defines the
pointer variable string and the string constant "abcd". The pointer string is
initialized to point to the character a in the string "abcd".

char �string = "abcd";

The following example defines weekdays as an array of pointers to string constants.
Each element points to a different string. The object weekdays[2], for example,
points to the string "Tuesday".

static char �weekdays[] =
 {

"Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday"

 };

A pointer can also be initialized to the integer constant �. Such a pointer is a
NULL pointer that does not point to any object.

 Chapter 3. Declarations and Definitions 79

 Declarators

 Restrictions
C/VSE supports only the pointers that are obtained in one of the following ways:

� Directly from a malloc, calloc, or realloc call
� As an address of a data type (that is, &variable)

 � From constants
� Received as a parameter from another C function
� Directly from a call to an LE/VSE service that allocates storage, such as

CEEGTST

Any bitwise manipulation of a pointer can result in undefined behavior.

You cannot use pointers to reference bit fields or objects having the register
storage class specifier.

A pointer to a packed structure or union is incompatible with a pointer to a
corresponding nonpacked structure or union, because packed and nonpacked
objects have different memory layouts. As a result, comparisons and assignments
between pointers to packed and nonpacked objects are not valid.

You can, however, perform these assignments and comparisons with type casts.
Consider the following example:

int main(void)
{

_Packed struct ss �ps1;
 struct ss �ps2;
...

ps1 = (_Packed struct ss �)ps2;
...
}

In the preceding example, the cast operation allows you to assign a pointer. After
the assignment, ps1 points to a packed structure and ps2 points to an unpacked
structure.

 Using Pointers
Two operators that are commonly used when you are working with pointers are the
& (address) operator and the � (indirection) operator. You can use the & operator
to reference the address of an object. For example, the following statement
assigns the address of x to the variable p_to_x. The variable p_to_x has been
defined as a pointer.

int x, �p_to_x;

p_to_x = &x;

The � (indirection) operator enables you to access the value of the object to which
a pointer refers. The following statement assigns to y the value of the object to
which p_to_x points:

float y, �p_to_x;
...
y = �p_to_x;

80 C/VSE V1R1 Language Reference

 Declarators

The following statement assigns the value of y to the variable that �p_to_x
references:

char y, �p_to_x,
...
�p_to_x = y;

 Pointer Arithmetic
You can perform a limited number of arithmetic operations on pointers.
These operations are:

� Increment and decrement
 � Comparison
 � Assignment

Increment and Decrement: The ++ (increment) operator increases the value of a
pointer by the size of the data object to which the pointer refers. For example, if
the pointer refers to the second element in an array, the ++ makes the pointer refer
to the third element in the array.

The -- (decrement) operator decreases the value of a pointer by the size of the
data object to which the pointer refers. For example, if the pointer refers to the
second element in an array, the -- makes the pointer refer to the first element in
the array.

If the pointer p points to the first element in an array, the following expression
causes the pointer to point to the third element in the same array:

p = p + 2;

Addition and Subtraction: If you have two pointers that point to the same array,
you can subtract one pointer from the other. This operation yields the number of
elements in the array that separate the two addresses to which the pointers refer.
Addition cannot be performed between two pointers. However, both addition and
subtraction may be performed between a pointer and an integer.

Comparison: You can compare two pointers with the following operators: ==, !=,
<, >, <=, and >=. See Chapter 4, “Expressions and Operators” on page 93 for
more information on these operators.

Pointer comparisons are defined only when the pointers point to elements of the
same array.

Assignment: You can assign to a pointer the address of a data object, the value
of another compatible pointer or the NULL pointer.

 Chapter 3. Declarations and Definitions 81

 Declarators

 Examples
The following program contains pointer arrays:

 EDCXRAAQ

 /� Example of how to use pointer arrays
This example searches for the first occurrence of a specified
character string in an array of character strings �/

#include <stdio.h>
#include <stdlib.h>
#define SIZE 2�

int main(void)
{

static char �names[] = { "Jim", "Amy", "Mark", "Sue", NULL };
char � find_name(char ��, char �);
char new_name[SIZE], �name_pointer;

printf("Enter name to be searched.\n");
 scanf("%s", new_name);

name_pointer = find_name(names, new_name);
printf("name %s%sfound\n", new_name,

(name_pointer == NULL) ? " not " : " ");
 exit(EXIT_FAILURE);
} /� End of main �/

 /� Function find_name.
This function searches an array of names to see if a given name
already exists in the array. It returns a pointer to the name
or NULL if the name is not found. �/

 /� char ��arry is a pointer to arrays of pointers (existing names) �/
 /� char �strng is a pointer to character array entered (new name) �/

char � find_name(char ��arry, char �strng)
{

for (; �arry != NULL; arry++) /� for each name �/
 {

if (strcmp(�arry, strng) == �) /� if strings match �/
return(�arry); /� found it! �/

 }
return(�arry); /� return the pointer �/

} /� End of find_name �/

Interaction with the preceding program could produce the following sessions:

Output Enter name to be searched.

Input Mark

Output name Mark found

or:

Output Enter name to be searched.

Input Bob

Output name Bob not found

82 C/VSE V1R1 Language Reference

 Declarators

 Related Information
� “Address &” on page 104
� “Indirection *” on page 104
� “Declarators” on page 70
� “volatile and const Type Qualifiers” on page 67
� “Initializers” on page 91

 Functions

 Function Definition
A function definition specifies the name, formal parameters, and body of a function.
You can also specify the function’s return type and storage class. A function
definition has the form:

��─ ──┬ ┬──────── ──┬ ┬─────────────────── ──┬ ┬──────────────── ─�
 ├ ┤─extern─ └ ┘─linkage_specifier─ └ ┘─type_specifier─
 └ ┘─static─

 ┌ ┐─────────────────────────────────
�──function_declarator─ ───� ┴┬ ┬───────────────────────────── ─�
 └ ┘─(──parameter_declaration──)─

�──block_statement──��

There are two ways to define a function: prototype and nonprototype. The
prototype method is preferred because of the parameter type checking that can be
performed.

A function definition (either prototype or nonprototype) contains the following:

� The optional storage class specifier extern or static, which determines the
scope of the function. If a storage class specifier is not given, the function has
external linkage.

� An optional type specifier, which determines the type of value that the function
returns. If a type specifier is not given, the function has type int.

� A function declarator, which provides the function with a name, can further
describe the type of the value that the function returns, and can list any
parameters (and their types) that the function expects. The parameters that the
function is expecting are enclosed in parentheses.

� A block statement, which contains data definitions, data declarations, and code.

In addition, the nonprototype function definition may also have parameter
declarations, that describe the types of parameters that the function receives. In
nonprototype functions, parameters that are not declared have type int.

A function can be called by itself or by other functions. Unless a function definition
has the storage class specifier static, the function can also be called by functions
that appear in other files. If the function has a storage class specifier of static, it
can only be directly invoked from within the same source file. If a function has the
storage class specifier static or a return type other than int, the function
definition or a declaration for the function must appear before, and in the same file
as, a call to the function. If a function definition has external linkage and a return

 Chapter 3. Declarations and Definitions 83

 Declarators

type of int, calls to the function can be made before it is visible because an implicit
declaration of extern int func(); is assumed. All declarations for a given function
must be compatible; that is, the return type is the same and the parameters have
the same type.

The default type for the return value and parameters of a function is int, and the
default storage class specifier is extern. If the function does not return a value or
it is not passed any parameters, use the keyword void as the type specifier and
use an empty parameter list.

void foo(void); /� a function declaration that �/
/� says function foo() returns �/
/� nothing and takes no arguments �/

You can include ellipses (...) at the end of your parameter list to indicate that a
variable number of arguments will be passed to the function. Parameter
promotions are performed, and no type checking is done.

In the following example, the function foo() takes at least one integer parameter;
the types and number of the other arguments are not known:

int foo(int a, ...)

You cannot declare a function as a struct or union member.

A function cannot have a return type of function, array, or any type having the
volatile or const qualifier. However, it can return a pointer to an object with a
volatile or const type.

You cannot define an array of functions. You can, however, define an array of
pointers to functions. In the following example, ary is an array of two function
pointers. Type casting is performed to the values assigned to ary for compatibility.

84 C/VSE V1R1 Language Reference

 Declarators

 EDCXRAAT

 /� Example that uses an array of pointers to functions �/

#include <stdio.h>
int func1(void);
void func2(double a);
int main(void)
{
 double num;
 int retnum;

void (�ary[2]) ();
ary[�] = ((void(�)())func1);
ary[1] = ((void(�)())func2);

 retnum=((int (�)())ary[�])(); /� calls func1 �/
printf("number returned = %i\n", retnum);

 ((void (�)(double))ary[1])(num); /� calls func2 �/
}

int func1(void)
{
int number=3;
return number;
}

void func2(double a)
{
a=333.3333;
printf("result of func2 = %f\n", a);
}

The following example is a complete definition of the function sum:

int sum(int x,int y)
{

return(x + y);
}

The function sum() has external linkage, returns an object that has type int, and
has two parameters of type int declared as x and y. The function body contains a
single statement that returns the sum of x and y.

 Function Declarator
The function declarator names the function and lists the function parameters. A
function declarator contains an identifier that names the function and a list of the
function parameters.

There are two types of function declarators: prototype and nonprototype. In a
prototype function declarator, the types of all parameters in the parameter list are
specified. In a nonprototype function declarator, only the identifiers of the
parameters are specified; the parameter types are not specified. Prototype function
declarators are preferred because of the parameter checking that can be
performed.

 Chapter 3. Declarations and Definitions 85

 Declarators

Prototype Function Declarator
A prototype function declarator has the form:

��──identifier──(──�

�─ ──┬ ┬─── ─)──��
 │ │┌ ┐─,─────────────────────────────
 └ ┘ ─── ┴ ─type_specifier─ ──┬ ┬─────────── ──┬ ┬────────

 └ ┘─parameter─ └ ┘ ─,──...─

Declare each parameter within the function declarator for prototype function
declarations. Any calls to the function must pass the same number of arguments
as there are parameters in the declaration.

To indicate that a function does not receive any values, use the keyword void in
place of the parameter. For example:

int stop(void)
{
}

The example below contains a function declarator sort with table declared as an
array of int and length declared as type int.

Note: Arrays as parameters are implicitly converted to a pointer to the type, and
therefore table is passed as a pointer to an int.

 EDCXRAAU

 /� Example of function declarators
Note that arrays as parameters are implicitly
converted to a pointer to the type �/

void sort(int table[], int length);

int main(void)
{
int tableffl “={1,5,8,4};

 int length=4;
printf("length is %d\n",length);

 sort(table,length);
}

86 C/VSE V1R1 Language Reference

 Declarators

void sort(int table[], int length)
{
int i, j, temp;

for (i = �; i < length -1; i++)
for (j = i + 1; j < length; j++)
if (table[i] > table[j])

 {
temp = table[i];
table[i] = table[j];
table[j] = temp;

 }
}

The following examples contain prototype function declarators:

double square(float x);
int area(int x,int y);
static char �search(char);

The example below illustrates how a typedef identifier can be used in a function
declarator:

typedef struct tm_fmt { int minutes;
 int hours;
 char am_pm;
 } struct_t;
long time_seconds(struct_t arrival)
 {

arrival.minutes = 3�;
arrival.hours = 12;
arrival.am_pm = 'p';

 }

The following function set_date() declares a pointer to a structure of type date as
a parameter. date_ptr has the storage class specifier register.

set_date(register struct date �date_ptr)
{
date_ptr->mon = 12;
date_ptr->day = 25;
date_ptr->year = 87;

}

Nonprototype Function Declarator
A nonprototype function declarator has the form:

 ┌ ┐─,───────────
��──identifier──(─ ─── ┴┬ ┬─────────── ─)──��
 └ ┘ ─parameter─

Each parameter should be declared in a parameter declaration list following the
declarator. If a parameter is not declared, it has type int.

char and short parameters are widened to int, and float to double. There is no
default argument promotion for decimal types. No type checking between the
argument type and the parameter type is done for nonprototyped functions. As
well, there are no checks to ensure that the number of arguments matches the
number of parameters.

 Chapter 3. Declarations and Definitions 87

 Declarators

A parameter declaration determines the storage class specifier and the data type of
the value. It has the form:

 ┌ ┐─,──────────
��─ ──┬ ┬────────────────────────────── ─── ┴─declarator─ ─;──��
 └ ┘ ──┬ ┬────────── ─type_specifier─
 └ ┘ ─register─

The only storage class specifier allowed is the register storage class specifier.
Any type specifier for a parameter is allowed. If you do not specify the register
storage class specifier, the parameter will have the auto storage class specifier. If
you omit the type specifier and you are not using the prototype form to define the
function, the parameter will have type int.

int func(i,j)
{

/� i and j have type int �/
}

You cannot declare a parameter in the parameter declaration list if it is not listed
within the declarator.

The following is an example of a nonprototype function declarator followed by a
parameter declaration list:

int func(a, b)
char a;
float b;
{
...
}

 Function Body
The function body is a block statement. (For more information on block statements,
see “Block” on page 127.) The following function has an empty body:

void stub1(void)
{
}

The following function body contains a definition for the integer variable big_num, an
if-else control statement, and a call to the function printf():

void largest(int num1, int num2)
{
 int big_num;

if (num1 >= num2)
big_num = num1;

 else
big_num = num2;

printf("big_num = %d\n", big_num);
}

88 C/VSE V1R1 Language Reference

 Declarators

 Function Declarations
A function declaration establishes the name and the parameters of the function. A
function is declared implicitly by its appearance in an expression if it has not been
defined or declared previously; the implicit declaration is equivalent to a declaration
of extern int func_name(void).

If the called function returns a value that has a type other than int, you must
declare the function before the function call. Even if a called function returns a type
int, explicitly declaring the function prior to its call is good programming practice.

Some declarations do not have parameter lists; the declarations simply specify the
types of parameters and the return values, as in the following example:

int func(int,long);

 Examples
The following example defines the function absolute with the return type double.
Because this is a noninteger return type, absolute is declared prior to the function
call.

 EDCXRAAV

 /� Example of a function defined prior to the function call
because it returns a noninteger value �/

#include <stdio.h>
double absolute(double);

int main(void)
{

double f = -3.�;

printf("absolute number = %f\n", absolute(f));
}

double absolute(double number)
{

if (number < �.�)
number = -number;

 return (number);
}

Specifying a return type of void on a function declaration indicates that the function
does not return a value. The following example defines the function absolute with
the return type void. Within the function main(), absolute is declared with the
return type void.

 Chapter 3. Declarations and Definitions 89

 typedefs

 EDCXRAAW

 /� Example of using void as the return type of a function �/

#include <stdio.h>

int main(void)
{
 void absolute(float);
float f = -8.7;

 absolute(f);
}

void absolute(float number)
{
if (number < �.�)
number = -number;

printf("absolute number = %f\n", number);
}

 Related Information
� “Declaration” on page 37

 typedefs
typedef declarations in C allow you to define your own identifiers that can be used
in place of C type specifiers such as int, float, and double. The data types you
define using typedef are not new data types. The identifiers you define are
synonyms for the primary data types used by the C language or data types derived
by combining the primary data types.

��──typedef──type_specifier──identifier──;──��

A typedef declaration does not reserve storage.

When an object is defined using a typedef identifier, the properties of the defined
object are exactly the same as if the object were defined by explicitly listing the
data type associated with the identifier.

 Examples
The following statements declare LENGTH as a synonym for int, and then use this
typedef to declare length, width, and height as integral variables:

typedef int LENGTH;
LENGTH length, width, height;

The preceding lines are equivalent to the following:

int length, width, height;

90 C/VSE V1R1 Language Reference

 Initializers

Similarly, typedef can be used to define a structure type. For example:

typedef struct {
 int kilos;
 int grams;
 } WEIGHT;

The structure WEIGHT can then be used in the following declarations:

WEIGHT chicken, cow, horse, whale;

The following is an example using typedef to define an enumerated type:

enum boolean { FALSE, TRUE };
typedef enum boolean BOOL;
BOOL done = FALSE;

 Related Information
� “Characters” on page 44
� “Floating-Point” on page 45
� “Fixed-Point Decimal Data Types” on page 46
� “Integers” on page 47
� “void Type” on page 49
� “Arrays” on page 71
� “Enumerations” on page 63
� “Pointers” on page 78
� “Structures” on page 49
� “Unions” on page 59

 Initializers
An initializer is an optional part of a data declaration that specifies an initial value of
a data object.

An initializer has the form:

��── ═ ─ ──┬ ┬─expression───────────────────────── ─��
 │ │┌ ┐─,──────────
 └ ┘─{─ ──┬ ┬─── ┴─expression─ ────────── ─}─
 │ │┌ ┐─,────────────────────
 │ ││ │┌ ┐─,──────────
 └ ┘─── ┴ ─{─ ─── ┴─expression─ ─}─

The initializer consists of the = symbol followed by an initial expression or a braced
list of initial expressions separated by commas. The number of initializers should
not be more than the number of elements to be initialized. The initial expression
evaluates to the first value of the data object.

To assign a value to a scalar object, use the simple initializer: = expression. For
example, the following data definition uses the initializer = 3 to set the initial value
of group to 3:

int group = 3;

For unions and structures, the set of initial expressions must be enclosed in { }
(braces) unless the initializer is a string literal. If the initializer of a character string

 Chapter 3. Declarations and Definitions 91

 C Data Mapping

is a string literal, the { } are optional. Individual expressions must be separated by
commas, and groups of expressions can be enclosed in braces and separated by
commas. The number of initializers must be less than or equal to the number of
objects being initialized.
In the following example, only the first eight elements of the array grid are
explicitly initialized. The remaining four elements that are not explicitly initialized
are initialized as if you explicitly initialized them to zero.

static short grid[3] [4] = {�, �, �, 1, �, �, 1, 1};

The initial values of grid are:

Initialization considerations for each data type are described in the section for that
data type.

Element Value Element Value

grid[�] [�] � grid[1] [2] 1
grid[�] [1] � grid[1] [3] 1
grid[�] [2] � grid[2] [�] �
grid[�] [3] 1 grid[2] [1] �
grid[1] [�] � grid[2] [2] �
grid[1] [1] � grid[2] [3] �

C Data Mapping
The System/370 architecture has the following boundaries in its memory mapping:

 � Byte
 � Halfword
 � Fullword
 � Doubleword

The code produced by the C compiler places data types on natural boundaries.
Some examples are:

� Byte boundary for char
� Halfword boundary for short int
� Fullword boundary for int
� Fullword boundary for long int
� Fullword boundary for pointer to ...
� Fullword boundary for float
� Doubleword boundary for double
� Doubleword boundary for long double

The C/VSE compiler places external variables in the CSECT static control section
and dynamic variables in storage allocated dynamically.

92 C/VSE V1R1 Language Reference

 Grouping and Evaluating Expressions

Chapter 4. Expressions and Operators

This chapter describes C language expressions. The evaluation of expressions is
based on the operators that the expressions contain and the context in which they
are used.

Most expressions can contain several different, but related, types of operands. The
following type classes describe related types of operands:

Integral Character objects and constants, objects having an enumeration type,
and objects having the type short, int, long, signed char, unsigned
short, unsigned int, unsigned long or unsigned char.

Arithmetic Integral objects and objects having the type float, double, long
double, and decimal.

Scalar Arithmetic objects and pointers of any type.

Aggregate Arrays and structures.

Many operators cause conversions from one data type to another. Conversions are
discussed in “Conversions” on page 117.

Grouping and Evaluating Expressions
Two operator characteristics determine how operands group with operators:
precedence and associativity. Precedence provides a priority system for grouping
different types of operators with their operands. Associativity provides a left-to-right
or right-to-left order for grouping operands to operators that have the same
precedence. For example, in the following statements, the value of 5 is assigned to
both a and b because of the right-to-left associativity of the = operator. The value
of c is assigned to b first, and then the value of b is assigned to a.

b = 9;
c = 5;
a = b = c;

When the order of expression evaluation is not specified, you can explicitly force
the grouping of operands with operators by using parentheses.

In the expression a + b � c / d, the � and / operations are performed before +
because of precedence. b is multiplied by c before it is divided by d because of
associativity.

The following table lists the C language operators in order of precedence and
shows the direction of associativity for each operator. The primary operators have
the highest precedence. The comma operator has the lowest precedence.
Operators that appear in the same group have the same precedence.

© Copyright IBM Corp. 1994, 1996 93

 Grouping and Evaluating Expressions

The order of evaluation for function call arguments or for the operands of binary
operators is not specified. Avoid writing such ambiguous expressions as:

z = (x � ++y) / func1(y);
func2(++i, x[i]);

In the example above, ++y and func1(y) may not be evaluated in the same order
by all C language implementations. If y has the value of 1 before the first
statement, it is not known whether the value of 1 or 2 is passed to func1(). In the
second statement, if i had the value of 1, it is not known whether the first or
second array element of x[] is passed as the second argument to func2().

The order of grouping operands with operators in an expression containing more
than one instance of an operator with both associative and commutative properties
is not specified. The operators that have the same associative and commutative
properties are: �, +, &, ¦ (or |), and ^ (or ¬). The grouping of operands can be
forced by grouping the expression in parentheses. For more information on the
locale of these operators, refer to the LE/VSE C Run-Time Programming Guide.

Table 8. Operator Precedence and Associativity

Operator Name

Associativity

Operators

Primary Left to right () [] . ->

Unary Right to left ++ -- - + !
˜ & �
 (typename)
 sizeof digitsof precisionof

Multiplicative Left to right � / %

Additive Left to right + -

Bitwise shift Left to right << >>

Relational Left to right < > <= >=

Equality Left to right == !=

Bitwise logical AND Left to right &

Bitwise exclusive OR* Left to right ^

Bitwise inclusive OR* Left to right |

Logical AND Left to right &&

Logical OR* Left to right ||

Conditional Right to left ? :

Assignment* Right to left = += -= �=
/= <<= >>= %=
&= ^= |=

Comma Left to right ,

Note: * These are described in “Character Set” on page 7.

Refer to the LE/VSE C Run-Time Programming Guide for more information on the locale of
the ¬ or ^ operator, the | or ¦ operator, and the || or ¦¦ operator.

94 C/VSE V1R1 Language Reference

 Lvalue

 Examples
The parentheses in the following expressions explicitly show how the C language
groups operands and operators. If parentheses did not appear in these
expressions, the operands and operators would be grouped in the same manner as
indicated by the parentheses.

total = (4 + (5 � 3));
total = (((8 � 5) / 1�) / 3);
total = (1� + (5/3));

The following expression contains operators that are both associative and
commutative:

total = price + prov_tax + city_tax;

The C language does not specify the order of evaluation of operands, and this may
lead to unexpected results. In the following expression, each function call may be
modifying the same global variables. These side effects may result in different
values for the expression depending on the order in which the functions are called:

a = b() + c() + d();

If the expression contains operators that are both associative and commutative and
the order of grouping operands with operators can affect the result of the
expression, separate the expression into several expressions. For example, the
following expressions could replace the previous expression if the called functions
do not produce any side effects that affect the variable a.

a = b();
a += c();
a += d();

 Related Information
� “Parenthesized Expression ()” on page 97

 Lvalue
An lvalue is an expression that represents an object. A modifiable lvalue is an
expression representing an object that can be changed. A modifiable lvalue is the
left operand in an assignment expression. The left operand must be an lvalue.

 Usage
All assignment operators evaluate their right operand and assign that value to their
left operand. The left operand must evaluate to a reference to an object.

The assignment operators are not the only operators that require an operand to be
an lvalue. The address operator requires an lvalue as an operand, while the
increment and the decrement operators require a modifiable lvalue as an operand.

 Examples
Expression Lvalue

x = 42; x
�ptr = newvalue; �ptr
a++ a

 Chapter 4. Expressions and Operators 95

 Constant Expression

 Related Information
� “Assignment Expression” on page 114
� “Address &” on page 104
� “Structure and Union Member Specification . −>” on page 101

 Constant Expression
A constant expression is an expression with a value that can be evaluated during
compilation rather than at run time. It evaluates to a constant value representable
by its type.
A constant expression can be:

� Integral constant expression
� Arithmetic constant expression
� Address constant expression

An integral constant expression has integral type. It is composed of integer
constants, character constants, enumeration constants, sizeof expressions, and
floating-point constants that are operands of casts. Cast operators only convert
arithmetic types to integral types (except in sizeof).

An integral constant expression is required:

� In a bit-field width specifier
� In the subscript declarator, as the description of an array bound
� In an enumerator, as the numeric value of an enumeration constant
� In the value of a case constant
� In the #if preprocessing directive

An arithmetic constant expression has arithmetic type. It is composed of integer
constants, character constants, enumeration constants, sizeof expressions, and
floating-point constants. Cast operators only convert arithmetic types to arithmetic
types (except in sizeof expressions).

An address constant expression is a pointer to an object of static storage duration
or to a function designator.

A constant expression in an initializer can be:

� An arithmetic constant
� A null pointer constant
� An address constant
� An address constant for an object (plus or minus an integral constant)

In a file scope data definition, the initializer must evaluate to a constant or to the
address of a static storage (extern or static) object (plus or minus an integer
constant) that is defined or declared earlier in the file. Thus, the constant
expression in the initializer can contain integer, character, enumeration, and float
constants, casts to any type, sizeof expressions, and addresses (possibly modified
by constants) of static objects.

96 C/VSE V1R1 Language Reference

 Primary Expression

In #if, constant expressions:

� Are integral constant expressions with no cast operator
� Can contain defined identifier or defined (identifier) expressions

 Examples
The following examples show constants used in expressions.

Expression Constant

x = 42; 42
extern int cost = 1���; 1���

 Related Information
� “Arrays” on page 71
� “File Scope Data Declarations” on page 32
� “switch” on page 140
� “Enumerations” on page 63
� “Structures” on page 49
� “Conditional Compilation” on page 157

 Primary Expression
A primary expression can be:

 � An identifier
� A string literal
� A parenthesized expression
� A constant expression
� A function call
� An array element specification
� A structure or union member specification

All primary operators have the same precedence and have left-to-right associativity.

Parenthesized Expression ()
You can use parentheses to explicitly force the order of expression evaluation. The
following expression does not contain any parentheses used for grouping operands
and operators. The parentheses surrounding weight, zipcode are used to form a
function call. Notice how the operands and operators are grouped in this
expression according to the rules for operator precedence and associativity.

This expression is evaluated in the order shown:

-discount � item + handling(weight, zipcode) < .1� � item
│ 1 │ │ │ 2 │ │ 3 │
└───┬───┘ 4 │ └───────────┬───────────┘ └────┬───┘
 └────┬─────┘ 5 │ │
 └──────────┬──────────┘ 6 │
 └───────────────────────────────┘

The following expression is similar to the previous expression. This expression,
however, contains parentheses that change how the operands and operators group.

 Chapter 4. Expressions and Operators 97

 Primary Expression

This expression is evaluated in the order shown:

(-discount � (item + handling(weight, zipcode))) < (.1� � item)
│ 1 │ │ │ 2 │ │ 3 │
 └───┬───┘ 5 │ 4 └──────────┬────────────┘ └─────┬────┘
 │ └────────┬────────┘ │
 └───────┬─────────┘ 6 │
 └───┘

Function Call ()
A function call is a primary expression containing a parenthesized argument list.
The argument list can contain any number of expressions separated by commas.
For example:

stub()
overdue(account, date, amount)
notify(name, date + 5)
report(error, time, date, ++num)

The arguments are evaluated, and each parameter is assigned the value of the
corresponding argument. Assigning a value to a parameter within the function body
changes the value of the parameter within the function, but has no effect on the
argument.

Calling Functions and Passing Arguments
A function call specifies a function name and a list of arguments. The calling
function passes the value of each argument to the specified function. The
argument list is enclosed by parentheses, and each argument is separated by a
comma. The argument list can be empty.

The arguments to a function are evaluated before the function is called. When an
argument is passed in a function call, the function receives a copy of the argument
value. If the value of the argument is an address, the called function can use
indirection to change the contents pointed to by the address. If a function or array
is passed as an argument, the argument is converted to a pointer that points to the
function or type of array element.

Arguments passed to parameters in prototype declarations are converted to the
declared parameter type. For nonprototype function declarations, char and short
parameters are promoted to int, and float to double. There is no default
argument promotion for decimal types.

You can pass a packed structure argument to a function expecting a nonpacked
structure of the same type and vice versa. (The same applies to packed and
nonpacked unions.)

Note: If you do not use a function prototype and you send a packed structure
when a nonpacked structure is expected, a run-time error may occur.

98 C/VSE V1R1 Language Reference

 Primary Expression

The order in which arguments are evaluated and passed to the function is
implementation defined. For example, the following sequence of statements calls
the function tester():

int x;
x = 1;
tester(x++, x);

The call to tester() in the preceding example may produce different results on
different compilers. Depending on the implementation, x++ may be evaluated first,
or x may be evaluated first. To avoid ambiguity, if you want x++ to be evaluated
first, you can replace the preceding sequence of statements with the following:

int x, y;
x = 1;
y = x++;
tester(y, x);

 Examples
The following statement calls the function startup and passes no parameters:

startup();

The following function call causes copies of a and b to be stored in a local area for
the function sum(). The function sum() is executed using the copies of a and b.

total = sum(a, b);

The following function call passes the value 2 and the value of the expression
a + b to sum():

total = sum(2, a + b);

The following statement calls the functions printf() and sum(). sum() receives
the values of a and b. printf() receives a character string and the return value of
the function sum():

printf("sum = %d\n", sum(a,b));

The following program passes the value of count to the function increment().
increment() increases the value of the parameter x by 1.

 Chapter 4. Expressions and Operators 99

 Primary Expression

 EDCXRAAX

 /� Example of how to pass a parameter to a function �/

#include <stdio.h>
void increment(int);

int main(void)
{
int count = 5;

/� value of count is passed to the function �/
 increment(count);
printf("count = %d\n", count);

}

void increment(int x)
{
 ++x;
printf("x = %d\n", x);

}

The output illustrates that the value of count in main() remains unchanged:

x = 6
count = 5

In the following program, main() passes the address of count to increment(). The
function increment() was changed to handle the pointer. The parameter x is
declared a pointer. The contents to which x points are then incremented.

 EDCXRAAY

 /� Example of how to pass an address to a function �/

#include <stdio.h>

int main(void)
{
void increment(int �x);
int count = 5;

/� address of count is passed to the function �/
 increment(&count);
printf("count = %d\n", count);

}

void increment(int �x)
{
 ++�x;
printf("�x = %d\n", �x);

}

The output shows that the variable count is increased. The following is an example
of a pass by reference:

�x = 6
count = 6

100 C/VSE V1R1 Language Reference

 Primary Expression

Array Element Specification (Array Subscript) []
A primary expression followed by an expression in [] (square brackets) specifies
an element of an array. The expression within the square brackets is referred to as
a subscript.

The primary expression must have a pointer type, and the subscript must have
integral type. The result of an array subscript is an lvalue.

The first element of each array has the subscript �. Thus, the expression
contract[35] refers to the 36th element in the array contract.

In a multidimensional array, you can reference each element (in the order of
increasing storage locations) by incrementing the rightmost subscript. For example,
the following statement gives the value 1�� to each element in the array
code[4][3][6]:

for (first = �; first <= 3; ++first)
for (second = �; second <= 2; ++second)

for (third = �; third <= 5; ++third)
code[first][second][third] = 1��;

 Related Information
� “Arrays” on page 71

Structure and Union Member Specification . −>
Two primary operators enable you to specify structure and union members: . (dot)
and -> (arrow).

The dot (a period) and arrow (formed by a minus and a greater than symbol)
operators are always preceded by a primary expression and followed by an
identifier.

When you use the dot operator, the primary expression must be an instance of a
type of structure or union, and the identifier must name a member of that structure
or union. The value of the entire expression is the value associated with the
named structure or union member. The result is an lvalue if the first expression is
an lvalue.

Some example dot expressions:

roster[num].name
roster[num].name[1]

When you use the arrow operator, the primary expression must be a pointer to a
structure or a union, and the identifier must name a member of the structure or
union. The value of the entire expression (which is an lvalue) is the value of the
named structure or union member to which the pointer expression refers; it is also
an lvalue.

roster -> name

 Chapter 4. Expressions and Operators 101

 Unary Expression

 Related Information
� “Unions” on page 59
� “Structures” on page 49

 Unary Expression
A unary expression contains one operand and a unary operator. All unary
operators have the same precedence and have right-to-left associativity.

 Increment ++
The ++ (increment) operator adds 1 to the value of the operand, or if the operand is
a pointer, increments the operand by the size of the object to which it points. Since
the operator changes the value of the operand, the operand must be a modifiable
lvalue.

You can place the ++ before or after the operand. If it appears before the operand,
the operand is incremented; then the incremented value is the value in the
expression. If you place the ++ after the operand, the current value of the operand
is used in the expression. Then the operand is incremented. For example:

play = ++play1 + play2++;

is equivalent to the following three expressions:

play1 = play1 + 1;
play = play1 + play2;
play2 = play2 + 1;

The result has the same type as the operand after integral promotion, but is not an
lvalue.

 Related Information
� “Usual Arithmetic Conversions” on page 117

 Decrement −−
The -- (decrement) operator subtracts 1 from the value of the operand, or if the
operand is a pointer, decreases the operand by the size of the object to which it
points. Since the operator changes the value of the operand, the operand must be
a modifiable lvalue.

You can place the -- before or after the operand. If it appears before the operand,
the operand is decremented, and the decremented value is used in the expression.
If the -- appears after the operand, the current value of the operand is used in the
expression and the operand is decremented.

For example:

play = --play1 + play2--;

is equivalent to the following three expressions:

play1 = play1 - 1;
play = play1 + play2;
play2 = play2 - 1;

The result has the same type as the operand after integral promotion, but is not an
lvalue.

102 C/VSE V1R1 Language Reference

 Unary Expression

 Related Information
� “Usual Arithmetic Conversions” on page 117

 Unary Plus +
The + (unary plus) operator maintains the value of the operand. The operand can
have any arithmetic type. The result is not an lvalue.

The result of the unary plus expression has the same type as the operand after any
integral promotions (for example, char to int).

 Related Information
� “Usual Arithmetic Conversions” on page 117

 Unary Minus −
The - (unary minus) operator negates the value of the operand. The operand can
have any arithmetic type. The result is not an lvalue.

For example, if quality has the value 1��, -quality has the value -1��.

The result of the unary minus expression has the same type as the operand after
any integral promotions (for example, char to int).

 Related Information
� “Usual Arithmetic Conversions” on page 117

 Logical Negation !
The ! (logical negation) operator determines whether the operand evaluates to �
(false) or nonzero (true). The expression yields the value 1 (true) if the operand
evaluates to �, and yields the value � (false) if the operand evaluates to a nonzero
value. The operand must have a scalar data type, but the result of the operation is
always type int and is not an lvalue.

The following two expressions are equivalent:

!right;
right == �;

 Related Information
� “Usual Arithmetic Conversions” on page 117

 Bitwise Negation ˜
The ˜ (bitwise negation) operator yields the bitwise complement of the operand. In
the binary representation of the result, every bit has the opposite value of the same
bit in the binary representation of the operand. The operand must be an integral
type. The result has the same type as the operand after integral promotion, but is
not an lvalue.

Let x represent the value 5. The 16-bit binary representation of x is:

�������������1�1

 Chapter 4. Expressions and Operators 103

 Unary Expression

The expression ˜x yields the following result (represented here as a 16-bit binary
number):

1111111111111�1�

The 16-bit binary representation of ˜� is:

1111111111111111

 Related Information
� “Usual Arithmetic Conversions” on page 117

 Address &
The & (address) operator yields a pointer to its operand. The operand must be an
lvalue or function designator. It cannot be a bit field, nor can it have the storage
class specifier register. The result is a pointer to the type of the operand. Thus,
if the operand has type int, the result is a pointer to an object having type int.
The result is not an lvalue.

If p_to_y is defined as a pointer to an int and y as an int, the following
expression assigns the address of the variable y to the pointer p_to_y:

p_to_y = &y;

 Related Information
� “Pointers” on page 78

 Indirection *
The � (indirection) operator determines the object referred to by the pointer
operand. The operand cannot be a pointer to void. The operation yields an lvalue
or a function designator if the operand points to a function. If the operand is a
pointer to type, the result has type type. Do not apply the indirection operator to
any pointer that contains an address that is not valid, such as NULL.

If p_to_y is defined as a pointer to an int and y as an int, the expressions:

p_to_y = &y;
�p_to_y = 3;

cause the variable y to receive the value 3.

 Related Information
� “Pointers” on page 78

 Cast
A cast operator converts the type of the operand to a specified data type and
performs the necessary conversions to the operand for the type. The cast operator
is a parenthesized type specifier or an expression. This type and the operand must
be scalar; the type may also be void. The result has the type of the specified data
type but is not an lvalue. For decimal operations, the cast operator suppresses
error messages and run-time exceptions or both.

104 C/VSE V1R1 Language Reference

 Unary Expression

The following expression contains a cast expression to convert an operand of type
int to a value of type double:

int x;
printf("x=%f\n", (double)x);

The function printf() receives the value of x as a double. The variable x remains
unchanged by the cast.

 Related Information
� “Conversions” on page 117

Size of an Object
The sizeof operator yields the size in bytes of the operand. The sizeof operation
cannot be performed on a bit field, a function, or an incomplete type such as void.
The operand may be the parenthesized name of a type or expression. The
compiler must be able to evaluate the size at compile time. The expression is not
evaluated; there are no side effects. For example, the value of b is 5 from
initialization to program termination:

#include <stdio.h>

int main(void){
int b = 5;

 sizeof(b++);
}

The result is an integer constant.

The size of a char object is the size of a byte. Given that the variable x has type
char, the expression sizeof(x) always evaluates to 1.

The result of a sizeof operation has type size_t. size_t is an unsigned integral
type defined in the <stddef.h> header.

The compiler determines the size of an object on the basis of its definition. The
sizeof operator does not perform any conversions. However, if the operand
contains operators that perform conversions, the compiler takes these conversions
into consideration. The following expression causes the usual arithmetic
conversions to be performed. The result of the expression x + 1 has type int (if x
has type char, short, or int or any enumeration type) and is equivalent to
sizeof(int):

sizeof (x + 1)

When you perform the sizeof operation on an array, the result is the total number
of bytes in the array. The compiler does not convert the array to a pointer before
evaluating the expression.

You can use a sizeof expression wherever an integral constant is required. One
of the most common uses for the sizeof operator is to determine the size of
objects that are being communicated to or from storage allocation, input, and output
functions.

 Chapter 4. Expressions and Operators 105

 Binary Expression

For portability of code, you should use the sizeof operator to determine the size
that a data type represents. In this instance, the name of the data type must be
placed in parentheses after the sizeof operator. For example:

sizeof(int)

When you use the sizeof operator with decimal(n,p), the result is the total
number of bytes occupied by the decimal type. In C/VSE, decimal data types are
implemented using the native packed decimal format. Each digit occupies half a
byte. The sign occupies an additional half byte. For example:

sizeof(decimal(1�,2))

will give you a result of 6 bytes.

digitsof and precisionof
The digitsof and precisionof operators yield information about decimal types or
an expression of the decimal type. The digitsof and precisionof macros are
defined in decimal.h.

The digitsof operator gives the number of significant digits of an object, and
precisionof gives the number of decimal digits. That is,

digitsof(decimal(n,p)) = n
precisionof(decimal(n,p)) = p

The results of the digitsof and precisionof operators are integer constants.

 Related Information
� “Fixed-Point Decimal Data Types” on page 46

 Binary Expression
A binary expression contains two operands separated by one operator.

Not all binary operators have the same precedence. Table 8 on page 94 shows
the order of precedence among operators. All binary operators have left-to-right
associativity.

The order in which the operands of most binary operators are evaluated is not
specified. Therefore, to ensure correct results, avoid creating binary expressions
that depend on the order in which the compiler evaluates the operands.

 Multiplication *
The � (multiplication) operator yields the product of its operands. The operands
must have an arithmetic type. The result is not an lvalue. The usual arithmetic
conversions are performed on the operands.

 Related Information
� “Usual Arithmetic Conversions” on page 117

106 C/VSE V1R1 Language Reference

 Binary Expression

 Division /
The / (division) operator yields the quotient of its operands. The operands must
have an arithmetic type. The result is not an lvalue.

If both operands are positive integers and the operation produces a remainder, the
remainder is ignored. Thus, the expression 7 / 4 yields the value 1 (rather than
1.75 or 2).

For SAA-compliant compilers, the result of -7 / 4 is -1 with a remainder of -3.

The result is undefined if the second operand evaluates to �.

The result has the same type as the operands after the usual arithmetic
conversions are performed.

 Related Information
� “Usual Arithmetic Conversions” on page 117

 Remainder %
The % (remainder) operator yields the remainder from the division of the left
operand by the right operand. For example, the expression 5 % 3 yields 2. The
result is not an lvalue.

Both operands must have an integral type. If the right operand evaluates to �, the
result is undefined. If either operand has a negative value, the result is such that
the following expression always yields the value of a, if b is not � and a/b is
representable:

(a / b) � b + a % b;

The result has the same type as the operands after the usual arithmetic
conversions are performed.

 Related Information
� “Usual Arithmetic Conversions” on page 117

 Addition +
The + (addition) operator yields the sum of its operands. Both operands must have
an arithmetic type, or one operand must be a pointer to an object type, and the
other operand must have an integral type.

When both operands have an arithmetic type, the usual arithmetic conversions are
performed on the operands. The result has the type produced by the conversions
on the operands and is not an lvalue.

When one of the operands is a pointer, the compiler converts the other operand to
an address offset. The result is a pointer of the same type as the pointer operand.
For example, after the addition, ptr will point to the third element of array:

int array[5];
int �ptr;
ptr = array + 2;

 Chapter 4. Expressions and Operators 107

 Binary Expression

 Related Information
� “Type Conversions” on page 118

 Subtraction −
The - (subtraction) operator yields the difference of its operands. Both operands
must have an arithmetic type, or the left operand must have a pointer type, and the
right operand must have the same pointer type or an integral type.

When both operands have an arithmetic type, the usual arithmetic conversions are
performed on the operands. The result has the type produced by the conversions
on the operands and is not an lvalue.

When the left operand is a pointer and the right operand has an integral type, the
compiler converts the value of the right to an address offset. The result is a pointer
of the same type as the pointer operand.

If both operands are pointers to the same type, the compiler converts the result to
an integral type that represents the number of objects separating the two
addresses. Behavior is undefined if the pointers do not refer to objects in the same
array.

 Related Information
� “Type Conversions” on page 118

Bitwise Left and Right Shift << >>
The bitwise shift operators move the bit values of a binary object. The left operand
specifies the value to be shifted. The right operand specifies the number of
positions that the bits in the value are to be shifted. The result is not an lvalue.

The << (bitwise left shift) operator indicates that the bits are to be shifted to the left.
The >> (bitwise right shift) operator indicates that the bits are to be shifted to the
right.

Each operand must have an integral type. The compiler performs integral
promotions on the operands. Then the right operand is converted to type int. The
result has the same type as the left operand (after the arithmetic conversions).

If the right operand has a negative value or a value that is greater than or equal to
the width in bits of the expression being shifted, the result is undefined.

If the right operand has the value �, the result is the value of the left operand (after
the usual arithmetic conversions).

The << operator fills vacated bits with zeros. For example, if l_op has the value
4�19, the bit pattern (in 16-bit format) of l_op is:

����11111�11��11

The expression l_op << 3 yields:

�11111�11��11���

If the left operand has an unsigned type, the >> operator fills vacated bits with
zeros. Otherwise, the compiler will fill the vacated bits of a signed value with a

108 C/VSE V1R1 Language Reference

 Binary Expression

copy of the value’s sign bit. For example, if l_op has the value -25, the bit pattern
(in 16-bit format) of l_op is:

11111111111��111

The expression l_op >> 3 yields:

11111111111111��

Relational < > <= >=
The relational operators compare two operands and determine the validity of a
relationship. If the relationship stated by the operator is true, the value of the result
is 1. Otherwise, the value of the result is �.

The following table describes the relational operators.

Both operands must have arithmetic types or be pointers to the same type. The
result has type int, and is not an lvalue.

If the operands have arithmetic types, the usual arithmetic conversions on the
operands are performed.

When the operands are pointers, the result is determined by the locations of the
objects to which the pointers refer. If the pointers do not refer to objects in the
same array, the result is not defined.

Relational operators have left-to-right associativity. Therefore, the expression:

a < b <= c

is interpreted as:

(a < b) <= c

If the value of a is less than the value of b, the first relationship is true and yields
the value 1. The compiler then compares the value 1 with the value of c.

Table 9. Relational Operators

Operator Usage

 < Indicates whether the value of the left operand is less than the value of
the right operand.

 > Indicates whether the value of the left operand is greater than the value of
the right operand.

 <= Indicates whether the value of the left operand is less than or equal to the
value of the right operand.

 >= Indicates whether the value of the left operand is greater than or equal to
the value of the right operand.

 Chapter 4. Expressions and Operators 109

 Binary Expression

Equality == !=
The equality operators, like the relational operators, compare two operands for the
validity of a relationship. The equality operators, however, have a lower
precedence than the relational operators. If the relationship stated by an equality
operator is true, the value of the result is 1. Otherwise, the value of the result is �.

The following table describes the equality operators.

Both operands must have arithmetic types or be pointers to the same type, or one
operand must have a pointer type and the other must be a pointer to void or NULL.
The result has type int, and is not an lvalue.

If the operands have arithmetic types, the usual arithmetic conversions are
performed on the operands.

If the operands are pointers, the result is determined by the locations of the objects
to which the pointers refer.

If the operands are pointers to objects or incomplete types and they are both null
pointers, they compare equal. If two pointers compare equal, they are either both
null or they point to the same object.

You can also use the equality operators to compare pointers to members that are
of the same type but do not belong to the same object.
The following expressions contain examples of equality and relational operators:

time < max_time == status < complete
letter != EOF

Table 10. Equality Operators

Operator Usage

== Indicates whether the value of the left operand is equal to the value of the
right operand.

!= Indicates whether the value of the left operand is not equal to the value of
the right operand.

 Bitwise AND &
The & (bitwise AND) operator compares each bit of its first operand to the
corresponding bit of the second operand. If both bits are 1’s, the corresponding bit
of the result is set to 1. Otherwise, the corresponding result bit is set to �.

Both operands must have an integral type. The usual arithmetic conversions are
performed on each operand. The result has the same type as the converted
operands, and is not an lvalue.

Because the bitwise AND operator has both associative and commutative
properties, the compiler may rearrange the operands in an expression that contains
more than one bitwise AND operator.

110 C/VSE V1R1 Language Reference

 Binary Expression

The following example shows the values of a, b, and the result of a & b
represented as 16-bit binary numbers:

bit pattern of a ���������1�111��
bit pattern of b ����������1�111�
bit pattern of a & b ������������11��

Bitwise Exclusive OR ^
The ^ (bitwise exclusive OR) operator compares each bit of its first operand to the
corresponding bit of the second operand. If both bits are 1’s or both bits are �’s,
the corresponding bit of the result is set to �. Otherwise, the corresponding result
bit is set to 1.

Both operands must have an integral type. The usual arithmetic conversions on
each operand are performed. The result has the same type as the converted
operands and is not an lvalue.

Because the bitwise exclusive OR operator has both associative and commutative
properties, the compiler may rearrange the operands in an expression that contains
more than one bitwise exclusive OR operator.

The following example shows the values of a, b, and the result of using the bitwise
exclusive OR operator represented as 16-bit binary numbers:

Note: The bitwise exclusive OR may appear as a ¬ on your screen. On EBCDIC
systems, and under C/VSE, the ^ symbol is represented by the ¬ symbol. For
more information on these symbols, refer to the LE/VSE C Run-Time Programming
Guide.

bit pattern of a ���������1�111��
bit pattern of b ����������1�111�
bit pattern of a ¬ b ���������111��1�

Bitwise Inclusive OR |
The | (bitwise inclusive OR) operator compares each bit of its first operand to the
corresponding bit of the second operand and yields a value whose bit pattern
shows which bits in either of the operands has the value 1. If both of the bits are �,
the result of that bit is �; otherwise, the result is 1.

Both operands must have an integral type. The usual arithmetic conversions are
performed on each operand. The result has the same type as the converted
operands and is not an lvalue.

Because the bitwise inclusive OR operator has both associative and commutative
properties, the compiler may rearrange the operands in an expression that contains
more than one bitwise inclusive OR operator.

 Chapter 4. Expressions and Operators 111

 Binary Expression

The following example shows the values of a, b, and the result of using the bitwise
inclusive OR operator represented as 16-bit binary numbers:

bit pattern of a ���������1�111��
bit pattern of b ����������1�111�
bit pattern of a | b ���������111111�

 Logical AND &&
The && (logical AND) operator indicates whether both operands have a nonzero
value. If both operands have nonzero values, the result has the value 1.
Otherwise, the result has the value �.

Both operands must have a scalar type. The usual arithmetic conversions on each
operand are performed. The result has type int and is not an lvalue.

The logical AND operator guarantees left-to-right evaluation of the operands. If the
left operand evaluates to �, the right operand is not evaluated.

The following examples show how the expressions that contain the logical AND
operator are evaluated:

The following example uses the logical AND operator to avoid a divide-by-zero
situation:

y && (x / y)

The expression x / y is not evaluated when y is �.

Note: The logical AND (&&) should not be confused with the address (&) operator
or the bitwise AND (&) operator. For example:

1 && 4 evaluates to 1
while
1 & 4 evaluates to 0

Expression Result

1 && � �
1 && 4 1
� && � �

 Logical OR ||
The || (logical OR) operator indicates whether either operand has a nonzero value.
If either operand has a nonzero value, the result has the value 1. Otherwise, the
result has the value �.

Both operands must have a scalar type. The usual arithmetic conversions are
performed on each operand. The result has type int and is not an lvalue.

The logical OR operator guarantees left-to-right evaluation of the operands. If the
left operand has a nonzero value, the right operand is not evaluated.

112 C/VSE V1R1 Language Reference

 Conditional Expression

The following examples show how expressions that contain the logical OR operator
are evaluated:

The following example uses the logical OR operator to conditionally increment y:

++x || ++y;

The expression ++y is not evaluated when the expression ++x evaluates to a
nonzero quantity.

Note: The logical OR (||) should not be confused with the bitwise OR (|)
operator. For example:

1 || 4 evaluates to 1
while
1 | 4 evaluates to 5

Expression Result

1 || � 1
1 || 4 1
� || � �

 Conditional Expression ? :
A conditional expression is a compound expression that contains a condition (the
first expression), an expression to be evaluated if the condition has a nonzero value
(the second expression), and an expression to be evaluated if the condition has the
value � (the third expression).

The conditional expression contains one two-part operator. The ? symbol follows
the condition, and the : symbol appears between the two action expressions. All
expressions that occur between the ? and : are treated as one expression.

The first operand must have a scalar type. The second and third operands must
have either arithmetic types, compatible structure types, compatible union types, or
compatible pointer types. Types are compatible when they have the same type
and are both qualified as _Packed or not packed, but not necessarily both qualified
as volatile or const. Also, the second and third operands may be a pointer and a
NULL pointer constant, or a pointer to an object (second operand) and a pointer to
void (third operand).

The first operand is evaluated, and its value determines whether the second or third
operand is evaluated:

� If the value is not equal to 0, the second operand is evaluated.
� If the value is equal to 0, the third operand is evaluated.

The result is the value of the second or third operand.

If the second and third operands are arithmetic types, the usual arithmetic
conversions are performed on them.

For details on the types of the result, see Table 11 on page 114.

 Chapter 4. Expressions and Operators 113

 Assignment Expression

Conditional expressions have right-to-left associativity.

Table 11. Type of the Conditional Expression

Type of One Operand Type of Other Operand Type of Result

Arithmetic Arithmetic Arithmetic after usual
arithmetic conversions

struct/union type Compatible struct/union
type

struct/union type with all
the qualifiers on both
operands

void void void

Pointer to type Pointer to compatible type Pointer to type with all the
qualifiers specified for the
type

Pointer to type NULL pointer Pointer to type

Pointer to object or
incomplete type

Pointer to void Pointer to void with all the
qualifiers specified for the
type

 Examples
The following expression determines which variable has the greater value, y or z,
and assigns the greater value to the variable x:

x = (y > z) ? y : z;

The preceding expression is equivalent to the following statement:

if (y > z)
x = y;

else
x = z;

The following expression calls the function printf(), which receives the value of
the variable c, if c evaluates to a digit. Otherwise, printf() receives the character
constant 'x'.

printf(" c = %c\n", isdigit(c) ? c : 'x');

 Assignment Expression
An assignment expression stores a value in the object designated by the left
operand.

The left operand in all assignment expressions must be a modifiable lvalue. The
type of the expression is the type of the left operand. The value of the expression
is the value of the left operand after the assignment has completed. The result of
an assignment expression is not an lvalue.

All assignment operators have the same precedence and have right-to-left
associativity.

There are two types of assignment operators: simple assignment and compound
assignment. The following sections describe these operators.

114 C/VSE V1R1 Language Reference

 Assignment Expression

 Simple Assignment =
The simple assignment operator stores the value of the right operand in the object
designated by the left operand.

Both operands must have arithmetic types, the same structure type, or the same
union type. Otherwise, both operands must be pointers to the same type, or the
left operand must be a pointer and the right operand must be the constant � or
NULL.

If both operands have arithmetic types, the system converts the type of the right
operand to the type of the left operand before the assignment.

If the left operand is a pointer and the right operand is the constant �, the result is
NULL.

Pointers to void can appear on either side of the simple assignment operator.

A packed structure or union can be assigned to a nonpacked structure or union of
the same type, and a nonpacked structure or union can be assigned to a packed
structure or union of the same type.

If one operand is packed and the other is not, the layout of the right operand is
remapped to match the layout of the left. This remapping of structures may
degrade performance. For efficiency, when you perform assignment operations
with structures or unions, you should ensure that both operands are either packed
or nonpacked.

Note: If you assign pointers to structures or unions, the objects they point to must
both be either packed or nonpacked. See “Initializers of Pointers” on page 78 for
more information on assignments with pointers.

You can assign values to operands with the type qualifier volatile. You cannot
assign a pointer of an object with the type qualifier const to a pointer of an object
without the type qualifier const such as in the following example:

const int �p1;
int �p2;
p2 = p1; /� not allowed �/

p1 = p2; /� allowed �/

The following example assigns the value of number to the member employee of the
structure payroll:

payroll.employee = number;

The following example assigns in order the value � to d, the value of d to c, the
value of c to b, and the value of b to a:

a = b = c = d = �;

Note: The assignment (=) operator should not be confused with the equality
comparison (==) operator. For example:

if(x == 3) evaluates to 1 if x is equal to three

while

if(x = 3) is taken to be true because (x = 3) evaluates to a non-zero value (3).
The expression also assigns the value 3 to x.

 Chapter 4. Expressions and Operators 115

 Comma Expression

 Compound Assignment
The compound assignment operator consists of a binary operator and the simple
assignment operator. It performs the operation of the binary operator on both
operands and gives the result of that operation to the left operand.

If the left operand of the += and -= operators is a pointer, the right operand must
have an integral type; otherwise, both operands must have an arithmetic type.

Both operands of the �=, /=, and %= operators must have an arithmetic type.

Both operands of the <<=, >>=, &=, ¬=, and ¦= operators must have an integral
type.

Note that the expression a �= b + c is equivalent to a = a � (b + c), and not
a = a � b + c.

The following table lists the compound assignment operators and shows an
expression using each operator:

Operator Example Equivalent Expression

+= index += 2 index = index + 2
-= �(pointer++) -= 1 �pointer = �(pointer++) - 1
�= bonus �= increase bonus = bonus � increase
/= time /= hours time = time / hours
%= allowance %= 1��� allowance = allowance % 1���
<<= result <<= num result = result << num
>>= form >>= 1 form = form >> 1
&= mask &= 2 mask = mask & 2
¬= test ¬= pre_test test = test ¬ pre_test
|= flag |= ON flag = flag | ON
Note: For more information on variant characters, refer to “Character Set” on page 7.

 Comma Expression ,
A comma expression consists of two operands. Although the compiler evaluates
both operands, the value and type of the right operand is the value and type of the
expression. The left operand is evaluated, possibly producing side effects, and the
value is discarded. The result of a comma expression is not an lvalue.

Both operands of a comma expression can have any type. All comma expressions
have left-to-right associativity. The left operand is fully evaluated before the right
operand.

If omega had the value 11, the following example would increment y and assign the
value 3 (the remainder when 11 is divided by 4) to alpha. The value of y is
ignored.

alpha = (y++, omega % 4);

116 C/VSE V1R1 Language Reference

 Conversions

Any number of expressions separated by commas can form a single expression.
The compiler evaluates the leftmost expression first. The value of the rightmost
expression becomes the value of the entire expression. For example, the value of
the following expression is rotate(direction):

intensity++, shade � increment, rotate(direction);

 Restrictions
You can place comma expressions within lists that contain commas (for example,
argument lists and initializer lists). However, because the comma has a special
meaning, you must place parentheses around comma expressions in these lists.
The comma expression t = 3, t + 2 is in the following function call:

f(a, (t = 3, t + 2), c);

The arguments to the function f() are the value of a, the value 5, and the value of
c.

 Conversions
Differences in the types of operands cause conversions. A conversion changes the
form of a value and its type; this can be implicit or explicit. For example, when you
add values having different data types, the compiler converts the types of the
objects to the same type before adding the values. Addition of a short int value
and an int value causes the compiler to convert the short int value to the int
type.

Conversions may occur, for example, when:

� A cast operation is performed
� An operand is prepared for an arithmetic or logical operation
� An assignment is made to an lvalue that has different type from the assigned

value
� A prototyped function is given an argument that has a different type from the

parameter
� The type of the expression specified on a function’s return statement has a

different type from the defined return type for the function

Usual Arithmetic Conversions
Type conversion is necessary to bring the operands of an expression to a common
type or to extend short values to the integer size used in machine operations. The
conversions depend on the specific operator and the type of the operand or
operands. However, many operators perform similar conversions on operands of
integer and floating-point types. These conversions are known as standard
arithmetic conversions because they apply to the types of values ordinarily used in
arithmetic.

A char, short int, int bit field, their signed or unsigned varieties, or an
enumeration type, may be used in an expression wherever an int or unsigned int
may be used. If an int can represent all values of the original type, the value is
converted to an int; otherwise, it is converted to an unsigned int. These are
called integral promotions. All other arithmetic types are unchanged by integral
promotions.

 Chapter 4. Expressions and Operators 117

 Conversions

Conversions follow these arithmetic conversion rules:

� First, if either operand has type long double, the other operand is converted to
type long double.

� Otherwise, if either operand has type double, the other operand is converted to
type double.

� Otherwise, if either operand has type float, the other operand is converted to
type float.

� Otherwise, if either operand has type decimal, the other operand is converted
to type decimal.

� Otherwise, the integral promotions are performed on both operands. Then the
following rules are applied:

– If either operand has type unsigned long int, the other operand is
converted to unsigned long int.

– Otherwise, if one operand has type long int and the other has type
unsigned int, if a long int can represent all values of an unsigned int,
the operand of type unsigned int is converted to long int; if a long int
cannot represent all the values of an unsigned int, both operands are
converted to unsigned long int.

– Otherwise, if either operand has type long int, the other operand is
converted to long int.

– Otherwise, if either operand has type unsigned int, the other operand is
converted to unsigned int.

– Otherwise, both operands have type int.

The remainder of this chapter discusses “Type Conversions,” and outlines the path
of each type of conversion.

 Type Conversions
A type conversion occurs when:

� A value is explicitly cast to another type
� An operator converts the type of its operand or operands before performing an

operation
� A value is passed as an argument to a function

The following sections outline the rules governing each kind of conversion.

In assignment operations, the type of the value being assigned is converted to the
type of the variable receiving the assignment. C allows conversions by assignment
between integer and floating-point types, even when the conversion entails loss of
information.

In C/VSE, int types are equivalent to long types (they both occupy 4 bytes).

The methods of carrying out the conversions depend upon the type, as follows.

From Signed Integer Types: C converts a signed integer to a shorter signed
integer by truncating the high-order bits, and converts a signed integer to a longer
signed integer by sign-extension. Conversion of signed integers to floating-point
values takes place without loss of information, except that some precision can be

118 C/VSE V1R1 Language Reference

 Conversions

lost when a long value is converted to a float. To convert a signed integer to an
unsigned integer, you must convert the signed integer to the size of the unsigned
integer. The result is interpreted as an unsigned value.

 Example
The following example shows the loss of precision when a signed integer is
converted to a float.

 EDCXRAAZ

 /� Example of loss of precision when converting
from a signed integer to a float �/

#include <stdio.h>

int main(void)
{

 int i;
 float f;
 double d;
long double ld;

i = 123456789�;
f = i;
d = i;
ld = i;

 printf("i = %d\n", i);
 printf("f = %2�.1�Lf\n", f);
 printf("d = %2�.1�Lf\n", d);
printf("ld = %2�.1�Lf\n", ld);

}

This example produces the following output (note the loss of precision):

i = 123456789�
f = 123456768�.�������47�
d = 123456789�.�������47�
ld = 123456789�.����������

When a signed integer is converted to a fixed-point decimal data type, the value
becomes decimal(10,0) and the sign is unchanged.

Table 12 summarizes conversions from signed integer types.

Table 12 (Page 1 of 2). Summary of Conversions from Signed Integer Types

From To Method

signed char short Sign-extend
int Sign-extend
long Sign-extend
unsigned char Preserve pattern; high-order bit loses function as sign bit
unsigned short Sign-extend to short; convert short to unsigned short
unsigned long Sign-extend to long; convert long to unsigned long
float Sign-extend to long; convert long to float
double Sign-extend to long; convert long to double
long double Sign-extend to long; convert long to long double
fixed-point decimal Convert to decimal(1�,�); sign is unchanged

 Chapter 4. Expressions and Operators 119

 Conversions

Table 12 (Page 2 of 2). Summary of Conversions from Signed Integer Types

From To Method

short signed char Preserve low-order byte
int Sign-extend
long Sign-extend
unsigned char Preserve low-order byte
unsigned short Preserve bit pattern; high-order bit loses function as sign bit
unsigned long Sign-extend to long; convert long to unsigned long
float Sign-extend to long; convert long to float
double Sign-extend to long; convert long to double
long double Sign-extend to long; convert long to long double
fixed-point decimal Convert to decimal(10,0); sign is unchanged

int signed char Preserve low-order byte

short Preserve low-order bytes
unsigned char Preserve low-order byte
unsigned short Preserve low-order bytes
unsigned long Preserve bit pattern; high-order bit loses function as sign bit
float Represent as a float; if the long cannot be represented exactly,

some loss of precision occurs
double Represent as a double; if the long cannot be represented exactly,

some loss of precision occurs
long double Represent as a long double; if the long cannot be represented

exactly, some loss of precision occurs
fixed-point decimal Convert to decimal(10,0); sign is unchanged

long signed char Preserve low-order byte

short Preserve low-order bytes
unsigned char Preserve low-order byte
unsigned short Preserve low-order bytes
unsigned long Preserve bit pattern; high-order bit loses function as sign bit
float Represent as a float; if the long cannot be represented exactly,

some loss of precision occurs
double Represent as a double; if the long cannot be represented exactly,

some loss of precision occurs
long double Represent as a long double; if the long cannot be represented

exactly, some loss of precision occurs
fixed-point decimal Convert to decimal(10,0); sign is unchanged

From Unsigned Integer Types: An unsigned integer is converted to a shorter
unsigned or signed integer by truncating the high-order bits. An unsigned integer is
converted to a longer unsigned or signed integer by setting the high-order bits to �
(zero-extend). Conversion from unsigned long or unsigned int to float may
result in a loss of some precision.

When an unsigned integer is converted to a signed integer of the same size, no
change in the bit pattern occurs. However, the value changes if the sign bit is set.

An unsigned integer is converted to a positive fixed-point decimal value.

120 C/VSE V1R1 Language Reference

 Conversions

Table 13 summarizes conversions from unsigned integer types.

Table 13. Summary of Conversions from Unsigned Integer Types

From To Method

unsigned char signed char Preserve bit pattern; high-order bit becomes sign bit
short Zero-extend; preserve bit pattern
int Zero-extend; preserve bit pattern
long Zero-extend; preserve bit pattern
unsigned short Zero-extend; preserve bit pattern
unsigned int Zero-extend; preserve bit pattern
unsigned long Zero-extend; preserve bit pattern
float Convert to long; convert long to float
double Convert to long; convert long to double
long double Convert to long; convert long to long double
fixed-point decimal Convert to positive decimal(1�,�)

unsigned short signed char Preserve low-order byte

short Preserve bit pattern; high-order bit becomes sign bit
int Zero-extend; preserve bit pattern
long Zero-extend; preserve bit pattern
unsigned char Preserve low-order byte
unsigned int Zero-extend
unsigned long Zero-extend
float Convert to long; convert long to float
double Convert to long; convert long to double
long double Convert to long; convert long to long double
fixed-point decimal Convert to positive decimal(1�,�)

unsigned int signed char Preserve low-order byte

short Preserve low-order bytes
int Preserve bit pattern; high-order bit becomes sign
long Preserve bit pattern; high-order bit becomes sign
unsigned char Preserve low-order byte
unsigned short Preserve low-order bytes
float Convert unsigned int to float
double Convert unsigned int to double
long double Convert unsigned int to long double
fixed-point decimal Convert to positive decimal(1�,�)

unsigned long signed char Preserve low-order byte

short Preserve low-order bytes
int Preserve bit pattern; high-order bit becomes sign
long Preserve bit pattern; high-order bit becomes sign
unsigned char Preserve low-order byte
unsigned short Preserve low-order bytes
float Convert unsigned long to float
double Convert unsigned long to double
long double Convert unsigned long to long double
fixed-point decimal Convert to positive decimal(1�,�)

From Floating-Point Types: A float value converted to a double undergoes no
change in value. A double converted to a float is represented exactly, if possible.
If C cannot exactly represent the double value as a float, the number loses
precision. If the value is too large to fit into a float, the number is undefined.

 Chapter 4. Expressions and Operators 121

 Conversions

A floating-point value is converted to an integer value by converting to an unsigned
long. The decimal fraction portion of the floating-point value is discarded in the
conversion. If the result is still too large to fit, the result of the conversion is
undefined.

When a floating-point value is converted to a fixed-point decimal data type and the
integer part cannot be represented, an exception is raised. If the decimal portion
cannot be represented, no exception is raised, but the decimal portion is truncated.

Table 14 summarizes conversions from floating-point types.

Table 14 (Page 1 of 2). Summary of Conversions from Floating-Point Types

From To Method

float signed char Convert to long; convert long to signed char
short Convert to long; convert long to short
int Truncate at decimal point; if result is too large to be represented as

an int, result is undefined
long Truncate at decimal point; if result is too large to be represented as a

long, result is undefined
unsigned short Convert to unsigned long; convert unsigned long to unsigned short
unsigned int Truncate at decimal point; if result is too large to be represented as

an unsigned int, result is undefined
unsigned long Truncate at decimal point; if result is too large to be represented as

an unsigned long, result is undefined
double Represent as a double
fixed-point decimal Conversion is dependent on the size of the decimal type; the

decimal may be truncated, or an exception may be raised if the
result is too large

double signed char Convert to float; convert float to char

short Convert to float; convert float to short
int Truncate at decimal point; if result is too large to be represented as a

long, result is undefined
long Truncate at decimal point; if result is too large to be represented as a

long, result is undefined
unsigned short Convert to unsigned long; convert unsigned long to unsigned short
unsigned int Truncate at decimal point; if result is too large to be represented as

an unsigned int, result is undefined
unsigned long Truncate at decimal point; if result is too large to be represented as a

long, result is undefined
float Represent as a float; if the double value cannot be represented

exactly as a float, loss of precision occurs; if the value is too large
to be represented in a float, the result is undefined

long double Represent as a long double
fixed-point decimal Conversion is dependent on the size of the decimal type; the decimal

may be truncated, or an exception may be raised if the result is too
large

122 C/VSE V1R1 Language Reference

 Conversions

Table 14 (Page 2 of 2). Summary of Conversions from Floating-Point Types

From To Method

long double signed char Convert to double; convert double to float; convert float to char
short Convert to double; convert double to float; convert float to short
int Truncate at decimal point; if result is too large to be represented as a

int, result is undefined
long Truncate at decimal point; if result is too large to be represented as a

long, result is undefined
unsigned short Convert to double; convert double to unsigned long; convert

unsigned long to unsigned short
unsigned int Truncate at decimal point; if result is too large to be represented as

an unsigned int, result is undefined
unsigned long Truncate at decimal point; if result is too large to be represented as

an unsigned long, result is undefined
float Convert to double; represent as a float; if the long double value

cannot be represented exactly as a float, loss of precision occurs; if
the value is too large to be represented in a float, the result is
undefined

double Represent as a double; If the result is too large to be represented as
a double, result is undefined

fixed-point decimal Conversion is dependent on the size of the decimal type; the decimal
may be truncated, or an exception may be raised if the result is too
large

From Fixed-Point Decimal Data Types: A fixed-point decimal data type is
converted to an integer value by discarding the fractional part and converting the
integer part to the integer type.

When a fixed-point decimal data type is converted to a floating type, and the value
being converted is outside the range of values that can be represented, the
behavior is undefined. If the value being converted is within the range of values,
but cannot be represented exactly, the result is truncated.

To and From Pointer Types: You can convert a pointer to one type of value to a
pointer to a different type, however the result may not always be defined.

You can convert a pointer value to an integral value. The path of the conversion
depends on the size of the pointer and the size of the integral type.

The conversion of an integer value to an address offset (in an expression with an
integral type operand and a pointer type operand) is system dependent.

A pointer to a constant or a volatile object should never be assigned to a
nonconstant or nonvolatile object.

A pointer to void can be converted to or from a pointer to any incomplete or object
type.

You cannot convert a pointer to a floating type or a fixed-point decimal data type.
Also, you can only convert a pointer to a function to a pointer to another function.

 Chapter 4. Expressions and Operators 123

 Conversions

From Other Types: When you define a value using the enum type specifier, the
value is treated as an int. Conversions to and from an enum value proceed as for
the int type.

When a packed structure or union is assigned to a nonpacked structure or union of
the same type, or an nonpacked structure is assigned to a packed structure or
union of the same type, the layout of the right operand is remapped to match the
layout of the left.

Table 15 summarizes conversions from other types.

The following example shows the memory content after a nonpacked structure is
assigned to a packed structure. Refer to “Packed Structures” on page 55 for more
information on the memory layout of packed structures.

 EDCXRAA0

Table 15. Summary of Conversions from Other Types

From To Method

_packed struct unpacked struct preserve bit pattern
unpacked struct _packed struct preserve bit pattern
packed union unpacked union preserve bit pattern
unpacked union packed union preserve bit pattern
pointer to _packed struct pointer to unpacked struct not valid
pointer to unpacked struct pointer to _packed struct not valid
pointer to _packed union pointer to unpacked union not valid
pointer to unpacked union pointer to _packed union not valid

 /� Example shows memory content after assigning
a nonpacked structure to a packed structure �/

#include <stdio.h>

struct ss {
 char ch;
 int m;
 short sh;
 int n;};
struct ss st1 = { '\x12', �x3456789A, �xBCDE, �xFEDCBA98 };
_Packed struct ss st2;

124 C/VSE V1R1 Language Reference

 Conversions

int main(void)
{
int i, size;
unsigned char �p;

st2 = st1; /� Assign a non-packed structure
to a packed structure �/

/� Print out the content of st1 in Hex �/

for (i = �, size = sizeof(st1), p = (char �) &st1;
i < size;

 ++i, ++p)
printf("%.2X ", �p);

 putchar('\n');

/� Print out the content of st2 in Hex �/

for (i = �, size = sizeof(st2), p = (char �) &st2;
i < size;

 ++i, ++p)
printf("%.2X ", �p);

 putchar('\n');
}

This example produces the following output:

12 �� �� �� 34 56 78 9A BC DE �� �� FE DC BA 98
12 34 56 78 9A BC DE FE DC BA 98

No other conversions between structure or union types are allowed.

The void type has no value, by definition. Therefore, it cannot be converted to any
other type, nor can any value be converted to void by assignment. However, a
value can be explicitly cast to void.

 Chapter 4. Expressions and Operators 125

 Conversions

126 C/VSE V1R1 Language Reference

 Block statement

Chapter 5. C Language Statements

This chapter describes the following C language statements:

 � Labels
 � Block
 � break
 � continue
 � do
 � Expression
 � for
 � goto
 � if
 � Null
 � return
 � switch
 � while

 Labels
A label is an identifier that allows your program to transfer control to other
statements within the same function. It identifies the statements to which control
may be passed. A label is the only type of identifier that has function scope (see
“Scope” on page 13). Control is transferred to the statement following the label by
means of the goto or switch statements. A label has the form:

��──identifier──:──statement──��

For example, the following are labels:

comment_complete: ; /� Example of null statement label �/
test_for_null: if (NULL == ptr) /� Example of statement label �/

The case and default labels, which have a specific use, are described later in this
chapter.

 Related Information
� “goto” on page 136
� “switch” on page 140

 Block
A block statement enables you to group any number of data definitions,
declarations, and statements into one statement. When you enclose definitions,
declarations, and statements within a single set of braces, everything within the
braces is treated as a single statement. You can place a block wherever a
statement is allowed.

© Copyright IBM Corp. 1994, 1996 127

 Block statement

The block statement has the form:

 ┌ ┐──────────────────────────────── ┌ ┐─────────────────
��─ ─{─ ───
 ┴──┬ ┬────────────────────────── ───
 ┴──┬ ┬─────────── ─}──��
 ├ ┤─type_definition────────── └ ┘─statement─
 ├ ┤─extern_declaration───────
 └ ┘─internal_data_definition─

All definitions and declarations occur at the beginning of a block before the
statements. Statements must follow the definitions and declarations. A block is
considered a single statement.

If you redefine a data object inside a nested block, the inner object hides the outer
object while the inner block is executed. Defining several variables that have the
same identifier can make a program difficult to understand and maintain.
Therefore, you should limit such redefinitions of identifiers within nested blocks.

If a data object is usable within a block, all nested blocks can use that data object
(unless that data object identifier is redefined).

Initialization of an auto or register variable occurs each time the block is executed
from the beginning. If you transfer control from one block to the middle of another
block, initializations are not always performed. You cannot initialize an extern
variable within a block.

 Examples
The following example shows how the values of data objects change in nested
blocks:

 EDCXRAA1

 1 /� Example shows how values of data objects change
 2 in nested blocks �/
 3
 4 #include <stdio.h>
 5
 6 int main(void)
 7 {
 8 int x = 1; /� Initialize x to 1 �/
 9 int y = 3;
1�
11 if (y > �)
12 {
13 int x = 2; /� Initialize x to 2 �/
14 printf("second x = %4d\n", x);
15 }
16 printf("first x = %4d\n", x);
17 }

This example produces the following output:

second x = 2
first x = 1

Two variables named x are defined in main(). The definition of x in line 8 retains
storage throughout the execution of main(). However, because the definition of x
in line 13 occurs within a nested block, line 14 recognizes x as the variable defined

128 C/VSE V1R1 Language Reference

 break statement

in line 13. Line 16 is not part of the nested block. Thus, line 16 recognizes x as
the variable defined on line 8.

 break
A break statement enables you to terminate and exit from a loop or switch
statement from any point within the loop or switch other than the logical end.
A break statement has the form:

��──break──;──��

In a looping statement such as do, for, or while the break statement ends the
loop and moves control to the next statement outside the loop. Within nested
statements, the break statement ends only the smallest enclosing do, for, switch,
or while statement.

In a switch body, the break statement ends the execution of the switch body and
gives control to the next statement outside the switch body.

You can place a break statement only in the body of a looping statement (do, for,
or while) or in the body of a switch statement.

 Examples
The following example shows a break statement in the action part of a for
statement. If the ith element of the array string is equal to '\�', the break
statement causes the for statement to end.

for (i = �; i < 5; i++)
{

if (string[i] == '\�')
 break;
 length++;
}

The following example shows a break statement in a nested looping statement.
The outer loop sequences an array of pointers to strings. The inner loop examines
each character of the string. When the break statement is executed, the inner loop
ends and control returns to the outer loop.

 Chapter 5. C Language Statements 129

 break statement

 EDCXRAA2

 /� Example of how to use break statement in a nested looping statement
This example counts the characters in the strings that are
part of an array of pointers to characters. The count stops
when one of the digits � through 9 is encountered
and resumes at the beginning of the next string. �/

#include <stdio.h>
#define SIZE 3

int main(void)
{

static char �strings[SIZE] = { "ab", "c5d", "e5" };
 int i;

int letter_count = �;
 char �pointer;

for (i = �; i < SIZE; i++) /� for each string �/
for (pointer = strings[i]; �pointer != '\�'; ++pointer)

 {
if (�pointer >= '�' && �pointer <= '9')

 break;
 letter_count++;
 }

printf("letter count = %d\n", letter_count);
}

This example produces the following output:

letter count = 4

The following example is a switch statement that contains several break
statements. Each break statement indicates the end of a specific clause and ends
the execution of the switch statement.

 EDCXRAA

 /� Example of a switch statement containing breaks �/

#include <stdio.h>

enum {morning, afternoon, evening} timeofday = morning;

130 C/VSE V1R1 Language Reference

 continue statement

int main(void)
{
 switch (timeofday)
 {
 case (morning):
 printf("Good Morning\n");
 break;

 case (evening):
 printf("Good Evening\n");
 break;

 default:
printf("Good Day, eh\n");

 break;
 }
}

 Related Information
� “do” on page 133
� “for” on page 134
� “switch” on page 140
� “while” on page 144

 continue
A continue statement enables you to terminate the current iteration of a loop.
Program control is passed from the location in the body of the loop in which the
continue statement is found to the end of the loop body. A continue statement
has the form:

��──continue──;──��

The continue statement ends the execution of the action part of a do, for, or
while statement and moves control to the condition part of the statement. If the
looping statement is a for statement, control moves to the third expression in the
condition part of the statement, and then to the second expression (the test) in the
condition part of the statement.

Within nested statements, the continue statement ends only the current iteration of
the do, for, or while statement immediately enclosing it.

You can place a continue statement only within the body of a looping statement
(do, for, or while).

 Examples
The following example shows a continue statement in a for statement. The
continue statement causes the system to skip over those elements of the array
rates that have values less than or equal to 1.

 Chapter 5. C Language Statements 131

 continue statement

 EDCXRAA3

 /� Example of a continue statement in a for statement �/

#include <stdio.h>
#define SIZE 5

int main(void)
{
 int i;

static float rates[SIZE] = { 1.45, �.�5, 1.88, 2.��, �.75 };

printf("Rates over 1.��\n");
for (i = �; i < SIZE; i++)

 {
if (rates[i] <= 1.��) /� skip rates <= 1.�� �/

 continue;
printf("rate = %.2f\n", rates[i]);

 }
}

This example produces the following output:

Rates over 1.��
rate = 1.45
rate = 1.88
rate = 2.��

The following example shows a continue statement in a nested loop. When the
inner loop encounters a number in the array strings, that iteration of the loop is
terminated. Execution continues with the third expression of the inner loop. (See
“for” on page 134). The inner loop is terminated when the '\�' escape sequence is
encountered.

 EDCXRAA4

 /� Example of a continue statement in a nested loop
This example counts the characters in strings that are part
of an array of pointers to characters. The count excludes
the digits � through 9. �/

#include <stdio.h>
#define SIZE 3

132 C/VSE V1R1 Language Reference

 do statement

int main(void)
{

static char �strings[SIZE] = { "ab", "c5d", "e5" };
 int i;

int letter_count = �;
 char �pointer;

for (i = �; i < SIZE; i++) /� for each string �/
for (pointer = strings[i]; �pointer != '\�'; ++pointer)

 {
if (�pointer >= '�' && �pointer <= '9')

 continue;
 letter_count++;
 }

printf("letter count = %d\n", letter_count);
}

This example produces the following output:

letter count = 5

Compare the preceding program with the program “EDCXRAA” on page 130. The
program on page 130 shows the use of the break statement but performs a similar
function.

 Related Information
 � “do”
� “for” on page 134
� “while” on page 144

 do
A do statement repeatedly executes a statement until the test expression evaluates
to �. Because of the order of execution, the statement is executed at least once. It
has the form:

��──do──statement──while──(──expression──)──;──��

The body of the loop is executed before the while clause (the controlling
expression) is evaluated. Further execution of the do statement depends on the
value of the while clause. If the while clause does not evaluate to �, the statement
is executed again. Otherwise, execution of the statement ends.

The controlling expression must be of scalar type.

A break, return, or goto statement can cause the execution of a do statement to
end, even when the while clause does not evaluate to �.

 Example
The following example prompts the user to enter a 1. If the user enters a 1, the
statement ends execution. Otherwise, the statement displays another prompt.

 Chapter 5. C Language Statements 133

 for statement

 EDCXRAA5

 /� Example of a do statement �/

#include <stdio.h>

int main (void)
{
 int reply1;

 do
 {

printf("Enter a 1\n");
 scanf("%d", &reply1);

} while (reply1 != 1);
}

 Related Information
� “break” on page 129
� “continue” on page 131

 � “for”
� “while” on page 144

 Expression
An expression statement contains an expression. Expressions are described in
Chapter 4, “Expressions and Operators” on page 93. An expression statement
has the form:

��─ ──┬ ┬──────────── ─;──��
 └ ┘ ─expression─

An expression statement evaluates the given expression and is used to assign the
value of the expression to a variable or to call a function.

 Examples
printf("Account Number: \n"); /� A call to printf �/
marks = dollars � exch_rate; /� An assignment to marks �/
(difference < �) ? ++losses : ++gain; /� A conditional increment �/
switches = flags ¦ BIT_MASK; /� An assignment to switches �/

 Related Information
� Chapter 4, “Expressions and Operators” on page 93

 for
A for statement enables you to:

� Repeatedly execute a statement

� Evaluate an expression prior to the first iteration of the statement
(“initialization”)

� Specify an expression to determine whether or not the statement should be
executed (“controlling part”)

� Evaluate an expression after each iteration of the statement

134 C/VSE V1R1 Language Reference

 for statement

A for statement has the form:

��──for──(─ ──┬ ┬───────────── ─;─ ──┬ ┬───────────── ─;──�
 └ ┘─expression1─ └ ┘─expression2─

�─ ──┬ ┬───────────── ─)──statement──��
 └ ┘─expression3─

expression1 is evaluated only once: before the statement is executed for the first
time. You can use this expression to initialize a variable. If you do not want to
evaluate an expression prior to the first iteration of the statement, you can omit this
expression.

expression2 is evaluated before each execution of the statement. expression2
must evaluate to a scalar type. If this expression evaluates to �, the for statement
is terminated, and control moves to the statement following the for statement.
Otherwise, the statement is executed. If you omit expression2, it will be as if the
expression had been replaced by a nonzero constant, and the for statement will
not be terminated by failure of this condition.

expression3 is evaluated after each execution of the statement. You can use this
expression to increase, decrease, or reinitialize a variable. If you do not want to
evaluate an expression after each iteration of the statement, you can omit this
expression.

A break, return, or goto statement can cause the execution of a for statement to
end, even when the second expression does not evaluate to �. If you omit
expression2, you must use a break, return, or goto statement to stop the
execution of the for statement.

 Examples
The following for statement prints the value of count 2� times. The for statement
initially sets the value of count to 1. After each execution of the statement, count
is incremented.

for (count = 1; count <= 2�; count++)
printf("count = %d\n", count);

For comparison purposes, the preceding example can be written using the following
sequence of statements to accomplish the same task. Note the use of the while
statement instead of the for statement.

count = 1;
while (count <= 2�)
{

printf("count = %d\n", count);
 count++;
}

The following for statement does not contain an initialization expression:

for (; index > 1�; --index)
{

list[index] = var1 + var2;
printf("list[%d] = %d\n", index, list[index]);

}

 Chapter 5. C Language Statements 135

 goto statement

The following for statement will continue executing until scanf() receives the
letter e:

for (;;)
{
 scanf("%c", &letter);

if (letter == '\n')
 continue;

if (letter == 'e')
 break;

printf("You entered the letter %c\n", letter);
}

The following for statement contains multiple initializations and increments. The
comma operator makes this construction possible.

for (i = �, j = 5�; i < 1�; ++i, j += 5�)
{

printf("i = %2d and j = %3d\n", i, j);
}

The following example shows a nested for statement. The outer statement is
executed as long as the value of row is less than 5. Each time the outer for
statement is executed, the inner for statement sets the initial value of column to
zero and the statement of the inner for statement is executed 3 times. The inner
statement is executed as long as the value of column is less than 3. This example
prints the values of an array having the dimensions [5][3]:

for (row = �; row < 5; row++)
for (column = �; column < 3; column++)

 printf("%d\n", table[row][column]);

 Related Information
� “break” on page 129
� “continue” on page 131

 goto
A goto statement causes your program to unconditionally transfer control to the
statement associated with the label specified on the goto statement. A goto
statement has the form:

��──goto──identifier──;──��

The goto statement transfers control to the statement indicated by the identifier.

 Notes
Use the goto statement sparingly. Because the goto statement can interfere with
the normal top-to-bottom sequence of execution, it makes a program more difficult
to read and maintain. Using a goto statement to jump into a loop may inhibit some
optimization. Often, a break statement, a continue statement, or a function call
can eliminate the need for a goto statement.

If you use a goto statement to transfer control to a statement inside of a loop or
block, initializations of automatic storage for the loop do not take place and the
result is undefined. The label must appear in the same function as the goto.

136 C/VSE V1R1 Language Reference

 if statement

 Examples
The following example shows a goto statement that is used to jump out of a nested
loop. This function could be written without using a goto statement.

 EDCXRAA6

 /� Example of a goto statement used to jump out of a nested loop �/

#include <stdio.h>

void display(int matrix[3][3]);

int main(void)
{

int matrix[3] [3]={1,2,3,4,5,2,8,9,1�};
 display(matrix);
 return(�);
}

void display(int matrix[3][3])
{

int i, j;

for (i = �; i < 3; i++)
for (j = �; j < 3; j++)

 {
if ((matrix[i][j] < 1) ¦¦ (matrix[i][j] > 6))

 goto out_of_bounds;

printf("matrix[%d][%d] = %d\n", i, j, matrix[i][j]);
 }
 return;

out_of_bounds: printf("number must be 1 through 6\n");
}

This example produces the following output:

matrix[�][�] = 1
matrix[�][1] = 2
matrix[�][2] = 3
matrix[1][�] = 4
matrix[1][1] = 5
matrix[1][2] = 2
number must be 1 through 6

 if
An if statement allows you to conditionally execute a statement when the specified
test expression evaluates to a nonzero value. The expression must have a scalar
type. Optionally, you can specify an else clause on the if statement. If the test
expression evaluates to � and an else clause exists, the statement associated with
the else clause is executed. An if statement has the form:

��──if──(──expression──)──statement─ ──┬ ┬───────────────── ─��
 └ ┘ ─else──statement─

When if statements are nested and else clauses are present, a given else is
associated with the closest preceding if statement within the same block.

 Chapter 5. C Language Statements 137

 if statement

 Examples
The following example causes grade to receive the value A if the value of score is
greater than or equal to 9�.

if (score >= 9�)
grade = 'A';

The following example displays number is positive if the value of number is greater
than or equal to �. Otherwise, the example displays number is negative.

if (number >= �)
printf("number is positive\n");

else
printf("number is negative\n");

The following example shows a nested if statement:

if (paygrade == 7)
if (level >= � && level <= 8)

salary �= 1.�5;
 else

salary �= 1.�4;
else

salary �= 1.�6;

The following example shows an if statement that does not have an else clause.
Because an else clause always associates with the closest if statement, braces
may be necessary to force a particular else clause to associate with the correct if
statement. In this example, omitting the braces would cause the else clause to
associate with the nested if statement.

if (gallons > �) {
if (miles > gallons)

mpg = miles/gallons;
}
else

mpg = �;

The following example shows an if statement nested within an else clause. This
example tests multiple conditions. The tests are made in order of their appearance.
If one test evaluates to a nonzero value, a statement executes and the entire if
statement ends.

if (value > �)
 ++increase;
else if (value == �)
 ++break_even;
else
 ++decrease;

138 C/VSE V1R1 Language Reference

 return statement

 Null
The null statement performs no operation and has the form:

��──;──��

You can use a null statement in a looping statement to show a nonexistent action
or in a labeled statement to hold the label.

 Example
The following example initializes the elements of the array price. Because the
initializations occur within the for expressions, a statement is needed only to finish
the for syntax; no operations are required.

for (i = �; i < 3; price[i++] = �)
 ;

 return
A return statement terminates the execution of the current function and returns
control to the caller of the function. A return statement has the form:

��─ ─return─ ──┬ ┬──────────── ─;──��
 └ ┘ ─expression─

A return statement is optional. If the system reaches the end of a function without
encountering a return statement, control is passed to the caller as if a return
statement without an expression were encountered.

A function can contain multiple return statements.

 Value
If an expression is present on a return statement, the value of the expression is
returned to the caller. If the data type of the expression is different from the data
type of the function, conversion of the return value takes place as if the value of the
expression were assigned to an object with the same data type as the function.

If an expression is not present on a return statement, the value of the return
statement is not defined. If an expression is not given on a return statement and
the calling function is expecting a value to be returned, the resulting behavior is
undefined.

You cannot use a return statement with an expression when the function is
declared as returning type void.

 Chapter 5. C Language Statements 139

 switch statement

 Examples
return; /� Returns no value �/
return result; /� Returns the value of result �/
return 1; /� Returns the value 1 �/
return (x � x); /� Returns the value of x � x �/

The following function searches through an array of integers to determine if a
match exists for the variable number. If a match exists, the function match() returns
the value of i. If a match does not exist, the function match() returns the value -1
(negative one).

int match(int number, int array[], int n)
{
 int i;

for (i = �; i < n; i++)
if (number == array[i])

 return (i);
 return(-1);
}

 Related Information
� “Functions” on page 83
� “Expression” on page 134

 switch
A switch statement enables you to transfer control to different statements within the
switch body, depending on the value of the switch expression. The switch
expression must have an integral type. Within the body of the switch statement,
there are case labels that consist of a label, a case expression (that evaluates to
an integral value), and statements, plus an optional default label. If the value of the
switch expression equals the value of one of the case expressions, the statements
following that case expression are executed. Otherwise, the default label
statements, if any, are executed. A switch statement has the form:

��─ ─switch─ ──(─expression─) ─switch_body──��

For the various case expressions to execute different statements, the switch_body
is enclosed in braces and can contain definitions, declarations, case clauses, and a
default clause. Each case and default clause can contain statements.
The full form of a switch_body is:

 ┌ ┐──────────────────────────────── ┌ ┐───────────────────
��──{─ ───
 ┴──┬ ┬────────────────────────── ───
 ┴──┬ ┬───────────── ─�
 ├ ┤─type_definition────────── └ ┘ ─case_clause─
 ├ ┤─extern_declaration───────
 └ ┘─internal_data_definition─

 ┌ ┐───────────────────
�─ ──┬ ┬──────────────── ───
 ┴──┬ ┬───────────── ─}──��

 └ ┘─default_clause─ └ ┘ ─case_clause─

140 C/VSE V1R1 Language Reference

 switch statement

Note: The compiler does not initialize auto and register variables within the
type_definition, extern_declaration, or internal_data_definition.

A case_clause contains a case label followed by one or more statements. A case
label contains the word case followed by a constant expression and a colon.
Anywhere you can place one case label, you can place multiple case labels. A
case_clause has the form:

 ┌ ┐──────────────────────────────── ┌ ┐─────────────
��─ ───
 ┴─case──constant_expression──:─ ───
 ┴─statement─ ─��

A default_clause contains a default label followed by one or more statements.
You can place a case label on either side of the default label. The default label
contains the word default followed by a colon. A switch statement can only have
one default clause. A default_clause has the form:

 ┌ ┐─────────────
��─ ──┬ ┬──────────── ─default──:─ ──┬ ┬──────────── ───
 ┴─statement─ ─��
 └ ┘─case_label─ └ ┘─case_label─

The switch statement passes control to the statement following one of the labels or
to the statement following the switch body. The value of the expression that
precedes the switch body determines which statement receives control. This
expression is called the switch expression.

The value of the switch expression is compared with the value of the expression in
each case label. If a matching value is found, control is passed to the statement
following the case label that contains the matching value. If the system does not
find a matching value and a default label appears anywhere in the switch body,
control passes to the default labeled statement. Otherwise, no part of the switch
body is executed, and control is passed to the statement following the switch body.

If control passes to a statement in the switch body, control does not pass from the
body until either a break statement is encountered or until the last statement in the
switch body is executed.

Integral promotion is performed on the switch expression, and all case expressions
are converted to the same type as the controlling expression.

 Restrictions
The switch expression and the case expressions must have an integral type. The
value of each case expression must be a unique constant integer expression.

A case expression must evaluate to an integral value, and the maximum number of
case expressions is limited by INT_MAX.

Only one default label can occur in each switch statement.

 Chapter 5. C Language Statements 141

 switch statement

 Examples
The following switch statement contains several case clauses and one default
clause. Each clause contains a function call and a break statement. The break
statements prevent control from passing down through each statement in the
switch body.

If the switch expression evaluated to '/', the switch statement would call the
function divide(). Control would then pass to the statement following the switch
body.

char key;

printf("Enter an arithmetic operator\n");
scanf("%c",&key);

switch (key)
{
 case '+':
 add();
 break;

 case '-':
 subtract();
 break;

 case '�':
 multiply();
 break;

 case '/':
 divide();
 break;

 default:
printf("The key you pressed is not valid\n");

 break;

}

If the switch expression matches a case expression, the statements following the
case expression are executed until a break statement is encountered or until the
end of the switch body is reached. In the following example, break statements are
not present. If the value of text[i] is equal to 'A', all three counters are
incremented. If the value of text[i] is equal to 'a', lettera and total are
increased. Only total is increased if text[i] is not equal to 'A' or 'a'.

char text[] = "A switch statement test case";
int capa, lettera, total, size, i;

for (capa = �, lettera = �, total = �, size = strlen(text), i = �;
i < size; i++)

{
switch(text[i])
 {
 case 'A':
 capa++;
 case 'a':
 lettera++;
 default:
 total++;
 }
}

142 C/VSE V1R1 Language Reference

 switch statement

The following switch statement performs the same statements for more than one
case label:

 EDCXRABI

 /� Example containing a switch statement that performs
the same statement for more than one case label. �/

#include <stdio.h>

int main(void)
{
 int month;

/� Read in a month value �/
printf("Enter month: ");

 scanf("%d", &month);

/� Tell what season it falls into �/
 switch (month)
 {
 case 12:
 case 1:
 case 2:

printf("month %d is a winter month\n", month);
 break;

 case 3:
 case 4:
 case 5:

printf("month %d is a spring month\n", month);
 break;

 case 6:
 case 7:
 case 8:

printf("month %d is a summer month\n", month);
 break;

 case 9:
 case 1�:
 case 11:

printf("month %d is a fall month\n", month);
 break;

 case 66:
 case 99:
 default:

printf("month %d is not a valid month\n", month);
 }

 return(�);
}

If the expression month had the value 3, control would be passed to the statement:

printf("month %d is a spring month\n", month);

The break statement would pass control to the statement following the switch body.

 Chapter 5. C Language Statements 143

 while statement

 Related Information
� “break” on page 129
� “Usual Arithmetic Conversions” on page 117

 while
A while statement enables the compiler to repeatedly execute the body of a loop
until the controlling expression evaluates to �. A while statement has the form:

��─ ─while─ ──(─expression─) ─statement──��

The expression is evaluated to determine whether or not the body of the loop
should be executed. The expression must be a scalar type. If the expression
evaluates to �, the statement terminates and the body of the loop is never
executed. Otherwise, the body is executed. After the body has been executed,
control is given once again to the expression. Further execution of the action
depends on the value of the condition.

A break, return, or goto statement can cause the execution of a while statement
to end, even when the condition does not evaluate to �.

 Example
In the following program, item[index] triples each time the value of the expression
index is less than MAX_INDEX. When index evaluates to MAX_INDEX, the while
statement ends.

 EDCXRAA7

/� Example of a while statement �/

#define MAX_INDEX (sizeof(item) / sizeof(item[�]))

#include <stdio.h>
int main(void)
{

static int item[] = { 12, 55, 62, 85, 1�2 };
int index = �;

while (index < MAX_INDEX)
 {

item[index] �= 3;
printf("item[%d] = %d\n", index, item[index]);

 ++index;
 }
}

This example produces the following output:

item[�] = 36
item[1] = 165
item[2] = 186
item[3] = 255
item[4] = 3�6

144 C/VSE V1R1 Language Reference

 while statement

 Related Information
� “break” on page 129
� “continue” on page 131

 Chapter 5. C Language Statements 145

 while statement

146 C/VSE V1R1 Language Reference

 Preprocessor Directive Format

 Chapter 6. Preprocessor Directives

This chapter describes the C preprocessor directives. Preprocessing is a step in
the compilation process that:

� Replaces tokens in the current file with specified replacement tokens. A token
is a series of characters delimited by a white space. The only white space
allowed on a preprocessor directive is the space, horizontal tab, vertical tab,
form feed, and comments. The newline character can also separate
preprocessor tokens.

� Imbeds files within the current file.
� Conditionally compiles sections of the current file.
� Changes the line number of the next line of source and changes the file name

of the current file.
� Generates diagnostic messages.

The preprocessor recognizes the following directives:

 � #define
 � #undef
 � #error
 � #include
 � #if
 � #ifdef
 � #ifndef
 � #else
 � #elif
 � #endif
 � #line
 � #pragma

Note: The # is not part of the name of the directive and can be separated from
the name with a white space.

Preprocessor Directive Format
Preprocessor directives begin with the # token followed by a preprocessor keyword.
The # token must appear as the first character that is not white space on a line.

A preprocessor directive ends at the newline character unless the last character of
the line is the \ (backslash) character. If the \ character appears as the last
character in the preprocessor line, the preprocessor interprets the \ and the
newline character as a continuation marker, and interprets the following line as a
continuation of the current preprocessor line.

Except for some #pragma directives, preprocessor directives can appear anywhere
in a program.

© Copyright IBM Corp. 1994, 1996 147

 #define

 #define
The preprocessor define directive defines macros and directs the preprocessor to
replace all subsequent occurrences of a macro with specified replacement tokens.
A preprocessor #define directive has the form:

��──#define──identifier─ ──┬ ┬────────────────────────── ─�
 └ ┘ ─(─ ──┬ ┬──────────────── ─)─
 │ │┌ ┐─,──────────
 └ ┘ ───
 ┴─identifier─

 ┌ ┐──────────────────
�─ ───
 ┴──┬ ┬──────────── ─��
 ├ ┤─identifier─
 └ ┘─character──

The #define directive can contain an object-like macro definition or a function-like
macro definition.

Object-Like Macro Definition
An object-like macro definition replaces a single identifier with the specified
replacement tokens. They are called feature test macros when they are used to
indicate the availability or existence of features. Feature test macros are used to
control conditional compilation (see “Conditional Compilation” on page 157).

The following object-like definition causes the preprocessor to replace all
subsequent instances of the identifier COUNT with the constant 1���:

#define COUNT 1���

This definition causes the preprocessor to change the following statement (if the
statement appears after the previous definition):

int arry[COUNT];

In the output of the preprocessor, the preceding statement appears as:

int arry[1���];

The following definition references the previously defined identifier COUNT:

#define MAX_COUNT COUNT + 1��

The preprocessor replaces each subsequent occurrence of MAX_COUNT with
COUNT + 1��, which the preprocessor then replaces with 1��� + 1��.

Function-Like Macro Definition
Function-like macro definition: an identifier followed by a parenthesized
parameter list and the replacement tokens. White space cannot separate the
identifier (which is the name of the macro) and the left parenthesis of the parameter
list. A comma must separate each parameter. For portability, do not have more
than 31 parameters for a macro.

148 C/VSE V1R1 Language Reference

 #define

Function-like macro invocation: an identifier followed by a parenthesized list of
arguments. A comma must separate each argument. Once the preprocessor
identifies a function-like macro invocation, argument substitution takes place. A
parameter in the replacement code is replaced by the corresponding argument.
Any macro invocations contained in the argument itself are completely replaced
before the argument replaces its corresponding parameter in the replacement code.

The following line defines the macro SUM as having two parameters a and b and the
replacement tokens (a + b):

#define SUM(a,b) (a + b)

This definition causes the preprocessor to change the following statements (if the
statements appear after the previous definition):

c = SUM(x,y);
c = d � SUM(x,y);

In the output of the preprocessor, the preceding statements, appear as:

c = (x + y);
c = d � (x + y);

Notes:

1. A macro invocation must have the same number of arguments as the
corresponding macro definition has parameters.

2. In the macro invocation argument list, commas that appear as character
constants, in string constants or surrounded by parentheses, do not separate
arguments.

3. The scope of a macro definition begins at the definition and does not end until
a corresponding #undef directive is encountered. If there is no corresponding
#undef directive, the scope of the macro definition lasts until the end of the
compilation is reached.

4. A recursive macro is not fully expanded. For example, the definition

#define x(a,b) x(a+1,b+1) + 4

would expand

x(2�,1�)

to

x(2�+1,1�+1) + 4

rather than trying to expand the macro x over and over within itself. After the
macro x is expanded, it is a function call to a function x().

5. A definition is not required to specify replacement tokens. The following
definition removes all instances of the token static from subsequent lines
within the scope of this macro.

#define static

6. You can change the definition of a defined identifier or macro with a second
preprocessor #define directive only if the second preprocessor #define
directive is preceded by a preprocessor #undef directive. See “#undef” on
page 151. The #undef directive nullifies the first definition so that the same
identifier can be used in a redefinition.

 Chapter 6. Preprocessor Directives 149

 #define

7. Within the text of the program, the preprocessor does not scan character
constants or string constants for macro invocations.

 Examples
The following program contains two macro definitions and a macro invocation that
references both of the defined macros:

 EDCXRAA8

 /� Example use of #define directives
The example EDCXRAA9 shows the effect of preprocessor
macro replacement on this program �/

#define SQR(s) ((s) � (s))
#define PRNT(a,b) \
{ printf("value 1 = %d\n", a); \
printf("value 2 = %d\n", b) ; }

int main(void)
{
int x = 2;
int y = 3;

 PRNT(SQR(x),y);
}

After being interpreted by the preprocessor, the preceding program is replaced by
code equivalent to the following:

 EDCXRAA9

 /� Example use of #define directives
This example shows the effect of preprocessor
macro replacement on the program in example EDCXRAA8 �/

int main(void)
{
int x = 2;
int y = 3;

 {
printf("value 1 = %d\n", ((x) � (x)));
printf("value 2 = %d\n", y);

 }
}

This example produces the following output:

value 1 = 4
value 2 = 3

 Related Information
� “#undef” on page 151
� “# Operator” on page 154
� “## Operator” on page 155

150 C/VSE V1R1 Language Reference

 Predefined macros

 #undef
A preprocessor undef directive causes the preprocessor to end the scope of a
preprocessor definition. A preprocessor #undef directive has the form:

��──#undef──identifier──��

#undef is ignored if the identifier is not currently defined as a macro.

 Examples
The following directives define BUFFER and SQR:

#define BUFFER 512
#define SQR(x) ((x) � (x))

The following directives nullify the preceding definitions:

#undef BUFFER
#undef SQR

Any occurrences of the identifiers BUFFER and SQR that follow these #undef
directives are not replaced with any replacement tokens. Once the definition of a
macro has been removed by an #undef directive, the identifier can be used in a
new #define directive.

 Related Information
� “#define” on page 148

 Predefined Macros
The C language provides the following predefined macro names.

__LINE__ An integer representing the current source line number.

__FILE__ A character string literal containing the name of the source file.

In C/VSE, the __LINE__ macro represents the line number of the source file being
processed, relative to the start of the source file. You can use the __FILE__ macro
to determine which file is being processed. The following example illustrates the
values of __LINE__ and __FILE__.

 Chapter 6. Preprocessor Directives 151

 Predefined macros

 EDCXRABA

 /� Example use of __LINE__ and __FILE__
File 1 of 2 - file 2 is EDCXRABX �/

#include <stdio.h>
#include "edcxrabx.c"

int main(void)
{

printf("At line %d of file %s\n", __LINE__, __FILE__);
testsub(); /� Call to function defined in EDCXRABX �/

...
}

 EDCXRABX

 /� Example use of __LINE__ and __FILE__
File 2 of 2 - file 1 is EDCXRABA �/

testsub()
{

printf("At line %d of file %s\n", __LINE__, __FILE__);
 return;
}

__DATE__ A character string literal containing the date when the source
file was compiled. The date will be in the form:

"Mmm dd yyyy"

where:

Mmm represents the month in an abbreviated form (Jan, Feb, Mar,
Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, or Dec).

dd represents the day. If the day is less than 10, the first d will
be a blank character.

yyyy represents the year.

__TIME__ A character string literal containing the time when the source
file was compiled. The time will be in the form:

"hh:mm:ss"

where:

hh represents the hour.

mm represents the minutes.

ss represents the seconds.

__TIMESTAMP__ Always returns the value:

"Mon Jan 1 �1:�1:�1 199�"

(In some implementations of C, __TIMESTAMP__ returns the date
and time when the source file was last modified.)

__STDC__ The integer 1.

Note: This macro is undefined if the langlvl pragma is set to
anything other than ANSI.

152 C/VSE V1R1 Language Reference

 Predefined macros

 Examples
The following printf() function calls will display the values of the predefined
macros (__LINE__, __FILE__, __TIME__, and __DATE__) and will print a message
indicating the program’s conformance to ANSI standards based on __STDC__:

 EDCXRABB

 /� Example use of predefined macros �/

#pragma langlvl(ANSI)
#include <stdio.h>

#ifdef __STDC__
 #define CONFORM "conforms"
#else

#define CONFORM "does not conform"
#endif

int main(void)
{
printf("Line %d of file %s has been executed\n", __LINE__, __FILE__);
printf("This file was compiled at %s on %s\n", __TIME__, __DATE__);
printf("This program %s to ANSI standards\n", CONFORM);

}

 Other Macros
__LOCALE__ A string literal representing the locale of the LOCALE

compile-time option. If no LOCALE compile-time option was
supplied, the macro is undefined.

The following example illustrates how to set the run-time locale
to the compile-time locale:

main()
{
 setlocale(LC_ALL, __LOCALE__);
...
}

__FILETAG__ A string literal representing the character code set of the
filetag pragma associated with the current file. If no filetag
pragma is present, the macro is undefined.

__CODESET__ A string literal representing the character code set of the
LOCALE compile-time option. If no LOCALE compile-time option
was supplied, the macro is undefined.

__COMPILER_VER__ The compiler version. For C/VSE Version 1 Release 1 the
value is X'11010000'.

__TARGET_LIB__ The target library version: X'11040000', for the LE/VSE
Release 4 library.

Notes:

1. The predefined macro names consist of two underscore (_ _) characters
immediately preceding the name, the name in uppercase letters, and two
underscore characters immediately following the name.

2. The value of __LINE__ will change during compilation as the compiler processes
subsequent lines of your source program. Also, the values of __FILE__ and

 Chapter 6. Preprocessor Directives 153

 # operator

__FILETAG__ will change as the compiler processes any #include files that are
part of your source program.

 Restrictions
Predefined macro names cannot be the subject of a #define or #undef
preprocessor directive.

 Related Information
� “#define” on page 148
� “#undef” on page 151
� “#line” on page 161

 # Operator
The # (single number sign) operator is used to convert a parameter of a
function-like macro (see “Function-Like Macro Definition” on page 148) into a
character string literal. If macro ABC is defined using the following directive:

#define ABC(x) #x

all subsequent invocations of the macro ABC are expanded into a character string
literal containing the argument passed to ABC. For example:

When you use the # operator in a function-like macro definition, the following rules
apply:

1. A parameter in a function-like macro that is preceded by the # operator will be
converted into a character string literal containing the argument passed to the
macro.

2. White-space characters that appear before or after the argument passed to the
macro will be deleted.

3. Multiple white-space characters imbedded within the argument passed to the
macro will be replaced by a single space character.

4. If the argument passed to the macro contains a string literal and if a \
(backslash) character appears within the literal, a second \ character will be
inserted before the original \ when the macro is expanded.

5. If the argument passed to the macro contains a " (double quotation mark)
character, a \ character will be inserted before the " when the macro is
expanded.

6. The conversion of an argument into a string literal occurs before macro
expansion on that argument.

7. If more than one ## operator or # operator appears in the replacement list of a
macro definition, the order of evaluation of the operators is not defined.

8. If the result of the replacement is not a valid character string literal, the
behavior is undefined.

Invocation Result of Macro Expansion

ABC(1) "1"
ABC(Hello there) "Hello there"

154 C/VSE V1R1 Language Reference

 ## operator

 Examples
The following examples demonstrate the rules given in the preceding paragraph:

#define STR(x) #x
#define XSTR(x) STR(x)
#define ONE 1

Invocation Result of Macro Expansion

STR(\n "\n" '\n') "\n \"\\n\" '\\n'"
STR(ONE) "ONE"
XSTR(ONE) "1"
XSTR("hello") "\"hello\""

 Related Information
� “#define” on page 148
� “#undef” on page 151

 ## Operator
The ## (double number sign) operator is used to concatenate two tokens in a
macro invocation (text and/or arguments) given in a macro definition. If a macro XY
was defined using the following directive:

#define XY(x,y) x##y

the last token of the argument for x will be concatenated with the first token of the
argument for y.

For example,

When you use the ## operator, the following rules apply:

1. The ## operator cannot be the very first or very last item in the replacement list
of a macro definition.

2. The last token of the item preceding the ## operator is concatenated with the
first token of the item following the ## operator.

3. Concatenation takes place before any macros in arguments are expanded.

4. If the result of a concatenation is a valid macro name, it is available for further
replacement even if it appears in a context in which it would not normally be
available.

5. If more than one ## operator and/or # operator appears in the replacement list
of a macro definition, the order of evaluation of the operators is not defined.

Invocation Result of Macro
Expansion

XY(1, 2) 12
XY(Green, house) Greenhouse

 Chapter 6. Preprocessor Directives 155

 #include

 Example
The following examples demonstrate the rules given in the preceding paragraph.

#define ArgArg(x, y) x##y
#define ArgText(x) x##TEXT
#define TextArg(x) TEXT##x
#define TextText TEXT##text
#define Jitter 1
#define bug 2
#define Jitterbug 3

Invocation Result of Macro Expansion

ArgArg(var, 1) "var1"
ArgText(var) "varTEXT"
TextArg(var) "TEXTvar"
TextText "TEXTtext"
ArgArg(Jitter, bug) 3

 Related Information
� “#define” on page 148

 #error
A preprocessor error directive causes the preprocessor to generate an error
message and causes the compilation to fail. The #error directive has the form:

 ┌ ┐─────────────
��──#error─ ───
 ┴─character─ ─��

You can use the #error directive as a safety check during compilation. For
example, if your program uses preprocessor conditional compilation directives (see
“Conditional Compilation” on page 157), you can place #error directives in the
source file to make the compilation fail if a section of the program is reached that
should be bypassed.

 Example
The following directive generates the error message, Error in TESTPGM1 - This
section should not be compiled:

#error Error in TESTPGM1 - This section should not be compiled

 #include
A preprocessor include directive causes the preprocessor to replace the directive
with the contents of the specified file. A preprocessor #include directive has the
form:

��──#include─ ──┬ ┬──"file_name" ─��
└ ┘──<file_name>

156 C/VSE V1R1 Language Reference

 Conditional Compilation

If the file name is enclosed in double quotation marks, the preprocessor searches
for it according to the search path for user include files. In the following example,
payroll.h is a user include file.

#include "payroll.h"

If the file name is enclosed in the characters < and >, it is a system include file.
The preprocessor searches for it according to the search path for system include
files. In the following example, stdio.h is a system include file.

#include <stdio.h>

For information on include file searches, refer to the C/VSE User's Guide.

The preprocessor resolves macros on an #include directive. After macro
replacement, the resulting token sequence must consist of a file name enclosed in
either double quotation marks or the characters < and >. In the following example,
#define is used to define a macro that represents the name of the C standard I/O
header file. #include is then used to make the header file available to the C
program.

#define IO_HEADER <stdio.h>
...
#include IO_HEADER /� equivalent to specifying #include <stdio.h> �/
...

If there are a number of declarations used by several files, you can place all these
definitions in one file and #include that file in each file that uses the definitions.
For example, the following file defs.h contains several definitions and an inclusion
of an additional file of declarations:

/� defs.h �/
#define TRUE 1
#define FALSE �
#define BUFFERSIZE 512
#define MAX_ROW 66
#define MAX_COLUMN 8�
int hour;
int min;
int sec;
#include "mydefs.h"

You can embed the definitions that appear in defs.h with the following directive:

#include "defs.h"

 Conditional Compilation
A preprocessor conditional compilation directive causes the preprocessor to
conditionally suppress the compilation of portions of source code. Such directives
test a constant expression or an identifier to determine which tokens the
preprocessor should pass on to the compiler and which tokens should be ignored.
The directives are:

 � #if
 � #ifdef
 � #ifndef
 � #else
 � #elif
 � #endif

 Chapter 6. Preprocessor Directives 157

 Conditional Compilation

For each #if, #ifdef, and #ifndef directive, there are zero or more #elif
directives, zero or one #else directive, and one matching #endif directive. All the
matching directives are considered to be at the same nesting level.

You can have nested conditional compilation directives. If you have the following
directives, the first #else will be matched with the #if directive.

#ifdef MACNAME
/� tokens added if MACNAME is defined �/

#if TEST <=1�
/� tokens added if MACNAME is defined and TEST <= 1� �/

 #else
/� tokens added if MACNAME is defined and TEST > 1� �/

 #endif
#else

/� tokens added if MACNAME is not defined �/
#endif

Each directive controls the block immediately following it. A block consists of all
the tokens starting on the line following the directive and ending at the next
conditional compilation directive at the same nesting level.

Each directive is processed in the order in which it is encountered. If an
expression evaluates to zero, the block following the directive is ignored.

When a block following a preprocessor directive is to be ignored, the tokens are
examined only to identify preprocessor directives within that block so that the
conditional nesting level can be determined. All tokens other than the name of the
directive are ignored.

Only the first block whose expression is nonzero is processed. The remaining
blocks at that nesting level are ignored. If none of the blocks at that nesting level
has been processed and there is an #else directive, the block following the #else
directive is processed. If none of the blocks at that nesting level has been
processed and there is no #else directive, the entire nesting level is ignored.

 #if, #elif
The #if and #elif directives compare the value of the expression to zero. All
macros are expanded, any defined() expressions are processed, and all remaining
identifiers are replaced with the token �.

The preprocessor #if directive has the following form:

��──#if──constant_expression──��

The preprocessor #elif directive has the following form:

��──#elif──constant_expression──��

158 C/VSE V1R1 Language Reference

 Conditional Compilation

The expressions that are tested must be integer constant expressions that follow
these rules:

� No casts are performed.
� The constant expression can contain the unary operator defined. This can be

used only with the preprocessor keyword #if. The following expressions
evaluate to 1 if the identifier is defined in the preprocessor; otherwise, to �:

defined identifier
defined(identifier)

� The expression can contain defined macros.
� Any arithmetic is performed using long ints.

If the constant expression evaluates to a nonzero value, the tokens that
immediately follow the condition are passed on to the compiler.

 #ifdef
The #ifdef directive checks for the existence of macro definitions.

If the identifier specified is defined as a macro, the tokens that immediately follow
the condition are passed on to the compiler.

The preprocessor #ifdef directive has the following form:

��──#ifdef──identifier──��

The following example defines MAX_LEN to be 75 if EXTENDED is defined for the
preprocessor. Otherwise, MAX_LEN is defined to be 5�.

#ifdef EXTENDED
#define MAX_LEN 75

#else
#define MAX_LEN 5�

#endif

 #ifndef
The #ifndef directive checks for the existence of macro definitions.

If the identifier specified is not defined as a macro, the tokens that immediately
follow the condition are passed on to the compiler.

The preprocessor #ifndef directive has the following form:

��──#ifndef──identifier──��

The following example defines MAX_LEN to be 5� if EXTENDED is not defined for the
preprocessor. Otherwise, MAX_LEN is defined to be 75.

#ifndef EXTENDED
#define MAX_LEN 5�

#else
#define MAX_LEN 75

#endif

 Chapter 6. Preprocessor Directives 159

 Conditional Compilation

 #else
If the condition specified in the #if, #ifdef, or #ifndef directive evaluates to �,
and the conditional compilation directive contains a preprocessor #else directive,
the source text located between the preprocessor #else directive and the
preprocessor #endif directive is selected by the preprocessor to be passed on to
the compiler.

The preprocessor #else directive has the form:

��──#else──��

 #endif
The preprocessor #endif directive ends the conditional compilation directive. It has
the form:

��──#endif──��

The following example shows how you can nest preprocessor conditional
compilation directives.

#if defined(TARGET1)
#define SIZEOF_INT 16

 #ifdef PHASE2
#define MAX_PHASE 2

 #else
#define MAX_PHASE 8

 #endif
#elif defined(TARGET2)

#define SIZEOF_INT 32
#define MAX_PHASE 16

#else
#define SIZEOF_INT 32
#define MAX_PHASE 32

#endif

160 C/VSE V1R1 Language Reference

 #line (line control)

The following program contains preprocessor conditional compilation directives.

 EDCXRABC

 /� Example containing conditional compilation directives �/

int main(void)
{

static int array[] = { 1, 2, 3, 4, 5 };
 int i;

for (i = �; i <= 4; i++)
 {

array[i] �= 2;
#if TEST >= 1

printf("i = %d\n", i);
printf("array[i] = %d\n", array[i]);

#endif
 }
}

 #line
A preprocessor line control directive causes the compiler to view the line number of
the next source line as the specified number. A preprocessor #line directive has
the form:

��──#line─ ──┬ ┬ ─decimal_constant─ ──┬ ┬───────────── ─��
│ │└ ┘──"file_name"

 └ ┘─characters────────────────────────

A file name specification enclosed in double quotation marks can follow the line
number. If you specify a file name, the compiler views the next line as part of the
specified file. If you do not specify a file name, the compiler views the next line as
part of the current source file.

The token sequence on a #line directive is subject to macro replacement. After
macro replacement, the resulting character sequence must consist of a decimal
constant, optionally followed by a file name enclosed in double quotation marks.

Note: The #line directives are ignored by the compiler when either the EVENTS
compile-time option or the TEST compile-time option is in effect. Do not use any
#line directives before a #pragma options directive that contains the TEST option.

 Examples
You can use #line control directives to make the compiler provide more meaningful
error messages. The following program uses #line control directives to give each
function an easily recognizable line number:

 Chapter 6. Preprocessor Directives 161

 #pragma

 EDCXRABD

 /� Example containing preprocessor line control directives �/

#include <stdio.h>
#define LINE2�� 2��

int main(void)
{
 func_1();
 func_2();
}

#line 1��
func_1()
{

printf("Func_1 - the current line number is %d\n",__LINE__);
}

#line LINE2��
func_2()
{

printf("Func_2 - the current line number is %d\n",__LINE__);
}

This example produces the following output:

Func_1 - the current line number is 1�2
Func_2 - the current line number is 2�2

(Null Directive)
The null directive performs no action. It consists of a single # on a line of its own.

 Example
In the following example, if MINVAL is a defined macro name, no action is
performed. If MINVAL is not a defined identifier, it is defined as the value 1.

#ifdef MINVAL
 #
#else
#define MINVAL 1

#endif

 #pragma
Along with the pragmas defined under SAA C, C/VSE also supports additional
pragmas. The following are the SAA pragmas and additional C/VSE pragmas.

162 C/VSE V1R1 Language Reference

 #pragma

SAA Standard pragmas

 chars
 comment
 langlvl
 linkage
 map
 page
 pagesize
 skip
 strings
 subtitle
 title

Additional C/VSE pragmas

 checkout
 csect
 filetag
 inline
 longname
 margins
 options
 runopts
 sequence
 target
 variable

A pragma is an implementation-defined instruction to the compiler. It has the
general form:

 ┌ ┐──────────────────────
��──#pragma─ ───
 ┴─character-sequence─ ─��

character-sequence is a series of characters providing a specific compiler
instruction and arguments, if any.

The character-sequence on a pragma is not subject to macro substitutions. You
can specify more than one pragma option for a single #pragma instruction, for
example:

#pragma chars(signed) comment(compiler)

Table 16 lists the restrictions when you are using #pragma directives. A blank entry
in the table indicates no restrictions.

Table 16 (Page 1 of 2). Restrictions on #pragmas

#pragma

Restriction on Number of
Occurrences

Restriction on Placement

chars Once. On the first #pragma directive, and before
any code or directive, except for the
#pragmas filetag, longname, langlvl or
target, which may precede this directive.

 Chapter 6. Preprocessor Directives 163

 #pragma

Table 16 (Page 2 of 2). Restrictions on #pragmas

#pragma

Restriction on Number of
Occurrences

Restriction on Placement

checkout

comment The copyright directive
can appear only once.

The copyright directive must appear
before any C code.

csect Twice. Once for code and
once for static data.

filetag Once per file scope. On the first #pragma directive, and before
any code or directive, except for all
conditional compilation directives (such as
#if or #ifdef) which may precede this
directive.

inline At file scope.

langlvl Once. On the first #pragma directive, and before
any code or directive, except for the
#pragmas filetag, longname, chars or
target, which may precede this directive.

linkage Can appear more than
once for each function, as
long as one #pragma does
not contradict another
#pragma.

longname Once. On the first #pragma directive, except for
#pragmas filetag, chars, langlvl or
target, which may precede this directive.

map

margins

options Before any C code

page

pagesize

runopts Before any C code.

sequence

skip

strings Once. Before any C code.

subtitle

target Once. On the first #pragma directive, and before
any code or directive, except for #pragmas
filetag, chars, langlvl, or longname,
which may precede this directive.

title

variable

164 C/VSE V1R1 Language Reference

 #pragma

Examples of #pragma Directives
#pragma langlvl(SAA)
#pragma title("SAA pragma example")
#pragma pagesize(55)
#pragma map(ABC, "A$$BC@")

 chars

��──#pragma──chars──(─ ──┬ ┬─signed─── ─)──��
 └ ┘─unsigned─

The #pragma chars directive specifies that the compiler is to treat all char types as
signed or unsigned.

For C/VSE, the default for char types is unsigned.

 checkout
The C/VSE directive #pragma checkout is an addition to the SAA Standard.

��──#pragma──checkout──(─ ──┬ ┬─resume── ─)──��
 └ ┘─suspend─

With #pragma checkout, you can suspend the diagnostics that the CHECKOUT
compile-time option performs during specific portions of your program. You can
then resume the same level of diagnostics later in the file.

Nested #pragma checkout directives are allowed and behave as shown in the
following example:

/� Assume CHECKOUT(PPTRACE) had been specified �/
#pragma checkout(suspend) /� No CHECKOUT diagnostics are performed �/
 ...
#pragma checkout(suspend) /� No effect �/ ─┐
 ... │
#pragma checkout(resume) /� No effect �/ ─┘
 ...
#pragma checkout(resume) /� CHECKOUT(PPTRACE) diagnostics continue �/

 comment

��──#pragma──comment──(─ ──┬ ┬─compiler─────────────────────────── ─�
 ├ ┤─date───────────────────────────────
 ├ ┤─timestamp──────────────────────────
 └ ┘ ──┬ ┬─copyright─ ──┬ ┬─────────────────
 └ ┘─user────── └ ┘─,─ ──"characters"

�──)──��

The #pragma comment directive places a comment into the object file.

 Chapter 6. Preprocessor Directives 165

 #pragma

The comment type may be:

compiler Places the name and version of the compiler into the end of the
created object module.

date Places the date and time of compilation into the end of the created
object module.

timestamp Places the text Mon Jan 1 �1:�1:�1 199� into the end of the
created object module.

(In some implementations of C, timestamp places the last
modification date and time of the source into the end of the
created object module.)

copyright Places the text specified by the character field into the produced
object module. This text is loaded into memory when the program
is run.

user Places the text specified by the character field into the produced
object module. This text is not loaded into memory when the
program is run. It is placed at the end of the object file, and on
END records, occupying columns 34 to 71.

C/VSE Addition to SAA Standard
The characters in the character field must be enclosed in double quotation marks.
The maximum number of characters allowed is equal to the maximum number of
characters allowed in C/VSE string literals, 4K.

Note: When the linkage editor is creating the executable phase, the END records
are stripped from the module. If the number of characters exceeds the space
available on one record, you can create additional END records by placing a NULL in
column 71. This increases the space for comments.

 csect
The C/VSE directive #pragma csect is additional to the SAA Standard.

��──#pragma──csect──(─ ──┬ ┬─CODE─── ─,─ ──"name" ─)──��
 └ ┘─STATIC─

The #pragma csect directive identifies the name for either the code or static control
section (CSECT).

code specifies the CSECT containing the executable code (C functions) and
constant data.

static designates the CSECT containing all program variables with the static
storage class and all character strings.

The name is enclosed in double quotation marks; it is the name used for the
applicable (code or static) CSECT. It should not exceed 8 characters, and is not
mapped in any way, including uppercasing. The name must not conflict with the
name of an exposed name (external function or object) in a source file or with the
name in another #pragma csect directive or #pragma map directive. For example, the
name for the code CSECT must differ from the name for the static CSECT.

166 C/VSE V1R1 Language Reference

 #pragma

At most, two #pragma csect directives can appear in a source program: one for the
code CSECT and one for the static CSECT. If a #pragma csect directive is not
supplied, the CSECT is unnamed (this is also known as private code (PC)). The
compiler cannot automatically create a name that does not conflict with a user
name. Use the CSECT compile-time option to check that you have included the
appropriate #pragma csect directives in your program.

 filetag
The C/VSE directive #pragma filetag is additional to the SAA Standard.

��──#pragma──filetag──(─ ──"code_set_name" ─)──��

The #pragma filetag directive is used to specify the code set in which the source
code was entered. Since the # character is variant between code sets, it is
recommended that you use the trigraph representation ??= instead of # as
illustrated below.

The #pragma filetag directive must appear at most once per source file, and must
appear before the first statement or directive, except for all conditional compilation
directives, which may precede this directive. For example:

??=ifdef COMPILER_VER /� This is allowed �/
??=pragma filetag ("code set") /� include pragma filetag only �/

??=endif /� when you compile with the �/
/� C/VSE compiler �/

If there are comments before the pragma, they will not be translated to the code
page associated with the LOCALE option.

See the LE/VSE C Run-Time Programming Guide for details on using this directive
with the LOCALE option.

 inline
The C/VSE directive #pragma inline is additional to the SAA Standard.

��──#pragma─ ──┬ ┬─inline─── ─(──function──)──��
 └ ┘─noinline─

The #pragma inline directive specifies whether or not the function is to be inlined.
The pragma can be anywhere in the source but must be at file scope. #pragma
inline has no effect if the inline compile-time option is not specified.

If you specify #pragma inline, the function is inlined on every call. The function is
inlined in both selective (NOAUTO) and automatic (AUTO) mode.

If you specify #pragma noinline, the function is never inlined when it is called. This
pragma has no effect when NOAUTO is specified.

 Chapter 6. Preprocessor Directives 167

 #pragma

 Example
 EDCXRABE

 /� Example of #pragma inline �/

#pragma csect(code,"MYCFILE")
#pragma csect(static,"MYSFILE")
#pragma options(INLINE)

#include <stdio.h>

static int (writerecord) (int, char �);

#pragma inline (writerecord)

int main()
{
 int chardigit;
 int digit;

printf("Enter a digit\n");
chardigit = getchar();

digit = chardigit - '�';

if (digit < � || digit > 9)
 {
 printf("invalid digit\n");
 exit(99);
 }

 switch(digit)
 {
 case �:

writerecord(�, "entered �");
 break;
 case 1:

writerecord(1, "entered 1");
 break;
 default:

writerecord(9, "entered other");
 }
}

168 C/VSE V1R1 Language Reference

 #pragma

static int writerecord (int digit, char �phrase)
{
 switch (digit)
 {
 case �:

printf("writerecord �: ");
 printf("%s\n", phrase);
 break;
 case 1:

printf("writerecord 1: ");
 printf("%s\n", phrase);
 break;
 case 2:

printf("writerecord 2: ");
 printf("%s\n", phrase);
 break;
 case 3:

printf("writerecord 3: ");
 printf("%s\n", phrase);
 break;
 default:

printf("writerecord X: ");
 printf("%s\n", phrase);
 }
 return �;
}

For more information on how to use inline and noinline, refer to the LE/VSE C
Run-Time Library Reference.

 langlvl

��──#pragma──langlvl──(─ ──┬ ┬─ANSI───── ─)──��
 ├ ┤─SAA──────
 ├ ┤─SAAL2────
 └ ┘─EXTENDED─

The #pragma langlvl directive specifies that use of language elements or library
functions that are not of the specified level (ANSI, SAA, SAAL2, or EXTENDED) are to be
flagged by the compiler. The compiler defines preprocessor variables that are used
in header files to define the language level. This pragma must be before any
statements in a file.

The language levels are as follows:

ANSI Defines the preprocessor variables __ANSI__ and __STDC__, and
undefines other langlvl variables.

SAA Defines the preprocessor variables __SAA__ and __SAA_L2__, and
undefines other langlvl variables.

SAAL2 Defines the preprocessor variable __SAA_L2__, and undefines other
langlvl variables.

EXTENDED Defines the preprocessor variable __EXTENDED__, and undefines other
langlvl variables.

For C/VSE, the default language level is EXTENDED.

 Chapter 6. Preprocessor Directives 169

 #pragma

 linkage

��──#pragma──linkage──(identifier,─ ──┬ ┬─OS──────── ─)──��
 ├ ┤─FETCHABLE─
 ├ ┤─PLI───────
 └ ┘─COBOL─────

The #pragma linkage directive identifies the entry point of modules used in
interlanguage calls. The identifier either identifies the name of the function that is
to be the entry point of the module, or identifies a typedef that will be used to
define the entry point.

C/VSE Addition to SAA Standard
The #pragma linkage directive also designates other entry points within a program
that can be used in a fetch operation.

A typedef can be used in a #pragma linkage directive to associate a specific
linkage convention with the typedef of a function.

typedef void func_t(void);
#pragma linkage (func_t,OS)

In the example, the #pragma linkage directive associates the OS linkage convention
with the typedef func_t.

This typedef can be used in C declarations wherever a function type specifies the
type function of OS linkage type. The following are the linkage entry points:

FETCHABLE Specifies a name, other than main, as an entry point within the
program. This pragma also indicates that this name (identifier in the
syntax diagram) can be used in a fetch operation. See the LE/VSE
C Run-Time Library Reference for more details on the use of the
fetch library function.

OS Designates an entry point (identifier in the syntax diagram) as an OS
linkage entry point. The OS linkage is the basic linkage convention
used by the operating system.

PLI Designates an entry point (identifier in the syntax diagram) as a PL/I
linkage entry point. You can only call modules that have been written
in LE/VSE-conforming languages. See the LE/VSE Writing
Interlanguage Communication Applications for information on
interlanguage calls.

COBOL Designates an entry point (identifier in the syntax diagram) as a
COBOL linkage entry point. See the LE/VSE Writing Interlanguage
Communication Applications for more details on C modules calling
COBOL modules.

170 C/VSE V1R1 Language Reference

 #pragma

 longname
The C/VSE directive #pragma longname is additional to the SAA Standard.

��──#pragma─ ──┬ ┬─longname─── ─��
 └ ┘─nolongname─

The #pragma longname directive specifies that the compiler is to generate long and
mixed case names in the object module produced by the compiler. These names
can be up to 255 characters in length. If you use the longname directive, you must
use the prelinker. If you specify the NOLONGNAME compile-time option, the longname
directive is ignored.

If you have more than one preprocessor directive, #pragma longname may be
preceded only by #pragma filetag, #pragma chars, #pragma langlvl, and #pragma
target. Some directives, such as #pragma variable and #pragma linkage are
sensitive to the name handling.

The nolongname pragma directive specifies that the compiler is to generate
truncated and uppercase names in the object module produced by the compiler.
More details on external name mapping are in “External Name Mapping in C/VSE”
on page 18. If you specify the LONGNAME compile-time option, the nolongname
directive is not used. If you have more than one preprocessor directive, #pragma
nolongname must be the first one.

 map

��──#pragma──map──(──identifier──,─ ──"name" ─)──��

The #pragma map directive associates an external name (name) with a C name
(identifier). If you use the #pragma map directive, the C name in the source file is
not visible in the object deck, and the map name represents the object in the object
deck.

C/VSE Addition to SAA Standard
name should be enclosed in double quotation marks. Its length must not exceed 8
characters, because external names in object modules can be 8 characters at most
without the LONGNAME compile-time option. The name is kept as specified on the
#pragma map directive in mixed case. The name must not conflict with the name in
another #pragma csect directive.

The map name is an external name and must not be used in the source file to
reference the object. If you use the map name in the source file to access the
corresponding C object, the compiler treats it as a new identifier.

The compiler produces an error message if more than one map name is given to
an identifier. Two different C identifiers can have the same map name.

 Chapter 6. Preprocessor Directives 171

 #pragma

 margins
The C/VSE directive #pragma margins is additional to the SAA Standard.

��──#pragma─ ──┬ ┬─margins──(──m──,─ ──┬ ┬─n─ ─)─ ─��
 │ │└ ┘─�─
 └ ┘─nomargins──────────────────

The #pragma margins directive specifies the margins in the source file that are to be
scanned for input to the compiler. The #pragma nomargins directive specifies that
the entire input source record is to be scanned for input to the compiler.

The margin setting specified by the #pragma margins directive applies only to the
source file or include file in which it is found and has no effect on other #include
files. The #pragma margins and the #pragma nomargins directives come into effect
on the line following the directive, and remain in effect until another #pragma
margins or #pragma nomargins directive is encountered or until the end of the file is
reached.

If you use the compile-time MARGINS or NOMARGINS option with the #pragma margins
or #pragma nomargins directives, the #pragma directives override the compile-time
options. The compile-time option specified will be in effect up to, and including, the
#pragma margins or #pragma nomargins directive.

The default setting is MARGINS(1,72) for fixed-length records, and NOMARGINS for
variable-length records.

In the syntax diagram, the following parameters are specified:

m The first column of the source input containing a valid C program. The value
of m must be:

Greater than � and less than 32768
and

Less than or equal to the value of n

n The last column of the source input containing a valid C program. The value
of n must be greater than � and less than 32768

An asterisk (*) can be assigned to n indicating the last column of the input record.
For example, if you specify #pragma margins(8,�), the compiler scans from column
8 to the end of the record for input source statements.

You can use #pragma margins and #pragma sequence together. If they reserve the
same columns, #pragma sequence has priority and the columns are reserved for
sequence numbers. For example, if the columns reserved for margin are 1 to 2�
and the columns reserved for sequence numbers are 15 to 25, the margin will be
from column 1 to 14, and the columns reserved for sequence numbers will be from
15 to 25.

For more information on the #pragma sequence directive, refer to “sequence” on
page 174.

172 C/VSE V1R1 Language Reference

 #pragma

 options
The C/VSE directive #pragma options is additional to the SAA Standard.

 ┌ ┐──┬ ┬─── ─
 │ │└ ┘─,─
��──#pragma──options──(─ ───
 ┴─option─ ─)──��

The #pragma options directive specifies a list of compile-time options that are to be
processed as if you had specified them in the PARM parameter of the JCL EXEC
statement for the compile. The only compile-time options allowed on a #pragma
options directive are:

For a detailed description of these options refer to the C/VSE User's Guide.

If you use a compile-time option that contradicts the options specified on the
#pragma options directive, the compile-time option overrides the options on the
#pragma options directive.

If you use one of the following compile-time options, the option name is inserted at
the bottom of your object module indicating that it was used:

AGGREGATE|NOAGGREGATE CHECKOUT|NOCHECKOUT GONUMBER|NOGONUMBER
HWOPTS|NOHWOPTS INLINE|NOINLINE NAME|NONAME
OPTIMIZE|NOOPTIMIZE RENT|NORENT SPILL
START TEST|NOTEST UPCONV|NOUPCONV
XREF|NOXREF

GONUMBER INLINE NAME
OPTIMIZE (both levels) RENT START
TARGET TEST UPCONV

 page

��──#pragma──page──(─ ──┬ ┬─── ─)──��
 └ ┘─n─

The #pragma page skips n pages of the source listing. If n is not specified, the
compiler moves to the next page of the source listing.

 pagesize

��──#pragma──pagesize──(─ ──┬ ┬─── ─)──��
 └ ┘─n─

The #pragma pagesize directive sets the number of lines per page to n for the
source listing.

 Chapter 6. Preprocessor Directives 173

 #pragma

C/VSE Addition to SAA Standard
The default page size is 60 lines. The minimum page size that you should set is
25.

 runopts
The C/VSE directive #pragma runopts is additional to the SAA Standard.

 ┌ ┐──┬ ┬─── ─
 │ │└ ┘─,─
��──#pragma──runopts──(─ ───
 ┴─option─ ─)──��

The #pragma runopts directive specifies a list of run-time options that are to be
used at execution time. Specify your #pragma runopts directive in the source file
that contains main().

Refer to the LE/VSE Programming Reference for descriptions of specific run-time
options.

 sequence
The C/VSE directive #pragma sequence is additional to the SAA Standard.

��──#pragma─ ──┬ ┬─sequence──(──m──,─ ──┬ ┬─n─ ─)─ ─��
 │ │└ ┘─�─
 └ ┘─nosequence──────────────────

The #pragma sequence directive specifies the section of the input record that is to
contain sequence numbers. The #pragma nosequence directive specifies that the
input record does not contain sequence numbers. The sequence setting specified
by the #pragma sequence directive applies only to the file (source file or include file)
that contains it, and has no effect on other #include files in the file. The sequence
number area specified on the #pragma sequence directive comes into effect on the
line following the directive and remains in effect until another #pragma sequence or a
#pragma nosequence directive is encountered or until the end of the file is reached.

If you use the compile-time SEQUENCE or NOSEQUENCE option with the #pragma
sequence or #pragma nosequence directives, the #pragma directive overrides the
compile-time options. The compile-time option is in effect up to, and including, the
#pragma sequence or #pragma nosequence directive. The default setting is
sequence(73,8�) for fixed-length records and nosequence for variable-length records.

In the syntax diagram the following parameters are specified:

m The column number of the left-hand margin. The value of m must be:

Greater than � and less than 32768
and

Less than or equal to the value of n

n The column number of the right-hand margin. The value of n must be greater
than � and less than 32768.

174 C/VSE V1R1 Language Reference

 #pragma

An asterisk (*) can be assigned to n indicating the last column of the input record.
Thus, sequence(74,�) indicates that sequence numbers are between column 74
and the end of the input record.

You can use #pragma sequence and #pragma margins together. If they reserve the
same columns, #pragma sequence has priority and the columns will be reserved for
sequence numbers. For example, if the columns reserved for margin are 1 to 2�
and the columns reserved for sequence numbers are 15 to 25, the margin will be
from column 1 to 14, and the columns reserved for sequence numbers will be from
15 to 25. For more information on the #pragma margins directive, refer to “margins”
on page 172.

 skip

��──#pragma──skip──(─ ──┬ ┬─── ─)──��
 └ ┘─n─

The #pragma skip skips the next n lines of the source listing. The value of n must
be a positive integer less than 255. If n is omitted, one line is skipped.

 strings

��──#pragma──strings──(─ ──┬ ┬─readonly─ ─)──��
 └ ┘─writable─

The #pragma strings directive specifies that the compiler place strings into
read-only memory or into writable memory. Strings are writable by default. This
pragma must appear before any C code in a file.

C/VSE Addition to SAA Standard
writable is the default.

 subtitle

��──#pragma──subtitle──(─ ──"subtitle" ─)──��

The #pragma subtitle places the text specified by subtitle on all subsequent pages
of the created source listing.

 target
The C/VSE directive #pragma target is additional to the SAA Standard.

��──#pragma──target──(─ ──┬ ┬──── ─)──��
 └ ┘─LE─

In some implementations of C, the #pragma target directive has several options for
specifying the operating system or run-time environment for which the object
module is to be created.

 Chapter 6. Preprocessor Directives 175

 #pragma

In C/VSE, the default behavior is to generate code to run with the LE/VSE run-time
library. This is the same as specifying the LE option. There are no other options.

If you have more than one preprocessor directive, the only #pragmas that can
precede #pragma target are #pragma filetag, #pragma chars, #pragma langlvl, and
#pragma longname.

 title

��──#pragma──title──(─ ──"title" ─)──��

The #pragma title places the text specified by title on all subsequent pages of the
source listing.

 variable
The C/VSE directive #pragma variable is an addition to the SAA Standard.

��──#pragma──variable──(──identifier──,─ ──┬ ┬─RENT─── ─)──��
 └ ┘─NORENT─

The #pragma variable directive specifies that the named variable is to be used in a
reentrant or non-reentrant fashion. Variables are reentrant when the RENT
compile-time option is specified. If NORENT is specified and a #pragma variable is
specified with RENT, writable static is forced. Refer to the LE/VSE Programming
Guide for information on reentrancy.

176 C/VSE V1R1 Language Reference

 Implementation-Defined Behavior

Appendix A. Conforming to ANSI Standards

This appendix describes changes made to the C/VSE compiler and LE/VSE C
run-time library for conformance to the American National Standard for Information
Systems - Programming Language C standard. It also describes
implementation-defined behavior of the C/VSE compiler which is not defined by
ANSI.

 Implementation-Defined Behavior
The following sections describe how C/VSE defines some of the
implementation-defined behavior from the ANSI C Standard.

 Identifiers
The number of significant characters in an identifier with no external linkage:

 � 255

The number of significant characters in an identifier with external linkage:

� 255 with the compile-time option LONGNAME specified
 � 8 otherwise

Case sensitivity of external identifiers:

� The VSE linkage editor truncates all external names to 8 uppercase
characters so any external identifiers in upper and lower case map to the
same name. However, the C/VSE compiler catches any such cases so
that an identifier in both upper and lower case is flagged as an error to
help you write portable code.

 Characters
Source and execution characters which are not specified by the ANSI standard:

� The caret (^) character in ASCII (bitwise exclusive OR symbol) or the
equivalent not (¬) character in EBCDIC.

� The vertical broken line (¦) character in ASCII which may be represented
by the vertical line (|) character on EBCDIC systems.

Shift states used for the encoding of multibyte characters:

� The shift states are indicated with the SHIFTIN (hex value x0E) and the
SHIFTOUT (hex value x0F) characters. Refer to the LE/VSE C Run-Time
Library Reference for more information on wide character strings.

The number of bits that represent a character:

 � 8 bits

The mapping of members of the source character set (characters and strings) to
the execution character set:

� The same code page is used for the source and execution character set.

© Copyright IBM Corp. 1994, 1996 177

 Implementation-Defined Behavior

The value of an integer character constant that contains a character/escape
sequence not represented in the basic execution character set:

� A warning is issued for an unknown character/escape sequence and the
char is assigned the character following the back slash.

The value of a wide character constant that contains a character/escape sequence
not represented in the extended execution character set:

� A warning is issued for the unknown character/escape sequence and the
wchar_t is assigned the wide character following the back slash.

The value of an integer character constant that contains more than one character:

� The lowest four bytes represent the character constant.

The value of a wide character constant that contains more than one multibyte
character:

� The lowest four bytes of the multibyte characters are converted to
represent the wide character constant.

Equivalent type of char: signed char, unsigned char, or user-defined:

� The default for char is unsigned

Is each sequence of white-space characters (excluding the newline) retained or
replaced by one space character?

� Any spaces or comments in your source program will be interpreted as one
space.

 String Conversion
Additional implementation-defined sequence forms that can be accepted by
strtod(), strtol(), and strtoul() functions in other than the C locale:

 � None

 Integers

The result of converting an integer to a signed char:

� The lowest 1 byte of the integer is used to represent the char. See the
LE/VSE C Run-Time Library Reference for more information on data
conversions.

Table 17. Integers

Type Amount of
Storage

Range (in limits.h)

signed short 2 bytes -32768 to 32767

unsigned short 2 bytes � to 65535

signed int 4 bytes -2147483647-1 to 2147483647

unsigned int 4 bytes � to 4294967295

signed long 4 bytes -2147483647L-1 to 2147483647

unsigned long 4 bytes � to 4294967295

178 C/VSE V1R1 Language Reference

 Implementation-Defined Behavior

The result of converting an integer to a shorter signed integer:

� The lowest 2 bytes of the integer are used to represent the short int.

The result of converting an unsigned integer to a signed integer of equal length, if
the value cannot be represented:

� The bit pattern is preserved and the sign bit has no significance.

The result of bitwise operations (|, &, ^) on signed int:

� The representation is treated as a bit pattern and 2's complement
arithmetic is performed.

The sign of the remainder of integer division if either operand is negative:

� The remainder is negative if exactly one operand is negative.

The result of a right shift of a negative-valued signed integral type:

� The result is sign extended and the sign is propagated.

 Floating Point

The direction of truncation when an integral number is converted to a floating-point
that cannot exactly represent the original value:

� The value is truncated.

The direction of rounding when a floating-point number is converted to a narrower
floating-point number:

� The floating-point number is truncated.

Table 18. Floating Point

Type Amount of
Storage

Range of Exponents (base 10)

float 4 bytes -78 to 75

double 8 bytes -78 to 75

long double 16 bytes -78 to 75

Arrays and Pointers
The type of size_t:

 � unsigned int

The type of ptrdiff_t:

 � int

The result of casting a pointer to an integer:

� The bit patterns are preserved.

The result of casting an integer to a pointer:

� The bit patterns are preserved.

 Appendix A. Conforming to ANSI Standards 179

 Implementation-Defined Behavior

 Registers
How register storage class specifier affects the storage of objects in registers:

� If there is a register available, the object is stored in a register.

Structures, Unions, Enumerations, Bitfields
The result if a member of a union object is accessed using a member of a different
type:

� The result is undefined.

The alignment/padding of structure members:

� If the structure is not packed, then padding is added to align the structure
members on their natural boundaries. If the structure is packed, no
padding is added. Refer to “C Data Mapping” on page 92 for more
information on C data mapping.

The padding at the end of structure/union:

� Padding is added to end the structure on its natural boundary. The
alignment of the struct or union is that of its strictest member. Refer to “C
Data Mapping” on page 92 for more information on C data mapping.

The type of an int bit-field (signed int, unsigned int, user defined):

� The default is unsigned.

The order of allocation of bit-fields within an int:

� Bit-fields are allocated from low memory to high memory. For example,
�x12345678 would be stored with byte 0 containing �x12, and byte 3
containing �x78.

The rule for bit-fields crossing a storage unit boundary:

� Bit-fields can cross storage unit boundaries.

The integral type that represents the values of an enumeration type:

� Enumerations can have the type char, short, or long and be either
signed or unsigned depending on their smallest and largest values.

 Declarators
The maximum number of declarators (pointer, array, function) that can modify an
arithmetic, structure, or union type:

� The only constraint is the availability of system resources.

 Statements
The maximum number of case values in a switch statement:

� Because the case values must be integers and cannot be duplicated, the
limit is INT_MAX.

180 C/VSE V1R1 Language Reference

 Implementation-Defined Behavior

 Preprocessing Directives
Does the value of a single-character constant in a constant expression that controls
conditional inclusion match the value of the character constant in the execution
character set?

 � Yes

Can such a constant have a negative value?

 � Yes

The method of searching include source files (< >):

� See the C/VSE User's Guide.

Is the search for quoted source file names supported ("...")?

� User include files can be specified in double quotes. See the C/VSE
User's Guide.

The mapping between the name specified in the include directive and the external
source file name:

� See the C/VSE User's Guide.

The behavior of each pragma directive:

� See “#pragma” on page 162.

__DATE__ and __TIME__ is always defined to the date and time of compilation.

__TIMESTAMP__ is always defined to the value:

"Mon Jan 1 �1:�1:�1 199�"

(In some implementations of C, __TIMESTAMP__ returns the date and time when the
source file was last modified.)

 Library Functions
The definition of NULL macro:

� NULL is defined to be a ((void �)�).

The format of diagnostic printed by the assert macro, and the termination behavior
(abort behavior):

� When assert is executed, if the expression is false, the diagnostic
message written by the assert macro has the format:

Assertion failed: expression, file filename, line line-number

 Appendix A. Conforming to ANSI Standards 181

 Implementation-Defined Behavior

Set of characters tested by the is...() functions:

� To create a table of the characters set up by the ctype.h functions use the
program in the following example. The columns are organized by function
as follows:
(Column 1) The hexadecimal value of the character
AN isalnum()
A isalpha()
C iscntrl()
D isdigit()
G isgraph()
L islower()
(Column 8) isprint()
PU ispunct()
S isspace()
PR isprint()
U isupper()
X isxdigit()

 EDCXRABG

 /� This example prints out ctest characters �/

#include <stdio.h>
#include <ctype.h>

int main(void)
{
 int ch;

for (ch = �; ch <= �xff; ch++)
 {

printf("%#�4X ", ch);
printf("%3s ", isalnum(ch) ? "AN" : " ");
printf("%2s ", isalpha(ch) ? "A" : " ");
printf("%2s", iscntrl(ch) ? "C" : " ");
printf("%2s", isdigit(ch) ? "D" : " ");
printf("%2s", isgraph(ch) ? "G" : " ");
printf("%2s", islower(ch) ? "L" : " ");
printf("%c", isprint(ch) ? ch : ' ');
printf("%3s", ispunct(ch) ? "PU" : " ");
printf("%2s", isspace(ch) ? "S" : " ");
printf("%3s", isprint(ch) ? "PR" : " ");
printf("%2s", isupper(ch) ? "U" : " ");
printf("%2s", isxdigit(ch) ? "X" : " ");

 putchar('\n');
 }
}

The result of calling fmod() function with the second argument zero (return zero,
domain error):

� fmod() returns a �.

182 C/VSE V1R1 Language Reference

 Implementation-Defined Behavior

 Error Handling
The format of the message generated by the perror() and strerror() functions:

� See the LE/VSE Debugging Guide and Run-Time Messages for the
messages emitted for perror() and strerror().

Note: errno is not emitted with the message.

How diagnostic messages are recognized:

� Refer to the C/VSE User's Guide and the LE/VSE Debugging Guide and
Run-Time Messages for the lists of messages provided with C/VSE.

The different classes of messages:

� Messages are classified as shown by the following table.

How the level of diagnostic can be controlled:

� Use the compile-time option FLAG to control the level of diagnostic. There
is also a compile-time option CHECKOUT which provides programming style
diagnostics to aid you in determining possible programming errors.

Type of Message Numeric Severity Level Return Code

Information �� �
Warning 1� 4
Error 3� 12
Severe error > 3� 16

 Signals
The set of signals for the signal() function:

� See the LE/VSE C Run-Time Programming Guide.

The parameters and the usage of each signal recognized by the signal() function:

� See the LE/VSE C Run-Time Programming Guide.

The default handling and the handling at program start-up for each signal
recognized by signal() function:

� SIG_DFL is the default signal. See the LE/VSE C Run-Time Programming
Guide for more information on signal handling.

The signal blocking performed if the equivalent of signal(sig, SIG_DFL) is not
executed at the beginning of signal handler:

� See the LE/VSE C Run-Time Programming Guide.

Is the default handling reset if a SIGKILL is received by a signal handler?

� Whenever you enter the signal handler, SIG_DFL becomes the default.

 Appendix A. Conforming to ANSI Standards 183

 Implementation-Defined Behavior

 Translation Limits
System-determined means that the limit is determined by your system resources.

Table 19. Translation Limits

Nesting levels of:

 � Compound statements
 � Iteration control
 � Selection control
 � Conditional inclusion
 � Parenthesized declarators
 � Parenthesized expression

 � System-determined
 � System-determined
 � System-determined
 � System-determined
 � System-determined
 � System-determined

Number of pointer, array and function declarators modifying an arithmetic a
structure, a union, and incomplete type declaration

 � System-determined

Significant initial characters in:

 � Internal identifiers
 � Macro names
 � External identifiers

 � 255
 � 255
� 8 (without LONGNAME)

Number of:

� External identifiers in a translation unit
� Identifiers with block scope in one block
� Macro identifiers simultaneously declared in a translation unit
� Parameters in one function definition
� Arguments in a function call
� Parameters in a macro definition
� Parameters in a macro invocation
� Characters in a logical source line
� Characters in a string literal
� Bytes in an object
� Nested include files
� Enumeration constants in an enumeration
� Levels in nested structure or union

 � System-determined
 � System-determined
 � System-determined
 � System-determined
 � System-determined
 � System-determined
 � System-determined
 � 32767
 � 4K
� LONG_MAX (see Note 1)

 � SHRT_MAX
 � System-determined
 � System-determined

Note:

1. LONG_MAX is the limit for automatic variables only. For all other variables, the limit is 16MB.

184 C/VSE V1R1 Language Reference

 Implementation-Defined Behavior

Streams, Records, and Files
Does the last line of a text stream require a terminating newline character?

� No, the last newline character is defaulted.

Do space characters, that are written out to a text stream immediately before a
newline character, appear when read?

� White space characters written to fixed record format text streams before a
newline do not appear when read. However, white space characters
written to variable record format text streams before a newline character
appear when read.

The number of null characters that can be appended to the end of the binary
stream:

 � No limit

Where is the file position indicator of an append-mode stream initially positioned?

� The file position indicator is positioned at the end of the file.

Does a write on a text stream cause the associated file to be truncated?

 � Yes

Does a file of zero length exist?

 � Yes

The rules for composing a valid file name:

� See the LE/VSE C Run-Time Programming Guide.

Can the same file be simultaneously opened multiple times?

� For reading, the file can be opened multiple times; for writing/appending,
the file can be opened once. Once a file is opened for update, it may be
opened for reading. Once a file is opened for reading, it cannot be opened
for writing.

The effect of the remove() function on an open file:

 � remove() fails.

The effect of the rename() function on a file to a name that exists prior to the
function call:

 � rename() fails.

Are temporary files removed if the program terminates abnormally?

� For SAM files, no.
� For VSAM (including SAM ESDS), files are removed according to the DISP

parameter on the DLBL statement. For details, see the VSE/VSAM User's
Guide, SC33-6535 (VSE/ESA Version 1) or the VSE/VSAM User's Guide
and Application Programming, SC33-6632 (VSE/ESA Version 2).

The effect of calling the tmpnam() function more than TMP_MAX times:

� tmpnam() fails and returns NULL.

The output of %p conversion in the fprintf() function:

� It is equivalent to %X.

 Appendix A. Conforming to ANSI Standards 185

 Implementation-Defined Behavior

The input of %p conversion in the fscanf() function:

� The value is treated as an integer.

The interpretation of a - character that is neither the first nor the last in the scanlist
for %[conversion in the fscanf() function:

� The sequence of characters on either side of the - are used as delimiters.
For example, %[a-f] will read in characters between 'a' and 'f'.

The value of errno on failure of fgetpos() and ftell() functions:

� This depends on the failure. For a list of the messages associated with
errno, see the LE/VSE Debugging Guide and Run-Time Messages.

 Memory Management
The behavior of calloc(), malloc(), and realloc() functions if the size requested
is zero:

� Nothing is performed for calloc() and malloc(); realloc() frees the
storage.

 Environment
The arguments of the main() function:

� You can pass arguments to main() through argv and argc.

What happens with open files when the abort() function is called?

� The files are closed.

What is returned to the host environment when the abort() function is called?

� The return code of 2��� is returned.

The form of successful termination when the exit() function is called with
argument zero or EXIT_SUCCESS:

� All files are closed, all storage is released and the return code of � is
returned.

The form of unsuccessful termination when the exit() function is called with
argument EXIT_FAILURE:

� All files are closed, all storage is released and the return code of
EXIT_FAILURE is returned.

What status is returned by the exit() function if the argument is other than zero,
EXIT_FAILURE and EXIT_SUCCESS?

� The argument of the exit() function is returned.

Environment variables:
Retrieving and setting environment variables using the getenv() and setenv()
functions is described in the LE/VSE C Run-Time Programming Guide.

The format and a mode of execution of a string on a call to the system() function:

� See the LE/VSE C Run-Time Library Reference.

186 C/VSE V1R1 Language Reference

 Implementation-Defined Behavior

 Localization
The environment specified by the "" locale on a setlocale() call:

 � EDC$S37�

The supported locales:

� See the LE/VSE C Run-Time Programming Guide.

 Time
The local time zone and Daylight Saving Time:

� This is specified in the locale.

The era for the clock() function:

� The era starts when the program is started by either a call from the
operating system, or a call to system(). To measure the time spent in a
program, call the clock() function at the start of the program, and subtract
its return value from the value returned by subsequent calls to clock().

 Appendix A. Conforming to ANSI Standards 187

 Implementation-Defined Behavior

188 C/VSE V1R1 Language Reference

 Bibliography

IBM C for VSE/ESA Publications
Licensed Program Specifications, GC09-2421

Installation and Customization Guide, GC09-2422

Migration Guide, SC09-2423

User's Guide, SC09-2424

Language Reference, SC09-2425

Diagnosis Guide, GC09-2426

IBM Language Environment for
VSE/ESA Publications

Fact Sheet, GC33-6679

Concepts Guide, GC33-6680

Debugging Guide and Run-Time Messages,
SC33-6681

Installation and Customization Guide, SC33-6682

Licensed Program Specifications, GC33-6683

Programming Guide, SC33-6684

Programming Reference, SC33-6685

Run-Time Migration Guide, SC33-6687

Writing Interlanguage Communication Applications,
SC33-6686

C Run-Time Programming Guide, SC33-6688

C Run-Time Library Reference, SC33-6689

 Softcopy Publications

The following collection kit contains the C/VSE, LE/VSE,
and other LE/VSE-conforming language product
publications:

VSE Collection, SK2T-0060

You can order these publications from Mechanicsburg
through your IBM representative.

© Copyright IBM Corp. 1994, 1996 189

190 C/VSE V1R1 Language Reference

 Glossary

This glossary defines terms and abbreviations that are
used in this book. If you do not find the term you are
looking for, refer to the IBM Dictionary of Computing,
SC20-1699.

This glossary includes terms and definitions from the
American National Standard Dictionary for Information

Systems, ANSI X3.172-1990, copyright 1990 by the
American National Standards Institute (ANSI). Copies
may be purchased from the American National
Standards Institute, 1430 Broadway, New York, New
York 10018.

A
absolute value. The magnitude of a real number
regardless of its algebraic sign.

abstract code unit (ACU). A measurement used by
the C/VSE compiler for judging the size of a function.
The number of ACUs that comprise a function is
proportional to its size and complexity.

ACU. Abstract code unit.

address. A name, label, or number identifying a
location in storage, a device in a system or network, or
any other data source.

aggregate. An array or a structure. Also, a
compile-time option to show the layout of a structure or
union in the listing.

alias. An alternate label used to refer to the same data
element or point in a computer program.

alignment. See boundary alignment.

American National Standard Code for Information
Interchange (ASCII). The code developed by ANSI for
information interchange among data processing
systems, data communications systems, and associated
equipment. The ASCII character set consists of 7-bit
control characters and symbolic characters.

Note: IBM has defined an extension to ASCII code
(characters 128-255).

American National Standards Institute (ANSI). An
organization consisting of producers, consumers, and
general interest groups, that establishes the procedures
by which accredited organizations create and maintain
voluntary industry standards in the United States.

anonymous union. A union that is declared within a
structure and that does not have a name.

ANSI. American National Standards Institute.

API. Application program interface.

application. The use to which an information
processing system is put, for example, a payroll
application, an airline reservation application, a network
application.

application program interface (API). The formally
defined programming language interface between an
IBM system control program or a licensed program and
the user of the program.

argument. In a function call, an expression that
represents a value that the calling function passes to
the function specified in the call. Also called a
parameter.

arithmetic object. An integral object, a bit field, or
floating-point object.

array. A variable that contains an ordered group of
data objects. All objects in an array have the same
data type.

array element. A single data item in an array.

ASCII. American National Standard Code for
Information Interchange.

assembly language. A symbolic programming
language in which the set of instructions includes the
instructions of the machine and whose data structures
correspond directly to the storage and registers of the
machine.

assignment conversion. A change to the form of the
right operand that makes the right operand have the
same data type as the left operand.

assignment expression. An operation that stores the
value of the right operand in the storage location
specified by the left operand.

associativity. The order for grouping operands with an
operator (either left-to-right or right-to-left).

© Copyright IBM Corp. 1994, 1996 191

automatic calling. Calling in which the elements of
the selection signal are entered into the data network
contiguously at the full data signalling rate.

B
binary. (1) Pertaining to a system of numbers to the
base two; the binary digits are 0 and 1. (2) Involving a
choice of two conditions, such as on-off or yes-no.

binary expression. An expression containing two
operands and one operator.

binary stream. An ordered sequence of untranslated
characters.

bit field. A member of a structure or union that
contains a specified number of bits.

block. The unit of data transmitted to and from a
device. Each block contains one record, part of a
record, or several records.

block statement. Any number of data definitions,
declarations, and statements that appear between the
symbols { and }. The block statement is considered to
be a single C-language statement.

boundary alignment. The position in main storage of
a fixed-length field (such as byte or doubleword) on an
integral boundary for that unit of information. For
example, on System/370 a word boundary is a storage
address evenly divisible by two.

break statement. A language control statement that
contains the word break and a semicolon. It is used to
end an iterative or a switch statement by exiting from it
at any point other than the logical end. Control is
passed to the first statement after the iteration or switch
statement.

buffer. A portion of storage used to hold input or
output data temporarily.

buffer flush. A process that removes the contents of a
buffer. After a buffer flush, the buffer is empty.

built-in. A function which the compiler will
automatically inline instead of the function call unless
the programmer specifies not to.

C
C language. A general-purpose high-level
programming language.

C library. A system library that contains common C
language subroutines for file access, string operators,
character operations, memory allocation, and other
functions.

C language statement. A C language statement
contains zero or more expressions. All C language
statements, except block statements, end with a ;
(semicolon) symbol. A block statement begins with a {
(left brace) symbol, ends with a } (right brace) symbol,
and contains any number of statements.

C library. A system library that contains common C
language subroutines for file access, memory allocation,
and other functions.

call. To transfer control to a procedure, program,
routine, or subroutine.

case clause. In a switch statement, a case label
followed by any number of statements.

case label. The word case followed by a constant
expression and a colon.

cast expression. An expression that converts the type
of the operand to a specified scalar data type (the
operator).

cast operator. The cast operator is used for explicit
type conversions.

cataloged procedures. A set of control statements
placed in a library and retrievable by name.

char specifier. A char is a built-in data type. In C,
char, signed char, and unsigned char are all distinct
data types.

character constant. A character or an escape
sequence enclosed in single quotation marks.

character set. A group of characters used for a
specific reason; for example, the set of characters a
printer can print or a keyboard can support.

character variable. A data object whose value can be
changed during program execution and whose data
type is char, signed char, or unsigned char.

CICS. Customer Information Control System.

collating sequence. A specified arrangement for the
order of characters in a character set.

192 C/VSE V1R1 Language Reference

command. A request to perform an operation or run a
program. When parameters, arguments, flags, or other
operands are associated with a command, the resulting
character string is a single command.

compile. To transform a set of programming language
statements (source file) into machine instructions (object
module).

compiler. A program that translates instructions
written in a programming language (such as C
language) into machine language.

complex number. A complex number is made up of
two parts: a real part and an imaginary part. A complex
number can be represented by an ordered pair (a, b),
where a is the value of the real part and b is the value
of the imaginary part. The same complex number could
also be represented as a + bi, where i is the square
root of -1.

conditional compilation statement. A preprocessor
statement that causes the preprocessor to process
specified source code in the file depending on the
evaluation of a specific condition.

const. An attribute of a data object that declares the
object cannot be changed.

constant expression. An expression having a value
that can be determined during compilation and that
does not change during program execution.

control statement. A statement that changes the path
of execution.

conversion. A change in the type of a value. For
example, when you add values having different data
types, the compiler converts both values to a common
form before adding the values. Because accuracy of
data representation varies among different data types,
information may be lost in a conversion.

D
data object. A storage area used to hold a value.

data stream. A continuous stream of data elements
being transmitted, or intended for transmission, in
character or binary-digit form, using a defined format.

data type. A category that specifies the interpretation
of a data object such as its mathematical qualities and
internal representation.

DBCS. (1) See double-byte character set. (2) See
ASCII.

decimal constant. A numerical data type used in
standard arithmetic operations.

declaration. A description that makes an external
object or function available to a function or a block.

declare. To identify the variable symbols to be used at
preassembly time.

default. An attribute, value or option that is used when
no alternative is specified by the programmer.

default argument. An argument that is declared with a
default value in a function prototype or declaration. If a
call to the function omits this argument, the default
value is used. Arguments with default values must be
the trailing arguments in a function prototype argument
list.

default clause. In a switch statement, the keyword
default followed by a colon, and one or more
statements. When the conditions of the specified case
labels in the switch statement do not hold, the default
clause is chosen.

default initialization. The initial value assigned to a
data object by the compiler if no initial value is specified
by the programmer. extern and static variables
receive a default initialization of zero, while the default
initial value for auto and register variables is
undefined.

define directive. A preprocessor statement that
directs the preprocessor to replace an identifier or
macro invocation with special code.

definition. A data description that reserves storage
and may provide an initial value.

demangling. The conversion of mangled names back
to their original source code names. See also
mangling.

denormal. Pertaining to a number with a value so
close to � that its exponent cannot be represented
normally. The exponent can be represented in a
special way at the possible cost of a loss of
significance.

digit. Any of the numerals from 0 through 9.

domain. All the possible input values for a function.

double-byte character set (DBCS). A set of
characters in which each character is represented by 2
bytes. Languages such as Japanese, Chinese, and
Korean, which contain more symbols than can be
represented by 256 code points, require double-byte
character sets.

Because each character requires 2 bytes, entering,
displaying, and printing DBCS characters requires

 Glossary 193

hardware and supporting software that are DBCS
capable.

double precision. Pertaining to the use of two
computer words to represent a number with greater
accuracy. For example, a floating-point number would
be stored in the long format.

doubleword. A sequence of bits or characters that
comprises two computer words and can be addressed
as a unit.

dynamic. Pertaining to an operation that occurs at the
time it is needed rather than at a predetermined or fixed
time.

dynamic binding. Binding that occurs at run time.

E
EBCDIC. See extended binary-coded decimal
interchange code.

E-format. Floating-point format, consisting of a number
in scientific notation.

element. The component of an array, subrange,
enumeration, or set.

enumeration constant. An identifier that is defined in
an enumerator and that has an associated integer
value. You can use an enumeration constant anywhere
an integer constant is allowed.

enumeration data type. A type that represents
integers and a set of enumeration constants. Each
enumeration constant has an associated integer value.

enumeration tag. The identifier that names an
enumeration data type.

enumerator. An enumeration constant and its
associated value.

EOF. End of file.

escape sequence. A representation of a character. An
escape sequence contains the \ symbol followed by one
of the characters: a, b, f, n, r, t, v, ', ", x, \, or
followed by one to three octal or hexadecimal digits.

exception. In C, any user, logic, or system error
detected by a function that does not itself deal with the
error but passes the error on to a handling routine.

executable program. A program that can be run on a
processor.

expression. A representation for a value. For
example, variables and constants appearing alone or in
combination with operators.

extended binary-coded decimal interchange code
(EBCDIC). A set of 256 eight-bit characters.

extension. (1) An element or function not included in
the standard language. (2) File name extension.

external data definition. A definition appearing
outside a function. The defined object is accessible to
all functions that follow the definition and are located
within the same source file as the definition.

F
fetch control block (FECB). An executable dynamic
stub which is created by a fetch() function call. The
stub transfers control to the true entry point of the
module specified in the fetch call. The stub also
switches the writable static environment thereby giving
each instance of the fetched routine its own global
data.

file scope. A name declared outside all blocks and
classes has file scope and can be used after the point
of declaration in a source file.

float constant. A constant representing a nonintegral
number.

foreground processing. The execution of a computer
program that preempts the use of computer facilities.

free store. Dynamically allocates memory. New and
delete are used to allocate and deallocate free store.

function. A named group of statements that can be
invoked and evaluated and can return a value to the
calling statement.

function call. An expression that moves the path of
execution from the current function to a specified
function and evaluates to the return value provided by
the called function. A function call contains the name of
the function to which control moves and a
parenthesized list of arguments.

function declarator. The part of a function definition
that names the function, provides additional information
about the return value of the function, and lists the
function parameters.

function definition. The complete description of a
function. A function definition contains an optional
storage class specifier, an optional type specifier, a
function declarator, optional parameter declarations, and
a block statement (the function body).

194 C/VSE V1R1 Language Reference

function prototype. A function declaration that
provides type information for each parameter. It is the
first line of the function (header) followed by a ;
(semicolon). It is required by the compiler when the
function will be declared later so type checking can
occur.

function scope. Labels that are declared in a function
have function scope and can be used anywhere in that
function.

function template. Provides a blueprint describing
how a set of related individual functions can be
constructed.

G
global. Pertaining to information available to more
than one program or subroutine.

global scope. See file scope.

global variable. A variable defined in one portion of a
computer program and used in at least one other
portion of the computer program.

H
halfword. A contiguous sequence of bits or characters
that constitutes half a computer word and can be
addressed as a unit.

hard error. An error condition on a network that
requires that the network be reconfigured or that the
source of the error be removed before the network can
resume reliable operation.

header file. A file that contains system-defined control
information that precedes user data.

hexadecimal constant. A constant, usually starting
with special characters, that contains only hexadecimal
digits. The special characters are \x, �x, or �X.

I
include directive. A preprocessor directive that
causes the preprocessor to replace the statement with
the contents of a specified file.

include file. A text file that contains declarations used
by a group of functions, programs, or users. Also
known as a header file.

initialize. To set the starting value of a data object.

initializer. An expression used to initialize data
objects. In C, there are two types of initializers:

� An expression followed by an assignment operator
is used to initialize fundamental data type objects.

� An expression enclosed in braces ({}) is used to
initialize aggregates.

inlined function. Inlining is a hint to the compiler to
perform inline expansion of the body of a function
member. Functions declared and defined
simultaneously in a class definition are inline. You can
also explicitly declare a function inline by using the
keyword inline. Both member and nonmember
functions can be inlined. You can direct the compiler to
inline a function with the inline keyword.

input stream. A sequence of control statements and
data submitted to a system from an input unit.

instruction. A program statement that specifies an
operation to be performed by the computer, along with
the values or locations of operands. This statement
represents the programmer's request to the processor
to perform a specific operation.

integer constant. A decimal, octal, or hexadecimal
constant.

integral boundary. A location in main storage at
which a fixed-length field, such as a halfword or
doubleword, must be positioned. The address of an
integral boundary is a multiple of the length of the field,
expressed in bytes.

integral object. A character object, an object having
an enumeration type, an object having variations of the
type int, or an object that is a bit field.

internal data definition. A description of a variable
appearing at the beginning of a block that causes
storage to be allocated for the lifetime of the block.

interrupt. A temporary suspension of a process
caused by an external event, performed in such a way
that the process can be resumed.

intrinsic function. A function supplied by a program
as opposed to a function supplied by the compiler.

IPL. Initial Program Load.

ISA. Initial Storage Area.

J
JCL. Job Control Language.

 Glossary 195

K
keyword. (1) A predefined word reserved for the C
language, that may not be used as an identifier. (2) A
symbol that identifies a parameter in JCL.

L
L-name. An external C name in an object module or
an external non-C name in an object module produced
by compiling with the LONGNAME option.

label. (1) An identifier followed by a colon. It is the
target of a goto statement. (2) An identifier within or
attached to a set of data elements.

labeled statement. A possibly empty statement
immediately preceded by a label.

late binding. See dynamic binding.

lexically. Relating to the left-to-right order of units.

library. (1) A collection of functions, function calls,
subroutines, or other data. (2) A set of object modules
that can be specified in a link command.

link. To interconnect items of data or portions of one
or more computer programs; for example, linking of
object programs by a linkage editor to produce an
executable file.

linkage editor. Synonym for linker.

linker. A program that resolves cross-references
between separately compiled object modules and then
assigns final addresses to create a single executable
program (phase).

literal. See constant.

loader. A routine, commonly a computer program, that
reads data into main storage.

local. Pertaining to information that is defined and
available in only one function of a computer program.

local scope. A name declared in a block has local
scope and can only be used in that block.

long constant. An integer constant followed by the
letter L in uppercase or lowercase.

lvalue. An expression that represents a data object
that can be both examined and altered.

M
macro. An identifier followed by arguments (may be a
parenthesized list of arguments) that the preprocessor
replaces with the replacement code located in a
preprocessor #define directive.

main function. A function with the identifier main that
is the first user function to get control when program
execution begins. Each C program must have exactly
one function named main.

mangling. The encoding during compilation of
identifiers such as function and variable names to
include type and scope information. The linker uses
these mangled names to ensure type-safe linkage.

manipulator. A value that can be inserted into
streams or extracted from streams to affect or query the
behavior of the stream.

map. A set of values having a defined correspondence
with the quantities or values of another set.

map file. A listing file that can be created during the
link step and that contains information on the size and
mapping of segments and symbols.

mapping. The establishing of correspondences
between a given logical structure and a given physical
structure.

mask. A pattern of characters that controls the
keeping, deleting, or testing of portions of another
pattern of characters.

member. A data object in a structure or a union.

metalanguage. A language used to specify another
language.

migrate. To move to a changed operating
environment, usually to a new release or version of a
system.

module. A program unit that usually performs a
particular function or related functions, and that is
distinct and identifiable with respect to compiling,
combining with other units, and loading.

multibyte character. A mixture of single-byte
characters from a single-byte character set and
double-byte characters from a double-byte character
set.

multiprocessing. Simultaneous or parallel processing
of two or more computer programs or sequences by a
multiprocessor.

196 C/VSE V1R1 Language Reference

multitasking. A mode of operation that allows
concurrent performance, or interleaved execution of
more than one task or program.

N
newline character. A control character that causes
the print or display position to move to the first position
on the next line. This control character is represented
by \n in the C language.

NULL. A pointer guaranteed not to point to a data
object.

null character (\0). The ASCII or EBCDIC character
with the hex value ��, all bits turned off.

null value. A parameter position for which no value is
specified.

O
object code. Machine-executable instructions, usually
generated by a compiler from source code written in a
higher level language (such as C language).

object module. A portion of an object program
produced by a compiler from a source program, and
suitable as input to a linkage editor.

octal. A base eight numbering system.

octal constant. The digit 0 (zero) followed by any
digits 0 through 7.

operand. An entity on which an operation is
performed.

operating system. Software that controls functions
such as resource allocation, scheduling, input/output
control, and data management.

operation. A specific action such as add, multiply,
shift.

operator. A symbol (such as +, -, �) that represents
an operation (in this case, addition, subtraction,
multiplication).

overflow. A condition that occurs when a portion of
the result of an operation exceeds the capacity of the
intended unit of storage.

overflow condition. A condition that occurs when a
portion of the result of an operation exceeds the
capacity of the intended unit of storage.

overlay. To write over existing data in storage.

overloading. An object-oriented programming
technique that allows you to redefine functions and
most standard C operators when the functions and
operators are used with class types.

P
pack. To store data in a compact form in such a way
that the original form can be recovered.

pad. To fill unused positions in a field with data,
usually zeros, ones, or blanks.

parameter declaration. A description of a value that a
function receives. A parameter declaration determines
the storage class and the data type of the value.

persistent environment. A program can explicitly
establish a persistent environment, direct functions to it,
and explicitly terminate it.

pointer. A variable that holds the address of a data
object or function.

portability. The ability of a programming language to
compile successfully on different operating systems
without requiring changes to the source code.

precision. A measure of the ability to distinguish
between nearly equal values.

preprocessor. A phase of the compiler that examines
the source program for preprocessor statements that
are then executed, resulting in the alteration of the
source program.

preprocessor statement. A statement that begins
with the symbol # and is interpreted by the
preprocessor.

primary expression. An identifier, a parenthesized
expression, a function call, an array element
specification, or a structure or union member
specification.

process. An instance of an executing application and
the resources it uses.

prototype. A function declaration or definition that
includes both the return type of the function and the
types of its parameters.

 Glossary 197

R
record. The unit of data transmitted to and from a
program.

recoverable error. An error condition that allows
continued execution of a program.

reentrant. The attribute of a program or routine that
allows the same copy of a program or routine to be
used concurrently by two or more tasks.

register. A storage area commonly associated with
fast-access storage, capable of storing a specified
amount of data such as a bit or an address.

reserved word. In programming languages, a keyword
that may not be used as an identifier.

rounding. To omit one or more of the least significant
digits in a positional representation and to adjust the
remaining digits according to a specified rule. The
purpose of rounding is usually to limit the precision of a
number or to reduce the number of characters in the
number.

run-time library. A collection of functions in object
code form, whose members can be referred to by an
application program during the linking step.

S
S-name. An external non-C name in an object module
produced by compiling with the NOLONGNAME option.
Such a name is up to 8 characters long and single
case.

SAA. Systems Application Architecture.

scalar. An arithmetic object, or a pointer to an object
of any type.

scope. That part of a source program in which an
object is defined and recognized.

sequential data set. A data set whose records are
organized on the basis of their successive physical
positions, such as on magnetic tape.

signal. A condition that may or may not be reported
during program execution. For example, SIGFPE is the
signal used to represent erroneous arithmetic
operations such as a division by zero.

signal handler. A function to be called when the
signal is reported.

single-byte character set. A set of characters in
which each character is represented by 1 byte of
storage.

single precision. Pertaining to the use of one
computer word to represent a number, in accordance
with the required precision.

software signal. A signal that is explicitly raised by
the user (by using the raise function).

source file. A file that contains source statements for
such items as language programs and data description
specifications.

source program. A set of instructions written in a
programming language that must be translated to
machine language before the program can be run.

specifiers. Used in declarations to indicate storage
class, fundamental data type and other properties of the
object or function being declared.

SQL. Structured Query Language.

stack. An area of storage used for keeping variables
associated with each call to a function or block.

stand-alone. Pertaining to operation that is
independent of any other device, program, or system.

statement. An instruction that ends with the character
; (semicolon) or several instructions that are surrounded
by the characters { and }.

static. A keyword used for defining the scope and
linkage of variables and functions. For internal
variables, the variable has block scope and retains its
value between function calls. For external values, the
variable has file scope and retains its value within the
source file. For class variables, the variable is shared
by all objects of the class and retains its value within
the entire program.

static binding. Binding that occurs at compilation time
based on the resolution of overloaded functions.

storage class specifier. One of: auto, register,
static, or extern.

stream. See data stream.

string constant. Zero or more characters enclosed in
double quotation marks.

structure. A construct that contains an ordered group
of data objects. Unlike an array, the data objects within
a structure can have varied data types. A structure can
be used in all places a class is used. The initial
projection is public.

structure tag. The identifier that names a structure
data type.

198 C/VSE V1R1 Language Reference

stub routine. Within run-time libraries, contains the
minimum lines of code required to locate a given routine
at run time.

subsystem. A secondary or subordinate system, or
programming support, usually capable of operating
independently of or asynchronously with a controlling
system.

swap. To exchange one thing for another.

switch expression. The controlling expression of a
switch statement.

switch statement. A C language statement that
causes control to be transferred to one of several
statements depending on the value of an expression.

system default. A default value defined in the system
profile.

Systems Application Architecture (SAA). Pertaining
to the definition of a common programming interface,
conventions, and protocols for designing and developing
applications with cross-system consistency.

T
tag. One or more characters attached to a set of data
that identifies the set.

task. One or more sequences of instructions treated
by a control program as an element of work to be
accomplished by a computer.

template function. A function generated by a function
template.

thread. A unit of execution within a process.

trap. An unprogrammed conditional jump to a specified
address that is automatically activated by hardware. A
recording is made of the location from which the jump
occurred.

trigraph sequence. A combination of three keystrokes
used to represent unavailable characters in a C source
program. Before preprocessing, each trigraph
sequence in a string or a literal is replaced by the single
character that it represents.

truncate. To shorten a value to a specified length.

try block. A block in which a known C exception is
passed to a handler.

type. The description of the data and the operations
that can be performed on or by the data. Also see data
type.

type balancing. A conversion that makes both
operands have the same data type. If the operands do
not have the same size data type, the compiler converts
the value of the operand with the smaller type to a
value having the larger type.

type conversion. See boundary alignment.

type definition. A definition of a data type.

type specifier. Used to indicate the data type of an
object or function being declared.

U
ultimate consumer. The target of data in an I/O
operation. An ultimate consumer can be a file, a
device, or an array of bytes in memory.

ultimate producer. The source of data in an I/O
operation. An ultimate producer can be a file, a device,
or an array of byes in memory.

unary expression. An expression that contains one
operand.

underflow. A condition that occurs when the result of
an operation is less than the smallest possible nonzero
number.

union. A construct that can hold any one of several
data types, but only one data type at a time.

union tag. The identifier that names a union data type.

unrecoverable error. An error for which recovery is
impossible without use of recovery techniques external
to the computer program or run.

V
variable. An object that can take different values at
different times.

visible. Visibility of identifiers is based on scoping
rules and is independent of access.

volatile. An attribute of a data object that indicates the
object is changeable. Any expression referring to a
volatile object is evaluated immediately (for example,
assignments).

VSAM. Virtual Storage Access Method.

 Glossary 199

W
whitespace. Space characters, tab characters, form
feed characters, and newline characters.

wide character. A character whose range of values
can represent distinct codes for all members of the
largest extended character set specified among the
supporting locales.

word boundary. The storage position at which data
must be aligned for certain processing operations. The
halfword boundary must be divisible by 2, the fullword
boundary by 4, and the doubleword boundary by 8.

Z
zero suppression. The removal of, or substitution of
blanks for, leading zeros in a number. For example,
���57 becomes 57 when using zero suppression.

200 C/VSE V1R1 Language Reference

 Index

Special Characters
˜ bitwise negation operator 103
__ANSI__ macro 169
__CODESET__ macro 153
__DATE__ macro 152
__EXTENDED__ macro 169
__FILE__ macro 151
__FILETAG__ macro 153
__LINE__ macro 151
__LOCALE__ macro 153
__SAA__ macro 169
__SAA_L2__ macro 169
__STDC__ macro 152, 169
__TARGET_LIB__ macro 153
__TIME__ macro 152
__TIMESTAMP__ macro 152
_Packed qualifier 68
, comma operator 116
| bitwise inclusive OR operator 111
¦ bitwise inclusive OR operator 111
|| logical OR operator 112
¦¦ logical OR operator 112
!= not equal to operator 110
! logical negation operator 103
? : conditional operators 113
?? trigraphs 8
/= assignment operator 116
/ division operator 107
¦= assignment operator 116

compound expression
¬= 116

. dot operator 101
" (double quotation mark) 28
() operators

for calling functions 98
for grouping expressions 97

<= less than or equal to operator 109
< less than operator 109
<<= assignment operator 116
<< left-shift operator 108
*= assignment operator 116
* indirection operator 104
* multiplication operator 106
\ continuation character

in a string constant or literal 28
in preprocessor directives 147

\ escape character 9
\a (alarm) 10
\b (backspace) 10
\f (form feed) 10

\r (carriage return) 10
\t (horizontal tab) 10
\v (vertical tab) 10
&= assignment operator 116
& address operator 104
& bitwise operator 110
&& logical AND operator 112
operator 154
preprocessor directive character 147
operator 155
#define preprocessor directive 148
#elif preprocessor directive 158
#else preprocessor directive 160
#endif preprocessor directive 160
#error preprocessor directive 156
#if preprocessor directive 158
#ifdef preprocessor directive 159
#ifndef preprocessor directive 159
#include preprocessor directive 156
#line preprocessor directive 161
#pragma

chars 165
csect 166
inline 167
langlvl 169
linkage 170
longname 171
map 171
margins 172
noinline 167
nolongname 171
nomargins 172
nosequence 174
options 173
page 173
pagesize 173
runopts 174
sequence 174
skip 175
strings 175
subtitle 175
target 175
title 176
variable 176

#undef preprocessor directive 151
− arithmetic negation operator 103
− subtraction operator 108
−− decrement operator 102
−> arrow operator 101
−= assignment operator 116
[] array subscript operators 101

© Copyright IBM Corp. 1994, 1996 201

... ellipses 84
+= assignment 116
+ addition operator 107
++ increment operator 102
= simple assignment operator 115
== equal to operator 110
>= greater than or equal to operator 109
^ (caret)

locale 7
^ bitwise exclusive OR operator 111
> greater than operator 109
>>= assignment operator 116
>> right-shift operator 108
| (vertical bar)

locale 7

A
addition operator + 107
address operator && 104
aggregate types 93
American National Standards Institute

See ANSI
AND operator

bitwise && 110
logical &&& 112

ANSI (American National Standards Institute)
conformance 169
implementation-defined behavior 177

argc
argument count 4
in different environments 5

arguments
command-line 4
function call 98
main() function 4
passing 5

argv
argument vector 4
in different environments 5

arithmetic
conversions 117
types 93

arrays
ANSI conformance 179
declarators 71
element specifier 101
initializers 72
mapping 71
subscript operators [] 101
type specifiers 71

arrow operator −> 101
ASCII character codes 10
assignment

compound expression 116
conversions 118

assignment (continued)
simple expression 115

associativity of operators 93
auto storage class specifier 34

B
backslash escape sequence \\ 10
behavior, definitions

implementation-defined ix
undefined ix
unspecified ix

binary operators
addition operator + 107
bitwise AND operator && 110
bitwise exclusive OR operator ^ 111
bitwise inclusive OR operator | 111
division operator / 107
equality operator == 110
greater than operator > 109
inequality operator != 110
left-shift operator << 108
less than operator < 109
logical AND operator && 112
logical OR operator || 112
multiplication operator * 106
remainder operator % 107
subtraction operator − 108

bit fields
ANSI conformance 180
elements in _packed structure 58
structures in 51

bitwise operators
AND && 110
exclusive OR ^ 111
inclusive OR | 111
left-shift << 108
negation operator ˜ 103
right-shift >> 108

block 127
boundaries, data 92
brackets, and arrays [] 101
break statement 129

C
call, function 98
case label 140

maximum number in a switch statement 180
cast operator 104
char

constant 26
specifier 45

character
ANSI conformance 177
constant 26

202 C/VSE V1R1 Language Reference

character (continued)
data types 44
double-byte

See double-byte character
escape sequence 9
string constant 28
trigraphs 8
variant 8

character string
constant 28

chars pragma 165
CODESET macro 153
comma operator 116
comment pragma 165
comments in source code 10
compatible types 113
compiler control lines

See preprocessor directives
compound statement 127
conditional compilation

elif preprocessor directive 158
if preprocessor directive 158
ifdef preprocessor directive 159
ifndef preprocessor directive 159
preprocessor directive 157

conditional expression ? : 113
conditional statements

if 137
switch 140

const qualifier 67
constant

character 26
description of 21
enumeration 29
escape sequence 9
expression 96
fixed-point decimal 25
floating-point 24
integer 23, 24
string 28

continuation character
definition 10
preprocessor directives 147
string constant or literal 28

continue statement 131
control statements

break 129
continue 131
goto 136
return 139

conversions
assignment 118
cast operator 104
description of 117
enumeration types 124
floating-point types 121

conversions (continued)
pointer types 123
signed integer types 118
type 118
unsigned integer types 120

csect pragma 166

D
data types

array 71
character 44
enumerations 63
fixed-point decimal 46
floating-point 45
functions 83
incomplete types 21
integer 47
pointer 78
scalar 44
structure 49
typedef 90
union 59
void 49

DATE macro 152
DBCS

See double-byte character
decimal

constant 23
declarations

description of 1
examples of 31
file scope 32
function 89
parameter 87

declarators
array 71
character 45
floating-point 46
integer 48
maximum number 180
pointer 78
syntax 70
union 60

decrement operator −− 102
default

char sign 165
clause 140, 141
label 141

define preprocessor directive 148
defined preprocessor operator 159
defined unary operator 159
definition macro 148
dereferencing pointers 104
diagnostic messages 183

 Index 203

digitsof operator 106
division operator / 107
do statement 133
dot operator . 101
double precision

constants 24
variables 45

double-byte character
constant 27
shift states 177
string constant 28

E
EBCDIC character codes 10
elif preprocessor directive 158
ellipsis (...) 84
else clause 137
else preprocessor directive 160
end of string 28
endif preprocessor directive 160
enumerations

ANSI conformance 180
enum data types 63
enum mapping 63
enumeration constant 29
types, converting 124

enumerator 63
environment

implementation-defined behavior 186
equality operators

See also relational operators
equal to == 110
not equal to != 110

error handling
ANSI conformance 183

escape character \ 9
escape sequence 9, 178
evaluation, expression 93
examples

EDCXRAA 130
EDCXRAA0 124
EDCXRAA1 128
EDCXRAA2 130
EDCXRAA3 132
EDCXRAA4 132
EDCXRAA5 134
EDCXRAA6 137
EDCXRAA7 144
EDCXRAA8 150
EDCXRAA9 150
EDCXRAAA 2
EDCXRAAB 3
EDCXRAAD 27
EDCXRAAE 29
EDCXRAAF 35

examples (continued)
EDCXRAAG 36
EDCXRAAI 40
EDCXRAAK 43
EDCXRAAM 49
EDCXRAAN 65
EDCXRAAO 76
EDCXRAAP 77
EDCXRAAQ 82
EDCXRAAS 54
EDCXRAAT 85
EDCXRAAU 86
EDCXRAAV 89
EDCXRAAW 90
EDCXRAAX 100
EDCXRAAY 100
EDCXRAAZ 119
EDCXRABA 152
EDCXRABB 153
EDCXRABC 161
EDCXRABD 162
EDCXRABE 168
EDCXRABG 182
EDCXRABI 143
EDCXRABX 152
EDCXRAH1 39
EDCXRAH2 39
EDCXRAH3 39
EDCXRAJ1 43
EDCXRAJ2 43
EDCXRMAX 3

examples, naming of xi
exclusive OR operator (bitwise) ^ 111
exponents and floating-point constants 25
expression statement 134
expressions

assignment 114
binary 106
comma 116
conditional 113
constant 96
evaluation of 93
lvalue 95
parenthesized 97
primary 97
unary 102

extern storage class specifier 36
external

#pragma map directive 171
identifier 12
names

length of 19
long name support 19
mapping 18

static 37

204 C/VSE V1R1 Language Reference

F
feature test macro 148, 157
FETCHABLE preprocessor directive 170
field, bit 51, 58
FILE macro 151
file scope data declarations 32
files

implementation-defined behavior 185
including 156

FILETAG macro 153
fixed-point decimal

constant 25
data type 46

float specifier 46
floating-point

constant 24
limits 179
types 45

for statement 134
function-like macro 148
functions

body 88
calling functions 98
declarations 89
declarator 85
definitions 83
main() 4
parameter 98
prototypes 83
return statements 139
void 89

G
global variables 36
goto statement 136
greater than operator > 109
greater than or equal to operator >= 109

H
hexadecimal

constant 23
numbers as escape sequences 9

I
identifiers in C/VSE

class 17
description of 12
external names 18
implementation-defined behavior 177

if preprocessor directive 158
IF statement 137
ifdef preprocessor directive 159

ifndef preprocessor directive 159
implementation-defined behavior ix, 177
implicit declaration 89
include preprocessor directive 156
inclusive OR operator (bitwise) ¦ 111
incomplete types 21
increment operator ++ 102
indentation of code 147
indirection operator * 104
initial expression 91
initialization

array 72
character 45
floating 46
integer 48
of global variables 36
of local variables 32

initializers 91
input 174
int

data type 47
specifier 48

integer
amount of storage 178
constants

decimal 23
floating-point 24
hexadecimal 23
octal 24
types 22

converting
signed types 118
unsigned types 120

data types 47
limits 178

integral types 93
internal identifier 12

K
keywords in the C language 12

L
L-names 19
labels 127
langlvl pragma 169
language standards 169
left-shift operator << 108
less than operator < 109
less than or equal to operator <= 109
limits

floating-point 179
integer 178

line feed escape sequence \r 9, 28

 Index 205

LINE macro 151
linkage pragma for interlanguage calls 170
linkage, definition 15
localization 187
logical

AND operator &&& 112
negation operator ! 103
OR operator || 112

long double data type 45
long int data type 47
long name support 19
LONGNAME compile-time option 19
longname pragma 171
loop statements

do 133
for 134
while 144

lvalue, definition 95

M
machine-readable examples xi
macros

definition 148
feature test 148, 157
invocation 148
object-like 148
predefined 151

main() function 4
mapping

external names 171
structures 55

margins pragma 172
maximum and minimum values

See limits
memory

data mapping 92
management 186

minimum and maximum values
See limits

minus unary operator 103
modulo operator % 107
multibyte character

constant 27
shift states 177
string constant 28

multiplication operator * 106

N
name spaces 17
naming

classes 17
external names 18
long names 19
name spaces 17

negation operators
bitwise ˜ 103
logical ! 103

nested visibility 13
nesting level limits 184
newline character

as white space 147
escape sequence \n 9, 10, 28

noinline pragma 167
nolongname pragma 171
nomargins pragma 172
nosequence pragma 174
not equal to operator != 110
null

character (\0) 28
pointer 79
statement 139

O
object-like macro 148
octal

constant 24
numbers as escape sequences 9

operators
assignment 114
associativity 93
binary 106
bitwise AND && 110
bitwise exclusive OR ^ 111
bitwise inclusive OR | 111
comma 116
conditional ? : 113
digitsof 106
equality operators 110
logical AND &&& 112
multiplicative 106
precedence and associativity 93
precisionof 106
preprocessor

154
155

primary 97
relational operators 109
subtraction 108
unary 102

optimization 167
options

compile-time
overriding defaults 173
specifying 173

pragma 173
run-time 174

OR operator (logical) || 112
OS linkage 170

206 C/VSE V1R1 Language Reference

P
¬= assignment operator 116
packed

decimal
assignments 115
comparisons 115

structures 55, 98
unions 61, 98

page pragma 173
pagesize pragma 173
parameter

declaration 87
passing 98

parentheses
for calling functions 98
for grouping expressions 97

passing
addresses 99
values 99

plus, unary operator 103
pointers

ANSI conformance 179
C/VSE 80
description of 78
restriction of C/VSE support 80
types, converting 123
with arrow operator 101

pragma directives
chars 165
comment 165
csect 166
inline 167
langlvl 169
linkage 170
longname 171
map 171
noinline 167
nolongname 171
nomargins 172
nosequence 174
options 173
page 173
pagesize 173
sequence 174
skip 175
strings 175
subtitle 175
target 175
title 176
variable 176

precedence of operators 93
precisionof operator 106
predefined macros

__CODESET__ 153
__DATE__ 152

predefined macros (continued)
__FILE__ 151
__FILETAG__ 153
__LINE__ 151
__LOCALE__ 153
__STDC__ 152
__TARGET_LIB__ 153
__TIME__ 152
__TIMESTAMP__ 152

preprocessor directives
operator 154
operator 155
#pragma 162
conditional compilation 157
define 148
else 160
endif 160
error 156
format of 147
implementation-defined behavior 181
include 156
line control 161
undef 151

primary expression 97
program

running 4
structure 1

prototype function definition 83

Q
question mark escape sequence \? 10
quotation mark

double quotation escape sequence \" 10
single quotation escape sequence \' 10

R
ranges of data types

See limits
record

margins 172
sequence numbers 174

register storage class specifier 41
relational operators

See also equality operators
greater than > 109
greater than or equal to >= 109
less than < 109
less than or equal to <= 109

remainder operator % 107
return

statement 139
value, as declared 89

right-shift operator >> 108

 Index 207

routines
See functions

runopts pragma 174

S
S-names 19
scalar types 93
scope, definition 13
SEQUENCE compile-time option 174
shift

operators << and >> 108
states 177

short int data type 47
short names 19
signal 183
signed

char data type 44, 165
int data type 47
integer types, converting 118

simple assignment operator = 115
single precision variables 45
single quotation escape sequence \' 10
sizeof operator 105
skip pragma 175
softcopy examples xi
source

files 2
program

constituents 1
margins 172
variable names, considerations 18

space character 147
splice preprocessor directive ## 155
statements

block 127
break 129
continue 131
do 133
expression 134
for 134
goto 136
if 137
labels 127
null 139
return 139
switch 140
while 144

static storage class specifier 42
storage

classes
auto 34
extern 36
register 41
static 42

const 67

storage (continued)
duration 17
of variables 92
volatile 67

streams 185
strings

ANSI conformance 177
constant 26, 28
conversion 178
double-byte

See double-byte character
escape sequence 9
pragma 175
string constant 28
trigraphs 8
variant 8

struct specifier 50
structures

alignment 55
ANSI conformance 180
description of 49
members of 101
packed 55
storage classes 50
unpacked 55
variable definition 51

subscript declarator
description of 70
in arrays 71

subscripts 101
subtitle pragma 175
subtraction operator − 108
switch statement 140

T
tab characters

vertical escape sequence \v 9
target pragma 175
TARGET_LIB macro 153
time 187
TIME macro 152
TIMESTAMP macro 152
title pragma 176
TMP_MAX macro, stdio.h file 185
tmpnam() library function 185
tokens 147
trigraphs 8
typedef 90, 170
types

array 71
character 44
enumerations 63
fixed-point decimal 46
floating-point 45
functions 83

208 C/VSE V1R1 Language Reference

types (continued)
incomplete types 21
integer 47
pointer 78
scalar 44
structure 49
typedef 90
union 59
void 49

U
unary expression 102
unary minus operator − 103
unary operators

bitwise negation operator ˜ 103
cast operator 104
decrement operator −− 102
indirection operator * 104
minus operator + 103
plus operator − 103
sizeof operator 105

undef preprocessor directive 151
undefined behavior ix
underscores in identifiers 18
union specifier 59
unions

ANSI conformance 180
members of 101
packed 61
unpacked 61

unsigned
char data type 44, 165
int data type 47
integer types, converting 120
long int data type 47
short int data type 47

unspecified behavior ix

V
variable pragma 176
variables

array 71
block scope data declarations 32
character 44
enumeration 63
file scope data declarations 32
floating-point 45
integer 47
names, considerations 18
pointer 78
storage of 92
structure 49
union 59

variant characters 8
visibility of identifiers 13
void

data type 49
function declaration 89

volatile qualifier 67

W
wchar_t type in wide-character constant 27
while statement 144
white space 10, 154
wide character

constant 27
shift states 177
string constant 28

 Index 209

Communicating Your Comments to IBM

IBM C for VSE/ESA
Language Reference
Release 1

Publication No. SC09-2425-00

If there is something you like—or dislike—about this book, please let us know. You
can use one of the methods listed below to send your comments to IBM. If you
want a reply, include your name, address, and telephone number. If you are com-
municating electronically, include the book title, publication number, page number,
or topic you are commenting on.

The comments you send should only pertain to the information in this book and its
presentation. To request additional publications or to ask questions or make com-
ments about the functions of IBM products or systems, you should talk to your IBM
representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

If you are mailing a readers’ comment form (RCF) from a country other than the
United States, you can give it to the local IBM branch office or IBM representative
for postage-paid mailing.

� If you prefer to send comments by mail, use the RCF at the back of this book.

� If you prefer to send comments by FAX, use this number:

– United States and Canada: 416-448-6161

– Other countries: (+1)-416-448-6161

� If you prefer to send comments electronically, use the network ID listed below.
Be sure to include your entire network address if you wish a reply.

 – Internet: torrcf@vnet.ibm.com
 – IBMLink: toribm(torrcf)
 – IBM/PROFS: torolab4(torrcf)
 – IBMMAIL: ibmmail(caibmwt9)

Readers' Comments — We'd Like to Hear from You

IBM C for VSE/ESA
Language Reference
Release 1

Publication No. SC09-2425-00

Overall, how satisfied are you with the information in this book?

How satisfied are you that the information in this book is:

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? � Yes � No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Very

 Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Overall satisfaction � � � � �

Very

 Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Accurate � � � � �
Complete � � � � �
Easy to find � � � � �
Easy to understand � � � � �
Well organized � � � � �
Applicable to your tasks � � � � �

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments — We'd Like to Hear from You
SC09-2425-00 ����

Fold and Tape Please do not staple Fold and Tape

PLACE
POSTAGE
STAMP
HERE

IBM Canada Ltd. Laboratory
Information Development
2G/345/1150/TOR
1150 EGLINTON AVENUE EAST
NORTH YORK ONTARIO CANADA M3C 1H7

Fold and Tape Please do not staple Fold and Tape

SC09-2425-00

����

Program Number: 5686-A01

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC09-2425-00

	C0924250P02fc
	C0924250B01
	C0924250B02
	C0924250B03
	C0924250B04
	C0924250B05
	C0924250B06
	C0924250B07
	C0924250P02bc

