

IBM C for VSE/ESA ���

User’s Guide
Release 1

 SC09-2424-00

IBM C for VSE/ESA ���

User’s Guide
Release 1

 SC09-2424-00

 Note!

Before using this information and the product it supports, be sure to read the general information under “Notices”
on page vii.

First Edition (December 1996)

This edition applies to Version 1, Release 1, Modification Level 0, of IBM C for VSE/ESA (Program 5686-A01); Version 1, Release 4,
Modification Level 0, of IBM Language Environment for VSE/ESA (Program 5686-094); the VSE C Language Run-Time Support
feature of VSE/ESA Version 2 Release 2 (Program 5690-VSE); and to all subsequent releases and modifications until otherwise
indicated in new editions. Make sure you are using the correct edition for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address given below.

A form for readers’ comments is provided at the back of this publication. If the form has been removed, address your comments to:

IBM Canada Ltd. Laboratory
Information Development
2G/345/1150/TOR
1150 Eglinton Avenue East
North York, Ontario, Canada M3C 1H7

You can also send your comments by facsimile (attention: RCF Coordinator), or you can send your comments electronically to IBM.
See “Communicating Your Comments to IBM” for a description of the methods. This page immediately precedes the Readers’
Comment Form at the back of this publication.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1994, 1996. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . vii
Programming Interface Information . vii
Standards . vii
Trademarks and Service Marks . viii

About This Book . ix
The C Language . ix
IBM Language Environment for VSE/ESA . ix
Utilities . x
Using Your Documentation . x

Softcopy Examples . xi
How to Read the Syntax Diagrams . xii

Chapter 1. Compiling with C/VSE . 1
Invoking the C/VSE Compiler . 1

Writing Your Own Job Control Language Statements 1
Specifying the Input Files . 2
Specifying the Output Files . 3

Using Include Files . 4
Include Filename Conversion . 6
Search Sequences for Include Files . 7

Chapter 2. Prelinking . 9
Prelinking a C Application . 9

Chapter 3. Linking and Running . 11
Library Routine Considerations . 11
Creating an Executable Program . 12
Reentrancy in C/VSE . 13
Linking Modules for Interlanguage Calls . 14
Running a C/VSE Program . 14
Running an Application . 14
Specifying Run-Time Options . 14

Specifying Run-Time Options in the EXEC Statement 15

Chapter 4. Compile-Time Options . 17
Specifying Compile-Time Options . 17

Specifying Compile-Time Options Using #pragma options 17
Compile-Time Option Defaults . 18
Summary of Compile-Time Options . 18
Description of Compile-Time Options . 21

AGGREGATE|NOAGGREGATE . 22
CHECKOUT|NOCHECKOUT . 22
CSECT|NOCSECT . 23
DECK|NODECK . 24
DEFINE . 24
EXECOPS|NOEXECOPS . 24
EXPMAC|NOEXPMAC . 25
FLAG|NOFLAG . 25
GONUMBER|NOGONUMBER . 26

© Copyright IBM Corp. 1994, 1996 iii

HWOPTS|NOHWOPTS . 26
INFILE|NOINFILE . 27
INLINE|NOINLINE . 27
LANGLVL . 29
LIST|NOLIST . 30
LOCALE|NOLOCALE . 30
LONGNAME|NOLONGNAME . 31
LSEARCH|NOLSEARCH . 31
MARGINS|NOMARGINS . 34
MEMORY|NOMEMORY . 35
NAME|NONAME . 35
NESTINC|NONESTINC . 36
OBJECT|NOOBJECT . 36
OFFSET|NOOFFSET . 37
OPTIMIZE|NOOPTIMIZE . 37
PPONLY|NOPPONLY . 38
RENT|NORENT . 39
SEARCH|NOSEARCH . 39
SEQUENCE|NOSEQUENCE . 42
SHOWINC|NOSHOWINC . 43
SOURCE|NOSOURCE . 43
SPILL|NOSPILL . 44
SSCOMM|NOSSCOMM . 44
START . 44
TARGET . 45
TERMINAL|NOTERMINAL . 45
TEST|NOTEST . 46
UPCONV|NOUPCONV . 47
XREF|NOXREF . 47

Using the Compiler Listing . 47
Example of a C/VSE Compiler Listing . 48
Compiler Listing Components . 54

Chapter 5. Run-Time Options . 59
Specifying Run-Time Options . 59

Specifying Run-Time Options Using the #pragma runopts Preprocessor
Directive . 59

Chapter 6. C/VSE Example . 61
Example of a C/VSE Program . 61
Compiling, Linking, and Running the C/VSE Example 63

Appendix A. C/VSE Return Codes and Messages 65
Return Codes . 65
Compiler Messages . 65

Appendix B. Other Return Codes and Messages 97
perror() Messages . 97

Appendix C. Files Used during Compile, Prelink, Link-Edit, and Execution 99
Cross-Reference of Files Used . 99
Description of Files Used . 99

Appendix D. Invoking C/VSE from Assembler 101

iv C/VSE V1R1 User's Guide

Glossary . 105

Bibliography . 115
IBM C for VSE/ESA Publications . 115
IBM Language Environment for VSE/ESA Publications 115
Related Publications . 115
Softcopy Publications . 115

Index . 117

 Contents v

vi C/VSE V1R1 User's Guide

 Notices

Any reference to an IBM licensed program in this publication is not intended to
state or imply that only IBM’s licensed program may be used. Any functionally
equivalent product, program, or service that does not infringe any of IBM’s
intellectual property rights may be used instead of the IBM product, program, or
service. Evaluation and verification of operation in conjunction with other products,
except those expressly designated by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594, USA.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independent created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact IBM Canada Ltd., Department 071,
1150 Eglinton Avenue East, North York, Ontario M3C 1H7, Canada. Such
information may be available, subject to appropriate terms and conditions, including
in some cases payment of a fee.

Programming Interface Information
This book is intended to help the customer program with the C/VSE language. This
book documents General-Use Programming Interfaces and associated guidance
information provided by the IBM C for VSE/ESA and IBM Language Environment
for VSE/ESA products.

General-Use Programming Interfaces allow the customer to write programs that
obtain the services of the IBM C for VSE/ESA compiler and IBM Language
Environment for VSE/ESA.

 Standards
Extracts are reprinted from IEEE Std 1003.1—1990, IEEE Standard Information
Technology—Portable Operating System Interface (POSIX)—Part 1: System
Application Program Interface (API) [C language], copyright 1990 by the Institute of
Electrical and Electronic Engineers, Inc.

Extracts are reprinted from IEEE P1003.1a Draft 6 July 1991, Draft Revision to
Information Technology—Portable Operating System Interface (POSIX), Part 1:
System Application Program Interface (API) [C Language], copyright 1992 by the
Institute of Electrical and Electronic Engineers, Inc.

Extracts are reprinted from IEEE Std 1003.2—1992, IEEE Standard Information
Technology—Portable Operating System Interface (POSIX)—Part 2: Shells and
Utilities, copyright 1990 by the Institute of Electrical and Electronic Engineers, Inc.

Extracts are reprinted from IEEE Std P1003.4a/D6—1992, IEEE Draft Standard
Information Technology—Portable Operating System Interface (POSIX)—Part 1:
System Application Program Interface (API)—Amendment 2: Threads Extension [C

© Copyright IBM Corp. 1994, 1996 vii

language], copyright 1990 by the Institute of Electrical and Electronic Engineers,
Inc.

Extracts from ISO/IEC 9899:1990 have been reproduced with the permission of the
International Organization for Standardization, ISO, and the International
Electrotechnical Commission, IEC. The complete standard can be obtained from
any ISO or IEC member or from the ISO or IEC Central Offices, Case Postal, 1211
Geneva 20, Switzerland. Copyright remains with ISO and IEC.

Portions of this book are extracted from X/Open Specification, Programming
Languages, Issue 3, copyright 1988, 1989, February 1992, by the X/Open
Company Limited, with the permission of X/Open Company Limited. No further
reproduction of this material is permitted without the written notice from the X/Open
Company Ltd, UK.

Trademarks and Service Marks
The following terms are trademarks or service marks of the IBM Corporation in the
United States or other countries or both:

The following terms are trademarks of other companies:

ANSI American National Standards Institute
IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronic Engineers
ISO International Organization for Standardization
POSIX Institute of Electrical and Electronic Engineers
X/Open X/Open Company Ltd.

AIX/6000 OS/390
C/370 OS/400
CICS System/370
IBM SAA
Language Environment VSE/ESA
OS/2

viii C/VSE V1R1 User's Guide

About This Book

This edition of the User's Guide is intended for users of IBM C for VSE/ESA
(C/VSE) as implemented for the IBM Language Environment for VSE/ESA
(LE/VSE) environment. It contains guidelines for preparing C programs to run
under the VSE operating system.

To use this book, or any other C/VSE book, you must have a working knowledge of
the C programming language, the operating system, and where appropriate, the
related products.

Note: References to LE/VSE also apply to the VSE C Language Run-Time
Support feature of VSE/ESA Version 2 Release 2.

The C Language
The C language is a general purpose, function-oriented programming language that
allows a programmer to create applications quickly and easily. C provides
high-level control statements and data types as do other structured programming
languages, and it also provides many of the benefits of a low-level language.
Using the C/VSE language, you can write portable code conforming to the ANSI
standard.

IBM offers the C language on other platforms, such as the OS/2, AIX/6000,
OS/400, OS/390, and VM operating systems.

The elements of the C/VSE implementation include:

� All elements of the joint ISO and IEC standard: ISO/IEC 9899:1990 (E)
� ANSI/ISO 9899:1990[1992] (formerly ANSI X3.159-1989 C)
� Locale based internationalization support as defined in: ISO/IEC DIS

9945-2:1992/IEEE POSIX 1003.2-1992 Draft 12 (There are some limitations
to fully-compliant behavior as noted in the LE/VSE C Run-Time
Programming Guide.)

� Extended multibyte and wide character utilities as defined by a subset of the
Programming Language C Amendment 1, which will be ISO/IEC
9899:1990/Amendment 1:1994(E)

IBM Language Environment for VSE/ESA
C/VSE exploits the C run-time environment and library of run-time callable services
provided by IBM Language Environment for VSE/ESA (LE/VSE).

LE/VSE establishes a common run-time environment and common run-time callable
services for language products, user programs, and other products.

The common execution environment is made up of data items and services
performed by library routines available to a particular application running in the
environment. The services that LE/VSE provides to your application may include:

© Copyright IBM Corp. 1994, 1996 ix

� Services that satisfy basic requirements common to most applications. These
include support for the initialization and termination of applications, allocation of
storage, support for interlanguage communication (ILC), and condition handling.

� Extended services often needed by applications. These functions are
contained within a library of callable routines, and include interfaces to
operating system functions and a variety of other commonly used functions.

� Run-time options that help the execution, performance tuning, performance,
and diagnosis of your application.

� Access to language-specific library routines, such as the C functions.

 Utilities
The following C/VSE-related utilities are provided with LE/VSE:

� Locale definition utility to generate locales for use with C/VSE applications. A
locale is a definition of those aspects of each country or culture that a program
must recognize, such as: coded character sets (codepage), national language
options, rules and symbols for monetary information, and time zones.

� iconv and genxlt code set conversion utilities to increase the portability of code
that is passed between systems and locales.

� DSECT conversion utility to convert descriptive data produced by High Level
Assembler into C/VSE data structures, for C/VSE programs that interface with
assembler programs.

For more information about these utilities, see the LE/VSE C Run-Time
Programming Guide.

Using Your Documentation
The publications in the C/VSE and LE/VSE libraries are designed to help you
develop C/VSE applications that run with LE/VSE. Each publication helps you
perform a different task. For a complete list of publications you might need, see
“Bibliography” on page 115. Table 1 lists the publications in the C/VSE library.

Table 1. How to Use C/VSE Publications

To... Use...

Plan for, install, customize, and
maintain C/VSE

Installation and Customization
Guide

GC09-2422

Migrate VSE applications from C/370
to C/VSE

Migration Guide SC09-2423

Get details on C/VSE syntax and
specifications of language elements

Language Reference SC09-2425

Find syntax for compile-time options;
compile your C/VSE applications; get
details on compile-time messages

User's Guide SC09-2424

Diagnose compiler problems and
report them to IBM

Diagnosis Guide GC09-2426

Understand warranty information Licensed Program Specifications GC09-2421

x C/VSE V1R1 User's Guide

Table 2 on page xi lists the publications in the LE/VSE library. These include
publications designed to help you develop and debug your C/VSE applications,
diagnose run-time problems that occur in your C/VSE applications, and use
C/VSE-related utilities.

Table 2. How to Use LE/VSE Publications

To... Use...

Evaluate LE/VSE Fact Sheet
Concepts Guide

GC33-6679
GC33-6680

Plan for, install, customize, and
maintain LE/VSE

Installation and Customization
Guide

SC33-6682

Understand the LE/VSE program
models and concepts

Concepts Guide
Programming Guide

GC33-6680
SC33-6684

Find syntax for LE/VSE run-time
options and callable services

Programming Reference SC33-6685

Develop your C/VSE applications Programming Guide
C Run-Time Programming Guide
C Run-Time Library Reference

SC33-6684
SC33-6688
SC33-6689

Develop interlanguage communication
(ILC) applications

Writing Interlanguage
Communication Applications

SC33-6686

Debug your C/VSE applications and
get details on run-time messages

Debugging Guide and Run-Time
Messages

SC33-6681

Migrate applications to LE/VSE Run-Time Migration Guide SC33-6687

Diagnose run-time problems that
occur in your C/VSE applications

Debugging Guide and Run-Time
Messages

SC33-6681

Use C/VSE-related utilities C Run-Time Programming Guide SC33-6688

Understand warranty information Licensed Program Specifications GC33-6683

 Softcopy Examples
Most examples in the following books are available in machine-readable form:

� C/VSE Installation and Customization Guide, GC09-2422
� C/VSE User's Guide, SC09-2424
� C/VSE Language Reference, SC09-2425

Softcopy examples are indicated in the book by a label in the form, EDCXbnnn. The
b refers to the book:

� I is the C/VSE Installation and Customization Guide
� U is the C/VSE User's Guide
� R is the C/VSE Language Reference

Softcopy examples are installed on your system along with C/VSE, in the sublibrary
PRD2.DBASE.

Example member names are the same as the labels indicated in the book.

Contact your system programmer if the default names are not used at your
installation.

 About This Book xi

How to Read the Syntax Diagrams
In this book, syntax for commands, directives, and statements is described using
the following structure:

� Read the syntax diagrams from left to right, from top to bottom, following the
path of the line.

A double right-arrowhead indicates the beginning of a command, directive, or
statement; the single right-arrowhead indicates that it is continued on the next
line. (In the following diagrams, statement is used to represent a command,
directive, or statement.)

��──statement──�

The following indicates a continuation; the opposing arrowheads indicate the
end of a command, directive, or statement.

�──statement──��

Diagrams of syntactical units other than complete commands, directives, or
statements look like this:

�──statement──�

� Required items are on the horizontal line (the main path).

��──statement──required_item──��

� IBM-supplied default items are above the main path.

 ┌ ┐─default_item─
��──statement─ ──┴ ┴────────────── ─��

� Optional items are below the main path.

��──statement─ ──┬ ┬─────────────── ─��
 └ ┘─optional_item─

� If you can choose from two or more items, they are vertical in a stack.

If you must choose one of the items, one item of the stack is on the main path.

��──statement─ ──┬ ┬─required_choice1─ ─��
 └ ┘─required_choice2─

If choosing one of the items is optional, the entire stack is below the main path.

��──statement─ ──┬ ┬────────────────── ─��
 ├ ┤─optional_choice1─
 └ ┘─optional_choice2─

� An arrow returning to the left above a line indicates an item that you can
repeat.

 ┌ ┐───────────────────
��──statement─ ───� ┴─repeatable_item─ ─��

or

xii C/VSE V1R1 User's Guide

��──statement─ ──┬ ┬───────────────────── ─��
 │ │┌ ┐───────────────────
 └ ┘ ───� ┴─repeatable_item─

A repeat arrow above a stack indicates that you can make more than one
choice from the stacked items, or repeat a single choice.

� Keywords are in non-italic letters and should be entered exactly as shown (for
example, pragma). They must be spelled exactly as shown. Variables are in
italics and lowercase letters (for example, identifier). They represent
user-supplied names or values.

� Keywords that appear in mixed-case letters (for example, AGGregate) indicate
that the keyword can be abbreviated (AGG) or entered in full (AGGREGATE).

� If punctuation marks, parentheses, arithmetic operators, or other
non-alphanumeric characters are shown, you must enter them as part of the
syntax.

Note: The white space is not always required between tokens but you should
include at least one blank space between tokens unless otherwise specified.

The following syntax diagram example shows the syntax for the #pragma comment
directive.

��──#────(1, 2)─pragma───(3) ─comment───(4) ─(───(5) ─�

�─ ──┬ ┬─compiler───(6) ──────────────────────────── ─)─────(9, 10) ─��
 ├ ┤─date───────────────────────────────────
 ├ ┤─timestamp──────────────────────────────
 └ ┘ ──┬ ┬─copyright─ ──┬ ┬─────────────────────
 └ ┘─user────── └ ┘─,───(7) ──"characters"──(8)

Notes:
1 This is the start of the syntax diagram.
2 The symbol # must appear first.
3 The keyword pragma must follow the # symbol.
4 The keyword comment must follow the keyword pragma.
5 An opening parenthesis must follow the keyword comment.
6 The comment type must be entered only as one of the following: compiler, date,

timestamp, copyright, or user.
7 If the comment type is copyright or user, and an optional character string is

following, a comma must be present after the comment type.
8 A character string must follow the comma. The character string must be

enclosed in double quotation marks.
9 A closing parenthesis is required.
10 This is the end of the syntax diagram.

The following examples of the #pragma comment directive are syntactically correct
according to the diagram shown above:

 #pragma comment(date)
 #pragma comment(user)

#pragma comment(copyright,"This text will appear in the module")

 About This Book xiii

xiv C/VSE V1R1 User's Guide

Chapter 1. Compiling with C/VSE

This chapter describes how to compile your program using C/VSE.

C/VSE analyzes the C source program and translates the source code into
machine instructions known as object code.

To compile your C source program using C/VSE, you must have access to LE/VSE
because the compiler itself is written in C and calls run-time library functions to
compile code.

Invoking the C/VSE Compiler
When you invoke C/VSE, the operating system automatically tries to locate and
execute the compiler. LE/VSE is also required to execute the compiler. The
location of the compiler is determined by the system programmer who installed the
product. If the compiler and run-time library phases are loaded in the Shared
Virtual Area (SVA), or the sublibraries are defined in the permanent LIBDEF chain,
no additional user action is necessary; Otherwise, a LIBDEF SEARCH PHASE statement
in the Job Control Language (JCL) must specify the sublibrary.

To compile your C source program in batch, you will need to write your own JCL
statements, or use a cataloged procedure.

You use JCL to define your jobs and job steps to the operating system. You can
describe the steps you want the operating system to perform, and specify the
resources that are required by the job. The JCL statements that are essential to
run a C job are:

� A JOB statement that identifies the start of the job

� DLBL, EXTENT, and ASSGN statements that identify the input/output facilities
required by the program executed in the job step

� OPTION statement to indicate the options to be used

� An EXEC statement that identifies a job step and the program to be executed
either directly or by means of a cataloged procedure

For more information about JCL, refer to “Related Publications” on page 115.

Regularly used sets of JCL can be prepared once, and stored in a VSE Librarian
sublibrary. Such a set of statements is called a cataloged procedure. A cataloged
procedure consists of one or more job steps. You include the cataloged procedure
in a job by specifying PROC=name on an EXEC statement, where name is the name of
the cataloged procedure.

Writing Your Own Job Control Language Statements
The following example shows a general JCL stream to compile a C program:

© Copyright IBM Corp. 1994, 1996 1

 EDCXUAAD

// JOB EDCXUAAD
// LIBDEF PHASE,SEARCH=(user.sublib,PRD2.DBASE,PRD2.SCEEBASE)
// LIBDEF SOURCE,SEARCH=(user.sublib,PRD2.DBASE,PRD2.SCEEBASE)
// OPTION LINK
// EXEC EDCCOMP,SIZE=EDCCOMP,PARM='SOURCE,XREF'
#include <stdio.h>

...
main()
{
 /� comment �/

...
}
/�
/&

Figure 1. Sample JCL to Compile a C Program

Notes:

1. Additional JCL statements for compiler workfiles (IJSYS�1-IJSYS�7) and SYSLNK
are required if the labels for these files have not been placed in the System
Standard or Partition Standard label areas.

2. Both C/VSE and the run-time library functions use GETVIS storage. The SIZE
parameter on the EXEC statement specifies the name of the C/VSE main phase.
This will set the size of program storage to the size of the root phase of the
compiler and will make all other storage in the partition available as GETVIS
storage.

3. If the compiler fails with a return code of 16 and no message, increase the
partition size and re-run the job.

Specifying the Input Files
Input for the compiler consists of:

� Your C source program
� LE/VSE run-time library standard header files
� Your header files

A list of the files used by C/VSE, along with a brief description, is given in Table 14
on page 99.

To assist you in migrating existing applications from other operating systems to
VSE, filename conversions are performed automatically by C/VSE. These
conversions will affect filenames specified on #include preprocessor directives, and
in file I/O library functions such as fopen(). See the C/VSE Language Reference
for general information on the #include directive and the available I/O library
functions.

 Primary Input
The primary input to the compiler is the file containing your C source program.
C/VSE will read your C source program from SYSIPT, or from the file specified using
the INFILE compile-time option.

2 C/VSE V1R1 User's Guide

If reading from a logical unit assigned to SYSRDR (for example, SYSIPT), the C source
program should immediately follow the EXEC statement used to invoke C/VSE.

If the primary input file is SYSIPT (source statements imbedded in your JCL), the
input is terminated by the first /� in column 1. Therefore, C comment statements
in the primary input file should not start in column 1.

 Secondary Input
Secondary input to the compiler consists of sequential files or VSE Librarian
sublibrary members referenced by #include directives.

Specify the sublibraries containing LE/VSE standard header files and user header
files with the JCL // LIBDEF statement.

Note: Secondary input to the compiler may contain comments that start in column
1. However, if the secondary input contains comments beginning in column 1 and
the PPONLY compile-time option is used, the PPONLY output cannot be used as input
to the compiler if it is read back via SYSIPT.

Specifying the Output Files
The compiler will write the listing to SYSLST. SYSLST may be directed to a printer, a
direct access device, or a magnetic-tape device. The listing will include the results
of the default or specified options of the PARM parameter (that is, the diagnostic
messages and the object code listing). For example:

// ASSGN SYSLST,PRT1

To create an object module and store it on disk or tape, you can use either the
OBJECT or DECK compile-time options.

With the OBJECT compile-time option, the compiler writes the object to SYSLNK for
input to the linkage editor. With the DECK compile-time option, the compiler writes
the object to SYSPCH.

SYSLNK does not need to be assigned if the NOOBJ option is in effect. SYSPCH does
not need to be assigned if the NODECK option is in effect.

If the object deck produced by the compiler is to be cataloged in a VSE Librarian
sublibrary, the DECK and NAME options should be used as follows:

 Chapter 1. Compiling with C/VSE 3

 EDCXUAAE

� $$ JOB JNM=EDCXUAAE,PDEST=(�,uid),LDEST=(�,uid),PRI=pri,CLASS=class
� $$ PUN DISP=I,CLASS=class
// JOB EDCXUAAE
// LIBDEF �,SEARCH=(PRD2.DBASE,PRD2.SCEEBASE,...)
// EXEC IESINSRT
$ $$ LST DISP=D
// JOB jobname
// OPTION CATAL
// EXEC LIBR,PARM='MSHP;ACCESS SUBLIB=user.sublib'
� $$ END
// OPTION DECK
// EXEC EDCCOMP,SIZE=EDCCOMP,PARM='NAME(name)'
#include <stdio.h>

...
main()
{
/� comment �/
...

}
/�
// EXEC IESINSRT
$ $$ EOJ
� $$ END
/&
� $$ EOJ

Figure 2. Sample JCL to Compile and Catalog Object Deck in a VSE Librarian Sublibrary

Notes:

1. The JCL information for the compiler workfiles (IJSYS�1-IJSYS�7) and SYSLNK, if
previously added to the System Standard or Partition Standard label area, need
not be specified in the job stream.

2. The DECK option is specified to indicate to the compiler to write the object deck
to SYSPCH. SYSPCH is assigned to a direct-access device.

3. The NAME option is specified to indicate to the compiler to generate a CATALOG
control statement.

Using Include Files
The #include preprocessor directive allows you to retrieve source statements from
secondary input files and incorporate them into your C program.

A description of the #include directive is given in the C/VSE Language Reference.
Its syntax is:

4 C/VSE V1R1 User's Guide

��──#include─ ──┬ ┬─<──┤ Filename ├──>─ ──────────────────────────────────────��
 └ ┘─"──┤ Filename ├──"─

Filename:
 ┌ ┐──────────
├─ ──┬ ┬───── ───� ┴┬ ┬────── ──┬ ┬─── ──�
 └ ┘─'───(1) └ ┘ ─char─ └ ┘─/─

 ┌ ┐─.─────────
�─ ──┬ ┬───� ┴─qualifier─ ───────────────────────────────── ──┬ ┬───── ─────────────┤
 ├ ┤ ─DD:─ ──┬ ┬─dlbl_name────────────────────── ─────── └ ┘─'───(1)

 │ │└ ┘ ─logical_unit─ ──┬ ┬──────────────
│ │├ ┤──–──(2) dlbl_name
│ │└ ┘──–──(2) tlbl_name

 └ ┘ ─DD:─ ──┬ ┬──────────── ─(──member─ ──┬ ┬───────── ─)─
 └ ┘ ─lib.sublib─ └ ┘ ─.──type─

Notes:
1 The single quotation marks must be matched; if you use one, you must

use the other.
2 If both logical_unit and dlbl_name or tlbl_name are specified, a – (dash)

must be used as separator.

where:

char
Specifies any alphanumeric character.

dlbl_name
Specifies the name of a JCL DLBL statement.

lib.sublib
Specifies a valid VSE Librarian sublibrary name.

logical_unit
Specifies either a system logical unit (for example, SYSPCH) or a programmer
logical unit (SYS��� to SYS254).

member
Specifies a VSE Librarian sublibrary member name.

qualifier
Specifies a 1- to 8-character name. One or more qualifiers joined by periods
make up a VSE file ID.

tlbl_name
Specifies the name of a JCL TLBL statement.

type
Specifies a VSE Librarian sublibrary member type.

No spaces are allowed within the filename specification.

The angle brackets are used to specify system include files, and double quotation
marks are used to specify user include files. The difference between using these
two formats is in the way that the files are searched for. See “Search Sequences
for Include Files” on page 7 for additional information.

 Chapter 1. Compiling with C/VSE 5

When you use the #include directive, you must be aware of:

� The file-naming conversions performed by C/VSE as detailed in “Include
Filename Conversion.”

� The search order used by C/VSE to locate the file (known as the library search
sequence). See “Search Sequences for Include Files” on page 7 for more
information on the library search sequence.

� The area of the input record containing sequence numbers when you are
including files with different record formats. See the C/VSE Language
Reference for more information on #pragma sequence.

Include Filename Conversion
C/VSE performs filename conversions in the following order:

1. If the filename specification does not appear within single quotation marks, the
compiler does the following:

a. Filenames are stripped from left to right of all characters up to and
including the rightmost / (slash).

b. All underscores (_) that appear in filename specifications are replaced by
an @.

c. All lowercase letters are converted to uppercase.

d. If a DD: format of the #include directive is used, the compiler attempts to
use the file associated with the specified sublibrary member, or the
DLBL/TLBL-name and/or the logical unit specified.

e. If a DD: format of the #include directive is not used, the following is
performed:

1) If only one qualifier is specified, the second qualifier defaults to H.

2) If a VSE Librarian sublibrary is indicated by the SEARCH or LSEARCH
options, the first two qualifiers are used as the member name and
member type, while the remaining qualifiers are ignored. Otherwise, if
a sequential file is indicated by the SEARCH or LSEARCH options, all
qualifiers are used as the sequential filename.

Notes:

a) If you specify the CHECKOUT(PPTRACE) compile-time option, a
message will be issued stating what include files the preprocessor
is looking for.

b) Member types for the #include directive should not use system
names (for example, PHASE or OBJ).

2. If the filename specification appears within single quotation marks, the compiler
does the following:

� None of the VSE Librarian sublibraries are searched.

� If a filename is given, the compiler attempts to open the file using the
filename exactly as specified.

Table 3 on page 7 gives the format of the filename as specified on a #include
directive in a source file, and the actual filename used when C/VSE attempts to
locate and open the file.

6 C/VSE V1R1 User's Guide

Note: When you use single quotation marks inside the #include directive, or use
the DLBL/TLBL-name and/or logical unit format, a library search will not be
performed. If the file is not found, the compiler will make no attempt to locate it in
the VSE Librarian sublibraries, or any sequential files, specified by the SEARCH or
LSEARCH compile-time options, or in any of the sublibraries specified on the
// LIBDEF SOURCE JCL statement.

Table 3. Examples of #include Filename Specifications

Example # #include Directive Resulting Filename

Comments

1 #include "'USER1.SRC.MYINCS'" USER1.SRC.MYINCS

A library search will not be performed when single quotation marks are used.

2 #include <'COMIC/BOOK.OLDIES.K'> COMIC/BOOK.OLDIES.K

C/VSE will attempt to open a file called COMIC/BOOK.OLDIES and will fail
because it is not a valid VSE filename. A library search will not be performed
when single quotation marks are used.

3 #include "sys/abc/xx" XX.H

4 #include "Sys/ABC/xx.h" XX.H

5 #include <sys/name_1> NAME@1.H

6 #include <Name2/App1.App2> APP1.APP2

7 #include
<DD:PLAN.SUBLIB(YEAREND.H)>

YEAREND.H in sublibrary PLAN.SUBLIB

The VSE Librarian member named YEAREND.H of the sublibrary PLAN.SUBLIB
will be used. A library search will not be performed when a DD: format is
used.

Search Sequences for Include Files
With C/VSE, you can specify a search path for locating secondary input files. The
two methods for specifying the search path are:

1. Using the SEARCH and LSEARCH compile-time options

2. Using the // LIBDEF statement in your JCL stream

You can use either of these methods to search any VSE Librarian sublibrary.
When both of these methods are used at the same time, the sublibraries specified
in the compile-time option are searched first.

If a system include file is not found in the sublibraries specified by the SEARCH
option, the sublibraries on the // LIBDEF SOURCE JCL statement are searched.

If a user include file is not found in the sublibraries specified by the LSEARCH option,
the sublibraries on the // LIBDEF SOURCE JCL statement are searched. If the user
include file is not found in any of the sublibraries, the compiler searches the
sublibraries specified by the SEARCH option.

 Chapter 1. Compiling with C/VSE 7

The example below shows an excerpt from a JCL stream that compiles a C
program:

...
// LIBDEF SOURCE,SEARCH=(JONES.ABC,JONES.DEF)
// EXEC EDCCOMP,SIZE=EDCCOMP,PARM='SEARCH(BB.D,BB.F),LSEARCH(CC.X)'

...
/�

The search sequence resulting from the preceding JCL statements is as follows:

Because the topic of JCL statements goes beyond the scope of this book, only
simple examples will be used. For complete details on JCL, refer to “Related
Publications” on page 115.

Order of Search For System Include Files For User Include Files

First BB.D CC.X

Second BB.F JONES.ABC

Third JONES.ABC JONES.DEF

Fourth JONES.DEF BB.D

Fifth BB.F

8 C/VSE V1R1 User's Guide

 Chapter 2. Prelinking

This chapter describes when to use the LE/VSE prelinker. The LE/VSE prelinker
combines the object modules that form a C application into a single object module
that can be link-edited or loaded for execution. For information about how to use
the prelinker, including prelinker options, see the LE/VSE Programming Guide. For
information on link-editing object modules, refer to Chapter 3, “Linking and
Running” on page 11.

Prelinking a C Application
The LE/VSE prelinker combines the object modules that form a C application and
produces a single object module that can then be link-edited or loaded for
execution. The prelinker must be used when:

� C source is compiled with the RENT compile-time option
� C source is compiled with the LONGNAME compile-time option

For more information about the RENT and LONGNAME compile-time options, see
Chapter 4, “Compile-Time Options” on page 17.

For object modules from applications compiled with the RENT compile-time option,
the prelinker:

� Combines writable static initialization descriptors
� Maps writable static storage
� Removes writable static name and relocation information

For object modules from applications compiled with the LONGNAME compile-time
option, the prelinker maps L-names to S-names on output. L-names are
mixed-case external names, of up to 255 characters in length, put out by the
compiler when compiling with the LONGNAME option. S-names are eight character,
single-case external names, put out by the compiler when compiling with the
NOLONGNAME option.

Note: You can exclude object modules that do not refer to writable static or
L-names during the prelink step. LE/VSE run-time library functions are not included
as part of automatic library calls. This omission can result in warning messages
about unresolved references to C library functions or C library objects, but any
unresolved C library functions or objects will be resolved in a following link-edit
step.

The following shows an excerpt from a compile-prelink-link job which shows the
JCL required to execute the prelinker (EDCPRLK):

© Copyright IBM Corp. 1994, 1996 9

...
// OPTION LINK
 PHASE phase_name,�
// EXEC PGM=EDCCOMP,SIZE=EDCCOMP,PARM='RENT'
#include <stdio.h>

main() {

...
 /� C source code �/

...
}
/�
// EXEC PGM=EDCPRLK,SIZE=EDCPRLK,PARM='prelinker_options'
/�
// EXEC PGM=LNKEDT

...

Figure 3. Sample JCL to Execute the Prelinker

For additional information about the prelinker, see the LE/VSE Programming Guide.

10 C/VSE V1R1 User's Guide

Chapter 3. Linking and Running

This chapter gives an overview of how to link and run a program in batch. Running
a C program in a CICS environment is described in the LE/VSE C Run-Time
Programming Guide.

If your application is compiled with the RENT or LONGNAME compile-time options, you
will have to use the LE/VSE prelinker before linking your application. For
information on the LE/VSE prelinker, refer to the LE/VSE C Run-Time Programming
Guide.

LE/VSE provides a common run-time environment for C, COBOL, and PL/I. For
detailed instructions on linking and running existing and new C/VSE programs
under LE/VSE, refer to the LE/VSE Programming Guide.

The following example shows how to link and run an existing object module using
the default run-time options. See the LE/VSE Programming Guide for additional
information, including how to override the default run-time options.

 EDCXUAAF

// JOB EDCXUAAF
// LIBDEF OBJ,SEARCH=(user.sublib,PRD2.SCEEBASE)
// LIBDEF PHASE,SEARCH=(PRD2.SCEEBASE)
// OPTION LINK
 INCLUDE objmod
// EXEC LNKEDT
// EXEC
/�
/&

Figure 4. Linking and Running Using Default Run-Time Options

Note: Information on LE/VSE is reproduced here for convenience only. For
detailed information on LE/VSE, please refer to your LE/VSE manuals.

Library Routine Considerations
LE/VSE consists of one run-time component that contains all LE-enabled
languages, such as C, COBOL, and PL/I.

LE/VSE is said to be dynamic. That is, many of the functions available in C/VSE
are not physically stored as a part of your executable program. Instead, only a
small portion of code known as a stub routine is actually stored with your
executable program and this results in a smaller executable module size. The stub
routines contain code that branches to the dynamically loaded LE/VSE routine.

© Copyright IBM Corp. 1994, 1996 11

Creating an Executable Program
The linkage editor processes your compiled program (object module) and readies it
for execution. The processed object module becomes an executable phase which
is stored in a VSE Librarian sublibrary and can be retrieved for execution at any
time.

The input to the linkage editor can include object modules and control statements
that specify how the input is to be processed. The output from the linkage editor
can be a single phase, or multiple phases (generated by using the PHASE linkage
editor control statement).

The following diagram shows the basic link-editing process for a C program. For
more information on using linkage editor control statements, see “Related
Publications” on page 115.

┌─ ─ ─ ─ ─ ─ ─ ─┐
 Prelink step,

│ if necessary │

└ ─ ─ ─ ┬ ─ ─ ─ ┘
 SYSLNK
 (primary input) │
┌───────────────┐
│ Object │�─ ─ ─ ─ ─ ─ ─ ┘
│ Module ├────┐
│ │ │
└───────────────┘ │ VSE Librarian
 │ ┌───────────────┐ ┌───────────────┐
 └───────────�│ Linkage │ │ Executable │
 VSE Librarian │ Editor ├─────�│ Phase │
 (AUTOLINK ┌───────────�│ │ │ │
 sublibrary) │ └───────────────┘ └───────────────┘
┌───────────────┐ │
│ LE/VSE │ │
│ Resident ├────┤
│ Sublibrary │
└───────────────┘ │

┌───────────────┐ │
│ User │
│ Sublibraries ├─ ─ ┘
│ (if required) │
└───────────────┘

Figure 5. Basic Linkage Editor Processing

Note: The LE/VSE resident sublibrary shown in Figure 5 represents the library (or
libraries) containing the resident category of LE/VSE library routines. These are
linked with your application and include such things as initialization routines and
callable service stubs. For more information on resident library routines, see the
LE/VSE C Run-Time Programming Guide.

A typical sequence of job control statements for link-editing an object module into a
phase is shown in Figure 6 on page 13. The PHASE linkage editor control
statement in the figure specifies that the link-edited phase is to have the name
PROGRAM1. The // LIBDEF PHASE and // OPTION CATAL job control statements
specify that the link-edited phase is to be cataloged in the sublibrary user.runlib.

12 C/VSE V1R1 User's Guide

 EDCXUAAG

// JOB EDCXUAAG
// LIBDEF OBJ,SEARCH=(user.objlib,PRD2.SCEEBASE)
// LIBDEF PHASE,CATALOG=(user.runlib)
// OPTION CATAL
 ACTION MAP
 PHASE PROGRAM1,�
 INCLUDE PROGRAM1
// EXEC LNKEDT,PARM='MSHP'
/�
/&

Figure 6. Creating a Phase

Reentrancy in C/VSE
Reentrancy allows more than one job to share a single copy of a phase or to
repeatedly use a phase without reloading it.

Reentrant programs can be categorized by their:

� Natural reentrancy; programs that contain no writable static and do not require
additional processing to make them reentrant

� Constructed reentrancy; programs that contain writable static and require
additional processing to make them reentrant

Writable static is storage that changes and is maintained throughout program
execution. It is made up of:

� All program variables with the static storage class
� All program variables receiving the extern storage class
� All writable strings

Note: If your program contains no writable strings and none of your static or
extern variables are updated in your application (that is, they are read-only), your
program is naturally reentrant.

If your program contains writable static, you must use the LE/VSE prelinker to
make your program reentrant. This utility concatenates compile-time initialization
information (for writable static) from one or more object modules into a single
initialization unit. In the process, the writable static part is mapped. If your
program does not contain any writable static, you may not need to use the
prelinker. For more information on the prelinker, refer to the LE/VSE C Run-Time
Programming Guide.

To generate a reentrant phase, you must follow these steps:

1. If your program contains writable static, you must compile all your C source
files using the RENT compile-time option.

If you are unsure about whether your program contains writable static, compile
it with the RENT option. Invoking the prelinker with the MAP option and the
object module as input produces a prelinker map. Any writable static data in
the object module appears in the writable static section of the map. For more

 Chapter 3. Linking and Running 13

information on using the prelinker, refer to the LE/VSE C Run-Time
Programming Guide.

2. Use the prelinker to combine all input object modules into a single output object
module.

Note: The output object module cannot be used as further input to the prelink
utility.

3. Link the program in the usual manner.

4. Optionally, install the program in the SVA area of the system.

You do not need to install your program in the SVA to run it but if you do not,
you will not gain all the benefits of reentrancy.

Linking Modules for Interlanguage Calls
For information on link-editing modules for interlanguage calls, refer to the LE/VSE
Programming Guide.

Running a C/VSE Program
The following sections describe how to run a program in batch using LE/VSE.
Running a C program in a CICS environment is described in the LE/VSE C
Run-Time Programming Guide.

Note: Information on LE/VSE is reproduced here for convenience only. For
detailed information on LE/VSE, please refer to your LE/VSE manuals.

Running an Application
You can request the execution of a phase in an EXEC statement in your JCL. The
general form of the EXEC statement is:

// EXEC [PGM=]program_name,SIZE=program_size

where program_name is the name of the phase of the application to be executed and
program_size is the amount of program storage required to run the application.

Note: The amount of program storage required to run an application does not
include the storage required for LE/VSE heap and stack storage, LE/VSE library
routines, or dynamically loaded application routines. Program storage is generally
only used to load the main program and, if required, the SORT product (and its
work areas). LE/VSE uses partition GETVIS storage for all other storage
requirements. LE/VSE requires a minimum of 1200KB below-the-line GETVIS
storage.

Specifying Run-Time Options
Each time your application runs, a set of run-time options must be established.
These options determine many of the properties of how the application runs,
including its performance, error handling characteristics, storage management, and
production of debugging information. You can specify run-time options in any of
the following places:

14 C/VSE V1R1 User's Guide

� In the CEEDOPT CSECT, where the installation default options are located
(see the LE/VSE Programming Guide for more information)

� In the CEEUOPT CSECT where user-supplied default options are located (see
the LE/VSE Programming Guide for more information)

� #pragma runopts in C source code (see the LE/VSE Programming Guide for
more information)

� In the PARM parameter of the EXEC statement in your JCL (see below)

� In the assembler user exit (see the LE/VSE Programming Guide for more
information)

Specifying Run-Time Options in the EXEC Statement
You can override installation default run-time options specified as overrideable, and
any application default run-time options, by specifying run-time options in the PARM
parameter of the EXEC statement. The general form for specifying run-time options
in the PARM parameter of the EXEC statement is:

// EXEC [PGM=]program_name, X
PARM='[run-time options/][program parameters]'

For example, if you want to generate a storage report and run-time options report
for the application PROGRAM1, specify the following:

// EXEC PROGRAM1,PARM='RPTSTG(ON),RPTOPTS(ON)/'

The run-time options that are passed to the main routine must be followed by a
slash (/) to separate them from program parameters. For HLL considerations to
keep in mind when specifying run-time options, see the LE/VSE Programming
Guide.

The EXECOPS option for C is used to specify that run-time options passed as
parameters at execution time are to be processed by LE/VSE. The option
NOEXECOPS specifies that run-time options are not to be processed from execution
parameters and are to be treated as program parameters. You can specify either
option in a #pragma runopts statement in your C program. You can also specify
either option as a C/VSE compile-time option. EXECOPS is the default. When
EXECOPS is in effect, you can pass run-time options in the EXEC statement in your
JCL.

VSE normally limits the size of the string you can specify in the PARM parameter of
the EXEC statement to 100 characters. However, if you are running VSE/ESA
Version 2 Release 2, or a previous supported release of VSE/ESA with the
appropriate PTF applied, you can use the following technique to specify a
parameter string of up to 300 characters:

// EXEC [PGM=]program_name, X
 PARM='parameter_string_segment', X
 PARM='parameter_string_segment', X
 PARM='parameter_string_segment'

Using this technique, up to three instances of the PARM parameter can be specified
on an EXEC statement, and each parameter_string_segment can be up to 100
characters in length.

 Chapter 3. Linking and Running 15

The following example shows how you might code an EXEC statement and pass a
140-character string consisting of run-time options and program arguments:

// EXEC TESTPGM,PARM='ABTERMENC(ABEND) ALL31(ON) NATLANG(ENU) RPTOPTS(OX
N) RPTSTG(ON) TERMTHDACT(MSG)/RUNDATE=19961213 DBNA', X
PARM='ME=ODBMST TRANFLE=OTRNFLE RPTFLE=ORPTFLE'

16 C/VSE V1R1 User's Guide

 Chapter 4. Compile-Time Options

This chapter describes the options that you can use to control the compilation of
your program using C/VSE.

Specifying Compile-Time Options
Whether or not default settings supplied by IBM have been changed during
installation, you can override them when you compile your C program by specifying
an option in the following ways:

� In the PARM parameter of the EXEC JCL statement that invokes the compiler.

� In a #pragma options preprocessor directive within your source file. See
“Specifying Compile-Time Options Using #pragma options” for details.

If you use a compile-time option in the PARM parameter of the JCL statement
that contradicts the options specified on the #pragma options directive, the
compile-time option in the PARM parameter of the JCL statement overrides the
options on the #pragma options directive.

If two contradictory options are specified, the last one specified is accepted and the
first ignored.

If you use one of the following compile-time options, the option name is inserted at
the bottom of your object module indicating that it was used:

GONUMBER
INLINE
NAME
OPTIMIZE (all levels)
RENT

START
TARGET (all levels)
TEST
UPCONV

Specifying Compile-Time Options Using #pragma options
You can use the #pragma options preprocessor directive to override the default
values for compile-time options. Remember that compile-time options specified in
the PARM parameter of the EXEC JCL statement can override compile-time options
used in #pragma options. For complete details on the #pragma options
preprocessor directive, see the C/VSE Language Reference.

The #pragma options preprocessor directive must appear before the first C
statement in your input source file. Only comments and other preprocessor
directives can precede the #pragma options directive, and only the options listed
below can be specified. If you specify a compile-time option that is not given in the
following list, the compiler generates a warning message and the option is ignored.

AGGREGATE|NOAGGREGATE
CHECKOUT|NOCHECKOUT
GONUMBER|NOGONUMBER
HWOPTS|NOHWOPTS
INLINE|NOINLINE
NAME|NONAME
OPTIMIZE|NOOPTIMIZE

RENT|NORENT
SPILL
START
TEST|NOTEST
UPCONV|NOUPCONV
XREF|NOXREF

© Copyright IBM Corp. 1994, 1996 17

Notes:

1. When you specify conflicting attributes either explicitly or implicitly by the
specification of other options, the last explicit option is accepted. No diagnostic
message is issued to indicate that any options are overridden.

2. When you specify the SOURCE compile-time option in the PARM parameter of the
EXEC JCL statement, your listing will contain an options list indicating the
options in effect at invocation. The values in the list are the options specified in
the PARM parameter of the EXEC JCL statement or the default options specified
at installation. These values do not reflect any options specified in a #pragma
options preprocessor directive.

Compile-Time Option Defaults
You can alter the compilation of your program by specifying compile-time options in
the PARM parameter of the EXEC JCL statement when you invoke the compiler or
when you use the preprocessor directive, #pragma options, in your source program.
Options that you specify when you invoke the compiler override installation defaults
and can override compile-time options specified in a #pragma options directive.

The compile-time default options supplied by IBM can be changed when C/VSE is
installed. To determine the current defaults, submit an empty program for
compilation with the SOURCE compile-time option specified. In the listing generated,
you can view the options that are in effect at invocation; that is, the settings that
result from the interaction of the options specified in the PARM parameter of the EXEC
JCL statement and the defaults that were specified at installation. The listing does
not reflect options specified in #pragma options in the source file being compiled.

Summary of Compile-Time Options
Most compile-time options have a positive and a negative form. The negative form
is the positive with NO before it (as in XREF and NOXREF). Table 4 lists the
compile-time options in alphabetical order, with their abbreviations and the
IBM-supplied defaults. Suboptions inside square brackets are optional. Table 5 on
page 20 summarizes the compile-time options by function.

Table 4 (Page 1 of 3). Compile-Time Options, Abbreviations, and IBM Supplied Defaults

Compile-Time Option Abbreviated Name IBM Supplied Default

AGGREGATE|NOAGGREGATE AGG|NOAGG NOAGG

CHECKOUT[(options)]|
NOCHECKOUT[(options)]

CHE[(options)]|NOCHE[(options)] NOCHE(options)

CSECT|NOCSECT CSE|NOCSE NOCSE

DECK|NODECK1 Not applicable None (Determined by VSE job
control option DECK)

DEFINE(name1[=def1],
name2[=def2],...)

DEF(name1[=def1],
name2[=def2],...)

No definitions

EXECOPS|NOEXECOPS EXEC|NOEXEC EXEC

EXPMAC|NOEXPMAC EXP|NOEXP NOEXP

FLAG(severity)|NOFLAG FL(severity)|NOFL FL(I)

18 C/VSE V1R1 User's Guide

Table 4 (Page 2 of 3). Compile-Time Options, Abbreviations, and IBM Supplied Defaults

Compile-Time Option Abbreviated Name IBM Supplied Default

GONUMBER|NOGONUMBER GONUM|NOGONUM NOGONUM

HWOPTS(STRing|NOSTRing)|NOHWOPTS HWO(STR|NOSTR)|NOHWO NOHWO

INLINE[(options)]|
NOINLINE[(options)]

INL[(options)]|NOINL[(options)] NOINL(AUTO,NOREPORT,25�,1���)

INFILE(filename)|NOINFILE INF(filename)|NOINF NOINF

LANGLVL(level) LANG(level) LANG(EXTENDED)

LIST|NOLIST LIS|NOLIS None (Determined by VSE job
control option LISTX)

LOCALE(name)|NOLOCALE LOC(name)|NOLOC NOLOC

LONGNAME|NOLONGNAME LO|NOLO NOLO

LSEARCH(opt1,opt2,...)|NOLSEARCH LSE(opt1,opt2,...)|NOLSE NOLSE (Standard library and/or disk
search sequence)

MARGINS(first,last)|NOMARGINS MAR(first,last)|NOMAR F-format: MAR(1,72)
V-format: NOMAR

MEMORY|NOMEMORY MEM|NOMEM NOMEM

NAME([name])|NONAME NA([name])|NONA NONA

NESTINC(limit)|NONESTINC NEST(limit)|NONEST NEST(16)

OBJECT|NOOBJECT1 Not applicable None (Determined by VSE job
control options LINK or CATAL)

OFFSET|NOOFFSET OFFSET|NOOF NOOF

OPTIMIZE[(n)]|NOOPTIMIZE OPT[(n)]|NOOPT NOOPT

PPONLY[(n|�)]|NOPPONLY PP[(n|�)]|NOPP NOPP

RENT|NORENT RENT|NORENT NORENT

SEARCH(opt1,opt2,...)|NOSEARCH SE(opt1,opt2,...)|NOSE NOSE (Standard library and/or disk
search sequence)

SEQUENCE(left,right)|NOSEQUENCE SEQ(left,right)|NOSEQ F-format: SEQ(73,8�)
V-format: NOSEQ

SHOWINC|NOSHOWINC SHOW|NOSHOW NOSHOW

SOURCE|NOSOURCE SO|NOSO None (Determined by VSE job
control option LIST)

SPILL(size)|NOSPILL SP(size)|NOSP SP(128)

SSCOMM|NOSSCOMM SS|NOSS NOSS

START STA STA

TARGET([option]) TARG([option]) TARG()

TERMINAL|NOTERMINAL TERM|NOTERM None (Determined by VSE job
control option TERM)

TEST[(options)]|NOTEST[(options)] TEST[(options)]|NOTEST[(options)] NOTEST(SYM,BLOCK,LINE,NOPATH)

UPCONV|NOUPCONV UPC|NOUPC NOUPC

 Chapter 4. Compile-Time Options 19

Table 4 (Page 3 of 3). Compile-Time Options, Abbreviations, and IBM Supplied Defaults

Compile-Time Option Abbreviated Name IBM Supplied Default

XREF|NOXREF XR|NOXR None (Determined by VSE job
control option XREF)

Notes:

1 These options are specified using the // OPTION JCL statement, the // STDOPT system command in the BG
partition, or at IPL of the system only—they cannot be specified in the PARM parameter of the EXEC JCL statement
or the #pragma options directive. See the detailed description of each option in the following for the correct
specifications.

Table 5 lists the compile-time options according to their function.

Table 5 (Page 1 of 2). Summary of Compile-Time Options by Function

Type of Option Option Description

File Management DECK Produces an object module associated with
SYSPCH.

INFILE Specifies the main input source file.

LSEARCH Specifies the sublibraries to be scanned for user
include files.

MEMORY Improves compile-time performance by using a
memory file in place of a workfile, if possible.

OBJECT Produces an object module associated with
SYSLNK.

SEARCH Specifies the sublibraries to be scanned for
system include files.

Listing AGGREGATE Lists structures and unions, and their size.

EXPMAC Lists all expanded macros.

LIST Lists assembler-like code produced by the
compiler.

OFFSET Lists offset addresses relative to entry points

SHOWINC Lists include files if SOURCE option specified.

SOURCE Lists source file.

XREF Generates a cross reference listing.

Debug and Diagnostic CHECKOUT Gives informational messages for possible
programming errors.

FLAG Specifies the lowest severity level to be listed.

GONUMBER Generates line number tables for Debug Tool for
VSE/ESA and error tracebacks.

TEST Generates information that is suitable for Debug
Tool for VSE/ESA.

TERMINAL Directs error messages to SYSLOG.

20 C/VSE V1R1 User's Guide

Table 5 (Page 2 of 2). Summary of Compile-Time Options by Function

Type of Option Option Description

Source Code Control CSECT Checks for the #pragma csect directives in the
source.

LANGLVL Specifies the C language standard to be used
(ANSI, SAA Level 1, SAA Level 2, or Extended).

MARGINS Identifies position of C source to be scanned by
the compiler.

NESTINC Specifies the number of nested include files to be
allowed.

SEQUENCE Specifies the columns used for sequence
numbers.

SSCOMM Allows comments to be specified by two slashes
(//).

UPCONV Preserves unsignedness during C type
conversions.

Object Code Control EXECOPS Allows run-time options to be passed to your
program.

HWOPTS Generates code for different hardware features.

INLINE Inlines user functions into source and helps
maximize optimizations.

LONGNAME Provides support for external names of mixed
case and up to 255 characters long.

NAME Generates either a linkage editor PHASE statement
or a VSE Librarian CATALOG statement, depending
on specification of JCL // OPTION.

OPTIMIZE Improves run-time performance.

RENT Generates reentrant code.

SPILL Specifies the maximum spill area.

START Generates an ENTRY CEESTART control statement.

TARGET Generates an object module for the targeted
operating system.

Preprocessor DEFINE Defines preprocessor macro names.

LOCALE Specifies a locale to be used at compile time.

PPONLY Specifies that only the preprocessor is to be run
and not the compiler.

Description of Compile-Time Options
The following sections list the compile-time options alphabetically and describe the
compile-time options and their usage.

 Chapter 4. Compile-Time Options 21

 AGGREGATE|NOAGGREGATE
The AGGREGATE option specifies whether the compiler is to include in the compiler
listing a layout of all variables of the type struct or union.

Syntax for the AGGREGATE option is:

 ┌ ┐─NOAGGregate─
��─ ──┼ ┼───────────── ───��
 └ ┘─AGGregate───

When AGGREGATE is specified, two maps are created: one contains the packed
layout and the other contains the unpacked layout. Each layout map contains the
offsets and lengths of the structure and union members. One map is generated for
each struct or union tag, or if no tag is specified, a map is generated for the
variable name specified on the struct or union declaration.

 CHECKOUT|NOCHECKOUT
The CHECKOUT option specifies that the compiler is to give informational error
messages indicating possible programming errors. They can help C programmers
in debugging their programs.

Syntax for the CHECKOUT option is:

 ┌ ┐─NOCHEckout─
��─ ──┼ ┼──────────── ──┬ ┬─────────────────── ─────────────────────────────────��
 └ ┘─CHEckout─── │ │┌ ┐─,───────
 └ ┘ ─(─ ───� ┴─suboptn─ ─)─

where suboptn is one of the suboptions shown in Table 6.

You can specify CHECKOUT with or without suboptions. If you include suboptions,
you can specify any number with commas between them. However, if you do not
include suboptions, the defaults are obtained from your installation defaults. The
diagnostic messages put out from CHECKOUT start at EDC0800 with the addition of
some compile-time messages, such as, EDC0464 and EDC0244, listed in
Appendix A, “C/VSE Return Codes and Messages” on page 65.

Table 6 (Page 1 of 2). CHECKOUT Suboptions, Abbreviations, and Descriptions

CHECKOUT Suboption Abbreviated
Name

Description

ACCURACY|NOACCURACY AC|NOAC Assignments of long values to variables that are
not long

ENUM|NOENUM EN|NOEN Usage of enumerations

EXTERN|NOEXTERN EX|NOEX Unused variables that have external declarations

GENERAL|NOGENERAL GE|NOGE General checkout messages

GOTO|NOGOTO GO|NOGO The appearance and usage of goto statements

INIT|NOINIT I|NOI Variables that are not explicitly initialized

PARM|NOPARM PAR|NOPAR Function parameters that are not used

22 C/VSE V1R1 User's Guide

You can also turn the CHECKOUT option off for certain files or statements of your
source program by using a #pragma checkout(suspend) directive. See the C/VSE
Language Reference for more information regarding this #pragma directive.

The CHECKOUT|NOCHECKOUT option can be specified in the PARM parameter of the EXEC
JCL statement and in the #pragma options preprocessor directive. When both
methods are used concurrently, the options are merged. If an option in the PARM
parameter of the EXEC JCL statement conflicts with an option in the #pragma options
directive, the option in the PARM parameter of the EXEC JCL statement takes
precedence. The examples below illustrate these rules:

Source file: #pragma options(NOCHECKOUT(NONE,ENUM))
EXEC PARM: CHECKOUT(GOTO)
Result: CHECKOUT(NONE,ENUM,GOTO)

Source file: #pragma options(NOCHECKOUT(NONE,ENUM))
EXEC PARM: CHECKOUT(ALL,NOENUM)
Result: CHECKOUT(ALL,NOENUM)

The NOCHECKOUT option specifies that the compiler is not to generate informational
error messages. Suboptions specified in a #pragma
options(NOCHECKOUT(subopts)) directive will apply if CHECKOUT is specified in the
PARM parameter of the EXEC JCL statement.

Table 6 (Page 2 of 2). CHECKOUT Suboptions, Abbreviations, and Descriptions

CHECKOUT Suboption Abbreviated
Name

Description

PORT|NOPORT POR|NOPOR Nonportable usage of the C language

PPCHECK|NOPPCHECK PPC|NOPPC All preprocessor directives

PPTRACE|NOPPTRACE PPT|NOPPT The tracing of include files by the preprocessor

TRUNC|NOTRUNC TRU|NOTRU Variable names that are truncated by the
compiler

ALL ALL Turns on all of the suboptions for CHECKOUT

NONE NONE Turns off all of the suboptions for CHECKOUT

Note: Underscoring indicates the default CHECKOUT suboptions.

 CSECT|NOCSECT
The CSECT option ensures that the object module contains named CSECTs. The
compiler checks that both the #pragma csect(CODE,...) and #pragma
csect(STATIC,...) directives are present in the source code. If you specify the
CSECT option, an error message is given if either directive is missing.

Syntax for the CSECT option is:

 ┌ ┐─NOCSEct─
��─ ──┼ ┼───────── ───��
 └ ┘─CSEct───

 Chapter 4. Compile-Time Options 23

 DECK|NODECK
The DECK option specifies whether or not the compiler is to produce an object
module to SYSPCH. The object module produced is written to both SYSPCH and
SYSLNK if both DECK and OBJECT are specified.

This option cannot be specified in the PARM parameter of the EXEC JCL statement or
in a #pragma options processor directive. The DECK compile-time option is specified
using the DECK job control option on the JCL // OPTION statement.

If you use the DECK option, ensure that SYSPCH is assigned in the JCL for your
compilation.

 DEFINE
The DEFINE option defines preprocessor macros that take effect before the file is
processed by the compiler.

Syntax for the DEFINE option is:

 ┌ ┐─,────────────────
��──DEFine──(─ ───� ┴─name─ ──┬ ┬──────── ─)─────────────────────────────────────��
 └ ┘ ─=──def─

The option can be used repeatedly. Each definition has the form name = def.
Defining a macro in this way is equivalent to writing the following preprocessor
directive in your C source program:

#define name def

Notice that

DEFINE(name)

with no definition is equivalent to

#define name 1

Note: There is no DEFINE compile-time option equivalent of function-like macros
that take parameters such as:

#define max(a,b) ((a)>(b)?(a):(b))

 EXECOPS|NOEXECOPS
The EXECOPS option allows you to control whether run-time options will be
recognized at run time without changing your source code. It is equivalent to
including a #pragma runopts(EXECOPS) directive in your source code. You can
control whether run-time options are recognized at run time without changing your
source code.

Syntax for the EXECOPS option is:

 ┌ ┐─EXECops───
��─ ──┼ ┼─────────── ───��
 └ ┘─NOEXECops─

24 C/VSE V1R1 User's Guide

If this option is specified in both the PARM parameter of the EXEC JCL statement and
in a #pragma runopts directive, the option in the PARM parameter of the EXEC JCL
statement takes precedence.

 EXPMAC|NOEXPMAC
The EXPMAC option specifies whether the compiler is to show all expanded macros
in the source listing.

Syntax for the EXPMAC option is:

 ┌ ┐─NOEXPmac─
��─ ──┼ ┼────────── ──��
 └ ┘─EXPmac───

If you want to use the EXPMAC option, you must also specify the SOURCE compile-time
option to generate a source listing. If you specify the EXPMAC option but omit the
SOURCE option, a warning message is generated and no source listing is produced.

 FLAG|NOFLAG
The FLAG option specifies the minimum severity level for which you want
notification.

Syntax for the FLAG option is:

 ┌ ┐─I─
 ┌ ┐ ─FLag──(─ ──┼ ┼─W─ ─)─
 │ │├ ┤─E─
 │ │└ ┘─S─
��─ ──┼ ┼─────────────────── ───��
 └ ┘─NOFLag────────────

You specify the minimum severity level using the FLAG(severity) compile-time
option, where severity is one of the following letters:

I An informational message that may be of interest to you is generated by the
compiler. This is the default.

Note: When FLAG(I) is specified, all messages with severity I, W, E, and S
are included in the compiler listing.

W A warning message that calls attention to a possible error, although the
statement to which it refers is syntactically valid.

Note: When FLAG(W) is specified, all messages with severity W, E, and S are
included in the compiler listing.

E An error message that shows that the compiler has detected an error and
cannot produce an object deck.

Note: When FLAG(E) is specified, all messages with severity E and S are
included in the compiler listing.

 Chapter 4. Compile-Time Options 25

S A severe error message describing an error that forces termination of the
compilation.

Note: When FLAG(S) is specified, only messages with severity S are
included in the compiler listing.

Messages generated by the compiler appear at the end of the compiler listing as
well as immediately following the source line in error. See Appendix A, “C/VSE
Return Codes and Messages” on page 65 for a list of the messages. Table 7
explains the relationship between the type of messages, return code, and severity
level.

The NOFLAG option is equivalent to FLAG(I) and specifies that the compiler is to
show all messages.

Table 7. Selecting the Lowest Severity of Messages to Be Printed Using the FLAG Option

Type of Message Compile-Time
Option

Numeric Severity
Level

Return Code

Information FLAG(I) �� �

Warning FLAG(W) 1� 4

Error FLAG(E) 3� 12

Severe error FLAG(S) > 3� 16

 GONUMBER|NOGONUMBER
The GONUMBER option specifies whether the compiler is to generate line number
tables corresponding to the input source file. These tables are for use by Debug
Tool for VSE/ESA and for error tracebacks.

Syntax for the GONUMBER option is:

 ┌ ┐─NOGONUMber─
��─ ──┼ ┼──────────── ──��
 └ ┘─GONUMber───

This option is implicitly turned on when the TEST compile-time option is used.

Note: Whenever you specify the GONUMBER compile-time option, a comment noting
its use is generated in your object module to aid you in diagnosing problems with
your program. The comment generated consists of the specified compile-time
option on an END card at the end of the object module.

 HWOPTS|NOHWOPTS
The HWOPTS option specifies whether the compiler is to generate code to take
advantage of different hardware.

26 C/VSE V1R1 User's Guide

Syntax for the HWOPTS option is:

 ┌ ┐─NOHWOpts───────────────────
��─ ──┼ ┼──────────────────────────── ──��
 └ ┘ ─HWOpts──(─ ──┬ ┬─STRing─── ─)─
 └ ┘─NOSTRing─

The suboptions are:

STRING Create code for hardware that has Logical String Assist (LSA). On such
hardware, built-in functions will have better performance if you select
this option.

NOSTRING Create code for hardware that does not have LSA.

Note: Whenever you specify the HWOPTS compile-time option, a comment is put in
your object module. The comment generated consists of the specified compile-time
option on an END card at the end of the object module.

 INFILE|NOINFILE
The INFILE option specifies the primary input source file to the compiler. If the
option is omitted, the primary input source file is SYSIPT.

Syntax for the INFILE option is:

 ┌ ┐─NOINFile───────────────
��─ ──┼ ┼──────────────────────── ──��
 └ ┘─INFile──(──filename──)─

For details on the specification of filename, refer to the sections on using fopen()
or freopen() in the chapters dealing with the various types of file I/O in the LE/VSE
C Run-Time Programming Guide.

If the input file is a SAM file (excluding VSAM-managed SAM), the file must contain
fixed-length 80-byte records and the block size must be less than or equal to 8000.

If the input file is a VSAM file (including VSAM-managed SAM), the file can be any
record format.

 INLINE|NOINLINE
The INLINE compile-time option allows you to specify that the compiler should place
the code for the function at the point of call; this is called inlining and it eliminates
the linkage overhead. Only use the INLINE compile-time option when you are in
the final stages of preparing your application for production. For more information
on optimization and the INLINE option, refer to the section “Optimizing Code” in the
LE/VSE C Run-Time Programming Guide.

 Chapter 4. Compile-Time Options 27

Syntax for the INLINE option is:

 .

 ┌ ┐─NOINLine─
��─ ──┼ ┼────────── ───�
 └ ┘─INLine───

�─ ──┬ ┬─── ──��
 │ │┌ ┐─AUTO─── ┌ ┐─NOREPORT─ ┌ ┐─25�─────── ┌ ┐─1���──
 └ ┘ ─(─ ──┼ ┼──────── ─,─ ──┼ ┼────────── ─,─ ──┼ ┼─────────── ─,─ ──┼ ┼─────── ─)─
 └ ┘─NOAUTO─ └ ┘─REPORT─── └ ┘─threshold─ └ ┘─limit─

You can specify just INLINE if you want to use the defaults. You must include a
comma between each suboption even if you want to use the default for one of the
suboptions. The suboptions must be specified in the following order:

AUTO|NOAUTO The inliner will run in automatic mode and will inline functions
within the threshold and limit.

If NOAUTO is specified, the inliner will only inline those functions
specified with the #pragma inline directive. The #pragma inline
and noinline directives allow you to determine which functions
are to be inlined and which are not when the INLINE option is
specified. These #pragmas have no effect if NOINLINE is
specified. See the C/VSE Language Reference for more
information on #pragma directives.

REPORT|NOREPORT An inline report is part of the listing file, consisting of:

� An inline summary
� A detailed call structure

For more information on the inline report, see “Inline Report” on
page 55.

threshold The maximum relative size of a function to inline. The default
for threshold is 250 Abstract Code Units (ACU) instructions.
ACUs are proportional in size to the executable code in the
function; your C code is translated into ACUs by C/VSE. The
maximum threshold is INT_MAX, as defined in the header file
limits.h. Specifying a threshold of 0 is equivalent to specifying
NOAUTO.

limit The maximum relative size a function can grow before
auto-inlining stops. The default for limit is 1000 ACUs for that
function. The maximum for limit is INT_MAX, as defined in the
header file limits.h. Specifying a limit of 0 is equivalent to
specifying NOAUTO.

The INLINE|NOINLINE option can be specified in the PARM parameter of the EXEC JCL
statement and in the #pragma options preprocessor directive. When both methods
are used concurrently, the options are merged. If an option in the PARM parameter
of the EXEC JCL statement conflicts with an option in the #pragma options directive,
the one in the PARM parameter of the EXEC JCL statement takes precedence. For
example, because you typically do not want to inline functions while developing a
program, you can specify the NOINLINE option in a #pragma options preprocessor
directive. When you do want to inline functions, you can override the NOINLINE
option by specifying INLINE in the PARM parameter of the EXEC JCL statement rather
than by editing the source program.

28 C/VSE V1R1 User's Guide

The example below illustrates these rules:

Source file: #pragma options(NOINLINE(NOAUTO,NOREPORT,,2���))
EXEC PARM: INLINE(AUTO)
Result: INLINE(AUTO,NOREPORT,25�,2���)

Note: Whenever you specify the INLINE compile-time option, a comment, with the
values of the suboptions, is generated in your object module to aid you in
diagnosing problems with your program. The comment generated consists of the
specified compile-time option on an END card at the end of the object module.

The compile-time option MEMORY is ignored if specified with INLINE. If you specify
TEST with INLINE, the INLINE option is ignored.

If you specify NOINLINE, no functions are inlined even if you have #pragma inline
directives in your code.

 LANGLVL
The LANGLVL option defines a macro that specifies a language level. You must then
include this macro in your code to force conditional compilation (for example, with
the use of #ifdef directives). In this way, you can write portable code if you
correctly code the different parts of your program according to the language level.
The macro is used in preprocessor directives in header files.

Syntax for the LANGLVL option is:

��─ ──┬ ┬───────────────────────────── ───────────────────────────────────────��
 │ │┌ ┐─EXTENDED─
 └ ┘ ─LANGlvl──(─ ──┼ ┼─ANSI───── ─)─
 ├ ┤─SAA──────
 └ ┘─SAAL2────

where:

LANGLVL(ANSI) Indicates language constructs defined by ANSI. See the ANSI
C Standard (X3.159-1989) for more information.

Some non-ANSI stub routines will exist even if you specify
LANGLVL(ANSI) for compatibility with previous releases. See
the LE/VSE C Run-Time Library Reference for more
information on ANSI compatibility.

LANGLVL(SAA) Indicates language constructs defined by SAA. See the
C/VSE Language Reference for more information.

LANGLVL(SAAL2) Indicates language constructs defined by SAA Level 2. See
the C/VSE Language Reference for more information.

LANGLVL(EXTENDED) Indicates all language constructs available with C/VSE. This
is the default.

Note: Even if LANGLVL(ANSI) is specified, the compiler is still able to read and
analyze the _Packed keyword. If you want to make your code purely ANSI, then
you should redefine _Packed in a header file like this:

#ifdef __ANSI__
 #define _Packed
#endif

 Chapter 4. Compile-Time Options 29

The compiler will then see the _Packed attribute as a blank when LANGLVL(ANSI) is
specified at compile time, and the language level of the code will be ANSI.

 LIST|NOLIST
The LIST option specifies whether the compiler is to include a pseudo-assembler
language representation of the object module in the compiler listing.

Syntax for the LIST option is:

��─ ──┬ ┬──────── ──��
 ├ ┤─LISt───
 └ ┘─NOLISt─

The LIST option may also be specified using the LISTX job control option on the
JCL // OPTION statement.

The default is determined by the LISTX job control option.

Note: Usage of information such as registers, pointers, data areas, and control
blocks shown in the assembly listing are not programming interface information.

 LOCALE|NOLOCALE
The LOCALE option indicates the locale to be used by the compiler as the current
locale throughout the compilation unit.

Syntax for the LOCALE option is:

 ┌ ┐─NOLOCale───────────
��─ ──┼ ┼──────────────────── ──��
 └ ┘─LOCale──(──name──)─

The suboption name indicates the name of the locale to be used by the compiler. If
the suboption is omitted, the default current locale in the environment is used. If
the suboption does not represent a valid locale name, the LOCALE option is ignored
and NOLOCALE is assumed.

The negative form NOLOCALE shows that the compiler only recognizes and uses the
default code page, which is IBM-1047.

The LOCALE|NOLOCALE option cannot be used in the #pragma options directive. It can
only be specified in the PARM parameter of the EXEC JCL statement.

If the LOCALE option is selected, the locale name and the associated code set
appear in the header of the listing. A locale name is also generated in the object
module.

The formats of the time and the date in the compiler-generated listing file are
controlled by the LC_TIME category of the current locale. The identifiers appearing
in the Cross Reference table and the Inline report in the listing file produced by the
compiler when the XREF, AGGREGATE, and INLINE options are in effect, are sorted as
specified by the LC_COLLATE category of the locale specified in the option.

30 C/VSE V1R1 User's Guide

Note: The formats of the predefined macros __DATE__, __TIME__, and
__TIMESTAMP__ are not locale sensitive.

For more information on locales, refer to the LE/VSE C Run-Time Programming
Guide.

 LONGNAME|NOLONGNAME
The LONGNAME option specifies that the compiler is to generate untruncated (long)
and mixed case external names in the object module produced by the compiler.
These names may be up to 255 characters in length. The format of long external
names in object modules is not recognized by the system linkage editor. If you use
the LONGNAME option, you must use the prelinker, described in the LE/VSE
Programming Guide.

Syntax for the LONGNAME option is:

 ┌ ┐─NOLOngname─
��─ ──┼ ┼──────────── ──��
 └ ┘─LOngname───

If #pragma map is used to associate an external name with an identifier, the external
name is generated in the object module. That is, #pragma map will have the same
behavior for the LONGNAME and NOLONGNAME compile-time option. Also, #pragma
csect will have the same behavior for the LONGNAME and NOLONGNAME compile-time
option.

 LSEARCH|NOLSEARCH
The LSEARCH option directs the preprocessor to look for the user include files in the
VSE Librarian sublibraries, or in the sequential disk files specified. User include
files are files associated with the #include "filename" format of the #include C
preprocessor directive. See “Using Include Files” on page 4 for a description of the
#include preprocessor directive.

For further information on sublibrary search sequences, see “Search Sequences for
Include Files” on page 7.

 Chapter 4. Compile-Time Options 31

Syntax for the LSEARCH option is:

 ┌ ┐─NOLSEarch───
��─ ──┼ ┼─── ───────────────��
 │ │┌ ┐─,────────────────────────────────
 └ ┘ ─LSEarch──(─ ───� ┴──┬ ┬─lib.sublib─────────────────── ─)─
 ├ ┤ ──┬ ┬───────────────── ─�───────
 │ │└ ┘ ─part_file_id──.─
 ├ ┤ ─'─ ──┬ ┬───────────────── ─�──'─
 │ │└ ┘ ─part_file_id──.─

└ ┘─┤ Generic Search ├───────────

Format for Generic Search:
 ┌ ┐─,─────────────────────────────────
├──(──member.type──)──=──(─ ───� ┴──┬ ┬─NOLIB───────────────────────── ─)────────┤
 │ │┌ ┐─,──────────────
 └ ┘ ─LIB──(─ ───� ┴──┬ ┬──────────── ─)─
 └ ┘─lib.sublib─

where:

lib.sublib
Specifies the name of a VSE Librarian sublibrary containing user include files.
The library name (lib) is from 1 to 7 characters and the sublibrary name
(sublib) is from 1 to 8 characters.

part_file_id
Specifies a partial file ID of a sequential file containing a user include file. The
full file ID is the 1 to 44 character external name for the sequential file as
coded on the // DLBL job control statement that defines the file. A period and
asterisk (.*) must be appended immediately after part_file_id. If no partial
file ID is required, specify an asterisk only as the option.

The full file ID is made up as follows:

� For a partial file ID not within single quotes, the jobname followed by a
period is added to the start of the partial file ID. For example:

LSEARCH(ABC.DEF.�)

will create a full file ID of:

jobname.ABC.DEF.filename

where filename is the file name on the #include directive.

� For a partial file ID specified within single quotes, the jobname is not added
to the start of the partial file ID. For example:

LSEARCH('ABC.DEF.�')

will create a full file ID of:

ABC.DEF.filename

where filename is the file name on the #include directive.

member.type
Specifies a selection mask which identifies the name or partial name matching
the include files that are located in the VSE Librarian sublibraries identified by
the LIB suboption.

For example, if member.type contains abc�.h, this indicates that only include
files starting with abc and having a file type of h can be found in the
sublibraries indicated by the LIB suboption.

32 C/VSE V1R1 User's Guide

LIB(lib.sublib)
Specifies the VSE Librarian sublibraries to be searched for the include files that
match the selection mask of member.type.

lib.sublib is a VSE Librarian sublibrary name which is searched. The order of
the sublibrary search is the same order as in the LIB list.

lib.sublib may be omitted completely, in which case no search sublibraries
are defined. A warning message is issued in this situation.

NOLIB
Specifies that all LIB(lib.sublib) options previously specified for this selection
mask should be ignored.

For example:

LSEARCH((�.h)=(LIB(TEST.CINC),NOLIB,LIB(PROD.CINC)))

is equivalent to:

LSEARCH((�.h)=(LIB(PROD.CINC)))

The NOLIB format may be useful, for example, if you need to preserve the name
of test libraries when your JCL is migrated into production.

The following table shows you how to specify a VSE Librarian sublibrary name or a
partial file ID (using the LSEARCH option) for the #include "myincl.h" directive.

Table 8. Specifying VSE Librarian Sublibrary and Partial File ID Using the LSEARCH Option

Option For #include "myincl.h"

LSEARCH(A.B) The compiler looks for the VSE Librarian member MYINCL.H in
the sublibrary A.B.

LSEARCH(A.B.�) The compiler looks for the sequential file
jobname.A.B.MYINCL.H.

LSEARCH('A.B.�') The compiler looks for the sequential file A.B.MYINCL.H.

LSEARCH(�) The compiler looks for the sequential file jobname.MYINCL.H.

LSEARCH('�') The compiler looks for the sequential file MYINCL.H.

LSEARCH((�.h)=(LIB(X.Y))) The compiler looks for the VSE Librarian member MYINCL.H in
the sublibrary X.Y.

LSEARCH((�.j)=(LIB(X.Y))) The compiler will not search sublibrary X.Y because the include
filename does not match the pattern of �.j.

LSEARCH((�.h)=(LIB(X1.Y1,X2.Y2))) The compiler looks for the VSE Librarian member MYINCL.H in
the sublibrary X1.Y1. If it is not found in this sublibrary, the
compiler looks for it in the sublibrary X2.Y2.

LSEARCH((�.�)=(LIB(X1.Y1),NOLIB,LIB(X2.Y2))) The compiler looks for the VSE Librarian member MYINCL.H in
the sublibrary X2.Y2. NOLIB causes sublibrary X1.Y1 to be
ignored.

For examples of the use of both SEARCH and LSEARCH, see “SEARCH|NOSEARCH”
on page 39.

If an include file is not found in any of the LSEARCH sublibraries, the source
sublibrary chain specified using the // LIBDEF job control statement is searched. If
not found in the LIBDEF chain either, the sublibraries specified using the SEARCH
compile-time option, if specified, are searched.

 Chapter 4. Compile-Time Options 33

The NOLSEARCH option instructs the preprocessor to search only those sublibraries in
the source sublibrary chain specified using the job control // LIBDEF statement.

Note: When you use single quotation marks inside the #include directive, or use
the DLBL/TLBL-name and/or logical unit format, the file is read directly and no library
search is performed.

 MARGINS|NOMARGINS
The MARGINS option specifies the columns in the input record that are to be scanned
for input to the compiler. The compiler ignores any text in the source input that
does not fall within the range specified on the MARGINS option.

Syntax for the MARGINS option is:

For F-format input files:

┌ ┐─1───── ┌ ┐─72───
 ┌ ┐ ─MARgins──(─ ──┴ ┴─first─ ─,─ ──┼ ┼─last─ ─)─
 │ │└ ┘─�────
��─ ──┼ ┼─────────────────────────────────────── ─────────────────────────────��
 └ ┘─NOMARgins─────────────────────────────

For V-format input files:

 ┌ ┐─NOMARgins─────────────────────────
��─ ──┼ ┼─────────────────────────────────── ─────────────────────────────────��
 └ ┘─MARgins──(──first──,─ ──┬ ┬─last─ ─)─
 └ ┘─�────

where:

first Specifies the first column of the source input containing valid C. The value
of first must be greater than 0 and less than 32768.

last Specifies the last column of the source input containing valid C. The value
of last must be greater than first and less than 32768. An asterisk (*)
can be assigned to last indicating the last column of the input record.
Thus, if MARGINS(9,�) is specified, the compiler scans from column 9 to the
end of the record for input source statements.

If the MARGINS option is specified along with the SOURCE option, only the range
specified on the MARGINS option is shown in the compiler source listing.

The MARGINS and SEQUENCE options can be used together. The MARGINS option is
applied first to determine which columns are to be scanned. The SEQUENCE option is
then applied to determine which of these columns are not to be scanned. If the
SEQUENCE settings do not fall within the MARGINS settings, the SEQUENCE option has no
effect.

When a source (or include) file is opened, it initially gets the margins and sequence
values specified in the PARM parameter of the EXEC JCL statement (or the defaults if
none was specified). These settings can be reset by using the #pragma margins or
#pragma sequence directive at any point in the file. When processing has

34 C/VSE V1R1 User's Guide

completed for an #include file, the margins and sequence settings are restored to
their values from before the #include directive was encountered.

The NOMARGINS option specifies that the entire input source record is to be scanned
for input to the compiler.

Notes:

1. The MARGINS option does not reformat listings.

2. If your program uses the #include preprocessor directive to include LE/VSE
run-time library header files and you want to use the MARGINS option, you must
ensure that the specifications on the MARGINS option does not exclude columns
20 through 50. That is, the value of first must be less than 20, and the value
of last must be greater than 50. If your program does not include any LE/VSE
run-time library header files, you can specify any setting you want on the
MARGINS option when the setting is consistent with your own include files.

 MEMORY|NOMEMORY
The MEMORY option specifies that the compiler is to use a memory file in place of a
workfile if possible. See the LE/VSE C Run-Time Programming Guide for more
information on memory files.

Syntax for the MEMORY option is:

 ┌ ┐─NOMEMory─
��─ ──┼ ┼────────── ──��
 └ ┘─MEMory───

This option is used to increase compilation speed, but to use this option, you may
require additional memory. If you use this option and the compilation fails because
of a storage error, you must increase your storage size or recompile your program
without the MEMORY option.

Do not specify this option with INLINE.

 NAME|NONAME
The NAME option is used to generate a linkage editor PHASE statement or a VSE
Librarian CATALOG statement.

Syntax for the NAME option is:

 ┌ ┐─NONAme───────────────
��─ ──┼ ┼────────────────────── ──��
 └ ┘ ─NAme──(─ ──┬ ┬────── ─)─
 └ ┘─name─

When the NAME option is used with the OBJECT option, the compiler writes a PHASE
statement to SYSLNK for input to the linkage editor. The format of the phase
statement generated is as follows:

 PHASE name,�

 Chapter 4. Compile-Time Options 35

When the NAME option is used with the DECK option, the compiler writes a VSE
Librarian CATALOG statement and a terminating /� to SYSPCH. This can be used as
input to the VSE Librarian to catalog the object code in a VSE Librarian sublibrary.
The format of the catalog statement generated is as follows:

CATALOG name.OBJ REPLACE=YES

To specify a name, use the following format:

 NAME(name)

where name is the name to be assigned to the PHASE or CATALOG control statement.

To specify that a PHASE or CATALOG control statement is not to be generated, use the
following format:

 NAME()

Note that an empty set of parentheses indicates that a PHASE or CATALOG control
statement should not be generated. This is equivalent to specifying NONAME.

The NONAME option specifies that the compiler is not to generate a PHASE or CATALOG
control statement.

The NAME|NONAME option can be specified in the PARM parameter of the EXEC JCL
statement or in the #pragma options preprocessor directive.

 NESTINC|NONESTINC
The NESTINC option allows you to specify the number of nested include files to be
allowed in your source program.

Syntax for the NESTINC option is:

 ┌ ┐─16─
 ┌ ┐ ─NESTinc──(─ ──┼ ┼─n── ─)─
 │ │└ ┘─�──
��─ ──┼ ┼─────────────────────── ───��
 └ ┘─NONESTinc─────────────

You can specify a limit n of any integer from 0 to SHRT_MAX, which indicates the
maximum limit, as defined in the limits.h header file. To specify the maximum
limit, use an asterisk (*).

Note: If you use heavily nested include files, more storage is required for the
compilation.

If you specify NONESTINC or an invalid value, the default limit is used.

 OBJECT|NOOBJECT
The OBJECT option specifies whether or not the compiler is to produce an object
module to SYSLNK for input to the linkage editor.

This option cannot be specified in the PARM parameter of the EXEC JCL statement or
in a #pragma options processor directive. The OBJECT compile-time option is
specified using the LINK or CATAL job control option on the JCL // OPTION
statement.

36 C/VSE V1R1 User's Guide

If you use the OBJECT option, ensure that SYSLNK is assigned in the JCL for your
compilation.

 OFFSET|NOOFFSET
The OFFSET option specifies that the compiler is to display, in the pseudo-assembly
listing generated by the LIST option, the offset addresses relative to the entry point
or start of each function.

Syntax for the OFFSET option is:

 ┌ ┐─NOOFfset─
��─ ──┼ ┼────────── ──��
 └ ┘─OFFSET───

If you use the OFFSET option, you must also specify the LIST option to generate the
pseudo-assembly listing. If you specify the OFFSET option but omit the LIST option,
a warning message is generated and a pseudo-assembly listing is not produced.

The NOOFFSET option specifies that the compiler is to display, in the
pseudo-assembly listing generated by the LIST option, the offset addresses relative
to the beginning of the generated code and not the entry point.

 OPTIMIZE|NOOPTIMIZE
The OPTIMIZE option instructs the compiler to optimize the machine instructions
generated to produce a faster running object code. This type of optimization can
also reduce the amount of main storage required for the object module. Using
OPTIMIZE will increase compile time over NOOPTIMIZE and may have greater storage
requirements. During optimization, the compiler may move code to increase
run-time efficiency; as a result, statement numbers in the program listing may not
correspond to the statement numbers used in run-time messages.

Syntax for the OPTIMIZE option is:

 ┌ ┐─NOOPTimize────────────────
��─ ──┼ ┼─────────────────────────── ───��
 └ ┘ ─OPTimize─ ──┬ ┬─────────────
 │ │┌ ┐─1─
 └ ┘ ─(─ ──┴ ┴─�─ ─)─

where:

0 Indicates no optimization is to be done; this is equivalent to the NOOPTIMIZE
option. This option should be used in the early stages of your application
development since the compilation is efficient but the execution is not.

1 Indicates local optimizations are to be performed. This is equivalent to
specifying OPTIMIZE.

If you specify OPTIMIZE with TEST, you will only be able to set breakpoints at
function entry points regardless of the suboptions you set.

 Chapter 4. Compile-Time Options 37

You should specify the option INLINE for optimal run-time performance. See
“INLINE|NOINLINE” on page 27 for more information about the INLINE option and
the C/VSE Language Reference for more information about optimization.

Note: A comment noting the level of optimization is generated in your object
module to aid you in diagnosing problems with your program. The comment
generated consists of the specified compile-time option on an END card at the end
of the object module.

 PPONLY|NOPPONLY
The PPONLY option specifies that only the preprocessor is to be run against the
source file. This output of the preprocessor consists of the original source file with
all macros expanded and all include files inserted. It is in a format that can be
compiled.

Syntax for the PPONLY option is:

 ┌ ┐─NOPPonly─────────────────
��─ ──┼ ┼────────────────────────── ──��
 └ ┘ ─PPonly─ ──┬ ┬──────────────
 │ │┌ ┐─72─
 └ ┘ ─(─ ──┼ ┼─n── ─)─
 └ ┘─�──

If a parameter n, an integer value between 2 and 80 inclusive, is specified, all lines
are folded at column n. If an asterisk (*) is specified, the lines are folded at the
maximum record length of 80. Otherwise, all lines are folded at column 72.

All #line and #pragma preprocessor directives (except for #pragma margins and
#pragma sequence directives) remain. When PPONLY(�) is specified, #line
directives are generated to keep the line numbers generated for the output file from
the preprocessor similar to the line numbers generated for the source file. All
consecutive blank lines are suppressed.

This output from the preprocessor is written to SYSPCH.

If the PPONLY option is specified, TERMINAL is implicitly turned on. If you specify any
of the options SHOWINC, XREF, AGGREGATE, or EXPMAC with PPONLY, a warning is issued
and they are ignored.

The NOPPONLY option specifies that both the preprocessor and the compiler are to
be run against the source file.

If the PPONLY and LOCALE options are specified, all the #pragma filetag directives in
the source file are suppressed. The compiler generates its #pragma filetag
directive at the first line in the preprocessed output file in the following format:

??=pragma filetag ("locale_code_page")

The locale_code_page in the #pragma is the code set of the locale specified in the
LOCALE option. For more information on locales, refer to the LE/VSE C Run-Time
Programming Guide.

38 C/VSE V1R1 User's Guide

 RENT|NORENT
The RENT option specifies that the compiler is to take code that is not naturally
reentrant and make it reentrant. See the LE/VSE Programming Guide for a
detailed description of reentrancy. If you use the RENT option, you must use the
prelinker, also described in the LE/VSE Programming Guide.

Syntax for the RENT option is:

 ┌ ┐─NORENT─
��─ ──┼ ┼──────── ──��
 └ ┘─RENT───

Note: Whenever you specify the RENT compile-time option, a comment noting its
use is generated in your object module to aid you in diagnosing problems with your
program. The comment generated consists of the specified compile-time option on
an END card at the end of the object module.

The NORENT option specifies that the compiler is not to specifically generate
reentrant code from non-reentrant code. Any naturally reentrant code remains
reentrant.

 SEARCH|NOSEARCH
The SEARCH option directs the preprocessor to look for the system include files in
the VSE Librarian sublibraries, or in the sequential disk files specified. System
include files are files associated with the #include <filename> format of the
#include C preprocessor directive. See “Using Include Files” on page 4 for a
description of the #include preprocessor directive.

For further information on sublibrary search sequences, see “Search Sequences for
Include Files” on page 7.

Syntax for the SEARCH option is:

 ┌ ┐─NOSEarch───
��─ ──┼ ┼── ────────────────��
 │ │┌ ┐─,────────────────────────────────
 └ ┘ ─SEarch──(─ ───� ┴──┬ ┬─lib.sublib─────────────────── ─)─
 ├ ┤ ──┬ ┬───────────────── ─�───────
 │ │└ ┘ ─part_file_id──.─
 ├ ┤ ─'─ ──┬ ┬───────────────── ─�──'─
 │ │└ ┘ ─part_file_id──.─

└ ┘─┤ Generic Search ├───────────

Format for Generic Search:
 ┌ ┐─,─────────────────────────────────
├──(──member.type──)──=──(─ ───� ┴──┬ ┬─NOLIB───────────────────────── ─)────────┤
 │ │┌ ┐─,──────────────
 └ ┘ ─LIB──(─ ───� ┴──┬ ┬──────────── ─)─
 └ ┘─lib.sublib─

where:

 Chapter 4. Compile-Time Options 39

lib.sublib
Specifies the name of a VSE Librarian sublibrary containing system include
files. The library name (lib) is from 1 to 7 characters and the sublibrary name
(sublib) is from 1 to 8 characters.

part_file_id
Specifies a partial file ID of a sequential file containing a system include file.
The full file ID is the 1 to 44 character external name for the sequential file as
coded on the // DLBL job control statement that defines the file. A period and
asterisk (.*) must be appended immediately after part_file_id. If no partial
file ID is required, specify an asterisk only as the option.

The full file ID is made up as follows:

� For a partial file ID not within single quotes, the jobname followed by a
period is added to the start of the partial file ID. For example:

SEARCH(ABC.DEF.�)

will create a full file ID of:

jobname.ABC.DEF.filename

where filename is the file name on the #include directive.

� For a partial file ID specified within single quotes, the jobname is not added
to the start of the partial file ID. For example:

SEARCH('ABC.DEF.�')

will create a full file ID of:

ABC.DEF.filename

where filename is the file name on the #include directive.

member.type
Specifies a selection mask which identifies the name or partial name matching
the include files that are located in the VSE Librarian sublibraries identified by
the LIB suboption.

For example, if member.type contains abc�.h, this indicates that only include
files starting with abc and having a file type of h can be found in the
sublibraries indicated by the LIB suboption.

LIB(lib.sublib)
Specifies the VSE Librarian sublibraries to be searched for the include files that
match the selection mask of member.type.

lib.sublib is a VSE Librarian sublibrary name which is searched. The order of
the sublibrary search is the same order as in the LIB list.

lib.sublib may be omitted completely, in which case no search sublibraries
are defined. A warning message is issued in this situation.

NOLIB
Specifies that all LIB(lib.sublib) options previously specified for this selection
mask should be ignored.

For example:

SEARCH((�.h)=(LIB(TEST.CINC),NOLIB,LIB(PROD.CINC)))

is equivalent to:

SEARCH((�.h)=(LIB(PROD.CINC)))

40 C/VSE V1R1 User's Guide

The NOLIB format may be useful if you need to preserve the name of the test
libraries once the JCL is migrated into production.

The following table shows you how to specify a VSE Librarian sublibrary name or a
partial file ID (using the SEARCH option) for the #include <myincl.h> directive.

Table 9. Specifying VSE Librarian Sublibrary and Partial File ID Using the SEARCH Option

Option For #include <myincl.h>

SEARCH(A.B) The compiler looks for the VSE Librarian member MYINCL.H in
the sublibrary A.B.

SEARCH(A.B.�) The compiler looks for the sequential file
jobname.A.B.MYINCL.H.

SEARCH('A.B.�') The compiler looks for the sequential file A.B.MYINCL.H.

SEARCH(�) The compiler looks for the sequential file jobname.MYINCL.H.

SEARCH('�') The compiler looks for the sequential file MYINCL.H.

SEARCH((�.h)=(LIB(X.Y))) The compiler looks for the VSE Librarian member MYINCL.H in
the sublibrary X.Y.

SEARCH((�.j)=(LIB(X.Y))) The compiler will not search sublibrary X.Y because the include
filename does not match the pattern of �.j.

SEARCH((�.h)=(LIB(X1.Y1,X2.Y2))) The compiler looks for the VSE Librarian member MYINCL.H in
the sublibrary X1.Y1. If it is not found in this sublibrary, the
compiler looks for it in the sublibrary X2.Y2.

SEARCH((�.�)=(LIB(X1.Y1),NOLIB,LIB(X2.Y2))) The compiler looks for the VSE Librarian member MYINCL.H in
the sublibrary X2.Y2. NOLIB causes sublibrary X1.Y1 to be
ignored.

If an include file is not found in any of the SEARCH sublibraries, the source sublibrary
chain specified using the // LIBDEF job control statement is searched.

The NOSEARCH option instructs the preprocessor to search only those sublibraries in
the source sublibrary chain specified using the job control // LIBDEF statement.

Note: When you use single quotation marks inside the #include directive, or use
the DLBL/TLBL-name and/or logical unit format, the file is read directly and no library
search is performed.

Table 10 on page 42 shows the search performed when both the SEARCH and the
LSEARCH option is used. The following SEARCH and LSEARCH options are in effect:

LSEARCH(lib1.sublib1,(�.j)=(LIB(lib2.sublib2)))
SEARCH((�.h)=(LIB(lib3.sublib3)),seq.�)

For detailed information about the specification of #include filenames, see “Using
Include Files” on page 4.

 Chapter 4. Compile-Time Options 41

For further information on library search sequences, see “Search Sequences for
Include Files” on page 7.

Table 10. Libraries Searched When Both SEARCH and LSEARCH Are Specified

#include Libraries Searched

"'a.b.c.d.e.f.g'" The compiler will attempt to open a sequential file
'a.b.c.d.e.f.g'. No search is performed.

"dd:dlbl" The compiler will attempt to open a file with the
DLBL-name of dlbl. No search is performed.

"dd:lib.sublib(mem.type)" The compiler will attempt to open member mem.type in
sublibrary lib.sublib. No search is performed.

<head.h> The compiler will search for the following:

1. Member HEAD.H in sublibrary LIB3.SUBLIB3
2. Sequential file jobname.SEQ.HEAD.H
3. Member HEAD.H in sublibraries in source search chain

specified by the // LIBDEF JCL statement

"aa/bb/cc/dd/head" The compiler will search for the following:

1. Member HEAD.H in sublibrary LIB1.SUBLIB1
2. Member HEAD.H in sublibraries in source search chain

specified by the // LIBDEF JCL statement
3. Member HEAD.H in sublibrary LIB3.SUBLIB3
4. Sequential file jobname.SEQ.HEAD.H

"head.j.k.l" The compiler will search for the following:

1. Member HEAD.J in sublibrary LIB1.SUBLIB1
2. Member HEAD.J in sublibrary LIB2.SUBLIB2
3. Member HEAD.J in sublibraries in source search chain

specified by the // LIBDEF JCL statement
4. Sequential file jobname.SEQ.HEAD.J.K.L

 SEQUENCE|NOSEQUENCE
The SEQUENCE option defines the section of the input record that is to contain
sequence numbers. No attempt is made to sort the input lines or records into the
specified sequence or to report records out of sequence.

Syntax for the SEQUENCE option is:

For F-format input files:

 ┌ ┐─73─── ┌ ┐─8�────
 ┌ ┐ ─SEQuence──(─ ──┴ ┴─left─ ─,─ ──┼ ┼─right─ ─)─
 │ │└ ┘─�─────
��─ ──┼ ┼── ────────────────────────────��
 └ ┘─NOSEQuence─────────────────────────────

For V-format input files:

 ┌ ┐─NOSEQuence─────────────────────────
��─ ──┼ ┼──────────────────────────────────── ────────────────────────────────��
 └ ┘─SEQuence──(──left──,─ ──┬ ┬─right─ ─)─
 └ ┘─�─────

42 C/VSE V1R1 User's Guide

where:

left Specifies the column number of the left-hand margin. The value of m must
be greater than 0 and less than 32768.

right Specifies the column number of the right-hand margin. The value of right
must be greater than left and less than 32768. An asterisk (*) can be
assigned to right indicating the last column of the input record. Thus,
SEQUENCE(74,�) shows that sequence numbers are between column 74 and
the end of the input record.

The IBM-supplied default for fixed-length records is SEQ(73,8�), and the default for
variable-length and undefined-length records is NOSEQ.

Note: If your program uses the #include preprocessor directive to include LE/VSE
run-time library header files and you want to use the SEQUENCE option, you must
ensure that the specifications on the SEQUENCE option do not include any columns
between 20 and 50, both inclusive. That is, both left and right must be less than
20, or both must be greater than 50. If your program does not include any LE/VSE
run-time library header files, you can specify any setting you want on the SEQUENCE
option when the setting is consistent with your own include files.

 SHOWINC|NOSHOWINC
The SHOWINC option specifies that the compiler is to show, in both the compiler
listing and the pseudo-assembly listing, all include files processed.

Syntax for the SHOWINC option is:

 ┌ ┐─NOSHOWinc─
��─ ──┼ ┼─────────── ───��
 └ ┘─SHOWinc───

In the listing, all #include preprocessor directives are replaced with the source
contained in the include file. The filename and the first letter of the file type of the
include file are shown on the listing under the heading “INCLUDE.” This option
only applies if the SOURCE option is also specified.

 SOURCE|NOSOURCE
The SOURCE option specifies that the compiler is to generate a listing that shows the
original source input statements plus any diagnostic messages.

Syntax for the SOURCE option is:

��─ ──┬ ┬────────── ──��
 ├ ┤─SOurce───
 └ ┘─NOSOurce─

The SOURCE option may also be specified using the LIST job control option on the
JCL // OPTION statement.

The default is determined by the LIST job control option.

 Chapter 4. Compile-Time Options 43

 SPILL|NOSPILL
The SPILL option allows you to specify the size of the spill area to be used for the
compilation. When too many registers are in use at once, the compiler dumps
some of them into the temporary storage called the spill area.

Syntax for the SPILL option is:

 ┌ ┐─128──
 ┌ ┐ ─SPill──(─ ──┴ ┴─size─ ─)─
��─ ──┼ ┼─────────────────────── ───��
 └ ┘─NOSPill───────────────

You may have to expand the spill area; you will receive a compiler message telling
you the size to which you should increase the spill area. (Once you know the size
of the spill area required for your source program, you can then add a #pragma
options(SPILL(size)) directive to your source.) The maximum spill area size is
3900.

Note: There is an upper limit of 4096 bytes for the combined area for your spill
area, local variables and arguments passed to called functions. For best use of
your stack, do not pass large arguments, such as structures, by value.

If you specify NOSPILL, you will get the default value for SPILL.

 SSCOMM|NOSSCOMM
The SSCOMM option specifies that the compiler is to recognize two slashes (//) as
the beginning of a comment that will terminate at the end of the line. It will also
recognize /� �/ as comments for compatibility with code in which // is accepted
as the beginning of comments.

Syntax for the SSCOMM option is:

 ┌ ┐─NOSScomm─
��─ ──┼ ┼────────── ──��
 └ ┘─SScomm───

NOSSCOMM indicates that /� �/ is the only valid comment format.

 START
The START option specifies that an ENTRY CEESTART control statement is to be
generated.

Syntax for the START option is:

 ┌ ┐─STArt─
��─ ──┴ ┴─────── ───��

44 C/VSE V1R1 User's Guide

Notes:

1. Whenever you specify the START compile-time option, a comment noting its use
is generated in your object module to aid you in diagnosing problems with your
program. The comment generated consists of the specified compile-time option
on an END card at the end of the object module.

2. There is no negative form of the START option. That is, specifying NOSTART is
not supported.

 TARGET
The TARGET option specifies the run-time environment for which the object module is
to be generated.

Syntax for the TARGET option is:

 ┌ ┐ ─TARGet──(─ ──┬ ┬──── ─)─
 │ │└ ┘─LE─
��─ ──┴ ┴────────────────────── ──��

where:

TARGET() Generates object code to run under LE/VSE. It is the same as
TARGET(LE). This is the default.

TARGET(LE) Generates object code to run under LE/VSE.

Note: A comment noting the value of TARGET used is generated in your object
module to aid you in diagnosing problems with your program. The comment
generated consists of the specified compile-time option on an END card at the end
of the object module.

 TERMINAL|NOTERMINAL
The TERMINAL option specifies that all error messages from the compiler are to be
directed to SYSLOG.

Syntax for the TERMINAL option is:

��─ ──┬ ┬──────────── ──��
 ├ ┤─TERMinal───
 └ ┘─NOTERMinal─

If the PPONLY option is specified, TERM is implicitly turned on.

The TERMINAL option may also be specified using the TERM job control option on the
JCL // OPTION statement.

If you specify NOTERMINAL, then no separate log of error messages is produced. If
you specify the SOURCE option to generate a listing, the error messages are
interspersed in the listing.

The default is determined by the TERM job control option.

 Chapter 4. Compile-Time Options 45

 TEST|NOTEST
The TEST option specifies that the compiler is to generate information for Debug
Tool for VSE/ESA. If the NOTEST option is chosen, debugging information is not
generated.

Syntax for the TEST option is:

 ┌ ┐─NOTEST─
��─ ──┼ ┼──────── ──┬ ┬─────────────────── ─────────────────────────────────────��
 └ ┘─TEST─── │ │┌ ┐─,───────
 └ ┘ ─(─ ───� ┴─suboptn─ ─)─

where suboptn is one of the suboptions shown in Table 11. (Default suboptions
are indicated by underscoring.)

The TEST|NOTEST option can be specified on the invocation line and in the #pragma
options preprocessor directive. When both methods are used concurrently, the
options are merged. If an option in the PARM parameter of the EXEC JCL statement
conflicts with an option in the #pragma options directive, the one in the PARM
parameter of the EXEC JCL statement takes precedence. For example, if you do not
want to generate debugging information when you compile a program, you can
specify the NOTEST option in a #pragma options preprocessor directive. When you
do want to generate debugging information, you can then override the NOTEST
option by specifying TEST in the PARM parameter of the EXEC JCL statement rather
than editing your source program. The example below illustrates these rules:

Source file: #pragma options(notest(block,line))
EXEC PARM: TEST(SYM,NOBLOCK)
Result: TEST(SYM,NOBLOCK,LINE)

The NOTEST option specifies that the compiler is not to generate information for the
debugger. Options specified in a #pragma options(NOTEST) directive or NOTEST
apply if TEST is specified in the PARM parameter of the EXEC JCL statement.

Any #line directives are ignored when the TEST option is active. Do not use any
#line directives before a #pragma options directive that contains the TEST option.

The compile-time option INLINE is ignored if specified with TEST.

If the TEST option is specified, GONUMBER is implicitly turned on.

Table 11. TEST Suboptions

TEST Suboption Description

SYM|NOSYM Generates symbol table information

BLOCK|NOBLOCK Generates symbol information for nested blocks

LINE|NOLINE Generates line number hooks

PATH|NOPATH Generates path breakpoints

ALL Is equivalent to TEST(SYM,BLOCK,LINE,PATH)

NONE Is equivalent to TEST(NOSYM,NOBLOCK,NOLINE,NOPATH)

46 C/VSE V1R1 User's Guide

If you specify OPTIMIZE with TEST, you will only be able to set breakpoints at
function entry points regardless of the suboptions you set.

 UPCONV|NOUPCONV
The UPCONV option specifies that the compiler is to follow unsignedness preserving
rules when doing C type conversions; that is, when widening all integral types
(char, short, int, and long). Use this option when compiling older C programs
that depend on the older conversion rules.

Syntax for the UPCONV option is:

 ┌ ┐─NOUPConv─
��─ ──┼ ┼────────── ──��
 └ ┘─UPConv───

Note: Whenever you specify the UPCONV compile-time option, a comment noting its
use is generated in your object module to aid you in diagnosing problems with your
program. The comment generated consists of the specified compile-time option on
an END card at the end of the object module.

 XREF|NOXREF
The XREF option specifies that the compiler is to include in the source listing a cross
reference table of names used in the program, together with the numbers of the
lines where they are declared or referenced.

Syntax for the XREF option is:

��─ ──┬ ┬──────── ──��
 ├ ┤─XRef───
 └ ┘─NOXRef─

A separate offset listing of the variables will appear after the cross reference table.

The XREF option may also be specified using the XREF job control option on the JCL
// OPTION statement.

The default is determined by the XREF job control option.

Using the Compiler Listing
During compilation, if requested, the compiler creates a listing that contains
information about the source program and the compilation.

The listing is written to SYSLST.

If compilation terminates before reaching a particular stage of processing, the
corresponding parts of listings are generated.

The listing contains standard information that always appears, together with
optional information supplied by default or specified through compile-time options.

 Chapter 4. Compile-Time Options 47

If you use the TERMINAL option, all error messages issued by the compiler are
directed to SYSLOG as well as being interspersed with the compiler listing.

Note: Although the compiler listing is for your use, it is not a programming
interface and is subject to change.

Example of a C/VSE Compiler Listing
Figure 7 shows an example of a compiler listing.

5686A�1 V1 R1 M�� IBM C/VSE DD:SYSIPT �9/�4/1996 17:�5:52 PAGE 1

� � � � � P R O L O G � � � � �

 COMPILE TIME LIBRARY : 11�4����
 COMMAND OPTIONS:

PROGRAM NAME. : DD:SYSIPT
COMPILER OPTIONS. : �NOGONUMBER �NONAME �NODECK �NORENT �TERMINAL �NOUPCONV �SOURCE �LIST

: �XREF �AGGR �NOPPONLY �NOEXPMAC �NOSHOWINC �NOOFFSET �NOMEMORY �NOSSCOMM
 : �NOCSECT �NOLONGNAME �START �EXECOPS �NOEVENTS �NOINFILE
 : �TARGET() �FLAG(I) �NOTEST(SYM,BLOCK,LINE,NOPATH) �OPTIMIZE(�)�SPILL(128)
 : �INLINE(AUTO,REPORT,25�,1���) �NESTINC(16)
 : �NOCHECKOUT(NOPPTRACE,PPCHECK,GOTO,ACCURACY,PARM,NOENUM,
 : � NOEXTERNAL,TRUNC,INIT,NOPORT,GENERAL)
 : �NOSEARCH
 : �NOLSEARCH
 : �OBJECT �NOHWOPTS �NOLOCALE

LANGUAGE LEVEL. : �EXTENDED
SOURCE MARGINS. :
VARYING LENGTH. : 1 - 32767
FIXED LENGTH : 1 - 72

SEQUENCE COLUMNS. :
VARYING LENGTH. : NONE
FIXED LENGTH. : 73 - 8�

� � � � � S O U R C E � � � � �

 LINE STMT SEQNBR INCNO
 �...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9.......�

1 | /� EDCXUAAA | 1
2 | This is an example of a C/VSE program | 2

 3 | �/ | 3
 4 | | 4
 5 |#include <stdio.h> | 5
 6 | | 6
 7 |#include "edcxuaab.h" | 7
 8 | | 8
 9 |void convert(double); | 9
 1� | | 1�

11 |int main(int argc, char ��argv) | 11
 12 |{ | 12
 13 | double c_temp; | 13

14 | int ch, i; | 14
 15 | | 15

16 1 | if (argc == 1) { /� get Celsius value from stdin �/ | 16
 17 | | 17

18 2 | printf("Enter Celsius temperature: \n"); | 18
 19 | | 19

2� 3 | if (scanf("%f", &c_temp) != 1) { | 2�
21 4 | printf("You must enter a valid temperature\n"); | 21
22 | } | 22
23 | else { | 23

 24 5 | convert(c_temp); | 24
25 | } | 25

 26 | } | 26

Figure 7 (Part 1 of 7). Example of a Compiler Listing

48 C/VSE V1R1 User's Guide

27 | else { /� convert the invocation arguments to Fahrenheit �/ | 27
 28 | | 28

29 6 | for (i = 1; i < argc; ++i) { | 29
3� 7 | if (sscanf(argv[i], "%f", &c_temp) != 1) | 3�
31 8 | printf("%s is not a valid temperature\n",argv[i]); | 31

 32 | else | 32
 33 9 | convert(c_temp); | 33

34 | } | 34
 35 | } | 35
 36 |} | 36
 37 | | 37

38 |void convert(double c_temp) { | 38
39 | double f_temp = (c_temp � CONV + OFFSET); | 39
4� 1� | printf("%5.2f Celsius is %5.2f Fahrenheit\n",c_temp, f_temp); | 4�

 41 |} | 41
� � � � � E N D O F S O U R C E � � � � �

� � � � � I N C L U D E S � � � � �

INCLUDE FILES --- FILE# NAME

 1 DD:(STDIO.H)
 2 DD:(FEATURES.H)
 3 DD:(EDCXUAAB.H)

� � � � � E N D O F I N C L U D E S � � � � �

� � � � � C R O S S R E F E R E N C E L I S T I N G � � � � �

IDENTIFIER DEFINITION ATTRIBUTES
<SEQNBR>-<FILE NO>:<FILE LINE NO>

___valist 5-1:11� TYPEDEF
TYPE = ARRAY[2] OF

POINTER TO UNSIGNED CHARACTER

__amrc_ptr 5-1:435 TYPEDEF
TYPE = POINTER TO STRUCTURE __amrctype

__amrc_type 5-1:431 TYPEDEF
TYPE = STRUCTURE __amrctype

__amrctype 5-1:385 CLASS = TAG, TYPE = STRUCTURE

__amrc2_ptr 5-1:448 TYPEDEF
TYPE = POINTER TO STRUCTURE __amrc2type

.

.

.
scanf 5-1:2�1 CLASS = EXTERNAL REFERENCE,

TYPE = C FUNCTION RETURNING SIGNED INTEGER
 2�-�:2�

size_t 5-1:39 TYPEDEF
TYPE = UNSIGNED INTEGER

sscanf 5-1:2�9 CLASS = EXTERNAL REFERENCE,
TYPE = C FUNCTION RETURNING SIGNED INTEGER

 3�-�:3�

FILE 5-1:62 TYPEDEF
TYPE = STRUCTURE __ffile

� � � � � E N D O F C R O S S R E F E R E N C E L I S T I N G � � � � �

Figure 7 (Part 2 of 7). Example of a Compiler Listing

 Chapter 4. Compile-Time Options 49

� � � � � S T R U C T U R E M A P S � � � � �

===
| AGGREGATE MAP FOR: STRUCTURE __amrctype TOTAL SIZE: 22� BYTES |
|===|
OFFSET	LENGTH	MEMBER NAME
BYTES(BITS)	BYTES(BITS)	
===================	===================	===
�	4	__code
�	4	__error
�	4	__abend
�	2	__syscode
2	2	__rc
�	4	__feedback
�	1	__fdbk_fill
1	1	__rc
2	1	__ftncd
3	1	__fdbk
�	4	__alloc
�	2	__svc99_info
2	2	__svc99_error
4	4	__RBA
8	4	__last_op
12	2�8	__msg
12	4	__len_fill
16	4	__len
2�	12�	__str[12�]
14�	4	__parmr�
144	4	__parmr1
148	8	__fill2[2]
156	64	__str2[64]
===

===
| AGGREGATE MAP FOR: _PACKED STRUCTURE __amrctype TOTAL SIZE: 22� BYTES |
|===|
OFFSET	LENGTH	MEMBER NAME
BYTES(BITS)	BYTES(BITS)	
===================	===================	===
�	4	__code
�	4	__error
�	4	__abend
�	2	__syscode
2	2	__rc
�	4	__feedback
�	1	__fdbk_fill
1	1	__rc
2	1	__ftncd
3	1	__fdbk
�	4	__alloc
�	2	__svc99_info
2	2	__svc99_error
4	4	__RBA
8	4	__last_op
12	2�8	__msg
12	4	__len_fill
16	4	__len
2�	12�	__str[12�]
14�	4	__parmr�
144	4	__parmr1
148	8	__fill2[2]
156	64	__str2[64]
===

.

.

.

Figure 7 (Part 3 of 7). Example of a Compiler Listing

50 C/VSE V1R1 User's Guide

===
| AGGREGATE MAP FOR: _PACKED STRUCTURE __fpos_t TOTAL SIZE: 32 BYTES |
|===|
OFFSET	LENGTH	MEMBER NAME
BYTES(BITS)	BYTES(BITS)	
===================	===================	===
�	32	__fpos_elem[8]
===

� � � � � E N D O F S T R U C T U R E M A P S � � � � �

� � � � � M E S S A G E S U M M A R Y � � � � �

TOTAL INFORMATIONAL(��) WARNING(1�) ERROR(3�) SEVERE ERROR(4�)

 � � � � �
� � � � � E N D O F M E S S A G E S U M M A R Y � � � � �

INLINE REPORT (SUMMARY)

 REASON: P : #PRAGMA NOINLINE WAS SPECIFIED FOR THIS ROUTINE
F : #PRAGMA INLINE WAS SPECIFIED FOR THIS ROUTINE
A : AUTOMATIC INLINING
- : NO REASON

 ACTION: I : ROUTINE IS INLINED AT LEAST ONCE
L : ROUTINE IS INITIALLY TOO LARGE TO BE INLINED
T : ROUTINE EXPANDS TOO LARGE TO BE INLINED
C : CANDIDATE FOR INLINING BUT NOT INLINED
N : NO DIRECT CALLS TO ROUTINE ARE FOUND IN FILE (NO ACTION)
U : SOME CALLS NOT INLINED DUE TO RECURSION OR PARAMETER MISMATCH
- : NO ACTION

 STATUS: D : INTERNAL ROUTINE IS DISCARDED
R : A DIRECT CALL REMAINS TO INTERNAL ROUTINE (CANNOT DISCARD)
A : ROUTINE HAS ITS ADDRESS TAKEN (CANNOT DISCARD)
E : EXTERNAL ROUTINE (CANNOT DISCARD)
- : STATUS UNCHANGED

 CALLS/I : NUMBER OF CALLS TO DEFINED ROUTINES / NUMBER INLINE
 CALLED/I : NUMBER OF TIMES CALLED / NUMBER OF TIMES INLINED

REASON ACTION STATUS SIZE (INIT) CALLS/I CALLED/I NAME

 A I E 13 � 2/2 convert
A N E 1�1 (67) 2/2 � main

 MODE = AUTO INLINING THRESHOLD = 25� EXPANSION LIMIT = 1���

INLINE REPORT (CALL STRUCTURE)

 DEFINED FUNCTION : convert
 CALLS TO : �
 CALLED FROM(2,2) : main(2,2)

 DEFINED FUNCTION : main
 CALLS TO(2,2) : convert(2,2)
 CALLED FROM : �

Figure 7 (Part 4 of 7). Example of a Compiler Listing

 Chapter 4. Compile-Time Options 51

OFFSET OBJECT CODE LINE# P S E U D O A S S E M B L Y L I S T I N G

������ 5 main DS �F
������ 47F� F�24 6 B 36(,r15)
����1A 41E� F�38 7 LA r14,56(,r15)
����1E 58F� C�74 8 L r15,116(,r12)
����22 �7FF 9 BR r15
����24 9�E6 D��C 1� STM r14,r6,12(r13)
����28 582� D�4C 11 L r2,76(,r13)
����2C 41�� 2�C8 12 LA r�,2��(,r2)
����3� 55�� C��C 13 CL r�,12(,r12)
����34 472� F�1A 14 BH 26(,r15)
����38 58F� D�48 15 L r15,72(,r13)
����3C 9�F� 2�48 16 STM r15,r�,72(r2)
����4� 921� 2��� 17 MVI �(r2),16
����44 5�D� 2��4 18 ST r13,4(,r2)
����48 18D2 19 LR r13,r2
����4A �53� 2� BALR r3,r�
����4C END OF PROLOG
����4C 584� ���� 22 L r4,=A(@STATICC)
����5� 5�1� D�88 23 ST r1,136(,r13)
 � /� EDCXUAAA

� This is an example of a C/VSE program
 � �/
 �
 � #include <stdio.h>
 �
 � #include "edcxuaab.h"
 �
 � void convert(double);
 �

���11 | � int main(int argc, char ��argv)
 � {
 � double c_temp;

� int ch, i;
 �

���16 | � if (argc == 1) { /� get Celsius value from stdin �/
����54 586� D�88 4� L r6,136(,r13)
����58 415� ���1 41 LA r5,1
����5C 595� 6��� 42 C r5,�(,r6)
����6� 477� ���� 43 BNE @8L2
 �
.
.
.
 ���41 | +
���194 156 @8L1� DS �F
���194 415� ���1 157 LA r5,1
���198 5A5� D�9� 158 A r5,144(,r13)
���19C 5�5� D�9� 159 ST r5,144(,r13)
���1A� 585� D�88 16� L r5,136(,r13)
���1A4 585� 5��� 161 L r5,�(,r5)
���1A8 595� D�9� 162 C r5,144(,r13)
���1AC 472� 3�AC 163 BH @8L7
���1B� 164 @8L5 DS �D
 � }
 � }
 ���36 | � }
���1B� 41F� ���� 168 LA r15,�

Figure 7 (Part 5 of 7). Example of a Compiler Listing

52 C/VSE V1R1 User's Guide

���1B4 START OF EPILOG
���1B4 18�D 17� LR r�,r13
���1B6 58D� D��4 171 L r13,4(,r13)
���1BA 58E� D��C 172 L r14,12(,r13)
���1BE 9826 D�1C 173 LM r2,r6,28(r13)
���1C2 �51E 174 BALR r1,r14
���1C4 �7�7 175 NOPR
���1C8 START OF LITERALS
���1C8 422� ���� ���� 177 =D'32'
���1CE ����
���1D� 411C CCCC CCCC 179 =D'1.8'
���1D6 CCCC
���1D8 ���� ���1 185 =F'1'
���1DC ���� ���� 186 =A(@STATICC)
���1E� ���� ���� 187 =V(printf)
���1E4 ���� ���� 188 =V(scanf)
���1E8 ���� ���� 189 =V(sscanf)
���1EC END OF LITERALS

PPA2: COMPILE UNIT BLOCK
���1EC �3�� 22�� 193 =F'5�34�352' Flags
���1F� ���� ���� 194 =A(CEESTART)
���1F4 ���� ���� 195 =F'�' No PPA4
���1F8 ���� �1FC 196 =A(TIMESTMP)
 PPA2 END

PPA1: ENTRY POINT CONSTANTS
�����4 14CE A1�6 2�� =F'349�85958' Flags
�����8 ���� �1EC 2�1 =A(PPA2)
�����C ���� ���� 2�2 =F'�' No PPA3
����1� ���� ��C8 2�3 =F'2��' DSA Size
����14 ���� 2�4 AL2(4),C'main'
 PPA1 END

��� GENERAL PURPOSE REGISTERS USED: 11��111�������11
��� FLOATING POINT REGISTERS USED: 1111
��� SIZE OF DYNAMIC STORAGE: 2��
��� SIZE OF REGISTER SPILL AREA: 1������(MAX) �(USED)
��� SIZE OF EXECUTABLE CODE: 452

I B M / 3 7 � I N S T R U C T I O N U S A G E
 OP CODE NUM % OP CODE NUM % OP CODE NUM % OP CODE NUM %

 L 22 2�.�� LA 2� 18.18 ST 12 1�.91 BC 11 1�.��
 BALR 9 8.18 MVC 9 8.18 A 3 2.73 C 3 2.73
 CH 2 1.82 BCR 2 1.82 STD 2 1.82 LD 2 1.82
 AD 2 1.82 MD 2 1.82 SLL 2 1.82 STM 2 1.82
 LR 2 1.82 MVI 1 �.91 LM 1 �.91 CL 1 �.91

.

.

.

E X T E R N A L S Y M B O L D I C T I O N A R Y

NAME TYPE ID ADDR LENGTH NAME TYPE ID ADDR LENGTH

 PC 1 ������ ���2C8 CONVERT LD � ���21� �����1
 MAIN LD � ������ �����1 PC 2 ������ ����8C
 PRINTF ER 3 ������ SCANF ER 4 ������
 SSCANF ER 5 ������ CEESG��3 ER 6 ������
 CEESTART ER 7 ������ CEEMAIN SD 8 ������ �����C
 MAIN ER 9 ������ EDCINPL ER 1� ������

Figure 7 (Part 6 of 7). Example of a Compiler Listing

 Chapter 4. Compile-Time Options 53

� � � � � S T O R A G E O F F S E T L I S T I N G � � � � �

IDENTIFIER DEFINITION ATTRIBUTES
<SEQNBR>-<FILE NO>:<FILE LINE NO>

argc 11-�:11 CLASS = PARAMETER, OFFSET = �, LENGTH = 4

argv 11-�:11 CLASS = PARAMETER, OFFSET = 4, LENGTH = 4

c_temp 13-�:13 CLASS = AUTOMATIC, OFFSET = 152, LENGTH = 8

c_temp 38-�:38 CLASS = PARAMETER, OFFSET = �, LENGTH = 8

f_temp 39-�:39 CLASS = AUTOMATIC, OFFSET = 144, LENGTH = 8

i 14-�:14 CLASS = AUTOMATIC, OFFSET = 144, LENGTH = 4

� � � � � E N D O F S T O R A G E O F F S E T L I S T I N G � � � � �

� � � � � E N D O F C O M P I L A T I O N � � � � �

Figure 7 (Part 7 of 7). Example of a Compiler Listing

Compiler Listing Components
The following sections describes the components of a C/VSE compiler listing.

 Heading Information
The first page of the listing is identified by the product number, the compiler version
and release numbers, the date and time when the compilation began, and the
name of the file containing the source code.

The first page and subsequent pages are numbered. At the very end of the
compiler listing is the “END OF COMPILATION” message.

 Prolog Section
The Prolog section of the listing provides information about the compile-time library,
compile-time options, and other items in effect when the compiler was invoked.

Note: The compile-time options specified in a #pragma options directive, as well
as options that are implicitly turned on (such as GONUMBER when TEST is specified),
are not identified in the listing.

The following sections describe the optional parts of the listing in the order in which
they appear, and the compile-time options that generate them.

 Source Program
If the option SOURCE is specified, the input to the compiler is included in the listing
file.

Note: If the SHOWINC option is specified, the source listing shows the included
source after the #include directives have been processed.

 Includes Section
The Includes section is generated when you use #include files and specify the
SOURCE or LIST option.

54 C/VSE V1R1 User's Guide

 Cross-Reference Table
If the option XREF is specified, the listing file includes a cross-reference table
containing a list of the identifiers in the source program together with the numbers
of the lines in which they appear.

Structure and Union Maps
You obtain structure and union maps by using the AGGREGATE option. The table
generated shows how each structure and union in the program is mapped. It
contains the following information:

� The name of the structure or union and the elements within the structure or
union

� The byte offset of each element from the beginning of the structure or union;
the bit offset for unaligned bit data is also given

� The length of each element
� The total length of each structure, union, and substructure

 Messages
If the preprocessor or the compiler detects an error, or the possibility of an error, it
generates messages. If you specify the SOURCE compile-time option, preprocessor
error messages appear immediately after the source statement in error. You can
generate your own messages in the preprocessing stage by using #error. For
information on #error, see the C/VSE Language Reference.

If you specify the CHECKOUT or FLAG(I) compile-time option, informational diagnostic
messages are generated.

For more information on the compiler messages, see “FLAG|NOFLAG” on page 25,
and Appendix A, “C/VSE Return Codes and Messages” on page 65.

 Message Summary
This listing section displays the total number of messages and the number of
messages for each severity level.

 Inline Report
If the INLINE(,REPORT,,) option is specified, an inline report is included in the listing.
This report contains an inline summary and a detailed call structure.

Note: No report is produced when your source file contains only one defined
function.

The summary contains:

� Name of each defined function. Function names are sorted in alphabetical
order.

� Reason for action on a function:

– A #pragma noinline was specified for that function
– A #pragma inline was specified for that function
– Auto-inlining acted on that function
– There was no reason to inline the function

� Action on a function:

– Function was inlined at least once
– Function was not inlined because of initial size constraints

 Chapter 4. Compile-Time Options 55

– Function was not inlined because of expansion beyond size constraint
– Function was a candidate for inlining but was not inlined
– Function was a candidate for inlining but was not referenced
– This function is directly recursive, or some calls have mismatching

parameters

� Status of original function after inlining:

– Function is discarded because it is no longer referenced and was defined
as static internal

– Function was not discarded for various reasons:
- Function is external (It can be called from outside the compilation unit)
- Some call to this function remains
- Function has its address taken

� Initial relative size of function (in Abstract Code Units (ACU))

� Final relative size of function (in ACUs) after inlining

� Number of calls within the function and the number of these calls that were
inlined into the function

� Number of times the function is called by others in the compile unit and the
number of times this function was inlined

� Mode selected and the value of threshold and limit specified for this
compilation

The detailed call structure contains specific information of each function such as:

� What functions it calls
� What functions call it
� In which functions it is inlined

The information can help you to better analyze your program if you want to use the
inliner in selective mode.

There may be additional messages as a result of the inlining. For example, if
inlining a function with automatic storage will increase the automatic storage of the
function it is being inlined into by more than 4K, a message is written.

 Pseudo-Assembly Listing
The option LIST generates a listing of the machine instructions in the object
module, including any compiler-generated functions, in a form similar to assembler
language.

The source statement line numbers and the line number of any inlined code is
displayed within this Pseudo-Assembly listing to aid you in debugging inlined code.

External Symbol Dictionary
The External Symbol Dictionary lists the names that the compiler generates for the
output object module. It includes address and size information about each symbol.

56 C/VSE V1R1 User's Guide

External Symbol Cross Reference Listing
The External Symbol Cross Reference listing is generated if you specify the XREF
compile-time option. It shows the original name and corresponding mangled name
for each symbol.

Storage Offset Listing
If you specify the XREF option, the listing file includes offset information for
identifiers.

 Chapter 4. Compile-Time Options 57

58 C/VSE V1R1 User's Guide

 Chapter 5. Run-Time Options

This chapter describes the specification of run-time options and the #pragma
runopts preprocessor directives available to you. For a detailed description of the
LE/VSE run-time options, their abbreviations and IBM-supplied defaults, see the
LE/VSE Programming Reference.

Specifying Run-Time Options
This section describes the run-time options that you can specify:

� On the PARM option of the EXEC JCL statement when the #pragma
runopts(execops) directive is specified in your source program (default).

� On a #pragma runopts preprocessor directive in your main() program. For
more information on the #pragma runopts prepossessor directive, see
“Specifying Run-Time Options Using the #pragma runopts Preprocessor
Directive.”

The precedence of run-time options for applications compiled with LE/VSE is
described in the LE/VSE Programming Reference.

If two contradictory options are specified, the last option specified is accepted and
the first ignored.

The values of all parameters are filled in successively from the system defaults and
the PARM parameter of the EXEC statement.

For more information on the LE/VSE run-time options, see the LE/VSE
Programming Reference.

Specifying Run-Time Options Using the #pragma runopts
Preprocessor Directive

You can use the #pragma runopts preprocessor directive to override the default
values for run-time options or to specify the run-time options: ARGPARSE, ENV, PLIST,
REDIR, and EXECOPS. If the run-time option EXECOPS is in effect, run-time options
specified in the PARM parameter of the EXEC statement override options specified on
the #pragma runopts preprocessor directive.

If the run-time option EXECOPS is not in effect, all run-time options specified on the
PARM parameter of the EXEC statement are treated as arguments to be passed to
your program at execution time. For LE/VSE, EXECOPS is the default.

The #pragma runopts directive can appear in any file: main, include, or source, if it
is before any other C source code. You may specify multiple run-time options per
directive or multiple directives per compilation unit. If you wish to specify the REDIR
or ARGPARSE options, the #pragma runopts directive must be in the same compilation
unit as main(). When you specify multiple instances of #pragma runopts in
separate compilation units, be aware that the compiler generates a CSECT. When
you link multiple compilation units that specify #pragma runopts, the linker takes
only the first CSECT, thereby ignoring your other option statements. Therefore,
you should always keep your #pragma runopts specification in the same source as
your main() program.

© Copyright IBM Corp. 1994, 1996 59

For more information on the #pragma runopts preprocessor directive, see the
C/VSE Language Reference.

60 C/VSE V1R1 User's Guide

 Chapter 6. C/VSE Example

This chapter contains an example of the basic steps for compiling, linking, and
running a C/VSE program.

Example of a C/VSE Program
The following example shows a simple C program that converts temperatures in
Celsius to Fahrenheit. You can either enter the temperatures on the PARM
parameter of the EXEC JCL statement, or supply the temperature to be converted in
the JCL input stream (SYSIPT).

In this example, the main program calls the function convert() to perform the
conversion of the Celsius temperature to a Fahrenheit temperature and to print the
result.

 EDCXUAAA

 /� EDCXUAAA
This is an example of a C/VSE program

 �/

#include <stdio.h> �1�

#include "edcxuaab.h" �2�

void convert(double); �3�

int main(int argc, char ��argv) �4�
{
 double c_temp; �5�

int ch, i;

if (argc == 1) { /� get Celsius value from stdin �/

printf("Enter Celsius temperature: \n"); �6�

if (scanf("%f", &c_temp) != 1) {
printf("You must enter a valid temperature\n");

 }
 else {
 convert(c_temp); �7�
 }
 }

Figure 8 (Part 1 of 2). Celsius to Fahrenheit Conversion

© Copyright IBM Corp. 1994, 1996 61

else { /� convert the invocation arguments to Fahrenheit �/

for (i = 1; i < argc; ++i) {
if (sscanf(argv[i], "%f", &c_temp) != 1)

printf("%s is not a valid temperature\n",argv[i]);
 else
 convert(c_temp); �7�
 }
 }
}

void convert(double c_temp) { �8�
double f_temp = (c_temp � CONV + OFFSET);
printf("%5.2f Celsius is %5.2f Fahrenheit\n",c_temp, f_temp);

}

Figure 8 (Part 2 of 2). Celsius to Fahrenheit Conversion

 EDCXUAAB

/��
 � User include file: EDCXUAAB.H �
 ��/ �9�

#define CONV (9./5.)
#define OFFSET 32

Figure 9. User #include File for Conversion Program

�1� This preprocessor directive includes the system file that contains the
declarations of standard library functions, such as the printf() library
function used by this program.

The compiler searches for the VSE Librarian sublibrary member STDIO.H.
See “Search Sequences for Include Files” on page 7 for a description of the
sublibraries used in the search.

�2� This preprocessor directive includes a user file that defines constants that are
used by the program.

The compiler searches for the VSE Librarian sublibrary member EDCXUAAB.H.
See “Search Sequences for Include Files” on page 7 for a description of the
sublibraries used in the search.

�3� This is a function prototype declaration. This statement declares convert()
as an external function having one parameter.

�4� The program begins execution at this entry point.

�5� This is the automatic (local) data definition to main().

�6� This printf() statement is a call to a C library function that allows you to
format your output and print it on the standard output device. The printf()
library function is declared in the LE/VSE run-time library standard I/O header
file stdio.h included at the beginning of the program.

�7� This statement contains a call to the function convert(). It was declared
earlier in the program as receiving one double value, and not returning a
value.

62 C/VSE V1R1 User's Guide

�8� This is a function definition. In this example, the declaration for this function
appears immediately before the definition of the main() function. The C code
for the function is in the same file as the code for the main() function.

�9� This is the user include file containing the definitions for CONV and OFFSET.

If you need more details on the constructs of the C language, see the C/VSE
Language Reference and the LE/VSE C Run-Time Library Reference.

Compiling, Linking, and Running the C/VSE Example
If the sample C program shown on page 61 were stored in member CTOF.C in
sublibrary SHARON.SOURCE, and your header file EDCXUAAB.H was found in sublibrary
SHARON.INCL, you could use the following JCL to compile, link, and execute the
source code:

 EDCXUAAC

// JOB EDCXUAAC
// LIBDEF �,SEARCH=(PRD2.DBASE,PRD2.SCEEBASE) �1�
// OPTION LINK
// EXEC EDCCOMP,SIZE=EDCCOMP,PARM='INFILE(DD:SHARON.SOURCE(CTOF.C)), X
 LSEARCH(SHARON.INCL)' �2�
/�
// EXEC LNKEDT
/�
// EXEC
27 �3�
/�
/&

Figure 10. JCL to Compile, Link, and Run the Conversion Program

�1� You must have both C/VSE and the LE/VSE C run-time library in your PHASE
sublibrary search chain.

You must have both C/VSE and the LE/VSE C run-time library in your SOURCE
sublibrary search chain:

� The PRD2.SCEEBASE sublibrary contains the standard header files
required for the compilation. Alternately, you can use the SEARCH
compile-time option to specify the sublibrary containing the standard
header files.

� The PRD2.DBASE sublibrary contains message files required for the
compilation.

You must have the LE/VSE C run-time library in your OBJ sublibrary search
chain.

Notes:

1. The above example uses the generic search chain “*” for simplicity.

2. The sublibrary names shown are the default installation sublibrary names.
Contact your system programmer if the default names are not used at
your installation.

 Chapter 6. C/VSE Example 63

�2� The INFILE compile-time option specifies the primary input source file as a
member of a VSE Librarian sublibrary.

The LSEARCH compile-time option specifies the sublibrary where the user
include file is found.

�3� This is the input data provided for program execution. Alternatively, this input
can be provided through the PARM parameter of the EXEC JCL statement.

Note: The JCL for the compiler workfiles (IJSYS�1-IJSYS�7) and SYSLNK must be
provided if these are not in the Partition Standard or System Standard label areas.

64 C/VSE V1R1 User's Guide

Appendix A. C/VSE Return Codes and Messages

This appendix contains information about the compile-time messages and should
not be used as programming interface information.

 Return Codes
For every compilation job or job step, the compiler generates a return code that
indicates to the operating system the degree of success or failure it achieved:

The return code indicates the highest error severity that is detected during a
compilation. Therefore, a particular error type entry includes any error types with a
lower return code. For example, return code 12 indicates that Severe error
messages were issued, but it is also possible that Error, Warning, and Informational
messages were issued.

Table 12. Return Codes from Compilation of a C Program

Return
Code

Meaning

0 No error detected; informational messages may have been issued, compilation
completed; successful execution anticipated.

4 Possible error detected; compilation completed, successful execution probable.

12 Error detected; compilation may have been completed, successful execution
impossible.

16 Severe error detected; compilation terminated abnormally, successful execution
impossible.

33 A library level prior to V1R4 was used; compilation terminated abnormally,
successful execution impossible.

 Compiler Messages
Message format:

EDCnnnn ss text <&n>

where:

nnnn Is the error message number
ss Is the error severity as follows:

00 Informational message
10 Warning message
30 Error message
40 Severe error message
50 Fatal error message

text Is the message text
&n Is a compiler substitution variable

© Copyright IBM Corp. 1994, 1996 65

 EDC0001 � EDC0062

EDC0001 50 Internal compiler error at procedure &1.

Explanation: An error occurred during compilation.
See the C/VSE Diagnosis Guide for a description of
what to do.

EDC0010 50 Cannot load compiler phase &1.

Explanation: Fetching of compiler phase &1 failed.

Recovery: Ensure that you have sufficient GETVIS
storage available in the partition to run the compiler.

EDC0041 30 Identifier &1 must be declared before it
is used.

Explanation: A C identifier must be declared before it
is used in an expression.

Recovery: Declare an identifier of that name in the
current scope or in a higher scope.

EDC0042 30 A declaration must declare a variable, a
tag, or enum members.

Explanation: A data type cannot be followed by a
semicolon or an enum tag without the list of enum
constants.

Recovery: Add a variable name to the data type or
provide the list of enum constants to complete the
declaration.

EDC0043 30 A type must be specified in the
declaration of the object &1.

Explanation: A declaration must always specify the
type of the object declared or the return type of the
function declared. A missing type (an object name
followed by a semicolon) does not default to int.

Recovery: Declare the object or function with a type.

EDC0044 30 An incomplete struct or union tag
cannot be used in a declaration.

Explanation: Only pointer declarations can include
incomplete types. A struct or union tag is undefined if
the list describing the name and type of its members
has not been specified.

Recovery: Define the tag before it is used in the
declaration of an identifier or complete the declaration.

EDC0045 30 The enum constants must be specified
when the enum tag is declared.

Explanation: When an enumeration tag is declared,
the list of the enumeration constants must be included
in the declaration.

Recovery: Add the list of enumeration constants in the
enum tag declaration.

EDC0047 30 External objects cannot be initialized in
a block.

Explanation: A variable has been declared at block
scope with storage class extern, and has been given an
explicit initializer. This is not permitted.

Recovery: Initialize the external object in the external
declaration.

EDC0048 10 The function &1 is not defined but has
#pragma &2 directive specified.

Explanation: The pragma inline and noinline directives
are valid only for functions defined within the current
compilation unit.

Recovery: Define the function.

EDC0049 10 The pragma &1 directive has already
been specified for function &2.

Explanation: Only one of pragma inline and pragma
noinline can be specified for a single function. The
second pragma specified will be ignored.

Recovery: Remove one of the conflicting pragmas.

EDC0050 10 A C reserved word cannot appear in a
#pragma directive.

Explanation: A reserved word, such as int or break,
has been used in a #pragma directive. This can cause
unexpected results, so it is not permitted.

Recovery: Replace the reserved word by the name of
a function or variable.

EDC0060 30 Width of bit-field &1 must be less than
or equal to 32 bits.

Explanation: The bit-field width must not exceed the
maximum bit size of the bit-field type.

Recovery: Define the bit-field width to be less than or
equal to 32 bits.

EDC0061 30 Bit-field &1 must have type signed int
or unsigned int.

Recovery: Define the bit-field with a type signed int or
unsigned int.

EDC0062 30 A bit-field with a zero width must be
unnamed.

Explanation: A named bit-field must have a positive
width; a zero width bit-field is used for alignment only,
and must not be named.

Recovery: Redefine the bit-field with a width greater
than zero or remove the name of the bit-field.

66 C/VSE V1R1 User's Guide

 EDC0063 � EDC0100

EDC0063 30 Width of bit-field &1 must be a constant
expression.

Recovery: Replace the expression that specifies the
width of the bit-field with a constant expression.

EDC0064 30 Width of bit-field &1 must be positive.

Recovery: Replace the constant expression that
specifies the width of the bit-field with a positive value.

EDC0065 30 Width of bit-field &1 must be a constant
integral expression.

Recovery: Replace the constant expression that
specifies the width of the bit-field with a constant
integral expression.

EDC0067 30 A struct or union member cannot be
declared with a storage class.

Explanation: A storage class specifier was found in
the declaration of a struct or union member. Members
automatically take on the same storage class as their
parent structure or union.

Recovery: Remove the storage class specifier from
the member of the struct or union.

EDC0068 30 The &1 definition must specify a
member list.

Explanation: The declaration of a struct or a union
that includes an empty member list enclosed between
braces is not a valid struct or union definition.

Recovery: Specify the members of the struct or union
in the definition or remove the empty braces to make it
a simple struct or union tag declaration.

EDC0069 30 A member declaration must specify a
name.

Explanation: A struct or union member declaration
must specify a name. A type cannot be followed by a
semicolon.

Recovery: Declare the member with a name.

EDC0080 30 An object cannot be cast to a struct,
union or function type.

Explanation: An attempt was made to cast an
operand to a struct, union, or function type.

Recovery: Use pointers instead of struct, union or
function objects. Cast the pointer operand to a pointer
to the struct, union, or function type.

EDC0081 30 A struct or union cannot be cast to
another data type.

Recovery: Use a pointer to the struct or union as the
operand.

EDC0082 30 The data conversion is not valid.

Explanation: The statement contains an expression
that converts data to a type that is not valid. See the
LE/VSE C Run-Time Library Reference for the table of
correct data conversions.

Recovery: Check the type declaration of the indicated
operand and the type of the conversion. Ensure the
conversion is correct.

EDC0083 30 Only casts to arithmetic types are
allowed in an arithmetic constant
expression.

Explanation: In an arithmetic constant expression,
casts must be to arithmetic types. Valid arithmetic
types include: char, signed and unsigned int, enum,
float, double, and long double.

Recovery: Remove the cast operator or change the
cast to an arithmetic one.

EDC0084 30 The subscript must be a constant
integral expression.

Recovery: Replace the expression that specifies the
array subscript by a constant integral expression.

EDC0097 30 Pointers to void and pointers to
function are not assignment compatible.

Recovery: Ensure that your function declarations are
correct.

EDC0098 30 Pointers to void and pointers to
function cannot be compared.

Recovery: Check the logic of the comparison.

EDC0099 30 A pointer to an incomplete type cannot
be subscripted.

Recovery: Define the type before you reference it.

EDC0100 30 Operand of bitwise complement must
have integral type.

Explanation: The operand of the bitwise complement
operator does not have an integral type. Valid integral
types include: signed and unsigned char; signed and
unsigned short, long, and int; and enum.

Recovery: Change the type of the operand, or use a
different operand.

 Appendix A. C/VSE Return Codes and Messages 67

 EDC0101 � EDC0112

EDC0101 30 Operand of unary minus operator must
have arithmetic type.

Explanation: The operand of the unary minus
operator (-) does not have an arithmetic type. Valid
arithmetic types include: signed and unsigned char;
signed and unsigned short, long, and int; enum, float,
double, and long double.

Recovery: Change the type of the operand, or use a
different operand.

EDC0102 30 Operand of logical negation must have
scalar type.

Explanation: The operand of the logical negation
operator (!) does not have a scalar type. Valid scalar
types include: signed and unsigned char; signed and
unsigned short, long, and int; enum, float, double, long
double, and pointers.

Recovery: Change the type of the operand, or use a
different operand.

EDC0103 10 The size of this type is zero.

Explanation: The sizeof operator cannot be used on a
void type. If it is, the compiler returns zero for the size
of the expression.

Recovery: Ensure that sizeof() is used on a valid type.

EDC0104 30 Only pointers to compatible types can
be subtracted.

Explanation: The expression must contain pointers to
compatible data types. See the C/VSE Language
Reference for the rules on compatible types.

Recovery: Ensure that the pointers point to compatible
data types.

EDC0105 30 Operand of address operator must be a
function or an lvalue.

Explanation: The operand of the address operator
(unary &) is not valid. The operand must be either a
function designator or an lvalue that designates an
object that is not a bit-field and is not declared with
register storage class.

Recovery: Change the operand.

EDC0106 30 The sizeof operator cannot be used
with a function, void or bit-field.

Explanation: The operand of the sizeof operator is not
valid. The sizeof operator cannot be applied to an
expression that has a function type or an incomplete
type, to the parenthesized name of such a type, or to
an lvalue that designates a bit-field object.

Recovery: Change the operand.

EDC0107 30 Operand of indirection operator must
be a pointer.

Explanation: The operand of the indirection operator
(unary *) is not a pointer.

Recovery: Change the operand.

EDC0108 30 Operand of arrow operator must be a
pointer to a struct or union.

Explanation: The left hand operand of the arrow
operator (->) must have type "pointer to structure" or
"pointer to union".

Recovery: Change the operand.

EDC0109 30 The subscript must be an integral
expression.

Explanation: The subscript expression must have
integral type. Valid integral types include: char, signed
and unsigned int, and enum.

Recovery: Change the subscript expression to have
an integral type.

EDC0110 30 Operand of dot operator must be a
struct or a union.

Explanation: The left hand operand of the dot (.)
operator is not of type struct or union.

Recovery: Change the operand.

EDC0111 30 Identifier &1 must be a member of the
struct or union.

Explanation: The specified member does not belong
to the structure or union given. One of the following
has occurred:

� The right hand operand of the dot (.) operator is not
a member of the structure or union specified on the
left hand side of the operator

� The right hand operand of the arrow (->) operator is
not a member of the structure or union pointed to
by the pointer on the left hand side of the operator

Recovery: Change the identifier.

EDC0112 30 The expression must be a function
designator.

Explanation: The expression is followed by an
argument list but does not evaluate to a function
designator.

Recovery: Change the expression to be a function or
a pointer to a function.

68 C/VSE V1R1 User's Guide

 EDC0113 � EDC0125

EDC0113 30 Operand must have integral type.

Explanation: The operand of the bitwise operators or
modulus (%) operator must have integral type. Valid
integral types include: char, signed and unsigned int,
and enum.

Recovery: Change the operand.

EDC0114 30 Operand must be a modifiable lvalue.

Explanation: See the C/VSE Language Reference for
a description of lvalue.

Recovery: Change the operand.

EDC0115 30 A struct or union can be assigned only
to a compatible type.

Explanation: Two structures have compatible types if
both have been declared with the same structure tag.
Two unions have compatible types if both have been
declared with the same union tag. However, tags are
scope sensitive. Even if two tag names and their
member lists are identical, if their definitions are located
in different scopes, the types associated with these tags
are different.

Recovery: Ensure that the structures or unions used
in the assignment have been declared with the same
tag in the same scope.

EDC0116 30 Identifier &1 cannot be redeclared as
an enum tag.

Explanation: In the declaration, the object is declared
to be an enum tag. The object was previously declared
to the tag of a struct or union type.

Recovery: Change the name of the tag.

EDC0117 30 The operation between these types is
not valid.

Explanation: The identifiers on the left hand side and
the right hand side of the operator have types that do
not conform to the restrictions of the operator. The
operation specified in the expression cannot be
performed. See the C/VSE Language Reference for the
list of operator restrictions.

Recovery: Change the operands.

EDC0118 30 The divisor for the modulus or division
operator cannot be zero.

Explanation: The value of the divisor expression
cannot be zero.

Recovery: Change the expression used as the divisor.

EDC0119 30 The void pointer must be cast prior to
this operation.

Explanation: A void pointer must be cast to a data
type before it is used in this operation.

Recovery: Cast the pointer to a type other than void
prior to this operation.

EDC0120 30 Operand of unary plus operator must
have arithmetic type.

Explanation: The operand of the unary plus operator
(+) does not have an arithmetic type. Valid arithmetic
types include: signed and unsigned char; signed and
unsigned short, long, and int; enum, float, double, and
long double.

Recovery: Change the operand.

EDC0121 30 Operand must have scalar type.

Explanation: The operand for this operation does not
have scalar type. Valid scalar types include: signed
and unsigned char; signed and unsigned short, long,
and int; enum, float, double, long double, and pointers.

Recovery: Change the type of the operand, or use a
different operand.

EDC0122 30 Operand must have arithmetic type.

Explanation: The operand of this operation does not
have arithmetic type. Valid arithmetic types include:
signed and unsigned char; signed and unsigned short,
long, and int; enum, float, double, and long double.

Recovery: Change the operand.

EDC0123 30 If one operand is void, the other must
be void.

Explanation: If one operand in the conditional
expression has type void, the other operand must also
have type void.

Recovery: Make the operands compatible.

EDC0125 30 Operands of the conditional operator
must have compatible types.

Explanation: If one operand of the conditional
expression has type struct or union, the other operand
must be a struct or union declared using the same tag
in the same scope.

Two structures have compatible types if both have been
declared with the same structure tag. Two unions have
compatible types if both have been declared with the
same union tag. However, tags are scope sensitive.
Even if two tag names and their member lists are
identical, if their definitions are located in different
scopes, the types associated with these tags are
different.

 Appendix A. C/VSE Return Codes and Messages 69

 EDC0126 � EDC0140

Recovery: Ensure that the structures or unions used
in the conditional expression have been
declared/defined with the same tag (in the same scope).

EDC0126 30 If one operand is a pointer, the other
must also be a pointer.

Explanation: If one of the result operands of a
conditional expression is a pointer, the other result
operand must be either a pointer to the same qualified
or unqualified type, a NULL pointer, or a pointer to void.

Recovery: Change the operands.

EDC0127 30 If the operands are pointers, they must
point to compatible types.

Explanation: If one operand of either the relational or
the equality operator is a pointer, the other operand
must be either a pointer to the same qualified or
unqualified type, a NULL pointer, or a pointer to void.

Recovery: Change the operands.

EDC0128 30 Two pointers cannot be added.

Explanation: The addition operator requires that either
both operands have arithmetic type or, if one of the
operands is a pointer, the other one must have integral
type. Valid integral types include: char, signed and
unsigned int, and enum. Valid arithmetic types include:
the integral types plus float, double, long double, and bit
fields.

Recovery: Change the operands.

EDC0130 30 The operation cannot be performed on
an incomplete struct or union.

Explanation: The definition of the operand must be
completed prior to this operation. A structure or union
type is completed when the definition of its tag is
specified. A struct or union tag is defined when the list
describing the name and type of its members is
specified.

Recovery: Define the tag before using it in an
expression.

EDC0131 30 Subtraction between void pointers is
not allowed.

Recovery: Cast the pointers to a type other than void
or do not subtract them.

EDC0132 30 A pointer to void cannot be
subscripted.

Explanation: The subscript operator requires a pointer
to a valid address.

Recovery: Cast the pointer to a type other than void
before using it with the subscript operator.

EDC0133 30 An identifier cannot be declared in a
cast or sizeof expression.

Explanation: Only abstract declarators can appear in
cast or sizeof expressions.

Recovery: Remove the identifier from the cast or
sizeof expression and replace it with an abstract
declarator.

EDC0136 30 The sizeof operator cannot be used
with arrays of unknown size.

Recovery: Ensure the array and its size have been
declared before using it with the sizeof operator.

EDC0137 30 The indirection operator cannot be
applied to a pointer to an incomplete
struct or union.

Explanation: Except for pointers, it is not valid to
declare an object of incomplete structure or union type.
A structure or union is incomplete when the definition of
its tag has not been specified. A struct or union tag is
undefined when the list describing the name and type of
its members has not been specified.

Recovery: Define the tag before using it in the
declaration of an identifier.

EDC0138 30 The indirection operator cannot be
applied to a void pointer.

Explanation: The indirection operator requires a
pointer to a valid address.

Recovery: Cast the pointer to a type other than void
before using it with the indirection operator.

EDC0139 10 A translation unit must contain at least
one external declaration.

Explanation: A translation unit that does not contain
any external declaration will not be linked to. Normally
it will not affect the execution of the executable
program.

Recovery: Ensure this is what was intended or
change the appropriate declarations to the external
ones.

EDC0140 00 Operand has type &1.

Explanation: An error has occurred due to conflicting
operands. This message states the type of the operand
used in the expression.

Recovery: No recovery is necessary if this result was
intended. Change the type of the operand if necessary.

70 C/VSE V1R1 User's Guide

 EDC0141 � EDC0158

EDC0141 00 Prototype has type &1.

Explanation: An error has occurred due to conflicting
function declarations. This message states the type of
the prototype declaration.

Recovery: No recovery is necessary if this result was
intended. Change the type of the prototype if
necessary.

EDC0142 00 Previous declaration has type &1.

Explanation: An error has occurred due to conflicting
identifier declarations. This message states the type of
the identifier in the current declaration.

Recovery: No recovery is necessary if this result was
intended. Change the declarations to the same type if
necessary.

EDC0143 30 The pre- and post- increment and
decrement operators cannot be applied to
void pointers.

Explanation: Pointers to void cannot be incremented
or decremented.

Recovery: Cast the pointer to a type other than void
before using it with any of the increment or decrement
operators.

EDC0145 00 Redeclaration has type &1.

Explanation: An error has occurred because of
conflicting declarations. This message states the type
of the identifier in the redeclarations.

Recovery: No recovery is necessary if this result was
intended. Change the types in the declarations to be
compatible, if necessary.

EDC0146 00 Function has return type &1.

Recovery: No recovery is necessary if this result was
intended. Change the return type if necessary.

EDC0147 00 Argument has type &1.

Explanation: The argument type in the function call
conflicts with the parameter in the function prototype.
This message states the type of the argument.

Recovery: No recovery is necessary if this result was
intended. Change the argument types to be
compatible, if necessary.

EDC0148 00 Expression has type &1.

Recovery: Informational message. No recovery is
necessary if this result was intended.

EDC0149 30 Operation not allowed with enum that
is not defined.

Explanation: The sizeof or cast operator cannot be
used with an enum that is not defined.

Recovery: Define the enum.

EDC0150 30 The number of initializers cannot be
greater than the number of elements.

Explanation: Too many initializers were found in the
initializer list for the indicated declaration.

Recovery: Check the number of initializers. Check
the closing brace at the end of the initializer list to
ensure that it has been positioned correctly.

EDC0151 30 The initializer must be a constant
expression.

Explanation: The initializers for identifiers of static
storage duration, or for identifiers of an array, structure,
or union type must be constant expressions.

Recovery: Remove the initialization or change the
indicated initializer to a constant expression.

EDC0152 30 A register array may only be used as
the operand to sizeof.

Explanation: The only operator that may be applied to
a register array is sizeof.

Recovery: Remove the register keyword from the
declaration.

EDC0153 30 An initializer for a static identifier
cannot have the automatic storage class.

Explanation: The initializer cannot have an automatic
storage class if the identifier being initialized has a
static storage class.

Recovery: Either change the storage class in the
identifier declaration or change the initializer.

EDC0158 00 After widening, previous declaration
has type &1.

Explanation: An error has occurred due to conflicting
identifier declarations. This message states the type of
the identifier in the current declaration, after the
identifier's type has been widened.

Recovery: No recovery is necessary if this result was
intended. Change the declarations to the same type if
necessary.

 Appendix A. C/VSE Return Codes and Messages 71

 EDC0159 � EDC0178

EDC0159 00 After widening, redeclaration has type
&1.

Explanation: An error has occurred because of
conflicting declarations. This message states the type
of the identifier in the redeclarations, after the identifier's
type has been widened

Recovery: No recovery is necessary if this result was
intended. Change the types in the declarations to be
compatible, if necessary.

EDC0166 30 A non-lvalue array cannot be
subscripted.

Explanation: Subscript operator cannot be used with
a non-lvalue array.

Recovery: Change the array to an lvalue one.

EDC0167 30 A non-lvalue array cannot be used in
this context.

Explanation: The location of a non-lvalue array may
not be referenced.

Recovery: Change the array to an lvalue one.

EDC0168 30 Operation not valid on a function
pointer.

Explanation: Subscript operator, additive operator,
and prefix and postfix increment and decrement
operators cannot be used with an operand of type
pointer to function.

Recovery: Change the operator or the operand.

EDC0170 30 A function cannot be initialized.

Explanation: An attempt was made to assign an initial
value to a function identifier.

Recovery: Remove the assignment operator and the
initializer.

EDC0171 30 A function cannot return a function.

Explanation: A function cannot have a return type of
function.

Recovery: Return a pointer to the function or specify a
different return type.

EDC0172 30 Function &1 cannot have a storage
class of auto or register.

Recovery: Remove the storage class specifier for the
function identifier, or change it to either extern or static.

EDC0173 30 A function cannot be a member of a
struct or union.

Recovery: Use a pointer to the function or remove the
function from the member list.

EDC0174 30 A function cannot be an element of an
array.

Recovery: Use a pointer to the function, or change the
type of the element.

EDC0175 30 A function cannot return a &1 qualified
type.

Explanation: The const or volatile qualifier cannot be
used to qualify a function's return type.

Recovery: Remove the qualifier or return a pointer to
the qualified type.

EDC0176 30 Return type must be compatible with
the declaration of function &1.

Explanation: The return statement of the function tries
to return a structure or a union type that is not
compatible with the return type specified in the function
declaration/definition. The type of a structure or union
is represented by its tag.

Two structures have compatible types if both have been
declared with the same structure tag. Two unions have
compatible types if both have been declared with the
same union tag. However, tags are scope sensitive.
Even if two tag names and their member lists are
identical, if their definitions are located in different
scopes, the types associated with these tags are
different.

Recovery: Ensure that the same tag (in the same
scope) is used in the function declaration/definition, as
well as in the declaration/definition of the value
specified on the return statement,

EDC0177 30 A function declared to return void
cannot return a value.

Explanation: When a function is declared to have a
void return type, the return statement of the function
cannot return any value. An attempt was made to
return a value in a function that was declared/defined
with a void return type.

Recovery: Change the declaration to specify the
return type or do not return a value.

EDC0178 30 A function cannot return an array.

Recovery: Return a pointer to the array or specify a
different return type.

72 C/VSE V1R1 User's Guide

 EDC0179 � EDC0192

EDC0179 30 The function &1 cannot be redefined.

Explanation: It is not valid to define a function more
than once. Do not confuse function definitions and
function declarations. A declaration describes the
return type of the function. A definition is a declaration
followed by the code that is to be executed when the
function is called (the code portion is called the function
body). Only one definition per function is allowed.

Recovery: Remove all extra definitions or change the
name of the function.

EDC0180 30 The static function &1 is referenced but
is not defined in this file.

Explanation: A static function was declared and
referenced in this file. The definition of the function was
not found before the end of the file. When a function is
declared to be static, the function definition must appear
in the same file.

Recovery: Define the function or remove the static
storage class.

EDC0181 30 The struct, union, or enum tag &1
cannot be redefined.

Explanation: A struct or union tag is defined when it is
declared with the list describing the name and type of
its members. An enum tag is defined when it is
declared with the list of its enumeration constants. It is
not valid to define a struct, union, or enum tag more
than once in the same scope.

Recovery: Remove all extra definitions or rename the
tag.

EDC0183 30 An argument cannot be an incomplete
struct or union.

Explanation: The argument has an incomplete struct
or union type. A structure or union is incomplete when
the definition of the tag (that is, when the number and
the type of its members) has not been specified. It is
not valid to pass arguments of incomplete type to a
function.

Recovery: Use a pointer to the incomplete type or
define the type before using it.

EDC0184 30 An argument cannot have type void.

Explanation: The indicated parameter has type void.
A parameter of type void cannot be passed on a
function call.

Recovery: Use a pointer to void or cast the type of the
argument.

EDC0185 10 Function &1 has not been prototyped
prior to use.

Explanation: A prototype declaration of the function
specifying the number and type of the parameters was
not found before the function was used. Errors may
occur if the function call does not respect the function
definition.

Recovery: Include a prototype declaration of the
function before calling it.

EDC0187 30 The declaration or definition of the
function is not valid.

Explanation: The compiler cannot read the
declaration. It assumes that the function declaration
was not valid. The return type or the parameters may
have been specified incorrectly.

Recovery: Check for incorrect spelling or missing
parentheses.

EDC0188 30 The return type is not valid for a
function of this linkage type.

Recovery: Use a valid return type.

EDC0189 30 The return type of the function main
must have type int.

Recovery: Change the return type of function main to
int.

EDC0190 30 A switch expression must have integral
type.

Explanation: The controlling expression in a switch
statement must have integral type. Valid integral types
include: char, signed and unsigned int, and enum.

Recovery: Change the expression.

EDC0191 30 A case label must be a constant
integral expression.

Explanation: The expression in the case statement
must be a constant integral expression. Valid integral
expressions are: char, signed and unsigned int, and
enum.

Recovery: Change the expression.

EDC0192 30 The case label cannot be a duplicate of
the case label on line &1.

Explanation: Two case labels in the same switch
statement cannot evaluate to the same integer value.

Recovery: Change one of the labels.

 Appendix A. C/VSE Return Codes and Messages 73

 EDC0193 � EDC0226

EDC0193 30 A default case label cannot be placed
outside a switch statement.

Recovery: Remove the default case label, or place it
inside a switch statement. Check for misplaced braces
on a previous switch statement.

EDC0194 30 A switch statement cannot contain
more than one default statement.

Recovery: Remove one of the default statements.

EDC0195 30 A case statement cannot be placed
outside a switch statement.

Recovery: Remove the case statement, or place it
within a switch statement group. Check for misplaced
braces on the previous switch statement.

EDC0196 00 The case label evaluates to integer
value &1.

Explanation: An error occurred due to conflicting case
labels. This message states the value of the case
labels.

Recovery: Change the case label if necessary.

EDC0198 30 If the operands are pointers they must
point to compatible objects or incomplete
types.

Explanation: If both operands of a relational operator
are pointers, they must point to qualified or unqualified
versions of compatible object or incomplete types.
Pointers to functions are not allowed.

Recovery: Change the operands.

EDC0200 30 A break statement cannot be placed
outside a while, do, for, or switch
statement.

Recovery: Remove the break statement or place it
inside a while, do, for or switch statement. Check for
misplaced braces on a previous statement.

EDC0201 30 A continue statement cannot be placed
outside a while, do, or for loop.

Recovery: Remove the continue statement or place it
inside a while, do or for loop. Check for misplaced
braces on a previous loop.

EDC0220 30 Only arrays and pointers to object
types can be subscripted.

Explanation: An attempt was made to subscript an
identifier that was not an array or a pointer to an object
type.

Recovery: Remove the subscripts or change the
identifier.

EDC0221 30 Array size must be a positive constant
integral expression.

Explanation: The array size declared is not valid. If
compilation continues, the compiler will assume that the
array has size 1.

Recovery: Make the array size a positive constant
integral expression.

EDC0222 30 Arrays cannot be redeclared with a
different size.

Recovery: Make the size consistent with the previous
declaration or remove one of the array declarations.

EDC0223 30 All array dimensions except the first
must be specified.

Explanation: Only the first dimension of an initialized
array may be unspecified. All the other dimensions
must be specified on the declaration.

Recovery: Specify all the other dimensions in the
array declaration.

EDC0224 30 All dimensions must be specified for
array definitions.

Explanation: All the dimensions of arrays of automatic
or static storage class must be specified on the
declaration. If the declaration of the automatic or static
array provides an initialization, the first dimension may
be unspecified because the initialization will determine
the size needed.

Recovery: Specify all of the dimensions in the array
declaration.

EDC0225 30 Arrays that are members must have all
dimensions specified.

Explanation: Arrays that are struct or union members
must have all dimensions specified in the array
declaration.

Recovery: Specify all of the dimensions in the array
declaration.

EDC0226 30 The parameter lists of the function
pointers are not compatible.

Explanation: In assignment or initialization of function
pointers, the parameter lists of the function pointers
must have compatible type.

Recovery: Ensure that the parameter lists of the
function pointers are compatible.

74 C/VSE V1R1 User's Guide

 EDC0227 � EDC0252

EDC0227 30 The return types of the function
pointers are not compatible.

Explanation: In assignment or initialization of function
pointers, the return types of the function pointers must
have compatible type.

Recovery: Ensure that the return types of the function
pointers are compatible.

EDC0228 30 The linkage types of the function
pointers are not compatible.

Explanation: In assignment or initialization of function
pointers, the linkage types of the function pointers must
be compatible.

Recovery: Ensure that the linkage types of the
function pointers are compatible.

EDC0240 10 Escape sequence is out of range for
character representation.

Explanation: Character constants specified in an
escape sequence exceeded the decimal value of 255,
or the octal equivalent of 377, or the hexadecimal
equivalent of FF.

Recovery: Change the escape sequence so that the
value does not exceed the maximum value.

EDC0242 40 Nesting cannot exceed the maximum
limit &1.

Explanation: The internal compiler limit of &1 nested
#include files was exceeded.

Recovery: Remove the nesting by putting all of the
#include files at the same level, or reduce the number
of nesting levels.

EDC0244 10 External name &1 has been truncated
to &2.

Explanation: The external object has a name &1
which exceeds the limit and has been truncated to the
name &2.

Recovery: Change the name if necessary.

EDC0246 30 Floating point constant is out of range.

Explanation: The compiler detected a floating-point
overflow either in scanning a floating-point constant, or
in performing constant arithmetic folding.

Recovery: Change the floating-point constant so that it
does not exceed the maximum value.

EDC0247 40 Virtual storage exceeded.

Explanation: The compiler ran out of memory trying to
compile the file. This sometimes happens with large
files or programs with large functions. Note that very
large programs limit the amount of optimization that can
be done.

Recovery: Shut down any large processes that are
running, ensure your swap path is large enough, turn off
optimization, and redefine your virtual storage to a
larger size. You can also divide the file into several
small sections or shorten the function.

EDC0248 30 External name &1 cannot be redefined.

Explanation: C/VSE will generate this message if you
have used an external identifier in both uppercase and
lowercase, such as,

extern FUNC(); extern func() {}

Because the linker on System/370 does not distinguish
between upper and lowercase characters, these two
declarations will be mapped to the same name, but C
recognizes these two identifiers as different identifiers.
If you intended the upper and lowercase external
identifiers to map to the same identifier, use the
#pragma map directive. For example,

#pragma map(FUNC, "func")

Recovery: Remove one of the definitions or change
one of the names.

EDC0250 10 The maximum number of errors for one
line has been exceeded.

Explanation: The compiler is unable to specify the
location of each error in the listing because there are
too many errors on one line.

Recovery: Correct the errors or split the source line
into multiple lines.

EDC0251 30 The physical size of an array is too
large.

Explanation: The compiler cannot handle any size
which is too large to be represented internally.

Recovery: Reduce the size of the array.

EDC0252 30 The physical size of a struct or union is
too large.

Explanation: The compiler cannot handle any size
which is too large to be represented internally.

Recovery: Reduce the sizes of the struct or union
members.

 Appendix A. C/VSE Return Codes and Messages 75

 EDC0260 � EDC0282

EDC0260 30 Declaration cannot specify multiple
sign type specifiers.

Explanation: A declaration can specify a signed or
unsigned type, but not both.

Recovery: Keep only one sign type specifier.

EDC0261 30 Declaration cannot specify multiple
length type specifiers.

Explanation: A declaration can specify a long or short
type, but not both.

Recovery: Keep only one length type specifier.

EDC0262 30 Declaration cannot specify multiple
type specifiers.

Explanation: A declaration can specify only one data
type specifier. Valid specifiers include: char, int, float,
and double.

Recovery: Keep only one type specifier.

EDC0265 30 Declaration cannot specify multiple
storage class specifiers.

Explanation: A declaration can specify only one
storage class. Valid storage classes include: auto,
static, extern, register, and typedef.

Recovery: Use only one storage class specifier.

EDC0266 30 The &1 type specifier cannot be used
with float or double.

Explanation: The type specifiers signed, unsigned and
short cannot be used with type float or double.

Recovery: Ensure that the appropriate type is used,
and remove the incorrect type specifier from the
declaration. Use type long double if a larger identifier is
required.

EDC0268 30 The long type specifier cannot be used
with float.

Recovery: Remove the long type specifier or use
double instead of float.

EDC0269 30 The long or short type specifier cannot
be used with char.

Recovery: Remove the length type specifier. Use
type int or short int if a larger identifier is required.

EDC0270 30 The &1 type specifier cannot be used
with void.

Explanation: No other type specifier can be used with
type void.

Recovery: Remove the type specifier or the void.

EDC0272 30 The &1 type specifier cannot be used
with struct, union, or enum.

Explanation: No other type specifiers can be used
with struct, union or enum.

Recovery: Remove the type specifier.

EDC0274 30 The &1 type specifier cannot be used
for variables declared with a typedef.

Explanation: No other type specifiers can be used for
variables declared with a typedef.

Recovery: Remove the type specifier or the typedef.

EDC0277 30 _Packed can only qualify a struct or
union.

Recovery: Remove the _Packed specifier from the
declaration/definition, or ensure it qualifies a struct or
union.

EDC0278 30 Declaration cannot specify multiple &1
specifiers.

Recovery: Ensure that only one &1 specifier is used.

EDC0280 30 The predefined macro &1 cannot be
redefined.

Explanation: The macro &1 is predefined. Predefined
macros cannot be redefined.

Recovery: Remove the redefine statement.

EDC0281 30 The identifier &1 cannot be redeclared.

Explanation: Only external objects can be redeclared.

Recovery: Delete or change the name of the extra
declaration.

EDC0282 30 The struct member &1 cannot be
redeclared.

Explanation: The same struct member cannot be
redeclared. To redeclare the structure itself, the same
tag must be used.

Recovery: Delete or change the name of the extra
declaration.

76 C/VSE V1R1 User's Guide

 EDC0283 � EDC0294

EDC0283 30 The tag &1 cannot be redefined as a
tag of another type.

Explanation: The tag is already associated with
another struct, union, or enum type.

Recovery: Delete or rename the tag.

EDC0284 30 The label &1 cannot be redefined.

Explanation: The label has already been defined in
the function (a label of the same name followed by a
colon and a section of code already appeared in the
same function). It is not valid to redefine a label.

Recovery: Change the name of one label.

EDC0285 30 #undef cannot be used with the
predefined macro &1.

Explanation: Predefined macros cannot be undefined.

Recovery: Delete the #undef directive.

EDC0286 30 The redeclaration cannot specify a
different storage class.

Explanation: The redeclaration, including type
qualifiers (const, volatile), must be identical to the first
declaration.

Redeclaring basic types: The type (which includes the
type specifiers and the length and sign adjectives) and
the type qualifiers (const, volatile) must be the same.

Redeclaring functions: The return type with its type
qualifiers has to be the same. If the function has been
prototyped, the prototyped redeclarations must have an
identical parameter list (the number and type of the
parameters must be the same).

Redeclaring pointers: They have to point at the same
type (including the type qualifiers).

Redeclaring arrays: Their members must be of the
same type (including the type qualifiers). The array size
must be the same.

Redeclaring enumerations, structures, and unions:
They must have the same tag.

Recovery: Ensure that the storage class of the
subsequent declarations matches the original
declaration or remove one of the declarations.

EDC0287 30 The goto label is not defined in
function &1.

Explanation: The goto label is referenced but not
defined in the function. The label definition (label
followed by a colon and a section of code) must appear
in the same function that references the label.

Recovery: Define the goto label in the function or
remove the reference.

EDC0288 30 The void type can only be used with
functions and pointers.

Explanation: The type void can only be used as the
return type or parameter list of a function, or with a
pointer indicating the type to which it is pointed. No
other object can be of type void.

Recovery: Ensure that the declaration uses type void
correctly.

EDC0289 30 The typedef name &1 cannot be
redefined.

Explanation: Redefinitions of typedef names are not
allowed even if the definitions occur at file scope with
identical type specifiers.

Recovery: Remove identical definitions or, for a new
definition, rename the typedef.

EDC0291 30 The &1 storage class cannot be used
with external identifier &2.

Explanation: Identifiers may only be declared with
auto or register storage class if they are declared inside
a block.

Recovery: Remove the storage class specifier or
change the scope of the identifier so that it is no longer
at file scope.

EDC0292 30 The block scope declaration of object
&1 must be compatible with its external
declaration.

Explanation: This block scope redeclaration of the
external object is incompatible with the previous
external declaration.

Recovery: Ensure that the block scope declaration is
identical with the file scope declaration, or remove one
of the declarations.

EDC0293 30 The static storage class cannot be
used with functions declared at block
scope.

Recovery: Place the declaration of the static function
at file scope, or remove the storage class specifier.

EDC0294 30 The typedef storage class cannot be
used on function definitions.

Explanation: The typedef storage class can only be
used with function declarations to declare a function
type. A typedef name cannot carry the information of a
function definition; it cannot specify the part of code to
be executed when a function is called.

Recovery: Remove the typedef storage class.

 Appendix A. C/VSE Return Codes and Messages 77

 EDC0295 � EDC0321

EDC0295 30 The external name &1 must not conflict
with the name in #pragma &2.

Explanation: The name specified in the #pragma
directive is an external name that must not conflict with
any other visible external names.

Recovery: Specify a different name in the external
name or in the #pragma directive.

EDC0296 30 The external name &1 in #pragma &2
must not conflict with the name in
#pragma &3.

Explanation: The name specified in the #pragma
directive is an external name that must not conflict with
any other visible external names.

Recovery: Specify a different name for one of the
external names.

EDC0297 30 Only functions or typedefs of functions
can be specified on #pragma linkage
directive.

Explanation: The parameter specified on the #pragma
linkage directive is not a function or typedef of a
function.

Recovery: Change the name specified on the
#pragma linkage directive or remove the directive.

EDC0298 30 A #pragma &1 directive was previously
specified for the object &2.

Explanation: More than one #pragma linkage directive
was specified for the same object.

Recovery: Remove the extra #pragma linkage
directives.

EDC0299 30 A map name was previously given to
the object &1.

Explanation: An object can map to only one name.
See the C/VSE Language Reference for more
information on #pragma map.

Recovery: Remove the extra #pragma map directives.

EDC0300 30 The floating point constant is not valid.

Explanation: See the C/VSE Language Reference for
a description of a floating-point constant.

Recovery: Ensure that the floating-point constant does
not contain any characters that are not valid.

EDC0301 30 A const qualified object cannot be
modified.

Explanation: The value of a const cannot be changed.
Increment/decrement can only be performed on objects
that are not constants.

Recovery: Either do not declare the object with the
const type qualifier, or do not use the object in an
increment/decrement operation.

EDC0305 30 The identifier &1 in #pragma
environment must be a function name.

Recovery: Change the identifier to that of a function
name.

EDC0306 10 #pragma linkage &1 ignored for
function &2.

Recovery: Remove the directive.

EDC0308 30 An enum constant must be an integral
constant expression that has a value
representable as an int.

Explanation: If an enum constant is initialized in the
definition of an enum tag, the value that the constant is
initialized to must be an integral expression that has a
value representable as an int.

Recovery: Remove the initial value, or ensure that the
initial value is an integral constant expression that has a
value representable as an int.

EDC0312 10 Value &1 specified in #pragma &2 is
out of range.

Explanation: In #pragma margins and #pragma
sequence, the value specified for the right margin or
sequence column must be greater than or equal to the
value specified for the left margin or sequence column.
The values specified for the left and right margins or
sequence columns must lie in the range 1 to 32767.

Recovery: Change the value specified for the left or
right margin or sequence column.

EDC0321 30 Redeclaration has a different number of
parameters than the previous declaration.

Explanation: The prototyped redeclaration of the
function is not correct. The redeclaration must specify
the same number of parameters as the previous
declaration.

Recovery: Make the redeclaration consistent with the
original declaration.

78 C/VSE V1R1 User's Guide

 EDC0322 � EDC0331

EDC0322 30 Type of the parameter &1 cannot
conflict with previous declaration of
function &2.

Explanation: The type of this parameter is
incompatible with the type of the corresponding
parameter in the previous declaration of the function.

Recovery: Ensure that the subsequent declaration or
function call matches the prototype in both the number
and type of parameters. If the parameter in the
prototype is an incomplete struct or union tag, declare
the incomplete tag at file scope before the function is
prototyped.

EDC0323 30 Redeclaration cannot specify fewer
parameters before ellipsis than the
previous declaration.

Explanation: The prototyped redeclaration of the
function is not correct. Fewer parameters appear
before the ellipsis in this function redeclaration than the
previous declaration.

Recovery: Ensure that the redeclaration is consistent
with the previous declaration.

EDC0324 30 The void type specifier cannot be used
with other type specifiers.

Explanation: When void is used in the parameter list
of a prototyped function declaration, it indicates that the
function does not expect any parameters. Therefore, if
void is used in a prototyped declaration, it must be the
only type descriptor in the parameter list and must not
appear more than once in the list.

Recovery: If the function does not require any
parameters, use void only once in the parameter list. If
the function requires parameters, remove void from the
parameter prototype list.

EDC0325 30 The type of the parameters must be
specified in a prototype.

Explanation: A prototype specifies the number and
the type of the parameters that a function requires. A
prototype that does not specify the type of the
parameters is not correct, for example,

fred(a,b);

Recovery: Specify the type of the parameters in the
function prototype.

EDC0326 30 The only storage class that can be
used with parameters is register.

Recovery: Remove the storage class specified in the
parameter declaration or use the register storage class.

EDC0327 30 Redeclarations and function calls must
be compatible with prototype.

Explanation: The number or the type of the
parameters (or both) on the call does not agree with the
specification given in the function prototype declaration.

Recovery: Make the call consistent with the
declaration.

EDC0328 30 The function call cannot have more
arguments than the prototype specifies.

Explanation: The function call is not valid. There are
more arguments in this function call than there were
parameters specified in the function declaration.

Recovery: Make the call consistent with the
declaration.

EDC0329 30 Object &1 must be specified in the
parameter list for function &2.

Explanation: For function definitions that do not use
the prototype style, a list of parameter names usually
appears between the parentheses following the function
name. A list of declarations that indicates the type of
the parameters follows. In this case, the declaration of
an object that was not listed between the parentheses
was found in the parameter declaration list.

Recovery: Ensure that the declaration list only
specified parameters that appear between the
parentheses of the function.

EDC0330 30 A parameter cannot be declared when
function &1 parentheses are empty.

Explanation: For function definitions that do not use
the prototype style, a list of parameter names usually
appears between parentheses following the function
name. A list of declarations that indicates the type of
the parameters follows. In this case, objects are
declared in the parameter declaration list but no
parameter appeared between the function parentheses.

Recovery: Ensure that the declaration list only
specifies parameters that were listed between the
function parentheses.

EDC0331 30 Parentheses must appear in the
declaration of function &1.

Explanation: The syntax of the declaration is not
correct. The compiler assumes it is the declaration of a
function in which the parentheses surrounding the
parameters are missing.

Recovery: Check the syntax of the declaration.
Ensure the object name and type are properly specified.
Check for incorrect spelling or missing parentheses.

 Appendix A. C/VSE Return Codes and Messages 79

 EDC0333 � EDC0347

EDC0333 30 The parameters in the definition of the
function &1 must be named.

Explanation: For function definitions, all the
parameters in the parameter list must be named. It is
not valid to specify only the parameter's type in a
function definition head.

Recovery: Name the parameters in the parameter list.

EDC0334 30 External identifier &1 cannot be
initialized more than once.

Recovery: Check the previous declarations of the
object. Ensure that only one declaration specifies an
initializer.

EDC0335 30 The declarations of the function &1
must be consistent in their use of the
ellipsis.

Explanation: If an ellipsis is used in a function
declaration, the ellipsis must be present in all the
function redeclarations. If no ellipsis is used in a
function declaration, the following redeclarations cannot
specify an ellipsis. Any redeclaration that does not use
the ellipsis consistently is not correct.

Recovery: Make the redeclaration consistent with the
previous declaration.

EDC0337 30 Declaration list cannot appear when
parameters in parentheses are prototyped.

Explanation: For function definitions that do not use
the prototype style, a list of parameter names usually
appears between parentheses following the function
name. A list of declarations that indicates the type of
parameters follows. In this case, the parameters
between the parentheses are prototyped. These two
styles of declaration cannot be mixed.

Recovery: Remove either the function declaration list
or the type given to the parameters in the function
parentheses.

EDC0338 30 Prototype &1 must contain widened
types if prototype and nonprototype
declarations are mixed.

Explanation: Nonprototype function declarations,
popularly known as K&R prototypes, only specify the
function return type. The function parentheses are
empty; no information about the parameters is given.

Nonprototype function definitions specify a list of
parameter names appearing between the function
parentheses followed by a list of declarations (located
between the parentheses and the opening left brace of
the function) that indicates the type of the parameters.

A nonprototype function definition is also known as a
K&R function definition.

A prototype function declaration or definition specifies
the type and the number of the parameters in the
parameter declaration list that appears inside the
function parenthesis. A prototype function declaration is
better known as an ANSI prototype, and a prototype
function definition is better known as an ANSI function
definition.

When the nonprototype function declarations/definitions
are mixed with prototype declarations, the type of each
prototype parameter must be compatible with the type
that results from the application of the default argument
promotions.

Most types are already compatible with their default
argument promotions. The only ones that are not are
char, short, and float. Their promoted versions are,
respectively, int, int, and double.

This message can occur in several situations. The
most common is when mixing ANSI prototypes with
K&R function definitions. If a function is defined using a
K&R-style header, then its prototype, if present, must
specify widened versions of the parameter types. Here
is an example.

int function(short);
int function(x)

 short x;
 { }

This is not valid because the function has a K&R-style
definition and the prototype does not specify the
widened version of the parameter. To be correct, the
prototype should be

int function(int);

because int is the widened version of short.

Another possible solution is to change the function
definition to use ANSI syntax. This particular example
would be changed to

int function(short);
int function(short x)

 { }

This second solution is preferable, but either solution is
equally valid.

Recovery: Give a promoted type to the parameter in
the prototype function declaration.

EDC0347 30 Syntax error: possible missing &1 or
&2.

Explanation: A syntax error has occurred. This
message lists the tokens that the parser expected and
did not find.

Recovery: Correct the syntax error and compile again.

80 C/VSE V1R1 User's Guide

 EDC0348 � EDC0403

EDC0348 30 Syntax error: possible missing &1.

Explanation: A syntax error has occurred. This
message lists the tokens that the parser expected and
did not find.

Recovery: Correct the syntax error and compile again.

EDC0349 30 Unexpected text &1 ignored.

Explanation: A syntax error has occurred. This
message lists the tokens that were discarded by the
parser when it tried to recover from the syntax error.

Recovery: Correct the syntax error and compile again.

EDC0350 30 Syntax error.

Explanation: See the C/VSE Language Reference for
a complete description of C syntax rules.

Recovery: Correct the syntax error and compile again.

EDC0356 30 A constant expression cannot contain
a comma operator.

Recovery: Modify the constant expression to remove
the comma operator.

EDC0370 30 Operand of offsetof macro must be a
struct or a union.

Explanation: The first operand of the offsetof macro
must be a structure or union type.

Recovery: Change the operand.

EDC0371 30 The dot operator cannot be applied to
an incomplete struct or union.

Explanation: A structure or union is incomplete when
the definition of its tag has not been specified. A struct
or union tag is undefined when the list describing the
name and type of its members has not been specified.

Recovery: Give a definition of the tag before the
operator is applied to the structure.

EDC0372 30 The arrow operator cannot be applied
to an incomplete struct or union.

Explanation: A structure or union is incomplete when
the definition of its tag has not been specified. A struct
or union tag is undefined when the list describing the
name and type of its members has not been specified.

Recovery: Give a definition of the tag before the
operator is applied to the structure.

EDC0396 10 The compiler directive &1 is ignored.

Explanation: The compiler directive is ignored in
certain situations. For example, the #line directive is
ignored when the option EVENTS or TEST is in effect.

Recovery: Ensure that the compiler directives and the
other options settings are consistent.

EDC0397 30 Macro argument list is not complete;
either the arguments are not fully specified
or a &1 is missing.

Recovery: Complete the specification of the macro
argument list.

EDC0398 10 The pragma &1 directive for function
&2 is not valid.

Explanation: The pragma inline and noinline directives
must be issued at file scope in order to take effect.

Recovery: Issue the pragma directive at file scope.

EDC0399 30 A character constant must contain at
least one character.

Recovery: Put at least one character inside the pair of
single quotation marks.

EDC0400 30 String literals must end before the
source line unless the continuation symbol
is used.

Explanation: String literals must end before the end of
the source line. String literals can be constructed which
are longer than one line by using the line continuation
sequence (backslash (\) at the end of the line) or by
using the concatenation of adjacent string literals.

Recovery: Either end the string with a quotation mark
or use the continuation sequence.

EDC0401 30 The character is not valid.

Explanation: A character not in the C source
character set has been encountered.

Recovery: Remove the character. Check the syntax.

EDC0403 10 The #line directive must specify a
string literal or a new-line character.

Explanation: The integer value in the #line directive
must be followed by a string literal or the end of the
line.

Recovery: Correct the #line directive.

 Appendix A. C/VSE Return Codes and Messages 81

 EDC0404 � EDC0420

EDC0404 30 End of file was reached before end of
comment that started on line &1.

Explanation: A comment that was not terminated has
been detected. The beginning of the comment was on
the specified line.

Recovery: End the comment before the file ends.

EDC0405 10 A new-line character is required.

Explanation: A character sequence was encountered
when the preprocessor required a new-line character.

EDC0406 30 Preprocessing token # must be
followed by a parameter.

Explanation: The # preprocessor operator may only
be applied to a macro parameter.

Recovery: Place a parameter after the # token, or
remove the token.

EDC0407 30 The #include directive is not valid.

Explanation: The #include file specifier is missing or
not valid.

Recovery: Check the spelling and syntax of the
#include file path.

EDC0408 30 A #if, #elif, #ifdef or #ifndef block must
end with a #endif.

Recovery: End the conditional preprocessor
statements with a #endif.

EDC0409 30 A macro name on &1 directive is
expected.

Recovery: Ensure that a macro name follows the
#define, #undef, #ifdef, or #ifndef preprocessor
directive.

EDC0410 30 A &1 can only appear within a #if, #elif,
#ifdef or #ifndef block.

Recovery: Delete the #elif or #else statement, or
place it within a conditional preprocessor block. Check
for misplaced braces.

EDC0412 30 A #endif must follow a #if, #elif, #ifdef
or #ifndef block.

Recovery: Delete the #endif statement, or place it
after a conditional preprocessor block.

EDC0413 30 #elif cannot follow #else.

Explanation: The #elif directive may not follow an
#else directive within an #if, #elif, #ifdef, or #ifndef
block.

Recovery: Remove the #elif or the #else.

EDC0414 30 End of file is not expected.

Explanation: The end of the source file has been
encountered prematurely.

Recovery: Check for misplaced braces.

EDC0415 30 Text is too long.

Explanation: The specified token is too long to be
processed. This condition arises when a numeric literal
with many leading zeros or a floating point literal with
many trailing digits in the fraction is coded.

Recovery: Create a shorter token.

EDC0416 30 The integer constant suffix is not valid.

Explanation: The integer constant has a suffix letter
that is not recognized as a valid suffix.

EDC0417 30 Integer constant is out of range.

Explanation: The specified constant is too large to be
represented by an unsigned long int.

Recovery: The constant integer must have a value
less than 4294967296.

EDC0418 10 Escape character &1 is not valid and is
ignored.

Explanation: An escape sequence that is not valid
has been encountered in a string literal or a character
literal. It is replaced by the character following the
backslash (\).

Recovery: Change or remove the escape sequence.

EDC0419 30 A character literal must end before the
end of a line.

Explanation: Character literals must be terminated
before the end of the source line.

Recovery: End the character literal before the end of
the line. Check for misplaced quotation marks.

EDC0420 30 The ## operator cannot appear first or
last in the macro replacement list.

Explanation: The ## operator must be preceded and
followed by valid tokens in the macro replacement list.

82 C/VSE V1R1 User's Guide

 EDC0421 � EDC0435

EDC0421 30 The macro parameter list is incorrect.

Explanation: The macro parameter list must be
empty, contain a single identifier, or contain a list of
identifiers separated by commas.

Recovery: Correct the parameter list.

EDC0422 30 Parameter &1 cannot be redefined in
the macro parameter list.

Explanation: The identifiers in the macro parameter
list must be distinct.

Recovery: Change the identifier name in the
parameter list.

EDC0423 10 Macro name &1 cannot be redefined.

Explanation: A macro may be defined multiple times
only if the definitions are identical except for white
space.

Recovery: Change the macro definition to be identical
to the preceding one, or remove it.

EDC0424 30 The expression on the #if or #elif
directive is not a valid constant
expression.

Recovery: Replace the expression that controls #if or
#elif by a constant integral expression.

EDC0425 30 Argument list must specify same
number of arguments as required by
macro definition.

Explanation: The number of arguments specified on a
macro invocation is different from the number of
arguments required for the macro.

Recovery: Make the number of arguments consistent
with the macro definition.

EDC0426 10 The #error text is too long.

Explanation: The text specified for the #error directive
is too long to be processed. The maximum length
allowed for #error text is 4096 characters.

Recovery: Specify a shorter message.

EDC0427 30 #error &1

Explanation: This is the message issued by the #error
directive.

Recovery: Because this is a user-created message,
the recovery depends on the nature of the error.

EDC0428 30 A preprocessing directive must end
before the end of a line.

Explanation: The end of line has been encountered
while scanning a preprocessing directive.

EDC0429 30 String literal cannot exceed maximum
length of 4096.

Explanation: A string constant of length greater than
4096 characters was encountered.

Recovery: Specify a shorter string literal.

EDC0430 10 The preprocessing directive &1 is not
valid.

Explanation: An unrecognized preprocessing directive
has been encountered.

Recovery: Check the spelling and syntax or remove
the directive that is not valid.

EDC0431 10 The end of a #include file was
encountered before the end of the
comment.

Recovery: End the comment before ending the
#include file. Check for misplaced or missing
punctuation.

EDC0432 10 The end of file was encountered
immediately after a continuation line.

Recovery: Remove the continuation character from
the last line of the file, or add code after the
continuation character.

EDC0433 10 #line value too large.

Recovery: Ensure that the #line value does not
exceed the maximum value (32767) for short integers.

EDC0434 10 &1 value must contain only decimal
digits.

Explanation: A non-numeric character was
encountered in the &1 value.

Recovery: Check the syntax of the value given.

EDC0435 10 A valid wide character must either be
0x4040 or have both bytes between 0x41
and 0xfe, inclusive.

Explanation: The value of a double byte character
was out of range.

Recovery: Change the value accordingly.

 Appendix A. C/VSE Return Codes and Messages 83

 EDC0436 � EDC0451

EDC0436 10 Wide character string is not valid.

Explanation: The value given to the wide character
string is not valid.

EDC0437 30 A character string literal cannot be
concatenated with a wide string literal.

Explanation: A string that has a prefix L cannot be
concatenated with a string that is not prefixed.

Recovery: Check the syntax of the value given.

EDC0438 10 An error was detected in #pragma &1.

Explanation: For a description of the syntax for
#pragma directives, see the C/VSE Language
Reference.

Recovery: Check the syntax of the #pragma directive.
Change the graphics character # to the graphics
character associated with code point '7B'X.

EDC0439 10 Option &1 on #pragma &2 is not
supported.

Explanation: For a list of all valid options for #pragma
directives, see the C/VSE Language Reference.

Recovery: Ensure the #pragma syntax and options
are correct.

EDC0440 10 #pragma &1 must appear before any C
code.

Recovery: Place the #pragma directive before any C
code in the file.

EDC0441 10 #pragma &1 is unrecognized and is
ignored.

Explanation: An unrecognized #pragma directive was
encountered. See the C/VSE Language Reference for
the list of valid #pragmas available.

Recovery: Change or remove the #pragma directive.

EDC0442 10 Option on #pragma &1 is out of range.

Explanation: The specified #pragma option is not
within the range of the valid values. See the C/VSE
Language Reference for more information on the
#pragma directives.

Recovery: Change the option or remove the #pragma
directive.

EDC0443 10 The #pragma &1 must appear before
any C code or directive, except #pragma
filetag.

Recovery: This #pragma must appear before all C
code and directives with the exception of #pragma
filetag, which may precede it.

EDC0444 10 The #pragma &1 must appear only
once and before any C code.

Recovery: Remove all but one of the specified
#pragma directives and place the #pragma directive
before any C code.

EDC0446 10 Only one FETCHABLE function may be
specified.

Explanation: Only one #pragma linkage directive with
option FETCHABLE may be specified in a compilation.

Recovery: Change the linkage specified on the
#pragma linkage of the function so that only one
function in the file has linkage FETCHABLE.

EDC0447 30 A wide character string or constant
must have an even number of bytes.

Recovery: Ensure all wide character constants and
character strings have an even number of bytes.

EDC0448 10 A duplicate #pragma &1 is ignored.

Recovery: Remove the duplicate #pragma.

EDC0449 10 A new-line is not expected before the
end of the preprocessing directive.

Explanation: A new-line was encountered before the
preprocessor directive was complete.

Recovery: Ensure the preprocessor directive ends
before the end of the line.

EDC0450 10 Option &1 ignored because option &2
specified.

Explanation: Specifying the second option indicated
means the first has no effect. For example, the
PPONLY option causes the OPTIMIZE option to be
ignored, since no code will be generated.

Recovery: Remove one of the options.

EDC0451 10 An incomplete option has been
specified.

Explanation: Refer to “Compile-Time Option Defaults”
on page 18 for information on specifying compile-time
options.

Recovery: Complete or remove the option.

84 C/VSE V1R1 User's Guide

 EDC0452 � EDC0468

EDC0452 10 Suboption &2 of &1 is not valid.

Explanation: An incorrect suboption of the specified
compile-time option has been given. See
“Compile-Time Option Defaults” on page 18 for more
information on compile-time options.

Recovery: Change or remove the incorrect suboption.

EDC0453 10 &1 suboptions must be separated by
commas.

Recovery: Use commas to delimit your suboptions.

EDC0454 10 Expecting &1 on &2 option.

Recovery: Use the correct syntax for specifying the
option.

EDC0455 10 Suboption &2 of &1 is out of range.

Explanation: A suboption of the specified
compile-time option is not within the range of valid
values. See “Compile-Time Option Defaults” on
page 18 for more information on compile-time options.

Recovery: Change or remove the suboption.

EDC0456 10 Suboptions &2 and &3 of option &1
conflict.

Explanation: Conflicting suboptions of the indicated
compile-time option have been specified.

Recovery: Remove one of the conflicting suboptions.

EDC0457 10 Simple name &1 must begin with an
alphabetic character on &2.

Recovery: Change the name to start with an
alphabetic character.

EDC0458 10 Simple name &1 on option &3 is too
long.

Recovery: Shorten the name.

EDC0459 10 Data set name &1 on option &3 is too
long.

Recovery: Use an appropriate data set name.

EDC0460 10 Macro name &1 must not begin with a
numeric character on &2 option.

Explanation: Macro names must begin with an
alphabetic character or an underscore.

Recovery: Change the macro name.

EDC0461 30 &1 cannot be defined as a macro on
the &2 option.

Recovery: Remove the macro definition.

EDC0462 10 Macro definition on the &1 option is not
valid.

Recovery: Remove the macro definition or change the
macro name.

EDC0463 10 Option &1 is not valid.

Explanation: An incorrect compile-time option has
been encountered. See “Compile-Time Option
Defaults” on page 18 for valid compile-time options.

Recovery: Change or remove the option.

EDC0464 10 Character constant has more than four
bytes.

Explanation: A character constant can only have up
to four bytes.

Recovery: Change the character constant to contain
four bytes or less.

EDC0465 40 Unable to open the default file for &1
output.

Recovery: Ensure that you have enough storage for
the file.

EDC0466 10 Characters in data set name &1 on &2
option are not valid.

Recovery: Change the data set name to a more
appropriate name.

EDC0467 10 Data set name &1 on &2 option is not
valid.

Recovery: Change the data set name to a more
appropriate name.

EDC0468 10 Macro name &1 on &2 option is already
defined.

Explanation: On the DEFINE option a macro may be
defined multiple times only if the definitions are identical
except for white space.

Recovery: Change the name of the macro.

 Appendix A. C/VSE Return Codes and Messages 85

 EDC0469 � EDC0550

EDC0469 10 Macro name &1 has been truncated to
&2 on the &3 option.

Explanation: The length of the macro name on the
DEFINE option is greater than the maximum allowed.
The name has been truncated.

Recovery: Change the macro name if necessary.

EDC0470 10 Macro name &1 contains characters not
valid on the &2 option.

Explanation: Macro names can contain only
alphanumeric characters and the underscore character.

Recovery: Change the macro name.

EDC0471 10 Unable to open &1 data set &2.

Recovery: Check that the data set exists and that you
have enough disk space.

EDC0474 30 &1 must be specified in the csect
#pragma.

Recovery: Use the appropriate format for the directive.

EDC0475 10 Option &1 ignored because option &2
is not specified.

Explanation: The second option must be specified for
the first to have an effect.

Recovery: Specify the second option, or remove the
first.

EDC0477 10 Missing parameter for option &1.

Explanation: The parameter on this option is required.

Recovery: Specify a valid parameter on this option.

EDC0478 30 &1 is not supported in &2.

Explanation: The option or pragma has specified a
feature which is not supported.

Recovery: Remove this option or pragma.

EDC0485 30 Cannot declare a pointer to a function
with built-in linkage.

Recovery: Remove the #pragma linkage or built-in
keyword from the declaration of the function.

EDC0486 30 Cannot explicitly or implicitly take the
address of a function with built-in linkage.

Explanation: The address of a built-in function cannot
be determined. The compiler does not allow for the
declaration of a pointer to a built-in function.

Recovery: Remove the #pragma linkage or built-in
keyword from the declaration of the function.

EDC0495 10 The name in option &1 is not valid.
The option is reset to &2.

Explanation: The name specified as a suboption of
the option is syntactically or semantically incorrect and
thus can not be used.

Recovery: Make sure that the suboption represents a
valid name. For example, in option
LOCALE(localename), the suboption 'localename' must
be a valid locale name which exists and can be used.
If not, the LOCALE option is reset to NOLOCALE.

EDC0501 40 Unable to open file for compiler
intermediate code.

Explanation: Not able to open intermediate listing file.

EDC0502 40 Unable to open source image file.

Explanation: The source image file (IJSYS07) could
not be opened. The member was not added to the file
because of errors.

Recovery: See previous error messages. Check
DLBL for IJSYS07, correct the errors and try the
request again.

EDC0503 40 Unable to open listing file &1.

Explanation: The source listing file could not be
opened.

EDC0504 30 Unable to find #include file &1.

Explanation: The file specified on the #include
directive could not be found.

Recovery: Ensure the #include file name and the
search path are correct.

EDC0505 10 Unable to determine the codepage of
source file &1.

Explanation: Ensure that the file specified as input to
the compiler has a valid codepage associated with it.
Codepage 1047 is being used as the default.

EDC0506 30 Unable to find source file &1.

Explanation: Ensure that the name of the file
specified as primary input to the compiler corresponds
to an existing C source file.

EDC0550 30 Macro parameter list must end before
the end of the line.

Explanation: The list of parameters for a macro on a
#define directive did not end before the end of the line.

Recovery: End the parameter list before the end of
the line. Check that all required continuation lines have
been coded.

86 C/VSE V1R1 User's Guide

 EDC0551 � EDC0571

EDC0551 10 The #include file header cannot be
empty.

Explanation: The #include file header specified is
empty.

Recovery: Remove the #include directive or ensure
that the header is not empty.

EDC0552 10 The #include header &1 is not valid.

Explanation: The name of the file specified on the
#include directive is not valid.

Recovery: Remove or correct the #include directive.
Check the syntax.

EDC0553 10 Built-in function &1 is unrecognized.
The default linkage convention will be
used.

Recovery: Check that you are using the correct
function name.

EDC0560 30 The decimal size is outside the range
of 1 to &1.

Explanation: The specified decimal size should be
between 1 and DEC_DIG.

Recovery: Specify the decimal size between 1 and
DEC_DIG.

EDC0561 30 The decimal precision is outside the
range of 0 to &1.

Explanation: The specified decimal precision should
be between 0 and DEC_PRECISION.

Recovery: Specify the decimal precision between 0
and DEC_PRECISION.

EDC0562 30 The decimal size is not valid.

Explanation: The decimal size must be a positive
constant integral expression.

Recovery: Specify the decimal size as a positive
constant integral expression.

EDC0563 30 The decimal precision is not valid.

Explanation: The decimal precision must be a
constant integral expression.

Recovery: Specify the decimal precision as a constant
integral expression.

EDC0564 30 The decimal precision is bigger than
the decimal size.

Explanation: The specified decimal precision should
be less than or equal to the decimal size.

Recovery: Specify the decimal precision less than or
equal to the decimal size.

EDC0565 30 The decimal constant is out of range.

Explanation: The compiler detected a decimal
overflow in scanning a decimal constant.

Recovery: Change the decimal constant so that it
does not exceed the maximum value.

EDC0566 30 The &1 type specifier cannot be used
with decimal types.

Explanation: No other type specifier (such as long,
short, unsigned, signed) can be used with type decimal.

Recovery: Remove the type specifier.

EDC0567 10 The fraction part of the result was
truncated.

Explanation: Due to limitations on the number of
digits representable, the calculated intermediate result
may result in truncation in the decimal places after the
operation is performed.

Recovery: Check to make sure that no significant digit
is lost.

EDC0570 10 The pre- and post- increment and
decrement operators cannot be applied to
type &1.

Explanation: The decimal types with no integral part
cannot be incremented or decremented.

Recovery: Reserve at least one digit in the integral
part of the decimal types.

EDC0571 30 Only decimal types can be used with
the &1 operator.

Explanation: The operand of the digitsof or
precisionof operator is not valid. The digitsof and
precisionof operators can only be applied to decimal
types.

Recovery: Change the operand.

 Appendix A. C/VSE Return Codes and Messages 87

 EDC0573 � EDC0679

EDC0573 10 Whole-number-part digits in the result
may have been lost.

Explanation: Due to limitations on the number of
digits representable, the calculated intermediate result
may result in loss of digits in the integer portion after
the operation is performed.

Recovery: Check to make sure that no significant digit
is lost.

EDC0574 30 The function &1 can only have one
decimal type argument.

Explanation: The function call is not valid. The
functions decabs, decchk and decfix have one decimal
type as their argument.

Recovery: Only pass one decimal type as argument
when these functions are called.

EDC0575 30 Digits have been lost in the
whole-number part.

Explanation: In performing the operation, some
non-zero digits in the whole-number part of the result
are lost.

EDC0576 10 Digits may have been lost in the
whole-number part.

Explanation: In performing the operation, some digits
in the whole-number part of the result may have been
lost.

Recovery: Check to make sure that no significant digit
is lost.

EDC0670 10 The string &1 was found where a
delimiter was expected following a quoted
suboption for the run-time option &2.

Explanation: A quoted suboption must be followed by
either a comma, right parenthesis, or space.

Recovery: Correct the run-time options string.

EDC0671 10 An end quote delimiter did not occur
before the end of the run-time option
string.

Explanation: Quotes, either single or double, must be
in pairs.

Recovery: Correct the run-time options string.

EDC0672 10 The character '&1' is not a valid
run-time option delimiter.

Explanation: Options must be separated by either a
space or a comma.

Recovery: Correct the run-time options string.

EDC0673 10 The character '&1' is not a valid
suboption delimiter for run-time options.

Explanation: Suboptions must be delimited by a
comma.

Recovery: Correct the run-time options string.

EDC0674 10 The string '&1' was found where a
delimiter was expected following the
suboptions for the run-time option &2.

Explanation: Suboptions which are enclosed within
parenthesis must be followed by either a space or a
comma.

Recovery: Correct the run-time options string.

EDC0675 10 The string &1 was too long and was
ignored.

Explanation: The maximum string length for an option
or suboption was exceeded.

Recovery: Correct the run-time options string.

EDC0676 10 The end of the suboption string did not
contain a right parenthesis.

Explanation: A left parenthesis did not have a
matching right parenthesis.

Recovery: Correct the run-time options string.

EDC0677 10 The run-time option &1 is not
supported.

Explanation: &1 is an option from a previous release
that is not supported or mapped by LE.

Recovery: Correct the run-time options string.

EDC0678 10 The run-time option &1 was mapped to
the run-time option &2&3.

Explanation: &1 is an option from a previous release
that is supported by LE for compatibility.

Recovery: Change the run-time options string to use
the &2 and &3 instead.

EDC0679 10 The run-time option &1 was an invalid
run-time option.

Explanation: &1 is not an LE option or an option that
is recognized by LE for previous release language
compatibility.

Recovery: Correct the run-time options string.

88 C/VSE V1R1 User's Guide

 EDC0680 � EDC0698

EDC0680 10 Too many suboptions were specified
for the run-time option &1.

Explanation: The number of suboptions specified for
&1 exceeded that defined for the option.

Recovery: Correct the run-time options string.

EDC0681 10 The run-time option &1 appeared in the
options string.

Explanation: &1 is an option from a previous release
that is supported by LE for compatibility, but ignored if
TRAP is specified.

Recovery: Change the run-time options string to use
the TRAP option instead.

EDC0682 10 An invalid character occurred in the
numeric string '&1' of the run-time option
&2.

Explanation: &1 did not contain all decimal numeric
characters.

Recovery: Correct the run-time options string.

EDC0683 10 The installation default for the run-time
option &1 could not be overridden.

Explanation: &1 has been defined as
non-overrideable at installation time.

Recovery: Correct the run-time options string.

EDC0684 10 The string &1 was not a valid
suboption of the run-time option &2.

Explanation: &1 is not in the set of recognized values.

Recovery: Correct the run-time options string.

EDC0685 10 The number &1 of the run-time option
&2 exceeded the range of -2147483648 to
2147483647.

Explanation: &1 exceeded the range of -2147483648
to 2147483647.

Recovery: Correct the run-time options string.

EDC0686 10 The value &1 was not a valid MSGQ
number.

Explanation: &1 must be greater than zero.

Recovery: Correct the run-time options string.

EDC0687 10 The STORAGE option quoted
suboption string &1 was not one character
long.

Explanation: The only acceptable length for
STORAGE suboptions within quotes is one.

Recovery: Correct the run-time options string.

EDC0688 10 The UPSI option suboption string &1
was not eight characters long.

Explanation: The only acceptable length for the UPSI
suboption is eight.

Recovery: Correct the run-time options string.

EDC0689 10 The run-time option &1 was partially
mapped to the run-time option &2.

Explanation: &1 is an old language option that is
being supported by LE for compatibility. The user
should use &2 instead.

Recovery: Change the run-time options string to use
the &2 instead.

EDC0690 10 A punctuation error was detected in
#pragma runopts.

Recovery: Use the appropriate syntax for the #pragma
runopts directive.

EDC0695 10 Unable to load Language Environment
run-time options processing services.

Recovery: Ensure that you have access to all the
LE/VSE library files.

EDC0697 10 One or more settings of the run-time
options STAE or SPIE were ignored.

Explanation: STAE, SPIE, NOSTAE, and NOSPIE are
options from a previous release that are ignored when
the TRAP options is specified.

Recovery: Change the run-time options string to use
the TRAP option instead.

EDC0698 10 One or more settings of the run-time
options STAE or SPIE were mapped to
TRAP.

Explanation: STAE, SPIE, NOSTAE, and NOSPIE are
options from a previous release that are supported by
LE for compatibility.

Recovery: Change the run-time options string to use
the TRAP option instead.

 Appendix A. C/VSE Return Codes and Messages 89

 EDC0750 � EDC0800

EDC0750 10 #pragma &1 is ignored because the
LOCALE compile-time option is not
specified.

Explanation: The LOCALE compile-time option is
required for #pragma &1

Recovery: Remove all the #pragma &1 directives or
specify the LOCALE compile-time option.

EDC0751 10 The #pragma filetag directive cannot be
empty.

Explanation: The #pragma filetag directive is empty.

Recovery: Remove the #pragma filetag directive or
ensure that the pragma is not empty.

EDC0752 10 #pragma filetag is ignored because the
conversion table from &1 to &2 cannot be
opened.

Explanation: During compilation, source code is
converted from the code set specified by #pragma
filetag to the code set specified by the LOCALE
compile-time option, if they are different. A conversion
table form &1 to &2 must be loaded prior to the
conversion. No conversion is done when the
conversion table is not found.

Recovery: Create the conversion table from &1 to &2
and ensure it is accessible from the compile-time. If
message files are used in the application to read and
write data, a conversion table from &2 to &1 must also
be created to convert data from run-time locale to the
compile-time locale.

EDC0753 10 Error messages are not converted
because the conversion table from &1 to
&2 cannot be opened.

Explanation: Error messages issued by C/VSE are
written in code page 1047. These messages must be
converted to the code set specified by the locale
compile-time option because they may contain variant
characters, such as #. Before doing the conversion, a
conversion table from &1 to &2 must be loaded. The
error messages are not converted because the
conversion table cannot be found.

Recovery: Make sure the conversion table from &1 to
&2 is accessible from the compiler.

EDC0754 10 No conversion on character &1
because it does not belong to the input
code set &2.

Explanation: No conversion has be done for the
character because it does not belong to the input code
set.

Recovery: Remove or change the character to the
appropriate character in the input code set.

EDC0755 10 Incomplete character or shift sequence
was encountered during the conversion of
the source line.

Explanation: Conversion stops because an
incomplete character or shift sequence was
encountered at the end of the source line.

Recovery: Remove or complete the incomplete
character or shift sequence at the end of the source
line.

EDC0756 10 Only conversion tables that map single
byte characters to single byte characters
are supported.

Explanation: The compiler expected a single byte to
single byte character mapping during conversion.
Conversion stops when there is insufficient space in the
conversion buffer.

Recovery: Ensure that the conversion table is in
single byte to single byte mapping.

EDC0757 10 Invalid conversion descriptor was
encountered during the conversion of the
source line.

Explanation: No conversion was preformed because
conversion descriptor is not valid.

EDC0758 10 #pragma &1 must appear on the first
directive before any C code.

Recovery: Put this #pragma as the first directive
before any C code.

EDC0759 10 This character will not be supported in
the future release.

Explanation: C/VSE has migrated to support code
page 1047 only if the NOLOCALE compile-time option
is specified. The support for this character will be
dropped in the future release because it is not a valid
1047 code point.

Recovery: Rewrite this character in code page 1047
or use LOCALE compile-time option.

EDC0800 10 Parameter &1 is not referenced.

Explanation: The identified variable has been
declared in a function parameter list, but never
referenced within the function body.

Recovery: Remove the parameter declaration if it is
not needed.

90 C/VSE V1R1 User's Guide

 EDC0801 � EDC0814

EDC0801 10 Automatic variable &1 is not
referenced.

Explanation: The identified variable has been
declared at block scope, but never referenced.

Recovery: Remove the variable declaration if it is not
needed.

EDC0802 10 Static variable &1 is not referenced.

Explanation: The identified static variable has been
declared, but never referenced.

Recovery: Remove the variable declaration if it is not
needed.

EDC0803 10 External variable &1 is not referenced.

Explanation: The identified variable has been
declared either at file scope or extern at block scope,
and was never referenced.

Recovery: Remove the variable declaration if it is not
needed.

EDC0804 10 Function &1 is not referenced.

Explanation: The identified function has been
declared, but never referenced.

Recovery: Remove the function declaration if the
function is not needed.

EDC0805 10 Automatic variable &1 is set but not
referenced.

Explanation: The identified variable has been
declared and initialized, but never referenced.
Variables of type array, struct, or union are not checked
for this condition.

Recovery: Remove the variable declaration and
initialization if they are not needed.

EDC0806 10 Static variable &1 is set but not
referenced.

Explanation: The identified variable has been
declared and initialized, but never referenced.
Variables of type array, struct, or union are not checked
for this condition.

Recovery: Remove the variable declaration and
initialization if they are not needed.

EDC0807 10 Variable &1 may not have been set
before it is referenced.

Explanation: The compiler encountered an attempt to
access the value of the identified variable before the
variable was explicitly initialized.

Recovery: Ensure the variable is explicitly initialized
before its value is accessed.

EDC0808 10 Variable &1 was not explicitly
initialized.

Explanation: If not explicitly initialized, variables with
storage class auto or register contain indeterminate
values.

Recovery: Initialize the variable.

EDC0809 10 &1 redefinition hides earlier one.

Explanation: A typedef was defined at an inner scope
with the same name as a previous typedef definition
made at an outer scope. The inner scope definition
overrides the previous one.

Recovery: Ensure this is what was intended or use
different names for the two typedefs.

EDC0810 10 External variable &1 is set but not
referenced.

Explanation: The identified variable has been
declared and initialized, but never referenced.
Variables of type array, struct, or union are not checked
for this condition.

Recovery: Remove the variable declaration and
initialization if they are not needed.

EDC0811 10 Statement has no effect.

Explanation: The statement does not cause any
storage to be changed or functions to be called.

Recovery: Change or delete the statement.

EDC0812 10 Expression has no effect.

Explanation: An expression with no effect has been
discovered where expressions with side effects are
usually expected.

Recovery: Change or delete the expression.

EDC0813 10 if-statement is empty.

Explanation: The statement body for an if statement
contains no executable code.

Recovery: Change the statement body to contain
executable code or delete the if statement.

EDC0814 10 else-statement is empty.

Explanation: The statement body for an else
statement contains no executable code.

Recovery: Change the statement body to contain
executable code or delete the else statement.

 Appendix A. C/VSE Return Codes and Messages 91

 EDC0815 � EDC0827

EDC0815 10 Loop body is empty.

Explanation: The statement body for a loop statement
contains no executable code.

Recovery: Change the statement body to contain
executable code or remove the loop statement.

EDC0816 10 Assignment found in a control
expression.

Explanation: The control expression for a switch, if,
for, or while statement contains an unparenthesized
assignment statement. A common programming
problem is the substitution of an assignment statement
(i = 3) for what should be a comparison statement (i ==
3).

Recovery: Verify whether the statement should be an
assignment or a comparison.

EDC0817 10 Type conversion may result in lost
precision.

Explanation: The required type conversion may cause
lost precision. See the C/VSE Language Reference for
more information on type conversions.

Recovery: If precision is important in the operation,
eliminate the type conversion.

EDC0818 10 Pointer type conversion found.

Explanation: Conversion of pointer types may change
the pointer values.

Recovery: None, if the conversion was intended.
Otherwise, declare the pointer to void instead of to
another type, and then cast it.

EDC0819 10 Bitwise operator applied to a signed
type.

Explanation: Bitwise operators may change the value
of a signed type by shifting the bit used to indicate the
sign of the value.

Recovery: Change the operand to an unsigned type
or remove the bitwise operation.

EDC0820 10 Right shift operator applied to a signed
type.

Explanation: A right shift operator may change the
value of a signed type by shifting the bit used to
indicate the sign of the value.

Recovery: Change the operand to an unsigned type
or remove the shift operation.

EDC0821 10 Relational expression is always true.

Explanation: The control expression of a switch, if,
for, or while statement has a constant value, and the
result is always true. This may not be effective code.

Recovery: Verify if this result was intended. Change
the control expression if necessary.

EDC0822 10 Relational expression is always false.

Explanation: The control expression of a switch, if,
for, or while statement has a constant value, and the
result is always false. This may not be effective code.

Recovery: Verify if this result was intended. Change
the control expression if necessary.

EDC0823 10 Expression contains division by zero.

Explanation: An expression containing division by
zero was found.

Recovery: Eliminate the division by zero if it was not
intended.

EDC0824 10 Expression contains modulus by zero.

Explanation: An expression containing modulus by
zero was found.

Recovery: Eliminate the modulus by zero if it was not
intended.

EDC0825 10 Code cannot be reached.

Explanation: A statement without a label has been
found after an unconditional transfer of control, such as
a goto.

Recovery: If the statement should be executed, make
the transfer of control conditional, or label the
statement. If not, remove the statement.

EDC0826 10 Execution fall-through within a switch
statement.

Explanation: A case label has been encountered that
was not preceded by either a break or return statement.

Recovery: Precede the case label with a break or
return statement.

EDC0827 10 Nonprototype function declaration
encountered.

Explanation: A nonprototype function declaration was
found. For example,

 int addnum();

Function declarations should include the return type of
the function and the types of its parameters. Calls to
nonprototype functions get no type checking or type
conversions on parameters.

92 C/VSE V1R1 User's Guide

 EDC0828 � EDC0839

Recovery: Change the nonprototype declarations to
prototype declarations such as the following:

int addnum(int, int);

EDC0828 10 The return type of the function main
should have type int, not void.

Explanation: If main is declared to return void, the exit
code from the program will be indeterminate.

EDC0829 10 Possibly ambiguous operator usage
encountered.

Explanation: Expressions consisting of traditional
mathematical symbols sometimes have bugs created by
misunderstanding of operator precedence.
Nonparenthesized expressions containing shift
operators, relationals, and bitwise operators may have
precedence that is counterintuitive. The identified
operator has at least one operand that may have this
property.

Recovery: Use the appropriate parentheses to
eliminate the ambiguity.

EDC0830 10 Value is not a member of the
enumeration.

Explanation: Variables of type enum are not expected
to be used in situations other than assignment and
comparison, and can only be assigned proper members
of their enumeration, either directly, from function return
values, or from another variable of the same type.

Recovery: Ensure operations involving variables of
type enum are valid.

EDC0831 10 Case label is not a member of the
enumeration.

Explanation: In a switch statement where the switch
control expression is an enum, the case label values
must be members of the enumeration.

Recovery: Ensure the case label is a member of the
enumeration.

EDC0832 10 Unstructured goto statement
encountered.

Explanation: The target label of a goto statement
should not be located in an inner block such as a loop.

Recovery: Ensure the target label of the goto
statement is not located in an inner block.

EDC0833 10 Implicit return statement encountered.

Explanation: C allows returns from a function call
without specifying a return statement. However, if a
function is to return a value, a return statement must be
included.

Recovery: Add a return statement to the called
function if you want it to return a value.

EDC0834 10 Missing function return value.

Explanation: The function was declared to return a
value, and a return statement with no value has been
encountered. If return statement is not included in the
function, it will return an indeterminate value to the
caller.

Recovery: Add a return value to the return statement.

EDC0835 10 Structure or union remapping will be
performed for this copy operation.

Explanation: A struct or union assignment has been
encountered which requires an implicit pack or unpack
operation. This form of assignment is often less
efficient than assignments that have identical pack
characteristics.

Recovery: Revise the statements to avoid
unnecessary pack and unpack operations.

EDC0836 10 The same #pragma &1 directive was
previously specified for the object &2.

Explanation: The function was already declared using
the same #pragma directive.

Recovery: Remove one of the #pragma linkage
directives.

EDC0837 10 goto statement encountered.

Explanation: A goto statement was found.

Recovery: No recovery necessary.

EDC0838 10 Comparison is not valid because the
numeric constant is out of range.

Explanation: A comparison between a variable and a
constant that is not in the variable's range of possible
values has been detected.

Recovery: Delete the comparison, or use a constant
that is in the variable's range of possible values.

EDC0839 10 Unary minus applied to an unsigned
type.

Explanation: An unsigned type cannot have a sign.

Recovery: Remove the unary minus or change the
type to be signed.

 Appendix A. C/VSE Return Codes and Messages 93

 EDC0841 � EDC0854

EDC0841 10 File &1 has already been included.

Explanation: The file specified was included by a
previous #include directive.

Recovery: Remove one of the #include directives.

EDC0842 10 Macro name &1 on #undef not defined.

Explanation: The specified macro name has never
been defined or has already been removed by a
previous #undef directive.

Recovery: Define the macro name, or remove the
#undef directive.

EDC0843 10 Macro name &1 on #define is also an
identifier.

Explanation: The specified macro definition will
override an existing identifier definition.

Recovery: Rename or remove the macro or the
identifier.

EDC0844 10 Macro name &1 on #define is also a
keyword.

Explanation: The specified macro definition will
override an existing keyword definition.

Recovery: Rename the macro or remove the
definition.

EDC0845 10 Identifier &1 assigned default value of
0.

Explanation: The indicated identifier in an #if or #elif
expression was assigned the default value of zero. The
identifier may have been intended to be expanded as a
macro.

Recovery: Assign the identifier a value if necessary.

EDC0846 10 Expanding trigraph &1 in string literal.

Explanation: A trigraph has been expanded in a string
literal. This may not be the intended behavior.

Recovery: Ensure this is the intended behavior. If
not, use escape sequences to represent characters, for
example '\?' for the character '?'.

EDC0847 10 Expanding trigraph &1 in character
literal.

Explanation: A trigraph has been expanded in a
character literal. This may not be the intended
behavior.

Recovery: Ensure this is the intended behavior. If
not, use escape sequences to represent characters, for
example '\?' for the character '?'.

EDC0848 10 Some program text not scanned due to
&1 option.

Explanation: The setting of the margins and/or
sequence options has resulted in some program text
not being scanned.

Recovery: Reset the margins and/or sequence options
if necessary.

EDC0849 10 #include header &1 transformed into
&2.

Explanation: The message indicates the
transformation performed on the #include file before the
search for the file begins.

Recovery: No recovery necessary if the result is what
was intended.

EDC0850 10 #include searching for file &1.

Explanation: The message indicates the
transformation performed on the #include file before the
search for the file begins.

Recovery: No recovery necessary if the result is what
was intended.

EDC0851 10 #include found file &1.

Explanation: The message indicates the actual file
found for the #include directive.

Recovery: No recovery necessary if the result is what
was intended.

EDC0852 10 #undef undefining macro name &1.

Explanation: This message traces the execution of
the #undef directive.

Recovery: No recovery necessary if the result is what
was intended.

EDC0853 10 Macro name &1 on #define has a
previous identical definition.

Explanation: The macro has already been identically
defined. This may indicate that a file has been
#included more than once.

Recovery: Remove one of the definitions or rename
one of the macros.

EDC0854 10 #line directive changing line to &1 and
file to &2.

Explanation: This message traces the execution of
the #line directive.

Recovery: No recovery necessary if the result is what
was intended.

94 C/VSE V1R1 User's Guide

 EDC0855 � EDC0901

EDC0855 10 &1 condition evaluates to &2.

Explanation: This message traces the evaluation of
the test condition of an #if, #ifdef, or #elif directive.

Recovery: No recovery necessary if the result is what
was intended.

EDC0856 10 defined(&1) evaluates to &2.

Explanation: This message traces the evaluation of
the defined(&1) construct on an #if or #elif expression.

Recovery: No recovery necessary if the result is what
was intended.

EDC0857 10 Begin skipping tokens.

Explanation: This message traces the execution of
conditional compilation directives, for example indicating
that code is skipped after an #if with a condition that
evaluates to false.

Recovery: Ensure the appropriate tokens were
skipped.

EDC0858 10 Stop skipping tokens.

Explanation: This message traces the execution of
conditional compilation directives, for example,
indicating that an #endif marked the end of a block of
skipped code.

Recovery: Ensure the appropriate tokens were
skipped.

EDC0859 10 &1 nesting level is &2.

Explanation: This message traces the nesting level of
conditional compilation directives.

Recovery: No recovery necessary if the result is what
was intended.

EDC0860 10 String literals concatenated.

Explanation: This message traces the concatenation
of two string literals.

Recovery: Ensure the concatenation is what was
intended.

EDC0861 10 Optional brace encountered.

Explanation: A optional brace was found.

Recovery: No recovery necessary.

EDC0862 10 Matching optional brace encountered.

Explanation: A matching optional brace was found.

Recovery: No recovery necessary.

EDC0863 10 Incompletely bracketed initializer
encountered, &1 left brace(s) assumed.

Explanation: An initializer for an aggregate type was
missing a left brace or braces. The compiler assumes
the brace is meant to be there.

Recovery: Ensure this is what was intended.

EDC0864 10 Incompletely bracketed initializer
encountered, &1 right brace(s) assumed.

Explanation: An initializer for an aggregate type was
missing a right brace or braces. The compiler assumes
the brace is meant to be there.

Recovery: Ensure this is what was intended.

EDC0865 10 Floating-point constant is out of range.

Explanation: Refer to the float.h header file for the
valid range for floating-point constants.

Recovery: Ensure the floating-point constant is within
the valid range.

EDC0868 10 The incomplete struct or union tag &1
was introduced in a parameter list.

Explanation: The incomplete struct or union tag
introduced in the parameter list will not be compatible
with subsequent uses of the tag.

Recovery: Declare the incomplete struct or union tag
at file scope before the function declaration.

EDC0869 10 The incomplete struct or union tag &1
was not completed before going out of
scope.

Explanation: An incomplete struct or union tag
introduced at block scope was not completed before the
end of the scope.

Recovery: Provide a complete declaration for the
struct or union tag.

EDC0870 10 #line directive changing line to &1.

Explanation: This message traces the execution of
the #line directive.

EDC0900 40 Unable to open &1.

Recovery: Ensure file exists.

EDC0901 40 Unable to read &1.

Explanation: The compiler encountered an error while
reading from the specified file.

 Appendix A. C/VSE Return Codes and Messages 95

 EDC0902 � EDC1301

EDC0902 40 Unable to write to &1.

Recovery: Ensure that the disk drive is not in an error
mode and that there is enough disk space left.

EDC0903 30 Read/write pointer initialization of
read-only object &1 is not valid.

EDC1300 30 Maximum spill size of &2 is exceeded
in function &1..

Explanation: The maximum allowable spill area size
has been exceeded.

Recovery: Reduce the complexity of the named
function by breaking it up into smaller functions.

EDC1301 30 Spill size for function &1 is not
sufficient. Recompile specifying option
SPILL(n) where &2 < n <= &3.

Explanation: The specified spill area size has been
exceeded.

Recovery: Recompile using the SPILL(n) option &2 <
n <= &3 or with a different OPT level.

Note:

The following error messages may be produced by the compiler if the message file
is itself invalid.

SEVERE ERROR EDC0090: Unable to open message file &1.
SEVERE ERROR EDC0091: Invalid offset table in message file &1.
SEVERE ERROR EDC0092: Message component &1 not found.
SEVERE ERROR EDC0093: Message file &1 corrupted.
SEVERE ERROR EDC0094: Integrity check failure on msg &1
SEVERE ERROR EDC0095: Bad substitution number in message &1
SEVERE ERROR EDC0096: Virtual storage exceeded
ERROR: Failed to open message file. Reason &1.
ERROR: Unable to read message file. Reason &1.
ERROR: Invalid offset table in message file &1.
ERROR: Message component &1 not found.
ERROR: Message file &1 corrupted.
ERROR: Integrity check failure on msg &1 — retrieved &2.
ERROR: Message retrieval disabled. Cannot retrieve &1.
INTERNAL ERROR: Bad substitution number in message &1.

96 C/VSE V1R1 User's Guide

Appendix B. Other Return Codes and Messages

See the LE/VSE Debugging Guide and Run-Time Messages for messages and
return codes for the following:

 � LE/VSE prelinker

� LE/VSE run-time library

 � localedef utility

 � genxlt utility

 � iconv utility

 � DSECT utility

 perror() Messages
When a call to the LE/VSE run-time library function perror() or strerror() is
made, a message is printed or retrieved respectively, which corresponds to the
current value of errno. For additional information about these messages, refer to
the LE/VSE Debugging Guide and Run-Time Messages for the EDCnnnn message,
where nnnn is the errno value plus 5000. For example, to find the message
description for an errno value of 57, look up the message EDC5057.

To determine the errno value for a given message text, locate the message in the
range EDC5000 to EDC5224 in the LE/VSE Debugging Guide and Run-Time
Messages. When found, subtract 5000 from the message number to calculate the
errno value. For example, to determine the errno value related to the message
“An invalid argument was passed,” scan the messages from EDC5000 to EDC5224
until the message text is found (EDC5030). The errno value is determined by
subtracting 5000 from the message number—in this case 30.

Note: The run-time messages and the errno values are subject to change and are
not general-use programming interface information. It is not good programming
practice to write portable code that relies on these messages or errno values.

© Copyright IBM Corp. 1994, 1996 97

98 C/VSE V1R1 User's Guide

Appendix C. Files Used during Compile, Prelink, Link-Edit,
and Execution

This appendix describes the files used in a compile/prelink/link-edit/run job.

Cross-Reference of Files Used
The following table provides a cross-reference of the files required for each job step
and a description of how the files are used.

Table 13. Cross Reference of File and Job Step

File Compile Prelink Link-Edit Run

Phase Sublibrary X X X X

SYSIPT X X X X

SYSLST X X X X

Source Sublibrary X

Object Sublibrary X X

SYSPCH X X

SYSLNK X X X

SYSLOG X

IJSYS�1 X X

IJSYS�2-IJSYS�7 X

Description of Files Used
The following table lists the files used during compile, prelink, link-edit, and
execution. A description of what the file is used for is also given.

Table 14 (Page 1 of 2). File Descriptions for Compilation, Prelink, Link-Edit, and Execution

File In Job Step Description

Phase Sublibrary Compile VSE Librarian sublibrary for C/VSE modules and
messages

SYSIPT Compile Input file containing the C source program

SYSLST Compile Output file for compiler listing

Source Sublibrary Compile VSE Librarian sublibrary for C standard header files

SYSPCH Compile File for object module or PPONLY output

SYSLNK Compile File for object module

IJSYS�1-IJSYS�7 Compile Workfiles

Phase Sublibrary Prelink VSE Librarian sublibrary containing prelinker
modules and messages

SYSIPT Prelink File containing object module for the prelinker

Object Sublibrary Prelink VSE Librarian sublibrary for prelinkage autocall
library

© Copyright IBM Corp. 1994, 1996 99

Table 14 (Page 2 of 2). File Descriptions for Compilation, Prelink, Link-Edit, and Execution

File In Job Step Description

SYSPCH Prelink File for output of the prelinker

SYSLNK Prelink File for output of the prelinker

SYSLST Prelink File for listing of prelink listing

SYSLOG Prelink File for listing of prelinker diagnostic messages

Object Sublibrary Link-Edit VSE Librarian sublibrary for autocall library

SYSLNK Link-Edit Primary input file for linkage editor

SYSIPT Link-Edit Primary input file for linkage editor (the linkage
editor switches between SYSLNK and SYSIPT)

Phase Sublibrary Link-Edit VSE Librarian sublibrary to contain output phase

SYSLST Link-Edit File for listings and diagnostics produced by the
linkage editor

IJSYS�1 Link-Edit Workfile

Phase Sublibrary Run VSE Librarian sublibrary containing LE/VSE run-time
library functions

SYSLST Run File for listings and diagnostics from user program

100 C/VSE V1R1 User's Guide

Appendix D. Invoking C/VSE from Assembler

To compile your C source program dynamically, you can use the VSE macro
instruction CALL in an assembler language program. For complete information on
this macro instruction, refer to “Related Publications” on page 115.

The syntax of the CALL macro instruction follows:

��─ ──┬ ┬─────── ─CALL──entry_name──,──(──opt_list─ ──┬ ┬────────────────── ─)───��
 └ ┘─label─ └ ┘ ─,──filename_list─

where:

entry_name Specifies the name of the C/VSE main phase, EDCCOMP.

opt_list Specifies the address of a list containing the options to be
specified for the compilation.

The option list must begin on a halfword boundary and the first 2
bytes must contain a count of the number of bytes in the
remainder of the list; you specify the options in the same manner
as you would on the PARM parameter of the EXEC JCL statement. If
you do not want to specify any options, the count must be zero.

filename_list Specifies the address of a list containing alternative filenames
(DLBL-names) for the files used during the compiler processing. If
standard filenames are to be used, you can omit this parameter.

The filename list must begin on a halfword boundary and the first
two bytes must contain a count of the number of bytes in the
remainder of the list. Each name should be left-justified and
padded with blanks to a length of 8 bytes.

The sequence of filenames in the list is:

 � SYSIPT
 � SYSLNK
� (3rd entry is not used)
� (4th entry is not used)
� (5th entry is not used)

 � SYSPRINT
 � SYSLST
 � SYSPCH
 � IJSYS�1
 � IJSYS�2
 � IJSYS�3
 � IJSYS�4
 � IJSYS�5
 � IJSYS�6
 � IJSYS�7
 � SYSPCH

An alternative filename can be omitted from the list by entering
binary zeros in its 8-byte entry, or if it is at the end of the list, by
shortening the list. If a filename is omitted, the standard filename
will be assumed.

© Copyright IBM Corp. 1994, 1996 101

The return code from the compiler will be returned in register 15.

If the macro instruction is coded incorrectly, the compiler will not be invoked and
the return code will be 32. A possible cause of that error is that the count of bytes
in the alternative filenames list is not a multiple of 8 or is not between 0 to 128.

If an alternative filename for SYSLST is specified, the stdout stream will be
redirected to the alternate filename.

The following example shows the use of the CALL assembler macro to do partial file
renaming. The example is followed by the JCL used to invoke it.

 EDCXUAAH

 EDCXUAAH

 This assembler routine demonstrates file renaming (dynamic

 compilation) using the assembler CALL macro.

 In this specific scenario a subset of all the files are renamed.

 This renaming is accomplished by shortening the list of

 filenames.

 The compiler and run-time sublibraries must either be in the SVA

 or be specified on the LIBDEF SEARCH statement in your JCL.

CALL CSECT
 STM 14,12,12(13)
 USING CALL,15
 LA 3,MODE31
 O 3,=X'8�������'
 DC X'�B�3'
MODE31 DS �H
 USING
,3
 LR 12,15
 ST 13,SAVE+4
 LA 15,SAVE
 ST 15,8(,13)
 LR 13,15

 Invoke the compiler using CALL macro

 CDLOAD EDCCOMP
 LR 15,1
 CALL (15),(OPTIONS,FILENMES)
 L 13,4(,13)
 LM 14,12,12(13)
 SR 15,15
 BR 14

Figure 11 (Part 1 of 2). Using the Assembler CALL Macro

102 C/VSE V1R1 User's Guide

 Constant and save area

SAVE DC 18F'�'
OPTIONS DC H'21',C'SOURCE,LIST,TERM,TEST'
FILENMES DC H'96'
 DC CL8'SRCFILE'
 DC XL8'��'
 DC XL8'��'
 DC XL8'��'
 DC XL8'��'
 DC XL8'��'
 DC CL8'LISFILE'
 DC XL8'��'
 DC XL8'��'
 DC XL8'��'
 DC XL8'��'
 DC XL8'��'
 END

Figure 11 (Part 2 of 2). Using the Assembler CALL Macro

 EDCXUAAI

// JOB EDCXUAAI
/
 --
/

/
 EDCXUAAI: Standard file renaming using the assembler CALL macro.
/

/
 This job:
/
 - Compiles using primary input from DLBL SRCFILE
/
 - Copies the compiler listing from the DLBL LISFILE to SYSLST
/

/
 Header files come from the sublibrary MYHDR.LIB.
/

/
 Compilation is controlled by the assembler phase named CALLDD which
/
 is stored as MYTST.LIB(CALLDD.PHASE).
/

/
 CALLDD was created by assembling the example EDCXUAAH.
/

/
 --
// LIBDEF
,SEARCH=(MYHDR.LIB,MYTST.LIB,PRD2.DBASE,PRD2.SCEBASE)
// DLBL SRCFILE,'file-id',�,SD
// EXTENT unit,volser,,,start,end
ASSGN unit,DISK,VOL=volser,SHR
// DLBL LISFILE,'file-id',�,SD
// EXTENT unit,volser,1,,start,end
ASSGN unit,DISK,VOL=volser,SHR
// EXEC PGM=CALLDD
/

// UPSI 1
// EXEC DITTO
$$DITTO SDP FILEIN=LISFILE
/

/&

Figure 12. JCL for the Assembler CALL Macro

 Appendix D. Invoking C/VSE from Assembler 103

104 C/VSE V1R1 User's Guide

 Glossary

This glossary defines terms and abbreviations that are
used in this book. If you do not find the term you are
looking for, refer to the IBM Dictionary of Computing,
SC20-1699.

This glossary includes terms and definitions from the
American National Standard Dictionary for Information

Systems, ANSI X3.172-1990, copyright 1990 by the
American National Standards Institute (ANSI). Copies
may be purchased from the American National
Standards Institute, 1430 Broadway, New York, New
York 10018.

A
absolute value. The magnitude of a real number
regardless of its algebraic sign.

abstract code unit (ACU). A measurement used by
the C/VSE compiler for judging the size of a function.
The number of ACUs that comprise a function is
proportional to its size and complexity.

ACU. Abstract code unit.

address. A name, label, or number identifying a
location in storage, a device in a system or network, or
any other data source.

aggregate. An array or a structure. Also, a
compile-time option to show the layout of a structure or
union in the listing.

alias. An alternate label used to refer to the same data
element or point in a computer program.

alignment. See boundary alignment.

American National Standard Code for Information
Interchange (ASCII). The code developed by ANSI for
information interchange among data processing
systems, data communications systems, and associated
equipment. The ASCII character set consists of 7-bit
control characters and symbolic characters.

Note: IBM has defined an extension to ASCII code
(characters 128-255).

American National Standards Institute (ANSI). An
organization consisting of producers, consumers, and
general interest groups, that establishes the procedures
by which accredited organizations create and maintain
voluntary industry standards in the United States.

anonymous union. A union that is declared within a
structure and that does not have a name.

ANSI. American National Standards Institute.

API. Application program interface.

application. The use to which an information
processing system is put, for example, a payroll
application, an airline reservation application, a network
application.

application program interface (API). The formally
defined programming language interface between an
IBM system control program or a licensed program and
the user of the program.

argument. In a function call, an expression that
represents a value that the calling function passes to
the function specified in the call. Also called a
parameter.

arithmetic object. An integral object, a bit field, or
floating-point object.

array. A variable that contains an ordered group of
data objects. All objects in an array have the same
data type.

array element. A single data item in an array.

ASCII. American National Standard Code for
Information Interchange.

assembly language. A symbolic programming
language in which the set of instructions includes the
instructions of the machine and whose data structures
correspond directly to the storage and registers of the
machine.

assignment conversion. A change to the form of the
right operand that makes the right operand have the
same data type as the left operand.

assignment expression. An operation that stores the
value of the right operand in the storage location
specified by the left operand.

associativity. The order for grouping operands with an
operator (either left-to-right or right-to-left).

© Copyright IBM Corp. 1994, 1996 105

automatic calling. Calling in which the elements of
the selection signal are entered into the data network
contiguously at the full data signalling rate.

B
binary. (1) Pertaining to a system of numbers to the
base two; the binary digits are 0 and 1. (2) Involving a
choice of two conditions, such as on-off or yes-no.

binary expression. An expression containing two
operands and one operator.

binary stream. An ordered sequence of untranslated
characters.

bit field. A member of a structure or union that
contains a specified number of bits.

block. The unit of data transmitted to and from a
device. Each block contains one record, part of a
record, or several records.

block statement. Any number of data definitions,
declarations, and statements that appear between the
symbols { and }. The block statement is considered to
be a single C-language statement.

boundary alignment. The position in main storage of
a fixed-length field (such as byte or doubleword) on an
integral boundary for that unit of information. For
example, on System/370 a word boundary is a storage
address evenly divisible by two.

break statement. A language control statement that
contains the word break and a semicolon. It is used to
end an iterative or a switch statement by exiting from it
at any point other than the logical end. Control is
passed to the first statement after the iteration or switch
statement.

buffer. A portion of storage used to hold input or
output data temporarily.

buffer flush. A process that removes the contents of a
buffer. After a buffer flush, the buffer is empty.

built-in. A function which the compiler will
automatically inline instead of the function call unless
the programmer specifies not to.

C
C language. A general-purpose high-level
programming language.

C library. A system library that contains common C
language subroutines for file access, string operators,
character operations, memory allocation, and other
functions.

C language statement. A C language statement
contains zero or more expressions. All C language
statements, except block statements, end with a ;
(semicolon) symbol. A block statement begins with a {
(left brace) symbol, ends with a } (right brace) symbol,
and contains any number of statements.

C library. A system library that contains common C
language subroutines for file access, memory allocation,
and other functions.

call. To transfer control to a procedure, program,
routine, or subroutine.

case clause. In a switch statement, a case label
followed by any number of statements.

case label. The word case followed by a constant
expression and a colon.

cast expression. An expression that converts the type
of the operand to a specified scalar data type (the
operator).

cast operator. The cast operator is used for explicit
type conversions.

cataloged procedures. A set of control statements
placed in a library and retrievable by name.

char specifier. A char is a built-in data type. In C,
char, signed char, and unsigned char are all distinct
data types.

character constant. A character or an escape
sequence enclosed in single quotation marks.

character set. A group of characters used for a
specific reason; for example, the set of characters a
printer can print or a keyboard can support.

character variable. A data object whose value can be
changed during program execution and whose data
type is char, signed char, or unsigned char.

CICS. Customer Information Control System.

collating sequence. A specified arrangement for the
order of characters in a character set.

106 C/VSE V1R1 User's Guide

command. A request to perform an operation or run a
program. When parameters, arguments, flags, or other
operands are associated with a command, the resulting
character string is a single command.

compile. To transform a set of programming language
statements (source file) into machine instructions (object
module).

compiler. A program that translates instructions
written in a programming language (such as C
language) into machine language.

complex number. A complex number is made up of
two parts: a real part and an imaginary part. A complex
number can be represented by an ordered pair (a, b),
where a is the value of the real part and b is the value
of the imaginary part. The same complex number could
also be represented as a + bi, where i is the square
root of -1.

conditional compilation statement. A preprocessor
statement that causes the preprocessor to process
specified source code in the file depending on the
evaluation of a specific condition.

const. An attribute of a data object that declares the
object cannot be changed.

constant expression. An expression having a value
that can be determined during compilation and that
does not change during program execution.

control statement. A statement that changes the path
of execution.

conversion. A change in the type of a value. For
example, when you add values having different data
types, the compiler converts both values to a common
form before adding the values. Because accuracy of
data representation varies among different data types,
information may be lost in a conversion.

D
data object. A storage area used to hold a value.

data stream. A continuous stream of data elements
being transmitted, or intended for transmission, in
character or binary-digit form, using a defined format.

data type. A category that specifies the interpretation
of a data object such as its mathematical qualities and
internal representation.

DBCS. (1) See double-byte character set. (2) See
ASCII.

decimal constant. A numerical data type used in
standard arithmetic operations.

declaration. A description that makes an external
object or function available to a function or a block.

declare. To identify the variable symbols to be used at
preassembly time.

default. An attribute, value or option that is used when
no alternative is specified by the programmer.

default argument. An argument that is declared with a
default value in a function prototype or declaration. If a
call to the function omits this argument, the default
value is used. Arguments with default values must be
the trailing arguments in a function prototype argument
list.

default clause. In a switch statement, the keyword
default followed by a colon, and one or more
statements. When the conditions of the specified case
labels in the switch statement do not hold, the default
clause is chosen.

default initialization. The initial value assigned to a
data object by the compiler if no initial value is specified
by the programmer. extern and static variables
receive a default initialization of zero, while the default
initial value for auto and register variables is
undefined.

define directive. A preprocessor statement that
directs the preprocessor to replace an identifier or
macro invocation with special code.

definition. A data description that reserves storage
and may provide an initial value.

demangling. The conversion of mangled names back
to their original source code names. See also
mangling.

denormal. Pertaining to a number with a value so
close to � that its exponent cannot be represented
normally. The exponent can be represented in a
special way at the possible cost of a loss of
significance.

digit. Any of the numerals from 0 through 9.

domain. All the possible input values for a function.

double-byte character set (DBCS). A set of
characters in which each character is represented by 2
bytes. Languages such as Japanese, Chinese, and
Korean, which contain more symbols than can be
represented by 256 code points, require double-byte
character sets.

Because each character requires 2 bytes, entering,
displaying, and printing DBCS characters requires

 Glossary 107

hardware and supporting software that are DBCS
capable.

double precision. Pertaining to the use of two
computer words to represent a number with greater
accuracy. For example, a floating-point number would
be stored in the long format.

doubleword. A sequence of bits or characters that
comprises two computer words and can be addressed
as a unit.

dynamic. Pertaining to an operation that occurs at the
time it is needed rather than at a predetermined or fixed
time.

dynamic binding. Binding that occurs at run time.

E
EBCDIC. See extended binary-coded decimal
interchange code.

E-format. Floating-point format, consisting of a number
in scientific notation.

element. The component of an array, subrange,
enumeration, or set.

enumeration constant. An identifier that is defined in
an enumerator and that has an associated integer
value. You can use an enumeration constant anywhere
an integer constant is allowed.

enumeration data type. A type that represents
integers and a set of enumeration constants. Each
enumeration constant has an associated integer value.

enumeration tag. The identifier that names an
enumeration data type.

enumerator. An enumeration constant and its
associated value.

EOF. End of file.

escape sequence. A representation of a character. An
escape sequence contains the \ symbol followed by one
of the characters: a, b, f, n, r, t, v, ', ", x, \, or
followed by one to three octal or hexadecimal digits.

exception. In C, any user, logic, or system error
detected by a function that does not itself deal with the
error but passes the error on to a handling routine.

executable program. A program that can be run on a
processor.

expression. A representation for a value. For
example, variables and constants appearing alone or in
combination with operators.

extended binary-coded decimal interchange code
(EBCDIC). A set of 256 eight-bit characters.

extension. (1) An element or function not included in
the standard language. (2) File name extension.

external data definition. A definition appearing
outside a function. The defined object is accessible to
all functions that follow the definition and are located
within the same source file as the definition.

F
fetch control block (FECB). An executable dynamic
stub which is created by a fetch() function call. The
stub transfers control to the true entry point of the
module specified in the fetch call. The stub also
switches the writable static environment thereby giving
each instance of the fetched routine its own global
data.

file scope. A name declared outside all blocks and
classes has file scope and can be used after the point
of declaration in a source file.

float constant. A constant representing a nonintegral
number.

foreground processing. The execution of a computer
program that preempts the use of computer facilities.

free store. Dynamically allocates memory. New and
delete are used to allocate and deallocate free store.

function. A named group of statements that can be
invoked and evaluated and can return a value to the
calling statement.

function call. An expression that moves the path of
execution from the current function to a specified
function and evaluates to the return value provided by
the called function. A function call contains the name of
the function to which control moves and a
parenthesized list of arguments.

function declarator. The part of a function definition
that names the function, provides additional information
about the return value of the function, and lists the
function parameters.

function definition. The complete description of a
function. A function definition contains an optional
storage class specifier, an optional type specifier, a
function declarator, optional parameter declarations, and
a block statement (the function body).

108 C/VSE V1R1 User's Guide

function prototype. A function declaration that
provides type information for each parameter. It is the
first line of the function (header) followed by a ;
(semicolon). It is required by the compiler when the
function will be declared later so type checking can
occur.

function scope. Labels that are declared in a function
have function scope and can be used anywhere in that
function.

function template. Provides a blueprint describing
how a set of related individual functions can be
constructed.

G
global. Pertaining to information available to more
than one program or subroutine.

global scope. See file scope.

global variable. A variable defined in one portion of a
computer program and used in at least one other
portion of the computer program.

H
halfword. A contiguous sequence of bits or characters
that constitutes half a computer word and can be
addressed as a unit.

hard error. An error condition on a network that
requires that the network be reconfigured or that the
source of the error be removed before the network can
resume reliable operation.

header file. A file that contains system-defined control
information that precedes user data.

hexadecimal constant. A constant, usually starting
with special characters, that contains only hexadecimal
digits. The special characters are \x, �x, or �X.

I
include directive. A preprocessor directive that
causes the preprocessor to replace the statement with
the contents of a specified file.

include file. A text file that contains declarations used
by a group of functions, programs, or users. Also
known as a header file.

initialize. To set the starting value of a data object.

initializer. An expression used to initialize data
objects. In C, there are two types of initializers:

� An expression followed by an assignment operator
is used to initialize fundamental data type objects.

� An expression enclosed in braces ({}) is used to
initialize aggregates.

inlined function. Inlining is a hint to the compiler to
perform inline expansion of the body of a function
member. Functions declared and defined
simultaneously in a class definition are inline. You can
also explicitly declare a function inline by using the
keyword inline. Both member and nonmember
functions can be inlined. You can direct the compiler to
inline a function with the inline keyword.

input stream. A sequence of control statements and
data submitted to a system from an input unit.

instruction. A program statement that specifies an
operation to be performed by the computer, along with
the values or locations of operands. This statement
represents the programmer's request to the processor
to perform a specific operation.

integer constant. A decimal, octal, or hexadecimal
constant.

integral boundary. A location in main storage at
which a fixed-length field, such as a halfword or
doubleword, must be positioned. The address of an
integral boundary is a multiple of the length of the field,
expressed in bytes.

integral object. A character object, an object having
an enumeration type, an object having variations of the
type int, or an object that is a bit field.

internal data definition. A description of a variable
appearing at the beginning of a block that causes
storage to be allocated for the lifetime of the block.

interrupt. A temporary suspension of a process
caused by an external event, performed in such a way
that the process can be resumed.

intrinsic function. A function supplied by a program
as opposed to a function supplied by the compiler.

IPL. Initial Program Load.

ISA. Initial Storage Area.

J
JCL. Job Control Language.

 Glossary 109

K
keyword. (1) A predefined word reserved for the C
language, that may not be used as an identifier. (2) A
symbol that identifies a parameter in JCL.

L
L-name. An external C name in an object module or
an external non-C name in an object module produced
by compiling with the LONGNAME option.

label. (1) An identifier followed by a colon. It is the
target of a goto statement. (2) An identifier within or
attached to a set of data elements.

labeled statement. A possibly empty statement
immediately preceded by a label.

late binding. See dynamic binding.

lexically. Relating to the left-to-right order of units.

library. (1) A collection of functions, function calls,
subroutines, or other data. (2) A set of object modules
that can be specified in a link command.

link. To interconnect items of data or portions of one
or more computer programs; for example, linking of
object programs by a linkage editor to produce an
executable file.

linkage editor. Synonym for linker.

linker. A program that resolves cross-references
between separately compiled object modules and then
assigns final addresses to create a single executable
program (phase).

literal. See constant.

loader. A routine, commonly a computer program, that
reads data into main storage.

local. Pertaining to information that is defined and
available in only one function of a computer program.

local scope. A name declared in a block has local
scope and can only be used in that block.

long constant. An integer constant followed by the
letter L in uppercase or lowercase.

lvalue. An expression that represents a data object
that can be both examined and altered.

M
macro. An identifier followed by arguments (may be a
parenthesized list of arguments) that the preprocessor
replaces with the replacement code located in a
preprocessor #define directive.

main function. A function with the identifier main that
is the first user function to get control when program
execution begins. Each C program must have exactly
one function named main.

mangling. The encoding during compilation of
identifiers such as function and variable names to
include type and scope information. The linker uses
these mangled names to ensure type-safe linkage.

manipulator. A value that can be inserted into
streams or extracted from streams to affect or query the
behavior of the stream.

map. A set of values having a defined correspondence
with the quantities or values of another set.

map file. A listing file that can be created during the
link step and that contains information on the size and
mapping of segments and symbols.

mapping. The establishing of correspondences
between a given logical structure and a given physical
structure.

mask. A pattern of characters that controls the
keeping, deleting, or testing of portions of another
pattern of characters.

member. A data object in a structure or a union.

metalanguage. A language used to specify another
language.

migrate. To move to a changed operating
environment, usually to a new release or version of a
system.

module. A program unit that usually performs a
particular function or related functions, and that is
distinct and identifiable with respect to compiling,
combining with other units, and loading.

multibyte character. A mixture of single-byte
characters from a single-byte character set and
double-byte characters from a double-byte character
set.

multiprocessing. Simultaneous or parallel processing
of two or more computer programs or sequences by a
multiprocessor.

110 C/VSE V1R1 User's Guide

multitasking. A mode of operation that allows
concurrent performance, or interleaved execution of
more than one task or program.

N
newline character. A control character that causes
the print or display position to move to the first position
on the next line. This control character is represented
by \n in the C language.

NULL. A pointer guaranteed not to point to a data
object.

null character (\0). The ASCII or EBCDIC character
with the hex value ��, all bits turned off.

null value. A parameter position for which no value is
specified.

O
object code. Machine-executable instructions, usually
generated by a compiler from source code written in a
higher level language (such as C language).

object module. A portion of an object program
produced by a compiler from a source program, and
suitable as input to a linkage editor.

octal. A base eight numbering system.

octal constant. The digit 0 (zero) followed by any
digits 0 through 7.

operand. An entity on which an operation is
performed.

operating system. Software that controls functions
such as resource allocation, scheduling, input/output
control, and data management.

operation. A specific action such as add, multiply,
shift.

operator. A symbol (such as +, -,
) that represents
an operation (in this case, addition, subtraction,
multiplication).

overflow. A condition that occurs when a portion of
the result of an operation exceeds the capacity of the
intended unit of storage.

overflow condition. A condition that occurs when a
portion of the result of an operation exceeds the
capacity of the intended unit of storage.

overlay. To write over existing data in storage.

overloading. An object-oriented programming
technique that allows you to redefine functions and
most standard C operators when the functions and
operators are used with class types.

P
pack. To store data in a compact form in such a way
that the original form can be recovered.

pad. To fill unused positions in a field with data,
usually zeros, ones, or blanks.

parameter declaration. A description of a value that a
function receives. A parameter declaration determines
the storage class and the data type of the value.

persistent environment. A program can explicitly
establish a persistent environment, direct functions to it,
and explicitly terminate it.

pointer. A variable that holds the address of a data
object or function.

portability. The ability of a programming language to
compile successfully on different operating systems
without requiring changes to the source code.

precision. A measure of the ability to distinguish
between nearly equal values.

preprocessor. A phase of the compiler that examines
the source program for preprocessor statements that
are then executed, resulting in the alteration of the
source program.

preprocessor statement. A statement that begins
with the symbol # and is interpreted by the
preprocessor.

primary expression. An identifier, a parenthesized
expression, a function call, an array element
specification, or a structure or union member
specification.

process. An instance of an executing application and
the resources it uses.

prototype. A function declaration or definition that
includes both the return type of the function and the
types of its parameters.

 Glossary 111

R
record. The unit of data transmitted to and from a
program.

recoverable error. An error condition that allows
continued execution of a program.

reentrant. The attribute of a program or routine that
allows the same copy of a program or routine to be
used concurrently by two or more tasks.

register. A storage area commonly associated with
fast-access storage, capable of storing a specified
amount of data such as a bit or an address.

reserved word. In programming languages, a keyword
that may not be used as an identifier.

rounding. To omit one or more of the least significant
digits in a positional representation and to adjust the
remaining digits according to a specified rule. The
purpose of rounding is usually to limit the precision of a
number or to reduce the number of characters in the
number.

run-time library. A collection of functions in object
code form, whose members can be referred to by an
application program during the linking step.

S
S-name. An external non-C name in an object module
produced by compiling with the NOLONGNAME option.
Such a name is up to 8 characters long and single
case.

SAA. Systems Application Architecture.

scalar. An arithmetic object, or a pointer to an object
of any type.

scope. That part of a source program in which an
object is defined and recognized.

sequential data set. A data set whose records are
organized on the basis of their successive physical
positions, such as on magnetic tape.

signal. A condition that may or may not be reported
during program execution. For example, SIGFPE is the
signal used to represent erroneous arithmetic
operations such as a division by zero.

signal handler. A function to be called when the
signal is reported.

single-byte character set. A set of characters in
which each character is represented by 1 byte of
storage.

single precision. Pertaining to the use of one
computer word to represent a number, in accordance
with the required precision.

software signal. A signal that is explicitly raised by
the user (by using the raise function).

source file. A file that contains source statements for
such items as language programs and data description
specifications.

source program. A set of instructions written in a
programming language that must be translated to
machine language before the program can be run.

specifiers. Used in declarations to indicate storage
class, fundamental data type and other properties of the
object or function being declared.

SQL. Structured Query Language.

stack. An area of storage used for keeping variables
associated with each call to a function or block.

stand-alone. Pertaining to operation that is
independent of any other device, program, or system.

statement. An instruction that ends with the character
; (semicolon) or several instructions that are surrounded
by the characters { and }.

static. A keyword used for defining the scope and
linkage of variables and functions. For internal
variables, the variable has block scope and retains its
value between function calls. For external values, the
variable has file scope and retains its value within the
source file. For class variables, the variable is shared
by all objects of the class and retains its value within
the entire program.

static binding. Binding that occurs at compilation time
based on the resolution of overloaded functions.

storage class specifier. One of: auto, register,
static, or extern.

stream. See data stream.

string constant. Zero or more characters enclosed in
double quotation marks.

structure. A construct that contains an ordered group
of data objects. Unlike an array, the data objects within
a structure can have varied data types. A structure can
be used in all places a class is used. The initial
projection is public.

structure tag. The identifier that names a structure
data type.

112 C/VSE V1R1 User's Guide

stub routine. Within run-time libraries, contains the
minimum lines of code required to locate a given routine
at run time.

subsystem. A secondary or subordinate system, or
programming support, usually capable of operating
independently of or asynchronously with a controlling
system.

swap. To exchange one thing for another.

switch expression. The controlling expression of a
switch statement.

switch statement. A C language statement that
causes control to be transferred to one of several
statements depending on the value of an expression.

system default. A default value defined in the system
profile.

Systems Application Architecture (SAA). Pertaining
to the definition of a common programming interface,
conventions, and protocols for designing and developing
applications with cross-system consistency.

T
tag. One or more characters attached to a set of data
that identifies the set.

task. One or more sequences of instructions treated
by a control program as an element of work to be
accomplished by a computer.

template function. A function generated by a function
template.

thread. A unit of execution within a process.

trap. An unprogrammed conditional jump to a specified
address that is automatically activated by hardware. A
recording is made of the location from which the jump
occurred.

trigraph sequence. A combination of three keystrokes
used to represent unavailable characters in a C source
program. Before preprocessing, each trigraph
sequence in a string or a literal is replaced by the single
character that it represents.

truncate. To shorten a value to a specified length.

try block. A block in which a known C exception is
passed to a handler.

type. The description of the data and the operations
that can be performed on or by the data. Also see data
type.

type balancing. A conversion that makes both
operands have the same data type. If the operands do
not have the same size data type, the compiler converts
the value of the operand with the smaller type to a
value having the larger type.

type conversion. See boundary alignment.

type definition. A definition of a data type.

type specifier. Used to indicate the data type of an
object or function being declared.

U
ultimate consumer. The target of data in an I/O
operation. An ultimate consumer can be a file, a
device, or an array of bytes in memory.

ultimate producer. The source of data in an I/O
operation. An ultimate producer can be a file, a device,
or an array of byes in memory.

unary expression. An expression that contains one
operand.

underflow. A condition that occurs when the result of
an operation is less than the smallest possible nonzero
number.

union. A construct that can hold any one of several
data types, but only one data type at a time.

union tag. The identifier that names a union data type.

unrecoverable error. An error for which recovery is
impossible without use of recovery techniques external
to the computer program or run.

V
variable. An object that can take different values at
different times.

visible. Visibility of identifiers is based on scoping
rules and is independent of access.

volatile. An attribute of a data object that indicates the
object is changeable. Any expression referring to a
volatile object is evaluated immediately (for example,
assignments).

VSAM. Virtual Storage Access Method.

 Glossary 113

W
whitespace. Space characters, tab characters, form
feed characters, and newline characters.

wide character. A character whose range of values
can represent distinct codes for all members of the
largest extended character set specified among the
supporting locales.

word boundary. The storage position at which data
must be aligned for certain processing operations. The
halfword boundary must be divisible by 2, the fullword
boundary by 4, and the doubleword boundary by 8.

Z
zero suppression. The removal of, or substitution of
blanks for, leading zeros in a number. For example,
���57 becomes 57 when using zero suppression.

114 C/VSE V1R1 User's Guide

 Bibliography

IBM C for VSE/ESA Publications
Licensed Program Specifications, GC09-2421

Installation and Customization Guide, GC09-2422

Migration Guide, SC09-2423

User's Guide, SC09-2424

Language Reference, SC09-2425

Diagnosis Guide, GC09-2426

IBM Language Environment for
VSE/ESA Publications

Fact Sheet, GC33-6679

Concepts Guide, GC33-6680

Debugging Guide and Run-Time Messages,
SC33-6681

Installation and Customization Guide, SC33-6682

Licensed Program Specifications, GC33-6683

Programming Guide, SC33-6684

Programming Reference, SC33-6685

Run-Time Migration Guide, SC33-6687

Writing Interlanguage Communication Applications,
SC33-6686

C Run-Time Programming Guide, SC33-6688

C Run-Time Library Reference, SC33-6689

 Related Publications

VSE/ESA Version 1 Release 4

System Control Statements, SC33-6513

System Macros User's Guide, SC33-6515

System Macros Reference, SC33-6516

VSE/ESA Version 2

System Control Statements, SC33-6613

System Macros User's Guide, SC33-6615

System Macros Reference, SC33-6616

Debug Tool for VSE/ESA

User's Guide and Reference, SC26-8797

 Softcopy Publications

The following collection kit contains the C/VSE, LE/VSE,
and other LE/VSE-conforming language product
publications:

VSE Collection, SK2T-0060

You can order these publications from Mechanicsburg
through your IBM representative.

© Copyright IBM Corp. 1994, 1996 115

116 C/VSE V1R1 User's Guide

 Index

Special Characters
/* 3
#pragma directives

options 17
runopts 59

A
abbreviated compile-time options 18
Abstract Code Unit (ACU) 28

See also ACU
ACU (Abstract Code Unit) 28
AGGREGATE compile-time option 22
assembler macros 101

B
batch

compiling 1
link-editing 13

C
CALL assembler macro 101
cataloged procedures 1
CEEDOPT options module, specifying run-time

options 14
CEEUOPT options module, specifying run-time

options 14
CHECKOUT compile-time option 22
compile-time options

See also compiler
#pragma options 17
abbreviations 18
AGGREGATE|NOAGGREGATE 22
CHECKOUT|NOCHECKOUT 22
CSECT|NOCSECT 23
DECK|NODECK 24
defaults 18
DEFINE 24
EXECOPS|NOEXECOPS 24
EXPMAC|NOEXPMAC 25
FLAG|NOFLAG 25
GONUMBER|NOGONUMBER 26
HWOPTS|NOHWOPTS 26
INFILE|NOINFILE 27
INLINE|NOINLINE 27
LANGLVL 29
LIST|NOLIST 30
LOCALE|NOLOCALE 30
LONGNAME|NOLONGNAME 31
LSEARCH|NOLSEARCH 31

compile-time options (continued)
MARGINS|NOMARGINS 34
MEMORY|NOMEMORY 35
NAME|NONAME 35
NESTINC|NONESTINC 36
OBJECT|NOOBJECT 36
OFFSET|NOOFFSET 37
OPTIMIZE|NOOPTIMIZE 37
overriding defaults 17
PPONLY|NOPPONLY 38
RENT|NORENT 39
SEARCH|NOSEARCH 39
SEQUENCE|NOSEQUENCE 42
SHOWINC|NOSHOWINC 43
SOURCE|NOSOURCE 43
SPILL 44
SSCOMM|NOSSCOMM 44
START 44
TARGET 45
TERMINAL|NOTERMINAL 45
TEST|NOTEST 46
UPCONV|NOUPCONV 47
XREF|NOXREF 47

compiler
error messages 25, 65
input 2
listing

cross reference table 55
error messages 55
external symbol cross reference listing 57
external symbol dictionary 56
heading information 54
include file option (SHOWINC) 43
includes section 54
inline report 55
object module option (LIST) 30
prolog section 54
pseudo-assembly 56
source program 54
source program option (SOURCE) 43
storage offset listing 57
structure and union maps 55

object code optimization 37
output 3
return codes 65

compiling
dynamically with VSE macro instructions 101
JCL example 1
using C/VSE 1

cross reference table
creating with XREF compile-time option 47
listing 55

© Copyright IBM Corp. 1994, 1996 117

CSECT compile-time option 23

D
data types, preserving unsignedness 47
debugging

errors 22
TEST compile-time option 46

DECK compile-time option 24
default

compile-time options 18
overriding compile-time option 17

DEFINE compile-time option 24
disk search sequence

include files 7
LSEARCH compile-time option 31
SEARCH compile-time option 39

E
EDCnnnn messages 65
efficiency, object code optimization 37
errno values 97
error

handling
compiler error message severity levels 25
compiler return codes 65

messages
compiler 65
directing to SYSLOG 45

examples
edcxuaaa 61
edcxuaab 62
edcxuaac 63
edcxuaad 2
edcxuaae 4
edcxuaaf 11
edcxuaag 13
edcxuaah 102
edcxuaai 103

examples, naming of xi
EXEC job control statement

EXECOPS run-time option and 15
syntax for executing an application 14
syntax for specifying run-time options 15

EXECOPS compile-time option 24
EXECOPS run-time option and EXEC job control

statement 15
executable phase, creating 12
EXPMAC compile-time option 25
external names

long name support 31
prelinker 9

F
filename

alternative 101
defaults 99

filenames, include files 6
files, usage 99
FLAG compile-time option 25

G
GETVIS storage required by LE/VSE 14
GONUMBER compile-time option 26

H
header files

See include files
heading information for listings 54
HWOPTS compile-time option 26

I
IJSYS�1 file

usage 99
IJSYS�2 file

usage 99
IJSYS�3 file

usage 99
IJSYS�4 file

usage 99
IJSYS�5 file

usage 99
IJSYS�6 file

usage 99
IJSYS�7 file

usage 99
include files

naming 6
nested 36
record format 6
SHOWINC compile-time option 43
system files and libraries

SEARCH compile-time option 39
searching for 7
using 4

user files and libraries
LSEARCH compile-time option 31
searching for 7
using 4

INFILE compile-time option 27
INLINE compile-time option 27
inline report 55
inlining, INLINE compile-time option 27
input

compiler 2
record sequence numbers 42

118 C/VSE V1R1 User's Guide

J
JCL (Job Control Language)

C comments 44
creating cataloged procedures with 1
description 1

L
L-names, definition of 9
LANGLVL compile-time option 29
LE/VSE

C run-time library 1
components 11

LIBDEF statement, specifying 3
linkage editor

creating an executable phase 12
using 11

LIST, compile-time option 30
listings

cross reference table 55
external symbol cross reference listing 57
external symbol dictionary 56
include file option (SHOWINC) 43
includes section 54
message summary 55
messages 55
object module option (LIST) 30
prolog section 54
pseudo-assembly 56
source program 54
structure and union maps 55
using 47

local variables 44
LOCALE compile-time option 30
logical string assist (LSA) 27
long name support 31
LONGNAME compile-time option 31
LSEARCH compile-time option 31

M
machine-readable examples xi
macros

assembler
CALL 101
compiling C programs with 101

expanded in source listing 25
mapping L-names to S-names, LONGNAME

compile-time option 9
MARGINS compile-time option 34
MEMORY compile-time option 35
memory files, compiler workfiles 35
messages

compiler, list of 65
directing to SYSLOG 45
on compiler listings 55

messages (continued)
specifying severity of 25

N
NAME compile-time option 35
natural reentrancy 13
NESTINC compile-time option 36
NOAGGREGATE compile-time option 22
NOCHECKOUT compile-time option 22
NOCSECT compile-time option 23
NODECK compile-time option 24
NOEXECOPS compile-time option 24
NOEXPMAC compile-time option 25
NOFLAG compile-time option 25
NOGONUMBER compile-time option 26
NOHWOPTS compile-time option 26
NOINFILE compile-time option 27
NOINLINE compile-time option 27
NOLIST compile-time option 30
NOLOCALE compile-time option 30
NOLONGNAME compile-time option 31
NOLSEARCH compile-time option 31
NOMARGINS compile-time option 34
NOMEMORY compile-time option 35
NONAME compile-time option 35
NONESTINC compile-time option 36
NOOBJECT compile-time option 36
NOOFFSET compile-time option 37
NOOPTIMIZE compile-time option 37
NOPPONLY compile-time option 38
NORENT compile-time option 39
NOSEARCH compile-time option 39
NOSEQUENCE compile-time option 42
NOSHOWINC compile-time option 43
NOSOURCE compile-time option 43
NOSPILL compile-time option 44
NOSSCOMM compile-time option 44
NOTERMINAL compile-time option 45
NOTEST compile-time option 46
NOUPCONV compile-time option 47
NOXREF compile-time option 47

O
object

code 1
module

LIST compile-time option 30
optimization 37
pseudo-assembly listing 56
TARGET compile-time option 45

OBJECT compile-time option 36
object sublibrary, usage 99
OFFSET compile-time option 37

 Index 119

optimization
object code 37
OPTIMIZE compile-time option 37
storage requirements 37

OPTIMIZE compile-time option 37
options

compiler 18
See also compile-time options

prelinker
See prelinker, options

run-time 59

P
PARM parameter of JCL EXEC statement 15
passing arguments 59
perror() library function 97
phase sublibrary, usage 99
PPONLY compile-time option 38
prelinker

functions of 9
options 9
when it must be used 9

preprocessor directives
effects of PPONLY compile-time option 38
include 4

primary file, specifying input to the compiler 2
primary input, compiler 2
processing a sample C program 63
programming errors 22

R
record margins 34
reentrancy

in C/VSE 13
RENT compile-time option 39

RENT compile-time option
syntax 39
using with reentrant programs 13

return codes
compiler 65
other 97
severity 65

run-time, options 59
running an application

specifying run-time options for 14
writing JCL 14

S
S-names, definition of 9
sample program

C source 61
compiling, linking, and running 63

SEARCH compile-time option 39
search sequence, include files 7
secondary file, sublibraries 3
secondary input, compiler 3
SEQUENCE compile-time option 42
sequence numbers on input records 42
severity, compiler return codes 65
shared programs 13
Shared Virtual Area

See SVA
SHOWINC compile-time option 43
softcopy examples xi
source

code, C example 61
program

compiler listing options 43
filenames in include files 6
generating reentrant code 39
input file 2
margins 34
SEQUENCE compile-time option 42

SOURCE compile-time option 43
source sublibrary, usage 99
spill area

#pragma 44
changing the size of 44
definition of 44

SPILL compile-time option 44
SSCOMM compile-time option 44
standards 29
START, compile-time option 44
storage

GETVIS storage required 14
optimization 37
program storage required 14

strerror() library function 97
structure and union maps, compiler listing 55
stub routines, in LE/VSE 11
sublibrary

required to run the compiler 1
search sequence

for include files 7
with LSEARCH compile-time option 31
with SEARCH compile-time option 39

SVA (Shared Virtual Area) 13
SYSIPT file for stdin

primary input to the compiler 2
usage 99

SYSLNK file
usage 99
with OBJECT compile-time option 3

SYSLOG file, usage 99
SYSLST file

compiler listing to 3
usage 99

120 C/VSE V1R1 User's Guide

SYSPCH file
usage 99
with DECK compile-time option 3

system, files and libraries 39

T
TARGET compile-time option 45
TERMINAL compile-time option 45
TEST, compile-time option 46
type conversion, preserving unsignedness 47

U
unsignedness preservation, type conversion 47
UPCONV compile-time option 47
user include files

LSEARCH compile-time option 31
SEARCH compile-time option 39
searching for 7
specifying with #include directive 4

W
workfiles 99
writable static, in reentrant programs 13

X
XREF compile-time option 47

 Index 121

Communicating Your Comments to IBM

IBM C for VSE/ESA
User’s Guide
Release 1

Publication No. SC09-2424-00

If there is something you like—or dislike—about this book, please let us know. You
can use one of the methods listed below to send your comments to IBM. If you
want a reply, include your name, address, and telephone number. If you are com-
municating electronically, include the book title, publication number, page number,
or topic you are commenting on.

The comments you send should only pertain to the information in this book and its
presentation. To request additional publications or to ask questions or make com-
ments about the functions of IBM products or systems, you should talk to your IBM
representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

If you are mailing a readers’ comment form (RCF) from a country other than the
United States, you can give it to the local IBM branch office or IBM representative
for postage-paid mailing.

� If you prefer to send comments by mail, use the RCF at the back of this book.

� If you prefer to send comments by FAX, use this number:

– United States and Canada: 416-448-6161

– Other countries: (+1)-416-448-6161

� If you prefer to send comments electronically, use the network ID listed below.
Be sure to include your entire network address if you wish a reply.

 – Internet: torrcf@vnet.ibm.com
 – IBMLink: toribm(torrcf)
 – IBM/PROFS: torolab4(torrcf)
 – IBMMAIL: ibmmail(caibmwt9)

Readers' Comments — We'd Like to Hear from You

IBM C for VSE/ESA
User’s Guide
Release 1

Publication No. SC09-2424-00

Overall, how satisfied are you with the information in this book?

How satisfied are you that the information in this book is:

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? � Yes � No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Very

 Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Overall satisfaction � � � � �

Very

 Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Accurate � � � � �
Complete � � � � �
Easy to find � � � � �
Easy to understand � � � � �
Well organized � � � � �
Applicable to your tasks � � � � �

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments — We'd Like to Hear from You
SC09-2424-00 ����

Fold and Tape Please do not staple Fold and Tape

PLACE
POSTAGE
STAMP
HERE

IBM Canada Ltd. Laboratory
Information Development
2G/345/1150/TOR
1150 EGLINTON AVENUE EAST
NORTH YORK ONTARIO CANADA M3C 1H7

Fold and Tape Please do not staple Fold and Tape

SC09-2424-00

����

Program Number: 5686-A01

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC09-2424-00

	FC
	C09242401
	C09242402
	C09242403
	C09242404
	C09242405
	BC

