
IBM Library Server Print Preview

DOCNUM = SC33-6641-00
DATETIME = 09/25/97 11:10:12

BLDVERS = 1.2
TITLE = REXX/VSE V6R1 User's Guide

AUTHOR =
COPYR = © Copyright IBM Corp. 1988, 1995
PATH = /home/webapps/epubs/htdocs/book

COVER Book Cover

IBM VSE/Enterprise Systems Architecture
VSE Central Functions

REXX/VSE User's Guide

 Version 6 Release 1

 Document Number SC33-6641-00

 Program Number
 5686-066

 File Number S370/390-39

NOTICES Notices

 ___ Note! __
 | |
 | Before using this information and the product it supports, be sure |
 | to read the general information under "Notices" in |
 | topic NOTICES_1. |
 | |
 |__|

EDITION Edition Notice

Second Edition (April 1995)

 This edition applies to Version 6 Release 1 of IBM REXX/VSE, which is
 part of VSE/Central Functions, Program Number 5686-066, and to all
 subsequent releases and modifications until otherwise indicated in new
 editions.

 Publications are not stocked at the address given below. Requests for
 IBM publications should be made to your IBM representative or to the
 IBM branch office serving your locality.

 Comments may be addressed to:

 IBM Corporation or to: IBM Deutschland Entwicklung GmbH
 Attn: Dept ECJ - BP/003D Department 3248
 6300 Diagonal Highway Schoenaicher Strasse 220
 Boulder, CO 80301, D-71032 Boeblingen
 U.S.A. Federal Republic of Germany

 IBM may use or distribute whatever information you supply in any way
 it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1988, 1995.
All rights reserved.

 Note to U.S. Government Users -- Documentation related to restricted
 rights -- Use, duplication or disclosure is subject to restrictions
 set forth in GSA ADP Schedule Contract with IBM Corp.

CONTENTS Table of Contents

Summarize

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

1 of 121 2/26/2019, 12:16 PM

COVER Book Cover

NOTICES Notices

EDITION Edition Notice

CONTENTS Table of Contents

FIGURES Figures

NOTICES_1 Notices
NOTICES_1.1 Programming Interface Information
NOTICES_1.2 Trademarks and Service Marks

PREFACE About This Book
PREFACE.1 Who Should Use This Book
PREFACE.2 How This Book Is Organized
PREFACE.3 Where to Find More Information
PREFACE.4 Referenced Program Products

1.0 PART I -- Learning the REXX Language

1.1 Chapter 1. Introduction
1.1.1 What is REXX?
1.1.2 Features of REXX
1.1.3 Components of REXX
1.1.4 REXX and Systems Application Architecture (SAA)
1.1.5 Benefits of Using a Compiler

1.2 Chapter 2. Writing and Running a REXX Program
1.2.1 Before You Begin
1.2.2 What is a REXX Program?
1.2.3 Syntax of REXX Instructions
1.2.4 Programs Using Double-Byte Character Set Names
1.2.5 Running a Program
1.2.6 Interpreting Error Messages
1.2.7 How to Prevent Translation to Uppercase
1.2.8 Passing Information to a Program

1.3 Chapter 3. Using Variables and Expressions
1.3.1 Program Variables
1.3.2 Using Variables
1.3.3 Using Expressions
1.3.4 Tracing Expressions with the TRACE Instruction

1.4 Chapter 4. Controlling the Flow within a Program
1.4.1 Conditional, Looping, and Interrupt Instructions
1.4.2 Using Conditional Instructions
1.4.3 Using Looping Instructions
1.4.4 Using Interrupt Instructions

1.5 Chapter 5. Using Functions
1.5.1 What is a Function?
1.5.2 Built-In Functions

1.6 Chapter 6. Writing Subroutines and Functions
1.6.1 What are Subroutines and Functions?
1.6.2 Writing Subroutines and Functions
1.6.3 Subroutines and Functions--Similarities and Differences

1.7 Chapter 7. Manipulating Data
1.7.1 Using Compound Variables and Stems
1.7.2 Parsing Data

2.0 PART II -- Using REXX

2.1 Chapter 8. Using Commands from a Program
2.1.1 Types of Commands
2.1.2 Issuing Commands from a Program

2.2 Chapter 9. Diagnosing Problems within a Program
2.2.1 Debugging Programs

2.3 Chapter 10. Using REXX/VSE External Functions
2.3.1 REXX/VSE External Functions
2.3.2 Function Packages

2.4 Chapter 11. Storing Information in the Data Stack
2.4.1 What is a Data Stack?
2.4.2 Manipulating the Data Stack
2.4.3 Processing of the Data Stack
2.4.4 Using the Data Stack
2.4.5 Leaving Data on the Stack
2.4.6 Creating a Buffer on the Data Stack
2.4.7 Protecting Elements in the Data Stack

2.5 Chapter 12. Processing Data and Input/Output Processing
2.5.1 Types of Processing
2.5.2 Dynamic Modification of a Single REXX Expression
2.5.3 Using EXECIO to Process Information to and from Files

BIBLIOGRAPHY Bibliography

INDEX Index

BACK_1 Communicating Your Comments to IBM

COMMENTS Readers' Comments -- We'd Like to Hear from You

FIGURES Figures

1. Example of a Simple Program 1.2.2
2. Example of a Longer Program 1.2.2
3. Example of Free Format 1.2.3.2

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

2 of 121 2/26/2019, 12:16 PM

4. Example of a Program with a Syntax Error 1.2.6
5. Example of Reading Input and Writing Output 1.2.7
6. Example of a Program That Uses PULL 1.2.8.1
7. Variation of an Example that Uses PULL 1.2.8.1
8. Example of a Program That Uses the ARG Instruction 1.2.8.2
9. Example of a Program That Uses PARSE ARG 1.2.8.3

10. Arithmetic Operator Priority 1.3.3.1
11. Example Using Arithmetic Expressions 1.3.3.1.1
12. Example Using a Comparison Expression 1.3.3.2.2
13. Example Using Logical Expressions 1.3.3.3.1
14. Example Using Concatenation Operators 1.3.3.4.1
15. Overall Operator Priority 1.3.3.5
16. TRACE Shows How REXX Evaluates an Expression 1.3.4
17. Possible Solution 1.3.4.1
18. Example of Missing Instructions 1.4.2.2
19. Example Using SELECT WHEN...OTHERWISE...END 1.4.2.3
20. Possible Solution 1.4.2.3.1
21. Example Using a DO FOREVER Loop 1.4.3.1.2
22. Example Using the LEAVE Instruction 1.4.3.1.3
23. Example Using DO WHILE 1.4.3.2.1
24. Possible Solution 1.4.3.2.2
25. Example Using DO UNTIL 1.4.3.2.3
26. Possible Solution 1.4.3.2.4
27. Example Using the EXIT Instruction 1.4.4.1
28. Finding a Maximum Number 1.5.1.1
29. Possible Solution 1.5.2.7.1
30. Example of Passing Information in a Variable Using a

Subroutine 1.6.2.2.1
31. Example of Passing Information in a Variable Using a

Function 1.6.2.2.1
32. Example of a Problem Caused by Passing Information in a Variable

Using a Subroutine 1.6.2.2.1
33. Example of a Problem Caused by Passing Information in a Variable

Using a Function 1.6.2.2.1
34. Example of Subroutine Using the PROCEDURE Instruction 1.6.2.2.1
35. Example of Subroutine without the PROCEDURE Instruction 1.6.2.2.1
36. Example of Function Using the PROCEDURE Instruction 1.6.2.2.1
37. Example of Function without the PROCEDURE Instruction 1.6.2.2.1
38. Example Using PROCEDURE EXPOSE in Subroutine 1.6.2.2.1
39. Example Using PROCEDURE EXPOSE in a Function 1.6.2.2.1
40. Example of Passing Arguments on the CALL Instruction 1.6.2.2.2
41. Example of Passing Arguments on the Call to an Internal

Routine 1.6.2.2.2
42. Possible Solution (Main Program) 1.6.2.3.1
43. Possible Solution (Internal Subroutine Named CHECK) 1.6.2.3.1
44. Possible Solution (External Subroutine named THROW) 1.6.2.3.1
45. Possible Solution 1.6.2.3.2
46. LST Queue Contents 2.1.2.3.3
47. Language Codes for SETLANG Function That Replace the Function

Call 2.3.1.5
48. Possible Solution 1 2.4.2.1
49. Possible Solution 2 2.4.2.1
50. Possible Solution 3 2.4.2.1
51. Using the Data Stack to Pass Information from the Main

Program 2.4.4
52. External Routine 2.4.4
53. Data Stack Example 2.4.7.3.1
54. EXECIO Example 1 2.5.3.2.6
55. EXECIO Example 2 2.5.3.2.6
56. EXECIO Example 3 2.5.3.2.6
57. EXECIO Example 4 2.5.3.2.6
58. EXECIO Example 5 2.5.3.2.6
59. EXECIO Example 5 (continued) 2.5.3.2.6
60. EXECIO Example 6 2.5.3.2.6
61. EXECIO Example 6 (continued) 2.5.3.2.6
62. EXECIO Example 6 (continued) 2.5.3.2.6

NOTICES_1 Notices

 References in this publication to IBM products, programs, or services do
 not imply that IBM intends to make these available in all countries in
 which IBM operates. Any reference to an IBM product, program, or service
 is not intended to state or imply that only IBM's product, program, or
 service may be used. Any functionally equivalent product, program, or
 service that does not infringe any of the intellectual property rights of
 IBM may be used instead of the IBM product, program, or service. The
 evaluation and verification of operation in conjunction with other
 products, except those expressly designated by IBM, are the responsibility
 of the user.

 IBM may have patents or pending patent applications covering subject
 matter in this document. The furnishing of this document does not give
 you any license to these patents. You can send license inquiries, in
 writing, to the IBM Director of Licensing, IBM Corporation, 500 Columbus
 Avenue, Thornwood, New York 10594, USA.

 For online versions of this book, we authorize you to:

 ° Copy, modify, and print the documentation contained on the media, for
 use within your enterprise, provided you reproduce the copyright
 notice, all warning statements, and other required statements on each
 copy or partial copy.
 ° Transfer the original unaltered copy of the documentation when you
 transfer the related IBM product (which may be either machines you
 own, or programs, if the program's license terms permit a transfer).
 You must, at the same time, destroy all other copies of the
 documentation.

 You are responsible for payment of any taxes, including personal property
 taxes, resulting from this authorization.

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

3 of 121 2/26/2019, 12:16 PM

 THERE ARE NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING THE WARRANTIES OF
 MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

 Some jurisdictions do not allow the exclusion of implied warranties, so
 the above exclusion may not apply to you.

 Your failure to comply with the terms above terminates this authorization.
 Upon termination, you must destroy your machine readable documentation.

Subtopics:

 NOTICES_1.1 Programming Interface Information
 NOTICES_1.2 Trademarks and Service Marks

NOTICES_1.1 Programming Interface Information

 This book is intended to help the customer write programs in the REXX
 programming language and customize services that REXX/VSE 6.1.0 provides
 for REXX processing. This book documents General-use Programming
 Interface and Associated Guidance Information that REXX/VSE 6.1.0
 provides.

 General-use programming interfaces allow the customer to write programs
 that obtain the services of REXX/VSE 6.1.0.

NOTICES_1.2 Trademarks and Service Marks

 The following terms, denoted by an asterisk (*) in this publication, are
 trademarks of the IBM Corporation in the United States or other countries
 or both:

 Systems Application Architecture SAA
 IBM CICS
 BookManager Library Reader
 VSE/ESA MVS/ESA
 Operating System/400 OS/400
 Operating System/2 OS/2

PREFACE About This Book

 This book describes the REstructured eXtended eXecutor (REXX) language.
 The REXX language is implemented through

 ° The REXX/VSE Interpreter
 ° The Library for REXX/370 in REXX/VSE, which you can use to run
 compiled REXX programs.

 The interpreter is also called the language processor. The Library for
 REXX/370 in REXX/VSE is also called a compiler's runtime processor.
 REXX/VSE is a partial implementation of Level 2 Systems Application
 Architecture (SAA) REXX on the VSE/ESA system.

Subtopics:

 PREFACE.1 Who Should Use This Book
 PREFACE.2 How This Book Is Organized
 PREFACE.3 Where to Find More Information
 PREFACE.4 Referenced Program Products

PREFACE.1 Who Should Use This Book

 This book is intended for anyone who wants to learn how to write REXX
 programs. More specifically, the audience is programmers who may range
 from the inexperienced to those with extensive programming experience.
 Because of the broad range of experience in readers, this book is divided
 into two parts.

"PART I -- Learning the REXX Language"

 This part is for inexperienced REXX programmers who have at least some
 knowledge of JCL and know how to create PROC members and a sublibrary.
 Programmers unfamiliar with VSE/ESA should first read VSE/ESA System

Control Statements, SC33-6613. Experienced programmers new to REXX
 can also read this section to learn the basics of the REXX language.

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

4 of 121 2/26/2019, 12:16 PM

"PART II -- Using REXX"

 This part is for programmers already familiar with the REXX language
 and experienced with the workings of VSE/ESA. It describes more
 complex aspects of the REXX language and how they work in VSE/ESA.

 If you are a new programmer, you might want to concentrate on the first
 part. If you are an experienced VSE/ESA programmer, you might want to
 read the first part and concentrate on the second part.

PREFACE.2 How This Book Is Organized

 This book includes chapter previews, examples, and exercises.

Purpose of Each Chapter: At the beginning of each chapter is a statement
 about the purpose of the chapter.

Examples: Throughout the book, you will find examples that you can try as
 you read. Examples including REXX keyword instructions uppercase any REXX
 keywords. Similarly, examples showing VSE/ESA control statements or
 VSE/POWER commands uppercase keyword operands and command names.
 Information that can vary is in lowercase. This use of uppercase and
 lowercase is to help you distinguish between words that cannot change and
 words that can. It does not mean that you must type REXX instructions and
 VSE/ESA control statements or VSE/POWER commands with certain words in
 uppercase and others in lowercase.

 Here are some examples. The following REXX keyword instruction contains
 the REXX keyword SAY, which cannot vary, and a phrase, which can vary.

SAY 'This is an example of an instruction.'

 The next example shows a system control statement. The system control
 statement name and keywords are in uppercase because they cannot vary.
 The library and sublibrary are in lowercase because they can vary.

// LIBDEF *,SEARCH=(prd1.base,rexxlib.samples)

Exercises: Periodically, you will find sections with exercises you can do
 to test your understanding of the information. Answers to the exercises
 are included when appropriate.

Terminology: REXX/VSE is interactive only from the operator's console.
 Keep this reservation in mind regarding any terminology in this book
 suggesting interactive input and output. For example, displaying output
 refers to presenting it through the current output stream; entering
 information refers to providing it through the current input stream.

 A REXX program can be called an exec.

PREFACE.3 Where to Find More Information

 The following books contain information related to the topics covered in
 this book.

Subtopics:

 PREFACE.3.1 REXX/VSE Publications
 PREFACE.3.2 VSE/ESA Publications
 PREFACE.3.3 SAA Publications
 PREFACE.3.4 IBM Compiler and Library Publications

PREFACE.3.1 REXX/VSE Publications

REXX/VSE Reference, SC33-6642.

PREFACE.3.2 VSE/ESA Publications

VSE/ESA System Control Statements, SC33-6613

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

5 of 121 2/26/2019, 12:16 PM

VSE/POWER Application Programming, SC33-6636

PREFACE.3.3 SAA Publications

SAA Common Programming Interface REXX Level 2 Reference, SC24-5549

SAA Common Programming Interface Communications Reference, SC26-4399

PREFACE.3.4 IBM Compiler and Library Publications

IBM Compiler and Library for REXX/370; Introducing the Next Step in
REXX Programming, G511-1430

IBM Compiler and Library for REXX/370; User's Guide and Reference,
 SH19-8160

PREFACE.4 Referenced Program Products

 This book refers to the following product:

 ° Library for SAA REXX/370, Program Number 5695-014

 ° Compiler for SAA REXX/370, Program Number 5695-013.

 All occurrences of VSE/ESA refer to VSE/ESA Version 2, Release 1, Program
 Number 5690-VSE.

1.0 PART I -- Learning the REXX Language

 The REXX language is a versatile general-purpose programming language new
 and experienced programmers can use. This part of the book is for
 programmers who want to learn the REXX language. The chapters in this
 part cover the following topics.

 ° Chapter 1, "Introduction" in topic 1.1 -- The REXX language has many
 features that make it a powerful programming tool.

 ° Chapter 2, "Writing and Running a REXX Program" in topic 1.2 --
 Programs are easy to write and have few syntax rules.

 ° Chapter 3, "Using Variables and Expressions" in topic 1.3 --
 Variables, expressions, and operators are essential when writing
 programs that do arithmetic and comparisons.

 ° Chapter 4, "Controlling the Flow within a Program" in topic 1.4 -- You
 can use instructions to branch, loop, or interrupt the flow of a
 program.

 ° Chapter 5, "Using Functions" in topic 1.5 -- A function is a sequence
 of instructions that can perform a specific task and must return a
 value.

 ° Chapter 6, "Writing Subroutines and Functions" in topic 1.6 -- You can
 write internal and external routines that a program calls.

 ° Chapter 7, "Manipulating Data" in topic 1.7 -- Compound variables and
 parsing are two ways to manipulate data.

 Several REXX instructions either get information from the input stream or
 write information to the output stream. The INDD and OUTDD fields in the
 module name table identify the default input and output streams,
 respectively. If you have not changed the defaults, the current input
 stream is SYSIPT and the current output stream is SYSLST.

 ° SAY sends information to the output stream.
 ° PARSE PULL and PULL get information from the top of the data stack or,
 if the stack is empty, from the input stream.
 ° TRACE sends information to the output stream.
 ° PARSE EXTERNAL gets information from the input stream.
 ° EXECIO reads information from or writes it to the specified output
 stream or device.

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

6 of 121 2/26/2019, 12:16 PM

 The USERID built-in function returns the current user ID. (See topic
1.5.2.6 for more information.)

Subtopics:

 1.1 Chapter 1. Introduction
 1.2 Chapter 2. Writing and Running a REXX Program
 1.3 Chapter 3. Using Variables and Expressions
 1.4 Chapter 4. Controlling the Flow within a Program
 1.5 Chapter 5. Using Functions
 1.6 Chapter 6. Writing Subroutines and Functions
 1.7 Chapter 7. Manipulating Data

1.1 Chapter 1. Introduction

Purpose: This chapter describes the REXX programming language and some of
 its features.

Subtopics:

 1.1.1 What is REXX?
 1.1.2 Features of REXX
 1.1.3 Components of REXX
 1.1.4 REXX and Systems Application Architecture (SAA)
 1.1.5 Benefits of Using a Compiler

1.1.1 What is REXX?

 REXX is an extremely versatile programming language. Common programming
 structure, readability, and free format make it a good language for
 beginners and general users. REXX is also suitable for more experienced
 computer professionals because it can be intermixed with commands to host
 environments, it provides powerful functions, and it has extensive
 mathematical capabilities.

 REXX programs can do many tasks, including the automation of
 VSE/Operations. For example, if you use the JCL EXEC command to call a
 REXX program, you can leave JCL statements on the stack for VSE/ESA to
 process. This enables you to insert JCL statements or data into the
 current job stream. REXX programs can run in any partition. They can
 communicate with POWER through the SAS interface.

1.1.2 Features of REXX

 In addition to its versatility, REXX has many other features, some of
 which are:

Ease of use: The REXX language is easy to read and write because many
 instructions are meaningful English words. Unlike some lower level
 programming languages that use abbreviations, REXX instructions are common
 words, such as SAY, PULL, IF...THEN...ELSE..., DO...END, and EXIT.

Free format: There are few rules about REXX format. You need not start
 an instruction in a particular column. You can skip spaces in a line or
 skip entire lines. You can have an instruction span many lines or have
 multiple instructions on one line. You need not predefine variables. You
 can type instructions in upper, lower, or mixed case. The few rules about
 REXX format are covered in "Syntax of REXX Instructions" in topic 1.2.3.

Convenient built-in functions: REXX supplies built-in functions that
 perform various processing, searching, and comparison operations for both
 text and numbers. Other built-in functions provide formatting
 capabilities and arithmetic calculations.

Debugging capabilities: When a REXX program running in REXX/VSE
 encounters an error, REXX writes messages describing the error to the
 current output stream. You can also use the REXX TRACE instruction and
 the interactive debug facility to locate errors in programs.

Interpreted language: The REXX/VSE product includes the REXX/VSE
 interpreter. When a REXX program runs, the interpreter directly processes

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

7 of 121 2/26/2019, 12:16 PM

 each line. Languages that are not interpreted must be compiled into
 machine language and possibly link-edited before they are run.

 The REXX/VSE product also includes the Library for REXX/370 in REXX/VSE.
 You can use this component to run compiled programs. (See topic 1.1.5 for
 information about the benefits of using a compiler.)

Extensive parsing capabilities: REXX includes extensive parsing
 capabilities for character manipulation. This parsing capability lets you
 set up a pattern to separate characters, numbers, and mixed input.

1.1.3 Components of REXX

 The various components of REXX make it a powerful tool for programmers.
 REXX is made up of:

 ° Clauses, which can be instructions, null clauses, or labels.
 Instructions can be:
 - Keyword instructions
 - Assignments
 - Commands (both REXX/VSE commands and host commands, such as
 ADDRESS POWER commands)
 The language processor processes keyword instructions and assignments.
 ° Built-in functions -- These functions are built into the language
 processor and provide convenient processing options.
 ° External functions -- REXX/VSE provides these functions that interact
 with the system to do specific tasks for REXX.
 ° Data stack functions -- A data stack can store data for I/O and other
 types of processing.

1.1.4 REXX and Systems Application Architecture (SAA)

 Systems Application Architecture* (SAA*) REXX defines a common set of
 language elements you can use in several environments. REXX/VSE is a
 partial implementation of Level 2 SAA REXX on the VSE/ESA* system. The
 SAA environments are the following:

 ° MVS
 - Base system (TSO/E, APPC/MVS, batch)
 - CICS*
 - IMS
 ° VM CMS
 ° Operating System/400* (OS/400*)
 ° Operating System/2* (OS/2*).

1.1.5 Benefits of Using a Compiler

 The IBM Compiler for REXX/370 (Program Number 5695-013) and the IBM
 Library for REXX/370 in REXX/VSE provide significant benefits for
 programmers during program development and for users when a program is
 run. The benefits are:

 ° Improved performance
 ° Reduced system load
 ° Protection for source code and programs
 ° Improved productivity and quality
 ° Portability of compiled programs
 ° Checking for compliance to SAA

Subtopics:

 1.1.5.1 Improved Performance
 1.1.5.2 Reduced System Load
 1.1.5.3 Protection for Source Code and Programs
 1.1.5.4 Improved Productivity and Quality
 1.1.5.5 Portability of Compiled Programs
 1.1.5.6 SAA Compliance Checking

1.1.5.1 Improved Performance

 The performance improvements that you can expect when you run compiled
 REXX programs depend on the type of program. A program that performs
 large numbers of arithmetic operations of default precision shows the
 greatest improvement. A program that mainly issues commands to the host
 shows minimal improvement because REXX cannot decrease the time the host
 takes to process the commands.

1.1.5.2 Reduced System Load

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

8 of 121 2/26/2019, 12:16 PM

 Compiled REXX programs run faster than interpreted programs. Because a
 program has to be compiled only once, running compiled programs reduces
 system load and improves response time for frequently run programs.

 For example, a REXX program that performs many arithmetic operations might
 take 12 seconds to run on the interpreter. Running the program 60 times
 uses about 12 minutes of processor time. The same program when compiled
 might run six times faster, using only about 2 minutes of processor time.

1.1.5.3 Protection for Source Code and Programs

 Your REXX programs and algorithms are assets that you want to protect.

 The Compiler produces object code, which helps you protect these assets by
 discouraging people from making unauthorized changes to your programs.
 You can distribute your REXX programs in object code only.

1.1.5.4 Improved Productivity and Quality

 The Compiler can produce source listings, cross-reference listings, and
 messages, which help you more easily develop and maintain your REXX
 programs.

 The Compiler identifies syntax errors in a program before you start
 testing it. You can then focus on correcting errors in logic during
 testing with the REXX interpreter.

1.1.5.5 Portability of Compiled Programs

 A compiled REXX program can run under other operating systems, such as
 MVS/ESA* or VM CMS. A REXX program compiled under VM CMS or MVS/ESA can
 run under REXX/VSE.

1.1.5.6 SAA Compliance Checking

 The Systems Application Architecture (SAA) definitions of software
 interfaces, conventions, and protocols provide a framework for designing
 and developing applications that are consistent within and across several
 operating systems.

 To help you write programs for use in all SAA environments, the Compiler
 can optionally check for SAA compliance. With this option in effect, a
 warning message is issued for each non-SAA item found in a program. For
 more information, see IBM Compiler and Library for REXX/370; Introducing

the Next Step in REXX Programming.

1.2 Chapter 2. Writing and Running a REXX Program

Purpose: This chapter introduces programs and their syntax, describes the
 steps involved in writing and running programs, and explains concepts you
 need to understand to avoid common problems.

Subtopics:

 1.2.1 Before You Begin
 1.2.2 What is a REXX Program?
 1.2.3 Syntax of REXX Instructions
 1.2.4 Programs Using Double-Byte Character Set Names
 1.2.5 Running a Program
 1.2.6 Interpreting Error Messages
 1.2.7 How to Prevent Translation to Uppercase
 1.2.8 Passing Information to a Program

1.2.1 Before You Begin

 The default location for all parts of REXX/VSE is the PRD1.BASE
 sublibrary. All descriptions and examples in this book refer to this
 sublibrary.

 Before you can run a REXX program you need to put the program in a
 sublibrary in the active PROC chain.

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

9 of 121 2/26/2019, 12:16 PM

1.2.2 What is a REXX Program?

 A REXX program consists of REXX language instructions that the REXX
 interpreter interprets directly. (The Library for REXX/370 in REXX/VSE
 runs compiled programs.) A program can also contain commands that the
 host environment executes, such as ADDRESS POWER commands.

 One advantage of the REXX language is its similarity to ordinary English.
 This similarity makes it easy to read and write a REXX program. For
 example, to write a line to the output stream, you use the REXX
 instruction SAY followed by the line. SAY writes output to the current
 output stream. If you have not changed the default, the output stream is
 SYSLST.

 __
 | |
 | |
 | /* Sample REXX Program */ |
 | SAY 'This is a REXX program.' |
 | |
 | |
 |__|
 Figure 1. Example of a Simple Program

 This program starts with a comment line to identify it as a REXX program.
 A comment begins with /* and ends with */. More about comments and why
 you might need a REXX program identifier appears later (topic 1.2.3.3).

 When you run the program, the SAY instruction sends to the output stream:

This is a REXX program.

 Even in a longer program, the instructions are similar to ordinary English
 and are easy to understand. For example, you could use the following to
 call the program ADDTWO, which adds two numbers:

// LIBDEF *,SEARCH=(prd1.base,rexxlib.samples)
// EXEC REXX=addtwo
42
21
/&

 Here is the ADDTWO program:

 __
 | |
 | |
 | /**************************** REXX *********************************/|
 | /* This program adds two numbers and produces their sum. */|
 | /***/|
 | PULL number1 /* Assigns: number1=42 */ |
 | PULL number2 /* Assigns: number2=21 */ |
 | sum = number1 + number2 |
 | SAY 'The sum of the two numbers is' sum'.' |
 | |
 | |
 |__|
 Figure 2. Example of a Longer Program

 When you run the example program, PULL gets input from the current input
 stream. The default is SYSIPT.

 The first PULL instruction assigns the variable number1 the value 42. The
 second PULL instruction assigns the variable number2 the value 21. The
 next line contains an assignment. The language processor adds the values
 in number1 and number2 and assigns the result, 63, to sum. Finally, the
 SAY instruction sends to the output stream the line:

The sum of the two numbers is 63.

 Before you try any examples, please read the next two sections, "Syntax of
REXX Instructions" in topic 1.2.3 and "Running a Program" in topic 1.2.5.

1.2.3 Syntax of REXX Instructions

 Some programming languages have rigid rules about how and where you enter
 characters on each line. For example, assembler statements must begin in
 a certain column. REXX, on the other hand, has simple syntax rules. You
 can use upper or lower or mixed case. REXX has no restrictions about the
 columns in which you can type.

 An instruction can begin in any column on any line. The following are all
 valid instructions.

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

10 of 121 2/26/2019, 12:16 PM

SAY 'You can type in any column'
SAY 'You can type in any column'

SAY 'You can type in any column'

 These instructions are sent to the output stream:

You can type in any column
You can type in any column
You can type in any column

Subtopics:

 1.2.3.1 The Format of REXX Instructions
 1.2.3.2 The Letter Case of REXX Instructions
 1.2.3.3 Types of REXX Clauses

1.2.3.1 The Format of REXX Instructions

 The REXX language has free format. This means you can insert extra spaces
 between words. For example, the following all mean the same:

total=num1+num2
total =num1+num2
total = num1+num2
total = num1 + num2

 You can also insert blank lines throughout a program without causing an
 error.

1.2.3.2 The Letter Case of REXX Instructions

 You can enter a REXX instruction in lowercase, uppercase, or mixed case.
 For example, SAY, Say, and say all have the same meaning. The language
 processor translates alphabetic characters to uppercase, unless you
 enclose them in single or double quotation marks.

Using Quotation Marks in an Instruction: A series of characters within
 matching quotation marks is a literal string. The following examples
 contain literal strings.

SAY 'This is a REXX literal string.' /* Using single quotation marks */

SAY "This is a REXX literal string." /* Using double quotation marks */

 Do not enclose a literal string with one each of the two different types
 of quotation marks. For example, the following is incorrect:

SAY 'This is a REXX literal string." /* Using mismatched quotation marks */

 If you omit the quotation marks around a literal string in a SAY
 instruction, the language processor usually translates the statement to
 uppercase. For example,

SAY This is a REXX string.

 results in:

THIS IS A REXX STRING.

 (This assumes none of the words is the name of a variable that you have
 already assigned a value. In REXX, the default value of a variable is its
 own name in uppercase.)

 If a string contains an apostrophe, you can enclose the literal string in
 double quotation marks.

SAY "This isn't difficult!"

 You can also use two single quotation marks in place of the apostrophe,
 because a pair of single quotation marks is processed as one.

SAY 'This isn''t difficult!'

 Either way, the outcome is the same.

This isn't difficult!

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

11 of 121 2/26/2019, 12:16 PM

Ending an instruction: A line usually contains one instruction except
 when it contains a semicolon (;) or ends with a comma (,).

 The end of the line or a semicolon indicates the end of an instruction.
 If you put one instruction on a line, the end of the line delineates the
 end of the instruction. If you put multiple instructions on one line, you
 must separate adjacent instructions with a semicolon.

SAY 'Hi!'; say 'Hi again!'; say 'Hi for the last time!'

 This example would result in three lines.

Hi!
Hi again!
Hi for the last time!

Continuing an instruction: A comma is the continuation character. It
 indicates that the instruction continues to the next line. The comma,
 when used in this manner, also adds a space when the lines are
 concatenated. Here is how the comma continuation character works when a
 literal string is being continued on the next line.

SAY 'This is an extended',
'REXX literal string.'

 The comma at the end of the first line adds a space (between extended and
REXX when the two lines are concatenated for output. A single line

 results:

This is an extended REXX literal string.

 The following two instructions are identical and yield the same result:

SAY 'This is',
'a string.'

SAY 'This is' 'a string.'

 The space between the two separate strings is preserved:

This is a string.

Continuing a literal string without adding a space: If you need to
 continue an instruction to a second or more lines but do not want REXX to
 add spaces in the line, use the concatenation operand (two single OR bars,
 ||).

SAY 'This is an extended literal string that is bro'||,
'ken in an awkward place.'

 This example results in one line no space in the word "broken."

This is an extended literal string that is broken in an awkward place.

 Also note that the following two instructions are identical and yield the
 same result:

SAY 'This is' ||,
'a string.'

SAY 'This is' || 'a string.'

 These examples result in:

This isa string.

 In both examples, the concatenation operator deletes spaces between the
 two strings.

 The following example demonstrates the free format of REXX.

 __
 | |
 | |
 | /************************* REXX *****************************/ |
 | SAY 'This is a REXX literal string.' |
 | SAY 'This is a REXX literal string.' |
 | SAY 'This is a REXX literal string.' |
 | SAY, |
 | 'This', |
 | 'is', |

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

12 of 121 2/26/2019, 12:16 PM

 | 'a', |
 | 'REXX', |
 | 'literal', |
 | 'string.' |
 | |
 | SAY'This is a REXX literal string.';SAY'This is a REXX literal string.'|
 | SAY ' This is a REXX literal string.' |
 | |
 | |
 |__|
 Figure 3. Example of Free Format

 Running this example results in six lines of identical output, followed by
 one indented line.

This is a REXX literal string.
This is a REXX literal string.
This is a REXX literal string.
This is a REXX literal string.
This is a REXX literal string.
This is a REXX literal string.

This is a REXX literal string.

 Thus, you can begin an instruction anywhere on a line, you can insert
 blank lines, and you can insert extra spaces between words in an
 instruction. The language processor ignores blank lines, and it ignores
 spaces that are greater than one. This flexibility of format lets you
 insert blank lines and spaces to make a program easier to read.

 Blanks and spaces are significant only during parsing. "Parsing Data" in
topic 1.7.2 describes parsing.

1.2.3.3 Types of REXX Clauses

 REXX clauses can be: instructions, null clauses, and labels. Instructions
 can be keyword instructions, assignments, or commands. The following
 example shows a program with these types of clauses. A description of
 each type of clause follows the example.

 __
 | |
 | |
 | /* QUOTA REXX program. Two car dealerships are competing to */ |
 | /* sell the most cars in 30 days. Who will win? */ |
 | |
 | store_a=0; store_b=0 |
 | DO 30 |
 | CALL sub |
 | END |
 | IF store_a>store_b THEN SAY "Store_a wins!" |
 | ELSE IF store_b>store_a THEN SAY "Store_b wins!" |
 | ELSE SAY "It's a tie!" |
 | EXIT |
 | |
 | sub: |
 | store_a=store_a+RANDOM(0,20) /* RANDOM returns a random number in */ |
 | store_b=store_b+RANDOM(0,20) /* in specified range, here 0 to 20 */ |
 | RETURN |
 | |
 | |
 |__|

Keyword Instructions: A keyword instruction tells the language processor
 to do something. It begins with a REXX keyword that identifies what the
 language processor is to do. For example, DO can group instructions and
 execute them repetitively, and IF tests whether a condition is met. SAY
 writes to the current output stream.

 IF, THEN and ELSE are three keywords that work together in one
 instruction. Each keyword forms a clause, which is a subset of an
 instruction. If the expression that follows the IF keyword is true, the
 instruction that follows the THEN keyword is processed. Otherwise, the
 instruction that follows the ELSE keyword is processed. (Note that a
 semicolon is needed before the ELSE if you are putting an ELSE clause on
 the same line with a THEN.) If you want to put more than one instruction
 after a THEN or ELSE, use a DO before the group of instructions and an END
 after them. More information about the IF instruction appears in "Using

Conditional Instructions" in topic 1.4.2.

 The EXIT keyword tells the language processor to end the program. Using
 EXIT in the preceding example is necessary because, otherwise, the
 language processor would execute the code in the subroutine after the
 label sub:. EXIT is not necessary in some programs (such as those without
 subroutines), but it is good programming practice to include it. More
 about EXIT appears in "EXIT Instruction" in topic 1.4.4.1.

Assignment: An assignment gives a value to a variable or changes the
 current value of a variable. A simple assignment instruction is:

number = 4

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

13 of 121 2/26/2019, 12:16 PM

 In the preceding program, a simple assignment instruction is: store_a=0.
 The left side of the assignment (before the equal sign) contains the name
 of the variable to receive a value from the right side (after the equal
 sign). The right side can be an actual value (such as 4) or an
 expression. An expression is something that needs to be evaluated, such
 as an arithmetic expression. The expression can contain numbers,
 variables, or both.

number = 4 + 4

number = number + 4

 In the first example, the value of number is 8. If the second example
 directly followed the first in a program, the value of number would become

12. More about expressions is in "Using Expressions" in topic 1.3.3.

Label: A label, such as sub: is a symbolic name followed by a colon. A
 label can contain either single- or double-byte characters or a
 combination of single- and double-byte characters. (Double-byte
 characters are valid only if OPTIONS ETMODE is the first instruction in
 your program.) A label identifies a portion of the program and is
 commonly used in subroutines and functions, and with the SIGNAL
 instruction. (Note that you need to include a RETURN instruction at the
 end of a subroutine to transfer control back to the main program.) More
 about the use of labels appears in Chapter 6, "Writing Subroutines and

Functions" in topic 1.6 and "SIGNAL Instruction" in topic 1.4.4.3.

Null Clause: A null clause consists of only blanks or comments or both.
 The language processor ignores null clauses, but they make a program
 easier to read.

Comments A comment begins with /* and ends with */. Comments can be on
 one or more lines or on part of a line. You can put
 information in a comment that might not be obvious to a person
 reading the REXX instructions. Comments at the beginning of a
 program can describe the overall purpose of the program and
 perhaps list special considerations. A comment next to an
 individual instruction can clarify its purpose.

Note: For portability reasons, you are recommended to start
 each REXX program with a comment that includes the word REXX.
 The first comment in a program is the REXX program identifier.
 It immediately identifies the program to readers as a REXX
 program.

Blank lines Blank lines separate groups of instructions and aid
 readability. The more readable a program is, the easier it is
 to understand and maintain.

Commands: A command is a clause consisting of only an expression.
 Commands are sent to a previously defined environment for processing.
 (You should enclose in quotation marks any part of the expression not to
 be evaluated.) The example program did not include any commands. The
 following example includes a command in an ADDRESS instruction:

/* REXX program including a command */
job.1="* $$ JOB jnm=testjob"
job.2="// JOB testjob"
job.3="// EXEC testprog"
job.0=3
ADDRESS power "PUTQE RDR STEM job."

 ADDRESS is a keyword instruction. When you specify an environment and a
 command on an ADDRESS instruction, a single command is sent to the
 environment you specify. In this case, the environment is power. The
 command is the expression that follows the environment:

"PUTQE RDR STEM job."

 This PUTQE command puts the job testjob on the POWER RDR queue. By
 default the job is class A. For more details about changing the host
 command environment, see "Changing the Host Command Environment" in

topic 2.1.2.3.

 More information about issuing commands appears in Chapter 8, "Using
Commands from a Program" in topic 2.1.

1.2.4 Programs Using Double-Byte Character Set Names

 You can use double-byte character set (DBCS) names in your REXX programs
 for literal strings, symbols, and comments. Such character strings can be
 single-byte, double-byte, or a combination of both. To use DBCS names,
 OPTIONS ETMODE must be the first instruction in the program. This
 specifies that the language processor should check strings containing DBCS

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

14 of 121 2/26/2019, 12:16 PM

 characters for validity. You must enclose DBCS characters within
 shift-out (SO) and shift-in (SI) delimiters. (The SO character is X'0E',
 and the SI character is X'0F') The SO and SI characters are non-printable.
 In the following example, the less than (<) and greater than (>) symbols
 represent shift-out (SO) and shift-in (SI), respectively. For example,
 <.S.Y.M.D> and <.D.B.C.S.R.T.N> represent DBCS symbols in the following
 examples.

Example 1

 The following is an example of a program using a DBCS variable name and a
 DBCS subroutine label.

/* REXX */
OPTIONS 'ETMODE' /* ETMODE to enable DBCS variable names */
<.S.Y.M.D> = 10 /* Variable with DBCS characters between */

/* shift-out (<) and shift-in (>) */
y.<.S.Y.M.D> = JUNK
CALL <.D.B.C.S.R.T.N> /* Call subroutine with DBCS name */
EXIT
<.D.B.C.S.R.T.N>: /* Subroutine with DBCS name */
DO i = 1 TO 10

IF y.i = JUNK THEN /* Does y.i match the DBCS variable's
value? */

SAY 'Value of the DBCS variable is : ' <.S.Y.M.D>
END
RETURN

Example 2

 The following example shows DBCS characters in an EXECIO command and some
 other uses of DBCS variable names. DBCS characters are passed to a
 program called through LINKPGM and are passed with the built-in function
 LENGTH.

/* REXX */
OPTIONS 'ETMODE' /* ETMODE to enable DBCS variable names */

/**/
/* Use EXECIO to read lines into DBCS stem variables */
/**/

"EXECIO * DISKR mylib.sublib.data.proc (STEM <.D.B.C.S__.S.T.E.M>. FINIS"

IF rc = 0 THEN /* if good return code from program */

/**/
/* Say each DBCS stem variable that EXECIO sets */
/**/

DO i = 1 TO <.D.B.C.S__.S.T.E.M>.0

SAY "Line " i "==> " <.D.B.C.S__.S.T.E.M>.i

END

line1_<.v.a.l.u.e> = <.D.B.C.S__.S.T.E.M>.1 /* line 1 value */

line_len = LENGTH(line1_<.v.a.l.u.e>) /* Length of line */

/**/
/* The ADDRESS instruction specifies the LINKPGM host command */
/* environment to call program PROCA29 to process a line.
/* This line includes 2 variable names to pass 2 parameters, one */
/* of which is a DBCS variable name. The LINKPGM host command */
/* environment routine looks up the value of the two variables */
/* and passes their values to the address LINKPGM command */
/* "proca29". */
/**/
ADDRESS LINKPGM "proca29 line_len line1_<.v.a.l.u.e>"

1.2.5 Running a Program

 You need to store your REXX program in a sublibrary with a member type of
 PROC. You can run a program:

 ° From batch by using the JCL EXEC command

 ° From another program by calling ARXEXEC or ARXJCL. The recommended
 method is using the JCL EXEC command. Calling REXX in this way lets
 you leave JCL statements on the stack for VSE/ESA to process. This
 lets you insert JCL statements or data into the current job stream.
 Using ARXEXEC or ARXJCL does not allow you to leave JCL statements on
 the stack. However, this method is compatible with MVS/ESA.

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

15 of 121 2/26/2019, 12:16 PM

Subtopics:

 1.2.5.1 Using the JCL EXEC Command to Run a REXX Program
 1.2.5.2 Using ARXEXEC or ARXJCL
 1.2.5.3 Defining Language Processor Environments
 1.2.5.4 Customizing a Language Processor Environment

1.2.5.1 Using the JCL EXEC Command to Run a REXX Program

 The program must be a member of a sublibrary in the active PROC chain. If
 the program myprog is in the library mainlib, sublibrary sublib1, its full
 name is in the format library.sublibrary.program_name.filetype, for
 example, mainlib.sublib1.myprog.proc. The library name can be up to 7
 characters. (This is a VSE/ESA stipulation.) The sublibrary name,
 program_name, and file type are each up to 8 characters. To use the JCL
 EXEC command to run a REXX program in batch, specify

REXX=program_name

 on the JCL EXEC statement. For example:

// LIBDEF PROC SEARCH=rexxlib.samples
// EXEC REXX=myprog

 REXX treats the program_name as a member with a type of PROC. If you omit
 the name, specify blanks, or use a name longer than 8 characters, VSE JCL
 reports an error and stops processing. REXX calls the Librarian services
 to search the active PROC chain for the program. For example, if the

program_name is myprog, the Librarian services search for myprog.PROC.
 REXX accesses the program through the Librarian services.

 You can include optional parameters on the call, by specifying:

PARM=parameters

 Here is an example:

*
// LIBDEF PROC,SEARCH=rexxlib.samples
// EXEC REXX=program1,PARM='m n o'

 You can pass only one argument to the program you are calling, but the
 argument can consist of more than one token. In the example, the program
 receives the argument: m n o. If you are passing an argument to a
 program, you need to include a PARSE ARG (or ARG) instruction in the
 program to retrieve the arguments. For example, if you call a program by
 using:

// EXEC REXX=program1,PARM='1 2 3'

 You could include the following instruction in the program:

PARSE ARG var1 var2 var3

 This would give var1 the value 1, var2 the value 2, and var3 the value 3.
 For more information, see "Specifying Values When Calling a Program" in

topic 1.2.8.2 and "Passing Arguments" in topic 1.2.8.4.

1.2.5.2 Using ARXEXEC or ARXJCL

 To call a REXX program from another program, you can use ARXEXEC or
 ARXJCL. You can use ARXJCL to run a REXX program in two ways:

 ° Call ARXJCL from a non-REXX program
 ° Specify ARXJCL on the JCL EXEC statement.

 To use ARXJCL on the JCL EXEC statement, specify the member name of the
 program and any arguments After PARM=. For example:

// LIBDEF PROC,SEARCH=rexxlib.samples
// EXEC ARXJCL,PARM='MYPROG arg1 arg2'

 To use ARXEXEC or ARXJCL to call a REXX program from a non-REXX program,
 you need to specify parameters that define the program and supply other
 related information. For details, see the REXX/VSE Reference.

1.2.5.3 Defining Language Processor Environments

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

16 of 121 2/26/2019, 12:16 PM

 Before you can run a program, a language processor environment must exist.
 A language processor environment defines the way a REXX program is
 processed and how it accesses system services. REXX/VSE provides the
 default parameters module ARXPARMS to define language processor
 environments. REXX/VSE sets the defaults but a system programmer can
 modify them.

Subtopics:

 1.2.5.3.1 What Is a Language Processor Environment?

1.2.5.3.1 What Is a Language Processor Environment?

 A language processor environment defines characteristics, such as:

 ° The search order for locating commands and external routines

 ° The devices for reading and writing data

 ° The valid host command environments and the routines that process
 commands in each host command environment

 ° The function packages (user, local, and system) that are available in
 the environment and the entries in each package

 ° Whether programs running in the environment can use the data stack

 ° The names of routines that handle system services, such as I/O
 operations, program loading, obtaining and freeing storage, and data
 stack requests.

Note: A language processor environment differs from a host command
 environment. The language processor environment is the environment in
 which a REXX program runs. The host command environment is the
 environment to which the language processor passes commands for execution.
 The language processor environment defines the host command environments.

 For more information about defining language processor environments, see
 the REXX/VSE Reference.

1.2.5.4 Customizing a Language Processor Environment

 An individual or an installation can customize a language processor
 environment in two ways:

 ° Change the values in the default parameters module ARXPARMS.

 ° Call the initialization routine ARXINIT and specify parameters to
 change default parameters.

 For more information about customizing a language processor environment,
 see the REXX/VSE Reference.

1.2.6 Interpreting Error Messages

 When you run a program that contains an error, an error message often
 includes the line on which the error occurred and gives an explanation of
 the error. Error messages can result from syntax errors and from
 computational errors. For example, the following program has a syntax
 error.

 __
 | |
 | |
 | /************************** REXX **********************************/|
 | /* This REXX program contains a deliberate error of not closing */|
 | /* a comment. Without the error, it would pull input to produce */|
 | /* a greeting. */|
 | /**/|
 | |
 | PULL who /* Get the person's name. |
 | IF who = '' THEN |
 | SAY 'Hello, stranger' |
 | ELSE |
 | SAY 'Hello,' who |
 | |

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

17 of 121 2/26/2019, 12:16 PM

 | |
 | |
 |__|
 Figure 4. Example of a Program with a Syntax Error

 When the program runs, the language processor sends the following lines to
 the output stream. (If you have not changed the default, the output
 stream is SYSLST.)

7 +++ PULL who /* Get the person's name.IF who =
'' THEN SAY 'Hello stranger'ELSE SAY 'Hello' who
ARX0006I Error running HELLO, line 7: Unmatched "/*" or quote

 The program runs until the language processor detects the error, the
 missing */ at the end of the comment. The PULL instruction does not use
 the data from the data stack or input stream because this line contains
 the syntax error. The program ends, and the language processor sends the
 error messages.

 The first error message begins with the line number of the statement where
 the language processor detected the error. Three pluses (+++) and the
 contents of the statement follow this.

7 +++ PULL who /* Get the person's name.IF who =
'' THEN SAY 'Hello stranger'ELSE SAY 'Hello' who

 The second error message begins with the message number. A message
 containing the program name, the line where the language processor found
 the error, and an explanation of the error follow this.

ARX0006I Error running HELLO, line 7: Unmatched "/*" or quote

 For more information about the error, you can go to the message
 explanations in the error messages section of the VSE/ESA Messages and

Codes.

 To fix the syntax error in this program, add */ to the end of the comment
 on line 7.

PULL who /* Get the person's name. */

1.2.7 How to Prevent Translation to Uppercase

 The language processor generally translates alphabetic characters to
 uppercase before processing them. The alphabetic characters can be within
 a program, such as words in a REXX instruction, or they can be external to
 a program and processed as input. You can prevent the translation to
 uppercase as follows:

Characters within a Program: To prevent translation of alphabetic
 characters in a program to uppercase, simply enclose the characters in
 single or double quotation marks. The language processor does not change
 numbers and special characters, regardless of whether they are in
 quotation marks. Suppose you use a SAY instruction with a phrase
 containing a mixture of alphabetic characters, numbers, and special
 characters; the language processor changes only the alphabetic characters.

SAY The bill for lunch comes to $123.51!

 results in:

THE BILL FOR LUNCH COMES TO $123.51!

 (This example assumes none of the words are the names of variables that
 have been assigned other values.)

 Quotation marks ensure that information in a program is processed exactly
 as typed. This is important in the following situations:

 ° For output that must be lowercase or a mixture of uppercase and
 lowercase.

 ° To ensure that commands are processed correctly. For example, if a
 variable name in a program is the same as a command name, the program
 can end in error when the command is issued. It is a good programming
 practice to avoid using variable names that are the same as commands
 and to enclose all commands in quotation marks.

Characters Input to a Program: When reading input or passing input from
 another program, the language processor also changes alphabetic characters

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

18 of 121 2/26/2019, 12:16 PM

 to uppercase before processing them. To prevent translation to uppercase,
 use the PARSE instruction.

 For example, the following program reads input from the input stream and
 sends this information to the output stream.

 __
 | |
 | |
 | /************************** REXX ***********************************/ |
 | /* This REXX program gets the name of an animal from the input */ |
 | /* stream and sends it to the output stream. */ |
 | /***/ |
 | |
 | PULL animal /* Get the animal name.*/ |
 | SAY animal |
 | |
 | |
 |__|
 Figure 5. Example of Reading Input and Writing Output

 If the input is tyrannosaurus, the language processor produces the output:

TYRANNOSAURUS

 To cause the language processor to read input exactly as it is presented,
 use the PARSE PULL instruction instead of the PULL instruction.

PARSE PULL animal

 Now if the input is TyRannOsauRus, the output is:

TyRannOsauRus

Subtopics:

 1.2.7.1 Exercises - Running and Modifying the Example Programs

1.2.7.1 Exercises - Running and Modifying the Example Programs

 You can write and run the preceding example. Now change the PULL
 instruction to a PARSE PULL instruction and note the difference.

1.2.8 Passing Information to a Program

 When a program runs, you can pass information to it in several ways:

 ° By using PULL to get information from the data stack or input stream
 ° By specifying input when calling the program.

Subtopics:

 1.2.8.1 Getting Information from the Data Stack or Input Stream
 1.2.8.2 Specifying Values When Calling a Program
 1.2.8.3 Preventing Translation of Input to Uppercase
 1.2.8.4 Passing Arguments

1.2.8.1 Getting Information from the Data Stack or Input Stream

 The PULL instruction is one way for a program to receive input. Repeating
 an earlier example shows this. Here is how to call the ADDTWO program.

// LIBDEF *,SEARCH=(prd1.base,rexxlib.samples)
// EXEC REXX=addtwo
42
21
/&

 Here is the ADDTWO program.

 __
 | |
 | |
 | /**************************** REXX ******************************/ |
 | /* This program adds two numbers and produces their sum. */ |
 | /**/ |
 | PULL number1 |
 | PULL number2 |
 | sum = number1 + number2 |
 | SAY 'The sum of the two numbers is' sum'.' |

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

19 of 121 2/26/2019, 12:16 PM

 | |
 | |
 |__|
 Figure 6. Example of a Program That Uses PULL

 The PULL instruction can extract more than one value at a time from the
 input stream by separating a line of input. The following variation of
 the example shows this.

// LIBDEF *,SEARCH=(prd1.base,rexxlib.samples)
// EXEC REXX=addtwo
42 21
/&

 __
 | |
 | |
 | /**************************** REXX ******************************/ |
 | /* This program adds two numbers and says their sum */ |
 | /**/ |
 | PULL number1 number2 |
 | sum = number1 + number2 |
 | SAY 'The sum of the two numbers is' sum'.' |
 | |
 | |
 |__|
 Figure 7. Variation of an Example that Uses PULL

 The PULL instruction extracts the numbers 42 and 21 from the input stream.

Notes:

 1. For the PULL instruction to extract information from the input stream,
 the data stack must be empty. More information about the data stack
 appears in Chapter 11, "Storing Information in the Data Stack" in

topic 2.4.

 2. If you are using SYSIPT for input and your program does not read all
 the lines, VSE JCL treats any remaining SYSIPT data as JCL statements.
 In this case, VSE JCL may issue the message

1S01D INVALID STATEMENT

 to the operator's console.

1.2.8.2 Specifying Values When Calling a Program

 Another way for a program to receive input is through values you specify
 when you call the program. For example to pass the two numbers 42 and 21
 to a program named ADD, you could use the JCL EXEC command:

*
// LIBDEF *, SEARCH=(prd1.base,rexxlib.samples)
// EXEC REXX=add,PARM='42 21'

 The program ADD uses the ARG instruction to assign the input to variables
 as shown in the following example.

 __
 | |
 | |
 | /**************************** REXX ******************************/ |
 | /* This program receives two numbers as input, adds them, and */ |
 | /* produces their sum. */ |
 | /**/ |
 | ARG number1 number2 |
 | sum = number1 + number2 |
 | SAY 'The sum of the two numbers is' sum'.' |
 | |
 | |
 |__|
 Figure 8. Example of a Program That Uses the ARG Instruction

 ARG assigns the first number, 42, to number1 and the second number, 21, to
number2.

 If the number of values is fewer or more than the number of variable names
 after ARG or PULL, errors can occur, as the following sections describe.

Specifying Too Few Values: If you specify fewer values than the number of
 variables after PULL or ARG, the extra variables are set to the null
 string. Here is an example in which you pass only one number to the
 program:

// EXEC REXX=add,PARM='42'

 The language processor assigns the value 42 to number1, the first variable
 following ARG. It assigns the null string to number2, the second

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

20 of 121 2/26/2019, 12:16 PM

 variable. In this situation, the program ends with an error when it tries
 to add the two variables. In other situations, the program might not end
 in error.

Specifying Too Many Values: When you specify more values than the number
 of variables following PULL or ARG, the last variable gets the remaining
 values. For example, you pass three numbers to the program ADD:

// EXEC REXX=add,PARM='42 21 10'

 The language processor assigns the value 42 to number1, the first variable
 following ARG. It assigns the value 21 10 to number2, the second
 variable. In this situation, the program ends with an error when it tries
 to add the two variables. In other situations, the program might not end
 in error.

 To prevent the last variable from getting the remaining values, use a
 period (.) at the end of the PULL or ARG instruction.

ARG number1 number2 .

 The period acts as a dummy variable to collect unwanted extra information.
 (In this case, number1 receives 42, number2 receives 21, and the period
 ensures the 10 is discarded. If there is no extra information, the period
 is ignored. You can also use a period as a placeholder within the PULL or
 ARG instruction as follows:

ARG . number1 number2

 In this case, the first value, 42, is discarded and number1 and number2
 get the next two values, 21 and 10.

1.2.8.3 Preventing Translation of Input to Uppercase

 Like the PULL instruction, the ARG instruction changes alphabetic
 characters to uppercase. To prevent translation to uppercase, use PARSE
 ARG as in the following example.

 __
 | |
 | |
 | /**************************** REXX ********************************/ |
 | /* This program receives the last name, first name, and score of */ |
 | /* a student and reports the name and score. */ |
 | /**/ |
 | PARSE ARG lastname firstname score |
 | SAY firstname lastname 'received a score of' score'.' |
 | |
 | |
 |__|
 Figure 9. Example of a Program That Uses PARSE ARG

Subtopics:

 1.2.8.3.1 Exercises - Using the ARG Instruction

1.2.8.3.1 Exercises - Using the ARG Instruction

 The left column shows the input values sent to a program. The right
 column is the ARG instruction within the program that receives the input.
 What value does each variable receive?

Input Variables Receiving Input

1. 115 -23 66 5.8 ARG first second third

2. .2 0 569 2E6 ARG first second third fourth

3. 13 13 13 13 ARG first second third fourth fifth

4. Weber Joe 91 ARG lastname firstname score

5. Baker Amanda Marie 95 PARSE ARG lastname firstname score

6. Callahan Eunice 88 62 PARSE ARG lastname firstname score .

 ANSWERS

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

21 of 121 2/26/2019, 12:16 PM

 1. first = 115, second = -23, third = 66 5.8

 2. first = .2, second = 0, third = 569, fourth = 2E6

 3. first = 13, second = 13, third = 13, fourth = 13, fifth = null

 4. lastname = WEBER, firstname = JOE, score = 91

 5. lastname = Baker, firstname = Amanda, score = Marie 95

 6. lastname = Callahan, firstname = Eunice, score = 88

1.2.8.4 Passing Arguments

 Values passed to a program are usually called arguments. An argument can
 consist of one word or a string of words. Blanks separate words within an
 argument from each other. The number of arguments passed depends on how
 the program is called.

Subtopics:

 1.2.8.4.1 Using the CALL Instruction or a REXX Function Call
 1.2.8.4.2 Using the JCL EXEC Command

1.2.8.4.1 Using the CALL Instruction or a REXX Function Call

 When you call a REXX program using either the CALL instruction or a REXX
 function call, you can pass up to 20 arguments to the program. Separate
 each argument from the next with a comma.

1.2.8.4.2 Using the JCL EXEC Command

 You can pass only one argument using PARM= on the JCL EXEC statement.
 However, keep in mind that one argument can consist of many words. An
 argument, if present, appears as a single string. Give special
 consideration to argument strings containing commas. For example, if you
 specify:

// EXEC REXX=myprog, PARM='1,2'

 the program receives a single argument string consisting of "1,2". The
 program could then use a PARSE ARG instruction as follows to break the
 argument string into the comma-separated values:

PARSE ARG A ',' B
SAY 'A is ' A /* Produces: 'A is 1' */
SAY 'B is ' B /* Produces: 'B is 2' */

 For more information about functions and subroutines, see Chapter 6,
"Writing Subroutines and Functions" in topic 1.6. For more information

 about arguments, see "Parsing Multiple Strings as Arguments" in
topic 1.7.2.4.

1.3 Chapter 3. Using Variables and Expressions

Purpose: This chapter describes variables, expressions, and operators,
 and explains how to use them in REXX programs.

Subtopics:

 1.3.1 Program Variables
 1.3.2 Using Variables
 1.3.3 Using Expressions
 1.3.4 Tracing Expressions with the TRACE Instruction

1.3.1 Program Variables

 One of the most powerful aspects of computer programming is the ability to

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

22 of 121 2/26/2019, 12:16 PM

 process variable data to achieve a result. Regardless of the complexity
 of a process, when data is unknown or varies, you substitute a symbol for
 the data. This is much like substituting x and y in an algebraic
 equation.

x = y + 29

 The symbol, when its value can vary, is called a variable. A group of
 symbols or numbers that must be calculated to be resolved is called an

expression.

1.3.2 Using Variables

 A variable is a character or group of characters representing a value. A
 variable can contain either single- or double-byte characters or both.
 (Double-byte characters are valid only if OPTIONS ETMODE is the first
 instruction of your program.) The following variable big represents the
 value one million or 1,000,000.

big = 1000000

 Variables can refer to different values at different times. If you assign
 a different value to big, it gets the value of the new assignment, until
 it is changed again.

big = 999999999

 Variables can also represent a value that is unknown when the program is
 written. In the following example, the user's name is unknown, so it is
 represented by the variable who.

/* Gets name from current input stream */
PARSE PULL who /* and puts it in variable "who" */

Subtopics:

 1.3.2.1 Variable Names
 1.3.2.2 Variable Values
 1.3.2.3 Exercises - Identifying Valid Variable Names

1.3.2.1 Variable Names

 A variable name, the part that represents the value, is always on the left
 of the assignment statement and the value itself is on the right. In the
 following example, the variable name is variable1.

variable1 = 5
SAY variable1

 As a result of the preceding assignment statement, the language processor
 assigns variable1 the value 5, and the SAY produces:

5

 Variable names can consist of:

A-Z uppercase alphabetic

a-z lowercase alphabetic

0-9 numbers

@ # $ ¢ ? ! . _ special characters

X'41'-X'FE' double-byte character set (DBCS) characters.
 (OPTIONS ETMODE must be the first instruction in your
 program for these characters to be valid in a
 variable name.)

 Restrictions on the variable name are:

 ° The first character cannot be 0 through 9 or a period (.)

 ° The variable name cannot exceed 250 bytes. For names containing DBCS
 characters, count each DBCS character as 2 bytes, and count the
 shift-out (SO) and shift-in (SI) as 1 byte each.

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

23 of 121 2/26/2019, 12:16 PM

 ° SO (X'0E') and SI (X'0F') must delimit DBCS characters within a DBCS
 name. Also note that:

 - SO and SI cannot be contiguous.
 - Nesting of SO / SI is not permitted.
 - A DBCS name cannot contain a DBCS blank (X'4040').

 ° The variable name should not be RC, SIGL, or RESULT, which are REXX
 special variables. More about special variables appears later in this
 book.

 Examples of acceptable variable names are:

ANSWER ?98B A Word3 number the_ultimate_value

 Also, if OPTIONS ETMODE is the first instruction in your program, the
 following are valid DBCS variable names, where < represents shift-out, >
 represents shift-in, X, Y, and Z represent DBCS characters, and lowercase
 letters and numbers represent themselves.

<.X.Y.Z> number_<.X.Y.Z> <.X.Y>1234<.Z>

1.3.2.2 Variable Values

 The value of the variable, which is the value the variable name
 represents, might be categorized as follows:

 ° A constant, which is a number that is expressed as:

 An integer (12)
 A decimal (12.5)
 A floating point number (1.25E2)
 A signed number (-12)
 A string constant (' 12')

 ° A string, which is one or more words that may or may not be within
 quotation marks, such as:

This value can be a string.
'This value is a literal string.'

 ° The value from another variable, such as:

variable1 = variable2

 In the preceding example, variable1 changes to the value of variable2,
 but variable2 remains the same.

 ° An expression, which is something that needs to be calculated, such
 as:

variable2 = 12 + 12 - .6 /* variable2 becomes 23.4 */

 Before a variable is assigned a value, its value is the value of its own
 name translated to uppercase. For example, if the variable new has not
 been assigned a value, then

SAY new

 produces

NEW

1.3.2.3 Exercises - Identifying Valid Variable Names

 Which of the following are valid REXX variable names?

 1. 8eight

 2. $25.00

 3. MixedCase

 4. nine_to_five

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

24 of 121 2/26/2019, 12:16 PM

 5. result

 ANSWERS

 1. Incorrect, because the first character is a number.

 2. Valid

 3. Valid

 4. Valid

 5. Valid, but it is a special variable name that you should use only to
 receive results from a subroutine.

1.3.3 Using Expressions

 An expression is something that needs to be calculated and consists of
 numbers, variables, or strings, and one or more operators. The operators
 determine the kind of calculation to do on the numbers, variables, and
 strings. There are four types of operators: arithmetic, comparison,
 logical, and concatenation.

Subtopics:

 1.3.3.1 Arithmetic Operators
 1.3.3.2 Comparison Operators
 1.3.3.3 Logical (Boolean) Operators
 1.3.3.4 Concatenation Operators
 1.3.3.5 Priority of Operators

1.3.3.1 Arithmetic Operators

 Arithmetic operators work on valid numeric constants or on variables that
 represent valid numeric constants.

Types of Numeric Constants

12 A whole number has no decimal point or commas. Results of
 arithmetic operations with whole numbers can contain a maximum
 of nine digits unless you override this default by using the
 NUMERIC DIGITS instruction. For information about the NUMERIC
 DIGITS instruction, see the REXX/VSE Reference. Examples of
 whole numbers are:

123456789 0 91221 999

12.5 A decimal number includes a decimal point. Results of
 arithmetic operations with decimal numbers are limited to a
 total maximum of nine digits (NUMERIC DIGITS default) before

and after the decimal. Examples of decimal numbers are:

123456.789 0.888888888

1.25E2 A floating point number in exponential notation, is said to be
 in scientific notation. The number after the "E" represents
 the number of places the decimal point moves. Thus 1.25E2
 (also written as 1.25E+2) moves the decimal point to the right
 two places and results in 125. When an "E" is followed by a
 minus (-), the decimal point moves to the left. For example,
 1.25E-2 is .0125.

 You can use floating point numbers to represent very large or
 very small numbers. For more information about floating point
 numbers, see the REXX/VSE Reference.

-12 A signed number with a minus (-) next to the number represents
 a negative value. A signed number with a plus (+) next to the
 number represents a positive value. When a number has no sign,
 it is processed as if it has a positive value.

 The arithmetic operators you can use are:

Operator Meaning

+ Add

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

25 of 121 2/26/2019, 12:16 PM

- Subtract

* Multiply

/ Divide

% Divide and return a whole number without a remainder

// Divide and return the remainder only

** Raise a number to a whole number power

-number (Prefix -) Same as the subtraction 0 - number

+number (Prefix +) Same as the addition 0 + number

 Using numeric constants and arithmetic operators, you can write arithmetic
 expressions such as:

7 + 2 /* result is 9 */
7 - 2 /* result is 5 */
7 * 2 /* result is 14 */
7 ** 2 /* result is 49 */
7 ** 2.5 /* result is an error */

Division: Notice that three operators represent division. Each operator
 computes the result of a division expression in a different way.

/ Divide and express the answer possibly as a decimal number. For
 example:

7 / 2 /* result is 3.5 */
6 / 2 /* result is 3 */

% Divide and express the answer as a whole number. The remainder is
 ignored. For example:

7 % 2 /* result is 3 */

// Divide and express the answer as the remainder only. For example:

7 // 2 /* result is 1 */

Order of Evaluation: When you have more than one operator in an
 arithmetic expression, the order of numbers and operators can be critical.
 For example, in the following expression, which operation does the
 language processor perform first?

7 + 2 * (9 / 3) - 1

 Proceeding from left to right, the language processor evaluates the
 expression as follows:

 ° First it evaluates expressions within parentheses.

 ° Then it evaluates expressions with operators of higher priority before
 expressions with operators of lower priority.

 Arithmetic operator priority is as follows, with the highest first:

 __
 | Figure 10. Arithmetic Operator Priority |
 |____________ ___|
- +	Prefix operators
____________	___
**	Power (exponential)
____________	___
* / % //	Multiplication and division
____________	___
+ -	Addition and subtraction
____________	___

 Thus, the preceding example would be evaluated in the following order:

 1. Expression in parentheses

7 + 2 * (9 / 3) - 1

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

26 of 121 2/26/2019, 12:16 PM

___/
3

 2. Multiplication

7 + 2 * 3 - 1
___/

6

 3. Addition and subtraction from left to right

7 + 6 - 1 = 12

Subtopics:

 1.3.3.1.1 Using Arithmetic Expressions
 1.3.3.1.2 Exercises--Calculating Arithmetic Expressions

1.3.3.1.1 Using Arithmetic Expressions

 You can use arithmetic expressions in a program many different ways. The
 following example uses several arithmetic operators to round and remove
 extra decimal places from a dollar and cents value.

 __
 | |
 | |
 | /****************************** REXX *********************************/|
 | /* This program computes the total price of an item including sales */|
 | /* tax, rounded to two decimal places. The cost and percent of the */|
 | /* tax (expressed as a decimal number) are passed to the program */|
 | /* when you run it. */|
 | /***/|
 | |
 | PARSE ARG cost percent_tax |
 | |
 | total = cost + (cost * percent_tax) /* Add tax to cost. */|
 | price = ((total * 100 + .5) % 1) / 100 /* Round and remove extra */|
 | /* decimal places. */|
 | SAY 'Your total cost is $'price'.' |
 | |
 | |
 | |
 |__|
 Figure 11. Example Using Arithmetic Expressions

1.3.3.1.2 Exercises--Calculating Arithmetic Expressions

 1. What line of output does the following program produce?

/****************************** REXX ******************************/
pa = 1
ma = 1
kids = 3
SAY "There are" pa + ma + kids "people in this family."

 2. What is the value of:
 a. 6 - 4 + 1
 b. 6 - (4 + 1)
 c. 6 * 4 + 2
 d. 6 * (4 + 2)
 e. 24 % 5 / 2

 ANSWERS

 1. There are 5 people in this family.

 2. The values are as follows:

 a. 3
 b. 1
 c. 26
 d. 36
 e. 2

1.3.3.2 Comparison Operators

 Expressions that use comparison operators do not return a number value as
 do arithmetic expressions. Comparison expressions return either 1, which
 represents true, or 0, which represents false.

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

27 of 121 2/26/2019, 12:16 PM

 Comparison operators can compare numbers or strings and perform
 evaluations, such as:

 Are the terms equal? (A = Z)

 Is the first term greater than the second? (A > Z)

 Is the first term less than the second? (A < Z)

 For example, if A = 4 and Z = 3, then the results of the previous
 comparison questions are:

 (A = Z) Does 4 = 3? 0 (False)
 (A > Z) Is 4 > 3? 1 (True)
 (A < Z) Is 4 < 3? 0 (False)

 The more commonly used comparison operators are as follows:

Operator Meaning

= Equal

== Strictly Equal

\ = Not equal

\ == Not strictly equal

> Greater than

< Less than

> < Greater than or less than (same as not equal)

> = Greater than or equal to

\ < Not less than

< = Less than or equal to

\ > Not greater than

Note: The NOT character (¬) is synonymous with the backslash (\). You
 can use the two characters interchangeably according to availability and
 personal preference. This book uses the backslash (\) character.

Subtopics:

 1.3.3.2.1 The Strictly Equal and Equal Operators
 1.3.3.2.2 Using Comparison Expressions
 1.3.3.2.3 Exercises - Using Comparison Expressions

1.3.3.2.1 The Strictly Equal and Equal Operators

 When two expressions are strictly equal, everything including the blanks
 and case (when the expressions are characters) is exactly the same.

 When two expressions are equal, they are resolved to be the same. The
 following expressions are all true.

'WORD' = word /* returns 1 */
'word ' \== word /* returns 1 */
'word' == 'word' /* returns 1 */
4e2 \== 400 /* returns 1 */
4e2 \= 100 /* returns 1 */

1.3.3.2.2 Using Comparison Expressions

 You often use a comparison expression in an IF...THEN...ELSE instruction.
 The following example uses an IF...THEN...ELSE instruction to compare two
 values. For more information about this instruction, see

"IF...THEN...ELSE Instructions" in topic 1.4.2.1.

 __

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

28 of 121 2/26/2019, 12:16 PM

 | |
 | |
 | /****************************** REXX *********************************/|
 | /* This program compares what you paid for lunch for two */|
 | /* days in a row and then comments on the comparison. */|
 | /***/|
 | |
 | PARSE PULL yesterday /* Gets yesterday's price from input stream */ |
 | |
 | |
 | PARSE PULL today /* Gets today's price */ |
 | |
 | |
 | IF today > yesterday THEN /* lunch cost increased */ |
 | SAY "Today's lunch cost more than yesterday's." |
 | |
 | ELSE /* lunch cost remained the same or decreased */ |
 | SAY "Today's lunch cost the same or less than yesterday's." |
 | |
 | |
 |__|
 Figure 12. Example Using a Comparison Expression

1.3.3.2.3 Exercises - Using Comparison Expressions

 1. Based on the preceding example of using a comparison expression, what
 result does the language processor produce from the following lunch
 costs?

Yesterday's Today's
Lunch Lunch

 4.42 3.75
 3.50 3.50
 3.75 4.42

 2. What is the result (0 or 1) of the following expressions?

 a. "Apples" = "Oranges"
 b. " Apples" = "Apples"
 c. " Apples" == "Apples"
 d. 100 = 1E2
 e. 100 \= 1E2
 f. 100 \== 1E2

 ANSWERS

 1. The language processor produces the following sentences:

 a. Today's lunch cost the same or less than yesterday's.
 b. Today's lunch cost the same or less than yesterday's.
 c. Today's lunch cost more than yesterday's.

 2. The expressions result in the following. Remember 0 is false and 1 is
 true.

 a. 0
 b. 1
 c. 0 (The first " Apples" has a space.)
 d. 1
 e. 0
 f. 1

1.3.3.3 Logical (Boolean) Operators

 Logical expressions, like comparison expressions, return 1 (true) or 0
 (false) when processed. Logical operators combine two comparisons and
 return 1 or 0 depending on the results of the comparisons.

 The logical operators are:

Operator Meaning

& AND

 Returns 1 if both comparisons are true. For example:

(4 > 2) & (a = a) /* true, so result is 1 */

(2 > 4) & (a = a) /* false, so result is 0 */

| Inclusive OR

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

29 of 121 2/26/2019, 12:16 PM

 Returns 1 if at least one comparison is true. For example:

(4 > 2) | (5 = 3) /* at least one is true, so result is 1 */

(2 > 4) | (5 = 3) /* neither one is true, so result is 0 */

&& Exclusive OR

 Returns 1 if only one comparison (but not both) is true. For
 example:

(4 > 2) && (5 = 3) /* only one is true, so result is 1 */

(4 > 2) && (5 = 5) /* both are true, so result is 0 */

(2 > 4) && (5 = 3) /* neither one is true, so result is 0 */

Prefix \ Logical NOT

 Negates--returning the opposite response. For example:

\ 0 /* opposite of 0, so result is 1 */

\ (4 > 2) /* opposite of true, so result is 0 */

Subtopics:

 1.3.3.3.1 Using Logical Expressions
 1.3.3.3.2 Exercises - Using Logical Expressions

1.3.3.3.1 Using Logical Expressions

 You can use logical expressions in complex conditional instructions and as
 checkpoints to screen unwanted conditions. When you have a series of
 logical expressions, for clarification, use one or more sets of
 parentheses to enclose each expression.

IF ((A < B) | (J < D)) & ((M = Q) | (M = D)) THEN

 The following example uses logical operators to make a decision.

 __
 | |
 | |
 | /****************************** REXX ********************************/ |
 | /* This program receives arguments for a complex logical expression */ |
 | /* that determines whether a person should go skiing. The first */ |
 | /* argument is a season and the other two can be 'yes' or 'no'. */ |
 | /**/ |
 | |
 | |
 | PARSE ARG season snowing broken_leg |
 | |
 | IF ((season = 'WINTER') | (snowing ='YES')) & (broken_leg ='NO') |
 | THEN SAY 'Go skiing.' |
 | ELSE |
 | SAY 'Stay home.' |
 | |
 | |
 |__|
 Figure 13. Example Using Logical Expressions

 When arguments passed to this example are SPRING YES NO, the IF clause
 translates as follows:

IF ((season = 'WINTER') | (snowing ='YES')) & (broken_leg ='NO') THEN
______________/ ____________/ _____________/

false true true
___________________/ /

true /
_____________________________/

true

 As a result, when you run the program, it produces the result:

Go skiing.

1.3.3.3.2 Exercises - Using Logical Expressions

 A student applying to colleges has decided to evaluate them according to
 the following specifications:

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

30 of 121 2/26/2019, 12:16 PM

IF (inexpensive | scholarship) & (reputable | nearby) THEN
SAY "I'll consider it."

ELSE
SAY "Forget it!"

 A college is inexpensive, did not offer a scholarship, is reputable, but
 is more than 1000 miles away. Should the student apply?

 ANSWER

 Yes. The conditional instruction works out as follows:

IF (inexpensive | scholarship) & (reputable | nearby) THEN ...
__________/ ___________/ _________/ ______/

true false true false
___________/ _________/

true true
_________________________/

true

1.3.3.4 Concatenation Operators

 Concatenation operators combine two terms into one. The terms can be
 strings, variables, expressions, or constants. Concatenation can be
 significant in formatting output.

 The operators that indicate how to join two terms are as follows:

Operator Meaning

blank Concatenates terms and places one blank between them. If more
 than one blank separates terms, this becomes a single blank. For
 example:

SAY true blue /* result is TRUE BLUE */

|| Concatenates terms with no blanks between them. For example:

(8 / 2)||(3 * 3) /* result is 49 */

abuttal Concatenates terms with no blanks between them. For example:

per_cent'%' /* if per_cent = 50, result
is 50% */

 You can use abuttal only with terms that are of different types,
 such as a literal string and a symbol, or when only a comment
 separates two terms.

Subtopics:

 1.3.3.4.1 Using Concatenation Operators

1.3.3.4.1 Using Concatenation Operators

 One way to format output is to use variables and concatenation operators
 as in the following example.

 __
 | |
 | |
 | /****************************** REXX *********************************/|
 | /* This program formats data into columns for output. */|
 | /***/|
 | sport = 'base' |
 | equipment = 'ball' |
 | column = ' ' |
 | cost = 5 |
 | |
 | SAY sport||equipment column '$' cost |
 | |
 | |
 |__|
 Figure 14. Example Using Concatenation Operators

 The result of this example is:

baseball $ 5

 A more sophisticated way to format information is with parsing and
 templates. Information about parsing appears in "Parsing Data" in

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

31 of 121 2/26/2019, 12:16 PM

topic 1.7.2.

1.3.3.5 Priority of Operators

 When more than one type of operator appears in an expression, what
 operation does the language processor do first?

IF (A > 7**B) & (B < 3)

 Like the priority of operators for the arithmetic operators, there is an
 overall priority that includes all operators. The priority of operators
 is as follows with the highest first.

 | Figure 15. Overall Operator Priority |
 |______________________ __|
\ or ¬ - +	Prefix operators		
______________________	__		
**	Power (exponential)		
______________________	__		
* / % //	Multiply and divide		
______________________	__		
+ -	Add and subtract		
______________________	__		
blank		abuttal	Concatenation operators
______________________	__		
== = >< and so on	Comparison operators		
______________________	__		
&	Logical AND		
______________________	__		
	&&	Inclusive OR and exclusive OR	
______________________	__		

 Thus, given the following values

 A = 8
 B = 2
 C = 10

 the language processor would evaluate the previous example

IF (A > 7**B) & (B < 3)

 as follows:

 1. Evaluate what is inside the first set of parentheses.

 a. Evaluate A to 8.

 b. Evaluate B to 2.

 c. Evaluate 7**2.

 d. Evaluate 8 > 49 is false (0).

 2. Evaluate what is inside the next set of parentheses.

 a. Evaluate B to 2.

 b. Evaluate 2 < 3 is true (1).

 3. Evaluate 0 & 1 is 0

Subtopics:

 1.3.3.5.1 Exercises - Priority of Operators

1.3.3.5.1 Exercises - Priority of Operators

 1. What are the answers to the following examples?

 a. 22 + (12 * 1)
 b. -6 / -2 > (45 % 7 / 2) - 1
 c. 10 * 2 - (5 + 1) // 5 * 2 + 15 - 1

 2. In the example of the student and the college from the previous
 exercise in topic 1.3.3.3.2, if the parentheses were removed from the
 student's formula, what would be the outcome for the college?

IF inexpensive | scholarship & reputable | nearby THEN

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

32 of 121 2/26/2019, 12:16 PM

SAY "I'll consider it."
ELSE

SAY "Forget it!"

 Remember the college is inexpensive, did not offer a scholarship, is
 reputable, but is 1000 miles away.

 ANSWERS

 1. The results are as follows:

 a. 34 (22 + 12 = 34)

 b. 1 (true) (3 > 3 - 1)

 c. 32 (20 - 2 + 15 - 1)

 2. I'll consider it.

 The & operator has priority, as follows, but the outcome is the same
 as the previous version with the parentheses.

IF inexpensive | scholarship & reputable | nearby THEN
_________/ _________/ _______/ ____/

true false true false
\ ___________/ /
\ false /
_________________/ /

true /
____________________/

true

1.3.4 Tracing Expressions with the TRACE Instruction

 You can use the TRACE instruction to show how the language processor
 evaluates each operation of an expression as it reads it, or to show the
 final result of an expression. These two types of tracing are useful for
 debugging programs.

Tracing Operations: To trace operations within an expression, use the
 TRACE I (TRACE Intermediates) form of the TRACE instruction. The language
 processor breaks down all expressions that follow the instruction and
 analyzes them as:

>V> - Variable value - The data traced is the contents
of a variable.

>L> - Literal value - The data traced is a literal
(string, uninitialized variable, or constant).

>O> - Operation result - The data traced is the result
of an operation on two terms.

 The following example uses the TRACE I instruction. (The line numbers are
 not part of the program. They facilitate the discussion of the example
 that follows it.)

 __
 | |
 | |
 | 1 /************************* REXX ***************************/ |
 | 2 /* This program uses the TRACE instruction to show how */ |
 | 3 /* an expression is evaluated, operation by operation. */ |
 | 4 /**/ |
 | 5 a = 9 |
 | 6 y = 2 |
 | 7 TRACE I |
 | 8 |
 | 9 IF a + 1 > 5 * y THEN |
 | 10 SAY 'a is big enough.' |
 | 11 ELSE NOP /* No operation on the ELSE path */ |
 | |
 | |
 |__|
 Figure 16. TRACE Shows How REXX Evaluates an Expression

 When you run the example, the SAY instruction produces:

9 *-* IF a + 1 > 5 * y
>V> "9"
>L> "1"
>O> "10"
>L> "5"
>V> "2"
>O> "10"
>O> "0"

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

33 of 121 2/26/2019, 12:16 PM

 The 9 is the line number. The *-* indicates that what follows is the data
 from the program, IF a + 1 < 5 * y. The remaining lines break down all
 the expressions.

Tracing Results: To trace only the final result of an expression, use the
 TRACE R (TRACE Results) form of the TRACE instruction. The language
 processor analyzes all expressions that follow the instruction as follows:

>>> Final result of an expression

 If you changed the TRACE instruction operand in the previous example from
 an I to an R, you would see the following results.

9 *-* IF a + 1 > 5 * y
>>> "0"

 In addition to tracing operations and results, the TRACE instruction
 offers other types of tracing. The REXX/VSE Reference describes these.

Subtopics:

 1.3.4.1 Exercises - Using the TRACE Instruction

1.3.4.1 Exercises - Using the TRACE Instruction

 Write a program with a complex expression, such as:

IF (a > z) | (c < 2 * d) THEN

 Define a, z, c, and d in the program and use the TRACE I instruction.

 ANSWER

 __
 | |
 | |
 | /****************************** REXX ********************************/ |
 | /* This program uses the TRACE instruction to show how the language */ |
 | /* processor evaluates an expression, operation by operation. */ |
 | /**/ |
 | a = 1 |
 | z = 2 |
 | c = 3 |
 | d = 4 |
 | |
 | TRACE I |
 | |
 | IF (a > z) | (c < 2 * d) THEN |
 | SAY 'At least one expression was true.' |
 | ELSE |
 | SAY 'Neither expression was true.' |
 | |
 | |
 |__|
 Figure 17. Possible Solution

 When you run this program, it produces:

12 *-* IF (a > z) | (c < 2 * d)
>V> "1"
>V> "2"
>O> "0"
>V> "3"
>L> "2"
>V> "4"
>O> "8"
>O> "1"
>O> "1"
- THEN

13 *-* SAY 'At least one expression was true.'
>L> "At least one expression was true."

At least one expression was true.

1.4 Chapter 4. Controlling the Flow within a Program

Purpose: This chapter introduces instructions that alter the sequential
 execution of a program and demonstrates how to use those instructions.

Subtopics:

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

34 of 121 2/26/2019, 12:16 PM

 1.4.1 Conditional, Looping, and Interrupt Instructions
 1.4.2 Using Conditional Instructions
 1.4.3 Using Looping Instructions
 1.4.4 Using Interrupt Instructions

1.4.1 Conditional, Looping, and Interrupt Instructions

 Generally, when a program runs, one instruction after another executes,
 starting with the first and ending with the last. The language processor,
 unless told otherwise, executes instructions sequentially.

 You can change the order of execution within a program by using REXX
 instructions that cause the language processor to skip some instructions,
 repeat others, or transfer control to another part of the program. These
 REXX instructions can be classified as follows:

 ° Conditional instructions set up at least one condition in the form of
 an expression. If the condition is true, the language processor
 selects the path following that condition. Otherwise the language
 processor selects another path. The REXX conditional instructions
 are:

 IF expression THEN...ELSE
 SELECT WHEN expression...OTHERWISE...END

 ° Looping instructions tell the language processor to repeat a set of
 instructions. A loop can repeat a specified number of times or it can
 use a condition to control repeating. REXX looping instructions are:

 DO repetitor...END
 DO WHILE expression...END
 DO UNTIL expression...END

 ° Interrupt instructions tell the language processor to leave the
 program entirely or leave one part of the program and go to another
 part, either permanently or temporarily. The REXX interrupt
 instructions are:

 EXIT
 SIGNAL label
 CALL label...RETURN

1.4.2 Using Conditional Instructions

 There are two types of conditional instructions:

 ° IF...THEN...ELSE can direct the execution of a program to one of two
 choices.
 ° SELECT WHEN...OTHERWISE...END can direct the execution to one of many
 choices.

Subtopics:

 1.4.2.1 IF...THEN...ELSE Instructions
 1.4.2.2 Nested IF...THEN...ELSE Instructions
 1.4.2.3 SELECT WHEN...OTHERWISE...END Instruction

1.4.2.1 IF...THEN...ELSE Instructions

 The examples of IF...THEN...ELSE instructions in previous chapters
 demonstrate the two-choice selection. In a flow chart, this appears as
 follows:

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

35 of 121 2/26/2019, 12:16 PM

 As a REXX instruction, the flowchart example looks like:

IF expression THEN instruction
ELSE instruction

 You can also arrange the clauses in one of the following ways to enhance
 readability:

IF expression THEN
instruction

ELSE
instruction

or

IF expression
THEN

instruction
ELSE

instruction

 When you put the entire instruction on one line, you must use a semicolon
 before the ELSE to separate the THEN clause from the ELSE clause.

IF expression THEN instruction; ELSE instruction

 Generally, at least one instruction should follow the THEN and ELSE
 clauses. When either clause has no instructions, it is good programming
 practice to include NOP (no operation) next to the clause.

IF expression THEN
instruction

ELSE NOP

 If you have more than one instruction for a condition, begin the set of
 instructions with a DO and end them with an END.

IF weather = rainy THEN
SAY 'Find a good book.'

ELSE
DO

PULL playgolf /* Gets data from input stream */
If playgolf='YES' THEN SAY 'Fore!'

END

 Without the enclosing DO and END, the language processor assumes only one
 instruction for the ELSE clause.

1.4.2.2 Nested IF...THEN...ELSE Instructions

 Sometimes it is necessary to have one or more IF...THEN...ELSE
 instructions within other IF...THEN...ELSE instructions. Having one type
 of instruction within another is called nesting. With nested IF
 instructions, it is important to match each IF with an ELSE and each DO
 with an END.

IF weather = fine THEN
DO

SAY 'What a lovely day!'

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

36 of 121 2/26/2019, 12:16 PM

IF tenniscourt = free THEN
SAY 'Let''s play tennis!'

ELSE NOP
END

ELSE
SAY 'We should take our raincoats!'

 Not matching nested IFs to ELSEs and DOs to ENDs can have some surprising
 results. If you eliminate the DOs and ENDs and the ELSE NOP, as in the
 following example, what is the outcome?

 __
 | |
 | |
 | /******************************** REXX *******************************/|
 | /* This program demonstrates what can happen when you do not include */|
 | /* DOs, ENDs, and ELSEs in nested IF...THEN...ELSE instructions. */|
 | /***/|
 | weather = 'fine' |
 | tenniscourt = 'occupied' |
 | |
 | IF weather = 'fine' THEN |
 | SAY 'What a lovely day!' |
 | IF tenniscourt = 'free' THEN |
 | SAY 'Let''s play tennis!' |
 | ELSE |
 | SAY 'We should take our raincoats!' |
 | |
 | |
 |__|
 Figure 18. Example of Missing Instructions

 Looking at the program you might assume the ELSE belongs to the first IF.
 However, the language processor associates an ELSE with the nearest
 unpaired IF. The outcome is as follows:

What a lovely day!
We should take our raincoats!

Subtopics:

 1.4.2.2.1 Exercise - Using the IF...THEN...ELSE Instruction

1.4.2.2.1 Exercise - Using the IF...THEN...ELSE Instruction

 Write the REXX instructions for the following flowchart:

 __
 | |
 | |
 | |
 | |

 | |
 | |
 | |
 | |
 |__|

 ANSWER

IF a = 0 THEN
IF c = 2 THEN

z = 1
ELSE NOP

ELSE
IF z = 2 THEN

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

37 of 121 2/26/2019, 12:16 PM

IF c = 3 THEN
a = 1

ELSE
a = 3

ELSE NOP

1.4.2.3 SELECT WHEN...OTHERWISE...END Instruction

 To select one of any number of choices, use the
 SELECT WHEN...OTHERWISE...END instruction. In a flowchart it appears as
 follows:

 As a REXX instruction, the flowchart example looks like:

SELECT
WHEN expression THEN instruction
WHEN expression THEN instruction
WHEN expression THEN instruction
:
:
OTHERWISE

instruction(s)
END

 The language processor scans the WHEN clauses starting at the beginning
 until it finds a true expression. After it finds a true expression, it
 ignores all other possibilities, even though they might also be true. If
 no WHEN expressions are true, it processes the instructions following the
 OTHERWISE clause.

 As with IF...THEN...ELSE, when you have more than one instruction for a
 possible path, begin the set of instructions with a DO and end them with
 an END. However, if more than one instruction follows the OTHERWISE
 keyword, DO and END are not necessary.

 __
 | |
 | |
 | /******************************** REXX *******************************/|
 | /* This program receives input with a person's age and sex. In */|
 | /* reply, it produces a person's status as follows: */|
 | /* BABIES - under 5 */|
 | /* GIRLS - female 5 to 12 */|
 | /* BOYS - male 5 to 12 */|
 | /* TEENAGERS - 13 through 19 */|
 | /* WOMEN - female 20 and up */|
 | /* MEN - male 20 and up */|
 | /***/|
 | PARSE ARG age sex . |
 | |
 | SELECT |
 | WHEN age < 5 THEN /* person younger than 5 */ |
 | status = 'BABY' |
 | WHEN age < 13 THEN /* person between 5 and 12 */ |
 | DO |
 | IF sex = 'M' THEN /* boy between 5 and 12 */ |
 | status = 'BOY' |
 | ELSE /* girl between 5 and 12 */ |
 | status = 'GIRL' |
 | END |
 | WHEN age < 20 THEN /* person between 13 and 19 */ |
 | status = 'TEENAGER' |
 | OTHERWISE |
 | IF sex = 'M' THEN /* man 20 or older */ |
 | status = 'MAN' |
 | ELSE /* woman 20 or older */ |

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

38 of 121 2/26/2019, 12:16 PM

 | status = 'WOMAN' |
 | END |
 | |
 | SAY 'This person should be counted as a' status'.' |
 | |
 | |
 |__|
 Figure 19. Example Using SELECT WHEN...OTHERWISE...END

 Each SELECT must end with an END. Indenting each WHEN makes a program
 easier to read.

Subtopics:

 1.4.2.3.1 Exercises - Using SELECT WHEN...OTHERWISE...END

1.4.2.3.1 Exercises - Using SELECT WHEN...OTHERWISE...END

 "Thirty days hath September, April, June, and November; all the rest have
 thirty-one, save February alone ..."

 Write a program that uses the input of a number from 1 to 12, representing
 the month, and produces the number of days in that month. Assume the user
 specifies the month number as an argument when calling the program.
 (Include in the program an ARG instruction to assign the month number into
 the variable month). Then have the program produce the number of days.
 For month 2, this can be 28 or 29.

 ANSWER

 __
 | |
 | |
 | /******************************** REXX *******************************/|
 | /* This program uses the input of a whole number from 1 to 12 that */|
 | /* represents a month. It produces the number of days in that */|
 | /* month. */|
 | /***/|
 | |
 | ARG month |
 | |
 | SELECT |
 | WHEN month = 9 THEN |
 | days = 30 |
 | WHEN month = 4 THEN |
 | days = 30 |
 | WHEN month = 6 THEN |
 | days = 30 |
 | WHEN month = 11 THEN |
 | days = 30 |
 | WHEN month = 2 THEN |
 | days = '28 or 29' |
 | OTHERWISE |
 | days = 31 |
 | END |
 | |
 | SAY 'There are' days 'days in Month' month'.' |
 | |
 | |
 |__|
 Figure 20. Possible Solution

1.4.3 Using Looping Instructions

 There are two types of looping instructions, repetitive loops and
conditional loops. Repetitive loops let you repeat instructions a certain

 number of times. Conditional loops use a condition to control repeating.
 All loops, regardless of the type, begin with the DO keyword and end with
 the END keyword.

Subtopics:

 1.4.3.1 Repetitive Loops
 1.4.3.2 Conditional Loops
 1.4.3.3 Combining Types of Loops
 1.4.3.4 Nested DO Loops

1.4.3.1 Repetitive Loops

 The simplest loop tells the language processor to repeat a group of
 instructions a specific number of times. It uses a constant after the
 keyword DO.

DO 5

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

39 of 121 2/26/2019, 12:16 PM

SAY 'Hello!'
END

 When you run this example, it produces five lines of Hello!:

Hello!
Hello!
Hello!
Hello!
Hello!

 You can also use a variable in place of a constant, as in the following
 example, which gives you the same results.

number = 5
DO number

SAY 'Hello!'
END

 A variable that controls the number of times a loop repeats is called a
control variable. Unless you specify otherwise, the control variable

 increases by 1 each time the loop repeats.

DO number = 1 TO 5
SAY 'Loop' number
SAY 'Hello!'

END
SAY 'Dropped out of the loop when number reached' number

 This example results in five lines of Hello! preceded by the number of
 the loop. The number increases at the bottom of the loop and is tested at
 the top.

Loop 1
Hello!
Loop 2
Hello!
Loop 3
Hello!
Loop 4
Hello!
Loop 5
Hello!
Dropped out of the loop when number reached 6

 You can change the increment of the control variable with the keyword BY
 as follows:

DO number = 1 TO 10 BY 2
SAY 'Loop' number
SAY 'Hello!'

END
SAY 'Dropped out of the loop when number reached' number

 This example has results similar to the previous example except the loops
 are numbered in increments of two.

Loop 1
Hello!
Loop 3
Hello!
Loop 5
Hello!
Loop 7
Hello!
Loop 9
Hello!
Dropped out of the loop when number reached 11

Subtopics:

 1.4.3.1.1 Infinite Loops
 1.4.3.1.2 DO FOREVER Loops
 1.4.3.1.3 LEAVE Instruction
 1.4.3.1.4 ITERATE Instruction
 1.4.3.1.5 Exercises - Using Loops

1.4.3.1.1 Infinite Loops

 What happens when the control variable of a loop cannot attain the last
 number? For example, in the following program segment, count does not
 increase beyond 1.

DO count = 1 to 10
SAY 'Number' count
count = count - 1

END

 The result is called an infinite loop because count alternates between 1

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

40 of 121 2/26/2019, 12:16 PM

 and 0, producing an endless number of lines saying Number 1.

 If your program is in an infinite loop, contact the operator to cancel it.

1.4.3.1.2 DO FOREVER Loops

 Sometimes you might want to write an infinite loop purposely; for
 instance, in a program that reads records from a file until it reaches the
 end of the file. You can use the EXIT instruction to end an infinite loop
 when a condition is met, as in the following example. More about the EXIT
 instruction appears in "EXIT Instruction" in topic 1.4.4.1.

 __
 | |
 | |
 | /******************************* REXX ********************************/|
 | /* This program processes strings until the value of a string is */|
 | /* a null string. */|
 | /***/|
 | DO FOREVER |
 | PULL string /* Gets string from input stream */|
 | IF string = '' THEN |
 | PULL file_name |
 | IF file_name = '' THEN |
 | EXIT |
 | ELSE |
 | DO |
 | result = process(string) /* Calls a user-written function */|
 | /* to do processing on string. */|
 | IF result = 0 THEN SAY "Processing complete for string:" string|
 | ELSE SAY "Processing failed for string:" string |
 | END |
 | END |
 | |
 | |
 |__|
 Figure 21. Example Using a DO FOREVER Loop

 This example sends strings to a user-written function for processing and
 then issues a message that the processing completed successfully or
 failed. When the input string is a blank, the loop ends and so does the
 program. You can also end the loop without ending the program by using
 the LEAVE instruction. The following topic describes this.

1.4.3.1.3 LEAVE Instruction

 The LEAVE instruction causes an immediate exit from a repetitive loop.
 Control goes to the instruction following the END keyword of the loop. An
 example of using the LEAVE instruction follows:

 __
 | |
 | |
 | /******************************** REXX *******************************/|
 | /* This program uses the LEAVE instruction to exit from a DO */|
 | /* FOREVER loop. */|
 | /***/|
 | DO FOREVER |
 | PULL string /* Gets string from input stream */|
 | IF string = 'QUIT' then |
 | LEAVE |
 | ELSE |
 | DO |
 | result = process(string) /* Calls a user-written function */|
 | /* to do processing on string. */|
 | IF result = 0 THEN SAY "Processing complete for string:" string|
 | ELSE SAY "Processing failed for string:" string |
 | END |
 | END |
 | SAY 'Program run complete.' |
 | |
 | |
 |__|
 Figure 22. Example Using the LEAVE Instruction

1.4.3.1.4 ITERATE Instruction

 The ITERATE instruction stops execution from within the loop and passes
 control to the DO instruction at the top of the loop. Depending on the
 type of DO instruction, the language processor increases and tests a
 control variable or tests a condition to determine whether to repeat the
 loop. Like LEAVE, ITERATE is used within the loop.

DO count = 1 TO 10
IF count = 8

THEN
ITERATE

ELSE
SAY 'Number' count

END

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

41 of 121 2/26/2019, 12:16 PM

 This example results in a list of numbers from 1 to 10 with the exception
 of number 8.

Number 1
Number 2
Number 3
Number 4
Number 5
Number 6
Number 7
Number 9
Number 10

1.4.3.1.5 Exercises - Using Loops

 1. What are the results of the following loops?

 a.

DO digit = 1 TO 3
SAY digit

END
SAY 'Digit is now' digit

 b.

DO count = 10 BY -2 TO 6
SAY count

END
SAY 'Count is now' count

 c.

DO index = 10 TO 8
SAY 'Hup! Hup! Hup!'

END
SAY 'Index is now' index

 2. Sometimes an infinite loop can occur when input to end the loop does
 not match what is expected. For instance, in the example of using the
 LEAVE Instruction in topic 1.4.3.1.3, what happens when the input is

Quit and a PARSE PULL instruction replaces the PULL instruction?

PARSE PULL file_name

 ANSWERS

 1. The results of the repetitive loops are as follows:

 a.

 1
 2
 3
 Digit is now 4

 b.

 10
 8
 6
 Count is now 4

 c.

 Index is now 10

 2. The program would be unable to leave the loop because Quit is not
 equal to QUIT. In this case, omitting the PARSE keyword is preferred
 because regardless of whether the input is quit, QUIT, or Quit, the
 language processor translates the input to uppercase before comparing
 it to QUIT.

1.4.3.2 Conditional Loops

 There are two types of conditional loops, DO WHILE and DO UNTIL. One or
 more expressions control both types of loops. However, DO WHILE loops

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

42 of 121 2/26/2019, 12:16 PM

 test the expression before the loop executes the first time and repeat
 only when the expression is true. DO UNTIL loops test the expression
 after the loop executes at least once and repeat only when the expression
 is false.

Subtopics:

 1.4.3.2.1 DO WHILE Loops
 1.4.3.2.2 Exercise - Using a DO WHILE Loop
 1.4.3.2.3 DO UNTIL Loops
 1.4.3.2.4 Exercise - Using a DO UNTIL Loop

1.4.3.2.1 DO WHILE Loops

 DO WHILE loops in a flowchart appear as follows:

 As REXX instructions, the flowchart example looks like:

DO WHILE expression /* expression must be true */
instruction(s)

END

 Use a DO WHILE loop when you want to execute the loop while a condition is
 true. DO WHILE tests the condition at the top of the loop. If the
 condition is initially false, the language processor never executes the
 loop.

 You can use a DO WHILE loop instead of the DO FOREVER loop in the example
 of using the LEAVE instruction in topic 1.4.3.1.3. However, you need to
 initialize the loop with a first case so the condition can be tested
 before you get into the loop. Notice the first case initialization in the
 first PULL of the following example.

 __
 | |
 | |
 | /******************************** REXX *******************************/|
 | /* This program uses a DO WHILE loop to send a string to a */|
 | /* user-written function for processing. */|
 | /***/|
 | PULL string /* Gets string from input stream */|
 | DO WHILE string \= 'QUIT' |
 | result = process(string) /* Calls a user-written function */|
 | /* to do processing on string. */|
 | IF result = 0 THEN SAY "Processing complete for string:" string|
 | ELSE SAY "Processing failed for string:" string |
 | PULL string |
 | END |
 | SAY 'Program run complete.' |
 | |
 | |
 |__|
 Figure 23. Example Using DO WHILE

1.4.3.2.2 Exercise - Using a DO WHILE Loop

 Write a program with a DO WHILE loop that uses as input a list of
 responses about whether passengers on a commuter airline want a window
 seat. The flight has 8 passengers and 4 window seats. Discontinue the

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

43 of 121 2/26/2019, 12:16 PM

 loop when all the window seats are taken. After the loop ends, produce
 the number of window seats taken and the number of responses processed.

 ANSWER

 __
 | |
 | |
 | /******************************** REXX *******************************/|
 | /* This program uses a DO WHILE loop to keep track of window seats */|
 | /* in an 8-seat commuter airline. */|
 | /***/|
 | |
 | window_seats = 0 /* Initialize window seats to 0 */ |
 | passenger = 0 /* Initialize passengers to 0 */ |
 | |
 | DO WHILE (passenger < 8) & (window_seats \= 4) |
 | |
 | /**/|
 | /* Continue while the program has not yet read the responses of */|
 | /* all 8 passengers and while all the window seats are not taken. */|
 | /**/|
 | |
 | PULL window /* Gets "Y" or "N" from input stream */|
 | passenger = passenger + 1 /* Increase number of passengers by 1 */|
 | IF window = 'Y' THEN |
 | window_seats = window_seats + 1 /* Increase window seats by 1 */|
 | ELSE NOP |
 | END |
 | |
 | SAY window_seats 'window seats were assigned.' |
 | SAY passenger 'passengers were questioned.' |
 | |
 | |
 |__|
 Figure 24. Possible Solution

1.4.3.2.3 DO UNTIL Loops

 DO UNTIL loops in a flowchart appear as follows:

 As REXX instructions, the flowchart example looks like:

DO UNTIL expression /* expression must be false */
instruction(s)

END

 Use DO UNTIL loops when a condition is not true and you want to execute
 the loop until the condition is true. The DO UNTIL loop tests the
 condition at the end of the loop and repeats only when the condition is
 false. Otherwise, the loop executes once and ends. For example:

 __
 | |
 | |
 | /******************************** REXX ******************************/ |
 | /* This program uses a DO UNTIL loop to ask for a password. If the */ |
 | /* password is incorrect three times, the loop ends. */ |
 | /**/ |
 | password = 'abracadabra' |
 | time = 0 |
 | DO UNTIL (answer = password) | (time = 3) |
 | PULL answer /* Gets ANSWER from input stream */ |
 | time = time + 1 |
 | END |

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

44 of 121 2/26/2019, 12:16 PM

 | |
 | |
 |__|
 Figure 25. Example Using DO UNTIL

1.4.3.2.4 Exercise - Using a DO UNTIL Loop

 Change the program in the previous exercise in topic 1.4.3.2.2 from a DO
 WHILE to a DO UNTIL loop and achieve the same results. Remember that DO
 WHILE loops check for true expressions and DO UNTIL loops check for false
 expressions, which means their logical operators are often reversed.

 ANSWER

 __
 | |
 | |
 | /******************************** REXX *******************************/|
 | /* This program uses a DO UNTIL loop to keep track of window seats */|
 | /* in an 8-seat commuter airline. */|
 | /***/|
 | |
 | window_seats = 0 /* Initialize window seats to 0 */ |
 | passenger = 0 /* Initialize passengers to 0 */ |
 | |
 | DO UNTIL (passenger >= 8) | (window_seats = 4) |
 | |
 | /**/|
 | /* Continue while the program has not yet read the responses of */|
 | /* all 8 passengers and while all the window seats are not taken. */|
 | /**/|
 | |
 | PULL window /* Gets "Y" or "N" from input stream */|
 | passenger = passenger + 1 /* Increase number of passengers by 1 */|
 | IF window = 'Y' THEN |
 | window_seats = window_seats + 1 /* Increase window seats by 1 */|
 | ELSE NOP |
 | END |
 | SAY window_seats 'window seats were assigned.' |
 | SAY passenger 'passengers were questioned.' |
 | |
 | |
 |__|
 Figure 26. Possible Solution

1.4.3.3 Combining Types of Loops

 You can combine repetitive and conditional loops to create a compound
 loop. The following loop is set to repeat 10 times while the quantity is
 less than 50, at which point it stops.

quantity = 20
DO number = 1 TO 10 WHILE quantity < 50

quantity = quantity + number
SAY 'Quantity = 'quantity ' (Loop 'number')'

END

 The result of this example is as follows:

Quantity = 21 (Loop 1)
Quantity = 23 (Loop 2)
Quantity = 26 (Loop 3)
Quantity = 30 (Loop 4)
Quantity = 35 (Loop 5)
Quantity = 41 (Loop 6)
Quantity = 48 (Loop 7)
Quantity = 56 (Loop 8)

 You can substitute a DO UNTIL loop, change the comparison operator from <
 to >, and get the same results.

quantity = 20
DO number = 1 TO 10 UNTIL quantity > 50

quantity = quantity + number
SAY 'Quantity = 'quantity ' (Loop 'number')'

END

1.4.3.4 Nested DO Loops

 Like nested IF...THEN...ELSE instructions, DO loops can contain other DO
 loops. A simple example follows:

DO outer = 1 TO 2
DO inner = 1 TO 2

SAY 'HIP'
END
SAY 'HURRAH'

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

45 of 121 2/26/2019, 12:16 PM

END

 The output from this example is:

HIP
HIP
HURRAH
HIP
HIP
HURRAH

 If you need to leave a loop when a certain condition arises, use the LEAVE
 instruction followed by the name of the control variable of the loop. If
 the LEAVE instruction is for the inner loop, processing leaves the inner
 loop and goes to the outer loop. If the LEAVE instruction is for the
 outer loop, processing leaves both loops.

 To leave the inner loop in the preceding example, add an IF...THEN...ELSE
 instruction that includes a LEAVE instruction after the IF instruction.

DO outer = 1 TO 2
DO inner = 1 TO 2

IF inner > 1 THEN
LEAVE inner

ELSE
SAY 'HIP'

END
SAY 'HURRAH'

END

 The result is as follows:

HIP
HURRAH
HIP
HURRAH

Subtopics:

 1.4.3.4.1 Exercises - Combining Loops

1.4.3.4.1 Exercises - Combining Loops

 1. What happens when the following program runs?

DO outer = 1 TO 3
SAY /* Produces a blank line */
DO inner = 1 TO 3

SAY 'Outer' outer 'Inner' inner
END

END

 2. Now what happens when the LEAVE instruction is added?

DO outer = 1 TO 3
SAY /* Produces a blank line */
DO inner = 1 TO 3

IF inner = 2 THEN
LEAVE inner

ELSE
SAY 'Outer' outer 'Inner' inner

END
END

 ANSWERS

 1. When this example runs, it produces the following:

Outer 1 Inner 1
Outer 1 Inner 2
Outer 1 Inner 3

Outer 2 Inner 1
Outer 2 Inner 2
Outer 2 Inner 3

Outer 3 Inner 1
Outer 3 Inner 2
Outer 3 Inner 3

 2. The result is one line of output for each of the inner loops.

Outer 1 Inner 1

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

46 of 121 2/26/2019, 12:16 PM

Outer 2 Inner 1

Outer 3 Inner 1

1.4.4 Using Interrupt Instructions

 Instructions that interrupt the flow of a program can cause the program
 to:

 ° End (EXIT)

 ° Skip to another part of the program marked by a label (SIGNAL)

 ° Go temporarily to a subroutine either within the program or outside
 the program (CALL or RETURN).

Subtopics:

 1.4.4.1 EXIT Instruction
 1.4.4.2 CALL and RETURN Instructions
 1.4.4.3 SIGNAL Instruction

1.4.4.1 EXIT Instruction

 The EXIT instruction causes a REXX program to unconditionally end and
 return to where the program was called. If another program called the
 REXX program, EXIT returns to that calling program. More about calling
 external routines appears later in this chapter and in Chapter 6, "Writing

Subroutines and Functions" in topic 1.6.

 Besides ending a program, EXIT can also return a value to the caller of
 the program. If the program was called as a subroutine from another REXX
 program, the value is received in the REXX special variable RESULT. If
 the program was called as a function, the value is received in the
 original expression at the point where the function was called.
 Otherwise, the value is received in the REXX special variable RC. The
 value can represent a return code and can be in the form of a constant or
 an expression that is computed.

 __
 | |
 | |
 | /******************************** REXX ****************************/ |
 | /* This program uses the EXIT instruction to end the program and */ |
 | /* return a value indicating whether a job applicant gets the */ |
 | /* job. A value of 0 means the applicant does not qualify for */ |
 | /* the job, but a value of 1 means the applicant gets the job. */ |
 | /* The value is placed in the REXX special variable RESULT. */ |
 | /**/ |
 | PULL months_experience /* Gets number from input stream */ |
 | PULL references /* Gets "Y" or "N" from input stream */ |
 | PULL start_tomorrow /* Gets "Y" or "N" from input stream */ |
 | |
 | IF (months_experience > 24) & (references = 'Y') & (start_tomorrow= 'Y'|
 | THEN job = 1 /* person gets the job */ |
 | ELSE job = 0 /* person does not get the job */ |
 | |
 | EXIT job |
 | |
 | |
 |__|
 Figure 27. Example Using the EXIT Instruction

1.4.4.2 CALL and RETURN Instructions

 The CALL instruction interrupts the flow of a program by passing control
 to an internal or external subroutine. An internal subroutine is part of
 the calling program. An external subroutine is another program. The
 RETURN instruction returns control from a subroutine back to the calling
 program and optionally returns a value.

 When calling an internal subroutine, CALL passes control to a label
 specified after the CALL keyword. When the subroutine ends with the
 RETURN instruction, the instructions following CALL are processed.

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

47 of 121 2/26/2019, 12:16 PM

 When calling an external subroutine, CALL passes control to the program
 name that is specified after the CALL keyword. When the external
 subroutine completes, you can use the RETURN instruction to return to
 where you left off in the calling program.

 For more information about calling subroutines, see Chapter 6, "Writing
Subroutines and Functions" in topic 1.6.

1.4.4.3 SIGNAL Instruction

 The SIGNAL instruction, like CALL, interrupts the usual flow of a program
 and causes control to pass to a specified label. The label to which
 control passes can be before or after the SIGNAL instruction. Unlike
 CALL, SIGNAL does not return to a specific instruction to resume
 execution. When you use SIGNAL from within a loop, the loop automatically
 ends. When you use SIGNAL from an internal routine, the internal routine
 does not return to its caller.

 In the following example, if the expression is true, then the language
 processor goes to the label Emergency: and skips all instructions in
 between.

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

48 of 121 2/26/2019, 12:16 PM

 SIGNAL is useful for testing programs or to provide an emergency course of
 action. It should not be used as a convenient way to move from one place
 in a program to another. SIGNAL does not provide a way to return as does
 the CALL instruction described in the previous topic.

 For more information about the SIGNAL instruction, see topic 2.2.1.2, and
 the REXX/VSE Reference.

1.5 Chapter 5. Using Functions

Purpose: This chapter defines what a function is and describes how to use
 the built-in functions.

Subtopics:

 1.5.1 What is a Function?
 1.5.2 Built-In Functions

1.5.1 What is a Function?

 A function is a sequence of instructions that can receive data, process
 that data, and return a value. In REXX, there are several kinds of
 functions:

 ° Built-in functions are built into the language processor. More about
 built-in functions appears later in this chapter.

 ° User-written functions are those an individual user writes or an
 installation supplies. These can be internal or external. An

internal function is part of the current program that starts at a
 label. An external function is a self-contained program or program
 outside of the calling program. More information about user-written
 functions appears in "Writing Subroutines and Functions" in

topic 1.6.2.

 ° Function packages are groups of functions and subroutines that an
 individual user writes or an installation supplies. They are
 link-edited into phases and categorized as user, local, and system.
 REXX/VSE external functions are provided in a system function package.
 More information about REXX/VSE external functions appears in

"REXX/VSE External Functions" in topic 2.3.1.

 Regardless of the kind of function, all functions return a value to the
 program that issued the function call. To call a function, type the
 function name, immediately followed by parentheses enclosing arguments to
 the function, if any. There can be no space between the function name and

the left parenthesis.

function(arguments)

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

49 of 121 2/26/2019, 12:16 PM

 A function call can contain up to 20 arguments separated by commas.
 Arguments can be:

 ° Constant

function(55)

 ° Symbol

function(symbol_name)

 ° Option that the function recognizes

function(option)

 ° Literal string

function('With a literal string')

 ° Unspecified or omitted

function()

 ° Another function

function(function(arguments))

 ° Combination of argument types

function('With literal string', 55, option)
function('With literal string',, option) /* Second argument omitted */

 All functions must return values. When the function returns a value, the
 value replaces the function call. In the following example, the language
 processor adds the value the function returns to 7 and produces the sum.

SAY 7 + function(arguments)

 A function call generally appears in an expression. Therefore, a function
 call, like an expression, does not usually appear in an instruction by
 itself.

Subtopics:

 1.5.1.1 Example of a Function

1.5.1.1 Example of a Function

 Calculations that functions represent often require many instructions.
 For instance, the simple calculation for finding the highest number in a
 group of three numbers, might be written as follows:

 __
 | |
 | |
 | /***************************** REXX **********************************/|
 | /* This program receives three numbers as arguments and analyzes */|
 | /* which number is the greatest. */|
 | /***/|
 | |
 | PARSE ARG number1, number2, number3 . |
 | |
 | IF number1 > number2 THEN |
 | IF number1 > number3 THEN |
 | greatest = number1 |
 | ELSE |
 | greatest = number3 |
 | ELSE |
 | IF number2 > number3 THEN |
 | greatest = number2 |
 | ELSE |
 | greatest = number3 |
 | |
 | RETURN greatest |
 | |
 | |
 |__|
 Figure 28. Finding a Maximum Number

 Rather than writing multiple instructions every time you want to find the
 maximum of a group of three numbers, you can use a built-in function that
 does the calculation for you and returns the maximum number. The function
 is called MAX, and you can use it as follows:

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

50 of 121 2/26/2019, 12:16 PM

MAX(number1,number2,number3,....)

 To find the maximum of 45, -2, number, and 199 and put the maximum into
 the symbol biggest, write the following instruction:

biggest = MAX(45,-2,number,199)

1.5.2 Built-In Functions

 More than 50 functions are built into the language processor. The
 built-in functions fall into the following categories:

 ° Arithmetic functions

 These functions evaluate numbers from the argument and return a
 particular value.

 ° Comparison functions

 These functions compare numbers or strings or both and return a value.

 ° Conversion functions

 These functions convert one type of data representation to another
 type of data representation.

 ° Formatting functions

 These functions manipulate the characters and spacing in strings
 supplied in the argument.

 ° String manipulating functions

 These functions analyze a string supplied in the argument (or a
 variable representing a string) and return a particular value.

 ° Miscellaneous functions

 These functions do not clearly fit into any of the other categories.

 The following tables briefly describe the functions in each category. For
 a complete description of these functions, see the REXX/VSE Reference.

Subtopics:

 1.5.2.1 Arithmetic Functions
 1.5.2.2 Comparison Functions
 1.5.2.3 Conversion Functions
 1.5.2.4 Formatting Functions
 1.5.2.5 String Manipulating Functions
 1.5.2.6 Miscellaneous Functions
 1.5.2.7 Testing Input with Built-In Functions

1.5.2.1 Arithmetic Functions

 _______________ __
Function	Description
_______________	__
ABS	Returns the absolute value of the input number.
_______________	__
DIGITS	Returns the current setting of NUMERIC DIGITS.
_______________	__
FORM	Returns the current setting of NUMERIC FORM.
_______________	__
FUZZ	Returns the current setting of NUMERIC FUZZ.
_______________	__
MAX	Returns the largest number from the list specified,
	formatted according to the current NUMERIC settings.
_______________	__
MIN	Returns the smallest number from the list specified,
	formatted according to the current NUMERIC settings.
_______________	__
RANDOM	Returns a quasi-random, non-negative whole number in
	the range specified.
_______________	__
SIGN	Returns a number that indicates the sign of the input
	number.
_______________	__
TRUNC	Returns the integer part of the input number and
	optionally a specified number of decimal places.
_______________	__

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

51 of 121 2/26/2019, 12:16 PM

1.5.2.2 Comparison Functions

 _______________ __
Function	Description
_______________	__
COMPARE	Returns 0 if the two input strings are identical.
	Otherwise, returns the position of the first character
	that does not match.
_______________	__
DATATYPE	Returns a string indicating the input string is a
	particular data type, such as a number or character.
_______________	__
SYMBOL	Returns VAR, LIT, or BAD to indicate the state of the
	symbol (variable, literal, or bad).
_______________	__

1.5.2.3 Conversion Functions

 _______________ __
Function	Description
_______________	__
B2X	Returns a string, in character format, that represents
	the input binary string converted to hexadecimal.
	(Binary to hexadecimal)
_______________	__
C2D	Returns the decimal value of the binary representation
	of the input string. (Character to Decimal)
_______________	__
C2X	Returns a string, in character format, that represents
	the input string converted to hexadecimal. (Character
	to Hexadecimal)
_______________	__
D2C	Returns a string, in character format, that represents
	the input decimal number converted to binary.
	(Decimal to Character)
_______________	__
D2X	Returns a string, in character format, that represents
	the input decimal number converted to hexadecimal.
	(Decimal to Hexadecimal)
_______________	__
X2B	Returns a string, in character format, that represents
	the input hexadecimal string converted to binary.
	(Hexadecimal to binary)
_______________	__
X2C	Returns a string, in character format, that represents
	the input hexadecimal string converted to character.
	(Hexadecimal to Character)
_______________	__
X2D	Returns the decimal representation of the input
	hexadecimal string. (Hexadecimal to Decimal)
_______________	__

1.5.2.4 Formatting Functions

 _______________ __
Function	Description
_______________	__
CENTER or	Returns a string of a specified length with the input
CENTRE	string centered in it, with pad characters added as
	necessary to make up the length.
_______________	__
COPIES	Returns the specified number of concatenated copies of
	the input string.
_______________	__
FORMAT	Returns the input number, rounded and formatted.
_______________	__
JUSTIFY (1)	Returns a specified string formatted by adding pad
	characters between words to justify to both margins.
_______________	__
LEFT	Returns a string of the specified length, truncated or
	padded on the right as needed.
_______________	__
RIGHT	Returns a string of the specified length, truncated or
	padded on the left as needed.
_______________	__
SPACE	Returns the words in the input string with a specified
	number of pad characters between each word.
_______________	__

(1) Is a non-SAA built-in function REXX/VSE provides.

1.5.2.5 String Manipulating Functions

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

52 of 121 2/26/2019, 12:16 PM

 _______________ __
Function	Description
_______________	__
ABBREV	Returns a string indicating if one string is equal to
	the specified number of leading characters of another
	string.
_______________	__
DELSTR	Returns a string after deleting a specified number of
	characters, starting at a specified point in the input
	string.
_______________	__
DELWORD	Returns a string after deleting a specified number of
	words, starting at a specified word in the input
	string.
_______________	__
FIND (2)	Returns the word number of the first word of a
	specified phrase found within the input string.
_______________	__
INDEX (2)	Returns the character position of the first character
	of a specified string found in the input string.
_______________	__
INSERT	Returns a character string after inserting one input
	string into another string after a specified character
	position.
_______________	__
LASTPOS	Returns the starting character position of the last
	occurrence of one string in another.
_______________	__
LENGTH	Returns the length of the input string.
_______________	__
OVERLAY	Returns a string that is the target string overlaid by
	a second input string.
_______________	__
POS	Returns the character position of one string in
	another.
_______________	__
REVERSE	Returns a character string, the characters of which
	are in reverse order (swapped end for end).
_______________	__
STRIP	Returns a character string after removing leading or
	trailing characters or both from the input string.
_______________	__
SUBSTR	Returns a portion of the input string beginning at a
	specified character position.
_______________	__
SUBWORD	Returns a portion of the input string starting at a
	specified word number.
_______________	__
TRANSLATE	Returns a character string with each character of the
	input string translated to another character or
	unchanged.
_______________	__
VERIFY	Returns a number indicating whether an input string is
	composed only of characters from another input string
	or returns the character position of the first
	unmatched character.
_______________	__
WORD	Returns a word from an input string as a specified
	number indicates.
_______________	__
WORDINDEX	Returns the character position in an input string of
	the first character in the specified word.
_______________	__
WORDLENGTH	Returns the length of a specified word in the input
	string.
_______________	__
WORDPOS	Returns the word number of the first word of a
	specified phrase in the input string.
_______________	__
WORDS	Returns the number of words in the input string.
_______________	__

(2) Is a non-SAA built-in function REXX/VSE provides.

1.5.2.6 Miscellaneous Functions

 _______________ __
Function	Description
_______________	__
ADDRESS	Returns the name of the environment to which commands
	are currently being sent.
_______________	__
ARG	Returns an argument string or information about the
	argument strings to a program or internal routine.
_______________	__
BITAND	Returns a string composed of the two input strings
	logically ANDed together, bit by bit.
_______________	__
BITOR	Returns a string composed of the two input strings
	logically ORed together, bit by bit.
_______________	__
BITXOR	Returns a string composed of the two input strings
	eXclusive ORed together, bit by bit.
_______________	__
CONDITION	Returns the condition information, such as name and
	status, associated with the current trapped condition.
_______________	__
DATE	Returns the date in the default format (dd mon yyyy)

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

53 of 121 2/26/2019, 12:16 PM

	or in one of various optional formats.
_______________	__
ERRORTEXT	Returns the error message associated with the
	specified error number.
_______________	__
EXTERNALS (2)	This function always returns a 0.
_______________	__
LINESIZE (2)	Returns the width of the current output device.
	ASSGN(STDOUT) returns the name of the current output
	device.
_______________	__
QUEUED	Returns the number of lines remaining in the external
	data queue at the time when the function is called.
_______________	__
SOURCELINE	Returns either the line number of the last line in the
	source file or the source line a number specifies.
_______________	__
TIME	Returns the local time in the default 24-hour clock
	format (hh:mm:ss) or in one of various optional
	formats.
_______________	__
TRACE	Returns the trace actions currently in effect.
_______________	__
USERID (2)	Returns the current user ID. This is the last user ID
	specified on the SETUID command, the user ID of the
	calling REXX program if one program calls another, the
	user ID under which the job is running, or the job
	name.
_______________	__
VALUE	Returns the value of a specified symbol and optionally
	assigns it a new value.
_______________	__
XRANGE	Returns a string of all 1-byte codes (in ascending
	order) between and including specified starting and
	ending values.
_______________	__

1.5.2.7 Testing Input with Built-In Functions

 Some of the built-in functions provide a convenient way to test input.
 When a program uses input, the user might provide input that is not valid.
 For instance, in the example of using comparison expressions in topic

1.3.3.2.2, the program uses a dollar amount in the following instruction.

PARSE PULL yesterday /* Gets yesterday's price from input stream */

 If the program pulls only a number, the program processes that information
 correctly. However, if the program pulls a number preceded by a dollar
 sign or pulls a word, such as nothing, the program returns an error. To
 avoid getting an error, you can check the input with the DATATYPE function
 as follows.

IF DATATYPE(yesterday) \= 'NUM'
THEN DO

SAY 'The input amount was in the wrong format.'
EXIT

END

 Other useful built-in functions to test input are WORDS, VERIFY, LENGTH,
 and SIGN.

Subtopics:

 1.5.2.7.1 Exercise - Writing a Program with Built-In Functions

1.5.2.7.1 Exercise - Writing a Program with Built-In Functions

 Write a program that checks a file name for a length of 8 characters. If
 the name is longer than 8 characters, the program truncates it to 8 and
 sends a message indicating the shortened name. Use the LENGTH and the
 SUBSTR built-in functions (the REXX/VSE Reference describes these).

 ANSWER

 __
 | |
 | |
 | /***************************** REXX *********************************/ |
 | /* This program tests the length of a file name. */ |
 | /* If the name is longer than 8 characters, the program truncates */ |
 | /* extra characters and sends a message indicating the shortened */ |
 | /* name. */ |
 | /**/ |
 | PULL name /* Gets name from input stream */ |
 | |
 | IF LENGTH(name) > 8 THEN /* Name is longer than 8 characters */ |
 | DO |
 | name = SUBSTR(name,1,8) /* Shorten name to first 8 characters */ |
 | SAY 'The name you specified was too long.' |
 | SAY name 'will be used.' |
 | END |

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

54 of 121 2/26/2019, 12:16 PM

 | ELSE NOP |
 | |
 | |
 |__|
 Figure 29. Possible Solution

1.6 Chapter 6. Writing Subroutines and Functions

Purpose: This chapter shows how to write subroutines and functions and
 discusses their differences and similarities.

Subtopics:

 1.6.1 What are Subroutines and Functions?
 1.6.2 Writing Subroutines and Functions
 1.6.3 Subroutines and Functions--Similarities and Differences

1.6.1 What are Subroutines and Functions?

 Subroutines and functions are routines made up of a sequence of
 instructions that can receive data, process that data, and return a value.
 The routines can be:

Internal The routine is within the current program, marked by a label,
 and only that program uses the routine.

External A member of a sublibrary in the active PROC or PHASE chain or in
 the SVA. One or more programs can call an external routine.

 In many aspects, subroutines and functions are the same. However, they
 are different in a few major aspects, such as how to call them and the way
 they return values.

 ° Calling a subroutine

 To call a subroutine, use the CALL instruction followed by the
 subroutine name (label or program member name). You can optionally
 follow this with up to 20 comma-separated arguments. The subroutine
 call is an entire instruction.

CALL subroutine_name argument1, argument2,...

 ° Calling a function

 To call a function, use the function name (label or program member
 name) immediately followed by parentheses that can contain arguments.
 There can be no space between the function name and the left
 parentheses. The function call is part of an instruction, for
 example, an assignment instruction.

z = function(argument1, argument2,...)

 ° Returning a value from a subroutine

 A subroutine does not have to return a value, but when it does, it
 sends back the value with the RETURN instruction.

RETURN value

 The calling program receives the value in the REXX special variable
 named RESULT.

SAY 'The answer is' RESULT

 ° Returning a value from a function

 A function must return a value. When the function is a REXX program,
 the value is returned with either the RETURN or EXIT instruction.

RETURN value

 The calling program receives the value at the function call. The
 value replaces the function call, so that in the following example,
 z = value.

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

55 of 121 2/26/2019, 12:16 PM

z = function(argument1, argument2,...)

Subtopics:

 1.6.1.1 When to Write Subroutines Rather Than Functions

1.6.1.1 When to Write Subroutines Rather Than Functions

 The actual instructions that make up a subroutine or a function can be
 identical. It is the way you want to use them in a program that turns
 them into either a subroutine or a function. For example, you can call
 the built-in function SUBSTR as either a function or a subroutine. This
 is how to call SUBSTR as a function to shorten a word to its first eight
 characters:

a = SUBSTR('verylongword',1,8) /* a is set to 'verylong' */

 You get the same results if you call SUBSTR as a subroutine:

CALL SUBSTR 'verylongword', 1, 8
a = RESULT /* a is set to 'verylong' */

 When deciding whether to write a subroutine or a function, ask yourself
 the following questions:

 ° Is a returned value optional? If so, write a subroutine.

 ° Do I need a value returned as an expression within an instruction? If
 so, write a function.

 The rest of this chapter describes how to write subroutines and functions
 and finally summarizes the differences and similarities between the two.

1.6.2 Writing Subroutines and Functions

 A subroutine is a series of instructions that a program calls to perform a
 specific task. The instruction that calls the subroutine is the CALL
 instruction. You can use the CALL instruction several times in a program
 to call the same subroutine.

 When the subroutine ends, it can return control to the instruction that
 directly follows the subroutine call. The instruction that returns
 control is the RETURN instruction.

 A function is a series of instructions that a program calls to perform a
 specific task and return a value. As Chapter 5, "Using Functions" in

topic 1.5 describes, a function can be built-in or user-written. Call a
 user-written function the same way as a built-in function: specify the
 function name immediately followed by parentheses that can contain
 arguments. There can be no blanks between the function name and the left
 parenthesis. The parentheses can contain up to 20 arguments or no
 arguments at all.

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

56 of 121 2/26/2019, 12:16 PM

function(argument1, argument2,...)
or

function()

 A function requires a return value because the function call generally
 appears in an expression.

z = function(arguments1, argument2,...)

 When the function ends, it can use the RETURN instruction to send back a
 value to replace the function call.

 Both subroutines and functions can be internal (a label designates these)
 or external (a sublibrary member name that contains the subroutine or
 function designates these). The two preceding examples illustrate an
 internal subroutine named sub1 and an internal function named func1.

 ___ IMPORTANT NOTE ___
 | |
 | Because internal subroutines and functions generally appear after the |
 | main part of the program, when you have an internal subroutine or |
 | function, it is important to end the main part of the program with the |
 | EXIT instruction. |
 | |
 |__|

 The following illustrates an external subroutine named sub2.

 The following illustrates an external function named func2.

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

57 of 121 2/26/2019, 12:16 PM

Subtopics:

 1.6.2.1 When to Use Internal Versus External Subroutines or Functions
 1.6.2.2 Passing Information
 1.6.2.3 Receiving Information from a Subroutine or Function

1.6.2.1 When to Use Internal Versus External Subroutines or Functions

 To determine whether to make a subroutine or function internal or
 external, you might consider factors, such as:

 ° Size of the subroutine or function. Very large subroutines and
 functions often are external, whereas small ones fit easily within the
 calling program.

 ° How you want to pass information. It is quicker to pass information
 through variables in an internal subroutine or function. The next
 topic describes passing information this way.

 ° Whether the subroutine or function might be of value to more than one
 program or user. If so, an external subroutine or function is
 preferable.

 ° Performance. For functions, the language processor searches for an
 internal function before it searches for an external function. For
 the complete search order of functions, see "Search Order for

Functions" in topic 2.3.2.1.

1.6.2.2 Passing Information

 A program and its internal subroutine or function can share the same
 variables. Therefore, you can use commonly shared variables to pass
 information between caller and internal subroutine or function. You can
 also use arguments to pass information to and from an internal subroutine
 or an internal function. External subroutines, however, cannot share
 variables with the caller. To pass information to them, you need to use
 arguments or some other external way, such as the data stack. (Remember:
 An internal function does not need to pass arguments within the
 parentheses that follow the function call. However, all functions, both
 internal and external, must return a value.)

Subtopics:

 1.6.2.2.1 Passing Information by Using Variables
 1.6.2.2.2 Passing Information by Using Arguments

1.6.2.2.1 Passing Information by Using Variables

 When a program and its internal subroutine or function share the same
 variables, the value of a variable is what was last assigned. This is
 regardless of whether the assignment was in the main part of the program
 or in the subroutine or function.

 The following example shows passing information to a subroutine. The

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

58 of 121 2/26/2019, 12:16 PM

 variables number1, number2, and answer are shared. The value of answer is
 assigned in the subroutine and used in the main part of the program.

 __
 | |
 | |
 | /******************************* REXX ********************************/|
 | /* This program receives a calculated value from an internal */|
 | /* subroutine and uses that value in a SAY instruction. */|
 | /***/|
 | |
 | number1 = 5 |
 | number2 = 10 |
 | CALL subroutine |
 | SAY answer /* Produces 15 */ |
 | EXIT |
 | |
 | subroutine: |
 | answer = number1 + number2 |
 | RETURN |
 | |
 | |
 | |
 |__|
 Figure 30. Example of Passing Information in a Variable Using a Subroutine

 The next example is the same, except it passes information to a function
 rather than a subroutine. The subroutine includes the variable answer on
 the RETURN instruction. The language processor replaces the function call
 with the value in answer.

 __
 | |
 | |
 | /******************************* REXX ********************************/|
 | /* This program receives a calculated value from an internal */|
 | /* function and uses SAY to produce that value. */|
 | /***/|
 | |
 | number1 = 5 |
 | number2 = 10 |
 | SAY add() /* Produces 15 */ |
 | SAY answer /* Also produces 15 */ |
 | EXIT |
 | |
 | add: |
 | answer = number1 + number2 |
 | RETURN answer |
 | |
 | |
 | |
 |__|
 Figure 31. Example of Passing Information in a Variable Using a Function

 Using the same variables in a program and its internal subroutine or
 function can sometimes create problems. In the next example, the main
 part of the program and the subroutine use the same control variable, i,
 for their DO loops. As a result, the DO loop runs only once in the main
 program because the subroutine returns to the main program with i = 6.

 __
 | |
 | |
 | /******************************* REXX ********************************/|
 | /* NOTE: This program contains an error. */|
 | /* It uses a DO loop to call an internal subroutine, and the */|
 | /* subroutine uses a DO loop with the same control variable as the */|
 | /* main program. The DO loop in the main program runs only once. */|
 | /***/|
 | |
 | number1 = 5 |
 | number2 = 10 |
 | DO i = 1 TO 5 |
 | CALL subroutine |
 | SAY answer /* Produces 105 */ |
 | END |
 | EXIT |
 | |
 | subroutine: |
 | DO i = 1 TO 5 |
 | answer = number1 + number2 |
 | number1 = number2 |
 | number2 = answer |
 | END |
 | RETURN |
 | |
 | |
 | |
 |__|
 Figure 32. Example of a Problem Caused by Passing Information in a Variable
 Using a Subroutine

 The next example is the same, except it passes information using a
 function instead of a subroutine:

 __
 | |
 | |
 | /******************************* REXX ********************************/|
 | /* NOTE: This program contains an error. */|
 | /* It uses a DO loop to call an internal function, and the */|
 | /* function uses a DO loop with the same control variable as the */|
 | /* main program. The DO loop in the main program runs only once. */|

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

59 of 121 2/26/2019, 12:16 PM

 | /***/|
 | |
 | number1 = 5 |
 | number2 = 10 |
 | DO i = 1 TO 5 |
 | SAY add() /* Produces 105 */ |
 | END |
 | EXIT |
 | |
 | add: |
 | DO i = 1 TO 5 |
 | answer = number1 + number2 |
 | number1 = number2 |
 | number2 = answer |
 | END |
 | RETURN answer |
 | |
 | |
 | |
 |__|
 Figure 33. Example of a Problem Caused by Passing Information in a Variable
 Using a Function

 To avoid this kind of problem in an internal subroutine or function, you
 can use:

 ° The PROCEDURE instruction, as the next topic describes.

 ° Different variable names in a subroutine or function than in the main
 part of the program. For a subroutine, you can pass arguments on the
 CALL instruction; "Passing Information by Using Arguments" in

topic 1.6.2.2.2 describes this.

Protecting Variables with the PROCEDURE Instruction: When you use the
 PROCEDURE instruction immediately after the subroutine or function label,
 all variables in the subroutine or function become local to the subroutine
 or function; they are shielded from the main part of the program. You can
 also use the PROCEDURE EXPOSE instruction to protect all but a few
 specified variables.

 The following examples show how results differ when a subroutine or
 function uses or does not use PROCEDURE.

 __
 | |
 | |
 | /******************************* REXX ********************************/|
 | /* This program uses a PROCEDURE instruction to protect the */|
 | /* variables within its subroutine. */|
 | /***/|
 | number1 = 10 |
 | CALL subroutine |
 | SAY number1 number2 /* Produces 10 NUMBER2 */ |
 | EXIT |
 | |
 | subroutine: PROCEDURE |
 | number1 = 7 |
 | number2 = 5 |
 | RETURN |
 | |
 | |
 |__|
 Figure 34. Example of Subroutine Using the PROCEDURE Instruction

 __
 | |
 | |
 | /******************************* REXX ********************************/|
 | /* This program does not use a PROCEDURE instruction to protect the */|
 | /* variables within its subroutine. */|
 | /***/|
 | number1 = 10 |
 | CALL subroutine |
 | SAY number1 number2 /* Produces 7 5 */ |
 | EXIT |
 | |
 | subroutine: |
 | number1 = 7 |
 | number2 = 5 |
 | RETURN |
 | |
 | |
 |__|
 Figure 35. Example of Subroutine without the PROCEDURE Instruction

 The next two examples are the same, except they use functions rather than
 subroutines:

 __
 | |
 | |
 | /******************************* REXX ********************************/|
 | /* This program uses a PROCEDURE instruction to protect the */|
 | /* variables within its function. */|
 | /***/|
 | number1 = 10 |
 | SAY pass() number2 /* Produces 7 NUMBER2 */ |

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

60 of 121 2/26/2019, 12:16 PM

 | EXIT |
 | |
 | pass: PROCEDURE |
 | number1 = 7 |
 | number2 = 5 |
 | RETURN number1 |
 | |
 | |
 |__|
 Figure 36. Example of Function Using the PROCEDURE Instruction

 __
 | |
 | |
 | /******************************* REXX ********************************/|
 | /* This program does not use a PROCEDURE instruction to protect the */|
 | /* variables within its function. */|
 | /***/|
 | number1 = 10 |
 | SAY pass() number2 /* Produces 7 5 */ |
 | EXIT |
 | |
 | pass: |
 | number1 = 7 |
 | number2 = 5 |
 | RETURN number1 |
 | |
 | |
 |__|
 Figure 37. Example of Function without the PROCEDURE Instruction

Exposing Variables with PROCEDURE EXPOSE: To protect all but specific
 variables, use the EXPOSE option with the PROCEDURE instruction, followed
 by the variables that are to remain exposed to the subroutine or function.

 The next example uses PROCEDURE EXPOSE in a subroutine:

 __
 | |
 | |
 | /******************************* REXX ********************************/|
 | /* This program uses a PROCEDURE instruction with the EXPOSE option */|
 | /* to expose one variable, number1, in its subroutine. The other */|
 | /* variable, number2, is set to null and the SAY instructuion */|
 | /* produces this name in uppercase. */|
 | /***/|
 | number1 = 10 |
 | CALL subroutine |
 | SAY number1 number2 /* produces 7 NUMBER2 */ |
 | EXIT |
 | |
 | subroutine: PROCEDURE EXPOSE number1 |
 | number1 = 7 |
 | number2 = 5 |
 | RETURN |
 | |
 | |
 |__|
 Figure 38. Example Using PROCEDURE EXPOSE in Subroutine

 The next example is the same except PROCEDURE EXPOSE is in a function
 instead of a subroutine.

 __
 | |
 | |
 | /******************************* REXX ********************************/|
 | /* This program uses a PROCEDURE instruction with the EXPOSE option */|
 | /* to expose one variable, number1, in its function. */|
 | /***/|
 | number1 = 10 |
 | SAY pass() number1 /* Produces 5 7 */ |
 | EXIT |
 | |
 | pass: PROCEDURE EXPOSE number1 |
 | number1 = 7 |
 | number2 = 5 |
 | RETURN number2 |
 | |
 | |
 |__|
 Figure 39. Example Using PROCEDURE EXPOSE in a Function

 For more information about the PROCEDURE instruction, see the REXX/VSE
Reference.

1.6.2.2.2 Passing Information by Using Arguments

 A way to pass information to either internal or external subroutines or
 functions is through arguments. When calling a subroutine, you can pass
 up to 20 arguments separated by commas on the CALL instruction as follows:

CALL subroutine_name argument1, argument2, argument3,...

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

61 of 121 2/26/2019, 12:16 PM

 In a function call, you can pass up to 20 arguments separated by commas.

function(argument1,argument2,argument3,...)

Using the ARG Instruction: A subroutine or function can receive the
 arguments with the ARG instruction. In the ARG instruction, commas also
 separate arguments.

ARG arg1, arg2, arg3, ...

 The names of the arguments that are passed do not have to be the same as
 those on the ARG instruction because information is passed by position
 rather than by argument name. The first argument sent is the first
 argument received and so forth. You can also set up a template in the
 CALL instruction or function call. The language processor then uses this
 template in the corresponding ARG instruction. For information about
 parsing with templates, see "Parsing Data" in topic 1.7.2.

 In the following example, the main routine sends information to a
 subroutine that computes the perimeter of a rectangle. The subroutine
 returns a value in the variable perim by specifying the value in the
 RETURN instruction. The main program receives the value in the special
 variable RESULT.

 __
 | |
 | |
 | |
 | |

 | |
 | |
 | |
 | |
 |__|
 Figure 40. Example of Passing Arguments on the CALL Instruction

 The next example is the same except it uses ARG in a function instead of a
 subroutine.

 __
 | |
 | |
 | |
 | |

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

62 of 121 2/26/2019, 12:16 PM

 | |
 | |
 | |
 | |
 |__|
 Figure 41. Example of Passing Arguments on the Call to an Internal Routine

 In the two preceding examples, notice the positional relationships between
long and length, and wide and width. Also notice how information is

 received from variable perim. Both programs include perim on a RETURN
 instruction. For the program with a subroutine, the language processor
 assigns the value in perim to the special variable RESULT. For the
 program using a function, the language processor replaces the function
 call perimeter(long,wide) with the value in perim.

Using the ARG Built-in Function: Another way for a subroutine or function
 to receive arguments is with the ARG built-in function. This function
 returns the value of a particular argument. A number represents the
 argument position.

 For instance, in the previous example, instead of the ARG instruction:

ARG length, width

 you can use the ARG function as follows:

length = ARG(1) /* puts the first argument into length */
width = ARG(2) /* puts the second argument into width */

 More information about the ARG function appears in the REXX/VSE Reference.

1.6.2.3 Receiving Information from a Subroutine or Function

 Although a subroutine or function can receive up to 20 arguments, it can
 specify only one expression on the RETURN instruction. That expression
 can be:

 ° A number

RETURN 55

 ° One or more variables whose values are substituted (or their names if
 no values have been assigned).

RETURN value1 value2 value3

 ° A literal string

RETURN 'Work complete.'

 ° An arithmetic, comparison, or logical expression whose value is
 substituted.

RETURN 5 * number

Subtopics:

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

63 of 121 2/26/2019, 12:16 PM

 1.6.2.3.1 Example - Writing an Internal and an External Subroutine
 1.6.2.3.2 Exercise - Writing a Function

1.6.2.3.1 Example - Writing an Internal and an External Subroutine

 Write a program that plays a simulated coin toss game and produces the
 accumulated scores.

 There should be four possible inputs:

 ° 'HEADS'
 ° 'TAILS'
 ° '' (Null--to quit the game)
 ° None of these three (incorrect response).

 Write an internal subroutine without arguments to check for valid input.
 Send valid input to an external subroutine that uses the RANDOM built-in
 function to generate random outcomes. Assume HEADS = 0 and TAILS = 1, and
 use RANDOM as follows:

RANDOM(0,1)

 Compare the valid input with the value from RANDOM. If they are the same,
 the user wins one point; if they are different, the computer wins one
 point. Return the result to the main program where results are tallied.

 ANSWER

 __
 | |
 | |
 | /***************************** REXX ********************************/ |
 | /* This program plays a simulated coin toss game. */ |
 | /* The input can be heads, tails, or null ("") to quit the game. */ |
 | /* First an internal subroutine checks input for validity. */ |
 | /* An external subroutine uses the RANDOM built-in function to */ |
 | /* obtain a simulation of a throw of dice and compares the user */ |
 | /* input to the random outcome. The main program receives */ |
 | /* notification of who won the round. It maintains and produces */ |
 | /* scores after each round. */ |
 | /***/ |
 | PULL flip /* Gets "HEADS", "TAILS", or "" */ |
 | /* from input stream. */ |
 | computer = 0; user = 0 /* Initializes scores to zero */ |
 | CALL check /* Calls internal subroutine, check */ |
 | DO FOREVER |
 | CALL throw /* Calls external subroutine, throw */ |
 | |
 | IF RESULT = 'machine' THEN /* The computer won */ |
 | computer = computer + 1 /* Increase the computer score */ |
 | ELSE /* The user won */ |
 | user = user + 1 /* Increase the user score */ |
 | |
 | SAY 'Computer score = ' computer ' Your score = ' user |
 | PULL flip |
 | CALL check /* Call internal subroutine, check */ |
 | END |
 | EXIT |
 | |
 | |
 |__|
 Figure 42. Possible Solution (Main Program)

 __
 | |
 | |
 | /*************************** REXX ************************************/|
 | /* This internal subroutine checks for valid input of "HEADS", */|
 | /* "TAILS", or "" (to quit). If the input is anything else, the */|
 | /* subroutine says the input is not valid and gets the next input. */|
 | /* The subroutine keeps repeating until the input is valid. */|
 | /* Commonly used variables return information to the main program */|
 | /***/|
 | check: |
 | DO UNTIL outcome = 'correct' |
 | SELECT |
 | WHEN flip = 'HEADS' THEN |
 | outcome = 'correct' |
 | WHEN flip = 'TAILS' THEN |
 | outcome = 'correct' |
 | WHEN flip = '' THEN |
 | EXIT |
 | OTHERWISE |
 | outcome = 'incorrect' |
 | PULL flip |
 | END |
 | END |
 | RETURN |
 | |
 | |
 |__|
 Figure 43. Possible Solution (Internal Subroutine Named CHECK)

 __
 | |

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

64 of 121 2/26/2019, 12:16 PM

 | |
 | /******************************* REXX ********************************/|
 | /* This external subroutine receives the valid input, analyzes it, */|
 | /* gets a random "flip" from the computer, and compares the two. */|
 | /* If they are the same, the user wins. If they are different, */|
 | /* the computer wins. The routine returns the outcome to the */|
 | /* calling program. */|
 | /***/|
 | throw: |
 | ARG input |
 | IF input = 'HEADS' THEN |
 | userthrow = 0 /* heads = 0 */ |
 | ELSE |
 | userthrow = 1 /* tails = 1 */ |
 | |
 | compthrow = RANDOM(0,1) /* choose a random number */ |
 | /* between 0 and 1 */ |
 | IF compthrow = userthrow THEN |
 | outcome = 'human' /* user chose correctly */ |
 | ELSE |
 | outcome = 'machine' /* user chose incorrectly */ |
 | |
 | RETURN outcome |
 | |
 | |
 |__|
 Figure 44. Possible Solution (External Subroutine named THROW)

1.6.2.3.2 Exercise - Writing a Function

 Write a function named AVG that receives a list of numbers separated by
 blanks and computes their average. The final answer can be a decimal
 number. To call this function, you would use:

AVG(number1 number2 number3...)

 Use the WORDS and WORD built-in functions. For more information about
 these built-in functions, see the REXX/VSE Reference.

 ANSWER

 __
 | |
 | |
 | /******************************* REXX ********************************/|
 | /* This function receives a list of numbers, adds them, computes */|
 | /* their average, and returns the average to the calling program. */|
 | /***/|
 | |
 | ARG numlist /* receive the numbers in a single variable */|
 | |
 | sum = 0 /* initialize sum to zero */|
 | |
 | DO n = 1 TO WORDS(numlist) /* Repeat for as many times as there */|
 | /* are numbers */|
 | |
 | number = WORD(numlist,n) /* Word #n goes to number */|
 | sum = sum + number /* Sum increases by number */|
 | END |
 | |
 | average = sum / WORDS(numlist) /* Compute the average */|
 | |
 | RETURN average |
 | |
 | |
 |__|
 Figure 45. Possible Solution

1.6.3 Subroutines and Functions--Similarities and Differences

 The following table highlights similarities and differences between
 subroutines and functions:

 __
 | Similarities between Subroutines and Functions |
 |__|
 | Can be internal or external. |
 | |
 | Internal |
 | |
 | ° Can pass information by using common variables |
 | ° Can protect variables with the PROCEDURE instruction |
 | ° Can pass information by using arguments. |
 | |
 | External |
 | |
 | ° Must pass information by using arguments |
 | ° Can use the ARG instruction or the ARG built-in function to |
 | receive arguments. |
 | |
 | Uses the RETURN instruction to return to the caller. |
 |__|
 | Differences between Subroutines and Functions |
 |_____________ _____________________________ ____________________________|
 | | Subroutines | Functions |
 |_____________|_____________________________|____________________________|

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

65 of 121 2/26/2019, 12:16 PM

Calling	Call by using the CALL	Call by specifying the
	instruction, followed by	function's name,
	the subroutine name and,	immediately followed by
	optionally, up to 20	parentheses that
	arguments.	optionally contain up to
		20 arguments.
_____________	_____________________________	____________________________
Returning a	Might return a value to the	Must return a value.
Value	caller. If you include a	Specify a value on the
	value on the RETURN	RETURN instruction; the
	instruction, the language	language processor
	processor assigns this	replaces the function call
	value to the REXX special	with this value.
	variable RESULT.	
_____________	_____________________________	____________________________

1.7 Chapter 7. Manipulating Data

Purpose: This chapter describes how to use compound variables and stems
 and explains parsing.

Subtopics:

 1.7.1 Using Compound Variables and Stems
 1.7.2 Parsing Data

1.7.1 Using Compound Variables and Stems

 Sometimes it is useful to store groups of related data in a way that makes
 data retrieval easy. For example, you could store a list of employee
 names in an array and retrieve them by number. An array is an arrangement
 of elements in one or more dimensions, identified by a single name. An
 array called employee could contain names as follows:

EMPLOYEE
(1) Adams, Joe
(2) Crandall, Amy
(3) Devon, David
(4) Garrison, Donna
(5) Leone, Mary
(6) Sebastian, Isaac

 In some computer languages, you use the number of the element to access an
 element in an array. For example, employee(1) would retrieve Adams, Joe.
 In REXX, you use compound variables.

Subtopics:

 1.7.1.1 What Is a Compound Variable?
 1.7.1.2 Using Stems

1.7.1.1 What Is a Compound Variable?

 You can use compound variables to create an array or a list of variables
 in REXX. A compound variable, for example: employee.1, consists of a stem
 and a tail. A stem is a symbol with a period at the end. Here are some
 examples of stems:

FRED.
Array.
employee.

 A tail is similar to a subscript. It follows the stem and consists of
 additional parts of the name that can be constant symbols (as in

employee.1), simple symbols (as in employee.n), or null. Thus, in REXX,
 subscripts need not necessarily be numeric. A compound variable contains
 at least one period with characters on both sides of it. Here are some
 more examples of compound variables:

FRED.5
Array.Row.Col
employee.name.phone

 You cannot do any substitution for the name of the stem but you can use
 substitution for the tail. For example:

employee.7='Amy Martin'
new=7
employee.new='May Davis'
say employee.7 /* Produces: May Davis */

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

66 of 121 2/26/2019, 12:16 PM

 As with other REXX variables, if you have not previously assigned a value
 to a variable in a tail, it takes on the value of its own name in
 uppercase.

first = 'Fred'
last = 'Higgins'
name = first.last /* NAME is assigned FIRST.Higgins */

/* The value FIRST appears because the */
/* variable FIRST is a stem, which */
/* cannot change. */

SAY name.first.middle.last /* Produces NAME.Fred.MIDDLE.Higgins */

 You can use a DO loop to initialize a group of compound variables and set
 up an array.

DO i = 1 TO 6
PARSE PULL employee.i

END

 If you use the same names used in the example of the employee array, you
 have a group of compound variables as follows:

employee.1 = 'Adams, Joe'
employee.2 = 'Crandall, Amy'
employee.3 = 'Devon, David'
employee.4 = 'Garrison, Donna'
employee.5 = 'Leone, Mary'
employee.6 = 'Sebastian, Isaac'

 After the names are in the group of compound variables, you can easily
 access a name by its number or by a variable that represents its number.

name = 3
SAY employee.name /* Produces 'Devon, David' */

 For more information about compound variables, see the REXX/VSE Reference.

1.7.1.2 Using Stems

 When working with compound variables, it is often useful to initialize an
 entire collection of variables to the same value. You can do this easily
 by using an assignment that includes a stem. For example, number.=0
 initializes all array elements in the array named number. to 0.

 You can change the values of all compound variables in an array the same
 way. For example, to change all employee names to Nobody, use the
 following assignment instruction:

employee. = 'Nobody'

 As a result, all compound variables beginning with the stem employee.,
 previously assigned or not, have the value Nobody. After a stem
 assignment, you can assign individual compound variables new values.

employee.='Nobody'
SAY employee.5 /* Produces 'Nobody' */
SAY employee.10 /* Produces 'Nobody' */
SAY employee.oldest /* Produces 'Nobody' */

employee.new = 'Clark, Evans'
SAY employee.new /* Produces 'Clark, Evans' */

 You can use stems with the EXECIO command when reading to and writing from
 a file. See "Using EXECIO to Process Information to and from Files" in

topic 2.5.3 for information about EXECIO. You can also use stems with the
 OUTTRAP external function when trapping command output from ADDRESS POWER
 commands. For information about OUTTRAP, see "Using the OUTTRAP Function"

in topic 2.3.1.2.

Subtopics:

 1.7.1.2.1 Exercises - Using Compound Variables and Stems

1.7.1.2.1 Exercises - Using Compound Variables and Stems

 1. After these assignment instructions, what do the following SAY
 instructions produce?

a = 3 /* assigns '3' to variable 'A' */
d = 4 /* '4' to 'D' */
c = 'last' /* 'last' to 'C' */
a.d = 2 /* '2' to 'A.4' */
a.c = 5 /* '5' to 'A.last' */

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

67 of 121 2/26/2019, 12:16 PM

z.a.d = 'cv3d' /* 'cv3d' to 'Z.3.4' */

 a. SAY a

 b. SAY D

 c. SAY c

 d. SAY a.a

 e. SAY A.D

 f. SAY d.c

 g. SAY c.a

 h. SAY a.first

 i. SAY z.a.4

 2. After these assignment instructions, what output do the SAY
 instructions produce?

hole.1 = 'full'
hole. = 'empty'
hole.s = 'full'

 a. SAY hole.1

 b. SAY hole.s

 c. SAY hole.mouse

 ANSWERS

 1.

 a. 3
 b. 4
 c. last
 d. A.3
 e. 2
 f. D.last
 g. C.3
 h. A.FIRST
 i. cv3d

 2.

 a. empty
 b. full
 c. empty

1.7.2 Parsing Data

 Parsing is separating data and assigning parts of it into one or more
 variables. Parsing can assign each word in the data into a variable or
 can divide the data into smaller parts. Parsing is also useful to format
 data into columns.

 The variables to receive data are named in a template. A template is a
 model telling how to split the data. It can be a simple as a list of
 variables to receive data. More complex templates can contain patterns;

"Parsing with Patterns" in topic 1.7.2.3 explains patterns.

Subtopics:

 1.7.2.1 Parsing Instructions
 1.7.2.2 More about Parsing into Words
 1.7.2.3 Parsing with Patterns
 1.7.2.4 Parsing Multiple Strings as Arguments

1.7.2.1 Parsing Instructions

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

68 of 121 2/26/2019, 12:16 PM

 The REXX parsing instructions are PULL, ARG, and PARSE. (PARSE has
 several variants.)

PULL Instruction: Earlier chapters showed PULL as an instruction that
 reads input and assigns it to one or more variables. If the data stack
 contains information, the PULL instruction takes information from the data
 stack. When the data stack is empty, PULL takes information from the
 current input stream. If you have not changed the default, the current
 input stream is SYSIPT. See Chapter 11, "Storing Information in the Data

Stack" in topic 2.4 for information about the data stack.

/* This REXX program parses the string "Knowledge is power." */
PULL word1 word2 word3

/* word1 contains 'KNOWLEDGE' */
/* word2 contains 'IS' */
/* word3 contains 'POWER.' */

 PULL uppercases character information before assigning it into variables.
 If you do not want uppercase translation, use the PARSE PULL instruction.

/* This REXX program parses the string: "Knowledge is power." */
PARSE PULL word1 word2 word3

/* word1 contains 'Knowledge' */
/* word2 contains 'is' */
/* word3 contains 'power.' */

 You can include the optional keyword UPPER on any variant of the PARSE
 instruction. This causes the language processor to uppercase character
 information before assigning it into variables. For example, using PARSE

UPPER PULL... gives the same result as using PULL.

ARG Instruction: The ARG instruction takes information passed as
 arguments to a program, function, or subroutine, and puts it into one or
 more variables. To pass the three arguments Knowledge is power. to a REXX
 program named sample:

 1. Call the program and pass the arguments by specifying on the JCL EXEC
 statement:

REXX=sample,PARM='Knowledge is power.'

 2. Use the ARG instruction to receive the three arguments into variables.

/* SAMPLE -- A REXX program using ARG */
ARG word1 word2 word3

/* word1 contains 'KNOWLEDGE' */
/* word2 contains 'IS' */
/* word3 contains 'POWER.' */

 ARG uppercases the character information before assigning the arguments
 into variables.

 If you do not want uppercase translation, use the PARSE ARG instruction
 instead of ARG.

/* REXX program using PARSE ARG */
PARSE ARG word1 word2 word3

/* word1 contains 'Knowledge' */
/* word2 contains 'is' */
/* word3 contains 'power.' */

 PARSE UPPER ARG has the same result as ARG. It uppercases character
 information before assigning it into variables.

PARSE VALUE ... WITH Instruction: The PARSE VALUE...WITH instruction
 parses a specified expression, such as a literal string, into one or more
 variables whose names follow the WITH subkeyword.

PARSE VALUE 'Knowledge is power.' WITH word1 word2 word3
/* word1 contains 'Knowledge' */
/* word2 contains 'is' */
/* word3 contains 'power.' */

 PARSE VALUE does not uppercase character information before assigning it
 into variables. If you want uppercase translation, use PARSE UPPER VALUE.
 You could use a variable instead of a string in PARSE VALUE (you would
 first assign the variable the value):

string='Knowledge is power.'
PARSE VALUE string WITH word1 word2 word3

/* word1 contains 'Knowledge' */
/* word2 contains 'is' */
/* word3 contains 'power.' */

 Or you can use PARSE VAR to parse a variable.

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

69 of 121 2/26/2019, 12:16 PM

PARSE VAR Instruction: The PARSE VAR instruction parses a specified
 variable into one or more variables.

quote = 'Knowledge is power.'
PARSE VAR quote word1 word2 word3

/* word1 contains 'Knowledge' */
/* word2 contains 'is' */
/* word3 contains 'power.' */

 PARSE VAR does not uppercase character information before assigning it
 into variables. If you want uppercase translation, use PARSE UPPER VAR.

1.7.2.2 More about Parsing into Words

 In the preceding examples, the number of words in the data to parse is
 always the same as the number of variables in the template. Parsing
 always assigns new values to all variables named in the template. If
 there are more variable names than words in the data to parse, the
 leftover variables receive null (empty) values. If there are more words
 in the data to parse than variable names in the template, each variable
 gets one word of data in sequence except the last variable, which gets the
 remainder of the data.

 In the next example, there are more variable names in the template than
 words of data; the leftover variable receives a null value.

PARSE VALUE 'Extra variables' WITH word1 word2 word3
/* word1 contains 'Extra' */
/* word2 contains 'variables' */
/* word3 contains '' */

 In the next example there are more words in the data than variable names
 in the template; the last variable gets the remainder of the data. The
 last variable name can contain several words and possibly leading and
 trailing blanks.

PARSE VALUE 'More words in data' WITH var1 var2 var3
/* var1 contains 'More' */
/* var2 contains 'words' */
/* var3 contains ' in data' */

 Parsing into words generally removes leading and trailing blanks from each
 word before putting it into a variable. However, when putting data into
 the last variable, parsing removes one word-separator blank but retains
 any extra leading or trailing blanks. There are two leading blanks before

words. Parsing removes both the word-separator blank and the extra
 leading blank before putting 'words' into var2. There are four leading
 blanks before in. Because var3 is the last variable, parsing removes the
 word-separator blank but keeps the extra leading blanks. Thus, var3
 receives ' in data' (with three leading blanks).

 A period in a template acts as a placeholder. It receives no data. You
 can use a period as a "dummy variable" within a group of variables or at
 the end of a template to collect unwanted information.

string='Example of using placeholders to discard junk'
PARSE VAR string var1 . var2 var3 .

/* var1 contains 'Example' */
/* var2 contains 'using' */
/* var3 contains 'placeholders' */
/* The periods collect the words 'of' and 'to discard junk' */

 For more information about parsing instructions, see the REXX/VSE
Reference.

1.7.2.3 Parsing with Patterns

 The simplest template is a group of blank-separated variable names. This
 parses data into blank-delimited words. The preceding examples all use
 this kind of template. Templates can also contain patterns. A pattern
 can be a string, a number, or a variable representing either of these.

String: If you use a string in a template, parsing checks the input data
 for a matching string. When assigning data into variables, parsing
 generally skips over the part of the input string that matches the string
 in the template.

phrase = 'To be, or not to be?' /* phrase containing comma */
PARSE VAR phrase part1 ',' part2 /* template containing comma */

/* as string separator */
/* part1 contains 'To be' */
/* part2 contains ' or not to be?' */

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

70 of 121 2/26/2019, 12:16 PM

 In this example, notice that the comma is not included with 'To be'
 because the comma is the string separator. (Notice also that part2
 contains a value that begins with a blank. Parsing splits the input
 string at the matching text. It puts data up to the start of the match in
 one variable and data starting after the match in the next variable.

Variable: When you do not know in advance what string to specify as
 separator in a template, you can use a variable enclosed in parentheses.

separator = ','
phrase = 'To be, or not to be?'
PARSE VAR phrase part1 (separator) part2

/* part1 contains 'To be' */
/* part2 contains ' or not to be?' */

 Again, in this example, notice that the comma is not included with 'To be'
 because the comma is the string separator.

Number: You can use numbers in a template to indicate the column at which
 to separate data. An unsigned integer indicates an absolute column
 position. A signed integer indicates a relative column position.

 An unsigned integer or an integer with the prefix of an equal sign (=)
 separates the data according to absolute column position. The first
 segment starts at column 1 and goes up to, but does not include, the
 information in the column number specified. Subsequent segments start at
 the column numbers specified.

quote = 'Ignorance is bliss.'
....+....1....+....2

PARSE VAR quote part1 5 part2
/* part1 contains 'Igno' */
/* part2 contains 'rance is bliss.' */

 The following code has the same result:

quote = 'Ignorance is bliss.'
....+....1....+....2

PARSE VAR quote 1 part1 =5 part2
/* part1 contains 'Igno' */
/* part2 contains 'rance is bliss.' */

 Specifying the numeric pattern 1 is optional. If you do not use a numeric
 pattern to indicate a starting point for parsing, this defaults to 1. The
 example also shows that the numeric pattern 5 is the same as =5.

 If a template has several numeric patterns and a later one is lower than a
 preceding one, parsing loops back to the column the lower number
 specifies.

quote = 'Ignorance is bliss.'
....+....1....+....2

PARSE VAR quote part1 5 part2 10 part3 1 part4
/* part1 contains 'Igno' */
/* part2 contains 'rance' */
/* part3 contains ' is bliss.' */
/* part4 contains 'Ignorance is bliss.' */

 When each variable in a template has column numbers both before and after
 it, the two numbers indicate the beginning and the end of the data for the
 variable.

quote = 'Ignorance is bliss.'
....+....1....+....2

PARSE VAR quote 1 part1 10 11 part2 13 14 part3 19 1 part4 20
/* part1 contains 'Ignorance' */
/* part2 contains 'is' */
/* part3 contains 'bliss' */
/* part4 contains 'Ignorance is bliss.' */

 Thus, you could use numeric patterns to skip over part of the data:

quote = 'Ignorance is bliss.'
....+....1....+....2

PARSE VAR quote 2 var1 3 5 var2 7 8 var3 var 4 var5
SAY var1||var2||var3 var4 var5 /* || means concatenate */

/* Says: grace is bliss. */

 A signed integer in a template separates the data according to relative
column position. The plus or minus sign indicates movement right or left,

 respectively, from the starting position. In the next example, remember
 that part1 starts at column 1 (by default because there is no number to

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

71 of 121 2/26/2019, 12:16 PM

 indicate a starting point).

quote = 'Ignorance is bliss.'
....+....1....+....2

PARSE VAR quote part1 +5 part2 +5 part3 +5 part4
/* part1 contains 'Ignor' */
/* part2 contains 'ance ' */
/* part3 contains 'is bl' */
/* part4 contains 'iss.' */

+5 part2 means parsing puts into part2 data starting in column 6 (1+5=6).
+5 part3 means data put into part3 starts with column 11 (6+5=11), and so

 on. The use of the minus sign is similar to the use of the plus sign. It
 identifies a relative position in the data string. The minus sign "backs
 up" (moves to the left) in the data string.

quote = 'Ignorance is bliss.'
....+....1....+....2

PARSE VAR quote part1 +10 part2 +3 part3 -3 part4
/* part1 contains 'Ignorance ' */
/* part2 contains 'is ' */
/* part3 contains 'bliss.' */
/* part4 contains 'is bliss.' */

 In this example, part1 receives characters starting at column 1 (by
 default). +10 part2 receives characters starting in column 11 (1+10=11).

+3 part3 receives characters starting in column 14 (11+3=14). -3 part4
 receives characters starting in column 11 (14-3=11).

 To provide more flexibility, you can define and use variable numeric
patterns in a parsing instruction. To do this, first define the variable

 as an unsigned integer before the parsing instruction. Then, in the
 parsing instruction, enclose the variable in parentheses and specify one
 of the following before the left parenthesis:

 ° A plus sign (+) to indicate column movement to the right
 ° A minus sign (-) to indicate column movement to the left
 ° An equal sign (=) to indicate an absolute column position.

 (Without +, -, or = before the left parenthesis, the language processor
 would consider the variable to be a string pattern.) The following
 example uses the variable numeric pattern movex.

quote = 'Ignorance is bliss.'
....+....1....+....2

movex = 3 /* variable position */
PARSE VAR quote part5 +10 part6 +3 part7 -(movex) part8

/* part5 contains 'Ignorance ' */
/* part6 contains 'is ' */
/* part7 contains 'bliss.' */
/* part8 contains 'is bliss.' */

 For more information about parsing, see the REXX/VSE Reference.

1.7.2.4 Parsing Multiple Strings as Arguments

 When passing arguments to a function or a subroutine, you can specify
 multiple strings to be parsed. The ARG, PARSE ARG, and PARSE UPPER ARG
 instructions parse arguments. These are the only parsing instructions
 that work on multiple strings.

 To pass multiple strings, use commas to separate adjacent strings.

 The next example passes three arguments to an internal subroutine.

CALL sub2 'String One', 'String Two', 'String Three'
:
:

EXIT

sub2:
PARSE ARG word1 word2 word3, string2, string3

/* word1 contains 'String' */
/* word2 contains 'One' */
/* word3 contains '' */
/* string2 contains 'String Two' */
/* string3 contains 'String Three' */

 The first argument is two words "String One" to parse into three variable
 names, word1, word2, and word3. The third variable, word3, is set to null
 because there is no third word. The second and third arguments are parsed
 entirely into variable names string2 and string3.

 For more information about passing multiple arguments, see the REXX/VSE
Reference.

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

72 of 121 2/26/2019, 12:16 PM

Subtopics:

 1.7.2.4.1 Exercise - Practice with Parsing

1.7.2.4.1 Exercise - Practice with Parsing

 What are the results of the following parsing examples?

 1.

quote = 'Experience is the best teacher.'
PARSE VAR quote word1 word2 word3

 a) word1 =
 b) word2 =
 c) word3 =

 2.

quote = 'Experience is the best teacher.'
PARSE VAR quote word1 word2 word3 word4 word5 word6

 a) word1 =
 b) word2 =
 c) word3 =
 d) word4 =
 e) word5 =
 f) word6 =

 3.

PARSE VALUE 'Experience is the best teacher.'
WITH word1 word2 . . word3

 a) word1 =
 b) word2 =
 c) word3 =

 4.

PARSE VALUE 'Experience is the best teacher.' WITH v1 5 v2
....+....1....+....2....+....3.

 a) v1 =
 b) v2 =

 5.

quote = 'Experience is the best teacher.'
....+....1....+....2....+....3.

PARSE VAR quote v1 v2 15 v3 3 v4

 a) v1 =
 b) v2 =
 c) v3 =
 d) v4 =

 6.

quote = 'Experience is the best teacher.'
....+....1....+....2....+....3.

PARSE UPPER VAR quote 15 v1 +16 =12 v2 +2 1 v3 +10

 a) v1 =
 b) v2 =
 c) v3 =

 7.

quote = 'Experience is the best teacher.'
....+....1....+....2....+....3.

PARSE VAR quote 1 v1 +11 v2 +6 v3 -4 v4

 a) v1 =

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

73 of 121 2/26/2019, 12:16 PM

 b) v2 =
 c) v3 =
 d) v4 =

 8.

first = 7
quote = 'Experience is the best teacher.'

....+....1....+....2....+....3.

PARSE VAR quote 1 v1 =(first) v2 +6 v3

 a) v1 =
 b) v2 =
 c) v3 =

 9.

quote1 = 'Knowledge is power.'
quote2 = 'Ignorance is bliss.'
quote3 = 'Experience is the best teacher.'
CALL sub1 quote1, quote2, quote3
EXIT

sub1:
PARSE ARG word1 . . , word2 . . , word3 .

 a) word1 =
 b) word2 =
 c) word3 =

 ANSWERS

 1.

 a) word1 = Experience
 b) word2 = is
 c) word3 = the best teacher.

 2.

 a) word1 = Experience
 b) word2 = is
 c) word3 = the
 d) word4 = best
 e) word5 = teacher.
 f) word6 = ''

 3.

 a) word1 = Experience
 b) word2 = is
 c) word3 = teacher.

 4.

 a) v1 = Expe
 b) v2 = rience is the best teacher.

 5.

 a) v1 = Experience
 b) v2 = is (Note that v2 contains 'is '.)
 c) v3 = the best teacher.
 d) v4 = perience is the best teacher.

 6.

 a) v1 = THE BEST TEACHER
 b) v2 = IS
 c) v3 = EXPERIENCE

 7.

 a) v1 = 'Experience '
 b) v2 = 'is the'
 c) v3 = ' best teacher.'
 d) v4 = ' the best teacher.'

 8.

 a) v1 = 'Experi'
 b) v2 = 'ence i'
 c) v3 = 's the best teacher.'

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

74 of 121 2/26/2019, 12:16 PM

 9.

 a) word1 = Knowledge
 b) word2 = Ignorance
 c) word3 = Experience

2.0 PART II -- Using REXX

 Besides being a versatile general-purpose programming language, REXX can
 interact with POWER, which expands its capabilities. This part of the
 book is for programmers already familiar with the REXX language and
 experienced in VSE/ESA. The chapters in this part cover the following
 topics.

 ° Chapter 8, "Using Commands from a Program" in topic 2.1 -- A REXX
 program can issue REXX/VSE commands and ADDRESS POWER commands.

 ° Chapter 9, "Diagnosing Problems within a Program" in topic 2.2 --
 Several debugging options are available in a program.

 ° Chapter 10, "Using REXX/VSE External Functions" in topic 2.3 --
 External functions interact with the system to do specific tasks.

 ° Chapter 11, "Storing Information in the Data Stack" in topic 2.4 --
 The data stack is useful in I/O and other types of special processing.

 ° Chapter 12, "Processing Data and Input/Output Processing" in topic 2.5
 -- You can use the EXECIO command to process information to and from
 files.

 Several REXX instructions send information to the current output stream or
 retrieve it from the current input stream. These instructions are:

 ° PARSE EXTERNAL--gets information from the current input stream.
 ° PARSE PULL and PULL--get information from the current input stream.
 ° SAY--sends information to the current output stream.
 ° TRACE--sends information to the current output stream.
 ° EXECIO--reads information from or writes it to the specified output
 stream or device.

 If you have not changed the defaults, the current input stream is SYSIPT,
 and the current output stream is SYSLST. You can use the ASSGN external
 function to return the name of the current input or output stream.

Subtopics:

 2.1 Chapter 8. Using Commands from a Program
 2.2 Chapter 9. Diagnosing Problems within a Program
 2.3 Chapter 10. Using REXX/VSE External Functions
 2.4 Chapter 11. Storing Information in the Data Stack
 2.5 Chapter 12. Processing Data and Input/Output Processing

2.1 Chapter 8. Using Commands from a Program

Purpose: This chapter describes how to use commands in a REXX program.

Subtopics:

 2.1.1 Types of Commands
 2.1.2 Issuing Commands from a Program

2.1.1 Types of Commands

 A REXX program can issue several types of commands. The main categories
 of commands are:

REXX/VSE commands
 These commands do REXX-related tasks in a program, such as:

 ° Control I/O processing of information to and from files
 (EXECIO)

 ° Perform data stack services (MAKEBUF, DROPBUF, QBUF, QELEM,

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

75 of 121 2/26/2019, 12:16 PM

 NEWSTACK, DELSTACK, QSTACK)

 ° Check for the existence of a host command environment (SUBCOM)

 ° Run a REXX program in the active PROC chain (EXEC)

 ° Set the user ID (and password) that is associated with the REXX
 program (SETUID)

 There are also REXX/VSE immediate commands: HI, HT, RT, TE, TQ, and
 TS. See the REXX/VSE Reference, SC33-6642, for details about the
 immediate commands.

 More information about REXX/VSE commands appears throughout the
 book where the related task is discussed.

ADDRESS POWER commands
 These commands operate only in the POWER environment. They permit
 you to:

 ° Put a job on a queue (PUTQE). See the REXX/VSE Reference,
 SC33-6642, for details.

 ° Retrieve a job from a queue (GETQE). See the REXX/VSE
Reference, SC33-6642, for details.

 ° Return job completion messages into the stem specified by
 OUTTRAP (QUERYMSG).

 ° Send a CTL service request to POWER. (The VSE/POWER
Application Programming, SC33-6636, lists the POWER commands

 you can send through a CTL service request. VSE/POWER
Administration and Operation, SC33-6633, explains their

 syntax.)

ADDRESS LINK/LINKPGM commands
 These are any commands with parameter lists invoked by
 LINK/LINKPGM.

ADDRESS JCL commands
 JCL commands can be issued via a REXX program. The REXX program
 must have been invoked by // EXEC REXX. See the REXX/VSE

Reference, SC33-6642, for detailed information about issuing JCL
 commands via a REXX program.

 When a program issues a command, the REXX special variable RC is set to
 the return code. A program can use the return code to determine a course
 of action within the program. Every time a command is issued, RC is set.
 Thus, RC contains the return code from the most recently issued command.

Subtopics:

 2.1.1.1 Using Quotations Marks in Commands
 2.1.1.2 Using Variables in Commands
 2.1.1.3 Calling Another REXX Program as a Command

2.1.1.1 Using Quotations Marks in Commands

 Generally, to differentiate commands from other types of instructions, you
 enclose the command within single or double quotation marks. If the
 command is not enclosed within quotation marks, it is processed as an
 expression and might end in error. For example, the language processor
 treats an asterisk (*) as a multiplication operator.

2.1.1.2 Using Variables in Commands

 When a command contains a variable, the value of the variable is not used
 if the variable is within quotation marks. The language processor uses
 the value of a variable only for variables outside quotation marks. For
 example, suppose the variable queue contains RDR. For the following, the
 language processor would not substitute RDR for queue:

ADDRESS power "PUTQE queue STEM job."

 But if you change the quotation marks so that queue is not within them,
 the language processor would substitute RDR for queue:

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

76 of 121 2/26/2019, 12:16 PM

ADDRESS power "PUTQE" queue "STEM job."

 The preceding is the same as:

ADDRESS power "PUTQE RDR STEM job."

2.1.1.3 Calling Another REXX Program as a Command

 Previously, this book discussed how to call another program as an external
 routine (Chapter 6, "Writing Subroutines and Functions" in topic 1.6).
 You can also call a program from another program explicitly with the EXEC
 command or implicitly by member name. Like an external routine, a program
 called explicitly or implicitly can return a value to the caller with the
 RETURN or EXIT instruction. Unlike an external routine, which passes a
 value to the special variable RESULT, the program that is called passes a
 value to the REXX special variable RC.

Calling Another Program with the EXEC Command: To explicitly call another
 program from within a program, use the EXEC command as you would any other
 REXX/VSE command. The called program should end with a RETURN or EXIT
 instruction, ensuring that control returns to the caller. The REXX
 special variable RC is set to the return code from the EXEC command. You
 can optionally return a value to the caller on the RETURN or EXIT
 instruction. When control passes back to the caller, the REXX special
 variable RC is set to the value of the expression returned on the RETURN
 or EXIT instruction.

 For example, to call a program named CALC and pass it an argument of four
 numbers, you could include the following instructions:

"EXEC calc 24 55 12 38"
SAY 'The result is' RC

 CALC might contain the following instructions:

ARG number1 number2 number3 number4
answer = number1 * (number2 + number3) - number4
RETURN answer

Calling Another Program Implicitly: To implicitly call another program
 from within a program, use the member name. Because it is treated as a
 command, enclose the member name and the argument, if any, within
 quotation marks. For example, to implicitly call a program named CALC and
 send it an argument of four numbers, you could include the following
 instructions.

"calc 24 55 12 38"
SAY 'The result is' RC

 CALC might contain the following instructions:

ARG number1 number2 number3 number4
answer = number1 * (number2 + number3) - number4
RETURN answer

2.1.2 Issuing Commands from a Program

 The following sections explain what a host command environment is, how
 commands are passed to host command environments, and how to change the
 host command environment.

Subtopics:

 2.1.2.1 What is a Host Command Environment?
 2.1.2.2 How Is a Command Passed to the Host Environment?
 2.1.2.3 Changing the Host Command Environment

2.1.2.1 What is a Host Command Environment?

 An environment for executing commands is called a host command
 environment. Before a program runs, an active host command environment is
 defined to handle commands the program issues. When the language
 processor encounters a command, it passes the command to the host command
 environment for processing.

 When a REXX program runs on a host system, there is at least one default
 environment available for executing commands.

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

77 of 121 2/26/2019, 12:16 PM

 The host command environments are as follows:

VSE This is the default host command environment. You can use the
 VSE host command environment to call REXX/VSE commands (such as
 MAKEBUF and NEWSTACK) and services. (You cannot use ADDRESS
 POWER commands in this environment.)

POWER This environment is for Spool Access Support (SAS) requests and
 services, GET, CTL, and PUT. The POWER host command environment
 lets you:

 ° Use the PUTQE command to put elements on a POWER queue and
 the GETQE command to retrieve POWER queue elements
 ° Send a CTL service request to POWER. See VSE/POWER

Application Programming, SC33-6636, for a list of the POWER
 commands that you can issue through a CTL service request.
 See VSE/POWER Administration and Operation, SC33-6633, for
 the syntax of these commands.
 ° Execute REXX/VSE commands.

LINK and LINKPGM
 Host command environments for loading and calling programs.
 They let you load and call a phase from the active PHASE search
 chain. They differ in:

 ° the format of the parameter list that the program receives
 ° the capability of passing multiple parameters
 ° variable substitution for the parameters
 ° the ability of the called program to update the parameters.

JCL An environment that lets you issue JCL commands via a REXX
 program. The REXX program must has been invoked by // EXEC
 REXX. You may issue JCL commands which do not require any input
 data, or issue JCL commands requiring SYSIPT data. Use the
 REXXIPT function to accomplish this.

2.1.2.2 How Is a Command Passed to the Host Environment?

 The language processor evaluates each expression in a REXX program. This
 evaluation results in a character string (which may be the null string).
 The character string is then prepared as is appropriate and submitted to
 the host command environment. The environment processes the string as a
 command, and, after processing is complete, returns control to the
 language processor. If the string is not a valid command for the current
 host command environment, a failure occurs and the special variable RC
 contains the return code from the host command environment.

2.1.2.3 Changing the Host Command Environment

 You can change the host command environment either from the default or
 from whatever environment was previously established. To change the host
 command environment, use the ADDRESS instruction followed by the name of
 an environment.

 The ADDRESS instruction has two forms; one affects all commands issued
 after the instruction, and one affects only a single command.

 ° Single command

 When an ADDRESS instruction includes both the name of the host command
 environment and a command, only that command is sent to the specified
 environment. After the command is complete the former host command
 environment becomes active again. The following ADDRESS instruction
 sends a single PDISPLAY command to the POWER environment.

ADDRESS power "PDISPLAY RDR,*MYJOB"

 ° All commands

 When an ADDRESS instruction includes only the name of the host command
 environment, all commands issued afterward within that program are
 processed as that environment's commands.

 For example, the default environment is VSE. To change the
 environment for all commands that follow, you can use:

ADDRESS power

 This ADDRESS instruction affects only the host command environment of
 the program that uses the instruction. If a program calls an external
 routine, the host command environment is the default environment
 regardless of the host command environment of the calling program.
 Upon return to the original program, the host command environment that
 the ADDRESS instruction previously established is resumed.

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

78 of 121 2/26/2019, 12:16 PM

Subtopics:

 2.1.2.3.1 Determining the Active Host Command Environment
 2.1.2.3.2 Checking if a Host Command Environment Is Available
 2.1.2.3.3 Examples Using the ADDRESS Instruction

2.1.2.3.1 Determining the Active Host Command Environment

 To find out which host command environment is currently active, use the
 ADDRESS built-in function.

curenv = ADDRESS()

 In this example, curenv is set to the active host command environment, for
 example, VSE.

2.1.2.3.2 Checking if a Host Command Environment Is Available

 To check if a particular host command environment is available before
 trying to send commands to that environment, use the REXX/VSE SUBCOM
 command followed by the name of the host command environment, such as
 POWER.

SUBCOM power

 If the environment is present, the REXX special variable RC is set to 0.
 If the environment is not present, RC is set to 1. For example, you could
 find out if the POWER environment is available before trying to use a
 GETQE command:

SUBCOM power
IF rc=0 THEN
DO

ADDRESS power "PUTQE RDR STEM myjob."
ADDRESS power "GETQE RDR JOBNAME job1 CLASS a"

END
ELSE...

2.1.2.3.3 Examples Using the ADDRESS Instruction

 1. The following example shows how to check if the current environment is
 POWER, send several commands the POWER environment, and change the
 environment back to its original value:

curenv=ADDRESS()
IF curenv='POWER' THEN NOP
ELSE ADDRESS 'POWER'
"PUTQE RDR STEM mystem."
"GETQE LST JOBNAME myjob CLASS A"
ADDRESS (curenv)

 2. The following example shows how to send a single command to POWER.
 Suppose your LST queue contains the following entries:

 __
 | Figure 46. LST Queue Contents |
 |_________________ ____________ _________________|
Job Name	Class	Job Number
_________________	____________	_________________
MYJOB	A	1
_________________	____________	_________________
MYJOB	A	2
_________________	____________	_________________
MYJOB	Q	3
_________________	____________	_________________
NEWJOB	A	4
_________________	____________	_________________

 The following command retrieves from the LST queue the job MYJOB Class
 A.

ADDRESS power 'GETQE LST JOBNAME myjob CLASS A'

 3. The following examples show using the LINK and LINKPGM environments to
 call another program. In each pair of examples, the first example
 includes no arguments to pass to the program, while the second example
 includes arguments.

ADDRESS LINK 'PROG1'
ADDRESS LINK 'EXPONEN parm'

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

79 of 121 2/26/2019, 12:16 PM

ADDRESS LINKPGM 'PROG1'
ADDRESS LINKPGM 'ADDNUMS n1 n2 n3 ... nn'

2.2 Chapter 9. Diagnosing Problems within a Program

Purpose: This chapter describes how to trace command output and other
 debugging techniques.

Subtopics:

 2.2.1 Debugging Programs

2.2.1 Debugging Programs

 When you encounter an error in a program, there are several ways to locate
 the error.

 ° The TRACE instruction shows how the language processor evaluates each
 operation. (TRACE writes to the output stream. If you have not
 changed the default, the output stream is SYSLST.) For information
 about using the TRACE instruction to evaluate expressions, see

"Tracing Expressions with the TRACE Instruction" in topic 1.3.4. For
 information about using the TRACE instruction to evaluate host
 commands, see the next section, "Tracing Commands with the TRACE

Instruction" in topic 2.2.1.1.

 ° REXX/VSE sets the special variables RC and SIGL as follows:

RC Indicates the return code from a command.

SIGL Indicates the line number from which there was a transfer of
 control because of a function call, a SIGNAL instruction, or
 a CALL instruction.

 ° The TS immediate command starts tracing. The TE immediate command
 ends tracing, including interactive debug. You can use TS and TE in a
 REXX program or specify TS or TE on a call to ARXIC from a non-REXX
 program. For more information about interactive debug, see "Tracing

with the Interactive Debug Facility" in topic 2.2.1.3.

Subtopics:

 2.2.1.1 Tracing Commands with the TRACE Instruction
 2.2.1.2 Using REXX Special Variables RC and SIGL
 2.2.1.3 Tracing with the Interactive Debug Facility

2.2.1.1 Tracing Commands with the TRACE Instruction

 The TRACE instruction has many options for various types of tracing,
 including C for commands and E for errors.

TRACE C: After TRACE C, the language processor traces each command before
 executing it and then executes it and sends the return code from the
 command to the current output stream.

 The return code from the MAKEBUF command is the current number of buffers.
 If you use MAKEBUF without TRACE C, the following produces no output:

/* REXX program */
"MAKEBUF"

 However, the following program:

/* REXX program with TRACE C*/
TRACE C
"MAKEBUF"

 produces:

3 *-* "MAKEBUF"
>>> "MAKEBUF"

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

80 of 121 2/26/2019, 12:16 PM

+++ RC(1) +++

Note: RC contains the current number of buffers. In the example, the 1
 means this is the first MAKEBUF command you have used.

TRACE E: When you specify TRACE E in a program, the language processor
 traces any host command that results in a nonzero return code after it
 executes and sends the return code from the command to the output stream.

 If a program includes TRACE E and issues an incorrect command, the program
 sends to the output stream error messages, the line number, the command,
 and the return code from the command. For example, the following code:

/* REXX program with error--misspelled command */
TRACE E
MAKBUF

 would return:

3 *-* "MAKBUF"
+++ RC(-3) +++

 The line number is 3, the incorrect command is MAKBUF, and the return code
 is -3.

 For more information about the TRACE instruction, see the REXX/VSE
Reference, SC33-6642.

2.2.1.2 Using REXX Special Variables RC and SIGL

 As mentioned earlier, the REXX language has three special variables: RC,
 SIGL, and RESULT. REXX/VSE sets these variables during particular
 situations and you can use them in an expression at any time. If REXX/VSE
 did not set a value, a special variable has the value of its own name in
 uppercase, as do other variables in REXX. You can use two special
 variables, RC and SIGL, to help diagnose problems within programs.

RC: RC stands for return code. The language processor sets RC every time
 a program issues a command. When a command ends without error, RC is
 usually 0. When a command ends in error, RC is whatever return code is
 assigned to that error.

 In the following example, a SAY instruction showing the RC follows an
 incorrect command:

/* REXX program with error--'READER' should be 'RDR' */
ADDRESS POWER "PDELETE READER, ALL"
SAY 'The return code from the command is' RC

 After the incorrect SAS interface command, the return code from the SAS
 interface is 0.

 The RC variable can be especially useful in an IF instruction to determine
 which path a program should take.

ADDRESS POWER "PDELETE RDR,ALL"
IF rc ¬= 0 THEN

CALL error1
ELSE NOP

Note: Every command sets a value for RC, so it does not remain the same
 for the duration of a program. When using RC, make sure it contains the
 return code of the command you want to test.

SIGL: The language processor sets the SIGL special variable in connection
 with a transfer of control within a program because of a function or a
 SIGNAL or CALL instruction. When the language processor transfers control
 to another routine or another part of the program, it sets the SIGL
 special variable to the line number from which the transfer occurred.
 (The line numbers in the following example are to aid in discussion after
 the example. They are not part of the program.)

1 /* REXX */
2 :
3 CALL routine
4 :
5
6 routine:
7 SAY 'We came here from line' SIGL /* SIGL is set to 3 */
8 RETURN

 If the called routine itself calls another routine, SIGL is reset to the
 line number from which the most recent transfer occurred.

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

81 of 121 2/26/2019, 12:16 PM

 SIGL and the SIGNAL ON ERROR instruction can help determine what command
 caused an error and what the error was. When SIGNAL ON ERROR is in a
 program, any host command that returns a nonzero return code causes a
 transfer of control to a routine named error. The error routine runs
 regardless of other actions that would usually take place, such as the
 transmission of error messages. (The line numbers are to aid the
 discussion and are not part of the program.)

01 /* REXX program with error -- 'READER' should be 'RDR' */
02 SIGNAL ON ERROR
03 ADDRESS POWER "PCANCEL"
04
05 ADDRESS POWER "PDELETE READER,ALL" /* line containing error */
06 .
07 .
08 .
09 EXIT
10
11 ERROR:
12 SAY 'The return code from the command on line' SIGL 'is' RC

 This produces:

The return code from the command on line 5 is -3

 For more information about the SIGNAL instruction, see the REXX/VSE
Reference, SC33-6642.

2.2.1.3 Tracing with the Interactive Debug Facility

 The interactive debug facility lets a user control the execution of a
 program. (In a batch environment, the interaction is between the input
 stream and the program.) The language processor reads from the input
 stream, and writes output to the output stream. If you have not changed
 the defaults, the input stream is SYSIPT, and the output stream is SYSLST.

 If running from the operator's console, interactive debug pauses for input
 after most instructions. If you are using files for input and output,
 instead of pausing, interactive debug reads the next line from the input
 stream at each pause point.

Subtopics:

 2.2.1.3.1 Starting Interactive Debug
 2.2.1.3.2 Options within Interactive Debug
 2.2.1.3.3 Ending Interactive Debug

2.2.1.3.1 Starting Interactive Debug

 To start interactive debug, specify ? before the option of a TRACE
 instruction, for example: TRACE ?A. There can be no blank(s) between the
 question mark and the option. Interactive debug is not carried over into
 external routines that are called but is resumed when the routines return
 to the traced program.

2.2.1.3.2 Options within Interactive Debug

 After interactive debug starts, you can provide one of the following
 during each pause or each time the language processor reads from the input
 stream.

 ° A null line, which continues tracing. The language processor
 continues execution until the next pause or read from the input
 stream. Repeatedly input of a null line, therefore, steps from pause
 point to pause point until the program ends.

 ° An equal sign (=), which re-executes the last instruction traced. The
 language processor re-executes the previously traced instruction with
 values possibly modified by instructions read from the input stream.
 (The input can also be an assignment, which changes the value of a
 variable.)

 ° Additional instructions. This input can be any REXX instruction,
 including a command or call to another program. This input is
 processed before the next instruction in the program is traced. For
 example, the input could be a TRACE instruction that alters the type
 of tracing:

TRACE L /* Makes the language processor pause at labels only */

 The input could be an assignment instruction. This could change the
 flow of a program, by changing the value of a variable to force the

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

82 of 121 2/26/2019, 12:16 PM

 execution of a particular branch in an IF THEN ELSE instruction. In
 the following example, RC is set by a previous command.

IF RC = 0 THEN
DO

instruction1
instruction2

END
ELSE
instructionA

 If the command ends with a nonzero return code, the ELSE path is
 taken. To force taking the first path, the input during interactive
 debug could be:

RC = 0

2.2.1.3.3 Ending Interactive Debug

 You can end interactive debug in one of the following ways:

 ° Use the TRACE OFF instruction as input. To end tracing, you can
 include TRACE OFF to be read as input from the current input stream.
 If you have not changed the default, the input stream is SYSIPT. The
 TRACE OFF instruction ends tracing, as stated in the message at the
 beginning of interactive debug:

+++ Interactive trace. TRACE OFF to end debug, ENTER to continue. +++

 ° Use the TRACE ? instruction as input

 The question mark prefix before a TRACE option can end interactive
 debug as well as beginning it. The question mark reverses the
 previous setting (on or off) for interactive debug. Thus you can use
 TRACE ?R within a program to start interactive debug, and provide
 input of another TRACE instruction with ? before the option to end
 interactive debug but continue tracing with the specified option.
 ° Use TRACE with no options as input. If you specify TRACE with no
 options in the input stream, this turns off interactive debug but
 continues tracing with TRACE Normal in effect. (TRACE Normal traces
 only failing commands after execution.)
 ° Let the program run until it ends. Interactive debug automatically
 ends when the program that started tracing ends. You can end the
 program prematurely using as input an EXIT instruction. The EXIT
 instruction ends both the program and interactive debug.
 ° Use the TE immediate command. The TE immediate command ends tracing
 of REXX programs. The program continues processing, but tracing is
 off. In interactive debug, you can provide TE as input to end
 tracing.

2.3 Chapter 10. Using REXX/VSE External Functions

Purpose: This chapter shows how to use external functions and describes
 function packages.

Subtopics:

 2.3.1 REXX/VSE External Functions
 2.3.2 Function Packages

2.3.1 REXX/VSE External Functions

 In addition to the built-in functions, REXX/VSE provides external
 functions that you can use to do specific tasks.

 The REXX/VSE external functions are:

 ° ASSGN - Returns the name of the current input or output stream, and,
 optionally, changes it.

 ° OUTTRAP - Returns the name of the variable in which trapped output is
 stored or traps lines of POWER command output.

 ° REXXIPT - Lets a program read data stored in compound variables. (The
 program can read the data as if it were SYSIPT data.)

 ° REXXMSG - Specifies the output destination where REXX/VSE messages are
 routed to. Offers the possibility to suppress all REXX error

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

83 of 121 2/26/2019, 12:16 PM

 messages.

 ° SETLANG - Retrieves and optionally changes the language of REXX
 messages. The function returns the previous language setting.

 ° SLEEP - Specifies the number of seconds a REXX program is requested to
 wait until it continues processing.

 ° STORAGE - Returns a specified number of bytes of data from a specified
 address in storage. You can optionally overwrite the storage.

 ° SYSVAR - Returns VSE system information.

 Following are brief explanations about how to use these external
 functions. For complete information, see REXX/VSE Reference, SC33-6642.

Subtopics:

 2.3.1.1 Using the ASSGN Function
 2.3.1.2 Using the OUTTRAP Function
 2.3.1.3 Using the REXXIPT Function
 2.3.1.4 Using the REXXMSG Function
 2.3.1.5 Using the SETLANG Function
 2.3.1.6 Using the SLEEP Function
 2.3.1.7 Using the STORAGE Function
 2.3.1.8 Using the SYSVAR Function

2.3.1.1 Using the ASSGN Function

 ASSGN returns the name of the current input or output stream, or,
 optionally, changes it.

 ASSGN(STDIN) returns the name of the current input stream; ASSGN(STDOUT)
 returns the name of the current output stream. To return the name of the
 current stream and change it to the specified value, you can use one of
 the following:

ASSGN(STDIN,sysipt) /* Changes input to SYSIPT */
ASSGN(STDIN,syslog) /* Changes input to SYSLOG */
ASSGN(STDIN,filename) /* Changes input to specified file */
ASSGN(STDOUT,syslst) /* Changes outout to SYSLST */
ASSGN(STDOUT,syslog) /* Changes output to SYSLOG */
ASSGN(STDOUT,filename) /* Changes output to specified file */

Note: Using SYSLST with STDIN or SYSIPT with STDOUT results in REXX error
 40.

2.3.1.2 Using the OUTTRAP Function

 OUTTRAP returns the name of the variable where trapped output is stored
 (with no arguments) or traps:

 ° error information from PUTQE and GETQE
 ° command output from POWER commands (CTL requests) sent to the SAS
 interface or error information if the command fails.

 (See VSE/POWER Application Programming, SC33-6636, for a list of POWER
 commands you can send through a CTL service request. See VSE/POWER

Administration and Operation, SC33-6633 for the syntax of these commands.)
 OUTTRAP may not trap all of the output from the SAS interface; it traps
 only the output routed back through the interface.

 Specify OUTTRAP with no arguments to return the name of the variable in
 which trapped output is stored. If you use OUTTRAP with no arguments and
 no trapping is in effect, then it returns OFF.

y = OUTTRAP()
SAY y /* Produces the variable name being used to store */

/* output or "OFF" if trapping is off. */

 Specify a stem (the part of a compound variable up to and including the
 first period) after the function call to trap lines of command output (or
 error information). See "Using Compound Variables and Stems" in

topic 1.7.1 for details about compound variables.)

OUTTRAP("trapvar.")

 This starts trapping, using the stem trapvar. for the numbered series of
 compound variables. The compound variables trapvar.1, trapvar.2,

trapvar.3, and so on, each receive a line of output. If you do not set a
 limit to the number of output lines, the numbering of variables continues
 to a maximum of 999999999 lines. The total number of lines stored is in

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

84 of 121 2/26/2019, 12:16 PM

trapvar.0.

 With the CONCAT option, OUTTRAP stores output from successive commands in
 consecutive order until reaching the maximum number of lines. For
 example, if a command produces 3 lines of output and the next command
 produces 2 lines, OUTTRAP stores output in trapvar.1 through trapvar.5.
 CONCAT is the default. With NOCONCAT, OUTTRAP overwrites stored lines.
 For example, if OUTTRAP stores 3 lines from a command (in trapvar.1
 through trapvar.3) and the next command produces 2 lines, OUTTRAP stores
 them in trapvar.1 and trapvar.2. (Also, trapvar.3 would no longer contain
 the third line from the first command's output. Before OUTTRAP stores
 output, trapvar. is dropped, as if the REXX instruction DROP trapvar. is
 used.)

 Here is an example using NOCONCAT:

y = OUTTRAP('var.','*',NOCONCAT)
ADDRESS power "PDISPLAY LST,ALL"

SAY 'The number of lines stored is' var.0

 To limit the number of lines of output saved, specify a number after the
 variable name.

y = OUTTRAP('trapvar.',5)

 Specifying 5 after the variable name trapvar means that up to 5 lines of
 command output are stored. Trapvar.1 through trapvar.5 contain the
 output. The number of lines of stored output, in this case 5, is in

trapvar.0. Subsequent lines of command output are not saved.

 For more information, see REXX/VSE Reference, SC33-6642.

2.3.1.3 Using the REXXIPT Function

 You can use the REXXIPT function to read data stored in compound variables
 as if it were SYSIPT data. To have access to SYSIPT data, you must use
 the JCL card // EXEC REXX= to call the program containing the REXXIPT
 function. (Otherwise, you receive an error.)

 First, store the lines of data into compound variables. For example:

line.1="Now is the time"
line.2="for all good men"
line.3="to come to the aid of their country."
line.0=3 /* number of lines of data */

 Call the REXXIPT function before using the ADDRESS instruction:

oldstem = REXXIPT(line.)
ADDRESS LINK "myphase"

 The REXXIPT function call specifies the name of a stem, in this case,
line.. The variables line.1 through line.n contain the lines of data to

 read. (In this case, line.1 contains Now is the time, line.2 contains
for all good men, and line.3 contains
to come to the aid of their country.). The variable line.0 contains the

 number of lines available to read; in this case, line.0 contains 3.

 The called program uses the VSE/ESA OPEN, GET, and CLOSE macros using
 DTFDI to read records from SYSIPT. It reads the contents of the compound
 variables in order. (It reads line.1, then line.2, then line.3.) A
 record of fewer than 80 bytes is padded with blanks. A record of more
 than 80 bytes is truncated. Reading past the the last record acts as the
 end of file condition. If you call the same program a second time and it
 reads the records again, reading starts at the first record.

 You can use the REXXIPT function for the following environments:

 ° ADDRESS JCL
 ° ADDRESS LINK
 ° ADDRESS LINKPGM.

2.3.1.4 Using the REXXMSG Function

 You can use the REXXMSG function to specify the output destination where
 REXX/VSE messages are routed to. Use REXXMSG() to find out the current
 message destination without setting anything.
 You can also use REXXMSG to suppress all REXX/VSE messages. Initially
 REXXMSG is set to "ON". See REXX/VSE Reference, SC33-6642, for REXXMSG
 examples.

2.3.1.5 Using the SETLANG Function

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

85 of 121 2/26/2019, 12:16 PM

 You can use the SETLANG function to determine the language in which REXX
 messages are currently being produced and optionally to change the
 language. If you do not specify an argument, SETLANG returns a
 3-character code that indicates the language in which REXX messages are
 currently being produced. Figure 47 shows the language codes that replace
 the function call and the corresponding language for each code.

 You can optionally specify one of the language codes on the function call
 to change the language. In this case, SETLANG returns the language code
 in effect before the call to SETLANG and sets the language to the code you
 have specified. The language codes you can specify depend on the language
 features that are installed on your system.

 __
 | Figure 47. Language Codes for SETLANG Function That Replace the |
 | Function Call |
 |__________ ___|
Language	Language
Code	
__________	___
ENP	US English--all uppercase
__________	___
ENU	US English-mixed case (uppercase and lowercase)
	(This is the default.)
__________	___

 To find out the language in which REXX messages are currently being
 presented, use the SETLANG function with no argument:

curlang=SETLANG() /* curlang is set to the 3-character */
/* code of the current language setting. */

 To set the language to uppercase US English for subsequent REXX messages,
 use the SETLANG function with the 3-character code, ENP, enclosed in
 parentheses:

oldlang=SETLANG("ENP") /* oldlang is set to the previous */
/* language setting. */
/* The current setting is ENP. */

2.3.1.6 Using the SLEEP Function

 You can use the SLEEP function to specify the time in seconds a REXX
 program is requested to wait. See REXX/VSE Reference, SC33-6642, for an
 example of SLEEP.

2.3.1.7 Using the STORAGE Function

 You can use the STORAGE function to retrieve data from a particular
 address in storage. You can also use the STORAGE function to place data
 into a particular address in storage. See REXX/VSE Reference, SC33-6642,
 for examples of STORAGE.

2.3.1.8 Using the SYSVAR Function

 You can use the SYSVAR function to get, depending on the arg_name, VSE
 system information:

 ° the highest return code from VSE JCL
 ° the VSE JCL jobname
 ° the Librarian return and reason code of an EXECIO command for Libr
 members
 ° the VSE/POWER jobname
 ° the jobnumber of the VSE/POWER job calling the REXX program
 ° the partition ID
 ° the VSE/ESA supervisor version.

 See REXX/VSE Reference, SC33-6642, for examples of SYSVAR.

2.3.2 Function Packages

 A function package is a group of external routines (functions and
 subroutines) that are accessed more quickly than external routines written
 in interpreted REXX. You can write functions in REXX or in any language
 that VSE/ESA supports and that can follow REXX parameter passing
 conventions. Routines in a function package must be written in a
 programming language that produces object code, which can be link-edited
 into a phase. The routine must also support the system interface for
 function packages. Some programming languages that meet these
 qualifications are assembler, COBOL, PL/I, and REXX that is compiled.

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

86 of 121 2/26/2019, 12:16 PM

 There are three types of function packages.

 ° User packages -- User-written external functions that are available to
 an individual. These packages are searched before other types of
 function packages and are often written to replace the other types of
 function packages.

 ° Local packages -- Application or system support functions that are
 generally available to a specific group of users. Local packages are
 searched after user packages.

 ° System packages -- Functions written for system-wide use, such as the
 REXX/VSE external functions. System packages are searched after user
 and local packages.

 The default name for the user packages is ARXFUSER, and the default name
 for the local package is ARXFLOC. The REXX/VSE Reference, SC33-6642,
 contains information about providing your own system function package or
 more than one local or user function package.

Subtopics:

 2.3.2.1 Search Order for Functions

2.3.2.1 Search Order for Functions

 When the language processor encounters a function call, if defaults have
 not been changed, it goes through the following search order:

 ° Internal functions--Labels in the program that issued the function
 call are searched first (unless the label is in quotation marks in the
 function call).

 ° Built-in functions -- The built-in functions are next in the search
 order.

 ° Function packages--REXX/VSE searches user, local, and system function
 packages, in that order.

 ° External function--A member of a sublibrary in the active PROC or
 PHASE chain.

 See REXX/VSE Reference, SC33-6642, for details about the search order.

2.4 Chapter 11. Storing Information in the Data Stack

Purpose: This chapter describes how to use the REXX data stack to store
 information. Also, this chapter describes how to add a buffer to a data
 stack and how to create a private data stack.

Subtopics:

 2.4.1 What is a Data Stack?
 2.4.2 Manipulating the Data Stack
 2.4.3 Processing of the Data Stack
 2.4.4 Using the Data Stack
 2.4.5 Leaving Data on the Stack
 2.4.6 Creating a Buffer on the Data Stack
 2.4.7 Protecting Elements in the Data Stack

2.4.1 What is a Data Stack?

 REXX/VSE uses an expandable data structure called a data stack to store
 information. The data stack combines characteristics of a conventional
 stack and queue.

 Stacks and queues are similar types of data structures that temporarily
 hold data items (elements) until needed. When elements are needed, they
 are removed from the top of the data structure. The basic difference
 between a stack and a queue is that elements are added to the top of a
 stack and to the bottom of a queue. The figure that follows shows this.

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

87 of 121 2/26/2019, 12:16 PM

 With a stack, the last element added to the stack (elem6) is the first
 removed. Because elements are placed on the top of a stack and removed
 from the top, the newest elements on a stack are the ones processed first.
 The technique is called LIFO (last in first out).

 With a queue, the first element added to the queue (elem1) is the first
 removed. Because elements are placed on the bottom of a queue and removed
 from the top, the oldest elements on a queue are the ones processed first.
 The technique is called FIFO (first in first out).

 | " | | " |
 |___________| |___________|
 | elem6 | | elem1 |
 |___________| |___________|
 | elem5 | | elem2 |
 |___________| |___________|
 | elem4 | | elem3 |
 |___________| |___________|
 Stack | elem3 | | elem4 | Queue
 |___________| |___________|
 | elem2 | | elem5 |
 |___________| |___________|
 | elem1 | | elem6 |
 |___________| |___________|
 | " |

 As the following figure shows, the data stack that REXX uses combines the
 techniques used in adding elements to stacks and queues. You can add
 elements on the top or the bottom of a data stack. Removal of elements
 from the data stack, however, occurs only from the top of the stack.

 | " |
 |___________|
 Data | elem1 |
 |___________|
 Stack | elemA |
 |___________|
 | " |

2.4.2 Manipulating the Data Stack

 Several REXX instructions manipulate the data stack. PUSH and QUEUE add
 elements to the data stack. PULL and PARSE PULL remove elements from the
 data stack.

Adding Elements to the Data Stack: PUSH and QUEUE store information on
 the data stack.

 PUSH - puts one item of data on the top of the data stack. There is
 virtually no limit to the length of the data item.

elem1 = 'String 1 for the data stack'
PUSH elem1

 QUEUE - puts one item of data on the bottom of the data stack. Again,
 there is virtually no limit to the length of the data item.

elemA = 'String A for the data stack'
QUEUE elemA

 If the two preceding sets of instructions were in a program, the data
 stack would appear as follows:

 PUSH
 | |
 |___________|
 | elem1 |
 |___________|
 | elemA |
 |___________|
 | " |
 QUEUE

Note: When adding elements in a particular order to the data stack, some
 people find it less confusing to use the same instruction consistently,
 either PUSH or QUEUE, but not both.

Removing Elements from the Stack: To remove information from the data
 stack, use the PULL and PARSE PULL instructions. These instructions
 appear earlier in this book extracting information from the input stream.
 (When the data stack is empty, PULL removes information from the input
 stream. If you have not changed the default, the input stream is SYSIPT.)

 PULL and PARSE PULL - remove one element from the top of the data
 stack.

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

88 of 121 2/26/2019, 12:16 PM

PULL stackitem

 Based on the examples from "Adding Elements to the Data Stack," the
variable stackitem contains the value of elem1 with the characters

 translated to uppercase.

SAY stackitem /* Produces: STRING 1 FOR THE DATA STACK */

 If you use PARSE PULL rather than PULL, the language processor does
 not translate the value to uppercase.

PARSE PULL stackitem
SAY stackitem /* Produces: String 1 for the data stack */

 After either of the preceding examples, the data stack appears as follows:

 PULL
 | " |
 |___________|
 | elemA |
 |___________|
 | |

Determining the Number of Elements on the Stack: The QUEUED built-in
 function returns the total number of elements on a data stack. For
 example, to find out how many elements are on the data stack, use the
 QUEUED function with no arguments:

SAY QUEUED() /* Produces a decimal number */

 To remove all elements from a data stack and list them, you can use the
 QUEUED function as follows:

number = QUEUED()
DO number

PULL element
SAY element

END

Subtopics:

 2.4.2.1 Exercise - Using the Data Stack

2.4.2.1 Exercise - Using the Data Stack

 Write a program that puts the letters V, S, E on the data stack in such a
 way that they spell "VSE" when removed. Use the QUEUED built-in function
 and the PULL and SAY instructions to help remove the letters and list
 them. To put the letters on the stack, you can use the REXX instructions
 PUSH, QUEUE, or a combination of the two.

 ANSWER

 __
 | |
 | |
 | /******************************** REXX *****************************/ |
 | /* This program uses the PUSH instruction to put the letters V,S,E */ |
 | /* on the data stack in reverse order. */ |
 | /***/ |
 | |
 | PUSH 'E' /***************************/ |
 | PUSH 'S' /* Data in stack is: */ |
 | PUSH 'V' /* (third push) V */ |
 | /* (second push) S */ |
 | number = QUEUED() /* (first push) E */ |
 | DO number /***************************/ |
 | PULL stackitem |
 | SAY stackitem |
 | END |
 | |
 | |
 | |
 |__|
 Figure 48. Possible Solution 1

 __
 | |
 | |
 | /******************************** REXX ******************************/ |
 | /* This program uses the QUEUE instruction to put the letters V,S,E */ |
 | /* on the data stack in that order. */ |
 | /**/ |
 | |
 | QUEUE 'V' /***************************/ |
 | QUEUE 'S' /* Data in stack is: */ |

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

89 of 121 2/26/2019, 12:16 PM

 | QUEUE 'E' /* (first queue) V */ |
 | /* (second queue) S */ |
 | /* (third queue) E */ |
 | DO QUEUED() /***************************/ |
 | PULL stackitem |
 | SAY stackitem |
 | END |
 | |
 | |
 | |
 |__|
 Figure 49. Possible Solution 2

 __
 | |
 | |
 | /******************************** REXX *****************************/ |
 | /* This program uses the PUSH and QUEUE instructions to put V,S,E */ |
 | /* on the data stack. */ |
 | /***/ |
 | |
 | PUSH 'S' /***************************/ |
 | QUEUE 'E' /* Data in stack is: */ |
 | PUSH 'V' /* (second push) V */ |
 | /* (first push) S */ |
 | /* (first queue) E */ |
 | DO QUEUED() /***************************/ |
 | PULL stackitem |
 | SAY stackitem |
 | END |
 | |
 | |
 | |
 |__|
 Figure 50. Possible Solution 3

2.4.3 Processing of the Data Stack

 You can think of a data stack as a temporary holding place for
 information. Every REXX/VSE program has a separate data stack available
 for each REXX environment that is initialized. (There is one data stack
 for an environment unless you create additional ones with NEWSTACK.)

 When a program issues a PULL instruction, and when it issues a command,
 the data stack is searched first for information and, if that is empty,
 information is retrieved from the input stream.

 |

 | |
 |___________|
 | |
 |___________|
 Data | |
 |___________|
 Stack | |
 |___________|
 | |
 |___________|

 |

 | |
 | |
 Input Stream | |
 |___________|

 Some types of input that can be stored on the data stack are:

 ° Data for the PULL and PARSE PULL instructions

 When a program issues a PULL instruction, the language processor first
 goes to the data stack and pulls off the top element. If the data
 stack is empty, the language processor goes to the input stream for
 input.

Note: To prevent the language processor from searching the data
 stack, you can use the PARSE EXTERNAL instruction instead of PULL.
 PARSE EXTERNAL gets input directly from the input stream and bypasses
 the data stack.

 ° Responses to commands

 A program can put information on the data stack for a command's use.

 ° Similarly, a program can put data from the input stream on the data
 stack for a command's use.

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

90 of 121 2/26/2019, 12:16 PM

 ° Commands to be issued after the program ends

 When a program ends, the language processor considers all elements
 remaining on the data stack to be JCL and submits them to Job Control.
 (See "Leaving Data on the Stack" in topic 2.4.5 for more information.)

 ° Information the EXECIO command reads from and writes to files when
 performing I/O.

 For information about the EXECIO command and how it uses the data
 stack, see "Using EXECIO to Process Information to and from Files" in

topic 2.5.3.

2.4.4 Using the Data Stack

 The data stack has some unique characteristics, such as:

 ° It can contain a virtually unlimited number of data items of virtually
 unlimited size.

 ° It can contain commands to be issued after the program ends.

 ° It can pass information between REXX programs and other types of
 programs.

 Because of the data stack's unique characteristics, you can use the data
 stack specifically to:

 ° Store a large number of data items for a single program's use.

 ° Pass a large number of arguments or an unknown number of arguments
 between a routine (subroutine or function) and the main program.

 ° Store data items from an input file that the EXECIO command has read.
 For information about the EXECIO command, see "Using EXECIO to Process

Information to and from Files" in topic 2.5.3.

 ° Share information between a REXX program and any other program.

Passing Information between a Routine and the Main Program: You can use
 the data stack to pass information from a program to an external routine
 without using arguments. The program pushes or queues the information on
 the stack and the routine pulls it off and uses it. The figure that
 follows shows a program that puts information on the stack and calls an
 external routine. The second figure shows the external routine.

 __
 | |
 | |
 | /*************************** REXX ********************************/ |
 | /* This program places the letters 'V', 'S', 'E' on the data */ |
 | /* stack. It then calls an external routine that changes the */ |
 | /* data stack, pulls a line from the stack without uppercasing */ |
 | /* it, and sends it to the output stream. */ |
 | /***/ |
 | |
 | QUEUE 'V' |
 | QUEUE 'S' |
 | QUEUE 'E' |
 | |
 | CALL external |
 | |
 | PARSE PULL stackitem |
 | SAY stackitem |
 | |
 | |
 |__|
 Figure 51. Using the Data Stack to Pass Information from the Main Program

 __
 | |
 | |
 | /*************************** REXX ********************************/ |
 | /* This program reads the name of the operating system from the */ |
 | /* stack and puts an item on the stack. */ |
 | /***/ |
 | |
 | EXTERNAL: |
 | new_stack = '' |
 | number = QUEUED() |
 | |
 | DO number |
 | PULL stackitem |
 | new_stack = new_stack||stackitem |
 | End |

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

91 of 121 2/26/2019, 12:16 PM

 | |
 | PUSH 'You are working on a' new_stack 'system.' /* Puts item on stack */ |
 | |
 | |
 |__|
 Figure 52. External Routine

2.4.5 Leaving Data on the Stack

 If you call REXX by using the JCL EXEC command, you can leave JCL
 statements on the stack. VSE/ESA can then process the JCL statements left
 on the stack. This means you can insert JCL statements or data into the
 current job stream.

 JCL statements must be 80 characters. If a stack entry has fewer than 80
 characters, it is padded with trailing blanks. If it has more than 80
 characters, only the first 80 are used; the rest are ignored. After
 program processing is done, the 80-character entries left on the stack are
 passed to VSE/ESA. VSE/ESA treats these as a JCL procedure. See the

VSE/ESA System Control Statements, SC33-6613, for rules about the contents
 of a JCL procedure.

2.4.6 Creating a Buffer on the Data Stack

 When a program calls a routine (subroutine or function) and both the
 program and the routine use the data stack, the stack becomes a way to
 share information. However, programs and routines that do not purposely
 share information from the data stack might unintentionally do so and end
 in error. To help prevent this, you can use the MAKEBUF and DROPBUF
 commands. MAKEBUF creates a buffer, which you can think of as an
 extension to the stack. DROPBUF deletes the buffer and all elements
 within it.

 Although the buffer does not prevent the PULL instruction from accessing
 elements placed on the stack before the buffer was created, it is a way
 for a program to create a temporary extension to the stack. The buffer
 allows a program to:

 1. Use the QUEUE instruction to insert elements in FIFO order on a stack
 that already contains elements.

 2. Have temporary storage that it can delete easily with the DROPBUF
 command.

 A program can create multiple buffers before dropping them. Every time
 MAKEBUF creates a new buffer, the REXX special variable RC is set with the
 number of the buffer created. Thus, if a program issues three MAKEBUF
 commands, RC is set to 3 after the third MAKEBUF command.

Note: To protect elements on the stack, a program can create a new stack
 with the NEWSTACK command. For information about the NEWSTACK command,
 see "Protecting Elements in the Data Stack" in topic 2.4.7.

Subtopics:

 2.4.6.1 Creating a Buffer with the MAKEBUF Command
 2.4.6.2 Dropping a Buffer with the DROPBUF Command
 2.4.6.3 Finding the Number of Buffers with the QBUF Command
 2.4.6.4 Finding the Number of Elements in a Buffer

2.4.6.1 Creating a Buffer with the MAKEBUF Command

 To create a buffer on the data stack before adding more elements to the
 stack, use the MAKEBUF command. All elements added to the data stack
 after the MAKEBUF command are placed in the buffer. Below the buffer are
 elements placed on the stack before the MAKEBUF command.

 | " |
 |___________|
 | newX |
 |___________|
 | newY | _ QUEUE
 ____|___________|___
 MAKEBUF | |
 ____|___________|___
 | old1 |
 |___________|
 | oldA |
 |___________|
 | " |

 To create this buffer, you could use the following instructions:

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

92 of 121 2/26/2019, 12:16 PM

'MAKEBUF'
PUSH 'newX'
QUEUE 'newY'

Removing Elements from a Stack with a Buffer: The buffer MAKEBUF created
 does not prevent a program from accessing elements below it. After a
 program removes the elements added after the MAKEBUF command, then it
 removes elements added before the MAKEBUF command was issued.

 Given the previous illustration, the program can issue three PULL
 instructions to remove the following elements from the data stack.

newX
newY
old1

 To prevent a routine from accessing elements below the buffer, you can use
 the QUEUED built-in function as follows:

olditems = QUEUED()
'MAKEBUF'
PUSH ...
QUEUE ...
DO WHILE QUEUED() > olditems /* total items > old number of items */

PULL
...

END
'DROPBUF'

2.4.6.2 Dropping a Buffer with the DROPBUF Command

 When a program has no more need for a buffer on the data stack, it can use
 the DROPBUF command to remove the buffer (and its contents). DROPBUF
 removes the most recently created buffer.

 DROPBUF | " |
 |___________|
 | old1 |
 |___________|
 | oldA |
 |___________|
 | " |

 To drop a specific buffer on the data stack and all buffers created after
 it, use the REXX/VSE DROPBUF command with the number of the buffer. The
 first MAKEBUF creates buffer 1, the second creates buffer 2, and so on.
 For example, suppose a program issues three MAKEBUF commands that create
 three buffers. Issuing DROPBUF 2 removes the second and third buffers and
 all elements within them.

 To remove all elements from the entire data stack including elements
 placed on the data stack before buffers were added, use DROPBUF 0. This
 creates an empty data stack. (You should use this with caution.)

Note: When an element is removed below a buffer, the buffer disappears.
 Thus, when you are removing elements below a buffer, the DROPBUF command
 you use might remove the incorrect buffer and its elements.

 To prevent a program from removing elements below a buffer, use the QUEUED
 built-in function or the REXX/VSE NEWSTACK command, as "Protecting

Elements in the Data Stack" in topic 2.4.7 describes.

2.4.6.3 Finding the Number of Buffers with the QBUF Command

 To find out how many buffers the MAKEBUF command created, use the REXX/VSE
 QBUF command. QBUF returns the number of buffers created in the REXX
 special variable RC.

'MAKEBUF'

.

.

.
'MAKEBUF'

.

.

.
'QBUF'
SAY 'The number of buffers is' RC /* RC = 2 */

 QBUF returns the total number of buffers created, not just the ones a
 single program created. Thus, if a program issues two MAKEBUF commands
 and calls a routine that issues two more, when the routine issues a QBUF

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

93 of 121 2/26/2019, 12:16 PM

 command, RC returns the total number of buffers created, which is four.

2.4.6.4 Finding the Number of Elements in a Buffer

 To find out how many elements are in the most recently created buffer, use
 the REXX/VSE QELEM command. QELEM returns the number of elements in the
 most recently created buffer in the REXX special variable RC.

PUSH A
'MAKEBUF'
PUSH B
PUSH C
'QELEM'
SAY 'The number of elements is' RC /* RC = 2 */

 QELEM does not return the number of elements on a data stack with no
 buffers that the MAKEBUF command created. If QBUF returns 0, no matter
 how many elements are on the stack, QELEM also returns 0.

 For more information about these stack commands, see the REXX/VSE
Reference.

Subtopics:

 2.4.6.4.1 Exercises - Creating a Buffer on the Data Stack

2.4.6.4.1 Exercises - Creating a Buffer on the Data Stack

 1. What are the results of the following instructions?

 a. What is item?

QUEUE A
QUEUE B
'MAKEBUF'
QUEUE C
PULL item

 b. What is element?

PUSH 'a'
PUSH 'b'
'MAKEBUF'
PUSH 'c'
PUSH 'd'
'DROPBUF'
PARSE PULL element

 c. What is stackitem?

QUEUE a
'MAKEBUF'
QUEUE b
'MAKEBUF'
QUEUE c
'DROPBUF'
PULL stackitem

 d. What is RC?

PUSH A
'MAKEBUF'
PUSH B
CALL sub1
'QBUF'
SAY RC
EXIT

sub1:
'MAKEBUF'
RETURN

 e. What is RC?

QUEUE A
'MAKEBUF'
PUSH B
PUSH C
'MAKEBUF'
PUSH D
'QELEM'
SAY RC

 f. What is RC?

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

94 of 121 2/26/2019, 12:16 PM

QUEUE A
QUEUE B
QUEUE C
'QELEM'
SAY RC

 2. The following instructions:

'MAKEBUF'
QUEUE 'prompt'
'MAKEBUF'
QUEUE 'data'
QUEUE 'info'
QUEUE 'item'
'MAKEBUF'

 created this data stack:

 _____ ___________ _____
 MAKEBUF 3 | |
 _____|___________|_____
 | data |
 |___________|
 | info |
 |___________|
 | item |
 _____|___________|_____
 MAKEBUF 2 | |
 _____|___________|_____
 | prompt |
 _____|___________|_____
 MAKEBUF 1 | |
 _____|___________|_____

 Answer the following questions based on this information.

 a. What is returned to the function?

SAY QUEUED()

 b. What is RC?

'QBUF'
SAY RC

 c. What is RC?

'QELEM'
SAY RC

 d. What are both RCs and the result of the QUEUED() function?

'DROPBUF 2'
'QBUF'
SAY RC
'QELEM'
SAY RC
SAY QUEUED()

 ANSWERS

 1.

 a. C

 b. b

 c. B (The language processor uppercases b because it was queued
 without quotation marks and pulled without PARSE.)

 d. 2

 e. 1

 f. 0

 2.

 a. 4

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

95 of 121 2/26/2019, 12:16 PM

 b. 3

 c. 0

 d. 1, 1, 1

2.4.7 Protecting Elements in the Data Stack

 In certain environments, it is often important for a program to isolate
 stack elements from other programs. A program might want to protect stack
 elements from a routine (subroutine or function) that it calls.

 To protect elements on the data stack, you can create a new data stack
 with the REXX/VSE NEWSTACK command. To delete the new data stack and all
 elements in it, use the REXX/VSE DELSTACK command. Programs can create
 multiple stacks before deleting them.

Note: Before a program returns to its caller, the called program should
 issue a DELSTACK command for each NEWSTACK command it issued, unless the
 called program intends for the caller to also use the new data stack.

Subtopics:

 2.4.7.1 Creating a New Data Stack with the NEWSTACK Command
 2.4.7.2 Deleting a Private Stack with the DELSTACK Command
 2.4.7.3 Finding the Number of Stacks

2.4.7.1 Creating a New Data Stack with the NEWSTACK Command

 The NEWSTACK command creates a private data stack that is completely
 isolated from the original data stack. A program and the routines that it
 calls cannot access the elements on the original data stack until it (or
 its routines) issues a DELSTACK command. When there are no more elements
 in the new data stack, information is taken from the input stream.

Note: If you use NEWSTACK, you also need to use a corresponding DELSTACK
 command.

 All elements added to the data stack after the NEWSTACK command are placed
 in the new data stack. The original stack contains the elements placed on
 the stack before the NEWSTACK command.

 | " |
 ___________ |___________|
 Original | old1 | | newX | New
 |___________| |___________|
 Stack | oldA | | newY | Stack
 |___________| |___________|
 | " |

 To create this new stack, you could use the following instructions:

PUSH 'oldA'
PUSH 'old1'
'NEWSTACK'
QUEUE 'newY'
PUSH 'newX'

2.4.7.2 Deleting a Private Stack with the DELSTACK Command

 When a program wants to delete the new stack and remove all elements
 placed on the new stack, it can issue the REXX/VSE DELSTACK command.
 DELSTACK removes the most recently created data stack. If no stack was
 previously created with the NEWSTACK command, DELSTACK removes all the

elements from the original stack.

2.4.7.3 Finding the Number of Stacks

 To find out how many stacks exist, use the REXX/VSE QSTACK command.
 QSTACK returns the total number of stacks, including the original data
 stack, in the REXX special variable RC.

'NEWSTACK'
:

'NEWSTACK'
:

'QSTACK'
SAY 'The number of stacks is' RC /* RC contains 3 */

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

96 of 121 2/26/2019, 12:16 PM

 QSTACK returns the total number of stacks, not only the ones created for a
 single program. Suppose a program issues two NEWSTACK commands and calls
 a routine that issues two more. When the routine issues a QSTACK command,
 RC contains the total number of stacks, which is five.

 For more information about these commands, see the REXX/VSE Reference.

Subtopics:

 2.4.7.3.1 Additional Example

2.4.7.3.1 Additional Example

 __
 | |
 | |
 | /********************************* REXX ******************************/|
 | /* This program tests several of the stack functions to see how they */|
 | /* work together. It uses the NEWSTACK and DELSTACK commands, puts */|
 | /* an element on the stack that exceeds 255 characters, uses the */|
 | /* LENGTH built-in function to see how long the element is, uses the */|
 | /* QUEUED built-in function to see how many items are on the stack, */|
 | /* and then issues more PULL instructions than are elements on the */|
 | /* stack. */|
 | /***/|
 | element = 'Attention please! This is a test.' |
 | PUSH element |
 | |
 | 'NEWSTACK' /* Create a new stack and protect elements previously */ |
 | /* placed on the stack */ |
 | |
 | longitem = 'SAA is a definition -- a set of software interfaces,', |
 | 'conventions, and protocols that provide a framework for designing', |
 | 'and developing applications with cross-system consistency.', |
 | 'The Systems Application Architecture defines a common programming', |
 | 'interface you can use to develop applications, and defines common', |
 | 'communications support that you can use to connect those', |
 | 'applications.' |
 | |
 | SAY 'The length of the element is' LENGTH(longitem) 'characters.' |
 | /* The length of the element is 379 characters. */ |
 | QUEUE longitem |
 | |
 | PULL anyitem |
 | SAY anyitem /* Produces the longitem quote in uppercase */ |
 | |
 | SAY 'There are' QUEUED() 'number of elements on the stack.' |
 | /* The QUEUED function returns 0 */ |
 | |
 | PULL emptyitem /* Pull an element from the stack. If stack is */|
 | /* empty, pull an element from the input stream. */|
 | |
 | 'DELSTACK' /* Remove the new stack and return to the original stack.*/|
 | |
 | PULL anyitem |
 | SAY anyitem /* Produces: ATTENTION PLEASE! THIS IS A TEST. */|
 | |
 | |
 |__|
 Figure 53. Data Stack Example

2.5 Chapter 12. Processing Data and Input/Output Processing

Purpose: This chapter describes dynamic modification of a single REXX
 expression and I/O processing of files.

Subtopics:

 2.5.1 Types of Processing
 2.5.2 Dynamic Modification of a Single REXX Expression
 2.5.3 Using EXECIO to Process Information to and from Files

2.5.1 Types of Processing

 The word processing here means the performance of operations and
 calculations on data. Ordinary processing of instructions in REXX occurs
 every time the language processor evaluates an expression. This chapter
 describes two special types of REXX processing:

 ° Dynamic modification of a single REXX expression

 The INTERPRET instruction evaluates an expression and then treats it

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

97 of 121 2/26/2019, 12:16 PM

 as a REXX instruction.

 ° Processing information to and from files

 The REXX/VSE EXECIO command in a program reads information from a file
 to the data stack (or a list of variables) and writes information from
 the data stack (or list of variables) back to a file.

2.5.2 Dynamic Modification of a Single REXX Expression

 Typically the language processor evaluates REXX expressions and the result
 replaces the expression. For example, the arithmetic expression 5 + 5
 evaluates to 10.

answer = 5 + 5 /* answer gets the value 10 */

 If the arithmetic expression is in quotation marks, the expression is
 evaluated as a string.

answer = '5 + 5' /* answer gets the value 5 + 5 */

 To both evaluate and execute an expression, you can use the INTERPRET
 instruction.

Subtopics:

 2.5.2.1 Using the INTERPRET Instruction

2.5.2.1 Using the INTERPRET Instruction

 The INTERPRET instruction not only evaluates an expression, but also
 treats it as an instruction after it is evaluated. Thus if a combination
 of the previous examples were used with the INTERPRET instruction, answer
 becomes "10".

number=2
message='SAY "The square of 2 is"'
square='** 2'
INTERPRET message number square /* "The square of 2 is 4" */

 You can also group a number of instructions within a string, assign the
 string to a variable, and use INTERPRET to execute the instructions:

action = 'DO 3; SAY "Hello!"; END'
INTERPRET action /* results in:

Hello!
Hello!
Hello! */

 Because the INTERPRET instruction causes dynamic modification, use it very
 carefully. For more information about the INTERPRET instruction, see the

REXX/VSE Reference.

2.5.3 Using EXECIO to Process Information to and from Files

 A program uses the EXECIO command to perform the input and output (I/O) of
 information to and from a file. The information can be stored in the data
 stack for serialized processing or in a list of variables for random
 processing.

Subtopics:

 2.5.3.1 When to Use the EXECIO Command
 2.5.3.2 Using the EXECIO Command

2.5.3.1 When to Use the EXECIO Command

 The various operands and combination of operands of the EXECIO command
 permit you to do many types of I/O. For example, you can use the EXECIO
 command to:

 ° Read information from a file

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

98 of 121 2/26/2019, 12:16 PM

 ° Write information to a file
 ° Open a file without reading or writing any records
 ° Empty a file
 ° Copy information from one file to another
 ° Copy information to and from a list of compound variables
 ° Add information to the end of a file
 ° Update information in a file one line at a time.

2.5.3.2 Using the EXECIO Command

 EXECIO reads information from or writes information to a file. You can
 also use EXECIO to open a file without reading or writing any records or
 to empty a file. EXECIO reads information from a file with either the
 DISKR or DISKRU operands. Using these operands, you can also open a file
 without reading its records. See "Reading Information from a File" for
 more information about the DISKR and DISKRU operands. EXECIO writes
 information to a file with the DISKW operand. Using this operand, you can
 also open a file without writing records or empty an existing file. See

"Writing Information to a File" in topic 2.5.3.2.2 for more information on
 the DISKW operand.

 EXECIO operates on I/O files of the following types:

 ° Sublibrary members of any type. The REXX program must specify the
 full name of the member on the EXECIO command. (The full name
 consists of a library name, sublibrary name, member name, and member
 type, for example: mylib.mysublib.myfile.typea.) See the description
 of NODATA and DATA that follows.

 ° SYSIPT and SYSLST. These names are reserved words on the EXECIO
 command. You can use only DISKR (not DISKRU) with SYSIPT. You can
 use only DISKW with SYSLST.

 This option is only for members of a sublibrary.

NODATA
DATA

 indicates whether the member contains SYSIPT data. NODATA
 specifies no SYSIPT data in the member. DATA specifies the member
 contains SYSIPT data.

 This option is valid only for DISKW and is required only for
 opening a member of a sublibrary. This option is ignored for
 other types of files.

 The default is NODATA for a new member. For a member that already
 exists, the default is its value from when it was created.

 ° SAM files. Only SAM files on disk are supported.

 Before EXECIO can perform I/O to or from a SAM file, you need to use DLBL
 to associate the file with a file name. The following example associates

userid.my.input with the file name myinp:

// DLBL myinp,'userid.my.input'

 On EXECIO for SAM files, you also need to specify additional operands that
 you do not specify for other types of files. See topic 2.5.3.2.2 for
 details.

 If you use EXECIO to read information from a file to the data stack, the
 information can be stored in FIFO or LIFO order on the data stack. FIFO
 is the default. If you use EXECIO to read information from a file to a
 list of variables, the first file line is stored in variable1, the second
 file line is stored in variable2, and so on. You can randomly access data
 read into a list of variables. After the information is in the data stack
 or in a list of variables, the program can test it, copy it to another
 file, or update it before returning it to the original file.

Subtopics:

 2.5.3.2.1 Reading Information from a File
 2.5.3.2.2 Writing Information to a File
 2.5.3.2.3 Copying Information from One File to Another
 2.5.3.2.4 Copying Information to and from Compound Variables
 2.5.3.2.5 Updating Information in a File
 2.5.3.2.6 Additional Examples

2.5.3.2.1 Reading Information from a File

 To read information from a file to the data stack or to a list of
 variables, use EXECIO with either the DISKR or DISKRU operand. To read
 all lines from the sublibrary member mylib.mysub.myfile.text, you could

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

99 of 121 2/26/2019, 12:16 PM

 use:

"EXECIO * DISKR mylib.mysub.myfile.typea (FINIS"

 The asterisk immediately after EXECIO specifies reading the entire file
 rather than only a certain number of lines.

 To read all lines from a sequential file named my.data.set you would first
 use DLBL to associate the file with a file name, such as myfile, as
 follows:

// DLBL myfile,'my.data.set'

 You could then use the following EXECIO command:

"EXECIO * DISKR myfile (FINIS RECFORM fixblk RECSIZE 80 BLKSIZE 400"

 This EXECIO command includes the additional operands that SAM files
 require. See topic 2.5.3.2.2 for descriptions.

 To read all lines from the default input stream, you could use:

"EXECIO * DISKR sysipt (FINIS"

 (Remember: use only DISKR for SYSIPT.)

 The rest of the examples in this chapter primarily use files that are
 sublibrary members. Remember that for SAM files you need to use DLBL to
 associate the file with a file name before using EXECIO and that you need
 to include the additional operands as options (see topic 2.5.3.2.2) on the
 EXECIO command. For further information, see the REXX/VSE Reference.

How to specify the number of lines to read: In the preceding examples,
 the asterisk immediately after EXECIO specifies reading the entire file.
 To read a specific number of lines, put the number immediately after
 EXECIO:

"EXECIO 25 ..."

 When all the information is on the data stack, you can queue a null line
 to indicate the end of the information. If there are null lines
 throughout the data, you can use the built-in function QUEUED to determine
 the number of items on the stack. (Examples using QUEUE and QUEUED for
 writing output are in topic 2.5.3.2.2.)

 To open a file without reading any records, specify 0 immediately after
 EXECIO and specify the OPEN operand.

"EXECIO 0 DISKR mylib.mysub.myfile.typea (OPEN"

How to specify the number of bytes to read: Library members with logical
 record format "string" consist of only one line. For dumps, for example,
 this line can be large. Using option BYTES, you can read such a file in
 portions.

"EXECIO 1 DISKR mylib.mysub.myfile.typeb (BYTES 5000"

 Breaking large string library members in parts requires less storage for
 command execution.

Using DISKR or DISKRU: Depending on the purpose you have for the input
 file, use either the DISKR or DISKRU operand.

 ° DISKR - Reading Only

 To start I/O from a file that you want only to read, use the DISKR
 operand with the FINIS option. The FINIS option closes the file after
 the information is read. Closing the file allows other programs to
 access the file.

"EXECIO * DISKR ... (FINIS"

Note: Do not use the FINIS option if you want the next EXECIO in your
 program to continue reading at the line immediately following the last
 line read.

 ° DISKRU - Reading and Updating

 To start I/O to a file that you want to read and update, use the
 DISKRU operand without the FINIS option. (Remember: you cannot use
 DISKRU for SYSIPT.) Because you can update only the last line that

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

100 of 121 2/26/2019, 12:16 PM

 was read, you usually read and update a file one line at a time, or go
 immediately to the single line that needs updating. The file remains
 open while you update the line and return the line with a
 corresponding EXECIO DISKW command.

"EXECIO 1 DISKRU ..."

 More about using DISKRU appears in "Updating Information in a File" in
topic 2.5.3.2.5.

Option of specifying a starting line number: If you want to start reading
 at a line other than the beginning of the file, specify the line number at
 which to begin. For example, to read all the lines starting at line 100
 to the data stack, you could use:

"EXECIO * DISKR mylib.mysub.myfile.typea 100 (FINIS"

 To start at line 100 and read only 5 lines to the data stack, use:

"EXECIO 5 DISKR mylib.mysub.myfile.typea 100 (FINIS"

 To open a file at line 100 without reading lines to the data stack, use:

"EXECIO 0 DISKR mylib.mysub.myfile.typea 100 (OPEN"

 See "Options" in topic 2.5.3.2.2 for information about DISKR, DISKRU, and
 DISKW options.

Option of specifying a starting byte number: If you read library members
 with logical record format "string" in parts, you can specify the start
 byte where the reading is to begin.

"EXECIO 1 DISKR mylib.mysub.myfile.typeb (BYTES 5000 STRBYTE 800"

2.5.3.2.2 Writing Information to a File

 To write information to a file from the data stack or from a list of
 variables, use EXECIO with the DISKW operand. To write all lines on the
 stack to the sublibrary member mylib.mysub.myfile.typea, you could use:

"EXECIO * DISKW mylib.mysub.myfile.typea (FINIS"

 The asterisk immediately after EXECIO specifies writing all the lines on
 the stack to the file rather than only a certain number of lines.

 To write all lines from the stack to a sequential file named my.data.set
 you would first use DLBL to associate the file with a file name:

// DLBL myfile,'my.data.set'. You could then use an EXECIO command (which
 must include the additional operands SAM files require):

"EXECIO * DISKW myfile (FINIS RECFORM fixblk RECSIZE 80 BLKSIZE 400"

 To write all lines from the input stream SYSIPT to the operator's console,
 you could use:

"EXECIO * DISKR SYSIPT"
QUEUE ''
"EXECIO * DISKW SYSLST"

How to specify the number of lines to write: In the preceding examples,
 the asterisk immediately after EXECIO specifies writing all the lines. To
 write a specific number of lines, put the number immediately after EXECIO:

"EXECIO 25 DISKW ..."

 To write the entire data stack or to write until a null line is found, you
 can use EXECIO * in conjunction with the QUEUE instruction or QUEUED
 built-in function. Using EXECIO * causes EXECIO to continue to pull items
 off the data stack until it finds a null line. If the stack becomes empty
 before a null line is found, EXECIO looks for input in the input stream.
 ASSGN(STDIN) returns the name of the current input stream. If you do not
 want EXECIO to check the input stream, queue a null line at the bottom of
 the stack to indicate the end of the information:

QUEUE ''

 If there are null lines (lines of length 0) throughout the data and the
 data stack is not shared, you can assign the result of the QUEUED built-in

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

101 of 121 2/26/2019, 12:16 PM

 function to a variable to indicate the number of items on the stack.

n = QUEUED()
"EXECIO" n "DISKW joeslib.joessub.joesfile.typea (FINIS"

Note: The stack can contain a null line but the language processor
 converts this to a blank line when writing to the file.

 To open a file without writing records to it, specify 0 after EXECIO and
 specify the OPEN operand.

"EXECIO 0 DISKW mylib.mysub.myfile.typea (OPEN"

Note: To empty a file, you can use two EXECIO commands:

"EXECIO 0 DISKR mylib.mysub.myfile.typea (OPEN"
"EXECIO 0 DISKW mylib.mysub.myfile.typea (FINIS"

 The first command opens the file and positions the file position pointer
 before the first record. The second command writes an end-of-file mark
 and closes the file. This deletes all records in

mylib.mysub.myfile.typea. You can also empty a file by using EXECIO with
 both the OPEN and FINIS operands.

How to specify the number of bytes to write: You can specify the BYTES
 option to write a library member with logical record format "string".

"EXECIO 1 DISKW mylib.mysub.myfile.typeb (BYTES 500"

Options: Options you can use are:

 ° OPEN - Opens a file. When you specify OPEN with EXECIO 0, this opens
 the data set and positions the file position pointer before the first
 record.

"EXECIO 0 DISKR mylib.mysub.myfile.typea (OPEN"
"EXECIO 0 DISKW mylib.mysub.myfile.typea (OPEN"

Note: If the file is already open, no operation is performed for
 OPEN.

 ° FINIS - Closes the file after reading it or writing to it. Closing
 the file lets other programs access it. For reading, FINIS also
 resets the current positional pointer to the beginning of the file.
 For writing, FINIS forces the completion of all I/O operations by
 physically writing the contents of any partially filled I/O buffers to
 the file.

"EXECIO * DISKR mylib.mysub.myfile.typea (FINIS"
"EXECIO * DISKW mylib.mysub.myfile.typea (FINIS"

 ° STEM - Specifies reading the information from or writing it to
 variables (instead of the data stack). If you specify a simple
 variable after STEM (rather than a stem, which ends in a period), the
 variable names are simply appended with numbers. In this case, you
 cannot easily access the variables by using an index in a loop. If
 you specify a compound variable after STEM, you can access the
 variables by using an index in a loop.

"EXECIO * DISKR mylib.mysub.myfile.typea (STEM newvar."
"EXECIO * DISKW mylib.mysub.myfile.typea (STEM newvar."

 Both examples use the stem newvar..

 The DISKR command places lines of information or records from the file
 in variables. If 10 lines of information are read, newvar.1 contains
 record 1, newvar.2 contains record 2, and so forth, up to newvar.10,
 which contains record 10. The number of items in the list of compound
 variables is in the special variable newvar.0. Thus, if 10 lines of
 information are read into the newvar. variables, newvar.0 contains the
 number 10. Each stem variable beyond newvar.10 (for example, variable

newvar.11) is residual; it contains the value that it held before the
 EXECIO command.

 To avoid confusion about whether a residual stem variable value is
 meaningful, you may want to clear the entire stem variable before
 entering the EXECIO command. To clear all stem variables, you can
 either:

 - Use the DROP instruction as follows to set all stem variables to
 their uninitialized state:

DROP newvar.

 - Set all stem variables to nulls as follows:

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

102 of 121 2/26/2019, 12:16 PM

newvar. = ''

 The DISKW command writes lines of information from the compound
 variables newvar.1, newvar.2, newvar.3, and so on, to the file. The
 variable newvar.0 is not used.

 When writing from variables, if you use * with a stem, the EXECIO
 command stops writing information to the file when it finds a null
 value or an uninitialized compound variable. For example, if the list
 contains 10 compound variables, the EXECIO command stops at newvar.11.

 You can specify the number of lines EXECIO reads to or writes from a
 list of compound variables.

"EXECIO 5 DISKR mylib.mysub.myfile.typea (STEM newvar."
"EXECIO 5 DISKW mylib.mysub.myfile.typea (STEM newvar."

 In these examples, EXECIO reads 5 items to the newvar. variables or
 writes 5 items from them.

 See Figure 60 in topic 2.5.3.2.6 for an example of EXECIO with stem
 variables.

 Accessing SAM files requires additional operands that are not needed for
 other files.

BLKSIZE n
n specifies the block size of the file. The maximum is 32700. See
VSE/ESA System Macros User's Guide, SC33-6615, for details about the

 block size.

RECFORM FIXBLK
RECFORM FIXUNB
RECFORM VARBLK
RECFORM VARUNB

 Specifies the record format is fixed blocked, fixed unblocked,
 variable blocked, or variable unblocked.

RECSIZE n
 Specifies the record size. This is required if you specify RECFORM
 FIXUNB or RECFORM FIXBLK. Do not specify RECSIZE if you specify
 RECFORM VARBLK or RECFORM VARUNB. Records are blank-extended if they
 are too short. If the records are too long, EXECIO ends with an
 error.

 See the REXX/VSE Reference, SC33-6642, for information about return codes
 from EXECIO.

2.5.3.2.3 Copying Information from One File to Another

 Before you can copy one file to another, the files must be sublibrary
 members, SAM files, or SYSIPT or SYSLST. (For SAM files, you must use a
 DLBL before using EXECIO.)

Copying an entire file: To copy the entire sublibrary member
mylib.mysub.myfile.typea to joeslib.joessub.joesfile.typea, you could use

 the following instructions:

"NEWSTACK" /* Create a new data stack for input only */
"EXECIO * DISKR mylib.mysub.myfile.typea (FINIS"
QUEUE '' /* Add a null line to indicate the end of information */
"EXECIO * DISKW joeslib.joessub.joesfile.typea (FINIS"
"DELSTACK" /* Delete the new data stack */

 If the program does not queue a null line at the end of the information on
 the stack, the EXECIO command goes to the input stream to get more
 information and does not end until it encounters a null line.

 You can also use the QUEUED built-in function to indicate the end of the
 information when copying an entire file. If the file is likely to include
 null lines throughout the data, using the QUEUED function is preferable.

n = QUEUED() /* Assign the number of stack items to "n" */
"EXECIO" n "DISKW mylib.mysub.myfile.typea (FINIS"

 Also, when copying an undetermined number of lines to and from the data
 stack, it is a good idea to use the NEWSTACK and DELSTACK commands to
 prevent removing items previously placed on the stack. For more
 information about these commands, see "Protecting Elements in the Data

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

103 of 121 2/26/2019, 12:16 PM

Stack" in topic 2.4.7.

 To copy the entire sublibrary member mylib.mysub.myfile.typeb with logical
 record format "string" to joeslib.joessub.joesfile.typeb you could use:

"NEWSTACK" /* Create a new data stack for input only */
"EXECIO * DISKR mylib.mysub.myfile.typeb (FINIS"
"PARSE PULL item" /* Determine number of bytes */
"QUEUE item"
"EXECIO 1 DISKW joeslib.joessub.joesfile.typeb (BYTES "length(item),

" FINIS"
"DELSTACK" /* Delete the new data stack */

 To copy the entire sublibrary member mylib.mysub.myfile.typeb with logical
 record format "string" to joeslib.joessub.joesfile.typeb using multiple
 copy steps you could use:

"NEWSTACK" /* Create a new data stack for input only */
"EXECIO 1 DISKR mylib.mysub.myfile.typeb (BYTES 100 OPEN"
DO UNTIL RC = 2 /* Loop till end of file */

"EXECIO 1 DISKW joeslib.joessub.joesfile.typeb (BYTES 100"
"EXECIO 1 DISKR mylib.mysub.myfile.typeb (BYTES 100"

END
"EXECIO 0 DISKW joeslib.joessub.joesfile.typeb (BYTES 100 FINIS"/* Close file */
"EXECIO 0 DISKR mylib.mysub.myfile.typeb (FINIS" /* Close file */
"DELSTACK" /* Delete the new data stack */

 To copy the entire sublibrary member mylib.mysub.myfile.typeb with logical
 record format "string" to joeslib.joessub.joesfile.typea with logical
 record format "fixed", you could use:

"NEWSTACK" /* Create a new data stack for input only */
"EXECIO 1 DISKR mylib.mysub.myfile.typeb (BYTES 100 OPEN"
DO UNTIL RC = 2 /* Loop till end of file */

"EXECIO 1 DISKW joeslib.joessub.joesfile.typea "
"EXECIO 1 DISKR mylib.mysub.myfile.typeb (BYTES 100"

END
"EXECIO 0 DISKW joeslib.joessub.joesfile.typeb (FINIS"/* Close file */
"EXECIO 0 DISKR mylib.mysub.myfile.typea (FINIS" /* Close file */
"DELSTACK" /* Delete the new data stack */

Copying a specified number of lines to a new file: To copy 10 lines of
 data from the sublibrary member mylib.mysub.myfile.typea to the sublibrary
 member joeslib.joessub.joesfile.typea, you could use:

"EXECIO 10 DISKR mylib.mysub.myfile.typea (FINIS"
"EXECIO 10 DISKW joeslib.joessub.joesfile.typea (FINIS"

 To copy the same 10 lines of data to a list of compound variables with the
 stem data., use:

"EXECIO 10 DISKR mylib.mysub.myfile.typea (FINIS STEM data."
"EXECIO 10 DISKW joeslib.joessub.joesfile.typea (FINIS STEM data."

Copying a specified number of bytes to a new file: To copy 800 bytes from
 sublibrary member "mylib.mysub.myfile.typeb" with logical record format
 "string" starting with byte 4001 to the sublibrary member
 "joeslib.joessub.joesfile.typeb", you could use:

"EXECIO 1 DISKR mylib.mysub.myfile.typeb (BYTES 800 STRTBYTE 4001 STEM var.",
" FINIS"

"EXECIO 1 DISKW joeslib.joessub.joesfile.typeb (BYTES "LENGTH(var.1),
" STEM var. FINIS"

Adding lines to the end of a file: To add 5 lines from a sublibrary
 member named my.input.file.text to the end of a sublibrary member named

new.output.file.text, you could use:

"EXECIO 5 DISKR my.input.file.text (OPEN STEM var. FINIS" /* Read input file */
"EXECIO * DISKR new.output.file.text (OPEN STEM var2. FINIS" /* Read output file */
"EXECIO * DISKW new.output.file.text (OPEN STEM var2." /* Go to end of output */
"EXECIO 5 DISKW new.output.file.text (STEM var. FINIS" /* Add new records */

Adding bytes to the end of a file: To add 500 bytes from sublibrary
 member named mylib.mysub.myfile.typeb with logical record format "string"
 starting with byte 2000 to the end of a sublibrary member

joeslib.joessub.joesfile.typeb, you could use:

"EXECIO 1 DISKR mylib.mysub.myfile.typeb (BYTES 500 STRTBYTE 2000 STEM var.",
" FINIS"

"EXECIO 1 DISKR joeslib.joessub.joesfile.typeb (OPEN STEM var2. ",
" FINIS"

"EXECIO 1 DISKW joeslib.joessub.joesfile.typeb (OPEN STEM var2. ",
" BYTES "length(var2.1)

"EXECIO 1 DISKW joeslib.joessub.joesfile.typeb (BYTES "LENGTH(var.1),
" STEM var. FINIS"

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

104 of 121 2/26/2019, 12:16 PM

2.5.3.2.4 Copying Information to and from Compound Variables

 When copying information from a file, you can store the information in the
 data stack, which is the default, or you can store the information in a
 list of compound variables. Similarly, when copying information back to a
 file, you can remove information from the data stack, which is the
 default, or you can remove the information from a list of compound
 variables.

Copying Information from a File to a List of Compound Variables: To copy
 an entire file into compound variables with the stem newvar., and then
 send the list to the output stream, use:

"EXECIO * DISKR mylib.mysub.myfile.typea (STEM newvar."
DO i = 1 to newvar.0

SAY newvar.i
END

 When you want to copy a varying number of lines to compound variables, you
 can use a variable within the EXECIO command as long as the variable is
 not within quotation marks. For example, the variable lines can represent
 the number of lines indicated when the program is run.

ARG lines
"EXECIO" lines "DISKR mylib.mysub.myfile.typea (STEM newvar."

Copying Information from Compound Variables to a File: To copy 10
 compound variables with the stem newvar., regardless of how many items are
 in the list, you could use the following:

"EXECIO 10 DISKW mylib.mysub.myfile.typea (STEM NEWVAR."

Note: An uninitialized compound variable has the value of its own name in
 uppercase. For example, if newvar.9 and newvar.10 do not contain values,
 the file receives the values NEWVAR.9 and NEWVAR.10.

2.5.3.2.5 Updating Information in a File

 You can use EXECIO to update a single line of a file or multiple lines.
 Use the DISKRU form of the EXECIO command to read information that you may
 subsequently update.

Notes on files with fixed record length:

 ° The line written must be the same length as the line read. When a
 changed line is longer than the original line, information that
 extends beyond the original number of bytes is truncated and EXECIO
 sends a return code of 1. If lines must be made longer, write the
 data to a new file. When a changed line is shorter than the original
 line, it is padded with blanks to attain the original line length.

 ° When using DISKRU, the value for the lines operand following EXECIO
 must be 1. If you use a value greater than 1, you receive an error
 message and a return code of 20, and the program ends. After a line
 is written, trying to rewrite the line causes an error.

 ° You cannot use DISKRU with SYSIPT.

Notes on files with logical record format "string":

 ° The length of a "string"-type file can change.

 ° After one part of the record i swritten, trying to write another part
 without a DISKRU operation in between causes an error.

Updating a single line: When updating a single line in a file, it is more
 efficient to locate the line in advance and specify the update to it than
 to read all the lines in the file to the stack, locate and change the
 line, and then write all the lines back.

 Suppose you have a sublibrary member named dept5.employee.list.text that
 contains a list of employee names, user IDs, and phone extensions.

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

105 of 121 2/26/2019, 12:16 PM

Adams, Joe JADAMS 5532
Crandall, Amy AMY 5421
Devon, David DAVIDD 5512
Garrison, Donna DONNAG 5514
Leone, Mary LEONE1 5530
Sebastian, Isaac ISAAC 5488

 You can change the information on a particular line. For example, to
 change the phone extension on line 2 to 5500, you could use:

"EXECIO 1 DISKRU dept5.employee.list.text 2 (LIFO"
PULL line
PUSH 'Crandall, Amy AMY 5500'
"EXECIO 1 DISKW dept5.employee.list.text (FINIS"

Updating a single string in a file: Suppose you have a sublibrary member
 named dept5.employee.list.string with logical record format "string"
 consisting of 1 record with string "Confidential" at position 110. To
 replace this string by a blank, you could use:

"EXECIO 1 DISKRU dept5.employee.list.string (BYTES 12 STRTBYTE 110 LIFO"
PULL line
newdata.1 = ' '
"EXECIO 1 DISKW dept5.employee.list.string (BYTES 1 STEM newdata."

 If you want to replace the following 5 bytes by string "Unconfidential",
 you could continue:

"EXECIO 1 DISKRU dept5.employee.list.string (BYTES 5 LIFO"
PULL line
newdata.1 = 'Unconfidential'
"EXECIO 1 DISKW dept5.employee.list.string (BYTES 14 STEM newdata."

Updating multiple lines: To update multiple lines, you can use more than
 one EXECIO command for the same file. For example, to update Mary Leone's
 user ID in addition to Amy Crandall's phone extension, use the following
 instructions.

"EXECIO 1 DISKRU dept5.employee.list.text 2 (LIFO"
PULL line
PUSH 'Crandall, Amy AMY 5500'
"EXEXIO 1 DISKW dept5.employee.list.text"
"EXECIO 1 DISKRU dept5.employee.list.text 5 (LIFO"
PULL line
PUSH 'Leone, Mary MARYL 5530'
"EXECIO 1 DISKW dept5.employee.list.text (FINIS"

2.5.3.2.6 Additional Examples

 __
 | |
 | |
 | /***************************** REXX *********************************/ |
 | /* This program reads from a file to find the first occurrence */ |
 | /* of the string "Jones". It ignores upper and lowercase */ |
 | /* distinctions (by using PULL, which uppercases data it reads). */ |
 | /* */ |
 | /**/ |
 | done = 'no' |
 | lineno=0 |
 | DO WHILE done = 'no' |
 | "EXECIO 1 DISKR store.employee.list.text" |
 | |
 | IF RC = 0 THEN /* Record was read */ |
 | DO |
 | PULL record |
 | lineno = lineno + 1 /* Count the record */ |
 | IF INDEX(record,'JONES') \= 0 THEN |
 | DO |
 | SAY 'Found in record' lineno |
 | done = 'yes' |
 | SAY 'Record = ' record |
 | END |
 | ELSE NOP |
 | END |
 | ELSE |
 | done = 'yes' |
 | END |
 | |
 | EXIT 0 |
 | |
 | |
 |__|
 Figure 54. EXECIO Example 1

 __
 | |
 | |
 | /***************************** REXX *********************************/ |
 | /* This program copies records from the sublibrary member */ |
 | /* STORE.INPUT.JAN20.TEXT to the end STORE.OUTPUT.JAN20.TEXT. */ |
 | /* The program assumes that the input file has no null lines. */ |

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

106 of 121 2/26/2019, 12:16 PM

 | /**/ |
 | |
 | SAY 'Copying ...' |
 | |
 | "EXECIO * DISKR store.input.jan20.text (FINIS" |
 | QUEUE '' /* Insert a null line at the end to indicate end of file */ |
 | "EXECIO * DISKW store.output.jan20.text (FINIS" |
 | |
 | SAY 'Copy complete.' |
 | |
 | EXIT 0 |
 | |
 | |
 |__|
 Figure 55. EXECIO Example 2

 __
 | |
 | |
 | /***************************** REXX **********************************/|
 | /* This program starts at the third record and reads 5 records from */|
 | /* the sublibrary member STORE.SALES.MAR3.TEXT. It strips trailing */|
 | /* blanks from the records and writes any record that is longer */|
 | /* than 20 characters. It does not close the file when finished. */|
 | /***/|
 | "EXECIO 5 DISKR store.sales.mar3.text 3" |
 | |
 | DO i = 1 to 5 |
 | PARSE PULL line |
 | stripline = STRIP(line,t) |
 | len = LENGTH(stripline) |
 | |
 | IF len > 20 THEN |
 | SAY 'Line' stripline 'is long.' |
 | ELSE NOP |
 | END |
 | |
 | /* The file is still open for processing */ |
 | |
 | EXIT 0 |
 | |
 | |
 |__|
 Figure 56. EXECIO Example 3

 __
 | |
 | |
 | /***************************** REXX **********************************/|
 | /* This program reads the first 100 records (or until EOF) of the */|
 | /* sublibrary member STORE.STOCK.FEB13.TEXT. (It issues a message */|
 | /* if it reads fewer than 100 records.) It puts records on the data */|
 | /* stack in LIFO order. */|
 | /***/|
 | eofflag = 2 /* Return code to indicate end of file */ |
 | |
 | "EXECIO 100 DISKR store.stock.feb13.text (LIFO" |
 | return_code = RC |
 | |
 | IF return_code = eofflag THEN |
 | SAY 'Premature end of file.' |
 | ELSE |
 | SAY '100 Records read.' |
 | DROPBUF 0 |
 | EXIT return_code |
 | |
 | |
 |__|
 Figure 57. EXECIO Example 4

 __
 | |
 | |
 | /***************************** REXX *********************************/ |
 | /* This program uses "EXECIO 0 ..." to open, empty, or close a */ |
 | /* sequential file. It reads records from DANS.IN.DATA */ |
 | /* and writes selected records to DANS.OUT.DATA. */ |
 | /* DANS.IN.DATA has variable-length records (RECFORM = VARBLK). */ |
 | /* (Before using EXECIO, use DLBL to associate DANS.IN.DATA with */ |
 | /* INPUT and DANS.OUT.DATA with OUTPUT.) */ |
 | /**/ |
 | eofflag = 2 /* Return code to indicate end-of-file */ |
 | return_code = 0 /* Initialize return code */ |
 | in_ctr = 0 /* Initialize # of lines read */ |
 | out_ctr = 0 /* Initialize # of lines written */ |
 | |
 | /**/ |
 | /* Open the file INPUT, but do not read any records yet. */ |
 | /* All records are read and processed within the loop body. */ |
 | /**/ |
 | |
 | /* Open INPUT */ |
 | "EXECIO 0 DISKR input (OPEN RECFORM VARBLK BLKSIZE 400" |
 | |
 | /**/ |
 | /* Now read all lines from INPUT, starting at line 1, and copy */ |
 | /* selected lines to OUTPUT. */ |
 | /**/ |
 | |
 | DO WHILE (return_code \ = eofflag) /* Loop while not end-of-file */ |
 | 'EXECIO 1 DISKR input' /* Read 1 line */ |
 | /* to data stack */ |
 | return_code = rc /* Save EXECIO rc */ |
 | IF return_code = 0 THEN /* Get a line ok? */ |
 | DO /* Yes */ |
 | in_ctr = in_ctr + 1 /* Increment input line ctr */ |

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

107 of 121 2/26/2019, 12:16 PM

 | PARSE PULL line.1 /* Pull line just read from stack*/ |
 | IF LENGTH(line.1) > 10 THEN /* If line longer than 10 chars */ |
 | DO |
 | /* Write to output */ |
 | "EXECIO 1 DISKW output (STEM line. RECFORM VARBLK" |
 | out_ctr = out_ctr + 1 /* Increment output line ctr */ |
 | END |
 | END |
 | END |
 | /* Close the input file, INPUT */ |
 | "EXECIO 0 DISKR input (FINIS " |
 | |
 | IF out_ctr > 0 THEN /* Were any lines written to output?*/ |
 | DO /* Yes. So output is now open */ |
 | |
 | |
 |__|
 Figure 58. EXECIO Example 5

 __
 | |
 | |
 | /***/ |
 | /* Because OUTPUT is already open at this point, the following */ |
 | /* "EXECIO 0 DISKW..." command closes the file */ |
 | /* but does not empty it of the lines that have already been */ |
 | /* written. OUTPUT will contain out_ctr lines. */ |
 | /***/ |
 | |
 | /* Close the open file */ |
 | "EXECIO 0 DISKW output (Finis RECFORM VARBLK" |
 | SAY 'OUTPUT now contains ' out_ctr' lines.' |
 | END |
 | ELSE /* Else no new lines have been */ |
 | /* written to OUTPUT. */ |
 | DO /* Erase any old records from it. */ |
 | |
 | /***/ |
 | /* Because OUTPUT is still closed at this point, the */ |
 | /* following "EXECIO 0 DISKW..." command opens the file, */ |
 | /* writes 0 records, and then closes it. This effectively */ |
 | /* empties OUTPUT. This deletes any old records that */ |
 | /* were in the file when the program started. */ |
 | /***/ |
 | |
 | /* Empty DANS.OUT.DATA */ |
 | "EXECIO 0 DISKW output (OPEN FINIS RECFORM VARBLK BLKSIZE 400" |
 | SAY 'Output is now empty.' |
 | END |
 | EXIT |
 | |
 | |
 |__|
 Figure 59. EXECIO Example 5 (continued)

 __
 | |
 | |
 | /***************************** REXX ********************************/|
 | /* This program uses EXECIO to successively append records from */|
 | /* STORE.DATA.ONE.TEXT and then STORE.DATA.TWO.TEXT to the end */|
 | /* of STORE.DATA.ALL.TEXT. It shows the effect of residual data */|
 | /* in STEM variables. STORE.DATA.ONE.TEXT contains 20 records. */|
 | /* STORE.DATA.TWO.TEXT contains 10 records. */|
 | /***/|
 | |
 | |
 | /***/|
 | /* Read all records from STORE.DATA.ONE.TEXT and append them to */|
 | /* the end of STORE.DATA.ALL.TEXT. */|
 | /***/|
 | |
 | prog_rc = 0 /* Initialize program return code */ |
 | |
 | /* Read all records */ |
 | "EXECIO * DISKR store.data.one.text (STEM newvar. FINIS" |
 | |
 | IF RC = 0 THEN /* If read was successful */|
 | DO |
 | /***/|
 | /* At this point, newvar.0 should be 20, indicating 20 records */|
 | /* have been read. Stem variables newvar.1, newvar.2, and so on */|
 | /* through newvar.20 contain the 20 records that were read. */|
 | /***/|
 | |
 | SAY "---" |
 | SAY newvar.0 "records have been read from store.data.one.text." |
 | SAY |
 | DO i = 1 TO newvar.0 /* Loop through all records */|
 | SAY newvar.i /* Produces the ith record */|
 | END |
 | |
 | /* Write exactly the number of records read. */ |
 | "EXECIO" newvar.0 "DISKW store.data.all.text (STEM newvar." |
 | IF rc = 0 THEN /* If write was successful */|
 | DO |
 | SAY |
 | SAY newvar.0 "records were written to store.data.all.text." |
 | END |
 | ELSE |
 | DO |
 | prog_rc = RC /* Save program return code */ |
 | SAY |
 | SAY "Error during 1st EXECIO ... DISKW; return code is " RC |
 | SAY |
 | END |
 | END |

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

108 of 121 2/26/2019, 12:16 PM

 | |
 | |
 |__|
 Figure 60. EXECIO Example 6

 __
 | |
 | |
 | ELSE |
 | DO |
 | prog_rc = RC /* Save program return code */ |
 | SAY |
 | SAY "Error during 1st EXECIO ... DISKR, return code is " RC |
 | SAY |
 | END |
 | |
 | IF prog_rc = 0 THEN /* If no errors so far... continue */ |
 | DO |
 | /***/ |
 | /* At this time, the stem variables newvar.0 through newvar.20 */ |
 | /* contain residual data from the previous EXECIO. */ |
 | /* "DROP newvar." clears these residual values from the stem. */ |
 | /***/ |
 | DROP newvar. /* Set all stem variables to their |
 | uninitialized state */ |
 | /***/ |
 | /* Read all records from STORE.DATA.TWO.TEXT and append them */ |
 | /* to the end of STORE.DATA.ALL.TEXT. */ |
 | /***/ |
 | |
 | /* Read all records*/ |
 | "EXECIO * DISKR store.data.two.text (STEM newvar. FINIS" |
 | IF RC = 0 THEN /* If read was successful */ |
 | DO |
 | /***/ |
 | /* At this point, newvar.0 should be 10, indicating 10 */ |
 | /* records have been read. Stem variables newvar.1, */ |
 | /* newvar.2, and so on through newvar.10 contain 10 records. */ |
 | /* If we had not cleared the stem newvar. with the previous */ |
 | /* DROP instruction, variables newvar.11 through newvar.20 */ |
 | /* would still contain records 11 through 20 from */ |
 | /* STORE.DATA.ONE.TEXT. */ |
 | /* However, we would know that the last EXECIO DISKR did not */ |
 | /* read these values because the current newvar.0 variable */ |
 | /* indicates that the last EXECIO read only 10 records. */ |
 | /***/ |
 | SAY |
 | SAY |
 | SAY "---" |
 | SAY newvar.0 "records have been read from store.data.two.text."|
 | SAY |
 | DO i = 1 TO newvar.0 /* Loop through all records */ |
 | SAY newvar.i /* Produces the ith record */ |
 | END |
 | |
 | "EXECIO" newvar.0 "DISKW store.data.all.text (STEM newvar." |
 | /* Writes exactly the number of records read */ |
 | IF RC = 0 THEN /* If write was successful */ |
 | DO |
 | SAY |
 | SAY newvar.0 "records were written to 'store.data.all.text'"|
 | END |
 | |
 | |
 |__|
 Figure 61. EXECIO Example 6 (continued)

 __
 | |
 | |
 | ELSE |
 | DO |
 | prog_rc = RC /* Save program return code */ |
 | SAY |
 | SAY "Error during 2nd EXECIO ...DISKW, return code is " RC |
 | SAY |
 | END |
 | END |
 | ELSE |
 | DO |
 | prog_rc = RC /* Save program return code */ |
 | SAY |
 | SAY "Error during 2nd EXECIO ... DISKR, return code is " RC |
 | SAY |
 | END |
 | END |
 | |
 | "EXECIO 0 DISKW store.data.all.text (FINIS" /* Close output file */ |
 | |
 | EXIT 0 |
 | |
 | |
 |__|
 Figure 62. EXECIO Example 6 (continued)

BIBLIOGRAPHY Bibliography

 This bibliography lists some publications that provide additional
 information about REXX or the VSE/ESA system.

 ° REXX/VSE Reference, SC33-6642

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

109 of 121 2/26/2019, 12:16 PM

 ° VSE/ESA REXX/VSE Diagnosis Reference, LY33-9189

 ° VSE/ESA System Control Statements, SC33-6613

 ° VSE/ESA Guide to System Functions, SC33-6611

 ° VSE/POWER Application Programming, SC33-6636

 ° VSE/POWER Administration and Operation, SC33-6633

 ° VSE/ESA Messages and Codes, SC33-6607

 ° SAA Common Programming Interface REXX Level 2 Reference, SC24-5549

 ° IBM Compiler and Library for SAA REXX/370 Release 2: Introducing the
Next Step in REXX Programming, G511-1430-01

 ° IBM Compiler and Library for SAA REXX/370 Release 2 User's Guide and
Reference, SH19-8160

 ° IBM Compiler and Library for SAA REXX 370 Release 2 Diagnosis Guide,
 SH19-8179.

 INDEX Index

 /, 1.3.3.1
 //, 1.3.3.1
 *, 1.3.3.1
 **, 1.3.3.1
 \, 1.3.3.3
 \ <, 1.3.3.2
 \ >, 1.3.3.2
 \=, 1.3.3.2
 \==, 1.3.3.2
 &, 1.3.3.3
 &&, 1.3.3.3
 %, 1.3.3.1
 <, 1.3.3.2
 < =, 1.3.3.2
 =
 comparison operator, 1.3.3.2
 in assignment, 1.2.3.3
 in parsing template, 1.7.2.3
 ==, 1.3.3.2
 >, 1.3.3.2
 > <, 1.3.3.2
 > =, 1.3.3.2
 >>> - final result, 1.3.4
 IF...THEN...ELSE, 1.4.2.1
 >L> - literal value, 1.3.4
 >O> - operation result, 1.3.4
 >V> - variable value, 1.3.4
 |, 1.3.3.3

 ADDRESS built-in function, 2.1.2.3.1
 ADDRESS instruction, 2.1.2.3
 ADDRESS JCL commands, 2.1.1
 ADDRESS POWER commands, 2.1.1
 ARG built-in function, 1.6.2.2.2
 ARG instruction, 1.2.8.2

1.6.2.2.2
1.7.2.1

 argument, 1.2.8.3.1
 ARG instruction, 1.6.2.2.2
 definition, 1.2.8.3.1
 passing
 using CALL instruction, 1.2.8.4.1
 using REXX function call, 1.2.8.4.1
 used to pass information to a function, 1.6.2.2.2
 used to pass information to a subroutine, 1.6.2.2.2
 arithmetic operator
 division, type of, 1.3.3.1
 priority, 1.3.3.1
 type of, 1.3.3.1
 array
 See compound variable
 ASSGN, 2.3.1.1
 assignment instruction, 1.2.3.3

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

110 of 121 2/26/2019, 12:16 PM

 bibliography, BIBLIOGRAPHY
 blank line, 1.2.3.3
 Boolean
 See logical operator
 built-in function
 ADDRESS, 2.1.2.3.1
 ARG, 1.6.2.2.2
 comparison, 1.5.2.2
 conversion, 1.5.2.3
 DATATYPE, 1.5.2.7
 description, 1.5.1
 formatting, 1.5.2.4
 QUEUED, 2.4.2

2.4.6.1
 REXX language, 1.5.2
 arithmetic, 1.5.2.1
 comparison, 1.5.2.2
 conversion, 1.5.2.3
 formatting, 1.5.2.4
 string manipulating, 1.5.2.5
 string manipulating, 1.5.2.5
 SUBSTR, 1.6.1.1

 CALL/RETURN instruction, 1.4.4.2
1.6.2

 calling a phase, 2.1.2.1
 character, uppercase
 preventing with PARSE, 1.2.7

1.2.8.3
 preventing with quotation mark, 1.2.7
 clause
 as a subset of an instruction, 1.2.3.3
 comma
 to continue an instruction, 1.2.3.2
 to separate parsing templates, 1.7.2.3
 commands
 as an instruction, 1.2.3.3
 DELSTACK, 2.4.7.2
 DROPBUF, 2.4.6.2
 enclosing in quotation marks, 1.2.7

2.1.1.1
 EXEC, 2.1.1.3
 EXECIO, 2.5.3.2
 GETQE, 2.1.1

2.1.2.3.2
 immediate, 2.1.1
 issuing from a program, 2.1.2
 MAKEBUF, 2.4.6.1
 NEWSTACK, 2.4.7.1
 PUTQE, 1.2.3.3

2.1.2.3.3
 QBUF, 2.4.6.3
 QELEM, 2.4.6.4
 QSTACK, 2.4.7.3
 QUERYMSG, 2.1.1
 REXX/VSE, 2.1.1
 SUBCOM, 2.1.2.3.2
 using parentheses, 2.1.1.1
 using quotation mark, 2.1.1.1
 using variable, 2.1.1.2
 comment
 beginning a program, 1.2.2

1.2.3.3
 identifying as a program, 1.2.3.3
 to clarify the purpose of a program, 1.2.3.3
 comparison operator
 equal, 1.3.3.2.1
 false (0), 1.3.3.2
 strictly equal, 1.3.3.2.1
 true (1), 1.3.3.2
 types of, 1.3.3.2
 compound variable
 changing all variables in an array, 1.7.1.2
 description, 1.7.1.1
 initializing, 1.7.1.1
 used in EXECIO command, 2.5.3.2.2

2.5.3.2.4
 used in OUTTRAP, 2.3.1.2
 using stems, 1.7.1.2
 concatenation operator
 type of
 ||, 1.3.3.4
 abuttal, 1.3.3.4
 blank, 1.3.3.4
 continuation
 of an instruction, 1.2.3.2
 control variable
 See REXX/VSE external function
 copy
 information to and from files, 2.5.3.2.3
 information to compound variables, 2.5.3.2.4
 information to the end of a file, 2.5.3.2.3
 number of bytes to a new file, 2.5.3.2.3

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

111 of 121 2/26/2019, 12:16 PM

 DATA option, 2.5.3.2
 data stack
 adding an element, 2.4.2
 characteristic, 2.4.4
 creating a buffer, 2.4.6
 creating a new stack, 2.4.7.1
 data left on stack, 2.4.5
 deleting a private stack, 2.4.7.2
 description, 2.4.1
 determining the number of elements on the stack, 2.4.2
 dropping one or more buffers, 2.4.6.2
 finding the number of buffers, 2.4.6.3
 finding the number of elements in, 2.4.6.4
 finding the number of stacks, 2.4.7.3
 manipulating, 2.4.2
 passing information between a program and a routine, 2.4.4
 protecting an element, 2.4.7
 removing an element, 2.4.2
 removing an element from a stack with a buffer, 2.4.6.1
 search order for processing, 2.4.3
 type of input, 2.4.3
 DATATYPE built-in function, 1.5.2.7
 DBCS
 names, 1.2.4

1.3.2.1
 example, 1.2.4

1.3.2.1
 names, using, 1.2.4
 debug
 for error, 2.2
 interactive debug facility, 2.2.1.3

2.2.1.3.1
 with REXX special variable, 2.2.1.2
 DELSTACK command, 2.4.7.2
 diagnosis
 problem within a program, 2.2
 DO FOREVER loop, 1.4.3.1.2
 DO UNTIL loop
 flowchart, 1.4.3.2.3
 DO WHILE loop
 flowchart, 1.4.3.2.1
 DO...END instruction, 1.4.3
 double-byte character set names
 in programs, 1.2.4
 DROPBUF command, 2.4.6.2

 environment
 JCL, 2.1.2.1
 LINK, 2.1.2.1
 LINKPGM, 2.1.2.1
 POWER, 2.1.2.1
 VSE, 2.1.2.1
 error
 debugging, 1.3.4

2.2
 tracing command, 2.2.1.1
 tracing expression, 1.3.4
 error message
 getting more information, 1.2.6
 interpreting, 1.2.6
 syntax error, 1.2.6
 example
 use of uppercase and lowercase, PREFACE.2
 exclusive OR, 1.3.3.3
 EXEC command
 description, 2.1.1.3
 example, 2.1.1.3
 exec identifier, 1.2.3.3
 EXECIO command
 adding bytes to a file, 2.5.3.2.3
 adding information to a file, 2.5.3.2.3
 copying information to a file, 2.5.3.2.3
 copying information to and from compound variables, 2.5.3.2.4
 copying number of bytes to a new file, 2.5.3.2.3
 DATA option, 2.5.3.2
 description, 2.5.3.2
 example, 2.5.3.2.6
 NODATA option, 2.5.3.2
 reading information from a file, 2.5.3.2.1
 return code, 2.5.3.2.2
 updating information to a file, 2.5.3.2.5
 writing information to a file, 2.5.3.2.2
 EXIT instruction, 1.4.4.1

1.6.2
 expression
 arithmetic, 1.3.3
 order of evaluation, 1.3.3.1
 Boolean, 1.3.3.3
 comparison, 1.3.3.2
 concatenation, 1.3.3.4
 definition, 1.3.3
 logical, 1.3.3.3
 tracing, 1.3.4
 external function

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

112 of 121 2/26/2019, 12:16 PM

 ASSGN, 2.3.1.1
 OUTTRAP, 2.3.1.2
 REXXIPT, 2.3.1.3
 REXXMSG, 2.3.1.4
 SETLANG, 2.3.1.5
 SLEEP, 2.3.1.6
 STORAGE, 2.3.1.7
 SYSVAR, 2.3.1.8
 external subroutine, 1.6.2
 shared variable in an internal subroutine, 1.6.2.2.1
 used to pass information to a subroutine, 1.6.2.2.1

 FIFO (first in first out), 2.4.1
 file
 adding information with EXECIO command, 2.5.3.2.3
 copying information with EXECIO command, 2.5.3.2.3
 reading information from with EXECIO, 2.5.3.2.1
 to contain a program, 1.2.1
 updating information with EXECIO command, 2.5.3.2.5
 writing information to with EXECIO, 2.5.3.2.2
 file I/O, 2.5.3
 See also EXECIO
 function
 ADDRESS built-in, 2.1.2.3.1
 ARG built-in, 1.6.2.2.2
 argument, 1.5.1
 built-in function
 arithmetic, 1.5.2
 comparison, 1.5.2.2
 conversion, 1.5.2.3
 formatting, 1.5.2.4
 string manipulating, 1.5.2.5
 testing input with, 1.5.2.7
 comparison to a subroutine, 1.6.1

1.6.3
 description, 1.6.1
 built-in, 1.5.1
 external, 1.5.1

2.3.1
 function package, 1.5.1

2.3.2
 user written, 1.5.1
 exposing a specific variable, 1.6.2.2.1
 external, 1.6.2
 internal, 1.6.2
 internal versus external, when to use, 1.6.2.1
 passing information to, 1.6.2.2.2
 possible problem, 1.6.2.2.1
 using a variable, 1.6.2.2
 protecting a variable, 1.6.2.2.1
 QUEUED built-in, 2.4.2

2.4.6.1
 receiving information from, 1.6.2.3
 using the ARG built-in function, 1.6.2.2.2
 returning a value, 1.5.1
 REXX/VSE external
 description, 2.3.1
 OUTTRAP, 2.3.1.2
 STORAGE, 2.3.1.7
 search order, 2.3.2.1
 using EXIT, 1.6.2
 using PROCEDURE, 1.6.2.2.1
 using PROCEDURE EXPOSE, 1.6.2.2.1
 using RETURN, 1.6.2
 writing, 1.6.2
 function package
 description, 2.3.2
 local, 2.3.2
 system, 2.3.2
 user, 2.3.2

 GETQE
 example, 2.1.2.3.2

2.1.2.3.3
 use, 2.1.1
 GOTO
 See SIGNAL instruction

 host command environment
 changing, 2.1.2.3
 checking if it is available, 2.1.2.3.2
 compared to language processor environment, 1.2.5.3.1
 default, 2.1.2.1
 finding the active environment, 2.1.2.3.1

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

113 of 121 2/26/2019, 12:16 PM

 IF...THEN...ELSE instruction
 flowchart, 1.4.2.1
 matching clauses, 1.4.2.2
 nested, 1.4.2.2
 using DO and END, 1.4.2.1
 using NOP, 1.4.2.2
 immediate commands, 2.1.1
 inclusive OR, 1.3.3.3
 infinite loop
 stopping, 1.4.3.1.1
 input
 passing argument, 1.2.8.3.1
 preventing translation to uppercase, 1.2.8.3
 receiving with ARG, 1.2.8.2
 receiving with PULL, 1.2.8.1
 to a program
 preventing translation to uppercase, 1.2.7

1.2.8.3
 using a period as a placeholder, 1.2.8.2

1.7.2.2
 input/output (I/O)
 reading from a file, 2.5.3.2.1
 reading to compound variables, 2.5.3.2.2
 using the EXECIO command, 2.5.3

2.5.3.2
 writing from compound variables, 2.5.3.2.2
 writing to a file, 2.5.3.2.2
 instruction
 adding during interactive debug, 2.2.1.3.2
 ADDRESS, 2.1.2.3
 ARG, 1.2.8.2

1.6.2.2.2
 blank, 1.2.3.3
 CALL, 1.6.2
 CALL/RETURN, 1.4.4.2
 comment, 1.2.3.3
 conditional, 1.4.1
 continuing to the next line, 1.2.3.2
 DO FOREVER, 1.4.3.1.2
 DO UNTIL, 1.4.3.2.3
 DO WHILE, 1.4.3.2.1
 DO...END, 1.4.3
 EXIT, 1.4.4.1

1.6.2
2.2.1.3.3

 formatting, 1.2.3
 INTERPRET, 2.5.2.1
 interrupt, 1.4.1
 ITERATE, 1.4.3.1.4
 LEAVE, 1.4.3.1.3

1.4.3.4
 literal string, 1.2.3.2
 looping, 1.4.1
 PARSE, 1.2.7

1.2.8.3
 PARSE EXTERNAL, 2.4.3
 PARSE PULL, 2.4.2
 PARSE UPPER VALUE, 1.7.2.1
 PARSE UPPER VAR, 1.7.2.1
 PARSE VALUE...WITH, 1.7.2.1
 PARSE VAR, 1.7.2.1
 PROCEDURE, 1.6.2.2.1
 PROCEDURE EXPOSE, 1.6.2.2.1
 PULL, 1.2.8.1

2.4.2
 PUSH, 2.4.2
 QUEUE, 2.4.2
 re-executing during interactive debug, 2.2.1.3.2
 RETURN, 1.6.2
 SAY, 1.2.2
 SELECT WHEN...OTHERWISE...END, 1.4.2.3
 SIGNAL, 1.4.4.3
 SIGNAL ON ERROR, 2.2.1.2
 syntax, 1.2.3
 TRACE
 ending tracing, 2.2.1.3.3
 interactive debug, 2.2.1.3.1
 tracing command, 2.2.1.1
 tracing expression, 1.3.4
 type of
 assignment, 1.2.3.3
 command, 1.2.3.3
 keyword, 1.2.3.3
 label, 1.2.3.3
 null, 1.2.3.3
 using, 1.2.3.2
 using blank, 1.2.3
 using comma, 1.2.3.2
 using quotation mark, 1.2.3.2

2.1.1.1
 using semicolon, 1.2.3.2
 writing, 1.2.3.2
 interactive debug facility
 adding an instruction, 2.2.1.3.2
 continuing, 2.2.1.3.2
 description, 2.2.1.3
 ending, 2.2.1.3.2

2.2.1.3.3
 option, 2.2.1.3.2
 re-executing the last instruction traced, 2.2.1.3.2
 starting, 2.2.1.3.1
 interactive trace, 2.2.1.3.3
 See also interactive debug facility
 internal function, 1.6.2

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

114 of 121 2/26/2019, 12:16 PM

 internal subroutine, 1.6.2
 INTERPRET instruction, 2.5.2.1
 ITERATE instruction, 1.4.3.1.4
 combining types, 1.4.3.3

 JCL environment, 2.1.2.1

 keyword instruction, 1.2.3.3

 label instruction, 1.2.3.3
 language processor environment
 ARXPARMS, 1.2.5.3
 compared to host command environment, 1.2.5.3.1
 customizing, 1.2.5.4
 definition, 1.2.5.3
 LEAVE instruction, 1.4.3.1.3

1.4.3.4
 Library for REXX/370 in REXX/VSE
 benefits, 1.1.5
 LIFO (last in first out), 2.4.1
 LINK environment, 2.1.2.1
 LINKPGM environment, 2.1.2.1
 literal string, 1.2.3.2
 logical (Boolean) operator
 false (0), 1.3.3.3
 true (1), 1.3.3.3
 type of, 1.3.3.3
 logical AND, 1.3.3.3
 logical NOT, 1.3.3.3
 loop
 altering the flow, 1.4.3.1.4
 conditional, 1.4.3.2
 DO FOREVER, 1.4.3.1.2
 DO UNTIL, 1.4.3.2.3
 DO WHILE, 1.4.3.2.1
 DO...END, 1.4.3
 exiting prematurely, 1.4.3.1.3
 infinite, 1.4.3.1.1

1.4.3.1.2
 ITERATE, 1.4.3.1.4
 LEAVE, 1.4.3.1.3
 nested DO loop, 1.4.3.4
 repetitive, 1.4.3
 stopping, 1.4.3.1.1
 lowercase character
 changing to uppercase, 1.2.7

1.2.8.3
 preventing the change to uppercase, 1.2.7

1.2.8.3

 MAKEBUF command, 2.4.6.1
 message
 error, 1.2.6
 getting more information, 1.2.6
 explanation, 1.2.6
 interpreting, 1.2.6
 tracing, 1.3.4
 move
 information from one file to another, 2.5.3.2.3

 name for variable
 restriction on naming, 1.3.2.1
 valid name, 1.3.2.1
 NEWSTACK command, 2.4.7.1
 NODATA option, 2.5.3.2
 null clause, 1.2.3.3
 numeric constant
 decimal number, 1.3.3.1
 floating point number, 1.3.3.1
 signed number, 1.3.3.1
 whole number, 1.3.3.1
 numeric pattern in parsing, 1.7.2.3

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

115 of 121 2/26/2019, 12:16 PM

 operator
 arithmetic, 1.3.3.1
 order of priority, 1.3.3.1
 Boolean, 1.3.3.3
 comparison, 1.3.3.2
 concatenation, 1.3.3.4
 logical, 1.3.3.3
 order of priority, 1.3.3.5
 OUTTRAP external function, 2.3.1.2

 parameter
 See argument
 parentheses, 2.1.1.1
 PARSE ARG instruction, 1.7.2.1
 PARSE EXTERNAL instruction, 2.4.3
 PARSE instruction
 PARSE ARG, 1.7.2.1
 PARSE PULL, 1.7.2.1
 PARSE UPPER ARG, 1.7.2.1
 PARSE UPPER PULL, 1.7.2.1
 PARSE UPPER VALUE, 1.7.2.1
 PARSE UPPER VAR, 1.7.2.1
 PARSE VALUE...WITH, 1.7.2.1
 PARSE VAR, 1.7.2.1
 preventing translation to uppercase, 1.2.7

1.2.8.3
 PARSE PULL instruction, 1.7.2.1

2.4.2
 PARSE UPPER ARG instruction, 1.7.2.1
 PARSE UPPER PULL instruction, 1.7.2.1
 PARSE UPPER VALUE instruction, 1.7.2.1
 PARSE UPPER VAR instruction, 1.7.2.1
 PARSE VALUE...WITH instruction, 1.7.2.1
 PARSE VAR instruction, 1.7.2.1
 parsing
 ARG, 1.7.2.1
 blanks, treatment of, 1.7.2.2
 comma, 1.7.2.3
 description, 1.7.2
 equal sign in pattern, 1.7.2.3
 into words, 1.7.2.2
 multiple strings, 1.7.2.4
 PARSE ARG, 1.7.2.1
 PARSE PULL, 1.7.2.1
 PARSE UPPER ARG, 1.7.2.1
 PARSE UPPER PULL, 1.7.2.1
 pattern
 numeric, 1.7.2.3
 string, 1.7.2.3
 variable, 1.7.2.3
 placeholder, 1.2.8.2

1.7.2.2
 PULL, 1.7.2.1
 separator
 blank, 1.7.2.3
 number, 1.7.2.3
 string, 1.7.2.3
 variable, 1.7.2.3
 template, 1.7.2

1.7.2.3
 UPPER, effect of, 1.7.2.1
 words, 1.7.2.2
 passing arguments, 1.2.8.4
 period
 as placeholder, 1.2.8.2
 phase, calling, 2.1.2.1
 placeholder in parsing, 1.2.8.2

1.7.2.2
 portability of compiled REXX programs, 1.1.5.5
 POWER environment, 2.1.2.1
 PROCEDURE instruction, 1.6.2.2.1
 program
 calling as a command, 2.1.1.3
 comment line, 1.2.2
 description, PREFACE.2

1.2.2
 error message, 1.2.6
 example, 1.2.2
 passing information to, 1.2.8
 program, PREFACE.2
 receiving input, 1.2.8.2
 using blank line, 1.2.3.3
 using double-byte character set names, 1.2.4
 writing, 1.2.2
 program identifier, 1.2.2
 of a program, 1.2.2

1.2.3.3
 protection
 of an element on a data stack, 2.4.7
 PULL instruction, 1.2.8.1

1.7.2.1
2.4.2

 PUSH instruction, 2.4.2
 PUTQE

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

116 of 121 2/26/2019, 12:16 PM

 example, 1.2.3.3
2.1.2.3.3

 QBUF command, 2.4.6.3
 QELEM command, 2.4.6.4
 QSTACK command, 2.4.7.3
 queue
 description, 2.4.1
 FIFO order, 2.4.1
 QUEUE instruction, 2.4.2
 QUEUED built-in function, 2.4.2

2.4.6.1
 quotation mark
 around a literal string, 1.2.3.2
 around command, 1.2.7

2.1.1.1
 in an instruction, 1.2.3.2
 to prevent translation to uppercase, 1.2.7

 RC special variable
 for debugging, 2.2.1.2
 used with a command, 2.1.1
 used with stack command, 2.4.6.3

2.4.6.4
 relative numeric pattern in parsing, 1.7.2.3
 repetitive loop, 1.4.3
 RESULT special variable, 1.6.2.2.2

1.6.2.3
2.1.1.3

 used with EXIT, 1.4.4.1
 REXX compiler
 benefits, 1.1.5
 REXX instruction
 adding during interactive debug, 2.2.1.3.2
 ADDRESS, 2.1.2.3
 ARG, 1.2.8.2

1.6.2.2.2
1.7.2.1

 blank, 1.2.3.3
 CALL, 1.6.2
 CALL/RETURN, 1.4.4.2
 comment, 1.2.3.3
 conditional, 1.4.1
 continuing to the next line, 1.2.3.2
 DO FOREVER, 1.4.3.1.2
 DO UNTIL, 1.4.3.2.3
 DO WHILE, 1.4.3.2.1
 DO...END, 1.4.3
 EXIT, 1.4.4.1

1.6.2
2.2.1.3.3

 formatting, 1.2.3
 IF...THEN...ELSE, 1.4.2.1
 INTERPRET, 2.5.2.1
 interrupt, 1.4.1
 ITERATE, 1.4.3.1.4
 LEAVE, 1.4.3.1.3

1.4.3.4
 literal string, 1.2.3.2
 looping, 1.4.1
 PARSE, 1.2.7

1.2.8.3
 PARSE ARG, 1.7.2.1
 PARSE EXTERNAL, 2.4.3
 PARSE PULL, 1.7.2.1

2.4.2
 PARSE UPPER ARG, 1.7.2.1
 PARSE UPPER PULL, 1.7.2.1
 PARSE UPPER VALUE, 1.7.2.1
 PARSE UPPER VAR, 1.7.2.1
 PARSE VALUE...WITH, 1.7.2.1
 PARSE VAR, 1.7.2.1
 PROCEDURE, 1.6.2.2.1
 PROCEDURE EXPOSE, 1.6.2.2.1
 PULL, 1.2.8.1

1.7.2.1
2.4.2

 PUSH, 2.4.2
 QUEUE, 2.4.2
 re-executing during interactive debug, 2.2.1.3.2
 RETURN, 1.6.2
 SAY, 1.2.2
 SELECT WHEN...OTHERWISE...END, 1.4.2.3
 SIGNAL, 1.4.4.3
 SIGNAL ON ERROR, 2.2.1.2
 syntax, 1.2.3
 TRACE
 interactive debug, 2.2.1.3.1
 tracing command, 2.2.1.1
 tracing expression, 1.3.4
 type of
 assignment, 1.2.3.3
 command, 1.2.3.3
 keyword, 1.2.3.3
 label, 1.2.3.3

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

117 of 121 2/26/2019, 12:16 PM

 null, 1.2.3.3
 using, 1.2.3.2
 using blank, 1.2.3
 using comma, 1.2.3.2
 using quotation mark, 1.2.3.2

2.1.1.1
 using semicolon, 1.2.3.2
 writing, 1.2.3.2
 REXX language
 description, 1.1.1
 example
 use of uppercase and lowercase, PREFACE.2
 feature of, 1.1.2
 program
 description, PREFACE.2

1.2.2
 REstructured eXtended eXecutor, PREFACE
 SAA (Systems Application Architecture), PREFACE
 SAA (Systems Application Architecture) REXX, 1.1.4
 REXX program
 portability of, 1.1.5.5
 REXX program identifier, 1.2.2

1.2.3.3
 REXX special variable
 RC
 for debugging, 2.2.1.2
 for receiving information, 1.6.2.2.2

1.6.2.3
 used with a command, 2.1.1
 used with stack command, 2.4.6.3

2.4.6.4
2.4.7.3

 RESULT, 2.1.1.3
 used with EXIT, 1.4.4.1
 SIGL
 for debugging, 2.2.1.2
 REXX/VSE command
 DELSTACK, 2.4.7.2
 DROPBUF, 2.4.6.2
 EXEC, 2.1.1.3
 EXECIO, 2.5.3.2
 MAKEBUF, 2.4.6.1
 NEWSTACK, 2.4.7.1
 QBUF, 2.4.6.3
 QELEM, 2.4.6.4
 QSTACK, 2.4.7.3
 REXX/VSE environment service
 description, 2.3.1
 REXX/VSE external function
 ASSGN, 2.3.1.1
 description, 2.3.1
 OUTTRAP, 2.3.1.2
 REXXIPT, 2.3.1.3
 REXXMSG, 2.3.1.4
 SETLANG, 2.3.1.5
 SLEEP, 2.3.1.6
 STORAGE, 2.3.1.7
 SYSVAR, 2.3.1.8
 REXXIPT, 2.3.1.3
 REXXMSG, 2.3.1.4
 rules
 syntax, 1.2.3

 SAA (Systems Application Architecture) REXX
 general description, 1.1.5.6
 language, 1.1.4
 SAY instruction, 1.2.2
 SELECT WHEN...OTHERWISE...END instruction
 flowchart, 1.4.2.3
 semicolon
 to end an instruction, 1.2.3.2
 SETLANG external function
 benefits, 1.1.5
 valid language codes, 2.3.1.5
 SIGL special variable
 for debugging, 2.2.1.2
 SIGNAL instruction, 1.4.4.3
 SIGNAL ON ERROR instruction, 2.2.1.2
 SLEEP, 2.3.1.6
 special variable
 See also REXX special variable
 host command environment, 2.1.2.1
 stack, 2.4.1
 See also data stack
 stem
 used with OUTTRAP function, 2.3.1.2
 STORAGE external function, 2.3.1.7
 string
 See literal string
 string pattern in parsing, 1.7.2.3
 SUBCOM command, 2.1.2.3.2
 subcommand environment
 See host command environment
 sublibrary member
 input and output, 2.5.3.2
 storing programs, 1.2.5
 subroutine
 calling, 1.4.4.2
 comparison to a function, 1.6.1

1.6.3
 description, 1.6.1
 exposing a specific variable, 1.6.2.2.1

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

118 of 121 2/26/2019, 12:16 PM

 external, 1.6.2
 internal, 1.6.2
 internal versus external, when to use, 1.6.2.1
 passing information to
 using a variable, 1.6.2.2
 possible problem, 1.6.2.2.1
 protecting variable, 1.6.2.2.1
 RESULT, 1.6.2.3
 returning a value, 1.4.4.2
 using an argument, 1.6.2.2.2
 using CALL/RETURN, 1.6.2
 using PROCEDURE, 1.6.2.2.1
 using PROCEDURE EXPOSE, 1.6.2.2.1
 using the ARG built-in function, 1.6.2.2.2
 writing, 1.6.2
 SUBSTR built-in function, 1.6.1.1
 syntax
 rules of REXX, 1.2.3
 SYSIPT data, accessing, 2.3.1.3
 Systems Application Architecture (SAA) REXX
 See SAA (Systems Application Architecture) REXX
 SYSVAR, 2.3.1.8

 template, 1.7.2.3
 TRACE instruction, 2.2.1.1
 >>> - final result, 1.3.4
 ending tracing, 2.2.1.3.3
 interactive debug, 2.2.1.3.1
 tracing operation, 1.3.4
 tracing result, 1.3.4

 uppercase character
 changing from lowercase, 1.2.7

1.2.8.3
 preventing the change to, 1.2.7

1.2.8.3
 user ID, 1.5.2.6
 USERID build-in function, 1.5.2.6

 variable
 compound, 1.7.1.1
 control, 1.4.3.1
 description, 1.3.2
 naming, 1.3.2.1
 RC
 See RC special variable
 restriction on naming, 1.3.2.1
 RESULT
 See RESULT special variable
 shared variable in an internal function, 1.6.2.2.1
 SIGL
 See SIGL special variable
 stem, 1.7.1.2
 type of value, 1.3.2.2
 used to pass information to a function, 1.6.2.2.1
 valid name, 1.3.2.1
 value, 1.3.2.2
 within REXX/VSE command, 2.1.1.2
 variable of a stem
 description, 1.7.1.2

2.3.1.2
 used with EXECIO function, 2.5.3.2.2
 used with OUTTRAP function, 1.7.1.2

2.3.1.2
 variable string pattern in parsing, 1.7.2.3
 VSE environment, 2.1.2.1

BACK_1 Communicating Your Comments to IBM

 IBM VSE/Enterprise Systems Architecture
 VSE Central Functions
 REXX/VSE User's Guide
 Version 6 Release 1

 Publication No. SC33-6641-00

 If you especially like or dislike anything about this book, please use one
 of the methods listed below to send your comments to IBM. Whichever

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

119 of 121 2/26/2019, 12:16 PM

 method you choose, make sure you send your name, address, and telephone
 number if you would like a reply.

 Feel free to comment on specific errors or omissions, accuracy,
 organization, subject matter, or completeness of the book. However, the
 comments you send should pertain to only the information in this manual
 and the way in which the information is presented. To request additional
 publications, or to ask questions or make comments about the functions of
 IBM products or systems, you should talk to your IBM representative or to
 your IBM authorized remarketer.

 When you send comments to IBM, you grant IBM a nonexclusive right to use
 or distribute your comments in any way it believes appropriate without
 incurring any obligation to you.

 If you are mailing a readers' comment form (RCF) from a country other than
 the United States, you can give the RCF to the local IBM branch office or
 IBM representative for postage-paid mailing.

 ° If you prefer to send comments by mail, use the RCF form and either
 send it postage-paid in the United States, or directly to:

 IBM Deutschland Entwicklung GmbH
 Department 3248
 Schoenaicher Strasse 220
 D-71032 Boeblingen
 Federal Republic of Germany

 ° If you prefer to send comments by FAX, use this number:

 - (Germany): 07031+16-3456
 - (Other countries): (+49)+7031-16-3456

 ° If you prefer to send comments electronically, use this network ID:

 IBM Mail Exchange: DEIBMBM9 at IBMMAIL

 Internet: VSEPUBS at VNET.IBM.COM

 Make sure to include the following in your note:

 ° Title and publication number of this book
 ° Page number or topic to which your comment applies.

COMMENTS Readers' Comments -- We'd Like to Hear from You

 IBM VSE/Enterprise Systems Architecture
 VSE Central Functions
 REXX/VSE User's Guide
 Version 6 Release 1

 Publication No. SC33-6641-00

Overall, how satisfied are you with the information in this book?

 Legend:

1 Very satisfied
2 Satisfied
3 Neutral
4 Dissatisfied
5 Very dissatisfied

 __ _____ _____ _____ _____ _____
	1	2	3	4	5
__	_____	_____	_____	_____	_____
Overall satisfaction					
__	_____	_____	_____	_____	_____

How satisfied are you that the information in this book is:

 __ _____ _____ _____ _____ _____
	1	2	3	4	5
__	_____	_____	_____	_____	_____
Accurate					
__	_____	_____	_____	_____	_____
Complete					
__	_____	_____	_____	_____	_____
Easy to find					
__	_____	_____	_____	_____	_____
Easy to understand					
__	_____	_____	_____	_____	_____
Well organized					

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

120 of 121 2/26/2019, 12:16 PM

__	_____	_____	_____	_____	_____
Applicable to your tasks					
__	_____	_____	_____	_____	_____

Please tell us how we can improve this book:

 International Business Machines Corporation
 Attn: Dept ECJ - BP/003D
 6300 Diagonal Highway
 Boulder, CO 80301

 Name ___
 Company or Organization ___
 Address ___

 Phone No. ___

IBM Library Server Print Preview

DOCNUM = SC33-6641-00
DATETIME = 09/25/97 11:10:12

BLDVERS = 1.2
TITLE = REXX/VSE V6R1 User's Guide

AUTHOR =
COPYR = © Copyright IBM Corp. 1988, 1995
PATH = /home/webapps/epubs/htdocs/book

IBM Library Server Print: iesrue02 http://publibz.boulder.ibm.com/support/libraryserver/PRINT?Book=iesr...

121 of 121 2/26/2019, 12:16 PM

