
IBM Library Server Print Preview

DOCNUM = GC26-9324-01
DATETIME = 05/27/98 01:56:56

BLDVERS = 1.2
TITLE = PL/I Millennium Language Extensions Guide

AUTHOR =
COPYR = © Copyright IBM Corp. 1998

PATH = /home/webapps/epubs/htdocs/book

COVER Book Cover

PL/I

Millennium Language Extensions Guide

 Document Number GC26-9324-01

 Program Number
 5648-MLX
 5686-MLX

ABSTRACT Abstract

 The MLE Guide contains conceptual information about using millennium
 language extensions that are now available to help you locate and correct
 potential date-related fields.

NOTICES Notices

 ___ Note! __
 | |
 | Before using this information and the product it supports, be sure to read |
 | the general information under "Notices" in topic FRONT_1. |
 | |
 |__|

EDITION Edition Notice

 | Second Edition (June 1998)

 This edition applies to:

 ° VisualAge PL/I Millennium Language Extensions for MVS & VM,
 Version 1 Release 1 (Program number 5648-MLX)

IBM Library Server Print: ibmmlg01 http://publibfp.dhe.ibm.com/support/libraryserver/PRINT?Book=ibmml...

1 of 52 1/9/2019, 2:39 PM

 | ° VisualAge PL/I Millennium Language Extensions for VSE/ESA, Version
 | 1 Release 1 (Program number 5686-MLX)

 and to any subsequent releases until otherwise indicated in new
 editions or technical newsletters. Make sure you are using the
 correct edition for the level of the product.

 Order publications through your IBM representative or the IBM branch
 office serving your locality. Publications are not stocked at the
 address below.

 A form for readers' comments is provided at the back of this
 publication. If the form has been removed, address your comments to:

 IBM Corporation, W92/H3
 P.O. Box 49023
 San Jose, CA 95161-9023
 U.S.A.

 When you send information to IBM, you grant IBM a nonexclusive right
 to use or distribute the information in any way it believes
 appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1998. All

rights reserved.

 Note to U.S. Government Users -- Documentation related to restricted
 rights -- Use, duplication or disclosure is subject to restrictions
 set forth in GSA ADP Schedule Contract with IBM Corp.

CONTENTS Table of Contents

Summarize

COVER Book Cover

ABSTRACT Abstract

NOTICES Notices

EDITION Edition Notice

CONTENTS Table of Contents

FRONT_1 Notices

FRONT_1.1 Programming Interface Information

FRONT_1.2 Trademarks

PREFACE About This Book

CHANGES Summary of Changes

CHANGES.1 Second Edition, June 1998

1.0 Chapter 1. Finding Solutions to the Year 2000 Challenge

1.1 Choosing the Right Approach

1.2 Defining MLE

1.2.1 What MLE Does for You
1.2.2 What MLE Does Not Do for You

1.3 Implementing a Windowing Solution

1.3.1 When to Use Windowing
1.3.2 How to Apply Windowing
1.3.3 Preliminary Testing with MLE

1.4 Getting Started with MLE

1.4.1 A Simple Date Problem
1.4.2 Solving the Problem

2.0 Chapter 2. Using PL/I MLE in Your Applications

2.1 Applying Attributes and Options

2.1.1 DATE Attribute
2.1.2 RESPECT Compile-time Option
2.1.3 WINDOW Compile-time Option
2.1.4 RULES Compile-time Option

IBM Library Server Print: ibmmlg01 http://publibfp.dhe.ibm.com/support/libraryserver/PRINT?Book=ibmml...

2 of 52 1/9/2019, 2:39 PM

2.2 Understanding Date Patterns

2.2.1 Patterns and Windowing
2.3 Using Built-in Functions with MLE

2.3.1 DAYS
2.3.2 DAYSTODATE

2.4 Performing Date Calculations and Comparisons

2.4.1 Explicit Date Calculations
2.4.2 Implicit Date Calculations
2.4.3 Implicit Date Comparisons
2.4.4 Implicit DATE Assignments

2.5 Summarizing Date Diagnostics

2.6 Using MLE with the SQL Preprocessor

2.7 The MLE Objective

3.0 Chapter 3. PL/I for MVS & VM MLE Messages

3.1 Compile-time messages

3.2 PL/I TSO Prompter Messages

4.0 Chapter 4. PL/I VSE MLE Messages

4.1 Compile-time messages

BIBLIOGRAPHY Bibliography

BIBLIOGRAPHY.1 PL/I for MVS & VM Publications

BIBLIOGRAPHY.2 PL/I VSE Publications

BIBLIOGRAPHY.3 VisualAge PL/I Millennium Language Extensions for MVS & VM Publications

BIBLIOGRAPHY.4 VisualAge PL/I Millennium Language Extensions for VSE/ESA Publications

BIBLIOGRAPHY.5 Language Environment for MVS & VM Publications

BIBLIOGRAPHY.6 OS/390 Language Environment Publications

BIBLIOGRAPHY.7 Language Environment for VSE/ESA Publications

BIBLIOGRAPHY.8 VisualAge PL/I Enterprise (OS/2 and Windows)

BIBLIOGRAPHY.9 Softcopy Publications

INDEX Index

BACK_1 We'd Like to Hear from You

COMMENTS Readers' Comments

FRONT_1 Notices

 References in this publication to IBM products, programs, or services do
 not imply that IBM intends to make these available in all countries in
 which IBM operates. Any reference to an IBM product, program, or service
 is not intended to state or imply that only that IBM product, program, or
 service can be used. Any functionally equivalent product, program, or
 service that does not infringe any of the intellectual property rights of
 IBM might be used instead of the IBM product, program, or service. The
 evaluation and verification of operation in conjunction with other
 products, except those expressly designated by IBM, are the responsibility
 of the user.

 IBM may have patents or pending patent applications covering subject
 matter in this document. The furnishing of this document does not give
 you any license to these patents. You can send license inquiries, in
 writing, to:

 IBM Director of Licensing
 IBM Corporation
 500 Columbus Avenue
 Thornwood, NY 10594
 U.S.A.

Subtopics:

 FRONT_1.1 Programming Interface Information
 FRONT_1.2 Trademarks

FRONT_1.1 Programming Interface Information

IBM Library Server Print: ibmmlg01 http://publibfp.dhe.ibm.com/support/libraryserver/PRINT?Book=ibmml...

3 of 52 1/9/2019, 2:39 PM

 This book primarily documents intended Programming Interfaces that allow
 the customer to write programs to obtain services of:

 ° IBM PL/I for MVS & VM when used in conjunction with VisualAge PL/I
 Millennium Language Extensions for MVS & VM

 ° IBM PL/I for VSE/ESA when used in conjunction with VisualAge PL/I
 Millennium Language Extensions for VSE/ESA.

 This book also documents information that is NOT intended to be used as
 Programming Interfaces of VisualAge PL/I Millennium Language Extensions
 for MVS & VM and VisualAge PL/I Millennium Language Extensions for
 VSE/ESA. This information is identified where it occurs, either by an
 introductory statement to a chapter or section or by the following
 marking:

 ---------------- NOT Programming Interface information -----------------

 |------------- End of NOT Programming Interface information -------------|

FRONT_1.2 Trademarks

 The following terms are trademarks of the IBM Corporation in the United
 States or other countries or both:

 CICS IMS
 DB2 MVS
 DFSORT VisualAge
 IBM VSE/ESA

PREFACE About This Book

 This book provides information on the millennium language extensions that
 have been incorporated into IBM PL/I to assist with Year 2000 processing.
 PL/I millennium language extensions are provided by the following
 combinations of products:

 ° IBM PL/I for MVS & VM and VisualAge PL/I Millennium Language
 Extensions for MVS & VM

 | ° IBM PL/I for VSE/ESA and VisualAge PL/I Millennium Language Extensions
 | for VSE/ESA

 The Year 2000 problem has been documented in many places and it is not the
 intent of this book to describe the problem in detail. It is sufficient
 to say that the potential for logic errors can occur at the turn of the
 century when processing with two-digit year dates in your applications.
 Files and data bases that hold date fields in this form, and programs that
 act on those date fields, generally "assume" that the date occurs within
 the 1900-1999 range, so that "98" for example, really means the year 1998.
 When the year changes from 1999 to 2000, this assumption is no longer
 valid.

 Again, this book is not designed to provide a comprehensive solution to
 this problem. Generally, plans to address this situation include a find
 stage to identify applications that might be affected by the Year 2000
 problem. Then, the fix stage provides steps to change and test those
 applications.

IBM Library Server Print: ibmmlg01 http://publibfp.dhe.ibm.com/support/libraryserver/PRINT?Book=ibmml...

4 of 52 1/9/2019, 2:39 PM

 Assuming that affected programs have been identified, PL/I millennium
 language extensions can be placed in the fix stage of the plan. They
 provide one method of assisting with the Year 2000 challenge and should be
 considered, along with other methods, when formulating a solution.

| CHANGES Summary of Changes

 | This section lists the major changes that have been made to this book.

Subtopics:

 CHANGES.1 Second Edition, June 1998

| CHANGES.1 Second Edition, June 1998

 | Information has been added about using PL/I millennium language extensions
 | with the IBM PL/I for VSE/ESA compiler in conjunction with VisualAge PL/I
 | Millennium Language Extensions for VSE/ESA.

1.0 Chapter 1. Finding Solutions to the Year 2000 Challenge

 What is this year 2000 challenge? Currently, a majority of programs and
 databases use two digits rather than four to represent the year when using
 date values. Program logic assumes the first two digits of the date are
 "19" and so only the last two digits are explicitly represented.

 Until the turn of the century becomes a factor, this compact date format
 works well. With the year 2000 swiftly approaching, however, applications
 which once produced valid results can potentially introduce computational
 errors. For example, two-digit years which fall after the year 2000 such
 as 01 and 02 are interpreted as numerically smaller than, and therefore
 logically preceding, two-digit years which occur prior to the year 2000
 such as 97 and 98.

Subtopics:

 1.1 Choosing the Right Approach
 1.2 Defining MLE
 1.3 Implementing a Windowing Solution
 1.4 Getting Started with MLE

1.1 Choosing the Right Approach

 Before you can fix your two-digit date data, you must select which
 approach to use for the given data. The solution you choose depends on
 the current structure of your applications and how much time you have, in
 addition to other considerations. There are two methods generally offered
 to handle two-digit dates:

 ° Expand two-digit year fields to four digits
 ° Infer the correct century through a process called windowing.

 The expansion solution involves explicitly expanding two-digit year dates

IBM Library Server Print: ibmmlg01 http://publibfp.dhe.ibm.com/support/libraryserver/PRINT?Book=ibmml...

5 of 52 1/9/2019, 2:39 PM

 to contain four digits assuring reliable date processing, but is labor
 intensive. Windowing can often be achieved with few changes to your
 program.

 Expansion, then, is a process that you must perform, while windowing is a
method of viewing dates. The intent of this book is to explain PL/I's

 implementation of windowing through the introduction of millennium
 language extensions.

1.2 Defining MLE

 | MLE is short for "millennium language extensions," IBM's patent-pending
 | technology that provides support for automated date windowing in the
 | following PL/I compilers:

 | ° PL/I for MVS & VM when used in conjunction with VisualAge PL/I
 | Millennium Language Extensions for MVS & VM

 | ° PL/I VSE when used in conjunction with VisualAge PL/I Millennium
 | Language Extensions for VSE/ESA

 In short, it is a compiler-assisted solution to help you tackle the Year
 2000 challenge.

Subtopics:

 1.2.1 What MLE Does for You
 1.2.2 What MLE Does Not Do for You

1.2.1 What MLE Does for You

 Using MLE, you can change the data declarations in your application to
 indicate which items represent dates to be windowed and how you want the
 window to be defined. The compiler then implements the windowing changes,
 in many cases without you having to code the associated logic changes.
 MLE has the potential to reduce programming time and effort to make your
 applications Year 2000 ready and also simplify maintenance beyond the turn
 of the century.

1.2.2 What MLE Does Not Do for You

 It is important to recognize that MLE is not designed to be a single
 solution to the Year 2000 challenge. Though it can relieve you of logic
 changes should you decide on a windowing solution, it does not take the
 place of careful assessment, planning, analysis, and testing activities.

 A windowing solution might not be an acceptable approach for all
 applications. There could be cases where the limitations of MLE (size of
 the window, for example) require that you make manual logic changes.
 Hopefully, these situations will not occur frequently. The following
 section should help you identify when windowing is the right solution.

1.3 Implementing a Windowing Solution

IBM Library Server Print: ibmmlg01 http://publibfp.dhe.ibm.com/support/libraryserver/PRINT?Book=ibmml...

6 of 52 1/9/2019, 2:39 PM

 Date windowing is a method used to determine in which century a two-digit
 year falls. With PL/I MLE, a century window is a period of exactly 100
 years which you define to the compiler. The compiler, in turn, applies
 this window to two-digit year date values in your application.

 | For example, for a century window covering from 1930 to 2029, the PL/I
 | compiler (either PL/I for MVS & VM or PL/I VSE with the appropriate PTFs
 | applied and the corresponding PL/I MLE product installed) evaluates dates
 in the following manner:

 Years between 30 and 99 are interpreted as 1930-1999
 Years between 00 and 29 are interpreted as 2000-2029.

Subtopics:

 1.3.1 When to Use Windowing
 1.3.2 How to Apply Windowing
 1.3.3 Preliminary Testing with MLE

1.3.1 When to Use Windowing

 Date windowing is an effective solution to the year 2000 problem for an
 application that fits the following profile:

 ° The application files contain date fields with two-digit years

 ° The application programs perform simple operations on dates, such as
 comparing two dates to determine which is earlier

 ° The life expectancy of the application is such that its date fields go
 beyond 1999.

 MLE provides an effective tool to implement date windowing for
 applications such as this. However, there are other factors to consider
 before commencing an implementation project. This section helps you
 identify those factors that are relevant in the MLE context.

Date range

 If the application contains dates that span more than 100 years, it
 is not eligible for windowing. For example, a publishing house
 could not realistically use date windowing because the publication
 dates of its books could go back more than 100 years. But a
 manufacturing company could use date windowing if the dates of
 orders, deliveries, and invoices all fell within a limited range.

Century window

 You must be able to define a century window that is appropriate for
 all variables in the application. For example, a children's
 hospital can record dates of birth using a window that starts 20
 years ago, and this would be adequate for admissions and discharges,
 but may not be for historical records.

Other languages

 If the same variable is used by other programs written in other
 languages such as Assembler, it is probably easier with these other
 programs to implement date expansion rather than date windowing. If
 this is the case, you should also implement date expansion in your
 PL/I programs.

Other uses of the date field

 Both the PL/I millennium language extensions and other products
 impose limits on where you can use windowed variables. For example,
 if a variable is used in a context where its binary value is
 important, it probably cannot be windowed, this includes:

IBM Library Server Print: ibmmlg01 http://publibfp.dhe.ibm.com/support/libraryserver/PRINT?Book=ibmml...

7 of 52 1/9/2019, 2:39 PM

 ° A key on a VSAM file
 ° A search field in a data base system such as IMS or DB2
 ° A key field in a CICS command.

1.3.2 How to Apply Windowing

 This section describes how you can use MLE to implement a date windowing
 solution, and suggests some other methods that you could use instead of,
 or in addition to, MLE.

Subtopics:

 1.3.2.1 The MLE Method
 1.3.2.2 Other Methods
 1.3.2.3 Subsystems with No Windowing

1.3.2.1 The MLE Method

 To implement automatic date windowing using PL/I MLE, you need to complete
 the following tasks:

 1. Add the DATE attribute to those variables that are to be windowed (see
"DATE Attribute" in topic 2.1.1).

 2. If necessary, use the DAYS and DAYSTODATE built-in functions for date
 conversion (see "Using Built-in Functions with MLE" in topic 2.3).

 3. Use the RESPECT compile-time option to enable MLE (see "RESPECT
Compile-time Option" in topic 2.1.2).

 4. Use the WINDOW compile-time option to set the century window (see
"WINDOW Compile-time Option" in topic 2.1.3).

 5. If necessary, use the RULES(LAXCOMMENT) compile-time option to have
 the compiler honor DATE attributes enclosed between special comment
 delimiters (see "RULES Compile-time Option" in topic 2.1.4).

1.3.2.2 Other Methods

 With MLE, it is often possible to implement a solution in which the
 windowing process is fully automatic; that is, you simply identify the
 fields that contain windowed dates, and you do not need any extra program
 logic to interpret the window. However, you can also implement date
 windowing using other methods, some of which might require additional
 program logic.

 In some cases, you might need to use one or more of these other methods in
 addition to MLE in order to achieve your goal. For example, if a date
 field is not in a format supported by MLE, you need to use an alternative
 method of windowing for that field.

 Some other methods of implementing date windowing are:

PL/I coding

 You can insert IF statements around the references to date fields in
 your program, to determine how to apply a century component. For
 example, the following code implements a century window of

IBM Library Server Print: ibmmlg01 http://publibfp.dhe.ibm.com/support/libraryserver/PRINT?Book=ibmml...

8 of 52 1/9/2019, 2:39 PM

 1940-2039:

if YY_1 < 40 then
CC_1 = 20;

else
CC_1 = 19;

Converting dates

 Use the DAYS and DAYSTODATE built-in functions to help you
 manipulate and convert dates. See "Using Built-in Functions with

MLE" in topic 2.3 for more details.

 Though not its primary purpose, you can use MLE and windowing as a first
 step in expanding two-digit to four-digit years.

1.3.2.3 Subsystems with No Windowing

 The Millennium Language Extensions permit the specification of windowed
 dates for sorting and merging, in conjunction with sort products such as
 DFSORT. However, the following subsystems do not support windowed dates:

 ° DB/2
 ° IMS
 ° CICS
 ° VSAM

 This can cause a variety of problems, including errors from mismatched
 ordering or compilation failure.

1.3.3 Preliminary Testing with MLE

 A pilot project is always something to consider for your year 2000 work.
 You should plan to do some preliminary testing with MLE to determine its
 usefulness. If you are interested in taking the windowing approach, you
 must first migrate to a year 2000 ready compiler which supports MLE.

 In your analysis, if you determine that a century window approach and MLE
 are viable solutions, these steps can help you take things in order:

 ° Choose a fixed-window or sliding-window solution
 ° Choose a century-window start year or offset for each program
 ° Modify appropriate data declarations
 ° Compile the program with the appropriate options.

 To test an application, use the following steps:

 ° Run regression tests with 1900 as the start year (the default); this
 should give the same results as those prior to the changes.

 ° Run date simulator tests with your selected start year.

 ° After each executable is tested, it can be moved into production with
 the year 2000 support enabled.

1.4 Getting Started with MLE

IBM Library Server Print: ibmmlg01 http://publibfp.dhe.ibm.com/support/libraryserver/PRINT?Book=ibmml...

9 of 52 1/9/2019, 2:39 PM

 To get some practical application of the items discussed in this chapter,
 consider this short example which presents a problem and uses MLE in the
 solution.

Subtopics:

 1.4.1 A Simple Date Problem
 1.4.2 Solving the Problem

1.4.1 A Simple Date Problem

 Our example consists of a program which compares the date that a video
 tape was returned with the date it was due back to see whether to impose a
 fine. The two dates are stored in the file as 6-digit Gregorian dates;
 that is, YYMMDD.

dcl
1 loan_record,
2 member_number pic '99999999',
2 tape_id pic '99999999',
2 date_due_back pic '999999',
2 date_returned pic '999999';

.

.

.
if date_returned >date_due_back then

call fine_him;

 If the tape was due back on 14 September 1998, the contents of
 date_due_back are 980914. If it was returned on 12 September, the
 contents of date_returned are 980912. Therefore, no fine is imposed,
 because date_returned is less than date_due_back

 If we go forward in time, we can see how this program behaves in January
 2000. If the tape is due back on 2 January 2000, but is returned on 31
 December 1999, the contents of the fields are:

 date_due_back is 000102
 date_returned is 991231

 In this case, date_returned is much larger than date_due_back, and the
 program imposes a hefty fine for being 100 years late.

1.4.2 Solving the Problem

 If the program recognized that the year 00 was in fact 2000, not 1900, the
 result would be different. In the new scenario, the If ... Then ...
 statement would behave properly, viewing 991231 as 19991231 and 000102 as
 20000102, resulting in correct logic path and no fine for the tape that
 was returned early, not late.

 PL/I MLE gives the flexibility you need to do this. Again, you have to do
 a few things to make it work.

 1. Tell the compiler which fields to treat as date fields with two-digit
 years, so it knows when to apply the century window and when not to.
 You do this by changing the PL/I source program, adding a DATE
 attribute to the date fields that you want handled in this way. So
 the record layout now looks like this:

dcl
1 loan_record,
2 member_number pic '99999999',

IBM Library Server Print: ibmmlg01 http://publibfp.dhe.ibm.com/support/libraryserver/PRINT?Book=ibmml...

10 of 52 1/9/2019, 2:39 PM

2 tape_id pic '99999999',
2 date_due_back pic '999999' date('YYMMDD'),
2 date_returned pic '999999' date('YYMMDD');

 2. Decide on a century window, and tell the PL/I compiler about it. Take
 into account how far back your historic data goes and how far into the
 future your date data is. If you decide to use 1950-2049 as your
 window, then PL/I evaluates dates like this:

 Years between 50 and 99 are really 1950-1999.
 Years between 00 and 49 are really 2000-2049.

 Use the following compile-time options to tell the compiler about the
 century window:

RESPECT
 Tells the compiler to enable the windowing process.

 You specify this as either RESPECT(DATE), to have the compiler
 honor any specification of the DATE attribute and to apply the
 DATE attribute to the result of DATE built-in, or RESPECT() to
 have the compiler ignore any specification of the DATE attribute
 and to not apply the DATE attribute to the result of DATE
 built-in.

WINDOW
 Defines whether a fixed or sliding century window is used and the
 beginning date for that window.

 You specify this as WINDOW(w), where w is either an unsigned
 integer between 1582 and 9999 for a fixed window, or a negative
 integer between -1 and -99 for a sliding century window set to w
 years before the current system date. The value for w can also be
 zero for the current year.

 3. Test the program.

 To summarize, then, you can introduce a windowed date concept into a PL/I
 program by deciding on a century window, changing some data items, and
 recompiling the program. Chapter 2, "Using PL/I MLE in Your Applications"

in topic 2.0 contains more details on MLE syntax and how to use it.

2.0 Chapter 2. Using PL/I MLE in Your Applications

 With the introduction of MLE, PL/I provides support for a number of new
 language features. The purpose of this chapter is for you to become
 familiar with the new attribute, compile-time options, date patterns, and
 built-in functions. As you follow the sequence of the chapter, you should
 have an idea about how to apply these to your existing applications.

Subtopics:

 2.1 Applying Attributes and Options
 2.2 Understanding Date Patterns
 2.3 Using Built-in Functions with MLE
 2.4 Performing Date Calculations and Comparisons
 2.5 Summarizing Date Diagnostics
 2.6 Using MLE with the SQL Preprocessor
 2.7 The MLE Objective

IBM Library Server Print: ibmmlg01 http://publibfp.dhe.ibm.com/support/libraryserver/PRINT?Book=ibmml...

11 of 52 1/9/2019, 2:39 PM

2.1 Applying Attributes and Options

 The language features introduced in these sections are not part of your
 PL/I compiler documentation. When the next release of your compiler
 becomes available, descriptions of these features will be integrated into
 the Language Reference and Programming Guide.

Subtopics:

 2.1.1 DATE Attribute
 2.1.2 RESPECT Compile-time Option
 2.1.3 WINDOW Compile-time Option
 2.1.4 RULES Compile-time Option

2.1.1 DATE Attribute

 Implicit date comparisons and conversions are made by the compiler if the
 two operands have the DATE attribute. The DATE attribute specifies that a
 variable, argument, or returned value holds a date with a specified
 pattern. PL/I MLE supports a number of date patterns as described in

"Understanding Date Patterns" in topic 2.2.

 __
 | |
 | >>__DATE_ _____________ __>< |
 | |_('pattern')_| |
 | |
 |__|

pattern
 One of the supported date patterns. If you do not specify a
 pattern, YYMMDD is the default. For a list of supported date
 patterns, see Table 1 in topic 2.2.

 The DATE attribute is valid only with variables having one of the
 following sets of attributes:

 ° CHAR(n) nonVARYING
 ° PIC'(n)9' REAL
 ° FIXED DEC(n,0) REAL

 The length or precision, n, must be a constant equal to the length of the
 date pattern or default pattern.

 When the RESPECT compile-time option (discussed later in this chapter) has
 been specified, the DATE built-in function returns a value that has the
 attribute DATE('YYMMDD'). This allows DATE() to be assigned to a variable
 with the attribute DATE('YYMMDD') without an error message being
 generated. If DATE() is assigned to a variable not having the DATE
 attribute, however, an error message is generated.

 Here are a few examples using the DATE attribute:

dcl gregorian_Date char(6) date;

dcl julian_Date pic'(5)9' date ('YYDDD');

dcl year fixed dec(2) date('YY');

 The DATE attribute is useful even if you have no year 2000 problems in

IBM Library Server Print: ibmmlg01 http://publibfp.dhe.ibm.com/support/libraryserver/PRINT?Book=ibmml...

12 of 52 1/9/2019, 2:39 PM

 your applications. You can use it to manipulate differing dates as shown
 in these examples:

dcl gregorian_Date char(8) date ('YYYYMMDD');

dcl julian_Date pic'(7)9' date ('YYYYDDD');

if julian_Date > gregorian_Date then ...

2.1.2 RESPECT Compile-time Option

 Use the RESPECT option to specify which attributes the compiler should
 recognize. Currently, DATE is the only selection possible for this
 compile-time option.

 __
 | |
 | >>__ _RESPECT__(__ ______ __)_ _____________________________________>< |
 | | |_DATE_| | |
 | |_NORESPECT_______________| |
 | |
 |__|

 The default is RESPECT() and causes the compiler to ignore any
 specification of the DATE attribute. Therefore, the DATE attribute is not
 applied to the result of DATE built-in. NORESPECT is a synonym for
 RESPECT()

 Specifying RESPECT(DATE), on the other hand, causes the compiler to honor
 any specification of the DATE attribute and to apply the DATE attribute to
 the result of DATE built-in.

 TSO/MVS users, note that RESPECT() is not accepted when compiling with the
PLI command on TSO/MVS.

2.1.3 WINDOW Compile-time Option

 By default, all dates with two-digit years are viewed as falling in a
 window starting with 1950 and ending in 2049. You can use the WINDOW
 option to change the value for your century window.

 __
 | |
 | >>__WINDOW__(__w__)___>< |
 | |
 |__|

 As previously mentioned, the default for this option is WINDOW(1950). You
 can specify the value for w as one of the following:

 ° An unsigned integer between 1582 and 9999 (inclusive) that represents
 the start of a fixed century window

 ° A negative integer between -1 and -99 (inclusive) that creates a
 "sliding" century window

 ° Zero, indicating the value for w is the current year.

 To create a fixed window, you could specify WINDOW(1900) and all two-digit
 years would be assumed to occur in the 20th century.

IBM Library Server Print: ibmmlg01 http://publibfp.dhe.ibm.com/support/libraryserver/PRINT?Book=ibmml...

13 of 52 1/9/2019, 2:39 PM

 If the current year were 1998, and you wanted to create a sliding window,
 you could specify WINDOW(-5). The resulting century window would span the
 years 1993 through 2092, inclusive. When the year changes to 1999, the
 window would also move forward by one year.

 If you set a value for the century window using the WINDOW compile-time
 option, that value is used for the window argument in the built-in
 functions which allow it, unless otherwise specified in that built-in.
 See "Using Built-in Functions with MLE" in topic 2.3 for more details.

2.1.4 RULES Compile-time Option

 In general, the RULES option allows or disallows certain language
 capabilities and allows you to choose semantics when alternatives are
 available. Currently, LAXCOMMENT is the only selection available for this
 option.

 __
 | |
 | >>__ _RULES__(__ _NOLAXCOMMENT_ __)_ _______________________________>< |
 | | |_LAXCOMMENT___| | |
 | |_NORULES_______________________| |
 | |
 |__|

 The default is RULES(NOLAXCOMMENT). LAXCOM and NOLAXCOM are acceptable
 abbreviations for the suboptions.

 If you specify RULES(LAXCOMMENT), the compiler ignores the special
 characters /*/; therefore, whatever comes between the sets of characters
 is interpreted as part of the syntax instead of as a comment. If you
 specify RULES(NOLAXCOMMENT), the compiler treats /*/ as the start of a
 comment which continues until a closing */ is found.

 If you happen to have workstation code that you are porting to the
 mainframe and uses /*/ around the DATE attribute, you need to use the
 RULES(LAXCOMMENT) option so that the compiler honors the attribute.

2.2 Understanding Date Patterns

 PL/I MLE supports a series of date patterns as shown in the following
 table.

 | Table 1. Date patterns supported by PL/I MLE |
 |______________________ ______________________ _______________________ ______________________ ______________________|
	4-digit year	Example	2-digit year	Example
______________________	______________________	_______________________	______________________	______________________
Year first	YYYY	1999	YY	99
	YYYYMM	199912	YYMM	9912
	YYYYMMDD	19991225	YYMMDD	991225
	YYYYMMM	1999DEC	YYMMM	99DEC
	YYYYMMMDD	1999DEC25	YYMMMDD	99DEC25
	YYYYMmm	1999Dec	YYMmm	99Dec
	YYYYMmmDD	1999Dec25	YYMmmDD	99Dec25
	YYYYDDD	1999359	YYDDD	99359
______________________	______________________	_______________________	______________________	______________________
Month first	MMYYYY	121999	MMYY	1299
	MMDDYYYY	12251999	MMDDYY	122599
	MMMYYYY	DEC1999	MMMYY	DEC99
	MMMDDYYYY	DEC251999	MMMDDYY	DEC2599
	MmmYYYY	Dec1999	MmmYY	Dec99
	MmmDDYYYY	Dec251999	MmmDDYY	Dec2599
______________________	______________________	_______________________	______________________	______________________
Day first	DDMMYYYY	25121999	DDMMYY	251299
	DDMMMYYYY	25DEC1999	DDMMMYY	25DEC99

IBM Library Server Print: ibmmlg01 http://publibfp.dhe.ibm.com/support/libraryserver/PRINT?Book=ibmml...

14 of 52 1/9/2019, 2:39 PM

	DDMmmYYYY	25Dec1999	DDMmmYY	25Dec99
	DDDYYYY	3591999	DDDYY	35999
______________________	______________________	_______________________	______________________	______________________

 When the day or month is omitted from one of these patterns, the compiler
 assumes it has a value of 1.

Subtopics:

 2.2.1 Patterns and Windowing

2.2.1 Patterns and Windowing

 To define how a date with a two-digit year (YY) is interpreted, a century
 window is defined using the WINDOW compile-time option. As described
 previously, the century window defines the beginning of a 100-year span to
 which the two-digit year applies.

 Without the help of the PL/I millennium language extensions, you would
 have to implement something like the following logic which converts y2
 from a two-digit year to a four-digit year with a window (w).

dcl y4 pic'9999';
dcl cc pic'99';

cc = w/100;

if y2 < mod(w,100) then
y4 = (100 * cc) + 100 + y2;

else
y4 = (100 * cc) + y2;

 Using this example, if you were to specify WINDOW(1900), 19 would be
 interpreted as the year 1919. If you were to specify WINDOW(1950),
 however, 19 would be interpreted as the year 2019.

 Conversely, this logic calculates the two-digit year (y2) when converting
 from a four-digit year.

dcl y4 pic'9999';

if y4 < w | y4 >= w + 100 then
signal error;

y2 = mod(y4,100);

2.3 Using Built-in Functions with MLE

 The date patterns for PL/I MLE are supported by the DAYS and DAYSTODATE
 built-in functions. These built-ins both accept the optional argument (w)
 that specifies a window to be used in handling two-digit year patterns.
 If you specify w as part of DAYS or DAYSTODATE, the value you enter
 overrides the value as defined by the WINDOW compile-time option.

Subtopics:

 2.3.1 DAYS
 2.3.2 DAYSTODATE

IBM Library Server Print: ibmmlg01 http://publibfp.dhe.ibm.com/support/libraryserver/PRINT?Book=ibmml...

15 of 52 1/9/2019, 2:39 PM

2.3.1 DAYS

 DAYS returns a FIXED BINARY(31,0) value which is the number of days (in
 Lilian format) corresponding to the date d.

 __
 | |
 | >>__DAYS__ ___________________________ _____________________________>< |
	(___________________ _)_	
	_d__ ____________ _	
	,p ____ __	
	,w	
__		

d String expression representing a date. If omitted, it is assumed
 to be the value returned by DATETIME().

 The value for d should have character type. If not, d is
 converted to character.

p One of the supported date patterns shown in Table 1 in topic 2.2.
 If omitted, the compiler assumes that p is the default pattern
 returned by the DATETIME built-in function (YYYYMMDDHHMISS999).

p should have character type. If not, it is converted to
 character.

w An integer expression that defines a century window to be used to
 handle any two-digit year formats.

 ° If the value is positive, such as 1950, it is treated as a
 year.

 ° If negative or zero, the value specifies an offset to be
 subtracted from the current, system-supplied year.

 ° If omitted, w defaults to the value specified in the WINDOW
 compile-time option.

 The following example shows uses of both the DAYS and DAYSTODATE built-in
 functions:

dcl date_format char(8) static init('MMDDYYYY');
dcl todays_date char(8);
dcl sep2_1993 char(8);
dcl days_of_july4_1993 fixed bin(31);
dcl msg char(100) varying;
dcl date_due char(8);

todays_date = daystodate(days(),date_format);

days_of_july4_1993 = days('07041993','MMDDYYYY');
sep2_1993 = daystodate(days_of_july4_1993 + 60, Date_format);

/* 09021993 */

date_due = daystodate(days() + 60, date_format);
/* assuming today is July 4, 1993, this would be Sept. 2, 1993

msg = 'Please pay amount due on or before ' ||

IBM Library Server Print: ibmmlg01 http://publibfp.dhe.ibm.com/support/libraryserver/PRINT?Book=ibmml...

16 of 52 1/9/2019, 2:39 PM

substr(date_due, 1, 2) || '/' ||
substr(date_due, 3,2) || '/' ||
substr(date_due, 5);

2.3.2 DAYSTODATE

 DAYSTODATE returns a nonvarying character string containing the date in
 the form p that corresponds to d days (in Lilian format).

 __
 | |
 | >>__DAYSTODATE__(_d__ ____________ _)_______________________________>< |
 | |_,p_ ____ __| |
 | |_,w_| |
 | |
 |__|

d The number of days (in Lilian format).

d must have a computational type and is converted to FIXED
 BINARY(31,0) if necessary.

p One of the supported date patterns shown in Table 1 in topic 2.2.
 If omitted, the compiler assumes that p is the default pattern
 returned by the DATETIME built-in function (YYYYMMDDHHMISS999).

p should have character type. If not, it is converted to
 character.

w An integer expression that defines a century window to be used to
 handle any two-digit year formats.

 ° If the value is positive, such as 1950, it is treated as a
 year.

 ° If negative or zero, the value specifies an offset to be
 subtracted from the current, system-supplied year.

 ° If omitted, w defaults to the value specified in the WINDOW
 compile-time option.

2.4 Performing Date Calculations and Comparisons

 Once you understand what the PL/I millennium language features are and you
 have made the appropriate syntax changes, you can use MLE to perform
 calculations and comparisons in your applications.

Subtopics:

 2.4.1 Explicit Date Calculations
 2.4.2 Implicit Date Calculations
 2.4.3 Implicit Date Comparisons
 2.4.4 Implicit DATE Assignments

2.4.1 Explicit Date Calculations

 You can use the DAYS and DAYSTODATE built-in functions to make date

IBM Library Server Print: ibmmlg01 http://publibfp.dhe.ibm.com/support/libraryserver/PRINT?Book=ibmml...

17 of 52 1/9/2019, 2:39 PM

 comparisons and calculations manually.

Subtopics:

 2.4.1.1 Comparing Dates
 2.4.1.2 Converting Dates
 2.4.1.3 Subtracting Dates

2.4.1.1 Comparing Dates

 To compare two dates d1 and d2 which have the date pattern YYMMDD, you can
 use the following code:

DAYS (d1, 'YYMMDD', w) < DAYS(d2, 'YYMMDD', w)

2.4.1.2 Converting Dates

 You can convert between a two-digit date (d1) with the pattern YYMMDD and
 a four-digit date (d2) with the pattern YYYYMMDD using assignments:

d2 = DAYSTODATE(DAYS(d1,'YYMMDD',w), 'YYYYMMDD');
d1 = DAYSTODATE(DAYS(d2,'YYYYMMDD'), 'YYMMDD' ,w);

2.4.1.3 Subtracting Dates

 To subtract 2 two-digit years, y1 and y2, you need to calculate the
 imposing difference:

DAYSTODATE(DAYS(y1,'YY',w), 'YYYY') -
DAYSTODATE(DAYS(y2,'YY',w),'YYYY')

2.4.2 Implicit Date Calculations

 You can use MLE to take advantage of implicit date comparisons and
 conversions if you first complete the following steps:

 ° Give the two operands the DATE attribute
 ° Specify the RESPECT compile-time option

2.4.3 Implicit Date Comparisons

 The DATE attribute causes implicit commoning when two variables declared
 with the DATE attribute are compared. Comparisons where only one variable
 has the DATE attribute are flagged, and the other comparand is generally
 treated as if it had the same DATE attribute, although some exceptions
 apply which are discussed later.

 Implicit commoning means that the compiler generates code to convert the
 dates to a common, comparable representation. This process converts
 2-digit years using the window you specify in the WINDOW compile-time
 option.

IBM Library Server Print: ibmmlg01 http://publibfp.dhe.ibm.com/support/libraryserver/PRINT?Book=ibmml...

18 of 52 1/9/2019, 2:39 PM

 In the following code fragment, if the DATE attribute is honored, then the
 comparison in the second display statement is 'windowed'. This means that
 if the window started at 1900, the comparison would return false.
 However, if the window started at 1950, the comparison would return true.

dcl a pic'(6)9' date;
dcl b pic'(6)9' def(a);
dcl c pic'(6)9' date;
dcl d pic'(6)9' def(c);

b = '670101';
d = '010101';

display(b || ' < ' || d || ' ?');
display(a < c);

 Date comparisons can also occur in the following places:

 ° IF and SELECT statements
 ° WHILE or UNTIL clauses
 ° Implicit comparisons caused by a TO clause.

Subtopics:

 2.4.3.1 Comparing Dates with Like Patterns
 2.4.3.2 Comparing Dates with Differing Patterns
 2.4.3.3 Comparisons Involving the DATE Attribute and a Literal
 2.4.3.4 Comparisons Involving the DATE Attribute and a Non-Literal

2.4.3.1 Comparing Dates with Like Patterns

 The compiler does not generate any special code to compare dates with
 identical patterns under the following conditions:

 ° The comparison operator of = or ¬= is used
 ° The pattern is equal to YYYY, YYYYMM, YYYYDDD, or YYYYMMDD.

2.4.3.2 Comparing Dates with Differing Patterns

 For comparisons involving dates with unlike patterns, the compiler
 generates code to convert the dates to a common comparable representation.
 Once the conversion has taken place, the compiler compares the two values.

2.4.3.3 Comparisons Involving the DATE Attribute and a Literal

 If you are making comparisons in which one comparand has the DATE
 attribute and the other is a literal, the compiler issues a W-level
 message. Further compiler action depends on the value of the literal as
 follows:

 ° If the literal appears to be a valid date, it is treated as if it had
 the same date pattern and window as the comparand with the DATE
 attribute.

 ° If the literal does not appear to be a valid date, the DATE attribute
 is ignored on the other comparand.

IBM Library Server Print: ibmmlg01 http://publibfp.dhe.ibm.com/support/libraryserver/PRINT?Book=ibmml...

19 of 52 1/9/2019, 2:39 PM

dcl start_date char(6) date;
if start_date >= '' then /* no windowing */
...
if start_date >= '851003' then /* windowed */
...

2.4.3.4 Comparisons Involving the DATE Attribute and a Non-Literal

 In comparisons where one comparand has the DATE attribute and the other is
 not a date and not a literal, the compiler issues an E-level message. The
 non-date value is treated as if it had the same date pattern as the other
 comparand and as if it had the same window.

dcl start_date char(6) date;
dcl non_date char (6);

if start_date >= non_date then /* windowed */
...

2.4.4 Implicit DATE Assignments

 The DATE attribute can also cause implicit conversions to occur in
 assignments of two variables declared with date patterns.

 ° If the source and target have the same DATE and data attributes, then
 the assignment proceeds as if neither had the DATE attribute.

 ° If the source and target have differing DATE attributes, then the
 compiler generates code to convert the source date before making the
 assignment.

 ° In assignments where the source has the DATE attribute but the target
 does not, the compiler issues an E-level message and ignores the DATE
 attribute.

 ° In assignments where the target has the DATE attribute but the source
 does not (and the source IS NOT a literal), the compiler issues an
 E-level message and ignores the DATE attribute.

 ° In assignments where the target has the DATE attribute but the source
 does not (and the source IS a literal), the compiler issues a W-level
 message and ignores the DATE attribute.

dcl start_date char(6) date;
start_date = '';
...

 ° The DATE attribute is ignored in:

 - The debugger
 - Assignments performed in record I/O statements
 - Assignments and conversions performed in stream I/O statements
 (such as GET DATA).

 Even if you do not choose a windowing solution, you might have some code
 that needs to manipulate both two- and four-digit years. You can use
 multiple date patterns to help you in these situations:

IBM Library Server Print: ibmmlg01 http://publibfp.dhe.ibm.com/support/libraryserver/PRINT?Book=ibmml...

20 of 52 1/9/2019, 2:39 PM

dcl old_date char(6) date('YYMMDD');
dcl new_date char(8) date('YYYYMMDD');

new_date = old_date;

2.5 Summarizing Date Diagnostics

 In PL/I, effective assignments occur when

 ° An expression is passed as an argument to an entry that has described
 that argument

 ° An expression is used in a RETURN statement.

 The following uses of variables with the DATE attribute are flagged:

 ° Assignments (explicit or effective) which include either
 - A date to a non-date
 - A non-date to a date
 ° Any arithmetic operation applied to a date
 ° Use of a date in a BY clause (since this implies an arithmetic
 operation)
 ° Use of a date in any mathematical built-in function
 ° Use of a date in any arithmetic built-in function except BINARY,
 DECIMAL, FIXED, FLOAT, or PRECISION
 ° Use of a date in the built-in functions SUM, PROD, or POLY.

 In all of these cases, code is produced but no windowing occurs. In
 effect, the DATE attribute is ignored.

2.6 Using MLE with the SQL Preprocessor

 The SQL preprocessor objects to the DATE attribute. However, if you
 enclose the attribute between /*/ and /*/, the SQL preprocessor ignores it
 (as part of a comment that stretches from the first /* to the last */).
 In order for the compiler to honor the DATE attribute between these
 special characters, you must specify RULES(LAXCOMMENT), see "RULES

Compile-time Option" in topic 2.1.4 for more details.

2.7 The MLE Objective

 To summarize then, the primary objective of PL/I MLE is to extend the
 useful life of applications (as they are currently specified) into the
 twenty-first century. Source changes to accomplish this can hopefully be
 held to a minimum, preferably limited to making additions to declarations
 of date-related variables. In many cases, you should not be required to
 make any changes to the program logic.

 A secondary objective is to support limited kinds of maintenance and
 enhancement, especially to allow dates with two-digit years to be used in
 conjunction with expanded year dates. This can assist you with
 incrementally introducing expanded dates into your applications, if
 desired.

3.0 Chapter 3. PL/I for MVS & VM MLE Messages

IBM Library Server Print: ibmmlg01 http://publibfp.dhe.ibm.com/support/libraryserver/PRINT?Book=ibmml...

21 of 52 1/9/2019, 2:39 PM

 This appendix documents information that is NOT intended to be used as
 Programming Interfaces.

 The following descriptions are for the PL/I for MVS & VM compile-time
 messages (see also "PL/I TSO Prompter Messages" in topic 3.2) and codes
 that are either changed or new as a result of VisualAge PL/I Millennium
 Language Extensions for MVS & VM. In the case of message IEL02301, a new
 restriction (299) exists as shown.

Subtopics:

 3.1 Compile-time messages
 3.2 PL/I TSO Prompter Messages

3.1 Compile-time messages

IEL0230I U COMPILER ERROR OR RESTRICTION NUMBER 299 DURING PHASE 'II'.

Explanation: The program has too many statements that use variables
 declared with the DATE attribute. Approximately 10,000 references with
 the DATE attribute are allowed in program statements. For example, in
 assignment statements, IF statements, etc.

Programmer Response: Reduce the usage of variables declared with the DATE
 attribute, particularly those that are based or subscripted.
 Alternatively, reduce the usage of the DATE builtin or the usage of
 functions that return a value with the DATE attribute.

IEL0661I W 'DATE' ATTRIBUTE IGNORED IN COMPARISON OF 'DATE' OPERAND WITH

NON-DATE CONSTANT.

COMPARISON OF 'DATE' OPERAND WITH NON-DATE CONSTANT IS INVALID.

THE 'DATE' ATTRIBUTE HAS BEEN IGNORED.

Example:

DCL X CHAR(6) DATE('YYMMDD');
IF X='' THEN ...

Explanation: In a comparison, if one operand has the DATE attribute, the
 other should also. The compiler has corrected this by ignoring the DATE
 attribute.

IEL0662I W CONSTANT IN COMPARISON IS ASSUMED TO HAVE SAME PATTERN AS

'DATE' OPERAND.

COMPARISON OF 'DATE' OPERAND WITH CONSTANT HAS BEEN ACCEPTED.

CONSTANT IS ASSUMED TO HAVE THE SAME PATTERN AS THE OPERAND WITH

THE 'DATE' ATTRIBUTE.

Example:

IBM Library Server Print: ibmmlg01 http://publibfp.dhe.ibm.com/support/libraryserver/PRINT?Book=ibmml...

22 of 52 1/9/2019, 2:39 PM

DCL X CHAR(6) DATE('YYMMDD');
IF X>'971122' THEN ...

Explanation: In a comparison, if one operand has the DATE attribute, the
 other should also. The compiler has corrected this by assuming that the
 constant has the same DATE attribute. In the example above, the constant
 '971122' is assumed to have the DATE pattern 'YYMMDD', the same as X.

IEL0663I E NON-DATE OPERAND IN COMPARISON IS ASSUMED TO HAVE SAME PATTERN

AS 'DATE' OPERAND.

COMPARISON OF 'DATE' OPERAND WITH NON-DATE OPERAND IS INVALID.

THE NON-DATE OPERAND IS ASSUMED TO HAVE THE SAME PATTERN AS THE

OPERAND WITH THE 'DATE' ATTRIBUTE.

Example:

DCL X CHAR(6) DATE('YYMMDD');
DCL Y CHAR(6);
IF X>Y THEN ...

Explanation: In a comparison, if one operand has the DATE attribute, the
 other should also. The compiler has corrected this by assuming that the
 non-DATE operand has the same DATE attribute. In the example above, Y is
 assumed to have the DATE pattern 'YYMMDD', the same as X.

IEL0664I E [PROLOGUE CODE.] 'DATE' ATTRIBUTE OF TARGET D IGNORED IN

ASSIGNMENT.

[PROLOGUE CODE.] SOURCE IN ASSIGNMENT DOES NOT HAVE THE 'DATE'

ATTRIBUTE BUT TARGET D DOES. THE 'DATE' ATTRIBUTE HAS BEEN

IGNORED FOR THIS ASSIGNMENT.

Example:

DCL X CHAR(6) DATE('YYMMDD');
DCL Y CHAR(6);
X=Y;

Explanation: If the target in an assignment statement has the DATE
 attribute, the source should also. The compiler has corrected this by
 ignoring the DATE attribute in performing this assignment.

 For a DO statement, this message may be issued for the initial assignment
 of the loop control variable or for a 'REPEAT' clause.

 Note that if the target is a subscripted variable, this message only shows
 the array name, without any subscripts.

IEL0665I E [PROLOGUE CODE.] 'DATE' ATTRIBUTE OF SOURCE IGNORED IN

ASSIGNMENT TO TARGET D.

[PROLOGUE CODE.] TARGET D IN ASSIGNMENT DOES NOT HAVE THE

'DATE' ATTRIBUTE BUT SOURCE DOES. THE 'DATE' ATTRIBUTE HAS BEEN

IGNORED FOR THIS ASSIGNMENT.

Example:

IBM Library Server Print: ibmmlg01 http://publibfp.dhe.ibm.com/support/libraryserver/PRINT?Book=ibmml...

23 of 52 1/9/2019, 2:39 PM

DCL X CHAR(6);
X=DATE();

Explanation: If the source in an assignment statement has the DATE
 attribute, the target should also. The compiler has corrected this by
 ignoring the DATE attribute in performing this assignment.

 For a DO statement, this message may be issued for the initial assignment
 of the loop control variable or for a 'REPEAT' clause.

 Note that if the target is a subscripted variable, this message only shows
 the array name, without any subscripts.

IEL0666I E [PROLOGUE CODE.] 'DATE' ATTRIBUTE OF SOURCE IGNORED IN

ASSIGNMENT.

[PROLOGUE CODE.] TARGET IN ASSIGNMENT DOES NOT HAVE THE 'DATE'

ATTRIBUTE BUT SOURCE DOES. THE 'DATE' ATTRIBUTE HAS BEEN

IGNORED FOR THIS ASSIGNMENT.

Example:

DCL X CHAR(8);
SUBSTR(X,3)=DATE();

Explanation: If the source in an assignment statement has the DATE
 attribute, the target should also. The compiler has corrected this by
 ignoring the DATE attribute in performing this assignment.

 For a DO statement, this message may be issued for the initial assignment
 of the loop control variable or for a 'REPEAT' clause.

IEL0667I W [PROLOGUE CODE.] 'DATE' ATTRIBUTE OF TARGET D IGNORED IN

ASSIGNMENT.

[PROLOGUE CODE.] TARGET D IN ASSIGNMENT HAS THE 'DATE'

ATTRIBUTE BUT SOURCE CONSTANT DOES NOT. THE 'DATE' ATTRIBUTE

HAS BEEN IGNORED FOR THIS ASSIGNMENT.

Example:

DCL X CHAR(6) DATE('YYMMDD');
X='';
X='971027';

Explanation: If a constant is used as the source in an assignment, the
 constant should be assigned to a target that does not have DATE attribute.
 The compiler has corrected this by ignoring the DATE attribute in
 performing this assignment.

 For a DO statement, this message may be issued for the initial assignment
 of the loop control variable or for a 'REPEAT' clause.

 Note that if the target is a subscripted variable, this message only shows
 the array name, without any subscripts.

IEL0668I E 'DATE' ATTRIBUTE IGNORED IN COMPARISON OF 'DATE' OPERAND WITH

IBM Library Server Print: ibmmlg01 http://publibfp.dhe.ibm.com/support/libraryserver/PRINT?Book=ibmml...

24 of 52 1/9/2019, 2:39 PM

NON-DATE OPERAND.

COMPARISON OF 'DATE' OPERAND WITH NON-DATE OPERAND IS INVALID.

THE 'DATE' ATTRIBUTE HAS BEEN IGNORED.

Example:

DCL X CHAR(6) DATE('YYMMDD');
DCL Y FIXED BIN(31);
IF X=Y THEN ...

Explanation: In a comparison, if one operand has the DATE attribute, the
 other should also. The compiler has corrected this by ignoring the DATE
 attribute.

IEL0678I E 'DATE' ATTRIBUTE OF ARGUMENT N TO BUILTIN T HAS BEEN IGNORED.

ARGUMENT NUMBER N TO BUILTIN FUNCTION T MUST NOT HAVE THE 'DATE'

ATTRIBUTE. THE 'DATE' ATTRIBUTE HAS BEEN IGNORED.

Example:

DCL X FIXED DEC(6) DATE;
DCL Y FIXED DEC(6);
DCL ADD BUILTIN;
X=ADD(X,Y,6);

Explanation: Variables with the DATE attribute may only be used in
 comparisons or assignments. The compiler does not support builtin
 arithmetic that takes into account the DATE pattern of a variable.

IEL0679I E 'DATE' ATTRIBUTE HAS BEEN IGNORED IN ARITHMETIC OPERATION.

A 'DATE' OPERAND IS NOT VALID IN AN ARITHMETIC OPERATION. THE

'DATE' ATTRIBUTE HAS BEEN IGNORED.

Example:

DCL X FIXED DEC(6) DATE;
X=X+1;

Explanation: Variables with the DATE attribute may only be used in
 comparisons or assignments. The compiler does not support arithmetic that
 takes into account the DATE pattern of a variable.

IEL0696I E [PROLOGUE CODE.] 'DATE' PARAMETER ATTRIBUTE FOR STRUCTURE

ELEMENT T IN ARGUMENT N TO ENTRY D HAS BEEN IGNORED.

[PROLOGUE CODE.] ARGUMENT NUMBER N TO ENTRY D HAS STRUCTURE

ELEMENT T THAT DOES NOT HAVE THE 'DATE' ATTRIBUTE BUT THE

CORRESPONDING PARAMETER DOES. THE 'DATE' ATTRIBUTE HAS BEEN

IGNORED.

Example:

DCL X ENTRY(1, 2 CHAR(6) DATE, 2 CHAR(1));
DCL 1 ST, 2 STA CHAR(6), 2 STB CHAR(1);

IBM Library Server Print: ibmmlg01 http://publibfp.dhe.ibm.com/support/libraryserver/PRINT?Book=ibmml...

25 of 52 1/9/2019, 2:39 PM

CALL X(ST);

Explanation: If a parameter descriptor has the DATE attribute, then the
 corresponding argument should also have the DATE attribute. In the
 example above, element STA will be diagnosed.

 Note that if the ENTRY is a subscripted variable, this message only shows
 the array name, without any subscripts. Also, if the structure element
 name is not available, for example, because it is a structure expression,
 the name T shown above is '****'.

IEL0697I E [PROLOGUE CODE.] 'DATE' PARAMETER ATTRIBUTE IGNORED FOR

ARGUMENT N TO ENTRY D.

[PROLOGUE CODE.] ARGUMENT NUMBER N TO ENTRY D DOES NOT HAVE THE

'DATE' ATTRIBUTE BUT THE CORRESPONDING PARAMETER DOES. THE

'DATE' ATTRIBUTE HAS BEEN IGNORED.

Example:

DCL X ENTRY(CHAR(6) DATE, CHAR(6) DATE);
DCL (A,B) CHAR(6);
CALL X(A,B);

Explanation: If a parameter descriptor has the DATE attribute, then the
 corresponding argument should also have the DATE attribute. In the
 example above, both arguments will be diagnosed.

 Note that if the ENTRY is a subscripted variable, this message only shows
 the array name, without any subscripts.

IEL0698I E [PROLOGUE CODE.] 'DATE' ATTRIBUTE OF STRUCTURE ELEMENT T IN

ARGUMENT N TO ENTRY D HAS BEEN IGNORED.

[PROLOGUE CODE.] ARGUMENT NUMBER N TO ENTRY D HAS STRUCTURE

ELEMENT T THAT HAS THE 'DATE' ATTRIBUTE BUT THE CORRESPONDING

PARAMETER DOES NOT. THE 'DATE' ATTRIBUTE HAS BEEN IGNORED.

Example:

DCL X ENTRY(1, 2 CHAR(6), 2 CHAR(1));
DCL 1 ST, 2 STA CHAR(6) DATE, 2 STB CHAR(1);
CALL X(ST);

Explanation: If an argument has the DATE attribute, then the
 corresponding parameter should also have the DATE attribute. In the
 example above, element STA will be diagnosed.

 Note that if the ENTRY is a subscripted variable, this message only shows
 the array name, without any subscripts. Also, if the structure element
 name is not available for example because it is a structure expression,
 the name T shown above is '****'.

IEL0699I E [PROLOGUE CODE.] 'DATE' ATTRIBUTE OF ARGUMENT N TO ENTRY D HAS

BEEN IGNORED.

[PROLOGUE CODE.] ARGUMENT NUMBER N TO ENTRY D HAS THE 'DATE'

ATTRIBUTE BUT THE CORRESPONDING PARAMETER DOES NOT. THE 'DATE'

IBM Library Server Print: ibmmlg01 http://publibfp.dhe.ibm.com/support/libraryserver/PRINT?Book=ibmml...

26 of 52 1/9/2019, 2:39 PM

ATTRIBUTE HAS BEEN IGNORED.

Example:

DCL X ENTRY(CHAR(6), CHAR(6));
DCL (A,B) CHAR(6) DATE;
CALL X(A,B);

Explanation: If an argument has the DATE attribute, then the
 corresponding parameter descriptor should also have the DATE attribute.
 In the example above, both arguments will be diagnosed.

 Note that if the ENTRY is a subscripted variable, this message only shows
 the array name, without any subscripts.

 | IEL0700I W [PROLOGUE CODE.] 'DATE' PARAMETER ATTRIBUTE IGNORED FOR

ARGUMENT N TO ENTRY D.

[PROLOGUE CODE.] ARGUMENT NUMBER N TO ENTRY D DOES NOT HAVE THE

'DATE' ATTRIBUTE BUT THE CORRESPONDING PARAMETER DOES. THE

'DATE' ATTRIBUTE HAS BEEN IGNORED.

Example:

DCL X ENTRY(CHAR(6) DATE);
CALL X('971231');

Explanation: If a parameter descriptor has the DATE attribute, then the
 corresponding argument should also have the DATE attribute. In the
 example above, the character constant argument will be diagnosed with this
 warning message.

 Note that if the ENTRY is a subscripted variable, this message only shows
 the array name, without any subscripts.

IEL0744I S 'DATE' PATTERN OF D IS INVALID.

'DATE' PATTERN IN DECLARATION OF D IS INVALID. 'DATE' ATTRIBUTE

HAS BEEN IGNORED.

Example:

DCL X CHAR(6) DATE('YYDDDD');
DCL Y CHAR(6) DATE('yymmdd');

Explanation: In the example above, 'YYDDDD' and 'yymmdd' will be
 diagnosed.

IEL0745I S 'DATE' ATTRIBUTE OF D IS ONLY VALID WITH NON-VARYING CHARACTER

OR ARITHMETIC PICTURE OR FIXED DECIMAL.

'DATE' ATTRIBUTE IS ONLY VALID WITH NON-VARYING CHARACTER OR

ARITHMETIC PICTURE OR FIXED DECIMAL. 'DATE' ATTRIBUTE IGNORED

IN DECLARATION OF D.

Example:

IBM Library Server Print: ibmmlg01 http://publibfp.dhe.ibm.com/support/libraryserver/PRINT?Book=ibmml...

27 of 52 1/9/2019, 2:39 PM

DCL W CHAR(6) DATE VARYING;
DCL X FIXED BIN(31) DATE;
DCL Y FIXED DEC(6) DATE COMPLEX;
DCL P PIC'999999' DATE COMPLEX;

Explanation: This message may be issued when incorrect attributes are
 specified for a variable declaration, parameter descriptor, or a function
 reference return.

IEL0746I S CHARACTER OR PICTURE LENGTH OF D MUST BE A CONSTANT AND MUST

MATCH DATE PATTERN LENGTH.

CHARACTER OR PICTURE LENGTH MUST BE A CONSTANT AND MUST MATCH

THE LENGTH OF THE DATE PATTERN. 'DATE' ATTRIBUTE IGNORED IN

DECLARATION OF D.

Example:

 | DCL X CHAR(*) CONTROLLED DATE;
DCL Y CHAR(N) DATE;
DCL Z PIC'9999' DATE('YY');

IEL0747I S DECIMAL PRECISION OF D MUST MATCH DATE PATTERN LENGTH.

DECIMAL PRECISION MUST MATCH THE LENGTH OF THE DATE PATTERN.

'DATE' ATTRIBUTE IGNORED IN DECLARATION OF D.

Example:

DCL X FIXED DEC(8) DATE('YYDDD');
DCL Y FIXED DEC(9) DATE;

IEL0748I S DECIMAL SCALING FACTOR OF D MUST BE ZERO WITH 'DATE' ATTRIBUTE.

DECIMAL SCALING FACTOR MUST BE ZERO WHEN 'DATE' ATTRIBUTE IS

SPECIFIED. 'DATE' ATTRIBUTE IGNORED IN DECLARATION OF D.

Example:

DCL X FIXED DEC(5,3) DATE('YYDDD');
DCL Y FIXED DEC(6,2) DATE;

IEL0749I S PICTURE SPECIFICATION OF D MUST BE ALL 9'S WITH 'DATE'

ATTRIBUTE.

PICTURE SPECIFICATION MUST BE ALL 9'S WHEN 'DATE' ATTRIBUTE IS

SPECIFIED. 'DATE' ATTRIBUTE IGNORED IN DECLARATION OF D.

Example:

IBM Library Server Print: ibmmlg01 http://publibfp.dhe.ibm.com/support/libraryserver/PRINT?Book=ibmml...

28 of 52 1/9/2019, 2:39 PM

DCL X PIC'99XXX' DATE('YYDDD');
DCL Y PIC'AAAAAA' DATE;

IEL0750I S DATE PATTERN OF D WITH ALPHABETIC CHARACTERS IS ONLY VALID WITH

CHARACTER DATA.

A DATE PATTERN WITH ALPHABETIC CHARACTERS IS ONLY VALID WITH THE

CHARACTER DATA TYPE. 'DATE' ATTRIBUTE IGNORED IN DECLARATION OF

D.

Example:

DCL X FIXED DEC(7) DATE('YYMmmDD');
DCL Y PIC'9999999' DATE('YYMMMDD');

Explanation: A DATE pattern with alphabetic characters can only be
 declared with the character data type versus the arithmetic data type.

IEL0780I E 'DATE' ATTRIBUTE IGNORED IN ARITHMETIC OPERATION GENERATED FOR

'BY' CLAUSE.

'DATE' OPERAND IS NOT VALID IN ARITHMETIC OPERATION GENERATED

FOR 'BY' CLAUSE. THE 'DATE' ATTRIBUTE HAS BEEN IGNORED.

Example:

DCL D FIXED DEC(6) DATE;
DO I=1 TO N BY D;
DO D=1 TO N BY 1;

Explanation: Variables with the DATE attribute may only be used in
 comparisons or assignments. The compiler does not support arithmetic that
 takes into account the DATE pattern of a variable. In particular, this
 applies to the arithmetic operation implicitly generated for the BY clause
 of a DO statement. The compiler has corrected this by ignoring the DATE
 attribute.

IEL0781I W 'DATE' ATTRIBUTE OF CONTROL VARIABLE IGNORED IN 'TO' CLAUSE

COMPARISON.

COMPARISON OF CONTROL VARIABLE WITH NON-DATE CONSTANT IS

INVALID. THE 'DATE' ATTRIBUTE OF THE CONTROL VARIABLE HAS BEEN

IGNORED IN THE 'TO' CLAUSE COMPARISON.

Example:

DCL N FIXED DEC(6) DATE;
DO N=1 TO 20;

Explanation: In a comparison, if one operand has the DATE attribute, the
 other should also. In particular, this applies to the comparison
 implicitly generated for the TO clause of a DO statement control variable.
 The compiler has corrected this by ignoring the DATE attribute of the
 control variable.

IBM Library Server Print: ibmmlg01 http://publibfp.dhe.ibm.com/support/libraryserver/PRINT?Book=ibmml...

29 of 52 1/9/2019, 2:39 PM

IEL0782I W CONSTANT IN 'TO' CLAUSE IS ASSUMED TO HAVE SAME 'DATE' PATTERN

AS CONTROL VARIABLE.

COMPARISON OF CONTROL VARIABLE WITH CONSTANT HAS BEEN ACCEPTED.

CONSTANT IN 'TO' CLAUSE IS ASSUMED TO HAVE THE SAME 'DATE'

PATTERN AS THE CONTROL VARIABLE.

Example:

DCL N FIXED DEC(5) DATE('YYDDD');
DO N=1 TO 97030;

Explanation: In a comparison, if one operand has the DATE attribute, the
 other should also. In particular, this applies to the comparison
 implicitly generated for the TO clause of a DO statement control variable.
 The compiler has corrected this by assuming that the constant in the TO
 clause has the same DATE attribute as the DO statement control variable.
 In the example above, the constant 97030 is assumed to have the DATE
 pattern 'YYDDD', the same as N.

IEL0783I E NON-DATE OPERAND IN 'TO' CLAUSE COMPARISON IS ASSUMED TO HAVE

SAME PATTERN AS 'DATE' OPERAND.

COMPARISON OF 'DATE' OPERAND WITH NON-DATE OPERAND IS INVALID.

THE NON-DATE OPERAND IS ASSUMED TO HAVE THE SAME PATTERN AS THE

'DATE' OPERAND IN THE 'TO' CLAUSE COMPARISON.

Example:

DCL N FIXED DEC(5) DATE('YYDDD');
DCL M FIXED DEC(5);
DO N=1 TO M;
DO M=1 TO N;

Explanation: In a comparison, if one operand has the DATE attribute, the
 other should also. In particular, this applies to the comparison
 implicitly generated for the TO clause of a DO statement control variable.
 The compiler has corrected this by assuming that the non-DATE operand has
 the same DATE attribute as the DATE operand. In the preceding examples, M
 is assumed to have the DATE pattern 'YYDDD', the same as N.

IEL0784I E 'DATE' ATTRIBUTE IGNORED IN 'TO' CLAUSE COMPARISON.

COMPARISON OF 'DATE' OPERAND WITH NON-DATE OPERAND IS INVALID.

THE 'DATE' ATTRIBUTE HAS BEEN IGNORED IN THE 'TO' CLAUSE

COMPARISON.

Example:

DCL N FIXED DEC(6) DATE;
DCL M FIXED BIN(31);
DO N=1 TO M;

Explanation: In a comparison, if one operand has the DATE attribute, the
 other should also. In particular, this applies to the comparison
 implicitly generated for the TO clause of a DO statement control variable.
 The compiler has corrected this by ignoring the DATE attribute.

IBM Library Server Print: ibmmlg01 http://publibfp.dhe.ibm.com/support/libraryserver/PRINT?Book=ibmml...

30 of 52 1/9/2019, 2:39 PM

IEL0793I E 'DATE' ATTRIBUTE OF PROCEDURE 'RETURNS' OPTION HAS BEEN

IGNORED.

 | EXPRESSION IN RETURN STATEMENT DOES NOT HAVE THE 'DATE'

ATTRIBUTE BUT 'RETURNS' OPTION OF THE PROCEDURE DOES. 'DATE'

ATTRIBUTE HAS BEEN IGNORED.

Example:

P: PROC RETURNS(CHAR(6) DATE);
DCL C CHAR(6);
RETURN(C);
END;

Explanation: In the example above, C does not have the DATE attribute,
 but the procedure P does.

IEL0794I E 'DATE' ATTRIBUTE OF RETURNED EXPRESSION HAS BEEN IGNORED.

 | EXPRESSION IN RETURN STATEMENT HAS THE 'DATE' ATTRIBUTE BUT

'RETURNS' OPTION OF THE PROCEDURE DOES NOT. 'DATE' ATTRIBUTE

HAS BEEN IGNORED.

Example:

P: PROC RETURNS(CHAR(6));
RETURN(DATE());
END;

Explanation: In the example above, builtin DATE() has the DATE attribute,
 but the procedure P does not.

IEL0795I W RETURNED EXPRESSION DOES NOT HAVE THE 'DATE' ATTRIBUTE BUT

'RETURNS' OPTION OF AN 'ENTRY' IN THIS BLOCK DOES.

 | EXPRESSION IN RETURN STATEMENT DOES NOT HAVE THE 'DATE'

ATTRIBUTE BUT 'RETURNS' OPTION OF AN 'ENTRY' IN THIS BLOCK DOES.

'DATE' ATTRIBUTE WILL BE IGNORED IF THE INVALID COMBINATION OF

'RETURN' AND 'ENTRY' IS USED.

Example:

P: PROC(N) RETURNS(CHAR(6) DATE);
E: ENTRY(N) RETURNS(CHAR(6));

DCL N FIXED;
DCL C CHAR(6);
IF N=0 THEN RETURN('970704');

ELSE RETURN(C);
.
.
.

END;

Explanation: In the example above, both RETURN statements will be flagged
 with this message.

IEL0796I W RETURNED EXPRESSION HAS THE 'DATE' ATTRIBUTE BUT 'RETURNS'

OPTION OF AN 'ENTRY' IN THIS BLOCK DOES NOT.

IBM Library Server Print: ibmmlg01 http://publibfp.dhe.ibm.com/support/libraryserver/PRINT?Book=ibmml...

31 of 52 1/9/2019, 2:39 PM

 | EXPRESSION IN RETURN STATEMENT HAS THE 'DATE' ATTRIBUTE BUT

'RETURNS' OPTION OF AN 'ENTRY' IN THIS BLOCK DOES NOT. 'DATE'

ATTRIBUTE WILL BE IGNORED IF THE INVALID COMBINATION OF 'RETURN'

AND 'ENTRY' IS USED.

Example:

P: PROC(N) RETURNS(CHAR(6) DATE);
E: ENTRY(N) RETURNS(CHAR(6));

DCL N FIXED;
IF N=0 THEN RETURN(DATE());
.
.
.

END;

Explanation: In the example above, the DATE() builtin has the DATE
 attribute but entry E does not.

IEL0899I U PL/I MILLENNIUM LANGUAGE EXTENSIONS (MLE) PRODUCT MUST BE

INSTALLED AND ACCESSIBLE TO THE COMPILER TO USE

RULES(LAXCOMMENT).

THE PL/I MILLENNIUM LANGUAGE EXTENSIONS (MLE) PRODUCT MUST BE

INSTALLED AND ACCESSIBLE TO THE COMPILER TO USE THE

RULES(LAXCOMMENT) COMPILER OPTION. COMPILATION TERMINATED.

Explanation: The use of the RULES(LAXCOMMENT) compiler option requires
 that the VisualAge PL/I Millennium Language Extensions (MLE) product be
 installed and accessible to the PL/I compiler. This product provides Year
 2000 support.

IEL0900I U PL/I MILLENNIUM LANGUAGE EXTENSIONS (MLE) PRODUCT MUST BE

INSTALLED AND ACCESSIBLE TO THE COMPILER TO USE RESPECT(DATE).

THE PL/I MILLENNIUM LANGUAGE EXTENSIONS (MLE) PRODUCT MUST BE

INSTALLED AND ACCESSIBLE TO THE COMPILER TO USE THE

RESPECT(DATE) COMPILER OPTION. COMPILATION TERMINATED.

Explanation: The use of the RESPECT(DATE) compiler option requires that
 the VisualAge Pl/I Millennium Language Extensions (MLE) product be
 installed and accessible to the PL/I compiler. This product provides Year
 2000 support.

IEL0901I U PL/I MILLENNIUM LANGUAGE EXTENSIONS (MLE) PRODUCT MUST BE

INSTALLED AND ACCESSIBLE TO THE COMPILER TO USE 'DAYS' OR

'DAYSTODATE'.

THE PL/I MILLENNIUM LANGUAGE EXTENSIONS (MLE) PRODUCT MUST BE

INSTALLED AND ACCESSIBLE TO THE COMPILER TO USE THE 'DAYS' OR

'DAYSTODATE' BUILTIN. COMPILATION TERMINATED.

Explanation: The use of the DAYS or DAYSTODATE builtins requires that the
 VisualAge PL/I Millennium Language Extensions (MLE) product be installed
 and accessible to the PL/I compiler. This product provides Year 2000
 support.

3.2 PL/I TSO Prompter Messages

IBM Library Server Print: ibmmlg01 http://publibfp.dhe.ibm.com/support/libraryserver/PRINT?Book=ibmml...

32 of 52 1/9/2019, 2:39 PM

IKJ65084I RESPECT SUBFIELD IS MISSING OR INVALID. VALID ARGUMENT IS DATE.

Example:

RESPECT(DATES)

Explanation: The argument for the RESPECT option must be DATE.

Programmer Response: You should reenter a correct value. If you enter a
 null line, the default value is assumed.

IKJ65085I RESPECT DEFAULT ASSUMED

Explanation: You have entered a null line in response to a request to
 reenter the argument for the RESPECT option.

IKJ65086I RULES SUBFIELD IS MISSING OR INVALID. VALID ARGUMENTS ARE

LAXCOM, NOLAXCOM, LAXCOMMENT, OR NOLAXCOMMENT.

Example:

RULES(LAXCMT)

Explanation: The argument for the RULES option must be LAXCOM, NOLAXCOM,
 LAXCOMMENT, or NOLAXCOMMENT. LAXCOM and LAXCOMMENT allow comments of the
 form /*/.

Programmer Response: You should reenter a correct value. If you enter a
 null line, the default value is assumed.

IKJ65087I RULES DEFAULT ASSUMED

Explanation: You have entered a null line in response to a request to
 reenter the argument for the RULES option.

IKJ65088I WINDOW SUBFIELD IS MISSING OR INVALID. VALID VALUES ARE -1

THROUGH -99, 0, 1582 THROUGH 9999.

Example:

WINDOW(1)

Explanation: The argument for the WINDOW option must be a two-digit
 negative integer, zero, or a four-digit positive integer between 1582 and
 9999, inclusive.

IBM Library Server Print: ibmmlg01 http://publibfp.dhe.ibm.com/support/libraryserver/PRINT?Book=ibmml...

33 of 52 1/9/2019, 2:39 PM

Programmer Response: You should reenter a correct value. If you enter a
 null line, the default value is assumed.

IKJ65089I WINDOW DEFAULT ASSUMED

Explanation: You have entered a null line in response to a request to
 reenter the argument for the WINDOW option.

| 4.0 Chapter 4. PL/I VSE MLE Messages

 | This appendix documents information that is NOT intended to be used as
 | Programming Interfaces.

 | The following descriptions are for the PL/I VSE compile-time messages and
 | codes that are either changed or new as a result of VisualAge PL/I
 | Millennium Language Extensions for VSE/ESA. In the case of message
 | IEL02301, a new restriction (299) exists as shown.

Subtopics:

 4.1 Compile-time messages

| 4.1 Compile-time messages

 | IEL0230I U COMPILER ERROR OR RESTRICTION NUMBER 299 DURING PHASE 'II'.

 | Explanation: The program has too many statements that use variables
 | declared with the DATE attribute. Approximately 10,000 references with
 | the DATE attribute are allowed in program statements. For example, in
 | assignment statements, IF statements, etc.

 | Programmer Response: Reduce the usage of variables declared with the DATE
 | attribute, particularly those that are based or subscripted.
 | Alternatively, reduce the usage of the DATE builtin or the usage of
 | functions that return a value with the DATE attribute.

 | IEL0661I W 'DATE' ATTRIBUTE IGNORED IN COMPARISON OF 'DATE' OPERAND WITH

 | NON-DATE CONSTANT.

 | COMPARISON OF 'DATE' OPERAND WITH NON-DATE CONSTANT IS INVALID.

 | THE 'DATE' ATTRIBUTE HAS BEEN IGNORED.

 | Example:

 | DCL X CHAR(6) DATE('YYMMDD');
 | IF X='' THEN ...

 | Explanation: In a comparison, if one operand has the DATE attribute, the
 | other should also. The compiler has corrected this by ignoring the DATE

IBM Library Server Print: ibmmlg01 http://publibfp.dhe.ibm.com/support/libraryserver/PRINT?Book=ibmml...

34 of 52 1/9/2019, 2:39 PM

 | attribute.

 | IEL0662I W CONSTANT IN COMPARISON IS ASSUMED TO HAVE SAME PATTERN AS

 | 'DATE' OPERAND.

 | COMPARISON OF 'DATE' OPERAND WITH CONSTANT HAS BEEN ACCEPTED.

 | CONSTANT IS ASSUMED TO HAVE THE SAME PATTERN AS THE OPERAND WITH

 | THE 'DATE' ATTRIBUTE.

 | Example:

 | DCL X CHAR(6) DATE('YYMMDD');
 | IF X>'971122' THEN ...

 | Explanation: In a comparison, if one operand has the DATE attribute, the
 | other should also. The compiler has corrected this by assuming that the
 | constant has the same DATE attribute. In the example above, the constant
 | '971122' is assumed to have the DATE pattern 'YYMMDD', the same as X.

 | IEL0663I E NON-DATE OPERAND IN COMPARISON IS ASSUMED TO HAVE SAME PATTERN

 | AS 'DATE' OPERAND.

 | COMPARISON OF 'DATE' OPERAND WITH NON-DATE OPERAND IS INVALID.

 | THE NON-DATE OPERAND IS ASSUMED TO HAVE THE SAME PATTERN AS THE

 | OPERAND WITH THE 'DATE' ATTRIBUTE.

 | Example:

 | DCL X CHAR(6) DATE('YYMMDD');
 | DCL Y CHAR(6);
 | IF X>Y THEN ...

 | Explanation: In a comparison, if one operand has the DATE attribute, the
 | other should also. The compiler has corrected this by assuming that the
 | non-DATE operand has the same DATE attribute. In the example above, Y is
 | assumed to have the DATE pattern 'YYMMDD', the same as X.

 | IEL0664I E [PROLOGUE CODE.] 'DATE' ATTRIBUTE OF TARGET D IGNORED IN

 | ASSIGNMENT.

 | [PROLOGUE CODE.] SOURCE IN ASSIGNMENT DOES NOT HAVE THE 'DATE'

 | ATTRIBUTE BUT TARGET D DOES. THE 'DATE' ATTRIBUTE HAS BEEN

 | IGNORED FOR THIS ASSIGNMENT.

 | Example:

 | DCL X CHAR(6) DATE('YYMMDD');
 | DCL Y CHAR(6);
 | X=Y;

 | Explanation: If the target in an assignment statement has the DATE
 | attribute, the source should also. The compiler has corrected this by
 | ignoring the DATE attribute in performing this assignment.

 | For a DO statement, this message may be issued for the initial assignment
 | of the loop control variable or for a 'REPEAT' clause.

 | Note that if the target is a subscripted variable, this message only shows

IBM Library Server Print: ibmmlg01 http://publibfp.dhe.ibm.com/support/libraryserver/PRINT?Book=ibmml...

35 of 52 1/9/2019, 2:39 PM

 | the array name, without any subscripts.

 | IEL0665I E [PROLOGUE CODE.] 'DATE' ATTRIBUTE OF SOURCE IGNORED IN

 | ASSIGNMENT TO TARGET D.

 | [PROLOGUE CODE.] TARGET D IN ASSIGNMENT DOES NOT HAVE THE

 | 'DATE' ATTRIBUTE BUT SOURCE DOES. THE 'DATE' ATTRIBUTE HAS BEEN

 | IGNORED FOR THIS ASSIGNMENT.

 | Example:

 | DCL X CHAR(6);
 | X=DATE();

 | Explanation: If the source in an assignment statement has the DATE
 | attribute, the target should also. The compiler has corrected this by
 | ignoring the DATE attribute in performing this assignment.

 | For a DO statement, this message may be issued for the initial assignment
 | of the loop control variable or for a 'REPEAT' clause.

 | Note that if the target is a subscripted variable, this message only shows
 | the array name, without any subscripts.

 | IEL0666I E [PROLOGUE CODE.] 'DATE' ATTRIBUTE OF SOURCE IGNORED IN

 | ASSIGNMENT.

 | [PROLOGUE CODE.] TARGET IN ASSIGNMENT DOES NOT HAVE THE 'DATE'

 | ATTRIBUTE BUT SOURCE DOES. THE 'DATE' ATTRIBUTE HAS BEEN

 | IGNORED FOR THIS ASSIGNMENT.

 | Example:

 | DCL X CHAR(8);
 | SUBSTR(X,3)=DATE();

 | Explanation: If the source in an assignment statement has the DATE
 | attribute, the target should also. The compiler has corrected this by
 | ignoring the DATE attribute in performing this assignment.

 | For a DO statement, this message may be issued for the initial assignment
 | of the loop control variable or for a 'REPEAT' clause.

 | IEL0667I W [PROLOGUE CODE.] 'DATE' ATTRIBUTE OF TARGET D IGNORED IN

 | ASSIGNMENT.

 | [PROLOGUE CODE.] TARGET D IN ASSIGNMENT HAS THE 'DATE'

 | ATTRIBUTE BUT SOURCE CONSTANT DOES NOT. THE 'DATE' ATTRIBUTE

 | HAS BEEN IGNORED FOR THIS ASSIGNMENT.

 | Example:

 | DCL X CHAR(6) DATE('YYMMDD');
 | X='';
 | X='971027';

 | Explanation: If a constant is used as the source in an assignment, the

IBM Library Server Print: ibmmlg01 http://publibfp.dhe.ibm.com/support/libraryserver/PRINT?Book=ibmml...

36 of 52 1/9/2019, 2:39 PM

 | constant should be assigned to a target that does not have DATE attribute.
 | The compiler has corrected this by ignoring the DATE attribute in
 | performing this assignment.

 | For a DO statement, this message may be issued for the initial assignment
 | of the loop control variable or for a 'REPEAT' clause.

 | Note that if the target is a subscripted variable, this message only shows
 | the array name, without any subscripts.

 | IEL0668I E 'DATE' ATTRIBUTE IGNORED IN COMPARISON OF 'DATE' OPERAND WITH

 | NON-DATE OPERAND.

 | COMPARISON OF 'DATE' OPERAND WITH NON-DATE OPERAND IS INVALID.

 | THE 'DATE' ATTRIBUTE HAS BEEN IGNORED.

 | Example:

 | DCL X CHAR(6) DATE('YYMMDD');
 | DCL Y FIXED BIN(31);
 | IF X=Y THEN ...

 | Explanation: In a comparison, if one operand has the DATE attribute, the
 | other should also. The compiler has corrected this by ignoring the DATE
 | attribute.

 | IEL0678I E 'DATE' ATTRIBUTE OF ARGUMENT N TO BUILTIN T HAS BEEN IGNORED.

 | ARGUMENT NUMBER N TO BUILTIN FUNCTION T MUST NOT HAVE THE 'DATE'

 | ATTRIBUTE. THE 'DATE' ATTRIBUTE HAS BEEN IGNORED.

 | Example:

 | DCL X FIXED DEC(6) DATE;
 | DCL Y FIXED DEC(6);
 | DCL ADD BUILTIN;
 | X=ADD(X,Y,6);

 | Explanation: Variables with the DATE attribute may only be used in
 | comparisons or assignments. The compiler does not support builtin
 | arithmetic that takes into account the DATE pattern of a variable.

 | IEL0679I E 'DATE' ATTRIBUTE HAS BEEN IGNORED IN ARITHMETIC OPERATION.

 | A 'DATE' OPERAND IS NOT VALID IN AN ARITHMETIC OPERATION. THE

 | 'DATE' ATTRIBUTE HAS BEEN IGNORED.

 | Example:

 | DCL X FIXED DEC(6) DATE;
 | X=X+1;

 | Explanation: Variables with the DATE attribute may only be used in
 | comparisons or assignments. The compiler does not support arithmetic that
 | takes into account the DATE pattern of a variable.

IBM Library Server Print: ibmmlg01 http://publibfp.dhe.ibm.com/support/libraryserver/PRINT?Book=ibmml...

37 of 52 1/9/2019, 2:39 PM

 | IEL0696I E [PROLOGUE CODE.] 'DATE' PARAMETER ATTRIBUTE FOR STRUCTURE

 | ELEMENT T IN ARGUMENT N TO ENTRY D HAS BEEN IGNORED.

 | [PROLOGUE CODE.] ARGUMENT NUMBER N TO ENTRY D HAS STRUCTURE

 | ELEMENT T THAT DOES NOT HAVE THE 'DATE' ATTRIBUTE BUT THE

 | CORRESPONDING PARAMETER DOES. THE 'DATE' ATTRIBUTE HAS BEEN

 | IGNORED.

 | Example:

 | DCL X ENTRY(1, 2 CHAR(6) DATE, 2 CHAR(1));
 | DCL 1 ST, 2 STA CHAR(6), 2 STB CHAR(1);
 | CALL X(ST);

 | Explanation: If a parameter descriptor has the DATE attribute, then the
 | corresponding argument should also have the DATE attribute. In the
 | example above, element STA will be diagnosed.

 | Note that if the ENTRY is a subscripted variable, this message only shows
 | the array name, without any subscripts. Also, if the structure element
 | name is not available, for example, because it is a structure expression,
 | the name T shown above is '****'.

 | IEL0697I E [PROLOGUE CODE.] 'DATE' PARAMETER ATTRIBUTE IGNORED FOR

 | ARGUMENT N TO ENTRY D.

 | [PROLOGUE CODE.] ARGUMENT NUMBER N TO ENTRY D DOES NOT HAVE THE

 | 'DATE' ATTRIBUTE BUT THE CORRESPONDING PARAMETER DOES. THE

 | 'DATE' ATTRIBUTE HAS BEEN IGNORED.

 | Example:

 | DCL X ENTRY(CHAR(6) DATE, CHAR(6) DATE);
 | DCL (A,B) CHAR(6);
 | CALL X(A,B);

 | Explanation: If a parameter descriptor has the DATE attribute, then the
 | corresponding argument should also have the DATE attribute. In the
 | example above, both arguments will be diagnosed.

 | Note that if the ENTRY is a subscripted variable, this message only shows
 | the array name, without any subscripts.

 | IEL0698I E [PROLOGUE CODE.] 'DATE' ATTRIBUTE OF STRUCTURE ELEMENT T IN

 | ARGUMENT N TO ENTRY D HAS BEEN IGNORED.

 | [PROLOGUE CODE.] ARGUMENT NUMBER N TO ENTRY D HAS STRUCTURE

 | ELEMENT T THAT HAS THE 'DATE' ATTRIBUTE BUT THE CORRESPONDING

 | PARAMETER DOES NOT. THE 'DATE' ATTRIBUTE HAS BEEN IGNORED.

 | Example:

 | DCL X ENTRY(1, 2 CHAR(6), 2 CHAR(1));
 | DCL 1 ST, 2 STA CHAR(6) DATE, 2 STB CHAR(1);
 | CALL X(ST);

 | Explanation: If an argument has the DATE attribute, then the
 | corresponding parameter should also have the DATE attribute. In the
 | example above, element STA will be diagnosed.

IBM Library Server Print: ibmmlg01 http://publibfp.dhe.ibm.com/support/libraryserver/PRINT?Book=ibmml...

38 of 52 1/9/2019, 2:39 PM

 | Note that if the ENTRY is a subscripted variable, this message only shows
 | the array name, without any subscripts. Also, if the structure element
 | name is not available for example because it is a structure expression,
 | the name T shown above is '****'.

 | IEL0699I E [PROLOGUE CODE.] 'DATE' ATTRIBUTE OF ARGUMENT N TO ENTRY D HAS

 | BEEN IGNORED.

 | [PROLOGUE CODE.] ARGUMENT NUMBER N TO ENTRY D HAS THE 'DATE'

 | ATTRIBUTE BUT THE CORRESPONDING PARAMETER DOES NOT. THE 'DATE'

 | ATTRIBUTE HAS BEEN IGNORED.

 | Example:

 | DCL X ENTRY(CHAR(6), CHAR(6));
 | DCL (A,B) CHAR(6) DATE;
 | CALL X(A,B);

 | Explanation: If an argument has the DATE attribute, then the
 | corresponding parameter descriptor should also have the DATE attribute.
 | In the example above, both arguments will be diagnosed.

 | Note that if the ENTRY is a subscripted variable, this message only shows
 | the array name, without any subscripts.

 | IEL0700I W [PROLOGUE CODE.] 'DATE' PARAMETER ATTRIBUTE IGNORED FOR

 | ARGUMENT N TO ENTRY D.

 | [PROLOGUE CODE.] ARGUMENT NUMBER N TO ENTRY D DOES NOT HAVE THE

 | 'DATE' ATTRIBUTE BUT THE CORRESPONDING PARAMETER DOES. THE

 | 'DATE' ATTRIBUTE HAS BEEN IGNORED.

 | Example:

 | DCL X ENTRY(CHAR(6) DATE);
 | CALL X('971231');

 | Explanation: If a parameter descriptor has the DATE attribute, then the
 | corresponding argument should also have the DATE attribute. In the
 | example above, the character constant argument will be diagnosed with this
 | warning message.

 | Note that if the ENTRY is a subscripted variable, this message only shows
 | the array name, without any subscripts.

 | IEL0744I S 'DATE' PATTERN OF D IS INVALID.

 | 'DATE' PATTERN IN DECLARATION OF D IS INVALID. 'DATE' ATTRIBUTE

 | HAS BEEN IGNORED.

 | Example:

 | DCL X CHAR(6) DATE('YYDDDD');
 | DCL Y CHAR(6) DATE('yymmdd');

 | Explanation: In the example above, 'YYDDDD' and 'yymmdd' will be
 | diagnosed.

IBM Library Server Print: ibmmlg01 http://publibfp.dhe.ibm.com/support/libraryserver/PRINT?Book=ibmml...

39 of 52 1/9/2019, 2:39 PM

 | IEL0745I S 'DATE' ATTRIBUTE OF D IS ONLY VALID WITH NON-VARYING CHARACTER

 | OR ARITHMETIC PICTURE OR FIXED DECIMAL.

 | 'DATE' ATTRIBUTE IS ONLY VALID WITH NON-VARYING CHARACTER OR

 | ARITHMETIC PICTURE OR FIXED DECIMAL. 'DATE' ATTRIBUTE IGNORED

 | IN DECLARATION OF D.

 | Example:

 | DCL W CHAR(6) DATE VARYING;
 | DCL X FIXED BIN(31) DATE;
 | DCL Y FIXED DEC(6) DATE COMPLEX;
 | DCL Z GRAPHIC(6) DATE;
 | DCL P PIC'999999' DATE COMPLEX;

 | Explanation: This message may be issued when incorrect attributes are
 | specified for a variable declaration, parameter descriptor, or a function
 | reference return.

 | IEL0746I S CHARACTER OR PICTURE LENGTH OF D MUST BE A CONSTANT AND MUST

 | MATCH DATE PATTERN LENGTH.

 | CHARACTER OR PICTURE LENGTH MUST BE A CONSTANT AND MUST MATCH

 | THE LENGTH OF THE DATE PATTERN. 'DATE' ATTRIBUTE IGNORED IN

 | DECLARATION OF D.

 | Example:

 | DCL X CHAR(*) CONTROLLED DATE;
 | DCL Y CHAR(N) DATE;
 | DCL Z PIC'9999' DATE('YY');

 | IEL0747I S DECIMAL PRECISION OF D MUST MATCH DATE PATTERN LENGTH.

 | DECIMAL PRECISION MUST MATCH THE LENGTH OF THE DATE PATTERN.

 | 'DATE' ATTRIBUTE IGNORED IN DECLARATION OF D.

 | Example:

 | DCL X FIXED DEC(8) DATE('YYDDD');
 | DCL Y FIXED DEC(9) DATE;

 | IEL0748I S DECIMAL SCALING FACTOR OF D MUST BE ZERO WITH 'DATE' ATTRIBUTE.

 | DECIMAL SCALING FACTOR MUST BE ZERO WHEN 'DATE' ATTRIBUTE IS

 | SPECIFIED. 'DATE' ATTRIBUTE IGNORED IN DECLARATION OF D.

 | Example:

 | DCL X FIXED DEC(5,3) DATE('YYDDD');

IBM Library Server Print: ibmmlg01 http://publibfp.dhe.ibm.com/support/libraryserver/PRINT?Book=ibmml...

40 of 52 1/9/2019, 2:39 PM

 | DCL Y FIXED DEC(6,2) DATE;

 | IEL0749I S PICTURE SPECIFICATION OF D MUST BE ALL 9'S WITH 'DATE'

 | ATTRIBUTE.

 | PICTURE SPECIFICATION MUST BE ALL 9'S WHEN 'DATE' ATTRIBUTE IS

 | SPECIFIED. 'DATE' ATTRIBUTE IGNORED IN DECLARATION OF D.

 | Example:

 | DCL X PIC'99XXX' DATE('YYDDD');
 | DCL Y PIC'AAAAAA' DATE;

 | IEL0754I S DATE PATTERN OF D WITH ALPHABETIC CHARACTERS IS ONLY VALID WITH

 | CHARACTER DATA.

 | A DATE PATTERN WITH ALPHABETIC CHARACTERS IS ONLY VALID WITH THE

 | CHARACTER DATA TYPE. 'DATE' ATTRIBUTE IGNORED IN DECLARATION OF

 | D.

 | Example:

 | DCL X FIXED DEC(7) DATE('YYMmmDD');
 | DCL Y PIC'9999999' DATE('YYMMMDD');

 | Explanation: A DATE pattern with alphabetic characters can only be
 | declared with the character data type versus the arithmetic data type.

 | IEL0780I E 'DATE' ATTRIBUTE IGNORED IN ARITHMETIC OPERATION GENERATED FOR

 | 'BY' CLAUSE.

 | 'DATE' OPERAND IS NOT VALID IN ARITHMETIC OPERATION GENERATED

 | FOR 'BY' CLAUSE. THE 'DATE' ATTRIBUTE HAS BEEN IGNORED.

 | Example:

 | DCL D FIXED DEC(6) DATE;
 | DO I=1 TO N BY D;
 | DO D=1 TO N BY 1;

 | Explanation: Variables with the DATE attribute may only be used in
 | comparisons or assignments. The compiler does not support arithmetic that
 | takes into account the DATE pattern of a variable. In particular, this
 | applies to the arithmetic operation implicitly generated for the BY clause
 | of a DO statement. The compiler has corrected this by ignoring the DATE
 | attribute.

 | IEL0781I W 'DATE' ATTRIBUTE OF CONTROL VARIABLE IGNORED IN 'TO' CLAUSE

 | COMPARISON.

 | COMPARISON OF CONTROL VARIABLE WITH NON-DATE CONSTANT IS

IBM Library Server Print: ibmmlg01 http://publibfp.dhe.ibm.com/support/libraryserver/PRINT?Book=ibmml...

41 of 52 1/9/2019, 2:39 PM

 | INVALID. THE 'DATE' ATTRIBUTE OF THE CONTROL VARIABLE HAS BEEN

 | IGNORED IN THE 'TO' CLAUSE COMPARISON.

 | Example:

 | DCL N FIXED DEC(6) DATE;
 | DO N=1 TO 20;

 | Explanation: In a comparison, if one operand has the DATE attribute, the
 | other should also. In particular, this applies to the comparison
 | implicitly generated for the TO clause of a DO statement control variable.
 | The compiler has corrected this by ignoring the DATE attribute of the
 | control variable.

 | IEL0782I W CONSTANT IN 'TO' CLAUSE IS ASSUMED TO HAVE SAME 'DATE' PATTERN

 | AS CONTROL VARIABLE.

 | COMPARISON OF CONTROL VARIABLE WITH CONSTANT HAS BEEN ACCEPTED.

 | CONSTANT IN 'TO' CLAUSE IS ASSUMED TO HAVE THE SAME 'DATE'

 | PATTERN AS THE CONTROL VARIABLE.

 | Example:

 | DCL N FIXED DEC(5) DATE('YYDDD');
 | DO N=1 TO 97030;

 | Explanation: In a comparison, if one operand has the DATE attribute, the
 | other should also. In particular, this applies to the comparison
 | implicitly generated for the TO clause of a DO statement control variable.
 | The compiler has corrected this by assuming that the constant in the TO
 | clause has the same DATE attribute as the DO statement control variable.
 | In the example above, the constant 97030 is assumed to have the DATE
 | pattern 'YYDDD', the same as N.

 | IEL0783I E NON-DATE OPERAND IN 'TO' CLAUSE COMPARISON IS ASSUMED TO HAVE

 | SAME PATTERN AS 'DATE' OPERAND.

 | COMPARISON OF 'DATE' OPERAND WITH NON-DATE OPERAND IS INVALID.

 | THE NON-DATE OPERAND IS ASSUMED TO HAVE THE SAME PATTERN AS THE

 | 'DATE' OPERAND IN THE 'TO' CLAUSE COMPARISON.

 | Example:

 | DCL N FIXED DEC(5) DATE('YYDDD');
 | DCL M FIXED DEC(5);
 | DO N=1 TO M;
 | DO M=1 TO N;

 | Explanation: In a comparison, if one operand has the DATE attribute, the
 | other should also. In particular, this applies to the comparison
 | implicitly generated for the TO clause of a DO statement control variable.
 | The compiler has corrected this by assuming that the non-DATE operand has
 | the same DATE attribute as the DATE operand. In the preceding examples, M
 | is assumed to have the DATE pattern 'YYDDD', the same as N.

 | IEL0784I E 'DATE' ATTRIBUTE IGNORED IN 'TO' CLAUSE COMPARISON.

 | COMPARISON OF 'DATE' OPERAND WITH NON-DATE OPERAND IS INVALID.

 | THE 'DATE' ATTRIBUTE HAS BEEN IGNORED IN THE 'TO' CLAUSE

IBM Library Server Print: ibmmlg01 http://publibfp.dhe.ibm.com/support/libraryserver/PRINT?Book=ibmml...

42 of 52 1/9/2019, 2:39 PM

 | COMPARISON.

 | Example:

 | DCL N FIXED DEC(6) DATE;
 | DCL M FIXED BIN(31);
 | DO N=1 TO M;

 | Explanation: In a comparison, if one operand has the DATE attribute, the
 | other should also. In particular, this applies to the comparison
 | implicitly generated for the TO clause of a DO statement control variable.
 | The compiler has corrected this by ignoring the DATE attribute.

 | IEL0793I E 'DATE' ATTRIBUTE OF PROCEDURE 'RETURNS' OPTION HAS BEEN

 | IGNORED.

 | EXPRESSION IN RETURN STATEMENT DOES NOT HAVE THE 'DATE'

 | ATTRIBUTE BUT 'RETURNS' OPTION OF THE PROCEDURE DOES. 'DATE'

 | ATTRIBUTE HAS BEEN IGNORED.

 | Example:

 | P: PROC RETURNS(CHAR(6) DATE);
 | DCL C CHAR(6);
 | RETURN(C);
 | END;

 | Explanation: In the example above, C does not have the DATE attribute,
 | but the procedure P does.

 | IEL0794I E 'DATE' ATTRIBUTE OF RETURNED EXPRESSION HAS BEEN IGNORED.

 | EXPRESSION IN RETURN STATEMENT HAS THE 'DATE' ATTRIBUTE BUT

 | 'RETURNS' OPTION OF THE PROCEDURE DOES NOT. 'DATE' ATTRIBUTE

 | HAS BEEN IGNORED.

 | Example:

 | P: PROC RETURNS(CHAR(6));
 | RETURN(DATE());
 | END;

 | Explanation: In the example above, builtin DATE() has the DATE attribute,
 | but the procedure P does not.

 | IEL0795I W RETURNED EXPRESSION DOES NOT HAVE THE 'DATE' ATTRIBUTE BUT

 | 'RETURNS' OPTION OF AN 'ENTRY' IN THIS BLOCK DOES.

 | EXPRESSION IN RETURN STATEMENT DOES NOT HAVE THE 'DATE'

 | ATTRIBUTE BUT 'RETURNS' OPTION OF AN 'ENTRY' IN THIS BLOCK DOES.

 | 'DATE' ATTRIBUTE WILL BE IGNORED IF THE INVALID COMBINATION OF

 | 'RETURN' AND 'ENTRY' IS USED.

 | Example:

 | P: PROC(N) RETURNS(CHAR(6) DATE);
 | E: ENTRY(N) RETURNS(CHAR(6));
 | DCL N FIXED;

IBM Library Server Print: ibmmlg01 http://publibfp.dhe.ibm.com/support/libraryserver/PRINT?Book=ibmml...

43 of 52 1/9/2019, 2:39 PM

 | DCL C CHAR(6);
 | IF N=0 THEN RETURN('970704');
 | ELSE RETURN(C);
 | .
 | .
 | .
 | END;

 | Explanation: In the example above, both RETURN statements will be flagged
 | with this message.

 | IEL0796I W RETURNED EXPRESSION HAS THE 'DATE' ATTRIBUTE BUT 'RETURNS'

 | OPTION OF AN 'ENTRY' IN THIS BLOCK DOES NOT.

 | EXPRESSION IN RETURN STATEMENT HAS THE 'DATE' ATTRIBUTE BUT

 | 'RETURNS' OPTION OF AN 'ENTRY' IN THIS BLOCK DOES NOT. 'DATE'

 | ATTRIBUTE WILL BE IGNORED IF THE INVALID COMBINATION OF 'RETURN'

 | AND 'ENTRY' IS USED.

 | Example:

 | P: PROC(N) RETURNS(CHAR(6) DATE);
 | E: ENTRY(N) RETURNS(CHAR(6));
 | DCL N FIXED;
 | IF N=0 THEN RETURN(DATE());
 | .
 | .
 | .
 | END;

 | Explanation: In the example above, the DATE() builtin has the DATE
 | attribute but entry E does not.

 | IEL0899I U PL/I MILLENNIUM LANGUAGE EXTENSIONS (MLE) PRODUCT MUST BE

 | INSTALLED AND ACCESSIBLE TO THE COMPILER TO USE

 | RULES(LAXCOMMENT).

 | THE PL/I MILLENNIUM LANGUAGE EXTENSIONS (MLE) PRODUCT MUST BE

 | INSTALLED AND ACCESSIBLE TO THE COMPILER TO USE THE

 | RULES(LAXCOMMENT) COMPILER OPTION. COMPILATION TERMINATED.

 | Explanation: The use of the RULES(LAXCOMMENT) compiler option requires
 | that the VisualAge PL/I Millennium Language Extensions (MLE) product be
 | installed and accessible to the PL/I compiler. This product provides Year
 | 2000 support.

 | IEL0900I U PL/I MILLENNIUM LANGUAGE EXTENSIONS (MLE) PRODUCT MUST BE

 | INSTALLED AND ACCESSIBLE TO THE COMPILER TO USE RESPECT(DATE).

 | THE PL/I MILLENNIUM LANGUAGE EXTENSIONS (MLE) PRODUCT MUST BE

 | INSTALLED AND ACCESSIBLE TO THE COMPILER TO USE THE

 | RESPECT(DATE) COMPILER OPTION. COMPILATION TERMINATED.

 | Explanation: The use of the RESPECT(DATE) compiler option requires that
 | the VisualAge Pl/I Millennium Language Extensions (MLE) product be
 | installed and accessible to the PL/I compiler. This product provides Year
 | 2000 support.

IBM Library Server Print: ibmmlg01 http://publibfp.dhe.ibm.com/support/libraryserver/PRINT?Book=ibmml...

44 of 52 1/9/2019, 2:39 PM

 | IEL0901I U PL/I MILLENNIUM LANGUAGE EXTENSIONS (MLE) PRODUCT MUST BE

 | INSTALLED AND ACCESSIBLE TO THE COMPILER TO USE 'DAYS' OR

 | 'DAYSTODATE'.

 | THE PL/I MILLENNIUM LANGUAGE EXTENSIONS (MLE) PRODUCT MUST BE

 | INSTALLED AND ACCESSIBLE TO THE COMPILER TO USE THE 'DAYS' OR

 | 'DAYSTODATE' BUILTIN. COMPILATION TERMINATED.

 | Explanation: The use of the DAYS or DAYSTODATE builtins requires that the
 | VisualAge PL/I Millennium Language Extensions (MLE) product be installed
 | and accessible to the PL/I compiler. This product provides Year 2000
 | support.

BIBLIOGRAPHY Bibliography

Subtopics:

 BIBLIOGRAPHY.1 PL/I for MVS & VM Publications
 BIBLIOGRAPHY.2 PL/I VSE Publications
 BIBLIOGRAPHY.3 VisualAge PL/I Millennium Language Extensions for MVS & VM Publications
 BIBLIOGRAPHY.4 VisualAge PL/I Millennium Language Extensions for VSE/ESA Publications
 BIBLIOGRAPHY.5 Language Environment for MVS & VM Publications
 BIBLIOGRAPHY.6 OS/390 Language Environment Publications
 BIBLIOGRAPHY.7 Language Environment for VSE/ESA Publications
 BIBLIOGRAPHY.8 VisualAge PL/I Enterprise (OS/2 and Windows)
 BIBLIOGRAPHY.9 Softcopy Publications

BIBLIOGRAPHY.1 PL/I for MVS & VM Publications

 ° Licensed Program Specifications, GC26-3116

 ° Installation and Customization under MVS, SC26-3119

 ° Compiler and Run-Time Migration Guide, SC26-3118

 ° Programming Guide, SC26-3113

 ° Language Reference, SC26-3114

 ° Reference Summary, SX26-3821

 ° Compile-Time Messages and Codes, SC26-3229

 ° Diagnosis Guide, SC26-3149

| BIBLIOGRAPHY.2 PL/I VSE Publications

 | Fact Sheet, GC26-8052

 | Licensed Program Specifications, GC26-8055

 | Installation and Customization Guide, SC26-8057

 | Migration Guide, SC26-8056

IBM Library Server Print: ibmmlg01 http://publibfp.dhe.ibm.com/support/libraryserver/PRINT?Book=ibmml...

45 of 52 1/9/2019, 2:39 PM

 | Programming Guide, SC26-8053

 | Language Reference, SC26-8054

 | Reference Summary, SX26-3836

 | Compile-Time Messages and Codes, SC26-8059

 | Diagnosis Guide, SC26-8058

BIBLIOGRAPHY.3 VisualAge PL/I Millennium Language Extensions for MVS & VM

Publications

 ° Licensed Program Specifications, GC26-9323

 ° Installation and Customization under MVS, SC26-3119

 ° PL/I Millennium Language Extensions Guide, GC26-9324

| BIBLIOGRAPHY.4 VisualAge PL/I Millennium Language Extensions for VSE/ESA

Publications

 | ° Licensed Program Specifications, GC26-9418

 | ° Installation and Customization Guide, SC26-8057

 | ° PL/I Millennium Language Extensions Guide, GC26-9324

BIBLIOGRAPHY.5 Language Environment for MVS & VM Publications

 ° Fact Sheet, GC26-4785

 ° Concepts Guide, GC26-4786

 ° Licensed Program Specifications, GC26-4774

 ° Installation and Customization under MVS, SC26-4817

 ° Programming Guide, SC26-4818

 ° Programming Reference, SC26-3312

 ° Debugging Guide and Run-Time Messages, SC26-4829

 ° Writing Interlanguage Communication Applications, SC26-8351

 ° Run-Time Migration Guide, SC26-8232

 ° Master Index,SC26-3427

IBM Library Server Print: ibmmlg01 http://publibfp.dhe.ibm.com/support/libraryserver/PRINT?Book=ibmml...

46 of 52 1/9/2019, 2:39 PM

BIBLIOGRAPHY.6 OS/390 Language Environment Publications

 ° Concepts Guide, GC28-1945

 ° Programming Guide, SC28-1939

 ° Programming Reference, SC28-1940

 ° Customization, SC28-1941

 ° Debugging Guide and Run-Time Messages, SC28-1942

 ° Run-Time Migration Guide, SC28-1944

 ° Writing Interlanguage Applications, SC28-1943

| BIBLIOGRAPHY.7 Language Environment for VSE/ESA Publications

 | Fact Sheet, GC33-6679

 | Concepts Guide, GC33-6680

 | Licensed Program Specifications, GC33-6683

 | Installation and Customization Guide, SC33-6682

 | Programming Guide, SC33-6684

 | Programming Reference, SC33-6685

 | Debugging Guide and Run-Time Messages, SC33-6681

 | Writing Interlanguage Communication Applications, SC33-6686

 | Run-Time Migration Guide, SC33-6687

 | C Run-Time Library Reference, SC33-6689

 | C Run-Time Programming Guide, SC33-6688

BIBLIOGRAPHY.8 VisualAge PL/I Enterprise (OS/2 and Windows)

 ° Programming Guide, GC26-9177

 ° Language Reference, GC26-9178

 ° Messages and Codes, GC26-9179

 ° Building GUIs on OS/2, GC26-9180

IBM Library Server Print: ibmmlg01 http://publibfp.dhe.ibm.com/support/libraryserver/PRINT?Book=ibmml...

47 of 52 1/9/2019, 2:39 PM

BIBLIOGRAPHY.9 Softcopy Publications

 Online publications are distributed on CD-ROMs and can be ordered from
 Mechanicsburg through your IBM representative. PL/I books are distributed
 on the following collection kit:

 ° MVS Collection Kit, SK2T-0710
 ° OS/390 Collection Kit, SK2T-6700
 ° VM Collection Kit, SK2T-2067
 | ° VSE Collection Kit, SK2T-0060
 ° Messages & Codes Collection Kit, SK2T-2068

 INDEX Index

A

 assignments with dates

B

 built-in functions
 DAYS, 2.3.1
 DAYSTODATE, 2.3.2

C

 calculations using dates, 2.4.1
 century window
 defining, 1.3.1
 determining, 1.4.2
 comparing dates
 implicit, 2.4.3
 using literals, 2.4.3.3
 using non-literals, 2.4.3.4
 with differing patterns, 2.4.3.2
 with like patterns, 2.4.1.1

2.4.3.1
 compile-time options
 RESPECT, 1.4.2

2.1.2
 RULES, 2.1.4
 WINDOW, 1.4.2

2.1.3
 converting dates, 2.4.1.2

D

 DATE attribute
 definition and syntax, 2.1.1

IBM Library Server Print: ibmmlg01 http://publibfp.dhe.ibm.com/support/libraryserver/PRINT?Book=ibmml...

48 of 52 1/9/2019, 2:39 PM

 flagging with messages, 2.5
 when ignored, 2.4.4
 DAYS built-in function, 2.3.1
 DAYSTODATE built-in function, 2.3.2
 diagnostics, 2.5

E

 expanding date fields, 1.1

M

 messages
 compile-time, PL/I for MVS & VM, 3.0
 compile-time, PL/I VSE, 4.0
 TSO prompter, 3.2
 millennium language extensions
 benefits, 1.2.1
 defining, 1.2
 limitations, 1.2.2
 preliminary testing, 1.3.3
 sample problem, 1.4.1
 sample solution, 1.4.2
 using in PL/I applications, 2.0
 using with the SQL preprocessor, 2.6

P

 patterns for dates, 2.2

R

 RESPECT compile-time option, 1.4.2
2.1.2

 RULES compile-time option, 2.1.4

S

 SQL preprocessor, 2.6
 subtracting dates, 2.4.1.3

U

 using millennium language extensions
 date patterns, 2.2
 language features, 2.1

W

IBM Library Server Print: ibmmlg01 http://publibfp.dhe.ibm.com/support/libraryserver/PRINT?Book=ibmml...

49 of 52 1/9/2019, 2:39 PM

 WINDOW compile-time option, 1.4.2
2.1.3

 windowing
 converting dates, 1.3.2.2
 implementing as a solution, 1.3
 determining when appropriate, 1.3.1
 process, 1.3.2
 potential solution for year 2000, 1.1
 subsystems with no support, 1.3.2.3
 using PL/I coding, 1.3.2.2

Y

 year 2000 challenge
 choosing a solution, 1.1
 defining, 1.0

BACK_1 We'd Like to Hear from You

 PL/I
 Millennium Language Extensions Guide

 Publication No. GC26-9324-01

 Please use one of the following ways to send us your comments about this
 book:

 ° Mail--Print and use the Readers' Comments form on the next page. To
 print the form, select Print or Copy from the Services pull-down menu.
 Enter COMMENTS as the topic to be printed or copied. Mail the
 completed form to:

 IBM Corporation, Department W92/H3
 P.O. Box 49023
 San Jose, CA 95161-9023
 U.S.A.

 If you are sending the form from a country other than the United
 States, give it to your local IBM branch office or IBM representative
 for mailing.

 ° Fax--Print and use the Readers' Comments form on the next page and fax
 it to this U.S. number: 800-426-7773. To print the form, follow the
 instructions under "Mail."

 ° Electronic mail--Use the following network ID:

 Internet: COMMENTS@VNET.IBM.COM

 Be sure to include the following with your comments:

 - Title and publication number of this book
 - Your name, address, and telephone number if you would like a reply

 Your comments should pertain only to the information in this book and the
 way the information is presented. To request additional publications, or

IBM Library Server Print: ibmmlg01 http://publibfp.dhe.ibm.com/support/libraryserver/PRINT?Book=ibmml...

50 of 52 1/9/2019, 2:39 PM

 to comment on other IBM information or the function of IBM products,
 please give your comments to your IBM representative or to your IBM
 authorized remarketer.

 IBM may use or distribute your comments without obligation.

COMMENTS Readers' Comments

 PL/I
 Millennium Language Extensions Guide

 Publication No. GC26-9324-01

 How satisfied are you with the information in this book?

 Legend: 1 Very satisfied
 2 Satisfied
 3 Neutral
 4 Dissatisfied
 5 Very dissatisfied

 Please circle the number that corresponds to the level of your
 satisfaction.

 Technically accurate 1 2 3 4 5
 Complete 1 2 3 4 5
 Easy to find 1 2 3 4 5
 Easy to understand 1 2 3 4 5
 Well organized 1 2 3 4 5
 Applicable to your tasks 1 2 3 4 5
 Grammatically correct and consistent 1 2 3 4 5
 Graphically well designed 1 2 3 4 5
 Overall satisfaction 1 2 3 4 5

 Please tell us how we can improve this book:

IBM Library Server Print: ibmmlg01 http://publibfp.dhe.ibm.com/support/libraryserver/PRINT?Book=ibmml...

51 of 52 1/9/2019, 2:39 PM

 May we contact you to discuss your comments? Yes No

 Name ___
 Company or Organization ___
 Address ___

 Phone No. ___

IBM Library Server Print Preview

DOCNUM = GC26-9324-01
DATETIME = 05/27/98 01:56:56

BLDVERS = 1.2
TITLE = PL/I Millennium Language Extensions Guide

AUTHOR =
COPYR = © Copyright IBM Corp. 1998

PATH = /home/webapps/epubs/htdocs/book

IBM Library Server Print: ibmmlg01 http://publibfp.dhe.ibm.com/support/libraryserver/PRINT?Book=ibmml...

52 of 52 1/9/2019, 2:39 PM

