
Copyright IBM Corp. 2008 , 2010 How to use Encryption Facility for z/VSE
___ _________

__
Page 1 of 24

How to use Encryption Facility for z/VSE

Encryption Facility for z/VSE V1.1
Encryption Facility for z/OS V1.1

z/OS Java Client

Last formatted on: Friday, November 19, 2010

Joerg Schmidbauer

jschmidb@de.ibm.com

Dept. 3229
VSE Development

IBM Lab Bo blingen
Scho naicherstr. 220

D-71032 Bo blingen

Germany

Copyright IBM Corp. 2008 , 2010 How to use Encryption Facility for z/VSE
___ _________

__
Page 2 of 24

Disclaimer

This publication is intended to help VSE system programmers setting up infrastructure for their operating
environment. The information contained in this document has not been submitted to any formal IBM test
and is distributed AS IS. The information about non-IBM ("vendor") products in this manual has been
supplied by the vendor and IBM assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer responsibility and depends on
the customer's ability to evaluate and integrate them into the customer's operational environment. While
each item may have been reviewed by IBM for accuracy in a specific situation, there is no guarantee that
the same or similar results will be obtained elsewhere. Customers attempting to adapt these techniques to
their own environments do so at their own risk. Any pointers in this publication to external Web sites are
provided for convenience only and do not in any manner serve as an endorsement of these Web sites.

Any performance data contained in this document was determined in a controlled environment, and
therefore, the results that may be obtained in other operating environments may vary significantly. Users of
this document should verify the applicable data for their specific environment. Reference to PTF numbers
that have not been released through the normal distribution process does not imply general availability. The
purpose of including these reference numbers is to alert IBM customers to specific information relative to
the implementation of the PTF when it becomes available to each customer according to the normal IBM
PTF distribution process.

The following terms are trademarks of other companies:

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and/or other countries.
Microsoft, Windows, Windows XP, and the Windows logo are trademarks of Microsoft Corporation in the
United States and/or other countries.

Copyright IBM Corp. 2008 , 2010 How to use Encryption Facility for z/VSE
___ _________

__
Page 3 of 24

Contents

1 Introduction 4
2 Encryption Facility for z/VSE 4

2.1 Prerequisites 5
2.2 Corrective service................................ 5
2.3 Relationship to Encryption Facility for z/OS 5
2.4 Obtaining the z/OS Java Client 6
2.5 Relationship to the TS1120 tape drive 6

3 Performance considerations................................ 7
4 Password-based encryption 8

4.1 Encrypting on VSE................................ 8
4.2 Decrypting on VSE 10

5 Public-key encryption................................ 10
5.1 Encrypting on VSE................................ 11

5.1.1 Creating an RSA key pair using the keytool.exe 11
5.1.2 Exporting the public key from the Java keystore................................ 11
5.1.3 Import public key certificate into Keyman/VSE................................ 12
5.1.4 Upload public key certificate to VSE keyring library................................ 13
5.1.5 Do the encryption on VSE 14
5.1.6 Decrypting locally 14
5.1.7 Encrypting for multiple recipients 15

5.2 Decrypting on VSE 15
5.2.1 Create RSA key pair using Keyman/VSE................................ 16
5.2.2 Upload the private key to VSE 16
5.2.3 Export the public key into a Java keystore 17
5.2.4 Encrypt locally................................ 19
5.2.5 Do the decryption on VSE 19

6 Using record-based files 20
6.1 Encrypting on z/OS 20
6.2 Decrypting on VSE 21
6.3 Encrypting on VSE................................ 21
6.4 Decrypting on z/OS 22
6.5 EBCDIC to ASCII considerations 22

7 Known problems................................ 22
7.1 Misaligned records after decryption on VSE 22
7.2 Using CA DynamT................................ 23

8 More information................................ 23

Changes

Nov 12, 2008 “ initial version.
Dec 2008 “ some minor textual changes
Apr 2009 “ added new section ”Corrective service„
June 2010 “ update on ”corrective service„ and new sections ”Using record-based files„ and ”Known
problems„
July 2010 “ new section ”Using CA DynamT„ on page 23

Copyright IBM Corp. 2008 , 2010 How to use Encryption Facility for z/VSE
___ _________

__
Page 4 of 24

1 Introduction

This paper describes the use of Encryption Facility for z/VSE V1.1 and how to exchange encrypted data
with Encryption Facility for z/OS V1.1 and the z/OS Java Client.

The following software has been used in the test setup.

• z/VSE 4.2.0
• TCP/IP for VSE/ESA 1.5F with ZP15F230
• VSE Connector Server as part of z/VSE 4.2.0 (job STARTVCS)
• Java 1.6.0_05 from Sun Microsystems
• keytool.exe as part of Java 1.6.0
• Keyman/VSE (build date Oct 2007)
• Encryption Facility for z/VSE V1.1
• IBM Java Client as part of IBM Encryption Facility for z/OS Client V1.2

2 Encryption Facility for z/VSE

Encryption Facility for z/VSE, program number 5686-CF8-40, is an optional priced feature and provides
data protection by offering the encryption of data for exchange, archiving, and backup purposes. It is a
software-based tool and eligible for MWLC pricing. Depending on the kind of processor and the type of
cryptographic hardware that you have installed, the Encryption Facility for z/VSE uses hardware-
accelerated crypto support for encryption and decryption.

Supported file formats include single SAM files, VSAM files or VSE Library members, but also complete
backups made with any backup tool either from IBM or vendors. For single VSAM files or VSE Library
members the filenames are specified directly in the JCL invoking the tool. For full backups, you would
first backup your data using any available backup tool to a real tape or virtual tape, and in a second step
encrypt this backup tape to an encrypted dataset, which can be written to a second real tape, virtual tape, or
DASD.

Encryption Facility for z/VSE makes use of triple-DES (TDES) and AES-128 algorithms for data
encryption. On a system with TCP/IP for VSE/ESA, you can use Encryption Facility for z/VSE to generate
TDES and AES keys and encrypt them for protection through RSA public keys of lengths 512, 1024, and
2048, but also using passwords to generate the encryption key. Password-based key generation is an option
as well. RSA keys with key lengths of 2048 bit require a PCIXCC, Crypto Express2, or Crypto Express3
card.

On systems without TCP/IP for VSE/ESA (or equivalent), you can only use passwords for the generation of
clear TDES and AES keys.

Documentation about Encryption Facility for z/VSE V1.1 is contained in the z/VSE V4.1 and V4.2
Administration Guide, available online at

http://www.ibm.com/servers/eserver/zseries/zvse/documentation/#vse

For commands and options refer to the Administration Guide.

Copyright IBM Corp. 2008 , 2010 How to use Encryption Facility for z/VSE
___ _________

__
Page 5 of 24

2.1 Prerequisites

To use Encryption Facility for z/VSE V1.1 you must have

• Activated the CPU Assist Facility (CPACF, feature code #3863), which is available on z890,
z990, z9, and z10 processors

• TCP/IP for VSE/ESA 1.5E or higher for public key encryption
• TCP/IP fix ZP15F230 for 2048 bit RSA keys
• A Crypto Express2 or equivalent for processing 2048 bit RSA keys
• At least 8 MB partition size due to the fact that the tool is an LE/VSE application.

Recommended fixes:

• TCP/IP fix ZP15F246, which solves the problem of getting a program check when trying to read a
public key from a CERT member which does not exist

2.2 Corrective service

The following APARs and PTFs are currently available for Encryption Facility for z/VSE V1.1 and V1.2.

APAR PTF Date Description
DY47051 UD53499 April 2009 Fixed problem "ERROR: NOT ALL DATA HAS BEEN

PROCESSED" when encrypting/decrypting a
CLRTAPE.

DY47097
DY47098

UD53550
UD53551

Feb 2010 Encryption Facility: problems fixed:
IJBEFIO (DY47097 and DY47098):
- LE return code handling
IJBEFPGP (DY47098 only):
- handle rc < 0 for rec_read and strm_read
- don't initialize/use ZLIB library when compression

level = 0
- return with correct rc from main()
- use info from RECORDINFO packet when opening

the output file for decryption.
LE APAR PM06694 fixes the problem of a program
check when using an invalid value for LRECL.

2.3 Relationship to Encryption Facility for z/OS

Encryption Facility for z/VSE V1.1 has a close relationship to Encryption Facility for z/OS V1.1. It uses
the same encrypted data format (System z format) as the z/OS based tool and is therefore able to exchange
encrypted data with any z/OS system having Encryption Facility for z/OS installed.

Encryption Facility for z/OS consists of several parts, including two Web downloadable tools, the Java
Client and the Decryption Client for z/OS. Both tools can be downloaded for free. The Java Client is
intended for exchanging encrypted data with non-z platforms, while the Decryption Client is intended for
decrypting data on z/OS systems where the full Encryption Facility product is not installed.

These two Web downloadable tools can also be used in a z/VSE environment, allowing fo r data exchange
with non z/VSE platforms.

Copyright IBM Corp. 2008 , 2010 How to use Encryption Facility for z/VSE
___ _________

__
Page 6 of 24

Note on software support: To report problems with the z/OS Java Client or z/OS Decryption Client when
used to exchange data with the Encryption Facility for z/VSE, please contact: zvse@de.ibm.com. Software
support for Encryption Facility for z/VSE is provided via the normal L1, L2, and L3 service.

Figure 1 shows the involved parts of Encryption Facility for z/OS and their relationship to Encryption
Facility for z/VSE.

Figure 1: relationship of Encryption Facility for z/VSE and Encryption Facility for z/OS

2.4 Obtaining the z/OS Java Client

As described in the z/VSE V4.1 Administration Guide, you can download the z/OS Java Client from

http://www.ibm.com/servers/eserver/zseries/zos/downloads/#efclient

Unzip the downloaded zip-file in a new empty directory. Further installation is not necessary.

The next section describes how Encryption Facility is related to the TS1120 tape drive with encryption
support.

2.5 Relationship to the TS1120 tape drive

The IBM TS1120 tape drive with encryption capability is supported by z/VSE V3.1 and later. Encryption is
done by the tape drive itself, while key management is done via the so called ”Encryption Key Manager„
(EKM), a Java application that acts as a key server. The TS1120 uses public-key encryption and the related
public keys are maintained by the EKM. For more details about the TS1120 support, refer to the z/VSE
Administration book.

Encryption Facility for z/VSE complements the support for the TS1120 encrypting tape drives. While the
TS1120 is the preferred solution for high volume backup/archive applications, Encryption Facility for

IBM Encryption Facility for z/OS, 1.1
Program number: 5655-P97
Runs on: System z9 EC, z9 BC
 zSeries 900 or 990
 zSeries 800 or 890
Requires: z/OS 1.4 or higher; z/OS.e 1.4 or higher

 Java Client
Web Downloadable

Feature:
Encryption
Services

Decryption Client for z/OS
Web Downloadable

Feature:
DFSMSdss

Encryption

IBM Encryption Facility for z/VSE, 1.1
Program number: 5686-CF8-40
Runs on: System z9 EC, z9 BC
 zSeries 890 or 990

Requires: z/VSE 4.1 (with DY46717) or higher;

Copyright IBM Corp. 2008 , 2010 How to use Encryption Facility for z/VSE
___ _________

__
Page 7 of 24

z/VSE is designed to allow secure exchange of encrypted data with other locations within your company,
business partners, suppliers, and customers.

Password-based encryption is a simple but secure way for exchanging encrypted data with other locations,
but also for creating local backup archives. The ability to write encrypted data to disk for further file
transfers also complements the TS1120 solution.

Table 1 shows a list of various encryption scenarios and the preferred use of either the TS1120 or
Encryption Facility.

 TS1120 Encryption Facility
High volume backup/archiving x -
Data encryption for rest on VSE disks - x
Data encryption for subsequent file transfer
(e.g. FTP)

- x

Local archiving x x
Data exchange with remote sites having
TS1120

x -

Use existing TS1120 environment x -
Data exchange with Encryption Facility for
z/OS V1.1

- x

Data exchange with non-z platforms (EF Java
client)

- x

Password-based encryption - x
Public key based encryption x x
Offload CPU cycles x -
Perform encryption on z/VSE V3.1 x -
Perform encryption on z/VSE V4.1 or later x x
Perform encryption with a z800 or z900 x -
Perform encryption on a z890, z990, z9, z10 x x

Table 1: positioning of TS1120 to Encryption Facility

The following chapter lists some performance considerations regarding algorithms, compression, and
hardware support.

3 Performance considerations

Overall performance of an encryption or decryption process depends on several parameters.

• Compression. Compressing data prior to encryption usually speeds up the process, because less
data has to be encrypted. Compression is performed via the System z provided hardware
compression feature. You must not use compression when exchanging data with a workstation
platform!

• Encryption algorithm. There are significant differences in terms of speed between the supported

encryption algorithms. AES usually performs much faster than TDES. When using public key
encryption, there is no big difference between the different public key sizes, because only the data
key is encrypted using a public key.

• Hardware support. For example, you can use EF for VSE on a z890, because the required

hardware feature CPACF is available on this machine. However, on a z890 only TDES is

Copyright IBM Corp. 2008 , 2010 How to use Encryption Facility for z/VSE
___ _________

__
Page 8 of 24

supported by CPACF, while AES is not available.

• Physical I/O. When e.g. encrypting a KSDS file with many small records, the encrypted dataset
usually has a much bigger record length, using the maximum possible of the underlying ESDS
file. Therefore, writing encrypted data to disk requires much less I/O than later writing the
decrypted dataset with its many small records during the decryption process.

The following chapter describes how to encrypt data on VSE using password-based encryption, transfer the
encrypted dataset to a workstation, and finally decrypt the data using the z/OS Java client.

4 Password-based encryption

Password-based encryption does not require any key stores. The encryption key is directly derived from the
password. Encryption Facility for z/VSE always converts the EBCDIC password specified by JCL to
ASCII. But passwords are case sensitive, so make sure to specify your password correctly both in JCL and
on any other related platform.

Do not use any NLS specific characters (e.g. German umlauts) in a password. This could cause problems
when translating the password to ASCII depending on the used code page. Encryption Facility uses the
following code pages by default:

• ASCII code page : IBM-850
• EBCDIC code page : IBM-1047

You can change the codepage using parameters ASCII_CODEPAGE and EBCDIC_CODEPAGE. You
should specify the code page parameters before the PASSWORD parameter in order to have your code
page active when translating the password.

To manage your passwords you may use any available tool from vendors, freeware, or shareware. In my
opinion, the open source tool KeePass (http://keepass.sourceforge.net) is a good solution for maintaining
passwords.

As with password-based encryption we don� t need any special setup, we can directly start encrypting and
decrypting files.

4.1 Encrypting on VSE

Following JCL encrypts a VSE library member using password-based encryption (PBE). The encrypted
dataset is a VSAM ESDS cluster.

Copyright IBM Corp. 2008 , 2010 How to use Encryption Facility for z/VSE
___ _________

__
Page 9 of 24

* $$ JOB JNM=ENCRYPT,CLASS=0,DISP=D
// JOB ENCRYPT VSE LIBRARY MEMBER
// LIBDEF *,SEARCH=(PRD2.SCEEBASE,PRD2.PROD,PRD2.DBASE)
// EXEC IJBEFVSE
ENCRYPT
DESC='ENCRYPTION TEST'
CLRTDES
PASSWORD=MYPASSWD
COMPRESSION=NO
ICOUNT=234
CLRFILE=DD:PRD2.CONFIG(IPINIT00.L)
ENCFILE=DD:ENCDATA
/*
/&
* $$ EOJ

Notes:

• Don� t use another VSE library member as output dataset, because its last record would get padded
to 80 characters. Because of this change, it would be impossible to decrypt the file on a
workstation.

• Don� t use compression, because it� s not possible to decompress data on a workstation.

Now download the encrypted dataset to your Windows PC.

ftp> get encdata ipinit00.enc
200 Command okay
150-About to open data connection
 File:VSE.EF.ENCDATA
 Type:Binary Recfm:FB Lrecl: 80 Blksize: 80
 CC=ON UNIX=OFF RECLF=OFF TRCC=OFF CRLF=ON NAT=NO CONT=OFF
 MODE=Stream STRU=File
150 File status okay; about to open data connection
226-Bytes sent: 14,496
 Records sent: 1
 Transfer Seconds: .20 (71K per second)
 File I/O Seconds: .00 (14496-bytes)
226 Closing data connection
ftp: 14496 bytes received in 1.20Seconds 12.05Kbytes/sec.

The next step is decrypting the downloaded file using the z/OS Java Client. Open a command prompt and
got to the directory where the Java Client is installed. The following command string must be entered in
one single line. Multiple lines are used here for better reading.

java -Djava.encryption.facility.debuglevel=1
com.ibm.encryptionfacility.EncryptionFacility
-mode decrypt
-password MYPASSWD
-outputFile ipinit00.l
-inputFile ipinit00.enc

Note: on VSE the password is always specified in uppercase letters, so you have to use uppercase letters
too when decrypting the file on a workstation.

As the decrypted file now contains EBCDIC characters, you have to upload the file e.g. to VM in order to
view it correctly. This step would not be necessary when encrypting binary data on VSE or when the
decrypted data are not intended to be human readable.

Copyright IBM Corp. 2008 , 2010 How to use Encryption Facility for z/VSE
___ _________

__
Page 10 of 24

4.2 Decrypting on VSE

Now let� s encrypt a local file using the z/OS Java Client, upload it to VSE, and finally decrypt it on VSE.
Enter the password in uppercase letters.

java -Djava.encryption.facility.debuglevel=1
com.ibm.encryptionfacility.EncryptionFacility
-mode encrypt
-underlyingKey PBEWithSHA1And3DES
-password MYPASSWD
-inputFile mypic.jpg
-outputFile mypic.enc
-iterations 123

Now upload the encrypted file to VSE.

ftp> put mypic.enc encdata
200 Command okay
150-About to open data connection
 File:VSE.EF.ENCDATA
 Type:Binary Recfm:FB Lrecl: 80 Blksize: 80
 CC=ON UNIX=OFF RECLF=OFF TRCC=OFF CRLF=ON NAT=NO CONT=OFF
 MODE=Stream STRU=File
150 File status okay; about to open data connection
226-Bytes received: 11,576
 Records received: 145
 Transfer Seconds: .03 (377K per second)
 File I/O Seconds: .01 (1130K per second)
226 Closing data connection
ftp: 11576 bytes sent in 0.00Seconds 11576000.00Kbytes/sec.

The following JCL decrypts the encrypted dataset and writes the clear data into the clear dataset, which is
also a VSAM ESDS cluster.

* $$ JOB JNM=DECRYPT,DISP=D,CLASS=0
// JOB DECRYPT
// LIBDEF *,SEARCH=(PRD2.SCEEBASE,PRD2.PROD,PRD2.DBASE)
// EXEC IJBEFVSE
DECRYPT
PASSWORD=MYPASSWD
CLRFILE=DD:CLRDATA
ENCFILE=DD:ENCDATA
/*
/&
* $$ EOJ

Check the job output for any error messages.

5 Public-key encryption

Public-key encryption requires the setup of key stores on both platforms. The encrypting site needs a public
key while the decrypting site needs the corresponding private key.

Copyright IBM Corp. 2008 , 2010 How to use Encryption Facility for z/VSE
___ _________

__
Page 11 of 24

The z/OS Java Client requires a Java keystore containing any keys to be used. Keyman/VSE (build date
Oct 2007 or later) supports Java keystores (JKS files), however, an alternative for creating a Java keystore
is using the keytool.exe, which is part of your Java installation and is located in the jre/bin directory. The
following sections describe how to setup the Java keystore using the keytool.exe, while sections 5.2.1 to
5.2.3 describe the steps in Keyman/VSE.

5.1 Encrypting on VSE

When encrypting on VSE, we start on the PC side to create an RSA key pair in a Java keystore. Further
tasks will involve:

• Export the public key from the Java keystore
• Import the public key certificate into Keyman/VSE
• Upload the certificate to VSE, where it can be accessed by Encryption Facility.

5.1.1 Creating an RSA key pair using the keytool.exe

In a Java keystore, RSA key pairs are always wrapped into a certificate. The following command string
creates a private key certificate.

keytool -genkey -keyalg "RSA" -alias mykey -keypass mypasswd -keystore
efvse.jks -storepass mypasswd
It is important to specify key algorithm ”RSA„, because the default is ”DSA„, which is not supported on
VSE. You have to specify some personal information to be used when creating the private certificate.

What is your first and last name?
 [Unknown]: Joerg Schmidbauer
What is the name of your organizational unit?
 [Unknown]: VSE Development
What is the name of your organization?
 [Unknown]: IBM
What is the name of your City or Locality?
 [Unknown]: Boeblingen
What is the name of your State or Province?
 [Unknown]: BW
What is the two-letter country code for this unit?
 [Unknown]: DE
Is CN=Joerg Schmidbauer, OU=VSE Development, O=IBM, L=Boeblingen, ST=BW, C=DE
co
rrect?
 [no]: y

The JKS file is now created. You can get a list of the keytool parameters at

http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris/keytool.html

5.1.2 Exporting the public key from the Java keystore

Now use the keytool list command to show the contents of the keystore.

keytool -list -keystore efvse.jks -storepass mypasswd

This command will produce output similar to the following:

Copyright IBM Corp. 2008 , 2010 How to use Encryption Facility for z/VSE
___ _________

__
Page 12 of 24

Keystore type: JKS
Keystore provider: SUN

Your keystore contains 1 entry

mykey, Oct 29, 2008, PrivateKeyEntry,
Certificate fingerprint (MD5): 95:20:54:AC:3C:BF:96:42:1D:CF:E6:9E:7E:45:29:D5

Now export the certificate into a binary file:

keytool -export -alias mykey -file efvse.crt -keystore efvse.jks -storepass
mypasswd

You should get a message like:

Certificate stored in file <efvse.crt>

Note that only the public key has been written into the output file. Private keys by definition never leave
their original keystore.

5.1.3 Import public key certificate into Keyman/VSE

If you did not already define your VSE system in Keyman/VSE, you should do that now. Refer to the
Keyman/VSE ”General help„ section and click on links How to - Basic VSE Host settings.
To import the public key from the previously created file, select File - Import certificate from file.

Navigate to the directory where the efvse.crt file is located and open the file. The certificate is now
displayed in the Keyman main window. It is displayed as a ROOT certificate, because it is self-signed.

Copyright IBM Corp. 2008 , 2010 How to use Encryption Facility for z/VSE
___ _________

__
Page 13 of 24

Now right-click the certificate and select Upload to VSE.

5.1.4 Upload public key certificate to VSE keyring library

Enter a unique member name and select CERT as the member type.

Press Upload.

The public key is now stored in the crypto library.

LD EFVSE.*

DIRECTORY DISPLAY SUBLIBRARY=CRYPTO.KEYRING DATE: 2008-10-29
 TIME: 20:28
--
 M E M B E R CREATION LAST BYTES LIBR CONT SVA A- R-
NAME TYPE DATE UPDATE RECORDS BLKS STOR ELIG MODE
--
EFVSE CERT 08-10-29 - - 609 B 1 YES - - -
L113I RETURN CODE OF LISTDIR IS 0

Copyright IBM Corp. 2008 , 2010 How to use Encryption Facility for z/VSE
___ _________

__
Page 14 of 24

5.1.5 Do the encryption on VSE

Prerequisites:

• The public key used for encryption must is now located on VSE in a CERT member.
• The corresponding private key must be contained in the Java keystore on the PC side.

In this example we will just put a JPG image into the clear dataset before running the following job.

* $$ JOB JNM=ENCRSA,CLASS=4,DISP=D
// JOB ENCRSA ENCRYPT USING PKE
// LIBDEF *,SEARCH=(PRD2.SCEEBASE,PRD2.PROD,PRD2.DBASE)
// EXEC IJBEFVSE
ENCRYPT
DESC='ENCRYPTION TEST'
CLRAES128
RSA=CRYPTO.KEYRING(EFVSE)
CLRFILE=DD:CLRDATA
ENCFILE=DD:ENCDATA
/*
/&
* $$ EOJ

Now check the job output. As Encryption Facility first tries to open a PRVK member with the given
member name, there will be some LIBR errors. Finally, the public key from the CERT member should be
taken.

T037: SSL303E IPDSCRFI failed RC=00000008(LIBROPIF) reason=00000418 00000008
T037: SSL113W IPDSCRFI get for CRYPTO KEYRING EFVSE PRVK failed
T037: SSL303E IPDSCRFI failed RC=000007E7(LIBRCALL) reason=000005D0
INFO: USING RSA PUBLIC KEY FROM CERTIFICATE:
 CRYPTO.KEYRING(EFVSE) (1024 BIT)

5.1.6 Decrypting locally

Now download the encrypted dataset in binary to your workstation and decrypt the file with the z/OS Java
Client using the private key in the Java keystore.

ftp> get file2 mypic.enc
200 Command okay
150-About to open data connection
 File:VSE.VTAPE.FILE2
 Type:Binary Recfm:FB Lrecl: 80 Blksize: 80
 CC=ON UNIX=OFF RECLF=OFF TRCC=OFF CRLF=ON NAT=NO CONT=OFF
 MODE=Stream STRU=File
150 File status okay; about to open data connection
226-Bytes sent: 12,432
 Records sent: 1
 Transfer Seconds: .00 (12432-bytes)
 File I/O Seconds: .00 (12432-bytes)
226 Closing data connection
ftp: 12432 bytes received in 1.00Seconds 12.43Kbytes/sec.

The following command string will do the decryption.

Copyright IBM Corp. 2008 , 2010 How to use Encryption Facility for z/VSE
___ _________

__
Page 15 of 24

java -Djava.encryption.facility.debuglevel=1
com.ibm.encryptionfacility.EncryptionFacility
-mode decrypt
-keyStoreName efvse.jks
-keyStoreType JKS
-keyStoreCertificateAlias mykey
-password mypasswd
-inputFile mypic.enc
-outputFile mypic2.jpg

Note that the password here specifies the keyring file password and must not be confused with the
password as specified for password-based encryption.

5.1.7 Encrypting for multiple recipients

You can specify multiple RSA statements in the same job to allow multiple recipients to decrypt the
encrypted dataset. This requires having the public key of each recipient available on VSE in a PRVK or
CERT member.

* $$ JOB JNM=ENCMULT,CLASS=4,DISP=D
// JOB ENCMULT ENCRYPT WITH MULTIPLE PUBLIC KEYS
// LIBDEF *,SEARCH=(PRD2.SCEEBASE,PRD2.PROD,PRD2.DBASE)
// EXEC IJBEFVSE
ENCRYPT
DESC='ENCRYPTION TEST'
CLRAES128
RSA=CRYPTO.KEYRING(PUBKEY1) <- refers to member PUBKEY1.CERT
RSA=CRYPTO.KEYRING(PUBKEY2)
RSA=CRYPTO.KEYRING(PUBKEY3)
RSA=CRYPTO.KEYRING(MYKEY) <- refers to member MYKEY.PRVK
CLRFILE=DD:PRD2.CONFIG(IPINIT00.L)
ENCFILE=DD:ENCDATA
/*
/&
* $$ EOJ

In this example the data key is encrypted with the public keys of three CERT members and one PRVK
member. This allows decrypting the output dataset on three remote systems where the corresponding
private RSA keys are present. The remote systems can be z/OS or z/VSE systems, but also any Java
workstation. In addition to this, the encrypted dataset can be decrypted on the same system using the public
key that belongs to the private key specified in the last RSA control statement.

Note: TCP/IP fix ZP15F246 is recommended to avoid a program check, which occurs when trying to
access a CERT member which does not exist.

The maximum number of RSA statements is 16.

5.2 Decrypting on VSE

When decrypting on VSE, we need a PRVK member containing a private key. In this case the setup of our
key store is different, as we start on the VSE side and export the VSE public key to the Java keystore on the
workstation.

Copyright IBM Corp. 2008 , 2010 How to use Encryption Facility for z/VSE
___ _________

__
Page 16 of 24

5.2.1 Create RSA key pair using Keyman/VSE

Open the Keyman/VSE tool and create a new RSA key pair.

Press the Generate new RSA key pair toolbar button.

Select the RSA key length and press Generate key.

5.2.2 Upload the private key to VSE

Start the VSE Connector Server on VSE in non-SSL mode and upload the key pair to VSE.

As this key is used for decryption with Encryption Facility, let� s name the library member
EFDECR.PRVK.

Copyright IBM Corp. 2008 , 2010 How to use Encryption Facility for z/VSE
___ _________

__
Page 17 of 24

Press Upload. The key pair will now be stored in library member EFDECR.PRVK in the specified keyring
library. The next step is to export the public key into a Java keystore where it can be used by the z/OS Java
Client.

5.2.3 Export the public key into a Java keystore

Press the toolbar button Save.

On the next dialog box, select JKS and enter a password for the Java keystore.

Copyright IBM Corp. 2008 , 2010 How to use Encryption Facility for z/VSE
___ _________

__
Page 18 of 24

Press OK.

As in a Java keystore, keys are always wrapped into certificates, you have to enter some personal
information and press OK.

Copyright IBM Corp. 2008 , 2010 How to use Encryption Facility for z/VSE
___ _________

__
Page 19 of 24

The Java keystore (Keyring.jks) can now be used directly by the z/OS Java Client.

5.2.4 Encrypt locally

Following command string encrypts a local file with the z/OS Java Client. Note that the alias name in
Keyman must match with the keyStoreCertificateAlias parameter of the Java Client.

java -Djava.encryption.facility.debuglevel=1
com.ibm.encryptionfacility.EncryptionFacility
-mode encrypt
-underlyingKey AES16
-keyStoreName keyring.jks
-keyStoreType JKS
-keyStoreCertificateAlias vseKey
-password mypasswd
-inputFile mypic.jpg
-outputFile mypic.enc

Now upload the encrypted file to VSE.

ftp> put mypic.enc encdata
200 Command okay
150-About to open data connection
 File:VSE.EF.ENCDATA
 Type:Binary Recfm:FB Lrecl: 80 Blksize: 80
 CC=ON UNIX=OFF RECLF=OFF TRCC=OFF CRLF=ON NAT=NO CONT=OFF
 MODE=Stream STRU=File
150 File status okay; about to open data connection
226-Bytes received: 11,584
 Records received: 145
 Transfer Seconds: .02 (566K per second)
 File I/O Seconds: .01 (1131K per second)
226 Closing data connection
ftp: 11584 bytes sent in 0.00Seconds 11584000.00Kbytes/sec.

We can now decrypt the file on VSE.

5.2.5 Do the decryption on VSE

In the JCL you have to specify the member name of the PRVK containing the private key (EFDECR) that
was uploaded to VSE in section 5.2.2 on page 16.

Copyright IBM Corp. 2008 , 2010 How to use Encryption Facility for z/VSE
___ _________

__
Page 20 of 24

* $$ JOB JNM=DECRSA,CLASS=4,DISP=D
// JOB DECRSA DECRYPT USING PRVK
// LIBDEF *,SEARCH=(PRD2.SCEEBASE,PRD2.PROD,PRD2.DBASE)
// EXEC IJBEFVSE
DECRYPT
RSA=CRYPTO.KEYRING(EFDECR)
CLRFILE=DD:PRD2.CONFIG(MYPIC.JPG)
ENCFILE=DD:ENCDATA
/*
/&
* $$ EOJ

6 Using record-based files

In the previous sections we used the z/OS Java client for encrypting a JPG picture, which has no record
structure. However, a more realistic scenario is encrypting record-based files. We will see that line break
characters need special attention when exchanging encrypted files between different platforms.

Before going to the examples below, a few words about the various file types we are dealing with.

1. Stream-based data. This is just binary data without any internal structure. Its representation on
different platforms is exactly the same. However, there might be some difference in the underlying
file systems: on workstation platforms we usually have flat files without any record structure. On
VSE we for example have VSAM, where a binary stream may be split into multiple records
without adding any meaning to it.

Encrypted files are always stream-based data!

2. Line-based data. The simplest example for line-based data is a plain text file with line break
characters. On ASCII platforms there is a CRLF sequence (hex 0D0A) after each line, on
EBCDIC platforms lines are split by a new-line character (hex 15). The important thing is that all
lines are explicitly separated by line breaks.

3. Record-based data. Examples for record-based data are files that contain logical records, but
don� t have line break characters. One example are VSAM files, where each logical data record is
stored in one physical record of the VSAM file. Another example are CMS files in z/VM where
the length of each data record is given by the record length of the CMS file.

6.1 Encrypting on z/OS

When encrypting record- or line-based files on z/OS using the Java client, you must use the options �
recordFormat and � recordSize. Refer to the ”Encryption Facility for z/OS User� s Guide, SA23-1349„ for
details on Java client parameters.

Following command string encrypts a data file with fixed 600 byte records.

Copyright IBM Corp. 2008 , 2010 How to use Encryption Facility for z/VSE
___ _________

__
Page 21 of 24

java -Djava.encryption.facility.debuglevel=0
com.ibm.encryptionfacility.EncryptionFacility
-mode encrypt
-password mypasswd
-underlyingKey PBEWithSHA1AndAES16
-iterations 1000
-recordFormat FIXED
-recordSize 600
-inputFile testfile.txt
-outputFile testfile.crypt

If the z/OS file contains line breaks, you have to specify

-recordSize 601

Otherwise you might get the problem described in section ”Misaligned records after decryption on VSE„
on page 22.

6.2 Decrypting on VSE

When decrypting this file on VSE, we have two possible cases:

1. The target dataset on VSE (e.g. a VSAM file) is defined with LRECL=600. In this case the
decryption on VSE will issue following warning message for each decrypted record:

WARNING: DATA EXCEEDS MAX RECORD LENGTH.
 RECORD IS TRUNCATED TO 600 BYTES.

 Encryption Facility for z/VSE returns with rc=2 in this case.

2. The target dataset on VSE is defined with LRECL > 600. In this case the decrypted file will
contain a hex 15 (the EBCDIC line break) at the end of each record.

6.3 Encrypting on VSE

Encrypting on VSE and decrypting on z/OS causes the situation that line breaks are missing on z/OS when
the clear file on VSE didn� t contain line breaks. The following example encrypts a file with 600 byte
records without line breaks.

// EXEC IJBEFVSE
ENCRYPT
CLRTDES
PASSWORD=MYPASSWD
ICOUNT=1000
RECFM=F
LRECL=600
CLRFILE=DD:CLRDATA
ENCFILE=DD:ENCDATA
/*
/&

The options RECFM and LRECL are described in the z/VSE Administration Guide.

Copyright IBM Corp. 2008 , 2010 How to use Encryption Facility for z/VSE
___ _________

__
Page 22 of 24

6.4 Decrypting on z/OS

When decrypting a record-based file using the Java client, it� s not necessary to specify � recordFormat and
� recordSize. The Java client, as well as Encryption Facility, maintains this information in the encrypted
file. The following command line string would decrypt the above encrypted file with its original record
structure.

java -Djava.encryption.facility.debuglevel=0
com.ibm.encryptionfacility.EncryptionFacility
-mode decrypt
-password MYPASSWD
-inputFile encrypted.file
-outputFile decrypted.file

But, as the dataset on VSE didn� t contain line breaks, this will also produce a clear file on z/OS without
line breaks. So you have to manually add line breaks for example by using an editor.

6.5 EBCDIC to ASCII considerations

When using the Java client on z/OS for encrypting an EBCDIC encoded data file, decryption on VSE will
restore the clear file contents in EBCDIC-readable form. When decryption takes place on an ASCII
platform, like a Windows PC, decrypted data is still encoded in EBCDIC. There is currently no option to
specify some character set to be used when decrypting textual data.

7 Known problems

This chapter shows known problems from our test setup, but also from real customer installations.

7.1 Misaligned records after decryption on VSE

Symptom:

After decrypting a record-based file on VSE, the records are not aligned correctly. While the first record
looks ok, the second record starts with a hex 15 byte. The third record has two additional bytes, where the
second byte is hex 15, and so on.

Record 1 舩
15 Record 2 舩
xx 15 Record 3 舩
xx xx 15 Record 4 舩

Solution:

The EBCDIC new-line character is hex 15. The file was probably encrypted on another platform that
supports line breaks, for example the z/OS Unix System Services shell. So the file was a plain Unix text file
with, let� s say, records of 600 bytes, the new-line character not counted.

Copyright IBM Corp. 2008 , 2010 How to use Encryption Facility for z/VSE
___ _________

__
Page 23 of 24

Most likely the file was encrypted with options � recordFormat F and � recordSize 600, but the records in
fact have 601 bytes, which causes this misalignment.

You can solve the problem by

• Either using options � recordFormat F and � recordSize 601, (in this case you will get records
ending with a hex 15 after decrypting on VSE if the LRECL of your VSE dataset is big enough),
or by

• Removing the new-line characters from the file before encrypting it.

7.2 Using CA DynamT

Symptom:

When using CA DynamT to open a clear tape or vtape, Encryption Facility loops endlessly. The
TAPESRVR job starts, but there is no apparent I/O against the vtape file, once the file open sequence has
completed. JCL similar to the following is used:

// EXEC TDYNASN
OPEN CLRDATA,SYS005,INPUT
/*

Solution:

Adding the 'P' option to the TLBL for CLRDATA should solve the problem.

// TLBL CLRDATA,'RAID23,U,P'

Dynam/T opens the VTAPE successfully. However Dynam/T performs dynamic LUB allocation and does
not assign the VTAPE to SYS005. In this example, Encryption Facility is expecting CLRDATA to be
assigned to SYS005.

8 More information

More information can be found on these web pages.

VSE Homepage
http://www.ibm.com/servers/eserver/zseries/zvse/

Keyman/VSE tool and VSE Connector Client
http://www.ibm.com/servers/eserver/zseries/zvse/downloads/

Encryption Facility for z/OS
http://www.ibm.com/servers/eserver/zseries/zos/encryption_facility/

Encryption Facility for z/OS publications
http://publib.boulder.ibm.com/infocenter/zos/v1r9/index.jsp?topic=/com.ibm.zos.r9.e0zc100/e0z2c18038.ht
m

IBM Encryption Facility for z/OS Java Client

Copyright IBM Corp. 2008 , 2010 How to use Encryption Facility for z/VSE
___ _________

__
Page 24 of 24

http://www.ibm.com/servers/eserver/zseries/zos/downloads/#efclient

Redbook: Encryption Facility for z/OS Version 1.10, SG24-7318
http://www.redbooks.ibm.com/abstracts/sg247318.html?Open

Keytool parameters
http://java.sun.com/j2se/1.4.2/docs/tooldocs/solaris/keytool.html

KeePass Password Safe “ a free Open Source Password Manager for many operating systems
http://keepass.sourceforge.net/

VSE Virtual Tape Server
http://www.ibm.com/servers/eserver/zseries/zvse/downloads/

RSA Security - PKCS #5: Password-Based Cryptography Standard
www.rsasecurity.com/rsalabs/pkcs/pkcs-5/

PKCS #5: Password-Based Cryptography Specification, Version 2.0
http://tools.ietf.org/html/2898

