

How to use Web Services with z/VSE

Last formatted on: Monday, May 02, 2016

Ingo Franzki
ifranzki@de.ibm.com

Alina Glodowski

alina.glodowski@de.ibm.com

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 2 -

Disclaimer

This publication is intended to help VSE system programmers setting up infrastructure
for their operating environment. The information contained in this document has not been
submitted to any formal IBM test and is distributed AS IS. The information about non-
IBM ("vendor") products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this information or
the implementation of any of these techniques is a customer responsibility and depends
on the customer's ability to evaluate and integrate them into the customer's operational
environment. While each item may have been reviewed by IBM for accuracy in a specific
situation, there is no guarantee that the same or similar results will be obtained elsewhere.
Customers attempting to adapt these techniques to their own environments do so at their
own risk. Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of these Web sites.
Any performance data contained in this document was determined in a controlled
environment, and therefore, the results that may be obtained in other operating
environments may vary significantly. Users of this document should verify the applicable
data for their specific environment. Reference to PTF numbers that have not been
released through the normal distribution process does not imply general availability. The
purpose of including these reference numbers is to alert IBM customers to specific
information relative to the implementation of the PTF when it becomes available to each
customer according to the normal IBM PTF distribution process.

The following terms are trademarks of other companies:
Java and all Java-based trademarks and logos are trademarks or registered trademarks of
Sun Microsystems, Inc. in the United States and/or other countries.
Microsoft, Windows, Windows XP, .Net, .Net logo, and the Windows logo are
trademarks of Microsoft Corporation in the United States and/or other countries.

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 3 -

Contents

1. Introduction .. 4
2. Providing Web Services with z/VSE – z/VSE acts as a SOAP server ... 7

2.1. Overview ... 7
2.2. Setup CICS Web Support .. 8
2.3. Create a CICS program that is to be web service enabled ... 10
2.4. Create a Web Service from a CICS Application .. 12

Import Copybook and create the Web Service to provide .. 12
Assemble and define the proxy code to CICS ... 15

2.5. Create a Web Service from a CICS Application with literal support (z/VSE 5.2 or higher) 16
Import Copybook and create the Web Service to provide .. 16
Assemble and define the rules code to CICS .. 19

2.6. Test the Web Service ... 20
3. Using Web Services with z/VSE – z/VSE acts as SOAP client ... 23

3.1. Overview ... 23
3.2. Setup CICS and TCP/IP ... 24
3.3. Requirements for the Web Service to be used with CICS2WS ... 25
3.4. Use a Web Service with a CICS Application .. 28

Import WSDL and generate Proxy Code & Copybook ... 28
Assemble and define the proxy code to CICS ... 32

3.5. Use a Web Service with a CICS Application with literal support ... 32
Import WSDL and generate Rules Code & Copybook ... 33
Assemble and define the rules code to CICS .. 39

3.6. Implement a CICS program that calls a Web Service .. 40
4. Debugging and trouble shooting, typical errors and pitfalls ... 42
Appendix A: Literal vs. encoded, RPC- vs. document-style .. 46
Appendix B: Translating SOAP Messages into TS-Queue entries and vice versa 50
Appendix C: Programming interface of the z/VSE SOAP Engine version 1 ... 52
Appendix D: Using Web Service Security ... 57
Appendix E: Mapping long names to short names ... 63
Appendix F: Differences between SOAP Web Services and REST services .. 64
Appendix G: Red and orange marks ... 66
Appendix H: More information .. 67

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 4 -

1. Introduction

http://
This document describes how to use Web Services with z/VSE. z/VSE provides a SOAP
Engine as part of the VSE Connectors component that supports the SOAP protocol
(Simple Object Access Protocol).

With the z/VSE SOAP Engine you can:

• Provide Web Services to someone outside of z/VSE. In this case, an (existing or
newly written) CICS program is web service enabled, so that it can be provided as
a Web Service. In this scenario z/VSE acts as a SOAP Server.

• Use Web Services that someone outside of z/VSE is providing. In this case a
CICS program calls a Web Service through the z/VSE SOAP Engine. In this
scenario z/VSE acts as a SOAP Client.

This document covers both scenarios, and provides a step by step description for setting
up all required subsystems, creating all required programs, as well as testing the Web
Services.

Starting z/VSE 5.2 there are two supported version of SOAP of the z/VSE Engine:

• SOAP Engine version 1: Available since VSE/ESA 2.7. Supports SOAP
encoding only.

• SOAP Engine version 2: It includes literal encoding and array support.

This article assumes that you already have some basic knowledge about the Web Services
technology and its surrounding protocols and formats. The following terms and
abbreviations will be used within this article:

• XML - Extensible Markup Language

• WSDL - Web Service Description Language

• TCP/IP - Transmission Control Protocol/Internet Protocol

• HTTP - Hypertext transport Protocol

• SOAP - Simple Object Access Protocol

• CWS - CICS Web Support

For more information about Web Services and z/VSE SOAP Engine, please also see the
z/VSE e-business Connectors, User's Guide SC34-2629-02 and the documentation links
at the very end of this document. It also describes the programming interfaces of the
z/VSE SOAP Engine, which will be referenced in this document.

Note: Before you start using the z/VSE SOAP Engine please make sure you have applied
all existing PTFs related to SOAP, CICS Web Support and TCP/IP.

You will find a list of available PTFs here:

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 5 -

http://www.ibm.com/systems/z/os/zvse/support/connectors.html
http://www.ibm.com/systems/z/os/zvse/support/tcpip.html
http://www.ibm.com/systems/z/os/zvse/support/ipv6vse.html
http://www.ibm.com/systems/z/os/zvse/support/cics.html

Download and Install CICS2WS

In order to use Web Services with z/VSE it’s recommended to use a tool called
CICS2WS. This toolkit helps you to perform Web Service development with z/VSE. It is
free of charge and can be downloaded from the z/VSE homepage:
http://www.ibm.com/systems/z/os/zvse/downloads/#cics2ws

CICS2WS Tool supports both z/VSE SOAP Engine (version 1 and version 2). The tool
works with both scenarios: z/VSE acts as a Server and z/VSE acts as a Client.

Note: The CICS2WS Toolkit is provided ‘as-is’, no support, no warranty. For questions
or in case of problems, please send an email to zvse@de.ibm.com.

Download and install the CICS2WS Tool on your PC or workstation. When you start the
CICS2WS Toolkit the first time, it will show a help page that shows how to download
additional Java libraries required by CICS2WS. You need to download the following
libraries and copy them to the originally empty lib folder:

Axis: Version: 1.2.1 or higher

http://axis.apache.org/axis/java/releases.html

After downloading axis-bin-X_X_X.zip you have to extract following libraries from the
lib folder:

axis.jar
wsdl4j-1.5.1.jar
commons-discovery-0.2.jar
commons-logging-1.0.4.jar
log4j-1.2.8.jar
jaxrpc.jar
saaj.jar

axis-ant.jar is not necessary for the CICS2WS Application Toolkit.

ws-jaxme: Version: 0.4

http://www.apache.org/dyn/closer.cgi/ws/jaxme/

After downloading ws-jaxme-0.4-bin.tar.gz you have to extract following library from the
lib folder:

jaxmexs.jar

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 6 -

The further libraries are not used for the CICS2WS Application Toolkit.

Note: IBM is not allowed to re-distribute those libraries as part of the CICS2WS Toolkit.
That’s why you need to download them separately.

When you start the CICS2WS Toolkit the next time, it should come up with the following
title screen:

For z/VSE as a SOAP Server, we will use buttons “Create a Web Service from a CICS
Application” and “… with literal support (z/VSE 5.2 or higher)” in the next steps (see
chapter 2).

For z/VSE as a SOAP Client, we will use buttons “Use a Web Service with a CICS
Application” and “… with literal support (z/VSE 5.2 or higher)” in the next steps (see
chapter 3).

“Load Existing Project” button is used to work with the Project created and saved earlier.

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 7 -

2. Providing Web Services with z/VSE – z/VSE acts as a SOAP
server

This chapter describes step by step how to setup CICS TS and the z/VSE SOAP Engine
and how to web service enable a CICS program in order to provide it as a Web Service.

Some of the steps below are setup tasks that only have to be done once, when you web
service enable your very first program. Other steps are tasks that you must repeat for
every program that you want to provide as a Web Service.

2.1. Overview

The figure below shows the modules that are involved when a Web Service request is
processed.

The SOAP Server part of the z/VSE SOAP Engine is based on CICS Web Support
(CWS). CWS acts as a HTTP server used for incoming SOAP requests. CWS will pass
the requests to the z/VSE SOAP Engine which will perform any further processing.

SOAP Extension

(IESOASRV)

--

SOAP Engine

version 2

Proxy code
(generated)

User Program
(COMMAREA)

Mapping
Rules

(generated)

SOAP Server

(IESSOAPS)

urn:IESOASRV:MYRULES

XML Parser

xPath

urn:IESSOAPD:MYPROXY

SOAP Decoder

(IESSOAPD)

--

SOAP Engine

version 1

User Program
(SOAP aware)

C
IC

S

W
eb

 S
u

p
p

o
rt

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 8 -

When CWS receives a HTTP request on a TCPIPSERVICE, it uses the URL to determine
which program to call. For Web Service requests, the URL must look like

 http://hostname:port/cics/CWBA/IESSOAPS

This URL tells CICS to call program IESSOAPS (which is the server part of the z/VSE
SOAP Engine) under the CICS supplied transaction CWBA. IESSOAPS basically is a
regular CICS program that uses EXEC CICS WEB commands to retrieve the HTTP
content (i.e. the SOAP request), processes it and sends a SOAP response back as HTTP
response.

When the SOAP server has received the SOAP message, which is XML, it calls the XML
parser to parse it. It then analyses and verifies the SOAP message. Based on the URN
(the method namespace (URN), it is determined which z/VSE SOAP Engine version is
used:

 urn:IESSOAPD:MYPROXY
 urn:IESOASRV:MYRULES

z/VSE SOAP Engine version 1.
In case of urn:IESSOAPD:MYPROXY the next program to call is IESSOAPD, the
SOAP decoder program. The SOAP decoder looks into the SOAP message and extracts
information about the method to execute and its parameters. It also deserializes the
parameters from its XML representation into a z/VSE specific representation. Based on
the second part of URN, MYPROXY, it then determines what program to call next. This
can either be a user program that is SOAP aware (i.e. it uses the z/VSE SOAP Engines
programming interface directly), or a proxy program, that has been generated by the
CICS2WS Toolkit. The Proxy program then translates the input parameters into a
COMMAREA and calls the user program.

z/VSE SOAP Engine version 2.

In case of urn:IESOASRV:MYRULES the next program to call is IESOASRV, the new
SOAP decoder program. The SOAP decoder looks into the SOAP message and extracts
information about the method to execute and its parameters. It also deserializes the
parameters from its XML representation into a z/VSE specific representation. In this case
second part of URN, MYRULES is used by IESOASRV for correct converting SOAP
data types and SOAP messages to user program data types and copybook. MYRULES is
an assembler code, that has been generated by the CICS2WS Toolkit starting version 2.6.

When the user program returns, it goes back the same way. This time the output
parameters are serialized by IESSOAPD/ IESOASRV and a SOAP response message is
created. IESSOAPS finally sends the response back via HTTP.

2.2. Setup CICS Web Support

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 9 -

Note: CWS is only available on CICS Transaction Server (CICS TS). If you want to web
service enable programs running in CICS/VSE 2.3, you need to configure and run a
separate CICS TS region with CWS, and use remote program definitions (MRO) to call
your CICS/VSE programs from CICS TS.

CWS is also used for other types of TCP/IP communication with CICS, i.e. CICS
Transaction Gateway (ECI) and the 3270 Bridge. If you have already set up CWS for
those types of communication, you probably have done most of this step already.

Please refer to the CICS Transaction Server Internet Guide, SC34-5765 for detailed
information about CICS Web support.

Here are the tasks required to setup CICS Web support:

1. Enable CICS Web Support in the CICS System Initialization Table (SIT):

• ISC=YES enable intersystem communication

• TCPIP=YES enable TCP/IP protocol
2. Configure and enable codepage conversion in CICS. Use the IBM provided

skeleton DFHCNV (ICCF library 59)
3. Configure and enable the CICS Web Error program. Use the IBM provided

skeleton DFHWBEP (ICCF library 59)
4. CICS Web support needs to be able to obtain the hostname of the local IP address

it is working under. With TCP/IP for VSE use the TCP command DEFINE
NAME to define a name for the local IP address (e.g. DEFINE
NAME,NAME=name,IPaddr=n.n.n.n). If you forget to do this step, you will get
the following message at CICS startup:

DFHSO0117 applid Unable to determine the TCP/IP host name.

Language Environment return code X'00000458', return code X'00000000'.

TCP/IP services are unavailable.

5. You need to adjust the CICS startup job, to specify the ID of the TCP/IP stack

with which CICS should work. You specify the ID using the // OPTION
SYSPARM statement (e.g. // OPTION SYSPARM=nn).

6. After CICS has been started, check if TCPIP support is active. Use CEMT INQ
TCPIP to check if it is OPEN.

7. Define and install a TCPIPSERVICE using CEDA DEFINE TCPIPSERVICE
similar to the example shown below:

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 10 -

Use CEMT INQ TCPIPSERVICE to check if it is OPEN.

2.3. Create a CICS program that is to be web service enabled

When Web Service enabling an existing CICS program, you have 2 options how to do
that:

• Modifying the program to interface with the z/VSE SOAP Engine directly.

• Use the CICS2WS Toolkit to generate a so called Proxy code that acts as a
wrapper between the z/VSE SOAP Engine and your program

• Use CICS2WS Toolkit to generate a so called mapping rules that transfer data
between SOAP and your program (z/VSE 5.2 only)

While interfacing directly with the z/VSE SOAP Engine gives you the greatest flexibility,
it requires good knowledge about the programming interfaces of the z/VSE SOAP
Engine. Please see Appendix C: for some details of the programming interfaces.
Choosing this approach is recommended when very complex data structures are being
used in the Web Service parameters.

This article will focus on the use of the CICS2WS Toolkit to generate the so called
proxy/rules code that acts as a wrapper between the z/VSE SOAP Engine and your
program. This approach assumes that your CICS program, that is to be web service
enabled, can be called via EXEC CICS LINK and a user defined COMMAREA.

Requirements for programs to be able to get web service enabled

A CICS program that you want to web service enable (i.e. make it callable as a Web
Service) must fulfill the following requirements:

 CEDA DEFine TCpipservice(SOAP)

 TCpipservice : SOAP

 Group : VSESPG

 Description ==> SERVICE FOR SOAP

 Urm ==> DFHWBADX

 Portnumber ==> 80 1-65535

 Certificate ==>

 STatus ==> Open Open | Closed

 SSl ==> NO Yes | No | Clientauth

 Attachsec ==> Local Local | Verify

 TRansaction ==> CWXN

 Backlog ==> 00009 0-32767

 TSqprefix ==>

 Ipaddress ==>
 SOcketclose ==> No No | 0

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 11 -

• It can be written in any CICS supported programming language (e.g. Assembler,
COBOL, PL/1, C, CICS/REXX)

• It must be callable via EXEC CICS LINK and a COMMAREA. It must return to
the caller via EXEC CICS RETURN.

• It may access files and/or call other programs, but it must return back to the
z/VSE SOAP Engine via EXEC CICS RETURN.

• It can NOT use any terminal specific functions, since there is no terminal assigned
when called as Web Service.

• If the program does not run on CICS TS, you can use a remote program definition
and use MRO to call a program residing in a different CICS region. The z/VSE
SOAP Engine will only run in CICS TS.

• You must know the structure of the COMMAREA used by the program. I.e. you
must have a copybook in COBOL, PL/1 or assembler that describes the structure
of the COMMAREA. You will later import this copybook into the CICS2WS
Toolkit.

In this chapter we will use two copybooks as samples.
Copybook 1 will be used to show how to create proxy code:
 03 CUSTOMER.
 05 CUSTOMERNR PIC 9(9) BINARY.

 05 FIRSTNAME PIC X(20).

 05 LASTNAME PIC X(20).

 03 ACCOUNT.

 05 ACCOUNTNR PIC 9(9) BINARY.

 05 AMOUNT PIC 9(9) BINARY.

 03 SOURCEACCOUNT PIC 9(9) BINARY.

 03 TARGETACCOUNT PIC 9(9) BINARY.

Copybook 2 will be used to demonstrate array/literal style support starting z/VSE 5.2:
 3 EMPLOYEELIST.
 5 EMPLOYEE OCCURS 123.

 7 ID PIC 9(9) BINARY.

 7 NAME PIC X(20).

 7 BIRTHDAY PIC 9(9) COMP.

 3 EOVER40 PIC 9(9) COMP.

For z/VSE as a SOAP Server, we will use upper buttons in CICS2WS tool main screen
“Create a Web Service from a CICS Application” and “… with literal support (z/VSE 5.2
or higher)” in the next steps.

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 12 -

2.4. Create a Web Service from a CICS Application

To use a z/VSE SOAP Engine version 1 button “Create a Web Service from a CICS
Application” should be chosen. In this case CICS2WS Tool will generate based on the
provided copybook a proxy program and wsdl file.

Import Copybook and create the Web Service to provide

In this step, we use the Copybook1 as described in chapter 2.3 and import it into the
CICS2WS Toolkit. CICS2WS can read copybooks in COBOL, PL/1 and Assembler
language. You may need to download the copybook from z/VSE in order to import it into
the CICS2WS Toolkit. You can download the copybook using standard file transfer
functions, like FTP.

In CICS2WS, press the “Browse…” button and choose the file that contains the
copybook. The source code language is automatically detected based on the file
extension. If it did not detect it correctly, choose the language manually. Then press the
“Parse” button. In case you receive any errors, check the copybook source and correct the
errors.

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 13 -

Once the copybook was imported successfully, you need to provide some basic
information about the Web Service you want to provide. This includes the name of the
service and the URL, where it will be hosted later on. The URL has a fixed format; you
should only change the “server-name” and “port”. The server-name is the hostname or IP
address of your VSE system that will host the service. The port is the TCP/IP port you
defined in the TCPIPSERVICE in chapter 2.2

Last, you specify the name of the proxy program that is to be generated, and the name of
the program that implements the service and is to be web service enabled.

Press the “Next” button to continue to the next page.

You now define the Web Service operation (also called method) that you want to provide
and define what input and output parameters it has.

Note: In general a Web Service can provide multiple operations. However, CICS2WS
only supports one operation per Web Service. If you want to provide multiple operations,
you need to create multiple Web Services.

You specify the name of the operation you want to provide and a description (optional).

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 14 -

In the upper table you see the contents of your copybook that has been imported on the
previous panel. You need to tell CICS2WS which fields are to be used as input
parameters for the service, and which fields are output parameters (or both). First, select a
field or group of fields, then select either the “Input Parameter” or “Output Parameter”
node in the table below and press the “Add” button. You can now change the name of the
parameter or leave it as it is (Note that a parameter name can only have up to 16
characters, unless you are using long-name to short-name mapping as described in
Appendix E). Repeat this for every field that you want to use with this service.

Some of the fields may be marked in red or orange. Orange indicates that some parameter
within the group is marked red or that the group is a redefine. Read means that you need
to perform an action before you can continue to use this operation. In most cases it
indicates that the fields name is longer than 16 characters. Right click the field and
choose the desired action (e.g. rename the field).

The table on the very bottom of this panel shows the external view of the service you are
providing. All names used there will be visible in the WSDL and to the caller of this Web
Services.

When you are finished, press the “Next” button.

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 15 -

On the last panel, you see a summary of all the settings you have done so far. Please
double check it. You can go back and correct them if needed.

Press the “Create WSDL File” button to create the WSDL file for this service. The
WSDL will describe the Web Service, so that an external user has all the information
needed to invoke this Web Service.

Press the “Create ASM Code” button to generate the proxy code used for this service.
The name of the proxy code is what you have specified on the first panel in field “Proxy
name”.

Remember the location of the generated files (WSDL and proxy code); you will need
them later on.

Assemble and define the proxy code to CICS

The CICS2WS Toolkit has now generated the proxy code for you. The proxy code is a
CICS/assembler program. You need to assemble it and define it to CICS.

Together with the proxy code source, a compile job has been generated that can be used
to assemble the proxy code. You need to upload the proxy code source to your z/VSE
system. You can do this using standard file transfer functions like FTP. Adapt the
compile job and use it to assemble the proxy code. You need to change the libraries used
for cataloging the phase and the LIBDEFs. Check for a clean compile (i.e. return code
zero). Make sure you place the phase of the proxy code into a library that is in the CICS
LIBDEF.

You need to define the proxy program to CICS using CEDA DEFINE PROGRAM. The
language is Assembler. The “DATALOCATION” parameter can be set to ANY; the
“EXECKey” parameter should be set to User:

CEDA DEFine PROGram(MYPROXY)

 PROGram : MYPROXY

 Group : VSESPG

 DEscription ==>

 Language ==> Assembler CObol | Assembler | C | Pli

 RELoad ==> No No | Yes

 RESident ==> No No | Yes

 USAge ==> Normal Normal | Transient

 USEsvacopy ==> No No | Yes

 Status ==> Enabled Enabled | Disabled

 RSl : 00 0-24 | Public

 Cedf ==> Yes Yes | No

 DAtalocation ==> Any Below | Any

 EXECKey ==> User User | Cics

REMOTE ATTRIBUTES

 REMOTESystem ==>

 REMOTEName ==>

 Transid ==>

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 16 -

After defining the program, you need to install it using CEDA INSTALL, or restart
CICS.

2.5. Create a Web Service from a CICS Application with literal support
(z/VSE 5.2 or higher)

By choosing upper button “… with literal support” CICS2WS Tool will provide with
mapping rules and wsdl file. In this case copybook can have arrays with fix or variable
length. At the end Tool will give possibility to chose type of wsdl: encoded or literal (see
Appendix A for more information about encoding styles).

Import Copybook and create the Web Service to provide

In this step, we use the Copybook2 as described in chapter 2.3 and import it into the
CICS2WS Toolkit. CICS2WS can read copybooks in COBOL, PL/1 and Assembler
language. You may need to download the copybook from z/VSE in order to import it into
the CICS2WS Toolkit. You can download the copybook using standard file transfer
functions, like FTP.

In CICS2WS, press the “Browse…” button and choose the file that contains the
copybook. The source code language is automatically detected based on the file

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 17 -

extension. If it did not detect it correctly, choose the language manually. Then press the
“Parse” button. In case you receive any errors, check the copybook source and correct the
errors.

Once the copybook was imported successfully, you need to provide some basic
information about the Web Service you want to provide. This includes the name of the
service and the URL, where it will be hosted later on. The URL has a fixed format; you
should only change the “server-name” and “port”. The server-name is the hostname or IP
address of your VSE system that will host the service. The port is the TCP/IP port you
defined in the TCPIPSERVICE in chapter 2.2

Last, you specify the name of the mapping rules that is to be generated, and the name of
the program that implements the service and is to be web service enabled.

Press the “Next” button to continue to the next page.

You now define the Web Service operation (also called method) that you want to provide
and define what input and output parameters it has.

Note: In general a Web Service can provide multiple operations. However, CICS2WS
only supports one operation per Web Service. If you want to provide multiple operations,
you need to create multiple Web Services.

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 18 -

You specify the name of the operation you want to provide and a description (optional).

In the upper table you see the contents of your copybook that has been imported on the
previous panel. You need to tell CICS2WS which fields are to be used as input
parameters for the service, and which fields are output parameters (or both). First, select a
field or group of fields, then select either the “Input Parameter” or “Output Parameter”
node in the table below and press the “Add” button. You can now change the name of the
parameter or leave it as it is (Note that a parameter name can only have up to 16
characters, unless you are using long-name to short-name mapping as described in
Appendix E). Repeat this for every field that you want to use with this service.

Some of the fields may be marked in red or orange. Orange indicates that some parameter
within the group is marked red or that the group is a redefine. Read means that you need
to perform an action before you can continue to use this operation. In most cases it
indicates that the fields name is longer than 16 characters. Right click the field and
choose the desired action (e.g. rename the field).

The table on the very bottom of this panel shows the external view of the service you are
providing. All names used there will be visible in the WSDL and to the caller of this Web
Services.

When you are finished, press the “Next” button.

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 19 -

On the last panel, you see a summary of all the settings you have done so far. Please
double check it. You can go back and correct them if needed.

Press the “Create WSDL File” button to create the WSDL file for this service. The
WSDL will describe the Web Service, so that an external user has all the information
needed to invoke this Web Service.

Press the “Create RULES Code” button to generate the rules code used for this service.
The name of the rules code is what you have specified on the first panel in field “Rules
name”.

Note. Choice literal/encoded should be the same for wsdl and mapping rules.

Remember the location of the generated files (WSDL and rules code); you will need them
later on.

Assemble and define the rules code to CICS

The CICS2WS Toolkit has now generated the rules code for you. The rules code is a
CICS/assembler program containing just static data, but no executable code. You need to
assemble it and define it to CICS.

Together with the rules code source, a compile job has been generated that can be used to
assemble the rules code. You need to upload the rules code source to your z/VSE system.
You can do this using standard file transfer functions like FTP. Adapt the compile job
and use it to assemble the rules code. You need to change the libraries used for cataloging
the phase and the LIBDEFs. Check for a clean compile (i.e. return code zero). Make sure
you place the phase of the rules code into a library that is in the CICS LIBDEF.

You need to define the rules program to CICS using CEDA DEFINE PROGRAM. The
language is Assembler. The “DATALOCATION” parameter can be set to ANY; the
“EXECKey” parameter should be set to User:

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 20 -

After defining the program, you need to install it using CEDA INSTALL, or restart
CICS.

2.6. Test the Web Service

When the proxy code has been created and define to CICS, you should test the newly
created Web Service. The test uses the generated WSDL to invoke the Web Service.

There are different Web Service test tools available. This article discusses the use of IBM
Rational Application Developer (RAD) and the SoapUI Tool (www.soapui.org).

IBM Rational Application Developer

The IBM Rational Application Developer (RAD) is a priced product. It is based on the
Eclipse platform and allows you to perform various development tasks. For more
information about RAD, please see here:
http://www.ibm.com/software/products/en/application

It also provides a Web Service test function, called the “Web Service Explorer” which
can also be used to test Web Service provided by z/VSE.

Create a new project in RAD and import the generated WSDL into the project. With a
double click on the WSDL file, you can open the WSDL editor. It shows a graphical view
of the WSDL definitions, as well as a source view.

CEDA DEFine PROGram(MYPROXY)

 PROGram : MYRULES

 Group : VSESPG

 DEscription ==>

 Language ==> Assembler CObol | Assembler | C | Pli

 RELoad ==> No No | Yes

 RESident ==> No No | Yes

 USAge ==> Normal Normal | Transient

 USEsvacopy ==> No No | Yes

 Status ==> Enabled Enabled | Disabled

 RSl : 00 0-24 | Public

 Cedf ==> Yes Yes | No

 DAtalocation ==> Any Below | Any

 EXECKey ==> User User | Cics

REMOTE ATTRIBUTES

 REMOTESystem ==>

 REMOTEName ==>

 Transid ==>

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 21 -

To test the Web Service, right click the WSDL file in the project, choose “Web Services”
� “Test with Web Service Explorer”. Choose the operation to execute in the Navigator
tree. You can then specify the values for the input parameters in the right part of the
window and press the “Go” button to invoke the Web Service.

It will then connect to z/VSE and send a SOAP message through HTTP. The response is
also displayed in the right part of the window. You can also switch to the “Source” view,
where you see the plain SOAP Message. This can be helpful when problems occur and
you want to check the exact SOAP message.

SoapUI

The SopaUI Tool is an open source tool; you can download a free version at
http://www.soapui.org/. Its primary focus is on testing Web Services, but it also can
generate Web Service clients for various environments.

To test the generated WSDL, you need to create a new project in SoapUI, and load the
WSDL file into it. You can then select the method to invoke in the Navigator tree,
Double click on the operation to create a Request view.

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 22 -

You will see the SOAP Request on the right side. It contains question marks for each
input parameter. You can overtype the question marks with the input values. Then press
the green arrow icon to start the request. You will see the response SOAP Message in the
right side of the Request window.

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 23 -

3. Using Web Services with z/VSE – z/VSE acts as SOAP client

This chapter describes step by step how to setup CICS TS and the z/VSE SOAP Engine
and how to call an external Web Service from a CICS program.

Some of the steps below are setup tasks that only have to be done once, when you call
your very first web service enable. Other steps are tasks that you must repeat for every
Web Service that you want to call.

3.1. Overview

The figure below shows the modules that are involved when a Web Service request is
processed.

The SOAP Client part of the z/VSE SOAP Engine does not require CICS Web Support.
The z/VSE SOAP Engine comes with all required parts, including a HTTP Client.

When a user program wants to call an external web service, it calls the client part of the
z/VSE SOAP Engine. The user program:

User Program
(COMMAREA)

SOAP Extension

(IESOASRV)

--

SOAP Engine

version 2

Proxy code
(generated)

Mapping
Rules

(generated)

SOAP Server

(IESSOAPCS)

XML Parser

xPath

SOAP Encoder

(IESSOAPE)

--

SOAP Engine

version 1

User Program
(SOAP aware)

H
T

T
P

 C
li

en
t

(I
E

S
H

T
T

P
C

)

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 24 -

• can be either a program that is SOAP aware (i.e. it uses the z/VSE SOAP Engines
programming interface directly),

• can call a proxy program, that has been generated by the CICS2WS Toolkit for
use with z/VSE SOAP Engine version 1,

• can call SOAP Engine version 2 with providing a mapping rules, that has been
generated by the CICS2WS Toolkit (starting z/VSE 5.2).

The Proxy program or mapping Rules then translates the input parameters from a
COMMAREA into a SOAP specific format and calls the z/VSE SOAP Engine.

The SOAP processing starts with the SOAP Encoder program (IESSOAPE/IESOACLN).
The SOAP encoder serializes the Web Service’s input parameters from its z/VSE specific
representation into a XML representation and calls the SOAP Client program
(IESSOAPC).

The SOAP Client program generates a SOAP message containing the web service’s input
parameters, the method to call, as well as a SOAP Body and Envelope. It then calls the
HTTP Client program with the Web Service’s URL.

The HTTP Client opens a TCP connection to the server denoted in the URL and sends a
HTTP request together with the XML data containing the SOAP message. It receives the
HTTP response, and passes it back to the SOAP client program.

The SOAP client program parses the XML data, analyses the SOAP response message
and passes the Web Service’s output parameters to the SOAP encoder program. The
output parameters are then deserialized and passed back to the user program or
proxy/rules code.

3.2. Setup CICS and TCP/IP

There is no special CICS setup required to call an external Web Service. However, you
need to setup a few things to allow the z/VSE SOAP Engine to use TCP/IP sockets to
connect external servers.

1. URLs usually use hostnames rather than IP addresses. Therefore, the HTTP Client
needs to resolve the hostname before it can connect to the server. To do so, you
need to configure TCP/IP to use a domain name server. For TCP/IP for VSE you
do that by specifying SET DNS1=n.n.n.n in the TCP/IP configuration. If you
forget this step, you usually get a return code 1005 when calling IESSOAPE.

2. You need to adjust the CICS startup job, to specify the ID of the TCP/IP stack
with which CICS should work. You specify the ID using the // OPTION
SYSPARM statement (e.g. // OPTION SYSPARM=nn).

3. Make sure that your z/VSE system is able and allowed to connect to the server
denoted in the Web Service’s URL. You may need to adapt your networks
firewall rules.

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 25 -

3.3. Requirements for the Web Service to be used with CICS2WS

To call an external Web Service, you need to know some information about the Web
Service:

• Where is it located (Web Service’s URL)

• Name of the service and method

• What input parameters is it expecting

• What output parameters it is returning

All of above information is usually contained in a WSDL file (WSDL: Web Service
Description Language). A WSDL file is an XML file. It contains all information that a
Web Service consumer (i.e. user or client) needs to know to be able to call the Web
Services. Using the definitions in the WSDL file, a development environment that
supports Web Services can generate all required programs. For z/VSE, we use the
CICS2WS Toolkit to generate the proxy/rules code.

The CICS2WS Toolkit only supports Web Services that use RPC style with SOAP
encoded messages (also see Appendix A:), or literal style messages (starting with z/VSE
5.2). CICS2WS will check the definitions in the WSDL file during import and will show
error messages if the requirements are not fulfilled. The external Web Service must meet
the following requirements to work with CICS2WS:

• It must use the SOAP 1.1 protocol.

• It must use SOAP encoding (use=”encoded”), in case of using proxy program

• It can use SOAP literal style (use=”literal”) only starting z/VSE 5.2 and by using
rules program.

• It must use RPC style. Document style is not supported.

• In case of using z/VSE SOAP Engine version 1 parameter names must not be
larger than 16 characters (you may use the name mapping as described in
Appendix E, but this requires some manual changes in the WSDL and the
generated proxy code)

Please also see Appendix A for more information about Literal vs. Encoded and RPC- vs.
document-style and how the z/VSE SOAP Engine supports it.

Using IBM Rational Application Developer to create a Web Service

If you are using IBM Rational Application Developer to create a Web Service that is to
be called by z/VSE, you need to select “RPC/encoded” for the “Style and Use” when
generating the WSDL file:

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 26 -

Using Microsoft .Net with WCF to create a Web Service (encoded only)

If you are using Microsoft .Net with WCF (Windows Communication Foundation) to
create a Web Service that is to be called by z/VSE, the following information should be
helpful:

When creating the ServiceContract for a WCF service, you can specify whether to use
RPC/encoded or document/literal by including the following in the ServiceContract
attribute:
[ServiceContract,

 XmlSerializerFormat(Style = OperationFormatStyle.Rpc,

 Use = OperationFormatUse.Encoded)]

To use SOAP 1.1 instead of SOAP 1.2, a configuration change must be made in the
web.config file. By default, all endpoint bindings are set to 'wsHttpBinding'. Changing
the binding to 'basicHttpBinding' and specifying an address of 'soap11' allows you to use
SOAP 1.1.

When generating the WSDL file, these changes are taken into consideration and
automatically added into the file.

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 27 -

For z/VSE as a SOAP Client, we will use buttons “Use a Web Service with a CICS
Application” and “… with literal support (z/VSE 5.2 or higher)” in the next steps.

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 28 -

3.4. Use a Web Service with a CICS Application

To work with SOAP engine version 1 button “Use a Web Service with a CICS
Application” should be chosen. In this case if wsdl file has an array or literal encoding
CICS2WS will identify it as an error.

Import WSDL and generate Proxy Code & Copybook

As first step, you import the WSDL file into CICS2WS. Press the “Browse” button to
locate the WSDL file. Then press the “Parse WSDL file” button to parse the WSDL file.
Look for errors in the WSDL Status View below.

If the WSDL import worked without errors, press the “Next” button to continue.

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 29 -

On this panel, you must choose which operation of the Web Service (also called method)
you want to call. In our banking example, the Web Service provides 3 operations:

• transfer: transfer money from one bank account to another account

• getCus: get customer information

• getAcc: get account information

Underneath the operations, you see which input parameter and which output parameters
the operation uses. Some of the parameters may be marked in red or orange. Orange
indicates that some parameter within the group is marked red. Read means that you need
to perform an action before you can continue to use this operation.

In the example above, the parameter “amount” appears as input parameter as well as
output parameter. That’s why it is marked in red.

Every Web Service parameter will have its corresponding field in the generated
COMMAREA. Per default, the COMMAREA field gets the same name as the parameter
in the Web Service operation. You can change the name of the COMMAREA field. Right
click the parameter and choose “Change Commarea Name”, then type in the new name.

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 30 -

The names appearing on the left side represent the external view; the COMMREA name
represents the name under which the parameter will be known in the generated proxy
code and the copybook you use to call the proxy code later on.

In our case, we need to change the COMMAREA name of one of the duplicate “amount”
parameters. Here, we call it “resultAmount” in the output parameters. Once all problems
have been resolved, the operation is no longer marked in red or orange.

Select the operation you want to generate a proxy code for (i.e. the “transfer” operation)
and press the “Next” button. You can only press the “Next” button if all problems of the
chosen operation have been resolved.

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 31 -

On this panel, you can choose if you want to use Web Service authentication.
Authentication is only supported on z/VSE 4.2 and onwards.

Press the “Next” button to continue.

Now you are ready to generate the proxy code and the copybook for the chosen Web
Service operation.

The copybook can be generated in Assembler, COBOL or PL/1 language. Choose the
desired language and press the “Save Copybook” button to save the generated copybook.
You will see a preview of the copybook in the text area on the right.

As you see, the copybook will use the COMMAREA names as specified on the previous
panel (see “resultAmount”). The data type of each field has been mapped to the closest
data type available in the selected programming language. In our example, all fields are
using “int” (4 byte binary integer number), which corresponds to a PIC 9(9) in COBOL.

You will later on use the generated copybook to call (EXEC CICS LINK) the generated
proxy code.

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 32 -

To generate the proxy code, enter the name of the proxy code (“Proxy Name”) and press
the “Create Code” button. This will generate the proxy program source code. Remember
the location of the generated files (copybook and proxy code); you will need them later
on.

Assemble and define the proxy code to CICS

The CICS2WS Toolkit has now generated the proxy code for you. The proxy code is a
CICS/assembler program. You need to assemble it and define it to CICS.

Together with the proxy code source, a compile job has been generated that can be used
to assemble the proxy code. You need to upload the proxy code source to your z/VSE
system. You can do this using standard file transfer functions like FTP. Adapt the
compile job and use it to assemble the proxy code. You need to change the libraries used
for cataloging the phase and the LIBDEFs. Check for a clean compile (i.e. return code
zero). Make sure you place the phase of the proxy code into a library that is in the CICS
LIBDEF.

You need to define the proxy program to CICS using CEDA DEFINE PROGRAM. The
language is Assembler. The “DATALOCATION” parameter can be set to ANY; the
“EXECKey” parameter should be set to User:

After defining the program, you need to install it using CEDA INSTALL, or restart
CICS.

3.5. Use a Web Service with a CICS Application with literal support

CEDA DEFine PROGram(MYPROXY)

 PROGram : MYPROXY

 Group : VSESPG

 DEscription ==>

 Language ==> Assembler CObol | Assembler | C | Pli

 RELoad ==> No No | Yes

 RESident ==> No No | Yes

 USAge ==> Normal Normal | Transient

 USEsvacopy ==> No No | Yes

 Status ==> Enabled Enabled | Disabled

 RSl : 00 0-24 | Public

 Cedf ==> Yes Yes | No

 DAtalocation ==> Any Below | Any

 EXECKey ==> User User | Cics

REMOTE ATTRIBUTES

 REMOTESystem ==>

 REMOTEName ==>

 Transid ==>

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 33 -

If wsdl contains arrays or uses literal encoding style button “with literal support (z/VSE
5.2 or higher)” should be used. In this case will be used z/VSE SOAP Engine version 2.

Import WSDL and generate Rules Code & Copybook

As first step, you import the WSDL file into CICS2WS. Press the “Browse” button to
locate the WSDL file. Then press the “Parse WSDL file” button to parse the WSDL file.
Look for errors in the WSDL Status View below.

If the WSDL import worked without errors, press the “Next” button to continue.

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 34 -

On this panel, you must choose which operation of the Web Service (also called method)
you want to call. In our customer example, the Web Service provides 1 operation:

• getCustomersByZip get all customers in the area

Underneath the operation, you see which input parameter and which output parameters
the operation uses. Some of the parameters may be marked in red or orange. Orange
indicates that some parameter within the group is marked red. Read means that you need
to perform an action before you can continue to use this operation.

In the example above, the parameters “customer” and “cphone” are arrays without a
defined size (number of array elements). Parameters “cname” and “cphone” have data
type “string”, that data type requires to specify a length. That’s why these parameters are
marked in red. For more information about red/orange marks please see Appendix G.

Right mouse click allows setting up size of array. There are two possibilities for arrays:

• arrays with fix length

• arrays with variable length

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 35 -

Fix length array

In case of defined maximum array size in wsdl CICS2WS Tool will ask to provide user
defined maximum size in range 1 to the maximum size as defined by the WSDL.

Variable length array

• Variable length array can be defined only for COBOL copybook (Assembler &
PL/I do not support).

• Maximum available size is necessary, it will be taken from wsdl (if it’s applied) or
user will be asked to provide it.

• It will be created addition field (Occur field) in copybook, where will be stored
information about size in real time.

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 36 -

Once all problems have been resolved, the operation is no longer marked in red or
orange.

Select the operation you want to work with (i.e. the “getCustomerByZip” operation) and
press the “Next” button. You can only press the “Next” button if all problems of the
chosen operation have been resolved.

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 37 -

On this panel, you can choose if you want to use Web Service authentication.
Authentication is only supported on z/VSE 4.2 and onwards. See Appendix D for more
information.

Press the “Next” button to continue.

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 38 -

Now you are ready to generate the rules code and the copybook for the chosen Web
Service operation.

The copybook can be generated in Assembler, COBOL or PL/1 language. Choose the
desired language and press the “Save Copybook” button to save the generated copybook.
You will see a preview of the copybook in the text area on the right.

Note. Arrays with variable size are supported only in Cobol.

 1 Copybook.
 3 zip PIC 9(9) COMP.

 3 ArrayOfCustomers.

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 39 -

 5 CUSTOMEROCCFLD PIC 9(9) COMP.

 5 customer OCCURS 1 TO 60 DEPENDING ON CUSTOMEROCCFLD.

 7 cname PIC X(50).

 7 cphoneFGR OCCURS 4.

 9 cphone PIC X(10).

As you see, arrays described in COBOL with word “OCCURS” and range. In case of
variable length appears additional field just before the array.

You will later on use the generated copybook to call (EXEC CICS LINK) the generated
rules code.

To generate the rules code, enter the name of the rules code (“RULES Name”) and press
the “Create Code” button. This will generate the rules source code and compile job.
Remember the location of the generated files (copybook and rules code); you will need
them later on.

Assemble and define the rules code to CICS

The CICS2WS Toolkit has now generated the rules code for you. The rules code is a
CICS/assembler program containing just static data, but no executable code. You need to
assemble it and define it to CICS.

Together with the rules code source, a compile job has been generated that can be used to
assemble the rules code. You need to upload the rules code source to your z/VSE system.
You can do this using standard file transfer functions like FTP. Adapt the compile job
and use it to assemble the rules code. You need to change the libraries used for cataloging
the phase and the LIBDEFs. Check for a clean compile (i.e. return code zero). Make sure
you place the phase of the rules code into a library that is in the CICS LIBDEF.

You need to define the rules program to CICS using CEDA DEFINE PROGRAM. The
language is Assembler. The “DATALOCATION” parameter can be set to ANY; the
“EXECKey” parameter should be set to User:

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 40 -

After defining the program, you need to install it using CEDA INSTALL, or restart
CICS.

3.6. Implement a CICS program that calls a Web Service

When you want to call an external Web Service from you own CICS program, you have 2
options how to do that:

• Write the program to interface with the z/VSE SOAP Engine directly.

• Use the CICS2WS Toolkit to generate a so called Proxy code that acts as a
wrapper between the z/VSE SOAP Engine and your program.

While interfacing directly with the z/VSE SOAP Engine gives you the greatest flexibility,
it requires good knowledge about the programming interfaces of the z/VSE SOAP
Engine. Please see Appendix C for some details of the programming interfaces. Choosing
this approach is recommended when very complex data structures are being used in the
Web Service parameters.

z/VSE SOAP Engine version 1

This article will focus on the use of the CICS2WS Toolkit to generate the so called proxy
code that acts as a wrapper between the z/VSE SOAP Engine and your program. This
approach assumes that your CICS program can call the generated proxy code via EXEC
CICS LINK and a generated COMMAREA.

Your program must include the generated copybook, set the input COMMAREA fields
and then call the proxy code via EXEC CICS LINK and pass the COMMAREA. On
return from the proxy code, the output COMMAREA fields will contain the output
values.

CEDA DEFine PROGram(MYRULES)

 PROGram : MYRULES

 Group : VSESPG

 DEscription ==>

 Language ==> Assembler CObol | Assembler | C | Pli

 RELoad ==> No No | Yes

 RESident ==> No No | Yes

 USAge ==> Normal Normal | Transient

 USEsvacopy ==> No No | Yes

 Status ==> Enabled Enabled | Disabled

 RSl : 00 0-24 | Public

 Cedf ==> Yes Yes | No

 DAtalocation ==> Any Below | Any

 EXECKey ==> User User | Cics

REMOTE ATTRIBUTES

 REMOTESystem ==>

 REMOTEName ==>

 Transid ==>

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 41 -

In case an error occurs during Web Service call processing, the generated proxy code will
issue an abend E100 to E107. You can use EXEC CICS HANDLE ABEND in your
program to catch the abends and do proper error handling.

z/VSE SOAP Engine version 2

This article will focus on the use of the CICS2WS Toolkit to generate the so called rules
code that acts as a transport layer between the z/VSE SOAP Engine version 2 and your
program. This approach assumes that your CICS program can call z/VSE SOAP Engine
version 2 via EXEC CICS LINK and a generated COMMAREA.

Your program must include the generated copybook, set the input COMMAREA fields
and then call the proxy code via EXEC CICS LINK and pass the COMMAREA. On
return from the proxy code, the output COMMAREA fields will contain the output
values.

EXEC CICS LINK PROGRAM("IESOACLN")
 COMMAREA(carea) LENGTH(sizeof(carea))
 RESP(rc1) RESP2(rc2);

where
 IESOACLN - z/VSE SOAP Engine version 2
 carea – generated COMMAREA
 rc1 – return code for CICS LINK
 rc2 – return code from SOAP Engine

Note. CICS2WS generates a copybook, there first 8 bytes are reserved for rules file
name. User program must provide SOAP Engine with file name of created and stored on
z/VSE rules code.

Requirements for programs that call a Web Service

A CICS program in that you want to call an external Web Service has to fulfill the
following requirements:

• It can be written in any CICS supported programming language (e.g. Assembler,
COBOL, PL/1, C, CICS/REXX)

• It must be able to call the proxy code via EXEC CICS LINK and a
COMMAREA. The proxy code returns via EXEC CICS RETURN.

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 42 -

4. Debugging and trouble shooting, typical errors and pitfalls

This chapter describes what to do in case the created Web Service does not work as
expected.

In case you encounter a problem, make sure you have applied all existing PTFs related to
SOAP, CICS Web Support and TCP/IP. You will find a list of available PTFs here:

http://www.ibm.com/systems/z/os/zvse/support/connectors.html
http://www.ibm.com/systems/z/os/zvse/support/tcpip.html
http://www.ibm.com/systems/z/os/zvse/support/ipv6vse.html
http://www.ibm.com/systems/z/os/zvse/support/cics.html

Errors can occur at various places in the whole call path.

TCP/IP communication

Sometimes firewalls prohibit communication between the SOAP client and server.

• Make sure that you adapt your firewall rules so that the TCP/IP port you have
chosen is permitted.

• A TCP/IP packet trace taken on the client side (e.g. using Wireshark/Ethereal)
and/or on the z/VSE side can help to find out what goes wrong.

• Make sure you have configured a domain name server (SET DNS1) or a name
(DEFINE NAME) for the z/VSE system’s IP address.

• Check if you have specified the right system ID (// OPTION SYSPARM=nn) in
the CICS startup job.

CICS Web Support

• Check if the TCPIP support and the TCPIPSERVICE used for Web Services is in
status OPEN.

• Check the CICS log for error messages related to CWS or TCP/IP.

• Make sure you have configured a domain name server (SET DNS1) or a name
(DEFINE NAME) for the z/VSE system’s IP address.

• Check if you have specified the right system ID (// OPTION SYSPARM=nn) in
the CICS startup job.

SOAP Client side

• Check the logs and error messages produced by the client.

• Check if the client was able to send out the request, or if it fails to receive and
process the response.

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 43 -

• If it receives a bad HTTP error code (e.g. 505) or an invalid content type (e.g.
text/html instead of text/xml), check the content for error messages.

• If it receives a SOAP Fault message, check the textual error message in the SOAP
fault.

z/VSE SOAP Engine

If the client receives an empty or invalid SOAP response:

• Check if you have generated the CICS codepage conversion table DFHCNV. You
should also see abend AWBK in transaction CWBA in this case.

• Check the CICS log for messages related to LE programs EDCUCONV and
EDCUCNVI. Make sure these programs are defined in group CEE or you have
program auto install activated (also see LE APAR PK20013).

• For best interoperability, the ASCII codepage used by the z/VSE SOAP Engine
should be UTF-8. You may need to adapt the ASCII codepage in the z/VSE
SOAP Option phase IESSOAPO (see Activate the SOAP trace for more details).

Abend during Web Service processing

If you receive an abend during Web Service processing, check the abend code.

• If the abend code is E100 to E107, then the abend is generated by the proxy code
due to an error situation. Check the generated proxy code under which situation
the abend is produced.

• Abend AWBK: This indicates that you did not generate the CICS codepage
conversion table DFHCNV.

• Abend AEZC: This indicates that the user program which is called by the z/VSE
SOAP Engine or by the proxy code is AMODE24. The CICS Web Support
transaction CWBA runs with TASKDATALOC(ANY). You need to either
change your program to AMODE 31 or change transaction CWBA to
TASKDATALOC(BELOW) (better use another alias transaction name).

• If the abend is an AKEA, it most likely shows “0C4/AKEA at offset
x"FFFFFFFF" in program IESSOAPE”:

o If you are using the BSI TCP/IP stack, you need to obtain a fix from BSI.
The abend happens in module IESHTTPB at function “slib_inet_addr”.

o If you are running with CICS storage protection, check if the z/VSE SOAP
Engine programs (IESHTTPB, IESHTTPC, IESSOAPC, IESSOAPE) are
defined with EXECKey=CICS.

z/VSE SOAP Engine version 1 (Proxy code)

• When an error is detected by the proxy code, it either returns a return code (100 to
107) back to the z/VSE SOAP Engine or it abends with an abend code E100 to
E107.

• Check the generated proxy code under which situation the error is produced.

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 44 -

• When you make updates to the proxy or rules code, you need to perform a CEMT
SET PROG(nnnn) NEWCOPY to let CICS know that you have changed the
program.

• When compiling the proxy code, check for return code zero. A non-zero return
code most likely indicates that the generated code is too large, so that some fields
can not be addressed. You will get assembler error messages like ASMA034E
OPERAND xxx BEYOND ACTIVE USING RANGE BY nnn BYTES. In this
case you need to reduce the number of fields used by the web service.
Alternatively, you may have to write the proxy code in another language to get
around this problem.

z/VSE SOAP Engine version 2

When an error is detected by the SOAP Engine, it returns a non-zero return code. This
return code is stored in

• RESP2 parameter from “EXEC CICS LINK …” in case of z/VSE acts as a client

• xml-response in case of z/VSE acts as a server

To get more detailed information about problems, turn on trace option (see Activate the
SOAP trace below).

User program errors

In case the user program detects an error and abends, either the proxy code or CICS Web
Support will handle the abend and produce an appropriate error response.

• Check the original abend code and lookup the meaning of the abend code.

• Make sure that the user program does not use any terminal related functions, since
there is no terminal associated to a program running as Web Service.

Client receives a SOAP Fault Message

When the z/VSE SOAP Engine detects an error situation, it sends back a SOAP Fault
message. A SOAP Fault message is a special form of a SOAP response and contains a
textual description about the error. It may also contain return codes from the
converter/proxy code.

Activate the SOAP trace

If you want to change the SOAP options, you need to generate the SOAP, option phase
IESSOAPO.

The z/VSE SOAP Engine tries to load the SOAP option phase IESSOAPO during
processing. If IESSOAPO is not available (this is the default, unless it has been
generated), it uses default options.

The SOAP option phase contains options for:

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 45 -

• Trace flags to activate SOAP tracing

• Codepages (ASCII and EBCDIC codepages)

• Secure Socket Layer specific settings for use with HTTPS (since z/VSE 4.2), such
as keyring library, key name, SSL cipher suites, SSL session timeout.

• Long name to short name mapping table (since z/VSE 4.2), see Appendix A for
more details.

Activate the SOAP trace if the problem persists. You can do that by generating the SOAP
option phase IESSOAPO, either using skeleton SKSOAPOP in ICCF library 59, or by
using this job:
ftp://ftp.software.ibm.com/eserver/zseries/zos/vse/download/vsecon/iessoapo.job

Set the desired trace flags to 1:

*

* TRACE FLAGS: USED TO ACTIVATE TRACING

*

TRSYSLOG DC XL2'001F' TRACE TO SYSLOG

TRSYSLST DC XL2'001F' TRACE TO SYSLST

TRC_SERV EQU X'0001'

TRC_CLNT EQU X'0002'

TRC_DEC EQU X'0004'

TRC_ENC EQU X'0008'

TRC_HTTP EQU X'0010'

After you have generated the SOAP option phase, you need to perform a NEWCOPY in
CICS to activate the changes:
 CEMT SET PROG(IESSOAPO) NEWCOPY

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 46 -

Appendix A: Literal vs. encoded, RPC- vs. document-style

This chapter briefly explains the differences between literal and encoded SOAP, as well
as RPC style and document style binding. For more information please also see here:
http://www.ibm.com/developerworks/webservices/library/ws-whichwsdl/

A WSDL document describes a Web Service. A WSDL binding describes how the
service is bound to a messaging protocol, particularly the SOAP messaging protocol. A
WSDL SOAP binding can be either a Remote Procedure Call (RPC) style binding or a
document style binding. A SOAP binding can also have an encoded use or a literal use.
This gives you four style/use models:

• RPC/encoded

• RPC/literal

• Document/encoded (not used in practice)

• Document/literal

WSDL distinguishes between two message styles: document and RPC. The message style
affects the contents of the SOAP Body:

• Document style: The SOAP Body contains one or more child elements called
parts. There are no SOAP formatting rules for what the body contains; it contains
whatever the sender and the receiver agrees upon.

• RPC style: RPC implies that SOAP body contains an element with the name of
the method or operation being invoked. This element in turn contains an element
for each parameter of that method/operation.

For applications that use serialization/deserialization to abstract away the data wire
format, there's one more choice to be made: the serialization format. There are two
popular serialization formats today:

• SOAP Encoding: SOAP encoding is a set of serialization. The rules specify how
objects, structures, arrays, and object graphs should be serialized. Generally
speaking, an application using SOAP encoding is focused on remote procedure
calls and will likely use RPC message style. When SOAP Encoding is used, the
SOAP Message contains data type information within the SOAP message. This
makes serialization (data translation) easier since the data type of each parameter
is denoted with the parameter.

• Literal: Data is serialized according to a schema. In practice, this schema is
usually expressed using W3C XML Schema. The SOAP message does not
directly contain any data type information, just a reference (namespace) to the
schema that is used. To perform proper serialization (data translation) both, the

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 47 -

sender and the receiver, must know the schema and must use the same rules for
translating data.

Example: RPC/encoded SOAP message:

The following SOAP message uses RPC style and SOAP encoding:

<soap:envelope>

 <soap:body>

 <myMethod>

 <x xsi:type="xsd:int">5</x>

 <y xsi:type="xsd:float">5.0</y>

 </myMethod>

 </soap:body>

</soap:envelope>

The SOAP message contains an operation name (myMethod). The method transports 2
parameters, x and y, which both specify its data type (int and float) through the type
attributes.

There are 2 namespaces used here: xsi and xsd. Both are defined within the SOAP
Envelope (not shown in this example). The xsi namespace is the schema instance
(http://www.w3.org/2001/XMLSchema-instance) and defines the type attribute (besides
others), xsd is the schema namespace (http://www.w3.org/2001/XMLSchema), and it
defines the meaning of the data types like int or float.

Example: RPC/literal SOAP Message:

The following SOAP message uses RPC style and literal:

<soap:envelope>

 <soap:body>

 <myMethod>

 <x>5</x>

 <y>5.0</y>

 </myMethod>

 </soap:body>

</soap:envelope>

In contrast to SOAP encoding, the parameters x and y do not specify any data type within
the SOAP message. The sender and the receiver must ‘know’ how what data type the
parameters are. Usually that information is available in the WSDL.

Example: Document/literal SOAP Message:

The following SOAP message uses document style and literal:

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 48 -

<soap:envelope>

 <soap:body>

 <xElement>5</xElement>

 <yElement>5.0</yElement>

 </soap:body>

</soap:envelope>

Here, there is no longer a method or operation name part of the body. Instead, the body
directly contains the parameters. Also, there is not data type information contained in the
SOAP message. Everything that appears within the body is usually defined in a schema.

Example: Document/literal wrapped SOAP Message:

The following SOAP message uses document style and literal wrapped:

<soap:envelope>

 <soap:body>

 <myMethod>

 <x>5</x>

 <y>5.0</y>

 </myMethod>

 </soap:body>

</soap:envelope>

This SOAP Message looks pretty much the same as the RPC/literal example. Here, the
myMethod tag does not specify the method name, but a wrapper element, which the
single input message's part refers to.

Recommendations for use with the z/VSE SOAP Engine

The z/VSE SOAP Engine supports both, SOAP encoded and literal SOAP messages. The
z/VSE SOAP Engine does not support document style SOAP Messages, since it does not
contain a method/operation name. The CICS2WS Toolkit only supports RPC style and
SOAP Encoded and Literal WSDLs.

When z/VSE SOAP Engine receives a SOAP message (either a request when z/VSE acts
as a SOAP server, or a response, when z/VSE acts as a SOAP client), it

• translates the parameters into TS-Queue entries. The z/VSE SOAP Engine version 1
tries to deserialize (translate) the data into the appropriate native data type whenever
possible.

• translates the parameters directly to the memory according defined rules. The z/VSE

SOAP Engine version 2 translate the data into appropriate data type using mapping
rules.

Encoded SOAP messages contain data type information as part of the SOAP message,
thus data translation can be done (if the type is known and supported). For literal SOAP
messages, no data type is contained in the SOAP message, thus the z/VSE SOAP Engine

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 49 -

version 1 can not translate the parameters into a native format. Thus, the z/VSE SOAP
Engine version 1 creates TS-Queue entries with nun-translated data, the data will appear
in textual format in the TS-queue entry as it appears in the SOAP message.

z/VSE SOAP Engine version 2 works for encoded and for literal SOAP messages and
data translation can be done (if the type is known and supported).

For more information about how SOAP Messages are translated into TS-Queue entries,
please see Appendix B.

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 50 -

Appendix B: Translating SOAP Messages into TS-Queue
entries and vice versa

This chapter explains how the z/VSE SOAP Engine version 1 translates SOAP Messages
into TS-Queue entries and vice versa. This chapter assumes that you have a good
knowledge about the programming interfaces of the z/VSE SOAP Engine. Please see
Appendix C and the z/VSE e-business Connectors, User's Guide, SC34-2629-02 for a
detailed description.

Translating SOAP messages into TS-Queue entries:

When z/VSE SOAP Engine receives a SOAP message (either a request when z/VSE acts
as a SOAP server, or a response, when z/VSE acts as a SOAP client), it translates the
parameters into TS-Queue entries. The z/VSE SOAP Engine tries to deserialize
(translate) the data into the appropriate native data type whenever possible.

Data translation can only be done when data type information is present in the SOAP
message. Thus only messages that use SOAP encoding are eligible for data translation.
For literal messages, which do not contain data type information, the z/VSE SOAP
Engine can not perform any data translation. Thus it will pass the data unchanged (i.e. in
textual form) into TS-Queue entries. The application will have to translate the textual
representation into anything useful. The SOAP_PARAM_HDR field TYPE will contain
UNSPECIFIED in this case; the field TYPENAME will contain blanks.

For SOAP encoded messages, data translation is performed. However, not all data types
are known or not supported by the z/VSE SOAP Engine. Those parameters with data
types that area not handed by the z/VSE SOAP Engine will also be passed un-translated
into the TS Queue entries, that is in textual form. The application is then responsible to
translate the textual representation into anything useful. The SOAP_PARAM_HDR field
TYPE will contain PRIVATE in this case; the field TYPENAME will contain the name
of the type as in the SOAP message. You can use the TYPENAME together with the
NAMESPACEURL field to determine the application specific data type.

Complex data types with nested parameters (e.g. structures, arrays, complex objects, …)
are in any case translated by the z/VSE SOAP Engine. Such a complex parameter will be
translated into a single TS-Queue entry, which is flagged as complex or array type. The
entry will have inner parameters with its own type information.

Translating TS-Queue entries into SOAP Messages:

When the z/VSE SOAP Engine sends out a SOAP message (either a request when z/VSE
acts as a SOAP client, or a response, when z/VSE acts as a SOAP server), it uses the
information in the TS-Queue entries to build the SOAP message. The z/VSE SOAP
Engine performs serialization (translation) of the data if data type information is
available.

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 51 -

If a literal SOAP message is to be sent, you should set the field TYPE in
SOAP_PARAM_HDR to UNSPECIFIED and field TYPENAME to blanks. This
indicates that no type information is required. The data of the parameter is passed
unchanged into the SOAP Message, i.e. it must match the required textual representation.

When sending complex parameters, you set the field TYPE in SOAP_PARAM_HDR to
STRUCT or ARRAY and set the field TYPENAME to the name of the application
specific type. Usually you will use your own schema to describe the types. You should
therefore set the field NAMESPACEURL to the schema’s URL. The same applies for
simple private types. In this case you set the field TYPE to PRIVATE, the field
TYPENAME to the name of the application specific type, and the NAMESPACEURL to
the schema’s URL.

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 52 -

Appendix C: Programming interface of the z/VSE SOAP
Engine version 1

This chapter describes the programming interface between the z/VSE SOAP Engine
version 1 and proxy code or SOAP aware user program. Please see the z/VSE e-business
Connectors, User's Guide, SC34-2629-02 for a detailed description.

The following describes the control blocks in some detail. You find the C definitions in
the C header file IESSOAPH.h in PRD1.BASE. This file also contains an Assembler
version of the definitions.

Note: Most of the fields used with the z/VSE SOAP Engine are case sensitive!

SOAP Parameter header (SOAP_PARAM_HDR):

The SOAP Parameter header is used to provide information about each parameter. It is
used within the TS-Queue entries.

Offset Length Data type Name Description

0 16 Text NAME The name of the parameter

16 16 Text TYPENAME The type name of the parameter

32 4 Integer LENGTH The length in bytes including this
header

36 4 Integer TYPE The type code of this parameter (see
below)

36
(overlay)

2 Integer ARRAY
LENGTH

For type ARRAY only: Specifies the
number of elements in the array

36
(overlay)

2 Integer IMPLIED
DECIMAL
POS

For type DECIMAL only: Implied
decimal position (number of decimal
digits)

The following type codes are supported by the z/VSE SOAP Engine:

Type Code Corresponding

type name

Description

UNSPECIFIED 0 none (blank) No data type is specified. Used for
literal SOAP messages.

PRIVATE 1 any private type
name

A private data type. Uses a private
namespace.

STRUCT 2 any private type
name

A complex parameter

ARRAY 3 Array A complex array parameter. The
typename field specifies the typename
of the inner array items

STRING 10 string A text string (variable length).

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 53 -

LONG 16 long A 8 byte signed integer

INTEGER 11 int A 4 byte signed integer

SHORT 12 short A 2 byte signed integer

BYTE 13 byte A 1 byte signed integer

ULONG 20 unsignedLong A 8 byte unsigned integer

UINTEGER 17 unsignedInt A 4 byte unsigned integer

USHORT 18 unsignedShort A 2 byte unsigned integer

UBYTE 19 unsignedByte A 1 byte unsigned integer

BOOLEAN 14 boolean A boolean parameter.

BINARY 15 base64Binary
base64

Binary data (variable length)

DECIMAL 21 decimal A decimal number, may contain
decimal places

DECINT 22 integer
negativeInteger
nonNegativeInteger
positiveInteger
positiveInteger

A decimal number without decimal
places

DATETINE 100 dateTime
timeInstant
recurringDate

A timestamp in ISO 8601 format

DATE 101 date A date value (e.g. “2002-10-10”)

TIME 102 time A time value (e.g. "13:20:00")

GYEAR 103 gYear
year

A year value (e.g. "2005")

GMONTH 104 gMonth
month

A month value (e.g. "--05")

GDAY 105 gDay
recurringDay

A day value (e.g. "---01")

GYEARMONTH 106 gYearMonth A year and month value (e.g. "1999-
05")

GMONTHDAY 107 gMonthDay A month and day value (e.g. "--05-
01")

The corresponding type name column specifies the value of the type attribute in the
SOAP message. Most of the types are from one of the following schemas:

• http://www.w3.org/2001/XMLSchema

• http://www.w3.org/2000/10/XMLSchema

• http://www.w3.org/1999/XMLSchema

• http://schemas.xmlsoap.org/soap/encoding/

SOAP Program Call Commarea (SOAP_PROG_PARAM):

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 54 -

This control block is used as COMMAREA when z/VSE acts as a SOAP Server. When
the z/VSE SOAP Engine receives in incoming SOAP Request, it processes it, translates
the parameters into TS-Queue entries and finally calls the corresponding user program
via EXEC CICS LINK with this control block as COMMAREA. All fields are set by the
z/VSE SOAP Engine and should not be modified by the user program, except the return
code field (RETCODE).

Offset Length Data

type

Name Description

0 16 Text METHOD The method/operation name (first 16
chars only)

16 8 Text INQUEUE The name of the TS-Queue
containing input parameters

24 8 Text OUTQUEUE The name of the TS-Queue that that
user program will use to put output
parameters to

32 128 Text NAMESPACEURL The namespace URL of the private or
complex parameters. If multiple
different namespaces are used in a
SOAP message, you will only find
one of it in this field. The namespace
URL can be used in combination
with the typename to determine the
data type of a parameter.

160 4 Integer RETCODE Return code value. This field has to
be set by the user program on return.
If the ret code is non zero, the z/VSE
SOAP Engine will generate a SOAP
Fault message.

164 128 Text METHODLONG Long version of the method/
operation name with up to 128
characters.

292 4 Integer AUTHTYPE Since z/VSE 4.2: Authentication type
used with this request (see Appendix
H).

296 64 Text AUTHUSER Since z/VSE 4.2: User-ID that have
been used for authentication

360 64 Text AUTHPWD Since z/VSE 4.2: Password that have
been used for authentication

SOAP Web Service Call COMMAREA (SOAP_DEC_PARAM):

This control block is used as COMMAREA when z/VSE acts as a SOAP Client. When a
user program wants to call an external Web Service, it calls the z/VSE SOAP Engine
(IESSOAPD) via EXEC CICS LINK with this control block used as COMMAREA.
Before calling the z/VSE SOAP Engine, the user program must set all fields of this

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 55 -

control block and it must create the TS-Queues used for input and output parameters. Any
parameters that are passed to the Web Service as input must be put onto the input TS-
Queue. The z/VSE SOAP Engine will process the request and update the return code field
(RETCODE) upon return. The z/VSE SOAP Engine also puts output parameters from the
Web Service to the output TS-Queue.

Offset Length Data

type

Name Description

0 128 Text URL The URL under which the Web
Service can be reached

128 16 Text METHOD The method/operation name (first 16
chars only)

144 128 Text URN The URN of the Web Service to
call. This is most often the
namespace of the Web Service to
call.

172 8 Text INQUEUE The name of the TS-Queue
containing input parameters

280 8 Text OUTQUEUE The name of the TS-Queue that that
z/VSE SOAP Engine will use to put
output parameters to

288 128 Text NAMESPACEURL The namespace URL of the private
or complex parameters. The
namespace URL can be used in
combination with the typename to
specify the private data type of a
parameter.

416 4 Integer PROXYTYPE If the you want to use a proxy or
socks server to reach the Web
Service, specify one of the
following values:
0: DIRECT (no proxy/socks)
1: PROXY
2: SOCKS V4
3: SOCKS V5

420 128 Text PROXY The hostname or dotted IP address
of the proxy/socks server

548 4 Integer PROXYPORT The port number under which the
proxy server can be reached

552 16 Text PROXYUSER The user-Id used for SOCKS
authentication

568 16 Text PROXYPWD The password used for SOCKS
authentication

584 4 Integer RETCODE Return code value. The z/VSE
SOAP Engine sets this field upon
return to the user program.

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 56 -

588 128 Text SOAPACTION Some Web Services require to send
a SOAP-Action HTTP header along
with the SOAP message

716 128 Text METHODLONG Long version of the method/
operation name with up to 128
characters.

844 4 Integer AUTHTYPE Since z/VSE 4.2: Authentication
type that is to be used with this
request (see Appendix D:).

912 64 Text AUTHUSER Since z/VSE 4.2: User-ID used for
authentication

976 64 Text AUTHPWD Since z/VSE 4.2: Password used for
authentication

Notes:

• The METHODLONG field is used for supporting method names that are greater
than 16 characters. If the METHODLONG field contains all zeros or blanks, or if
the COMMAREA length that is passed indicates that the new field is not present,
the method name is taken from the field METHOD. This provides backward
compatibility with existing programs. If the COMMAREA is large enough and
METHODLONG is not zero or blanks, the method name is taken from the field
METHODLONG.

• It is the user program’s responsibility to generate TS-Queue names that are unique
across other running programs and TS-Queues. A good practice is to use the CICS
task-ID of the current task as part of the TS-Queue names. This makes it unique.
It is also the user programs responsibility to delete the TS-Queues when they are
no longer needed.

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 57 -

Appendix D: Using Web Service Security

Web Service security can be described under:

• Transport-layer security

• Message-layer security.

Both transport-layer and message-layer security provides security features for:

• Authentication/authorization

• Data encryption and signatures.

Comparison of Transport-Layer Security and Message-Layer Security

Transport-layer security secures the network communication between the communication
partners by encrypting the data that is being transmitted over the network. In addition,
data integrity, authentication, and confidentiality can be achieved. Transport-layer
security typically uses digital signatures, PKI certificates, and secure hash functions to
prevent messages from being "camouflaged," passwords from being hacked, and
transactions from being denied.

In situations where an environment consists of several hops, the communication between
each hop has to be considered separately in terms of transport-layer security:

As shown in the figure above, the connections between each hop might use different
transport-layer security methods (or even no transport security for some connections).
Transport-layer security does not "span" multiple hops. This means, an intermediate hop
might be able to read the message. To achieve end-to-end security, you must therefore
use message-layer security. Using message-layer security, the message itself is secure and
does not change when sent over multiple hops.

Transport-layer security can be implemented using any of the industry-wide protocols,
such as:

• SSL (Secure Socket Layer), which is denoted by HTTPS.

• VPN/IPSec (which is transparent to applications).

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 58 -

Message-layer security includes security-related information in the SOAP message (or
more specifically, within the SOAP header).

Using Authentication with Web Service Security

Using authentication allows a service provider to check who is using the requested
service. In addition, the service provider may use this information to execute the service
under a specific user-ID, with its associated access rights (authorization).

To fully understand authentication and authorization, it is important to understand the
following concepts:

Authentication

The process of identifying an individual using the credentials of that individual.

Authorization

The process of determining whether an authenticated client is allowed to access a
resource or perform a task within a security domain. Authorization uses
information about a client's identity and/or roles to determine the resources or
tasks that a client can perform.

Credentials

A set of claims used to prove the identity of a client. They contain an identifier for
the client and a proof of the client's identity such as a password. They may also
include information, such as a signature, to indicate that the issuer certifies the
claims in the credential.

Identification

The use of an identifier that allows a system to recognize a particular subject and
distinguish it from other users of the system.

There are two possible methods of performing authentication:

• Transport-layer authentication. Here, the transport layer carries information about
who is requesting the service. The possible implementations are:

o HTTP Authentication (Basic and Digest Access Authorization, see RFC
2617).

o The use of SSL Client Authentication with SSL/HTTPS.

• Message-layer authentication. Here, the SOAP message itself carries information
about who is requesting the service. The possible implementations are:

o Direct authentication, using plain text passwords or a password digest.
o Brokered Authentication, using a X.509 Certificate, Kerberos, Security

Token Services, or SAML Assertion. Brokered Authentication using a
X.509 Certificate carries the X.509 Certificate as part of the SOAP header.
Here is an example:

 <soap:Header>

 <Security xmlns="...secext-1.0.xsd>

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 59 -

 <BinarySecurityToken EncodigType="wsse:Base64Binary"

 ValueType="wsse:X509v3">

 MIICuzCCAiQCBF...

 ...

 </BinarySecurityToken>

 </Security>

 ...

Direct authentication defines two ways of transporting the password:

• Plain text password, in which UsernameToken is used to transport the actual
password. If you use plain-text password configuration, you must use a secure
transport method (such as HTTPS).

 Here is an example:
 <soap:Header>

 <Security xmlns="...secext-1.0.xsd>

 <UsernameToken>

 <Username>John Smith</Username>

 <Password>Pass12wd</Password>

 </UsernameToken>

 </Security>

 ...

• Password digest, in which the communicating parties (the requester and the
service) use an insecure transport channel. Steps must be taken to protect the

passwords from being exposed to others. Here, the requester creates a digest of

the actual password that is concatenated with a set of random bytes (field nonce)

and another value that is dependent on the creation-time (field created). This

digest is computed as follows:
 digest = Base64_encode(SHA-1(nonce+created+password))

To authenticate the request, the service computes the digest value using the
password bound to the received username. It compares the received digest value
with the computed digest value. Here is an example:

 <soap:Header>

 <Security xmlns="...secext-1.0.xsd>

 <UsernameToken>

 <Username>John Smith</Username>

 <Password

 Type="...#PasswordDigest">AFHHF23wger=</Password>

 <Nonce>ksSDGFljdfD=</Nonce>

 <Created>2010-07-15T07:12:19.573Z>/Created>

 </UsernameToken>

 </Security>

 ...

From z/VSE 4.2 onwards, z/VSE supports:

• Transport-layer authentication using:
o HTTP authentication (Basic and Digest Access Authorization).
o SSL Client Authentication with HTTPS.

• Message-layer authentication using:

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 60 -

o a UsernameToken (plaintext password or password digest).

o an X.509 Certificate (BinarySecurityToken).

Using Web Service Security Features when z/VSE Acts As the SOAP Server

These are the areas you should consider:

• Transport-Layer Encryption: When transport-layer authentication is used,
z/VSE acts as an HTTP server. This is implemented using CICS Web Support
(CWS) as the HTTP server. CWS passes the SOAP request to the z/VSE SOAP
Engine for further processing. Since CWS implements support for HTTP over
SSL (HTTPS), the z/VSE SOAP Engine inherits the security features from CWS.
To use HTTPS, you must:

o Configure TCPIPSERVICE in CICS for use with SSL.

o Create the required keys and certificates.

• Transport-Layer Authentication: CWS supports SSL client authentication
(HTTPS), as well as HTTP Basic Authentication, so the z/VSE SOAP Engine
inherits the security features from CWS. To force a client to use HTTP basic
authentication, you need to configure the TCPIPSERVICE to use the CICS

provided converter program DFH$WBSB (specify URM=DFH$WBSB). In

addition, the z/VSE SOAP Engine extracts authentication information (user-ID
and password for HTTP basic authentication, or the mapped user-ID for SSL
client authentication). This information can be used by the converter code to
check if transport layer authentication was used. If authentication was not used,
the converter code might reject the request.

• Message-Layer Authentication: To support message layer authentication, the
z/VSE SOAP Engine (that is, the z/VSE SOAP Server) extracts the authentication
token from the SOAP header after parsing the XML data stream. In case of

UsernameToken, the user-ID and password have to be verified against a local

identity store. To do this, the identity store must be able to compare the plain text
password of password digest against its stored password. If user authorization is
to be additionally performed, a user mapping must be performed to map the
received username to a z/VSE user-ID. Also, a CICS SIGNON has to be
performed using the mapped user, to allow the transaction to run under that user.

In addition to UsernameToken, the use of certificates for authentication is

possible. In this case, the converter code maps the received certificate to a z/VSE
user. z/VSE supports this functionality as part of its support for SSL client
authentication.

You should be aware that the z/VSE SOAP Engine does not itself perform the
authentication. Instead, it simply extracts the security information and passes it to the
converter code or user application. It is the user application's responsibility to perform
authorization checking or signon processing.

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 61 -

The SOAP control block SOAP_PROG_PARAM specifies what authentication method
have been used. User programs may use this information to perform authentication
checking. In SOAP_PROG_PARAM, the fields AUTHTYPE, AUTHUSER and
AUTHPWD are used to pass security related information to the user program:

AUTHTYPE AUTHUSER AUTHPWD

NONE (0) Not used Not used

HTTP_BASIC
(1)

User-ID as in HTTP request Password as in HTTP request

WS_PLAIN
(2)

User-ID as in SOAP Header Password as in SOAP Header

WS_DIGEST
(3)

User-ID as in SOAP Header Name of a 3rd TS-Queue that holds 3
entries:
- The password digest in base64
- The created timestamp as text
- The nonce value in base64

WS_CERT (4) User-ID that was mapped from
the certificate in the SOAP
Header or blanks if no
mapping found

Name of a 3rd TS-Queue that holds 1
entry:
- the binary certificate data

SSL_CERT (5) User-ID that was mapped from
the SSL Client certificate or
blanks if no mapping found

Name of a 3rd TS-Queue that holds 1
entry:
- the binary certificate data

Using Web Service Security Features when z/VSE Acts As the SOAP Client

These are the areas you should consider:

• Transport-Layer Encryption: When transport-layer authentication is used,
z/VSE acts as an HTTP client. The HTTP client that is implemented in z/VSE
then supports HTTPS. To use HTTPS:

o The URL needs to specify https://

o You must provide a public/private key pair, together with certificates. For
details of how to specify the keys, refer to the skeleton SKSOAPOP in
VSE/ICCF Library 59.

• Transport-Layer Authentication: From z/VSE 4.2 onwards, the HTTP Client
supports SSL/HTTPS. Therefore, you can use SSL client authentication using
certificates. If requested, the SSL protocol can send the client's certificate to the
server (service provider). If required, the server can use the client's certificate to
perform authentication and authorization. In addition, HTTP basic authentication
is supported by the z/VSE HTTP Client.

• Message-Layer Authentication: From z/VSE 4.2 onwards, the z/VSE SOAP
Engine (that is, the z/VSE SOAP Client) supports the authentication token in the

SOAP header. For the UsernameToken, the user application (or converter

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 62 -

code) requesting the service must pass the username and password to the

z/VSE SOAP Engine. If authentication is done using a certificate, the certificate
name must be provided. Code for passing this information can either be part of the
user application, or part of the converter code.

The SOAP control block SOAP_DEC_PARAM specifies what authentication method is
to be used. In SOAP_DEC_PARAM, the fields AUTHTYPE, AUTHUSER and
AUTHPWD are used to pass security related information to the z/VSE SOAP Engine:

AUTHTYPE AUTHUSER AUTHPWD

NONE (0) Not used Not used

HTTP_BASIC
(1)

User-ID to be used in HTTP request Password to be used in HTTP
request

WS_PLAIN
(2)

User-ID to be used in SOAP Header Password to be used in SOAP
Header

WS_DIGEST
(3)

User-ID to be used in SOAP Header Password to be used in SOAP
Header

WS_CERT (4) Specifies the name of the certificate
member that contains the certificate
to send in the SOAP header:
CRYPTO.KEYRING(CERTNAME)

Not used

SSL_CERT (5) Not supported for VSE as SOAP
Client. The Web Service provider
may request the SSL client
certificate to perform SSL client
authentication.

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 63 -

Appendix E: Mapping long names to short names

In case of SOAP Engine version 1 should be additional attention for the length of SOAP
parameters. Due to the size restriction for TS Queue entries, SOAP parameters can only
have names up to 16 characters (as shown in the SOAP_PROG_PARAM control block).

If you wish to use SOAP parameters that are greater than 16 characters, you can supply
your own mapping to map long names (greater than 16 chars) to short names (less than or
equal to 16 characters). This support is available since z/VSE 4.2.

The z/VSE SOAP Engine will translate:

• Long names to their corresponding short names when it receives SOAP messages
that contain parameters with long names.

• Short names to their corresponding long names when sending out SOAP messages
containing parameters with long names.

Short names that belong to a long name must start with a "#" character, so that the z/VSE
SOAP Engine can recognize this as a name that needs to be translated.

You can supply the mapping in the SOAP Option phase IESSOAPO. Please use skeleton
SKSOAPOP in ICCF library 59 to generate the option phase. Below you see an example
of the mapping table:

 * ***

 * Start of the mapping table. Entries are specified as follows:

 * ENTRY SHORT='short name',LONG='long name'

 * ***

 *

 TABSTART DS 0F START OF TABLE

 *

 ENTRY SHORT='#shortin', X

 LONG='ThisIsAVeryLongInputWithMoreThan16Chars'

 ENTRY SHORT='#shortout', X

 LONG='ThisIsAVeryLongOutputWithMoreThan16Chars'

 *

 TABEND DC H'0' END OF TABLE

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 64 -

Appendix F: Differences between SOAP Web Services and
REST services

SOAP Web Services often use HTTP as the underlying transport protocol, and the XML
based Simple Object Access Protocol (SOAP) as container to transport data (i.e.
parameters, objects) within a SOAP message.

REST stands for “Representational State Transfer”. It describes a simple interface which
transmits domain-specific data over HTTP without an additional messaging layer such as
SOAP. REST often uses XML within the HTTP content, but it does not require a specific
encoding such as SOAP.

An important concept in REST is the existence of resources (sources of specific
information), each of which is referenced with a global identifier (e.g., a URI in HTTP).
In order to manipulate these resources, components of the network (user agents and
origin servers) communicate via a standardized interface (e.g., HTTP) and exchange
representations of these resources (the actual documents conveying the information).

With HTTP, REST uses the following HTTP requests to create, update and delete
resources:

POST Create the resource

GET Read the resource

PUT Update or Create the resource

DELETE Delete the resource

Some REST services also use additional attributes e.g. as part of the URL to specify the
action to perform.

To provide a REST service in z/VSE, you need to implement your own web-aware
program that runs inside CICS Web Support (CWS). It gets called when CWS receives an
HTTP request and uses EXEC CICS WEB nnn commands to retrieve information about
the HTTP request as well as the HTTP content. For more information about writing a
web-aware program in CICS please see the CICS Internet Guide (SC34-5765) chapter
“Writing CICS programs to process HTTP requests”:
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/DFHWTL06/2.9

With REST, the content is most likely XML data. You can use the z/VSE XML Parser to
parse XML data. For more information about the z/VSE XML Parser, see here:
http://www.ibm.com/systems/z/os/zvse/documentation/ebusiness.html#xmlparser

To call an REST service from a z/VSE program, you also must implement your own
program that communicates via HTTP with the REST service. You can use the z/VSE

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 65 -

HTTP Client to connect to the REST service, send the HTTP request and receive the
HTTP response. For more information about the z/VSE HTTP Client, see here:
http://www.ibm.com/systems/z/os/zvse/documentation/ebusiness.html#httpclient

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 66 -

Appendix G: Red and orange marks

On the CICS2WS panel “Add Operation to Service” and panel “Choose Operation” some
of the fields may be marked in red or orange.
Orange indicates that some parameter within the group is marked red or that the group is
a redefine. Red means that you need to perform an action before you can continue to use
this operation.

There are the following reasons for red field:

• fields name is longer than 16 characters. Right click the field and choose the
desired action (e.g. rename the field).

• the parameter appears as input parameter as well as output parameter. Every Web
Service parameter will have its corresponding field in the generated
COMMAREA. Per default, the COMMAREA field gets the same name as the
parameter in the Web Service operation. You can change the name of the
COMMAREA field. Right click the parameter and choose “Change Commarea
Name”, then type in the new name.

• array size should be specified. Right click the field and choose variable of fix size
of array.

© Copyright IBM Corp. 2014, 2016 How to use Web Services with z/VSE

 - 67 -

Appendix H: More information

z/VSE V4R2 e-business Connectors User's Guide, SC34-2629-02
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IESCUE50/CCONTENTS

CICS2WS Toolkit download
http://www.ibm.com/systems/z/os/zvse/downloads/#cics2ws

Web Services Documentation
http://www.ibm.com/systems/z/os/zvse/documentation/ebusiness.html#soap

Presentation: SOA Roadmap and Application integration for z/VSE
ftp://ftp.software.ibm.com/eserver/zseries/zos/vse/pdf3/techconf2008/lasvegas/zEO02.pdf

Presentation: Using SOA Web Services with z/VSE
ftp://ftp.software.ibm.com/eserver/zseries/zos/vse/pdf3/techconf2008/lasvegas/zEO03.pdf

Presentation: How to Exploit SOA using z/VSE Web Services
ftp://ftp.software.ibm.com/eserver/zseries/zos/vse/pdf3/techconf2008/lasvegas/zEO52.pdf

