
OS/390 UNIX SYSTEM SERVICES
KERNEL UPDATE FOR
OS/390 V2R6 and V2R7

Don Ault
ault@us.ibm.com
May 1998

This presentation will cover enhancements in OS/390 UNIX
System Services for OS/390 V2R6 and OS/390 V2R7.

MULTIPROC/MULTIUSER

ASXB

ACEE

JST

PROCESS 1

SET DUB DEFAULT TO PROCESS

ATTACH

SENV

ACEE
SENV

ACEE
SENV

PROCESS 2

PROCESS 3

MPMU1

DB2 STORED PROCEDURES

The support for multiple processes in a single address space
with multiple identities is initially supported in OS/390 V2R6.
Some of this support was rolled back to V2R4.
This foil shows the case of an APF authorized address space
where the main task has called set dub default to tell the kernel
that subtasks should be dubbed as processes. The application
attaches the subtasks and creates task level ACEEs for the
clients that it is doing work for. When the kernel gets control
for the first syscall on these tasks, it notices that there is a task
level ACEE and dubs the task as a new process, using the
user identity to extract the UID/GID and groups that it is to run
with.
This support is currently being used by DB2 to run stored
procedures which execute UNIX style code.

MULTIPROC/MULTIUSER

ASXB

ACEE

JST

PROCESS 1

SPAWN

SENV

ACEE
__login()

PROCESS 2

PROCESS 3

MPMU2

ACEE
__login()

V2R6: A second phase of multiproc/multiuser is the creation of
a new C service called __login. In this scenario, the application
is not running APF authorized, but is superuser and permitted
to BPX.DAEMON. The server creates a new process via a
local spawn for each client. This is made possible by another
enhancement to the spawn service to allow the application to
request that the child process only be created in the same
address space. Prior to this, a local spawn may have been
made non-local if the address space was running out of
storage. With the new option, the spawn is either local or
rejected (EAGAIN).
So once the local process is created, the server verifies the
identity of the client and calls __login which causes the kernel
to build a task level ACEE for this task and process. This
process can call exec and the kernel will preserve the task
level ACEE. But, ifthis process does another local spawn, the
identity of the child will get the address space identity. It is
necessary to do another __login in the child to pick up the right
identity.

BINARY SEMAPHORES
USING THE PLO INSTRUCTION

SEMGET has a new option for
specifying binary semaphores

OLD SEMOP
 Get GRS latch for semaphore set.
 Attempt to modify semaphore
 If semaphore is unavailable then
 Release latch and wait, start over
 Else
 Modify semphore

NEW SEMOP
 Determine semaphore state
 If semaphore is not available then
 Build PLO instruction to add waiter to Q end
 Else
 Build PLO instruction to modify semaphore
 Issue PLO instruction. If it fails, start over.

SEMPLO

V2R6: OS/390 UNIX has had semaphore support for counting
semaphores since MVS/ESA 5.2.2. This support is compliant
with all of the standards. The problem is that this support is
slow. Since most applications use semaphores as binary
semaphores, we have been doing redesign of the semaphore
logic to take advantage of the simpler binary semaphore
requirements. In other semaphore enhancements, we have
simply detected binary semaphore behavior and let this trigger
more optimal behavior.
With the introduction of the PLO (Perform Locked Operation)
instruction, we require the caller of semget to specify a new
BIN_SEM option which indicates that the caller will only be
using the semaphore in a binary manner. That is, only semop
calls for -1 or +1 and a semaphore value will never be anything
but 1 (available) or 0 (not available).
Assuming the PLO hardware is available (CMOS hardware
only), the semop processing will be implemented with the PLO
instruction. This completely eliminates the GRS latch with
significant reduction in pathlength and contention.
If the PLO instruction is not installed, semop processing will
use a GRS latch as before.
This support was rolled back to OS/390 R4 via APAR
OW32071.

NONSWAP SERVICE

__mlockall(NONSWAP)

KERNEL
Check if caller is permitted to
BPX.STOR.SWAP
If permitted then
 SYSEVENT TRANSWAP

Also support for making address space
swappable again.

Meant for server address spaces that are
running unauthorized and unable to invoke
SYSEVENT on their own. Initially done for
LOTUS servers.

SWAPs

V2R6: The __mlockall service was created to mimic the
mlockall() C function defined in UNIX 98. The mlockall service
mostly deals with allowing the caller to page fix pages and
address spaces. Since there is generally no need for a regular
C application to page fix pages, we did the next best thing
which is to allow them to become nonswappable. To prevent
misuse of this capability, the kernel checks to see if the caller is
permitted to the BPX.STOR.SWAP FACILITY class profile.
Only if the caller is permitted to this profile will the kernel issue
the SYSEVENT TRANSWAP to make the address space
nonswapable.
This support was done to improve the performance of LOTUS
server spaces, but is available to all applications with the
appropriate permission.
A warning to those considering using this. The SYSEVENT
TRANSWAP for an address space that will be up permanently
will likely restrict the ability of the system to configure storage
offline. This is because the LSQA of the target address space
was originally allocated in non-preferred storage. When the
address space is marked non-swappable, there is no way for
the operating system to move the LSQA to preferred storage.
This support was rolled back to V2R4.

MISCELLANEOUS

The __console service has been enhanced to
allow the caller to issue multiline WTOs instead
of the previous single line messages.

A set of C functions and a kernel service have
been provided to give C programs access to
most of the WLM services. Callers must be
permitted to BPX.WLMSERVER.

The ability to DBX attach to an APF authorized
address space has been added. The caller must
be permitted to BPX.DEBUG.

The ability to classify UNIX address spaces
by jobname has been added to WLM.
OW30439 has this support.

V2R6:
The __console service provides the ability for an unauthorized
C program to respond to STOP and MODIFY commands. In
addition, it allows the C application to write to the console via
WTO. This new support extends that ability by allowing the
caller to write multiline WTOs.

C functions for WLM: CheckSchEnv(), ConnectServer(),
ConnectWorkMgr(), ContinueWorkUnit(), CreateWorkUnit(),
DeleteWorkUnit(), __DisconnectServer(), JoinWorkUnit(),
QueryMetrics(), QuerySchEnv(), LeaveWorkUnit(), and more.

In the past, there was no way for a DBX debugger to debug an
APF authorized server. If the debugger is permitted to
BPX.DEBUG facility class profile, the kernel will now allow DBX
to debug the APF authorized process.

In prior release, the only way to tell WLM to distinguish
between work running in forked address spaces was by
USERID or accounting information. Since many daemons are
set up to run with the same userid and have no accounting
data, it was difficult to have WLM treat certain daemons
differently. Now WLM can be set up to classify a forked
address space by the jobname. The shell
allows you to export _BPX_JOBNAME to set a desired
jobname and now these server spaces can be correctly
classified.

MISCELLANEOUS

During fork and spawn, the initial REGION
size is set to 50M instead of 0 to prevent
IEFUSI exits from getting involved. OW32459

F BPXOINIT,SHUTDOWN=FORKINIT
Provides a mechanism to clean up WLM fork
initiators prior to a shutdown or P JES.

_BPX_SHAREAS=MUST allows the application
to request a local spawn or no spawn at all.

OW30182 changes time out behavior so that
TSO users will terminate when JWT is
detected. Terminating signals now detect
TGET and TPUT waits and break through.

Fork, pthread_create and ptrace support
for IEEE Floating Point registers.

V2R6: During fork and spawn, the IEFUSI exit used to see a
region size of zero. Some exits were setting a new region size
which was interfering with fork. Now the region size is set to
50M to sooth the IEFUSI exit. Region size is propagated from
the parent during fork child processing.
The F BPXOINIT,SHUTDOWN=FORKINIT operator command
was added after complaints about waiting 30 minutes for the
initiators to time out following a P JES2 command.
New setting of _BPX_SHAREAS=MUST allows the application
to force a local spawn. Useful when the first process has DDs
needed by the second process.
The kernel propagates the new floating point regs on fork. On
pthread_create, floating point controls are propagated to the
new thread. Ptrace provides the hooks for DBX to access new
FP regs.

SERVICEABILITY

CTRACE COMP(SYSOMVS)
 OPTIONS((SCCOUNTS))
provides syscall counts usefull for primitive
profiling of your C applications.

CTRACE COMP(SYSOMVS)
 OPTIONS((SEARCH(off,len,string)))
provides the ability to only print trace entries
which match the search argument.

CTRACE records for open, exec and spawn
now have the filename included.

Syscall failures are now always traced.

CTRACE buffer size is overridden to the 4M
max when options specified with default
buffer size.

OMVSDATA NETSTAT

V2R6: A SCCOUNTS (SysCall COUNTS) option was added to
the SYSOMVS ctrace. When requested, this will print out a
report showing total syscalls and frequency. This information
can be used against any trace data, but is meant for running
against a ctrace run to an external writter. This will allow an
application writter to understand the frequency of syscalls
being made.
A new SEARCH argument was added to the SYSOMVS
CTRACE IPCS formatting options. This will allow the trace
entries to be filtered by TCB, failing syscalls or any other string
in the trace entries.
File names were added to open, exec and spawn so you can
tell more about what is happening.
Whenever a syscall failure is detected, the results are always
traced.
The trace buffer size is upgraded to 4M when options are
specified with the minimum buffer size. This is to deal with
frequent failures to increase the buffer size.
OMVSDATA NETSTAT formats TCP/IP stack information.

PERFORMANCE

pthread_cond_wait and pthread_cond_post
have been redesigned to eliminate some of
the kernel calls, thus improving performance.

More kernel data made accessible to RTL.

RACF UID/GID lookup redesigned.

LOADHFS optimized for Job Pack Queue
search to assist on frequently accessed DLLs.

Kernel timer queue optimized for dual ended
search.

V2R6: Prior support for pthread_cond_wait required the C RTL
to call the kernel for pthread_cond_setup, then
pthread_cond_wait. The reason for the RTL to call the kernel
at all was to enable a signal to wake up the
pthread_cond_wait. The kernel has added new ECBs and
flags to the Thread Level Information (THLI) block. The RTL
uses these new fields to inform the kernel when it is going into
a signal enabled wait. The kernel will post an ECB in the THLI
when a signal arrives. This was done for performance reasons
to cut the pathlength.
pthread_cond_timed_wait builds on the above support, but
also provides a fast kernel service for establishing a timer.
This timer is automatically cancelled on the next kernel call.
This eliminates the 2 STIMER calls previously required.
The kernel has added fields to the BPXYPRLI to allow the RTL
to access UIDs, GIDs, parent PID and process group ID.
RACF has redesigned UID/GID lookup to deal with undefined
UIDs and GIDs. Dramatic improvements on initial lookup and
ls commands against NFS or DFS mounted file systems.
When loading a DLL or locale from the HFS, the algorithm has
been optimized to recognize previously loaded modules on the
Job Pack Queue.
Kernel timer has been optimized to deal with environments
containing over 1000 elements.

FILE SYSTEM BUNDLED SYSCALLS

__open_stat() - BPX2OPN

Opens the file and returns the data as if
an fstat were done after the open.

__accept_and_recv() - BPX1ANR

Combines the first recv with the accept
and only returns to the caller when the
data from the accept is in the buffer.

send_file() - BPX1SF

Allows a file to be sent out a socket with
a single kernel call. Caller can provide
header and trailer information.

V2R6: Some common pairs of file system calls have been
combined to reduce the pathlength.
Open followed by stat is commonly used and can now be
replaced with a call to __open_stat(). This service has a new
stat area parmameter in addition to the parms already
supported on open.
The web frequently does accept followed by receive when a
new connection arrives. The __accept_and_recv() function
speeds this up by only returning to the caller when the data for
the new connection has arrived.
The send_file() function was added to assist the web and ftp
type servers that need to send an entire file to another
destination. This call currently eliminates the multiple kernel
calls required to fill buffers from the HFS and then the send
calls. In the future, internal optimization of buffers between the
HFS and TCP/IP is anticipated.

OTHER FILE SYSTEM UPDATES

srx_np(BPX1SRX)

TCP/IP send and receive with buffer
ownership passing (key 6 buffers).

Receive_with_timer

Can be achieved with AIO support.
Replace select which is frequently used
just to get receive with timeout.

Support in Common Inet for
subnet and supernet masks.

V2 R6:
The srx_np service was primarily created for FTP. It allows the
caller to obtain buffers from the CSM buffer service. These
buffers can be filled on a read() call and then given directly to
TCP/IP on a send(), thus eliminating a data copy.
Only glitch is caller must be authorized and running in key 6.
In the past, when an application wanted to wait on a socket
with a timeout, they had to use select(). Now, by using the
functions in Asynchronous I/O (AIO), you can perform a
receive with a timeout and not undergo the overhead of select.

SHARED MEMORY

SGT SGT

SHMEM SHMEM

REAL
PGT

USER A.S. 1 USER A.S. 2

SGT

KERNEL DATA SPACE

MEGAROO

V2R6: With the previous version of shared memory, each page
of shared memory used a 32 byte RSM control block in ESQA
and each address space had its own page tables. If you tried
to share 500 Meg across 500 address spaces, it would have
consumed 2 GIG of ESQA for the control blocks and 1 GIG of
LSQA for the page tables.
With the new support, the caller of shmget can request
megabyte level sharing. When this is done, the kernel calls
RSM to set up shared page
tables. Now for 500 Meg shared by 500 address spaces, it will
only consume 2 Meg for 1 set of page tables.
With this new option, the application must agree to have all
sharing address spaces maintain the same view of the storage.

__PID_AFFINITY SERVICE

CLIENT PID=7 SERVER PID=9

__pid_affin ity(Add
 target - PID 9
 signal - SIGUSR1
 Sig PID = 7)

Request work
Wait for response

Work on request
Server dies or
is interrupted.

PID Affinity List

7 SIGUSR1

Kernel sends SIGUSR1
to PID 7

Request
fails instead
of hanging.-

PIDAFF

V2R6: The PID affinity service (C function __pid_affinity) was
created to allow some level of recovery for client/server
connections or server to server connections. When you have 2
processes communicating via message queues or shared
memory and one of those processes terminate unexpectedly, it
frequently leaves the other process waiting for a response
forever.
The PID affinity service allows a process to build a temporary
affinity to another process such that termination of that process
will result in getting the requested signal sent back to the
process. The PID affinity service can be called from the client
or the server end. The caller specifies which signal is to be
delivered. There is usually a signal catcher set up to catch
these signals.

BPXBATCH ENHANCMENTS - R6

//UNIXWDDS JOB
//STEP1 EXEC PGM=BPXBATCH
//STDIN DD PATH='/u/user/input',...
//STDOUT DD PATH='/u/user/output',...
//OTHERDD DD DSN=USED.IN.PGM
//STDENV DD *
_BPX_BATCH_SPAWN=YES
_BPX_BATCH_UMASK=0755
_BPX_SHAREAS=YES
/*

1. Parm string increased from 100 bytes to
 500 bytes. Usable in all but JCL.

2. Ability to request spawn and local spawn
 makes it possible to pass MVS DDs to a
 UNIX program.

3. Support for setting the umask.

BATCH2

V2R6: A number of enhancements have been made to
BPXBATCH. The parm string can now be up to 500
characters. JCL still has the limitation of 100 characters, but
BPXBATCH can be called from TSO, REXX or other programs
and supports the longer parm string.

With _BPX_BATCH_SPAWN=YES, it is possible to request
that BPXBATCH run the requested program via spawn. In
conjunction with existing environment variable
_BPX_SHAREAS=YES, the spawned program will run in the
same address space in a subtask (local process). That means
other DDs in the JCL are available to the invoked program, in
addition to stdin, stdout and stderr.

With _BPX_BATCH_UMASK, the caller has the ability to set
the umask for the program. Since there is no login shell script
run for BPXBATCH, this provides one of the capabilities
usually satisfied by login scripts.

Typical shell usage of sigaction()

Do sig = 0 to nsig (nsig=37)
 sigaction(sig,SIG_DFL,oldaction(sig))
End
.
run shell/sub shell
.
Do sig = 0 to nsig
 sigaction(sig,oldaction(sig),null)
End

.

sigactset

sigaction() vs __sigactionset()

Proposed usage of __sigactionset()

74 sigaction() syscalls
per shell/subshell

Build newset array
newcount=oldcount=nsig
__sigactionset(newcount,
 oldcount.
 newset,
 oldset)
.
run shell/sub shell
.
__sigactionset(oldcount,0,oldset,null)

Oldset_array

Sig# Action

1 SIG_DFL
2 SIG_DFL
.
.
37 SIG_DFL

1 SIG_IGN
2 HANDLER
.
.
37 SIG_DFL

Sig# Action

Newset_array

Prior to R6, any application wanting to reset signal actions
needed to call the sigaction() service for each and every signal
that needed to have its action changed. In the scenario where
OMVS shell is invoked it is required to run with all signals set to
their DEFAULT action. To accomplish this the shell code loops
through all possible signals setting the action to DEFAULT and
saving the old action. The shell code will then run the shell or
subshell cmd. Once that is done the shell code must restore
the original signal environment by once again looping through
all the signals, resetting the saved action.

With the introduction of __sigactionset() it is now possible for a
application to set the entire process signal action environment
with one call. The __sigactionset() service takes as input an
array of signals and there corresponding actions. The user can
also specify an output array that __sigactionset() will use to
place the current signal settings into. This output array is of
the same format as the input array such that it can be used to
restore the signal environment when needed.

By compressing the sigaction() service into the __sigactionset()
we can save many syscalls and latch obtains. Also the
application does not need to know the implementation specific
signals nor how many there are. __sigactionset() allows the
user to just fill out an array with 0-63 signals and set them to
any action they desire. Even though their may be several
signals not defined or several signals that can not have their
action changed, __sigactionset() has the ability to ignore
undefined signals or invalid actions setting.

PID SPECIFIC MESSAGE QUEUES - R7

SERVER

msgget()
 for inbound

msgget()
for outbound

CLIENTS

msgsnd(type=pid)

msgrcv(type=pid)

msgrcv()

msgsnd(
 type= target
 PID)

1. Clients can only send messages
 with type=pid
2. Which allows the server to always respond
 to specific PID on second message queue.
3. Client can only receive message with type
 equal to their PID.

MSGQPIDS

V2R7: One model of client/server communication is for the
server to define 2 message queues where one is for inbound
communication and the other is for sending responses to the
clients. If the client PID is used as the message type for both
directions, it allows the server to know who sent a message
and to direct the response to the correct process. For this to
work, the server must define the first queue such that any
process can write to it and the second queue such that any
process can read from it. This opens the server up to possible
abuse by the clients.
With this support, clients can only send messages with their
PID as the message type and can only receive messages with
type equal to their PID. This prevents a process from trying to
trick the server into believing it is another process. It also
prevents false clients from stealing responses meant for other
processes.
Two new flags are defined on msgget to request this behavior.

PERFORMANCE - R7

Optimized security checking in
performance sensitive syscalls:
 - Message queues
 - Semaphores
 - File system (stat, open, other lookups)
 - ps command

FACILITY CLASS PROFILE:
 BPX.SAFFASTPATH
ENABLES THE SUPPORT

DBX storage access optimized to prevent
expected abends.

PERFR7

V2R7: All of the security for the OS/390 UNIX functions is
implemented through calls to SAF which are routed to the
security product. Although these calls have been optimized for
pathlength, they can still consume a large portion of the
pathlength of certain syscalls. The kernel has implemented an
inline macro which performs most of the standard security
tests. If these tests pass, the call to SAF is bypassed. Since
bypassing SAF eliminates the ability to audit successful calls,
the customer must activate this support by defining the
FACILITY class profile BPX.SAFFASTPATH. This support
eliminates about 500 instructions during file name lookup for
each directory in the file name.
Similar savings are achieved in the IPC flows for message
queues and semaphores. The PS command also uses this
macro.

The DBX calls to PTRACE were triggering multiple expected
abends when connecting to modules in storage. The PTRACE
logic has been changed to anticipate expected program checks
with storage key validation to avoid the abend and the trip
through RTM.

RAS STUFF - R7

Error code text
 pfsctl() allows applications to retrieve text
 PC#ERRORTEXT
 REXX exec
 bpxmtext reason_code

STARTUP DIAGNOSTICS catches delays for:
 CAS, RACF, JES, File system init, fork inits,
 and hangs in /etc/rc processing.

ANALYZE exit for semaphores

F BPXOINIT,SHUTDOWN=FORKS

ps support for threads

RASR7

V2R7: For a long time, folks have been putting the kernel
reason codes on the forums and we have been running an
internal exec to lookup the text for the reason code.
We have finally shipped this support and made it accessible
through multiple formats:
- pfsctl() with a function code of PC#ERRORTEXT will
retrieve the text from a programming environment.
- REXX exec BPXMTEXT will accept the reason code and
return the error text.
- The env variable _EDC_ADD_ERRNO2=1 will cause the hex
reason code to print. Future support will add reason text.

During IPL, the OMVS kernel can run into multiple snags which
can prevent the UNIX services from becoming fully functional.
Frequently this goes undetected until some later point in time
where applications hang or fail due to the OMVS kernel not
completing initialization. This support adds code to record the
stage of initialization and watch for lack of progress. If a delay
in initialization is detected, an operator message is written
indicating the phase of startup that has been reached.

An IPCS ANALYZE exit has been written to add contention
information to the existing ENQ, latch and lock information
already provided by ANALYZE.

There is a new kernel service getthent which is called by a
modified ps command. This new support allows the caller to
display information for the threads in a multithreaded process.
Additional process information is also available.

USER DUMP SUPPORT - R7

New signal SIGDUMP dumps but does
not terminate the process.

TERMTHDACT(UADUMP)
 (UAONLY)
 (UAIMM)

Environment Variable
 _BPXK_MDUMP=MVS.DATA.SET.NAME
 hfs/file/name
 OFF (default)

F BPXOINIT,DUMP=pid
 pid.tid
 can trigger a dump of the target process.

USERDUMP

V2R7: In the past, if the user could not debug their application
with a CEEDUMP or DBX, they had to enlist the support of the
system operator to take an SDUMP via the DUMP or SLIP
commands.
This support attempts to provide greater user flexibility in
getting a dump of their address space.
A new signal SIGDUMP has been created. When a SIGDUMP
signal is delivered, it causes an ABEND and RETRY to occur
such that ABDUMP is invoked to take a dump, but the process
is not terminated (similar to DUMP command).
LE has added new run time options to allow you to control how
the dump occurs:
- UADUMP (existing option) allows a system dump in addition
to a CEEDUMP.
- UAONLY will just attempt to take a system dump.
- UAIMM will attempt to take a system dump directly from LE's
ESTAE.
By system dump, I mean an ABDUMP which will be either a
SYSUDUMP, SYSABEND or SYSMDUMP.
A new environment variable _BPXK_MDUMP allows you to
specify whether you want the dump taken to an HFS file, an
MVS data set or to be suppressed. This support will only kick
in if running in an address space with no ABDUMP DDs. It is
meant mainly as a means to get a dump in a forked or
spawned address space where DDs are hard to come by.
The dump can be triggered in multiple ways:
- The kill command from the shell supports the SIGDUMP
signal.
- The F BPXOINIT,DUMP command allows you to target the
dump to a particular process or thread.
- There are signals in UNIX that traditionally trigger dumps to
occur. These signals will now trigger dumps based on the LE
dump options above.

FAST CGI SUPPORT
WEBSERV
DAEMON

spawn()
FASTCGI

WEBSERV
SERVERS

accept()

__server_pwu(
 putwork)

accept()
 inherits WLM
 enclave and
 userid
do CGI work
close()

pthread_security_np()
setsockopts(
_SO_PROPAGATEUSERID)
connect() - get WLM
 enclave and user identity

Pass work to FASTCGI

FASTCGI

V2R6: Support has been added to enable the WEB server to
run %%CLIENT%% CGI programs in a faster manner. The
current implementation requires the WEB server threads to
issue a spawn to pass control to the CGI program. The
overhead of spawn is significant.
With FASTCGI, the web first creates a pool of FASTCGI
address spaces using spawn. These address spaces open an
AF/UNIX socket and go into an accept() to wait for a CGI
transaction. This accept is recognized as special by the accept
function for AF/UNIX sockets.
As CGI requests come into the web daemon, the socket
connection is accepted and passed to a web server thread via
__server_pwu. This creates a WLM enclave representing this
request. The web server thread does a __server_pwu call to
get the work and inherit the WLM enclave.
The web server thread then does a setsockopt to inform the
kernel that this is a special socket.
On the connect call, the kernel takes the user identity and
WLM enclave token and passes it through to the accept syscall
which is in a wait. As part of the accept flow, the kernel
changes the idenity of the FASTCGI address space to match
that of the thread which issued pthread-security_np. The WLM
enclave is also propagated to the FASTCGI space. The WLM
enclave and user identity are cleaned up when the socket is
closed.

DBX ENHANCEMENTS - R7

Performance - compiled opt(2)
New command: onload
New support to deal with ASCII
Better handling of DLLs
dbx configuration/setup file:.dbxsetup
Improved symbol processing
detection and reporting of bad compiler
symbolics
Support __cdecl in compiler's demangled
names.
Allow correct debugging of single line
functions.
Allow debuggee program arguments on the
dbx invocation
echo to user ptrace() call/return info on errors
Extensive support for IEEE Floating Point
regs.

DBXR7

UNIX 98 - R7

SHARED MEMORY MUTEX and
READ/WRITE LOCKS

SHARED
MEMORY

PROCESS 1 PROCESS 2

MUTEX

RWLOCK

pthread_mutexattr_
setpshared()

pthread_mutex
_init()

pthread_mutex_lock()

pthread_rwlock
_init()
pthread_rwlock
_wrlock()

pthread_rdlock
_wrlock()

OMVS - KERNEL

GRS LATCH SET

SHMUTEX

V2R7: The following new functions have been created to
support shared mutexes and shared read/write locks defined in
the UNIX 98 standard:
pthread_mutexattr_getpshared()
pthread_mutexattr_setpshared()
pthread_rwlock_destroy()
pthread_rwlock_init()
pthread_rwlock_rdlock()
pthread_rwlock_tryrdlock()
pthread_rwlock_trywrlock()
pthread_rwlock_unlock()
pthread_rwlock_wrlock()
pthread_rwlockattr_destroy()
pthread_rwlockattr_getpshared()
pthread_rwlockattr_init()
pthread_rwlockattr_setpshared()
Existing mutex functions changed to
recognize and support mutexes which reside in
shared memory. Locking functions can be used instead of
semaphores.
Locks are mapped to GRS latches inside the kernel. This
enables D GRS,C contention analysis and IPCS ANALYZE
support for free.

ASYNC-I/O

PFS

LFS LFS

Part 1 AIO Part 2 AIO

User Pgm

aio_read(aiocb)
.
do more stuff
.
 or

aio_read(aiocb)
aio_suspend(aiocb)
.
act on completed I/O

.

Post

.

Signal

act on completed I/O

Signal
Handler.

User's
aiocb

FD
Buffer@
RC

With async I/O applications may do one or more reads or
writes to a file or socket and have control returned without
having to wait for the I/O to complete. Several Async I/O
functions have been implemented on R7:

aio_read() - read file/socket data to specified buffer
aio_write() - write from specified buffer to file/socket
aio_suspend() - wait on list of aiocbs for aio to complete
aio_cancel() - cancel outstanding aio request
aio_error() - get error status aio operation
aio_return() - get return info of completed aio operation

These functions may be used by an application to kick off
several I/O requests where each request is represented by an
aiocb. The aiocb is a user control data area that defines the
async I/O request and contains such information as the File
Descriptor, buffer@, notification event type and the return code
of the request.

The notification event type may be of several flavors. The
application may opt for no notification, notification by running
an exit, posting of an ecb or having a signal generated to the
process.

In this foil we see two types of flows, one where a user issues a
async I/O request(with signal notification), gets control back
and continues running while the I/O is being handled by the
PFS. When the I/O completes the LFS again gains control,
reads the requested information into the buffer pointed to by
the aiocb, sets the return code of the read and generates the
user requested signal to the process. The signal interrupts the
user and control is given to the user's signal handler. From
here the I/O completion can be acted upon by the application.

In the other scenario the application issues an async I/O
request and then waits in the aio_suspend function. In this
case no notification was spec

SSL CERTIFICATE SUPPORT

CLIENT

DGW
DAEMON

DGW
SERVER

- Web client passes SLL certificate.
- If certificate is not already registered
- Prompt for userid/password
- Call __passwd service to authenticate
- __certificate(certificate, REGISTER)

CERTREG

V2R6: Support has been added to the system to allow a web
client to register a certificate for the calling client. This
eliminates the step where the client must send their certificate
to the host and involve the system administrator to run a RACF
certificate upload job.
Now the client connects to the web site. The customer must
define a URL which will accept a SSL certificate. If the
certificate is not already defined to the security product, then
the web code prompts the client for their userid and password.
The client identity is then established on the thread using
pthread_security_np. Then the new __certificate() service is
called to register the new certificate. The certificate is
registered to the user that is currently defined in the task level
ACEE.
Support is also provided in __certificate() to deregister a SSL
certificate.

SHELL & UTILITIES - R7

Support link and unlink shell commands.
UNIX 98

pax external link support

Recompiled with OPT(2) and IPA for
improved performance.

Performance tune up for:
 vi find pax tar cpio compress
 uncompress zcat grep ar ls du

ps for thread level information and
 additional process information.

V2R7:
link - create a hard link to a file - same as ln
unlink - remove a directory entry - same as rm
chroot - change the root directory for the execution of a
command
pax/tar - allow it to store and extract external link files and
preserves the extended attributes (APF, PROGCTL,
NOSHAREAS) associated with an HFS file.
The ps utility has new thread-specific output fields. (e.g. TID
and TAGDATA) New thread-related fields for processes will
also be created such as thdcnt, which displays the total
number of threads associated with a process.

INSTALLATION IMPROVEMENTS

SMP/E R7
 - Support for Shell Scripts
 - Support for symbolic links

Filesystem - R7
 - Dynamic creation of character special files (/dev/*)
 - Non-secure filesystems
 - Upon Dub failure, use root for HOME directory

Utilities - R7
 - BPXCOPY support of symbolic links and extattr bits
 - SETEUID support in:
\ TSO MOUNT and UNMOUNT commands
 SMP/E
 BINDER
 BPXCOPY

INSTALL1

V2R7: SMP/E has been enhanced to allow the install logic to
execute a shell script following other installation steps. This
eliminates the need to run post install jobs to touch up the file
system. SMP/E can now define symbolic links.
Based on demand, the file system now dynamically creates the
/dev/ character special files, eliminating the post install step.
MOUNT supports an option to indicate that the mounted file
system is not secure. The system will not honor setuid, setgid,
APF or program control attributes of a non-secure file system.
During DUB, lack of a home directory will trigger use of the
ROOT for HOME. Allows ROOT to be unmounted.
BPXCOPY supports symbolic links, extended attributes
(APF, PROGCTL, NOSHAREAS), set owner UID/GID.
MOUNT, UNMOUNT, BPXCOPY, the binder and SMP/E will
now perform a seteuid to 0 if not running under uid 0. Requires
BPX.SUPERUSER permission.

INSTALLATION IMPROVEMENTS

Software Manufacturing - R6
 - Support for Single HFS Delivery

Binder
 - Support for symbolic links and extattr bits

Packaging Standards
 - Create packaging standards for all products
 installing in the HFS to follow
 - Provide samples, naming convention, packaging
 techniques etc.

INSTALL2

Documentation Improvements
 - OS/390 UNIX Planning
 - Planning for Installation
 - ServerPac - In your order
 - Program Directory

V2R6: OS/390 now comes with one large HFS instead of many
smaller HFS's for each component. Customers may want to
split it up later.
The Binder has added support to set symbolic links and the
APF and program control external attribute flags.
Standards will be documented for packaging products with
parts in the HFS.
Additional documentation is being provided to assist with
systems managment tasks involving OS/390 UNIX installation
and customization.

HIGH SPEED ACCESS SERVICES

GC31-8676 - Covers configuration and use

Webstones on 10/way 4600 conn/sec
 at 80% CPU ran out of clients
 AFPA prototype doubles thruput.

130 Meg/sec outbound - 1500 MTU
175 Meg/sec inbound
OS/390 to OS/390 with ESCON.

HSAS TCP/IP

3.2

3.3

3.4

HSAS sets the bar for TCP/IP. When they
coverge, we will have 1 stack.

FDDI
ESCON
Fast Ethernet

V2R6: Yes we still have 2 stacks on OS/390. The HSAS stack
was implemented because the TCP/IP component's stack was
not sufficient for some large client/server environments. Much
work has gone into improving the TCP/IP stack. IBM's goal is
to converge to 1 stack when the TCP/IP stack can match the
performance of the HSAS stack.

