0S/390

UNIX System Services
tcsh (C Shell) Kit Support Guide

0S/390

UNIX System Services
tcsh (C Shell) Kit Support Guide

Note

Before using this information and the product it supports, be sure to read the general information under Appendix A, “Notices”
on page 231.

December 1999 Edition

© Copyright International Business Machines Corporation 1999. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

About This Book XVii
Part 1. OS/390 UNIX System Services Planning 1
Chapter 1. tcsh in Version 2 Release9 3
tesh Shell 3
Chapter 2. Customizing the tesh Shell 5
Customizing the Shell and Environment Variables 6
Customizing the RACF User Profile, 6
Customizing /etc/csh.login 7
Customizing /etc/csh.cshre 9
Customizing ¢89, cc, and C++ (CXX) 9
Using Non-Default High-Level Qualifiers 10
Using a System That Does Not Have UNIT=SYSDA 10
Selecting Previous C/C++ Compilers 10
0S/390 V2R6, V2R7,and V2R8 12
0S/390 V2R5 and V2R4 13
OS/390 VIR3 14
OS/390 VIR2 e 15
OS/390 VIRT e 16
0S/390 V1IR2 C/C++ Compiler 16
0S/390 C/C++ V3R2 Compiler 17
AD/Cycle C/370 V1IR2 Compiler 17
Customizing the terminfo Database 17
Customizing Electronic Mail 18
Chapter 3. Customizing for Your National Code Page in the Shell 19
Setting Up Your National Code Page 19
Customizing for Japanese and Simplified Chinese 21
Customize the login File, 21
Customize /etc/init 21
Displaying Translated Messages Using MVS Message Service (MMS) . .. 22
TSO/E Messages and Help Panels 22
Concatenating Target Librariesto ISPF 23
Recommendations for Running the OMVS Command 23
Part 2. 0OS/390 UNIX System Services User's Guide 25
Chapter 4. An Introduction to the 0OS/390 Shells 27
About Shells 27
Shell Commands and Utilites 28
The Locale inthe Shell 28
Daemon Support 28
Running an X-Window Application 28
The Shell User 29
Security . . . 29
Accessing the Shells — The Choices 29
Terminal Emulators 30

© Copyright IBM Corp. 1999 iii

Interoperability between the Shellsand MVS 31

Parallels between the MVS Environment and the Shell Environment 32
Programming for Everyday Tasks 33
Editing 34
Job Control 34
Background Jobs 34
Programming 34
Debugging 35
Data Management 35

Chapter 5. The Asynchronous Terminal Interface to the Shells 37

ASCII-EBCDIC Translation 37

Using rlogin to Access the Shell 37

Using telnet to Access the Shell 37

Using Communications Server login to Access the Shell 37

The Shell Session 38

Entering a Shell Command 38

Interrupting a Shell Command 38

Using Multiple Sessions 38

Using a Doublebyte Character Set (DBCS) 39

telnet from the Shell 39

Standard Shell Escape Characters 39

Chapter 6. Customizing the tcsh Shell 41

Understanding the Startup Files 41
Quoting Variable Values 42
Changing Variable Values Dynamically 43

Understanding Shell Variables 43

Customizing Your Shell Environment: The .tcshrc File 44

Customizing the Search Path for Commands: The PATH Variable 45
Adding Your Working Directory to the Search Path 46
Checking the Search Path Used fora Command 47

Customizing the DLL Search Path: The LIBPATH Variable 47

Changing the Locale inthe Shell 47
Advantages of a Locale Compatible with the MVS Code Page 47
Advantages of a Locale Generated with Code Page IBM-1047 48
Changing the Locale Setting in Your Profile 48
The LC_SYNTAX Environment Variable 50
The LOCPATH Environment Variable 51

Customizing the Language of Your Messages 52

Setting Your Local Time Zone 52

Building a STEPLIB Environment: The STEPLIB Environment Variable 52
Restrictions on STEPLIB Data Sets 53

Setting Variables for a Shell Session 53
Displaying Current Option Settings 54
Controlling Redirection 54
Preventing Wildcard Character Expansion 54
Displaying Input fromaFile 54
Displaying Deletion Verification 54

Files Accessed at Termination 54

Chapter 7. Working with tcsh Shell Commands 55

Specifying Shell Command Options 55

Specifying Options with Accompanying Arguments 56

iV 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

Help for Shell Command Usage 56

Understanding Standard Input, Standard Output, and Standard Error 56
Redirecting Command Outputtoa File 57
Redirecting Input froma File 58
Redirecting Error Outputtoa File 58
Dumping Nontext Files to Standard Qutput 59
Setting Up an Alias fora Command 59
Defining an Alias 59
Redefining an Alias fora Session 60
Setting Up an Alias for a Particular Version of a Command 60
Tuming Off an Alias 61
Combining Commands 61
Using a Semicolon (;) 62
Using & and Il 62
Usinga Pipe 62
Using Substitution in Commands, 63
Using the find Command in Command Substitution Constructs 63
Characters That Have Special Meaning to the Shell 64
Characters Used with Commands 64
Characters Used in Filenames 65
Redirecting Input and Output 65
Using a Special Character without Its Special Meaning 66
The Backslash (\) 66
A Pair of Single Quotes (' ') 67
A Pair of Double Quotes (" ") 67
Using a Wildcard Character to Specify Filenames 67
The * Character 67
The ? Character 67
The Square Brackets [1 68
Retrieving Previously Entered Commands 69
Retrieving Commands from the History File 69
Editing Commands from the History File 70
Using the Retrieve Function Keys 70
Command-Line Editing 70
Using Filename Completion 72
Using Record-Keeping Commands 73
Finding Elements in a File and Presenting Them in a Specific Format 74
Timing Programs 74
Using the passwd Command 74
Switching to Superuser or AnotherID L. 75
Using the whoami Command 75
Using the tso Command 75
Online Help 76
Using the man Command 77
Using the OHELP Command 77
Example: Getting Help fora Command 78
Example: Searching Help for All Instances of a Language Element Name . 79
Searching fora Text String 80
Shell Messages 80
Chapter 8. Writing tcsh Shell Seripts 81
Running a Shell Script 81
Using the Magic Number 82
Using TSO/E Commands in Shell Scripts 82

Contents V

Using Variables 82

Creating a Shell Variable 83
Calculating with Variables 83
Setting Environment Variables oL 84
Using Positional Parameters — the $N Construct 85
Using Quotes to Enclose a Construct in a Shell Script 87
Using Parameter and Variable Expansion 87
Using Special Parameters in Commands and Shell Scripts 88
Using Control Structures 88
The if Conditional 88
The while Loop 90
The foreach Loop 91
Combining Control Structures 92
Chapter 9. tcsh Shell Command Summary 93
General Use 93
Controlling Your Environment L 93
Managing Directories 94
Computing and Managing Logic 94
Managing Files 94
Controlling Processes 94
Part 3. 0S/390 UNIX System Services Command Reference 95
Chapter 10. tcshCommands 97
alias — Display or create a command alias 97
Format 97
Description 97
Options e 98
Example 98
Localization 99
Usage Notes 99
Exit Values 99
Portability 99
Related Information 100
bg — Move a job to the background L. 100
Format 100
Description 100
Usage Note 100
Exit Values 100
Portability 101
Related Information 101
break — Exit from a loop in a shell script 101
Format 101
Description 101
Localization 101
Usage Note 101
Exit Value 101
Portability 101
Related Information 101
cd — Change the working directory L. 102
Format 102
Description 102

08S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

Environment Variableso
Localization
Usage Note
Exit Values
Messages
Portability
Related Information
continue — Skip to the next iteration of a loop in a shell script
Format
Description
Usage Note
Localization
Exit Values
Portability
Related Information
echo — Write arguments to standard output
Format
Description L
Examples
Usage Note
Localization
Exit Value
Portability
Related Information
eval — Construct a command by concatenating arguments
Format
Description
Examples
Usage Note
Localization
Exit Value
Portability
Related Information
exec — Run a command and open, close, or copy the file descriptors
Format
Description
Usage Note
Localization
Exit Values
Portability
Related Information
exit — Return to the shell's parent process orto TSO/E
Format
Description
Usage Note
Localization
Exit Values
Related Information
fg — Bring a job into the foreground Lo
Format
Description
Localization
Exit Values
Messages

Contents

Vii

Portability 111

Related Information 111
history — Display a command history list 111
Format 111
Description 111
Related Information 112
jobs — Return the status of jobs in the current session 112
Format 112
Description 112
Options 113
Localization 113
Usage Note 113
Exit Values 113
Portability 113
Related Information 113
kil — End a process or job, orsenditasignal 113
Format 113
Description 114
Options 114
Options 115
Localization 116
Usage Notes 116
Exit Values 116
Messages 116
Portability 116
Related Information 117
newgrp — Changetoanewgroup 117
Format 117
Description 117
Options 118
Localization 118
Usage Notes 118
Exit Values 118
Portability 118
Related Information 118
nice — Run a command at a different priority 119
Format 119
Description 119
Options 119
Localization 119
Exit Values 120
Portability 120
Related Information 120
nohup — Start a process that is immune to hangups 120
Format 120
Description 120
Localization 121
Exit Values 121
Portability 121
Related Information 121
printenv — Display the values of environment variables 121
Format 121
Description 121
Options e 121

Viii 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

Example 122

Usage Notes 122
Exit Values 122
Portability 122
Related Information 122
set — Set or unset command options and positional parameters 122
Format 122
Description 122
Options 123
Usage Notes 125
Localization 125
Exit Values 125
Portability 125
Related Information 126
shift — Shift positional parameters 126
Format 126
Description 126
Examples 126
Usage Note 126
Localization 126
Exit Values 127
Messages 127
Portability 127
Related Information 127
stop — Suspend a processorjob L 127
Format 127
Description 127
Options 127
Related Information 128
suspend — Send a SIGSTOP to the currentshell 128
Format 128
Description 128
Related Information 129
tcsh—InvokeaCshell 129
Format 129
Description 129
Options and Invocation 129
Options e 130
tesh shell Editing 131
Command Syntax 139
Substitutions 140
Command Execution 148
Features 150
Jobs .. 153
Status Reporting 154
Automatic, Periodic and Timed Events 154
National Language System Report, 155
Signal Handling 155
Terminal Management 155
tcsh Built-in Commands 156
tcsh Programming Constructs L. 157
tcsh Shell and Environment Variables 159
tesh Files 172
tcsh shell: Problems and Limitations 172

Contents iX

Related Information 173
% (percent) built-in command for tcsh: Move jobs to the foreground or

background 173
Format 173
Description 174
Related Information 174

alloc built-in command for tcsh: Show the amount of dynamic memory

acquired . .. 174
Format 174
Description 174
Related Information 174

bindkey built-in command for tcsh: List all bound keys 174
Format 174
Description 174
Options 175
Usage Notes 175
Related Information 176

builtins built-in command for tcsh: Prints the names of all built-in commands 176
Format 176
Description 176
Related Information 176

bye built-in command for tcsh: Terminate the login shell 176
Format 176
Description 176
Related Information 176

chdir built-in shell command for tcsh: Change the working directory 176
Format 176
Description 176
Related Information 176

complete built-in command for tcsh: List completions 176
Format 177
Description 177
Arguments . . . L L 177
Examples 178
Related Information 180

dirs built-in command for tcsh: Print the directory stack 180
Format 180
Description 181
Options 181
Related Information 181

echotc built-in command for tcsh: Exercise the terminal capabilities in args 182
Format e 182
Description 182
Options 182
Related Information 182

filetest built-in command for tcsh: Apply the op file inquiry operator to a file . 182
Format 182
Description 183
Related Information 183

glob built-in command for tcsh: Write each word to standard output 183
Format 183
Description 183
Related Information 183

X 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

hashstat built-in command for tcsh: Print a statistic line on hash table

effectiveness 183
Format 183
Description 183
Related Information 183

hup built-in command for tcsh: Run command so it exits on a hang-up signal 184
Format 184
Description 184
Related Information 184

limit built-in command for tcsh: Limit consumption of processes 184
Format 184
Description 184
Related Information 185

log built-in command for tcsh: Print the watch tcsh shell variable 185
Format 185
Description 185
Related Information 185

login built-in command for tcsh: Terminate a login shell 185
Format 185
Description 185
Related Information 185

logout built-in command for tcsh: Terminate a login shell 186
Format 186
Description 186
Related Information 186

Is-F built-in command for tcsh: Listfiles 186
Format 186
Description 186
Usage Note 187
Related Information 187

notify built-in command for tcsh: Notify user of job status changes 187
Format 187
Description 187
Related Information 188

onintr built-in command for tcsh: Control the action of the tcsh shell on

interrupts L 188
Format 188
Description 188
Related Information 188

popd built-in command for tcsh: Pop the directory stack 188
Format 188
Description 188
Options 188
Related Information 189

pushd built-in command for tcsh: Make exchanges within directory stack . 189
Format e 189
Description 189
Options 189
Related Information 190

rehash built-in command for tcsh: Recompute internal hash table 190
Format 190
Description 190
Related Information 190

repeat built-in command for tcsh: Execute command count times 190

Contents XI

Format
Description
Related Information
sched built-in command for tcsh: Print scheduled event list
Format
Description
Related Information
setenv built-in command for tcsh: Set environment variable name to value
Format
Description
Related Information
settc built-in command for tcsh: Tell tcsh shell the terminal capability cap
value . . .
Format
Description
Related Information
setty built-in command for tcsh: Control tty mode changes
Format
Description
Options
Related Information
source built-in command for tcsh: Read and execute commands from name
Format
Description
Options e
Related Information
telltc built-in command for tcsh: List terminal capability values
Format e
Description
Related Information
uncomplete built-in command for tcsh: Remove completions whose names
match pattern
Format
Description
Related Information
unhash built-in command for tcsh: Disable use of internal hash table
Format
Description
Related Information
unlimit built-in command for tcsh: Remove resource limitations
Format e
Description
Options
Related Information
unsetenv built-in command for tcsh: Remove environmental variables that
match pattern
Format
Description
Related Information
watchlog built-in command for tcsh: Print the watch shell variable
Format
Description
Related Information
where built-in command for tcsh: Report all instances of command

0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

Formato 195

Description 195
Related Information 195
which built-in command for tcsh: Display next executed command 195
Format 196
Description 196
Related Information 196
time — Display processor and elapsed times fora command 196
Format 196
Description 196
Option 196
Usage Note 196
Localization 196
Exit Values 197
Portability 197
Related Information 197
umask — Set or return the file mode creatonmask 197
Format 197
Description 197
Options 198
Localization 198
Exit Values 198
Portability 198
Related Information 198
unalias — Remove alias definitions 0000 198
Format 198
Description 198
Options 199
Localization 199
Usage Notes 199
Exit Values 199
Portability 199
Related Information 199
unset — Unset values and attributes of variables and functions 199
Format 199
Description 200
Options 200
Usage Notes 200
Localization 200
Exit Values 200
Messages 200
Portability 201
Related Information 201
wait — Wait for a child processtoend 201
Format 201
Description 201
Localization 201
Usage Notes 201
Exit Values 201
Portability 202
Related Information 202
Chapter 11. Localization 203

Contents Xiii

Part 4. 0S/390 UNIX System Services Messages and Codes 205
Part 5. Appendixes 229
Appendix A. Notices 231
Programming Interface 232
Trademarks e 232
Index 235

XiV 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

Tables

© Copyright IBM Corp. 1999

1.
2.
3.

Standard Input/Output Syntax for tcsh Shell

tcsh Built-in Shell Variables
tcsh Environment Variables

XV

XVi 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

About This Book

© Copyright IBM Corp. 1999

This document supports the OS/390 Version 2 Release 8 tcsh (C Shell) Kit,
SK3T-4243-00. This kit provides the tsch shell for OS/390 Version 2 Release 8
UNIX System Services. This document is available only on the OS/390 UNIX
System Services web site at:

http://www.ibm.com/s390/unix/tcsh/

The tcsh shell provides users with a means to run tcsh scripts and also offers
features such as programmable word completion and spelling correction that were
not available in the previous versions of OS/390.

Information to support the addition of tcsh has been added to the following OS/390
manuals. For easy reference, all tcsh information from these books is excerpted
here:

e 0S5/390 UNIX System Services Planning, SC28-1890

e 0S/390 UNIX System Services User's Guide, SC28-1891

e 0S/390 UNIX System Services Command Reference, SC28-1892
e (05/390 UNIX System Services Messages and Codes, SC28-1908

To view the original OS/390 Version 2 Release 8 UNIX System Services library, go
to http://www.ibm.com/s390/0s390 and select "The Library".

Xvii

XViil 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

Part 1. OS/390 UNIX System Services Planning

© Copyright IBM Corp. 1999 1

2 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

Chapter 1. tcsh in Version 2 Release 9

tcsh Shell

Description
A new C shell, tcsh, is available for OS/390 UNIX.

What This Change Affects
This support may affect the following areas of OS/390 UNIX processing.

Area Considerations

Administration The system administrator can modify the /etc/csh.cshre,
letc/csh.login, and /etc/csh.logout files to contain settings for all
users.

Application The pk, make, lex, and yacc utilities may need to be enabled.

Development Procedures regarding national code pages may have to be updated.
See Chapter 3.

Auditing None

Customization The startup files found in the user's home directory can be changed
to suit individual preferences.

General User Users should be aware that the tcsh shell is available.

Operations None

Interfaces None

Maintenance None

Migration Tasks

The following migration tasks are associated with this enhancement. A required
task must be performed regardless of whether you implement this function at your
installation. An optional task need only be performed if your installation uses the
specified functions.

Task Condition Reference Information

Copy /samples/csh.cshrc into Optional Chapter 2
letc/csh.cshrc and merge any system

customizations from /etc/profile, changing

the syntax to C shell syntax. This task is

recommended.

Copy /samples/csh.login into Optional Chapter 2
letc/csh.login. This task is recommended.

Copy /samples/.tcshrc into user's Optional Chapter 2
$HOME/.tcshrc. This task is

recommended.

Copy /samples/.login into user's Optional Chapter 2
$HOME/.login. This task is

recommended.

© Copyright IBM Corp. 1999

Task Condition Reference Information

Copy /samples/complete.tcsh into Optional Chapter 2
letc/complete.tcsh. This task is
recommended.

4 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

Chapter 2. Customizing the tcsh Shell

© Copyright IBM Corp. 1999

This chapter explains how to customize the tcsh shell.

Task Page
Customizing the Shell and Environment Variables 6
Customizing c89, cc, and c++ (Cxx) 9
Customizing the terminfo Database 17
Customizing Electronic Mail 18

To work interactively, the shell user connects to the system in one of the following
ways:

Logs on to TSO/E and enters the TSO/E command OMVS, which invokes a
shell. The OMVS command provides a 3270 terminal interface to the shell,
and you can use the options to customize the interface—for example, function
key settings.

Issues the rlogin command, which invokes the shell. It provides an
asynchronous terminal interface to the shell, familiar to UNIX users.

Issues the telnet command. It provides an asynchronous terminal interface to
the shell, familiar to UNIX users.

Performs a Communications Server login from a serially attached terminal.
This provides an asynchronous terminal interface, familiar to UNIX users.

For a description of these interfaces to the shell, see 0O5/390 UNIX System
Services User's Guide.

After the user logs in to the tcsh shell, the system initializes the shell for that user.
During the initialization, the system does the following:

1.

Determines whether the user is authorized to use the shell by checking for a
UID value in the user's RACF user profile. It also checks that the user's RACF
group has a GID assigned to it.

. Sets the LOGNAME, HOME, and SHELL environment variables from data in

the RACF user profile, which was specified in the RACF ADDUSER and
ALTUSER commands. See “Customizing the RACF User Profile” on page 6.

. Connects the user to the initial working directory that was identified in the

HOME environment variable in the RACF user profile. If the RACF user profile
does not identify a working directory, the system uses the root as the user's
working directory and issues a message.

. Invokes the shell named in the SHELL environment variable. For the tcsh shell,

this will be /bin/tcsh.

. Runs commands that were specified in the /etc/csh.login file, if one was

provided.

. Runs commands that were specified in the $HOME/.login file, if one was

provided.

. Runs commands that were specified in the /etc/csh.cshrc file, if one was

provided.

8. Runs commands that were specified in the $HOME.tcshrc file, if one was
provided.

9. Runs commands that were specified in the $SHOME/.cshrc file, if one was
provided.

Customizing the Shell and Environment Variables

If the shell or environment variables are not set in one of the files in the following
list, or in a shell command or shell script, then they are not set and have no value.
Setting the variables is optional. The places to set shell or environment variables, in
the order that the system sets them, are:

1. The RACF user profile

2. letc/ecsh.login, the system-wide file that sets environment variables, if it is a
login shell.

3. SHOME!/.login, which sets environment variables for individual users, if it is a
login shell.

4. [etc/csh.cshre, the system-wide file that sets shell variables, some
environment variables (like PATH), and umask. It also defines command
aliases. It is used by subshells.

5. $SHOME.tcshrc, which sets shell variables for individual users. It is used by
subshells.

6. SHOME/.cshrc, if it is provided for compatibility with the C shell.

Later settings take precedence. For example, the values set in $HOME/.login
override those in /etc/csh.login.

Similar systems usually have an /etc/passwd file, which contains the HOME and
PROGRAM environment variables, plus the users' passwords. To provide better
security, the OS/390 shell does not use the /etc/passwd file; instead, it uses the
initial values assigned to these variables in the RACF user profiles. RACF
maintains the passwords.

Customizing the RACF User Profile

The security administrator defines a user by creating a RACF user profile with an
ADDUSER command or alters the user profile with an ALTUSER command. The
RACF user profile contains the settings for the following environment variables:

LOGNAME Specifies the TSO/E user ID

HOME Specifies the pathname of the user's home directory as specified in the
HOME parameter of the RACF command. If the HOME parameter was
not specified, HOME is the root directory.

SHELL Specifies the pathname of the file containing the shell program as
specified in the PROGRAM parameter on the RACF command. If
PROGRAM was not specified, SHELL is /bin/sh.

The PROGRAM parameter can specify a special-purpose shell or another kind of
program.

6 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

Customizing /etc/csh.login

The /etc/csh.login file is used for setting environment variables such as TERM and
is only read by tcsh when it is a login shell.

Important

Because /etc/csh.login is the tcsh equivalent to /etc/profile for sh, you need to
keep system-wide information for both sets of users in synch. Any customization
that you have done for /etc/profile (such as setting environment variables) needs
to be duplicated in C shell syntax in /etc/esh.login. Future changes to /etc/profile
also need to be made to /etc/csh.login. If you maintain a non-OS/390 UNIX
system, you could consider porting /etc/csh.cshrc and /etc/csh.login from that
system to OS/390 and merging them with the OS/390 samples.

Figure 1 on page 8 shows a sample /samples/csh.login file:

Chapter 2. Customizing the tcsh Shell 7

set tty rc=$status

if (($?STEPLIB == 0) && ($tty_rc == 0)) then
setenv STEPLIB none
exec tcsh -1

endif

unset tty rc

=

foreach _CMP(_C89 CC_CXX)

setenv ${ _CMP} CLIB PREFIX "CBC"

setenv ${ CMP} PLIB PREFIX "CEE"

setenv ${ CMP} SLIB PREFIX "SYS1"

setenv ${_CMP} INCDIRS "/usr/include /usr/1pp/ioclib/include"
setenv ${ CMP} LIBDIRS "/1ib /usr/1ib"

#

#

#

#

Esoteric unit for data sets:
setenv ${ CMP} WORK UNIT "SYSDA"
end
unset _CMP

Figure 1. Partial Contents of IBM-Supplied /samples/csh.login

8 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

Use the cp command to copy /samples/csh.login to /etc/csh.login. Edit
letc/csh.login to change or add environment variables.

Customizing $SHOME/.login

To change or add environment variables such as TERM that are customized for
individual users, first use the cp command to copy /samples/.login to
$HOME/.login. Then edit the file to change or add environment variables. The
$HOME/.login file is only read by tcsh when it is a login shell.

Customizing /etc/csh.cshrc

The /etc/esh.cshrc is the system-wide profile for tcsh shell users and is read by
subshells.

Figure 2 shows suggested settings for /etc/csh.cshrc provided in the IBM-supplied
/samples/.csh.cshrc:

Specifies the 1ist of directories that the system searches for an
executable command.
set path = (/bin)

Figure 2. Partial Contents of IBM-Supplied /samples/csh.cshrc

Use the cp command to copy the /samples/csh.cshrc file to /etc/csh.cshrc. Then
edit /etc/csh.cshre to change or add shell variables.

Customizing $SHOME/.tcshrc

The $HOME!/.tcshrc file contains commands that set or change the values of shell
variables for individual users and is read by subshells. HOME is a variable for the
pathname for a user's home directory. The values set in $SHOME/.tcshrc overrides
those in /etc/csh.cshrc.

Use the cp command to copy /samples/.tcshrc to your SHOME directory. Then
edit the new file to change or add shell variables.

Customizing c89, cc, and c++ (cxx)

The €89 utility is customized by setting environment variables. The ones that most
commonly require setting are specified in the ¢89 customization section in
letc/csh.login. OS/390 UNIX System Services Command Reference lists the rest
of the variables that might require setting for typical ¢89 usage.

0S/390 UNIX System Services Command Reference, in its ¢89 section, assumes
that the current level of OS/390 C/C++ compiler and Language Environment

Chapter 2. Customizing the tcsh Shell 9

run-time library will be used. If you must use a previous level of the compiler, or
target the executables produced by ¢89 to run on a previous level of the run-time
library, then you must customize other environment variables, which are only
documented here.

The environment variables used by the cc utility have the same names as the ones
used by c89 except that the prefix is _CC instead of _C89. Likewise, for the c++
(exx) utility, the prefix is _CXX instead of _C89. Normally, you do not need to
explicitly assign the environment variables for all three utilities. These eval
commands set the variables for the other utilities, based on those set for ¢89. .

By placing any customization statements for ¢89 into /etc/csh.login, the
environment variables are automatically be assigned for cc and c++ as well. After
you customize /etc/csh.login, it is unlikely that it will need to be changed again.
However, you can change the variables at any time; the next time a user logs into
the shell, they will get the new settings

Using Non-Default High-Level Qualifiers
If any of the following installed products did not use the installation default for the
high-level qualifier, then the appropriate environment variable must be assigned to
make ¢89 aware of this. The environment variables in this table are set to the
default values for the current level of 0S/390, but you will need to set them to your
high-level qualifiers.

Note: These high-level qualifiers are used to construct the names of data sets
used by ¢89. All named data sets used by ¢89 must be cataloged.

Element ¢89 Environment Variable
C/C++ Compiler _C89_CLIB_PREFIX=CBC
Language Environment _C89_PLIB_PREFIX=CEE
BCP _C89_SLIB_PREFIX=SYS1

Using a System That Does Not Have UNIT=SYSDA

If the system is not configured with an esoteric unit SYSDA, or some other esoteric
unit is to be used for VIO temporary unnamed work data sets set by ¢89, the
following environment variable needs to be set. Specifying a null value for this
variable ("") results in €89 using an installation-defined default for the UNIT. The
environment variable is shown being set to the default value:

Temporary Unnamed Data Set ¢89 Environment Variable
Unit

All c89-allocated work data sets _C89_WORK_UNIT=SYSDA

Selecting Previous C/C++ Compilers
For each OS/390 release, there is a default compiler for ¢89, cc, or c++ (cxx) to
use. Optionally, you can choose to use a non-default compiler. This section lists the
compiler choices for each release, including the default compilers; the environment
variable settings for each compiler are identified.

10 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

The ¢89/cc/c++ utilities use a number of environment variables. The default values
are specified as comments in the /samples/csh.login file that is shipped with each
release. The environment variables for:

e ¢89 begin with the prefix _C89
e cc begin with the prefix _CC
e c++ begin with the prefix _CXX

If the C/C++ Class Library DLLS are used in building your executables (the default
for the c++ utility), then this will also target your executable for the same level of
C/C++ Class Library

Using the Same Compiler for the Entire System

If you are using the same compiler for the entire system, then put the compiler data
set name in the linklist. By default, the linklist contains the name of the default
compiler

If you are using a compiler that is not the system-wide default, then you must
specify the compiler data set name in the STEPLIB environment variable and
assign it. Note that this may affect performance somewhat.

These are the statements for each compiler version:
e For the OS/390 V1R2 compiler and onward:
setenv STEPLIB "CBC.SCBCCMP"
e For the IBM C/C++ V3R2 compiler:
setenv STEPLIB "CBC.V3R2MO.SCBC3CMP"
e For the AD/Cycle C/370 V1R2 compiler:
setenv STEPLIB "EDC.V1R2MO.SEDCDCMP"

Invoking Earlier Levels of the Compiler
If you are invoking an earlier level of the compiler and Language Environment
headers and stubs, in addition to the normal steps, you must:

e Ensure that the older compiler and Language Environment headers and stubs
are available on your system. The older versions of the compiler and run-time
library are not included with each new version of OS/390. You must save them
from an earlier installation.

e Set _xxx_PVERSION, and typically also _xxx_CLIB_PREFIX and
_xxx_PLIB_PREFIX. You also need to put the _xxx_CVERSION level of
compiler first in the MVS search order (typically via STEPLIB).

» Assign STEPLIB for the version of the compiler you want to use.

e Set {_INCDIRS]} to point to the location of the older version of the header files
instead of /usr/include.

e Set _xxx_CVERSION and _xxx_CLIB_PREFIX. For details on these
environment variables, look at the description of the €89 utility in 0S/390 UNIX
System Services Command Reference.

Chapter 2. Customizing the tcsh Shell 11

0S/390 V2R6, V2R7, and V2R8

For OS/390 V2R6, V2R7, and V2R8, the OS/390 V2R6 compiler is the default for
c89, cc, and c++. You do not need to set the _xxx_CVERSION and
_xxx_CLIB_PREFIX environment variables to use the default. The default settings
are:

_C89_CVERSION="0x22080000"
_CC_CVERSION="0x22080000"
_CXX_CVERSION="0x22080000"

€89 CLIB_PREFIX="CBC"
_CC_CLIB_PREFIX="CBC"
_CXX_CLIB_PREFIX="CBC"

To compile with an earlier level of the compiler, you need to set the environment
variables to point to one of those:

e (0S/390 V2R4 compiler

e (0S/390 V1R3 compiler

e 0S/390 V1R2 compiler

e IBM C/C++ V3R2 compiler

* AD/Cycle C/370 V1R2 compiler

0S/390 V2R6 Run-Time Library
The default run-time library is OS/390 V2R6 Language Environment. The default
environment settings are:

_C89_PVERSION="0x22060000"
_CC_PVERSION="0x22060000"
_CXX_PVERSION="0x22060000"

_C89_PLIB_PREFIX="CEE"
CC_PLIB_PREFIX="CEE"
_CXX_PLIB_PREFIX="CEE"

To build an executable targeted for an earlier Language Environment release, you
can optionally specify:

e (0S/390 V2R4 Language Environment. To do this, assign the
_xxx_PLIB_PREFIX and _xxx_PVERSION environment variables with the
settings shown in “OS/390 V2R4 Run-Time Library” on page 13.

e 0S/390 V1R3 Language Environment. To do this, assign the
_xxx_PLIB_PREFIX and _xxx_PVERSION environment variables with the
settings shown in “OS/390 V1R3 Run-Time Library” on page 15.

e 0S/390 V1R2 Language Environment. To do this, assign the
_xxx_PLIB_PREFIX and _xxx_PVERSION environment variables with the
settings shown in “OS/390 V1R2 Run-Time Library” on page 15.

e Language Environment for MVS and VM V1R5. To do this, assign the
_xxx_PLIB_PREFIX and _xxx_PVERSION environment variables with the
settings shown in “OS/390 V1R1 Run-Time Library” on page 16.

12 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

Targeting an Earlier Release
When targeting an earlier release, you must pass the 'compat' option to the
binder:

-WI,compat=pm2

A convenient way to do this as part of the setup is to use _xxx_OPTIONS(along
with the other environment variables like _xxx_VERSION). For example, to do this
for ¢89, you can issue:

setenv _C89_OPTIONS "-WI,compat=pm2"

If you target a Language Environment release that is not the default, remember to
change the setting of the {_INCDIRS} environment variable so that it does not point
to /usr/include (the default setting). You can set {_INCDIRS} to a null string. For
example:

setenv _C89 INCDIRS=""

Or, if you have other directories that you want to be automatically searched, they
can be added to {_INCDIRS}, as long as /usr/include is deleted.

0S/390 V2R5 and V2R4

For OS/390 V2R5 and V2R4, the OS/390 V2R4 compiler is the default for €89, cc,
and c++. You do not need to set the _xxx_CVERSION and _xxx_CLIB_PREFIX
environment variables to use the default. The default settings are:

_89_CVERSION="0x22040000"
_CC_CVERSION="0x22040000"
" CXX_CVERSION="0x22040000"

€89 CLIB_PREFIX="CBC"
CC_CLIB_PREFIX="CBC"
_CXX_CLIB_PREFIX="CBC"

To compile with an earlier level of the compiler, you would need to set the
environment variables to point to one of these:

e 0OS/390 V1IR3 compiler

e (0S/390 V1R2 compiler

¢ |IBM C/C++ V3R2 compiler

e AD/Cycle C/370 V1R2 compiler

0S/390 V2R4 Run-Time Library
The default run-time library is OS/390 V2R4 Language Environment. The default
environment settings are:

_89_PVERSION="0x22040000"
"CC_PVERSION="0x22040000"
CXX_PVERSION="0x22040000"

€89 PLIB_PREFIX="CEE"
_CC_PLIB_PREFIX="CEE"
_CXX_PLIB_PREFIX="CEE"

To build an executable targeted for an earlier Language Environment release, you
can optionally specify:

Chapter 2. Customizing the tcsh Shell 13

e 0S/390 V1R3 Language Environment. To do this, assign the
_xxx_PRELIB_PREFIX and _xxx_PVERSION environment variables with the
settings shown in “OS/390 V1R3 Run-Time Library” on page 15.

e (0S/390 V1R2 Language Environment. To do this, assign the
_xxx_PLIB_PREFIX and _xxx_PVERSION environment variables with the
settings shown in “OS/390 V1R2 Run-Time Library” on page 15.

e Language Environment for MVS and VM V1R5. To do this, assign the
_xxx_PLIB_PREFIX and _xxx_PVERSION environment variables with the
settings shown in “OS/390 V1R1 Run-Time Library” on page 16.

Targeting an Earlier Release
When targeting an earlier release:

1. You must pass the 'compat' option to the binder:
-WI,compat=pm2

A convenient way to do this as part of the setup is to use _xxx_OPTIONS
(along with the other environment variables like _xxx_VERSION). For example,
to do this for ¢89, you can issue:

setenv _C89_OPTIONS="-WI,compat=pm2"

2. If you target a Language Environment release that is not the default, remember
to change the setting of the {_INCDIRS} environment variable so that it does
not point to /usr/include (the default setting). You can set {_ INCDIRS} to a null
string. For example:

setenv _C89_INCDIRS=""

Or, if you have other directories that you want to be automatically searched,
they can be added to {_INCDIRS}, as long as /ust/include is deleted.

0S/390 V1IR3

The OS/390 V1R3 compiler is the default for ¢89, cc, and c++. You do not need to
set the _xxx_CVERSION and _xxx_CLIB_PREFIX environment variables to use the
default. The default settings are:

_C89_CVERSION="0x21030000"
CC_CVERSION="0x21030000"
_CXX_CVERSION="0x12030000"

€89 CLIB_PREFIX="CBC"
_CC_CLIB_PREFIX="CBC"
_CXX_CLIB_PREFIX="CBC"

To compile with an earlier level of the compiler, you would need to set the
environment variables to point to one of these:

e 0OS/390 V1R2 compiler
e IBM C/C++ V3R2 compiler
e AD/Cycle C/370 V1R2 compiler

14 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

0S/390 V1R2

0S/390 V1IR3 Run-Time Library
The default run-time library is 0S/390 V2R3 Language Environment. The default
environment settings are:

_89_PVERSION="0x21030000"
_CC_PVERSION="0x21030000"
_CXX_PVERSION="0x12030000"

C89_PLIB_PREFIX="CEE"
_CC_PLIB_PREFIX="CEE"
_CXX_PLIB_PREFIX="CEE"

To build an executable targeted for an earlier Language Environment release, you
can optionally specify:

e 0S/390 V1R2 Language Environment. To do this, assign the
_xxx_PRELIB_PREFIX and _xxx_PVERSION environment variables with the
settings shown in “OS/390 V1R2 Run-Time Library.”

e Language Environment for MVS and VM V1R5. To do this, assign the
_xxx_PLIB_PREFIX and _xxx_PVERSION environment variables with the
settings shown in “OS/390 V1R2 Run-Time Library.”

If you target a Language Environment release that is not the default, remember to
change the setting of the {_INCDIRS} environment variable so that it does not point
to /usr/include (the default setting). You can set {_INCDIRS} to a null string. For
example:

setenv _C89_INCDIRS=""

Or, if you have other directories that you want to be automatically searched, they
can be added to {_INCDIRS}, as long as /usr/include is deleted.

For OS/390 V1R2, you have a choice of using these compilers:

e 0S/390 V1IR2 C/C++ Compiler. You can specify this compiler to use with ¢89,
cc, and c++. To use it, you need to set the environment variables to point to
this compiler (see “OS/390 V1R2 C/C++ Compiler’ on page 16).

e IBM C/C++ V3R2 Compiler. For OS/390 Release 2, This is the default
compiler for c++. You can specify this compiler to use with ¢89 or cc. See
“OS/390 C/C++ V3R2 Compiler” on page 17.

e AD/Cycle C/390 V1R2 Compiler. For OS/390 Release 2, this is the default
compiler for ¢89 and cc. It cannot be used with c++. See “AD/Cycle C/370
V1R2 Compiler” on page 17.

0S/390 V1R2 Run-Time Library
The default run-time library is OS/390 V1R2 Language Environment. The default
environment settings are:

_89_PVERSION="0x21020000"
_CC_PVERSION="0x21020000"
_CXX_PVERSION="0x12020000"

Chapter 2. Customizing the tcsh Shell 15

0S/390 V1R1

€89 PLIB_PREFIX="CEE"
_CC_PLIB_PREFIX="CEE"
_CXX_PLIB_PREFIX="CEE"

To build an executable targeted for an earlier Language Environment release, you
can optionally specify Language Environment for MVS and VMV1R5. To do this,
assign the _xxx_PRELIB_PREFIX and _xxx_PVERSION environment variables with
the settings shown in “OS/390 V1R1 Run-Time Library.”

If you target a Language Environment release that is not the default, remember to
change the setting of the {_INCDIRS} environment variable so that it does not point
to /usr/include (the default setting). You can set {_INCDIRS} to a null string. For
example:

setenv _C89 INCDIRS=""

Or, if you have other directories that you want to be automatically searched, they
can be added to {_INCDIRS}, as long as /usr/include is deleted.

For OS/390 V1R2, you have a choice of using these compilers:

e IBM C/C++ V3R2 Compiler. For OS/390 Release 1, this is the default compiler
for c++. You can specify this compiler to use with ¢89 or cc (see “OS/390
C/C++ V3R2 Compiler” on page 17).

e AD/Cycle C/390 V1IR2 Compiler. For OS/390 Release 1, this is the default
compiler for ¢89 and cc. It cannot be used with c++. See “OS/390 V1R2 C/C++
Compiler”

0S/390 V1R1 Run-Time Library
The default run-time library is Language Environment for MVS and VM V1R5. The
default environment variable settings are:

setenv _C89_PVERSION="0x11050000"
setenv _CC_PVERSION="0x11050000"
setenv _CXX_PVERSION="0x11050000"

setenv _C89 PLIB_PREFIX="CEE.VIR5MQ"
setenv _CC_PLIB_PREFIX="CEE.VIR5MO"
setenv _CXX_PLIB_PREFIX="CEE.VIR5MO"

0S/390 V1IR2 C/C++ Compiler

For ¢89, cc or c++ to use this compiler, you must specify one of these:

setenv _C89_CVERSION "0x21020000"
setenv _CC_CVERSION "0x21020000"
setenv _CXX_CVERSION "0x21020000"

Then this corresponding variable is set by default:

setenv _C89 CLIB=_PREFIX "CBC"
setenv _CC_CLIB_PREFIX "CBC"
setenv _CXX_CLIB_PREFIX "CBC"

16 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

0S/390 C/C++ V3R2 Compiler
For OS/390 V1R1 and V1R2, this is the default compiler for c++. To use this
compiler when it is not the default, you must specify one of these:

setenv _C89 CVERSION "0x13020000"
setenv _CC_CVERSION "0x13020000"
setenv _CXX_CVERSION "0x13020000"

Then this corresponding variable is set by default:

setenv _C89 CLIB=_PREFIX "CBC.V3R2MO"
setenv _CC_CLIB_PREFIX "CBC.V3R2MO"
setenv _CXX_CLIB_PREFIX "CBC.V3R2M0"

AD/Cycle C/370 V1IR2 Compiler

For OS/390 V1R1 and V1R2, this is the default compiler for ¢89 and cc. You
cannot use it for c++. To use this compiler when it is not the default, you must
specify one of these:

setenv _C89_CVERSION "0x11020000"
setenv _CC_CVERSION "0x11020000

Then this corresponding variable is set by default:

setenv _C89_CLIB=_ PREFIX "EDC.VIR2MO"
setenv _CC_CLIB_PREFIX "EDC.VIR2MO"

Customizing the terminfo Database

Full-screen application programs such as the vi editor and the more utility require a
terminfo database. The terminfo database contains the characteristics of different
terminal types that are used to run these full-screen applications.

The terminfo database is shipped as part of OS/390 UNIX System Services
Application Services. The database is populated with the terminal types defined by
ibm.ti, dec.ti, wyse.ti, and dtterm.ti. The database is in the directory
lusr/share/lib/terminfo and the source files are in /samples.

If you have been using Release 6 or earlier, you will need to comment out the tic
commands from your customized copy of /etc/rc.

To define any other terminal or workstation for a terminfo database, do the
following steps:

1. Create a subdirectory in your home directory for the terminfo database terminal
definition. For example: mkdir /u/myhome/terminfo where myhome is the
name of your home directory.

2. Copy the .ti file for the terminal that you are building the terminfo database for,
into the directory that you just created. You can obtain the terminal file from
another UNIX operating system, if necessary. For example, you can copy the
file pe.ti into the directory:

/u/myhome/terminfo/pc.ti

3. Set the TERMINFO environment variable to the directory that the terminal
definitions are in:

Chapter 2. Customizing the tcsh Shell 17

setenv TERMINFO /u/myhome/terminfo
4. Run the tic command, specifying the terminal file. For example,
tic /u/myhome/terminfo/pc.ti

5. Set the TERM environment variable to the name of the terminal you wish to
use:

setenv TERM sun

Customizing Electronic Mail

The mailx shell command sends electronic mail between shell users. For mailx
processing, do the following:

e Set up a system startup file, /etc/mailx.rc, which contains variable values and
definitions common to all shell users. The IBM-supplied sample is in
Isamples/mailx.rc. Copy this file to /etc/mailx.rc.

* If you use a system mailbox directory other than /usr/mail, identify it in the
$MAIL environment variable in /etc/csh.login.

Users can give names to malil files using variables in $HOME/.login or they can
use files with the default names. See “Customizing /etc/csh.login” on page 7.

18 05/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

Chapter 3. Customizing for Your National Code Page in the
Shell

This chapter explains how to customize for your national code page in the your tcsh
shell. It also explains how to customize your system so that 0S/390 UNIX
messages are displayed in Japanese or Simplified Chinese. (0S/390 UNIX
messages are available in English, Japanese, or Simplified Chinese.)

See the appendix in 0OS/390 UNIX System Services User's Guide for information on
the locale objects, source files, and charmaps that the OS/390 UNIX System
Services Application Services support.

For the tcsh shell, if you want to set the language for yourself, or for just one user,
you can make these changes in the $HOME/.login, or log on to the 0S/390 shell
and set the LANG and NLSPATH environment variables.

“Setting Up Your National Code Page” explains how to set up a default language
for all users of the OS/390 shell. “Customizing for Japanese and Simplified
Chinese” on page 21 details what you need to do when customizing for a language
other than English.

Setting Up Your National Code Page

This section provides the general setup information for setting up your national
code page for shell users. If you will be using Japanese or Simplified Chinese, you
still need to do these steps first before going on to “Customizing for Japanese and
Simplified Chinese” on page 21.

1. Copy the login file for your shell, if necessary. Copy /samples/profile to
Isamples/csh.login. You may have already done this, as described in
“Customizing /etc/csh.login” on page 7.

2. Customize the login file for your shell. Customize /etc/csh.login so that your
selected national page is enabled when the tcsh shell is first invoked. Be
careful that the shell, with the updated /etc/csh.login does not keep restarting
itself after you restart the shell. To make sure that exec tcsh -l is executed
only once, you can copy the code shown in the sample /etc/csh.login, updated
with your national code page.

3. You must convert from ASCII to your national code page. Change the data
conversion for rlogin and Communications Server terminal sessions using the
chep command. The sample /etc/csh.login in Figure 3 on page 20 shows
examples of statements to convert the terminal session data using ASCII code
page 1SO8859-1 and EBCDIC code page IBM-277.

© Copyright IBM Corp. 1999 19

tty -s
set tty rc=$status
if (($?7LOCALE_SWITCH == 0 && tty rc == 0)) then

echo L n
echo " - Logon shell will now be invoked to reflect -
echo " - code page IBM-277 -
echo L n

setenv LOCALE_SWITCH EXECUTED
setenv LANG C
setenv LC_ALL Da_DK.IBM-277
Issue chcp if not using OMVS command
if ($? _BPX_TERMPATH != "OMVS") then
chcp -a 1S08859-1 -e IBM-277
endif
exec tcsh -1
endif
unset tty rc

Figure 3. Sample /etc/csh.login for Customizing National Code Pages

4. Customize certain utilities. You need to customize lex, mailx, make, and yacc.
These utilities expect all input files, both system files and user files, to be in the
same code page. Use the iconv command to convert the following system
files to your selected locale:

letclyylex.c
letc/mailx.c
letc/startup.c
letcl/yyparse.c

For example,

mv /etc/mailx.c.277 /etc/mailx.c
iconv -f IBM-1047 -t IBM-277 /etc/mailx.c >/etc/mailx.c.277

5. Update BPXBATCH or OSHELL, if necessary. If you use BPXBATCH or
OSHELL (which uses BPXBATCH), you must do this step in order to get the
code page working immediately under BPXBATCH and OSHELL. Use the
STDENYV ddname to point to a file or data set that contains the environment
variable definitions for the code page. The code page you specify will not affect
the shell because ddname is read before the first shell is invoked, (Because the
STDENV DD statement does not affect the OMVS command, you need to put
the environment variables in /etc/csh.login, also.)

For more information about BPXBATCH and STDENV, see OS/390 UNIX
System Services User's Guide.

6. Customize for Japanese or Simplified Chinese, if needed. If you are
customizing for Japanese or Simplified Chinese, there are more steps you need
to follow. Go to “Customizing for Japanese and Simplified Chinese” on
page 21.

7. Save /etc/csh.login.

8. Verify your code page. To find out what code page was set up for your shell,
issue:

echo $HOME

20 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

If you entered the shell before the code page was set up, you will see SHOME.
Otherwise, the shell displays the pathname of your home directory. The $
should be read as your code page's dollar sign.

In that case, for the tcsh shell, you need to modify /etc/csh.login as described
above to enable the national code page support .

Customizing for Japanese and Simplified Chinese

If you are customizing for Japanese or Simplified Chinese, you need to make more
changes to your login file after completing the steps in “Setting Up Your National
Code Page” on page 19. You also need to customize /etc/init.

These changes take effect the next time OMVS is started.

In addition, this section explains how to customize using MMS (MVS Message
Service), TSO messages and help panels, and ISPF.

The examples are for Japanese.

Customize the login File
While editing /etc/csh.login:

1. Change the line LANG=C to setenv LANG Ja_JP.

2. Change to add the LC_ALL line:
setenv LC_ALL Ja_JP.IBM-939

This enables you to run in the Japanese locale.

3. Save /etc/csh.login.

Customize /etc/init
The next series of steps help you set the /etc/init process to display messages in
Japanese. While editing /etc/init.options:

1. Locate the line
*e LANG=En_US.IBM-1047
Replace it with:
-e LANG=Ja_JP
2. Locate the line
*@ NLSPATH=/usr/1ib/nls/msg/%L/%N
Replace it with:
-e NLSPATH=/usr/1ib/n1s/msg/%L/%N

3. Save /etc/init.options.

Chapter 3. Customizing for Your National Code Page in the Shell 21

Displaying Translated Messages Using MVS Message Service (MMS)

To set the system default to display translated messages, do the following:
1. Compile the English and translated message skeletons.

2. Create or update the following SYS1.PARMLIB members to initialize values for
MMS:

e MMSLSTxx
e CNLccexx
e CONSOLxx to define the MMSLSTxx member in effect for the system

3. Activate MMS. One way to do this is to issue SET MMS=xx from the MVS
operator console, where xx refers to the MMSLSTxx member of
SYS1.PARMLIB.

MMS does not support translating messages to the MVS operator console. To see
translated messages, you must set up a TSO/E console that mirrors the operator's
console. TSO/E displays Japanese and Simplified Chinese messages to DBCS
terminals only.

TSO/E Messages and Help Panels
TSO/E messages are issued through MMS. For more information, see the section
“Providing Translated Messages” in the chapter “Customizing TSO/E for Different
Languages” in 0S/390 TSO/E Customization.

If you do not want Japanese or Simplified Chinese to be the default language, but
want to see translated messages on your terminal, follow these instructions:

e For Japanese, issue PROFILE PLANGUAGE(JPN) at the TSO/E READY prompt
on your DBCS terminal. This TSO/E command sets the primary language. The
code JPN must match the LANGCODE statement in
SYS1.PARMLIB(MMSLSTxXx).

¢ For Simplified Chinese, issue PROFILE PLANGUAGE(CHS) at the TSO/E
READY prompt on your DBCS terminal. The code CHS must match the
LANGCODE statement in SYS1.PARMLIB(MMSLSTxx).

The TSO/E help panels must be set up separately.

Edit your SYS1.PARMLIB(IJKTSOxx) member in effect and ensure that the HELP
statement refers to where the TSO/E help files are.

If you allocate a SYSHELP DDNAME in SYS1.PARMLIB, TSO/E searches there,
rather than in the data sets pointed to by the HELP statement. For the format of the
HELP statement, see 0S/390 TSO/E Command Reference.

See the section “Specifying Help Data Sets” in the chapter “Customizing TSO/E for

Different Languages” in OS/390 TSO/E Customization for more information on
setting up help data sets.

22 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

Concatenating Target Libraries to ISPF

To use the Japanese translation of the panels, messages, and tables, you must
concatenate the following target libraries to the appropriate ISPF data definition
names (ddnames):

* SYS1.SBPXPJPN to ISPPLIB

e SYS1.SBPXMJPN to ISPMLIB
e SYS1.SBPXTJPN to ISPTLIB

e SYS1.KHELP to SYSHELP

To use the Simplified Chinese translation, concatenate the following target libraries
to the appropriate ISPF ddnames:

* SYS1.SBPXPCHS to ISPPLIB

SYS1.SBPXMCHS to ISPMLIB
SYS1.SBPXTCHS to ISPTLIB

SYS1.PHELP to SYSHELP

Recommendations for Running the OMVS Command

The PROFILE PLANGUAGE setting in effect when the OMVS TSO/E command is
first issued determines the language for all OMVS command messages not from
TSO/E, until you exit OMVS and return to TSO/E.

If PROFILE PLANGUAGE(JPN) is specified, and later you go to TSO/E and enter
PROFILE PLANGUAGE(ENU), most TSO/E messages appear in
English—including TSO/E messages about the OMVS command.

However, any OMVS command message not from TSO/E (such as the help panels
invoked from <PF1> or the FSUM23-prefix messages) appear in Japanese. In
particular, the TSO/E prompt message “OMVS - enter a TSO/E command” still
appears in Japanese but all other messages appear in English while you are in
TSO/E.

Chapter 3. Customizing for Your National Code Page in the Shell 23

24 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

Part 2. 0S/390 UNIX System Services User's Guide

© Copyright IBM Corp. 1999 25

26 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

Chapter 4. An Introduction to the 0S/390 Shells

There are two shells available for use on OS/390 UNIX System Services:
e The OS/390 shell
e The tcsh shell

The OS/390 shell is modeled after the UNIX System V shell with some of the
features found in the KornShell. As implemented for OS/390 UNIX services, this
shell conforms to POSIX standard 1003.2, which has been adopted as ISO/IEC
International Standard 9945-2: 1992.

The tcsh shell is an enhanced but compatible version of csh, the Berkeley UNIX C
shell. It is a command language interpreter usable as a login shell and as a shell
script command processor.

Figure 4 shows how these shells fit into MVS.

POSIX-conforming

applications
CIMVS Debugger
Compiler

051390
Shells and Utilities

Runtime library with
POSIX.A support and extensions

POSIX.1 05/390 UNIX System Services Support

1

|

1 e Process Management

I o File System ® Communication

MVSIESA Basic Control Program

Figure 4. How the shells fit into MVS

About Shells

A shell is a command interpreter that you use to:
¢ Invoke shell commands or utilities that request services from the system.
¢ Write shell scripts using the shell programming language.

¢ Run shell scripts and C-language programs interactively (in the foreground), in
the background, or in batch.

© Copyright IBM Corp. 1999 27

Shell Commands and Utilities

Both the OS/390 shell and the tcsh shell provide commands and utilities that give
the user an efficient way to request a range of services. In this book, the term
command is used to include both a command (a directive to a shell to perform a
specific task) and a utility (the name of a program callable by name from a shell).

Shell commands often have options (also known as flags) that you can specify, and
they usually take an argument—such as the name of a file or directory. The format
for specifying the command begins with the command name, then the option or
options, and finally the argument, if any. For example:

1s -a myfiles

Is is the command name, -a is the option, and myfiles is the argument.

This book describes various commands you can use to perform certain tasks; most
of these are shell commands, and some are TSO/E commands. Typically, this
discussion highlights only certain functions of the command. For complete
information about each command and all its options, always refer to OS/390 UNIX
System Services Command Reference .

The Locale in the Shell

A locale specifies cultural and language characteristics of the OS/390 UNIX System
Services environment for an application program. Locale affects collation, date and
time conventions, numeric and monetary formats, program messages, yes and no
prompts, and the hexadecimal encoding for the 13 “variant” characters whose
encoding varies on different EBCDIC code pages.

The shell and utilities support a variety of locales.

Daemon Support

0OS/390 UNIX System Services provides daemons, such as cron, a batch
scheduler, and inetd, which handles rlogin requests.

e For information about each daemon that OS/390 UNIX System Services
provides, see OS/390 UNIX System Services Command Reference .

e For information about the Outboard Communications Server (OCS) login
monitor daemon, see 0S/390 UNIX System Services Communications Server
Guide.

Running an X-Window Application
If you are accessing the a shell from a workstation or X-terminal running an
X-Window server, you can run an X-Window application from the shell. An
X-Window application needs the TCP/IP address and display identifier for your
workstation.

For more information on X-Window interfaces, see TCP/IP for MVS: Programmer's
Reference.

28 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

The Shell User

Security

There are two categories of shell user: superuser and user. The superuser can do
anything a user can, but has special authority to perform certain additional tasks
(such as mounting and unmounting a file system), and can access all 0S/390 UNIX
services and the files in the hierarchical file system.

This book assumes that your system includes the RACF security product. Instead
of RACF, your system could have an equivalent security product.

The system programmer defines a shell user by assigning the user an OMVS user
ID (UID) and group ID (GID). These are numeric values associated with a TSO/E
user ID; they are set in the RACF user profile and group profile when a user is
authorized to use OS/390 UNIX services. The system uses the UID and GID to
identify the files that a user owns and the processes that a user runs. The UID
identifies a user of OS/390 UNIX services. The GID is a unique number assigned to
a group of related users.

As a user, you can control read, write, and execute access to your files by other
users in your group or outside of your group, by setting the permission bits
associated with the files.

Accessing the Shells — The Choices

User's settings are initially configured with the OS/390 shell as the default login
shell. To display these settings, from TSO type:

LISTUSER USERNAME QMVS
This will display the user's RACF settings as follows:

UID= 0000000012

HOME= /shut/home/billyjc
PROGRAM= /bin/sh
CPUTIMEMAX= NONE
ASSIZEMAX= NONE
FILEPROCMAX= NONE
PROCUSERMAX= NONE
THREADSMAX= NONE
MMAPAREAMAX= NONE

READY

The PROGRAM line refers to the User's login shell. If it is /bin/sh, the login shell is
set to the OS/390 shell. If it is /bin/tcsh, the login shell is the tcsh shell. To change
a user's default login shell from the OS/390 shell to the tcsh shell, issue the
following command:

ALTUSER USERNAME OMVS(PROGRAM('/bin/tcsh'))

To change a user's default login shell from the tcsh shell to the OS/390 shell, type:
ALTUSER USERNAME OMVS(PROGRAM('/bin/sh'))

Chapter 4. An Introduction to the OS/390 Shells 29

Terminal Emulators
0S/390 provides several terminal emulators that you can use to access the shells:

¢ The TSO/E OMVS command, a 3270 terminal interface
e The rlogin command, an asynchronous terminal interface
e The telnet command, an asynchronous terminal interface

Additionally, with OS/390 Communication Servers support, you have the
asynchronous terminal interface if you directly login to the OS/390 shells from a
terminal attached to a serial port on a RISC System/6000 running AIX V4.1.

When selecting a terminal emulator, there are several key points to consider:

e Code Page Conversion: By default, OS/390 UNIX System Services operates
in the POSIX locale (also known as the C locale) using code page IBM-1047,
but it can operate in other locales, including doublebyte locales. Unless you
change the locale in the shell so that the code page used by the shell matches
the code page used by the workstation for the OS/390 UNIX session, a
terminal emulator must perform some code page conversion. Mechanisms are
provided to specify the conversion required for your situation:

— The OMVS command has the CONVERT parameter to specify the
conversion between the code page used at your workstation and the code
page used in the shell.

— rlogin and telnet convert from ASCII ISO8859-1 to EBCDIC IBM-1047 by
default. Once you are logged in to the shell, you can use the chep to select
other code pages to convert between for the session.

* Number of Sessions: Some terminal emulators allow multiple interactive
sessions for the same user. This can be accomplished by multiple logins or by
using an emulator that allows multiple sessions with one login.

* File Editing: With the OMVS emulator, you can use the ISPF editor. For the
other terminal emulators, vi is the editor of choice.

e Shell Mode: rlogin and telnet provide both line mode (also known as
canonical mode) and raw mode, while OMVS operates in line mode only. Line
mode is sufficient for most shell utilities. However, the full function of certain
useful utilities, such as vi and the command line editing feature of the shell, are
available only in raw mode.

When you first login to the shell, you are in line mode. Depending on your
means of access, you may then be able to use utilities that require raw mode
or run an X-Window application.

line mode Your input is processed after you press <Enters.
raw mode Each character is processed as you type it.

graphical mode A graphical user interface for X-Window applications

30 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

Terminal Interface

OMVS
command

B One login for an ID, with multiple sessions
1 Line mode only
I Code page conversion between the terminal

and the shell: CONVERT keyword on OMVS
command controls this.

1 TSO/E: You can switch to TSO/E from the shell.

You can run TSO/E commands from the shell.

I ISPF: You can use the ISPF shell to perform
05/3290 UNIX System tasks

1 Editors: ISFF, ed, or sed

1 DBCS support

Figure 5. The OMVS Interface to the Shell

Terminal Interface

rlogin
command

telnet
command

keassaseeaaal

I Multiple logins for an ID, with one session
for each login

1 Line mode and raw mode

I Code page conversion between the terminal
and the shell : automatic conversion

between code pages 19086859-1 and IBM-1047.

In the shell, you can use the chep shell
command to set the code pages.

1 TSO/E: You cannot switch to TSO/E from
the shell. You can run TSO/E commands
from the shell.

1 |SPF: You cannot use the ISPF shell.

1 Editors: vi, ed, or sed

1 DBCS support

Figure 6. The Asynchronous Terminal Interface to the Shell

Shell

Shell

Interoperability between the Shells and MVS

Chapter 4. An Introduction to the 0S/390 Shells 31

Services

MV5S-like UNIX-like
interface interface
TSO/E
panels Shell
A A

Figure 7. OS/390 UNIX System Services Provides the User Interfaces of Both MVS and
UNIX

There is a high degree of interoperability between MVS and the OS/390 shells:

e You can move data between MVS data sets and the hierarchical file system
(HFS): You can copy or move MVS data sets into the file system; likewise, you
can copy or move HFS files into MVS data sets.

e To work with the HFS, you can use TSO/E commands or shell commands. If
you have access to ISPF, you can use the panel interface of the ISPF shell.
For example, you can create a directory with the TSO/E MKDIR command, or
the shell mkdir command, or the ISPF shell.

¢ You can issue TSO/E commands from the shell command line, from a shell
script, or from a program.

e You can write MVS job control language (JCL) that includes shell commands.

e To edit HFS files, you can use the ISPF/PDF full-screen editor or one of the
editors available in the shell.

e 0S/390 UNIX extensions to the Restructured Extended Executor (REXX)
language enable REXX programs to access kernel callable services. You can
run REXX programs using these extensions from TSO/E, batch, the shell, or a
C program.

e You can use the OSHELL REXX exec to run a non-interactive shell command
or shell script from the TSO/E READY prompt and display the output to your
terminal. This exec is shipped with OS/390 UNIX services.

Parallels between the MVS Environment and the Shell Environment

Figure 8 on page 33 indicates how basic programming tasks are performed in the
MVS environment and in the shell environment.

An interactive user who uses the OMVS command to access the shell can switch
back and forth between the shell and TSO/E, the interactive interface to MVS.

32 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

e Programmers whose primary interactive computing environment is a UNIX or
AlIX workstation find the shell programming environment familiar.

e Programmers whose primary interactive computing environment is TSO/E and
ISPF can do much of their work in that environment.

MVYS Environment Activity Shell Environment
CLIST & REXX (TS0) L | Programming for | Shell Scripts & REXX
£ Everyday Tasks
ISPF Editing - ed, vi
SDSF | | Job Control | | J'PC’SI;6
==, il
Submit Job (TS0) | | Background | | Command &
Job
Compilers | | Programming | | if;ée
LINK = ar
TS0 Test I:I Debuaai I:I dbx
Inspect erHaone
] tar,
DFSMShsm I:I Data : cpio,
ISPF &2 Management === pax

Figure 8. Working Interactively in the MVS and Shell Environments

Programming for Everyday Tasks

The shell programming environment with its shell scripts provides function similar to
the TSO/E environment with its command lists (CLISTs) and the REstructured
eXtended eXecutor (REXX) execs.

The CLIST language is a high-level interpreter language that lets you work
efficiently with TSO/E. A CLIST is a program, or command procedure, that performs
a given task or group of tasks. CLISTs can handle any number of tasks, from
running multiple TSO/E commands to running programs written in other languages.
CLISTs can run only in a TSO/E environment. For a discussion of CLISTs, see
0S/390 TSO/E CLISTs.

The REXX language is a high-level interpreter language that enables you to write
programs in a clear and structured way. You can use the REXX language to write
programs called REXX programs, or REXX execs, that perform given tasks or
groups of tasks. REXX programs can run in any MVS address space. You can run
REXX programs that call OS/390 UNIX services in TSO/E, batch, in the shell

Chapter 4. An Introduction to the 0S/390 Shells 33

Editing

Job Control

environment, or from a C program. For more information about writing REXX
programs, see 0S/390 TSO/E REXX User's Guide, OS/390 TSO/E REXX
Reference, and OS5/390 Using REXX and OS/390 UNIX System Services.

In the shells, command processing is similar to command processing for CLISTs.
You can write executable shell scripts (a sequence of shell commands stored in a
text file) to perform many programming tasks. They can run in any dubbed MVS
address space. They can be run interactively, using cron, or using BPXBATCH.
With its commands and utilities, the shell provides a rich programming environment.

In MVS, you edit the hierarchical file system (HFS) files by using the TSO/E OEDIT
command to invoke ISPF File Edit or by selecting File Edit on the ISPF menu, if
installed.

In a shell, you can use the ed and sed editors for editing HFS files. You can use
the oedit shell command to invoke ISPF File Edit. If you use rlogin or telnet to
login to the shell, you can also use the vi editor.

In MVS, you can use the System Display and Search Facility (SDSF) to monitor
and control a job. You can also use the TSO/E CANCEL, STATUS, and OUTPUT
commands.

In the shell, you use the ps command or the jobs command to check the status of
a job, and the kill command to end a job before it completes.

Additionally, in the shell you can stop, or suspend, a foreground job, and then enter
the bg command to run it in the background or the fg command to start it back up
in the foreground.

Background Jobs

Programming

In MVS, you write a background job in job control language (JCL) and start it with
the TSO/E SUBMIT command.

In the shell, you start a background job by typing an ampersand (&) at the end of
the command line.

In MVS, you use the OS/390 c/c++ compiler and the linkage editor to create a
traditional OS/390 c/c++ application program as a load module or to create an
0S/390 c/c++ application program as an executable file or a load module.

In the shell, you can use the €89 or cc or c++ command to compile and link-edit an
0OS/390 UNIX program, creating an executable file. The make command is
available for building applications, and lex and yacc are available for developing
applications.

34 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

Debugging

Under TSO/E, for traditional OS/390 c/c++ application programs, TSO/E Test and
Inspect facilities are available for debugging. You can use TSO/E TEST for OS/390
UNIX application programs that do not use fork() or exec().

In the shell, dbx is the debugging facility for OS/390 c/c++ programs. With dbx,
you can debug multithreaded applications at the C-source level or at the machine
level. Support for multithreaded applications gives you the ability to:

» Debug or display information about the following objects related to
multithreaded applications: threads, mutexes, and condition variables.

e Control program execution by holding and releasing individual threads

The dbx debugger provides support for recognizing, displaying, and modifying
program variables and constants that include doublebyte character set (DBCS)
characters.

Data Management

In MVS, the storage administrator uses Data Facility System-Managed Storage
Hierarchical Storage Manager (DFSMShsm) to automatically back up and archive
hierarchical file systems.

In the shell, you can use tar, cpio, and pax to read or write an archive file in the
file system.

You can copy archive files to an MVS data set, and then to tape. You can retrieve
archive files from a tape into an MVS data set and then copy them into the file
system.

Chapter 4. An Introduction to the 0S/390 Shells 35

36 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

Chapter 5. The Asynchronous Terminal Interface to the
Shells

For people who have worked with UNIX systems, the asynchronous terminal
interface is quite familiar. You use the asynchronous terminal interface if you
access the 0OS/390 shells with one of these methods:

* rlogin

 telnet

 rlogin or telnet via the Communications Server

e Communications Server login from a serially attached terminal

ASCII-EBCDIC Translation

When you use rlogin, telnet, or Communications Server to access the shell, the
data you enter is translated from ASCII (1ISO8859-1) to EBCDIC (IBM-1047) before
the shell processes it. To change code pages for the current session, use the checp
command. To automatically change code pages after you login, see “Changing the
Locale in the Shell” on page 47.

For a complete list of the singlebyte and doublebyte ASCII and EBCDIC code
pages that you can specify, see the 0S/390 C/C++ Programming Guide.

Using rlogin to Access the Shell

When the inetd daemon is set up and active, you can rlogin to a shell from a
workstation that has rlogin client support and is connected via TCP/IP or
Communications Server to the MVS system. To login, use the rlogin command
syntax supported at your site.

To improve performance when you rlogin into a shell, you can use shared address
space.

Note: If you are writing or porting an rlogin command to rlogin into a shell, the
shell interface to rlogin consists of the FOMTLINP and FOMTLOUT
modules, documented in OS/390 UNIX System Services Planning.

Using telnet to Access the Shell

You can telnet to the shell from a workstation that is connected via TCP/IP or
Communications Server to the MVS system. Use the telnet command syntax
supported at your site.

Using Communications Server login to Access the Shell

If you are working at a terminal that is serially attached to the Communications
Server, you can login directly to the shell.

1. Specify the host you want to login to. You receive a message confirming that
you are connecting to the host.

2. At the prompts, enter your user ID and password.

© Copyright IBM Corp. 1999 37

The Shell Session

Once your login completes, you see your normal shell prompt (for example, § or >).
This is a UNIX interface, not the 3270-type interface that is displayed by the OMVS
command. By default, the terminal interface is in line mode (also known as
canonical mode), which means that each time you type a command at the prompt,
you need to press Enter to process the command. Some utilities switch the terminal
interface to raw mode. When you use a raw mode utility (such as vi or talk), or
when command line editing is enabled in the shell, each keystroke is transmitted;
you do not need to press <Enter>.

When you are in a shell session, you can:

e Run all shell commands and utilities.
e Run any application from the hierarchical file system (HFS).
* Use the vi editor and other full-screen applications such as talk and more.

In the OS/390 UNIX environment, the asynchronous terminal interface session has
some differences from an OMVS session:

1. You cannot switch to TSO/E. However, you can use the tso shell command to
run a TSO/E command from your session.

2. You cannot use the ISPF editor. (This includes the oedit and TSO/E OEDIT
commands, which invoke ISPF File Edit.)

Entering a Shell Command
You type shell commands and press <Enter> to pass them to the shell.

If you are typing a long command that will not fit on one line, you can use the \
(backslash) continuation character at the end of the first line. When you then press
<Enter>, the line is cleared so that you can continue typing. The line you typed
prior to the backslash is displayed in the output area, and beneath it the shell
prompt changes to > (? in tcsh) to indicate that you are continuing a command.

Interrupting a Shell Command

If you want to interrupt a command and stop it from completing, type <Ctrl-C>. The
command stops executing and the system displays the shell prompt. You can now
enter another command.

Using Multiple Sessions

With rlogin, telnet, or Communications Server, you can login to a shell more than
once, using the same user ID and password. You can also be logged in to a shell
using the OMVS 3270 interface and the asynchronous terminal interface at the
same time, using the same user ID and password.

38 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

Using a Doublebyte Character Set (DBCS)
If you want to display or enter doublebyte data:

e You must work at a terminal that is configured to generate data in code page
IBM-939 and follow the procedures for the terminal emulator being used, if any.

e Customize your locale and use the chep command to specify the ASCII and
EBCDIC code pages you are using.

— For information on how to customize your locale and configure your setup
files, see “Changing the Locale in the Shell” on page 47.

When you are working with a doublebyte character set, there are some restrictions.

telnet from the Shell
There are no telnet commands shipped with OS/390.

rlogin is also not shipped with OS/390.

Standard Shell Escape Characters
The following are some of the standard shell escape characters:
e <Cirl-C> — Program interruption
e <Ctrl-D> — End of file
e <Ctrl-V> — Quit Program
e <Ctrl-Z> — Suspend Program

Chapter 5. The Asynchronous Terminal Interface to the Shells 39

40 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

Chapter 6. Customizing the tcsh Shell

If you are interested in using the tcsh shell, read this chapter and Chapter 8,
“Writing tcsh Shell Scripts” on page 81.

You can personalize your use of the tcsh shell. This chapter covers these topics:

» Understanding and modifying your startup files

e Understanding shell variables

e Customizing the search path for commands with the PATH variable
e Improving the performance of shell scripts

e Changing the locale

e Customizing the language of messages

e Setting the time zone

e Building a STEPLIB environment

e Setting options for a shell session

Understanding the Startup Files

When you start the tcsh shell, it uses information in several files to determine your
particular needs or preferences as a user. The files are accessed in the following
order:

. letc/csh.cshrc

. letc/csh.login

. $SHOME/.tcshrc
. $HOME/.cshrc

. $HOME/.history
. $SHOME/.login

. SHOME/.cshdirs

NO o~ wN =

Settings established in a file accessed earlier can be overwritten by the settings in
a file accessed later.

The /etc/esh.cshre file contains systemwide settings that are common to all shell
users. It is used for setting shell variables and defining command aliases. Usually, it
will set environment variables such as PATH.

The /etc/csh.login file is a systemwide file that is only executed by tcsh login
shells, and is used for setting environment variables such as TERM. Opening
messages are typically placed here.

The /$HOME!/.tcshrc file contains settings that may be customized for an individual
shell user. It is used for setting shell variables and defining command aliases. Here,
users can set variables that are different than the system defaults set in the
systemwide profiles.

The /$HOME/.cshrc file is included for compatiblity with C Shell users, and is read
only if /SHOME/.tcshrc does not exist. It contains the same type of settings as
/$HOME/.tcshrc.

The /$SHOME/.history file is read by login shells to initalize the history list. It is
created by the shell, based on the setting of certain shell variables.

© Copyright IBM Corp. 1999 41

The /$HOME/.login file is only executed by tcsh login shells, and is used for setting
environment variables that have been customized for an individual user. It usually
contains commands that affect a user's terminal settings.

Typically, your .login file might contain the following:

set TERM environment variable
setenv TERM vt220

set DISPLAY environment variable
setenv DISPLAY mymachine.mydomain.com:0

Figure 9. A Sample .login

The $HOME/.cshdirs file is read by login shells to initalize the directory stack. It is
created by the shell, based on the setting of certain shell variables.

The systemwide startup files (located in /etc) are modified by system administrators
to contain settings that should pertain to all users. The startup files in a user's
home directory (SHOME/. . .) can be altered to suit specific user preferences, with
the exception of SHOME/.history and $HOME/.cshdirs, which are created by the
shell. A user can "unset" or "unalias" anything that was defined in a systemwide
startup file.

Quoting Variable Values

When you have blanks in a variable value, you need to enclose it in quotes. The
quotes tell the shell to treat blanks as literals and not delimiters. Single quotes are
more “serious” about this than are double quotes:

e Single quotes preserve the meaning of (that is, treat literally) all characters.

» Double quotes still allow certain characters ($, - (backquote), and \ (backslash))
to be expanded. This is important if you want variable expansion. For example,
see how the $ is handled here:

setenv HOMEMSG "Using $HOME as Home Directory"

If your home directory were set to /u/user, the following:
echo $HOMEMSG

would display:

Using /u/user as home directory

If, instead, you enclosed the variable value in single quotes, like this:
setenv HOMEMSG 'Using $HOME as home directory'

the following:

echo $HOMEMSG

would display:

Using $HOME as home directory

As you can see, the $ is not expanded.

42 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

Changing Variable Values Dynamically

You can also change any of these values for the duration of your session (or until
you change them again). You enter the name of the environment or shell variable
and equate it to a new value. For example:

set prompt="'+>'

changes the command prompt string to +>.

Understanding Shell Variables
You can display the shell's variables and their values by entering this command:
set
or
set -r
set —r displays readonly shell variables.

You may see many variables that you don't recognize. These are built-in, or
predefined, variables that are set up with default values when you start the shell.

You can customize the built-in variables by setting their value in your .teshre file.

Only the shell variables that are defined in the .teshrc file are available to shell
scripts and commands invoked from the shell. Environment variables are inherited
by subshells, and can be displayed by entering either of these commands:

setenv
printenv

You can display the value of a single variable with the echo command or the
printenv command. For example, either of these commands

echo $HOME

printenv $HOME
displays the current value of the HOME variable.

In general, echo displays the current values of all its arguments, after any shell
processing has taken place. For example, consider:

echo *.doc

The shell first expands the wildcard character *. This produces the names of every
file in the working directory that has the suffix .doc. So the output of echo is a list
of all such files. And if there are no filenames ending in .doc, the command output
is just *.doc.

For more information about shell variables,

 Built-in variables are listed in a table in the tecsh command description in
0S/390 UNIX System Services Command Reference.

e There is an appendix that lists shell variables in 0OS/390 UNIX System Services
Command Reference.

Chapter 6. Customizing the tcsh Shell 43

Customizing Your Shell Environment: The .tcshrc File

So far, we have discussed customization that is set up inside your .login file.
However, the shell reads this file only when you log into the shell or when you
enter the tesh command with the —I option. Note that the option is a lowercase "L".

To always have a customized shell session, you need to have a special shell script
that customizes your shell variables each time you start the shell; this is the
purpose of the .tcshrc file (also known as a startup script).

For example, you might put all your alias definitions and other setup instructions
into this file. You want these instructions run when your shell starts after you login
and whenever you explicitly create the shell during a session (for example, as a
child shell to run a shell script).

Below is a sample .tcshrc file:

44 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

path shell variable

e _

Lists directories in which to look for executable commands.

==

#set path = (/bin /usr/local/bin /usr/bin)

test if we are an interactive shell
if ($?prompt) then

H= FH= =
o
=
o
3
o
=
w
=
o
2,
=
<
3]
S
=
QL
o
=z
I

The string which is printed before reading each command from the
terminal. Currently set to display hostname, and current working
directory.

if (filetest -e /etc/complete.tcsh) then
source /etc/complete.tcsh

endif

endif # interactive shell

alias m more

Figure 10. A Sample .tcshrc

Customizing the Search Path for Commands: The PATH Variable

Command interpreters usually have to search for a file that contains the command
you want to run. When using the shell, you tell the shell where to search for a
command. Essentially, the shell uses a list of directories in which commands may
be found. This list is specified in your PATH variable in your etc/csh.cshrc file. The
list could be called your search path, because it tells the shell where you want to
search.

Chapter 6. Customizing the tcsh Shell 45

You can set up a search path with a command of the form:
setenv path 'dir:dir:..."'

or,

set path=(dirl dir2)

For example, you might enter:

setenv path '/bin:/usr/bin:/usr/macneil/bin:/usr/games:/usr'

The shell then searches the directories in the following order, when looking for
commands or shell scripts:

1. /bin

2. lusr/bin

3. /usr/macneil/bin
4. /lusr/games

5. lusr

As soon as the shell finds a file with an appropriate name, it runs that file.

Because the shell runs a command as soon as it finds a file with an appropriate
name, pay close attention to the order in which you list directory names in your
search path. For example, the previous search path specifies the /bin directory
(where OS/390 shell commands are stored) before the /usr/bin directory.

If you set up your PATH incorrectly, you could get the wrong command. You should
generally search the shell commands directory first: /bin.

Adding Your Working Directory to the Search Path
You can have the shell search your working directory for commands (in addition to
the standard directories that contain commands). As an example, suppose you
have different directories containing the source code for different programs. In each
directory, you create a shell script named compile that compiles all the source
modules of the program in that directory. To compile a particular program, enter cd
to change to the appropriate directory and then enter:
compile

The shell searches the working directory, finds the compile shell script, and runs
it.
You can add your working directory to your search path by one of these methods:

e Putting in an entry without a name
e Using a period (.) for the working directory.

For example, both of these specify that the working directory should be searched
after /bin but before /usr/local:

setenv path '/bin::/usr/local’ #no name
setenv path '/bin:.:/usr/local' #using a period

Both of these say that your working directory should be searched before anything

else:
setenv path ':/bin:/usr/local’ #no name
setenv path '.:/bin:/usr/local' #using a period

Both of these say that your working directory should be searched after everything
else:

46 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

setenv path '/bin:/usr/local:' #no name, ends in a colon
setenv path '/bin:/usr/local:.' #using a period

The best way to specify search paths is to put them into your .teshre file. That
way, they are set up every time you log into the shell.

Checking the Search Path Used for a Command

With aliases and search paths, it can be easy to lose track of what is actually
executed when you enter a command. The which command can tell you which file
is executed if you enter a command line that begins with a specific command. The
where command can tell you where versions of the command are located. For
example:

which kill

tells you:

kill: shell built-in command.
and the command:

where kill

tells you:

ki1l is a shell built-in
/bin/kill

Customizing the DLL Search Path: The LIBPATH Variable

If you use a utility that uses a dynamic link library (DLL) —for example, dbx— you

can set up the search path for the DLL with the LIBPATH variable. If this variable is
not set, your working directory is searched for the DLL. The default setting shipped
in /samples/login is:

setenv LIBPATH "/1ib:/usr/1ib:."

Changing the Locale in the Shell

The default locale for the shell and utilities is C. If you want to change the locale,
read the topics below.

For additional information on locale and LC_SYNTAX, see 0S/390 Language
Environment Programming Guide.

Advantages of a Locale Compatible with the MVS Code Page

Running the shell and utilities in a locale whose code page matches the code page
you are using in MVS (which may not be compatible with code page IBM-1047 with
respect to the EBCDIC variant characters) has several advantages:

e Converting data from a given country's native code page to IBM-1047 is no
longer required. This may enhance interoperability with other non-OS/390 UNIX
components of MVS.

* Remapping your keyboard is unnecessary.

Chapter 6. Customizing the tcsh Shell 47

Customizing for a Locale Not Based on Code Page IBM-1047

If you select a locale that is not based on code page IBM-1047 and you use the
utilities lex, mailx, make, and yacc, there is a further customizing step. These
utilities expect all their input files, both system files and user-created files, to be in
the same code page. So, for example, if you select the German locale
De_DE.IBM-273, these utilities expect the files they process to be in code page
IBM-273. Because system files are in code page IBM-1047, you need to use iconv
to convert the following system files to the code page used by your selected locale:

Utility File

lex letclyylex.c
mailx letc/mailx.rc
make letc/startup.mk
yacc letc/yyparse.c

Advantages of a Locale Generated with Code Page IBM-1047

On the other hand, you may prefer using one of the locales compatible with
IBM-1047, but not compatible with the MVS code page if:

e You already use one of the IBM-1047 locales and have made an investment in
data conversion and keyboard remapping.

* You have a requirement to run, in your shell environment, strictly
standards-compliant applications or other applications that do not use
LC_SYNTAX. If you want to use a single compiled and link-edited instance of a
program in multiple locales, such a program is guaranteed to work in multiple
locales only if IBM-1047 locales are used.

e You have shell scripts that are used in multiple locales. Having different users
operating in various locales that are not generated from code page IBM-1047
requires multiple copies of a shell script, one for each different locale's code

page.

There are other important code page conversion considerations when the shell
uses code page 1047 and MVS does not.

Changing the Locale Setting in Your Profile

To change the locale, you set the value for the LC_ALL variable. This variable
overrides any values for locale specified for the LC_ variables such as
LC_COLLATE, LC_MESSAGES, and LC_SYNTAX, but it does not override
LC_CTYPE.

If you change LC_ALL to a new locale, and OS/390 UNIX messages are provided
in that language, change the LANG variable setting to match the LC_ALL setting.
Currently, OS/390 UNIX messages are shipped in English, Kanji, and Simplified
Chinese. If you do not change LANG, the messages will be in English.

If OS/390 UNIX messages are not provided in your language then changing LANG
by itself will have no effect. However, although messages are not supplied in your
language, the OS/390 UNIX messages that are displayed in English will use your
national language characters and should display correctly on your terminals.

48 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

When you change the locale, the shell and utilities run in the new locale, but the
shell locale category LC_CTYPE stays in the POSIX locale. This can affect parsing
and shell expansion, and cause unpredictable behavior. In order to avoid this
problem, after you change locale you must overwrite the current shell by issuing the
exec tcsh - command. The new shell will correctly interpret the proper character
set for the new locale.

If you place an setenv LC_ALL localename statement in your login profile, or if one
has been placed in /etc/csh.login, make sure it is followed with exec tesh -l and
protect that with tty -s as shown in the example below. If you don't protect it with
the tty -s test, then BPXBATCH SH command will not run the command.

If you use exec tcsh -l, there are two situations that you must take into account:
1. Loop control; you only want the exec tesh -l executed the first time.

2. If you plan to use BPXBATCH or OSHELL (which calls BPXBATCH) with
national language support, you need to define the LANG and LC_ALL variables
in a file for BPXBATCH to use.

If your /etc/csh.login has been set up for the proper locale, you only need to
change your .login if you want a different locale than already set up as the default.
For more information on setting up locale and messages, see “Customizing for
Your National Code Page” in OS/390 UNIX System Services Planning.

Examples: Changing Locale

For example, say you are using OMVS, the 3270 terminal interface. If your
letc/csh.login is not set up for your locale and LANG, then in order to work in a
locale such as Danish, you should add this to your .login file:

tty -s
set tty rc=$status
if (($?LOCALE_SWITCH == 0) & ($tty rc == 0)) then
€Ch0 Mmmm e - "
echo "- Logon shell will now be invoked to reflect -"
echo "- code page IBM-277 -
€Ch0 Mmmm e e e !
setenv LOCALE_SWITCH EXECUTED
setenv LANG C
setenv LC_ALL Da_DK.IBM-277
Issue chcp if not using OMVS command
if ($?_BPX_TERMPATH != "OMVS") then
chcp -a 1S08859-1 -e IBM-277
endif
exec tcsh -1
endif
unset tty rc

If you want your messages displayed in a different language than that specified in
the system-wide /etc/csh.login, you have to modify your .login accordingly.

Chapter 6. Customizing the tcsh Shell 49

The LC_SYNTAX Environment Variable

There are 13 “variant” characters in the POSIX portable character set whose

encoding may vary on various EBCDIC code pages:

Right brace (})

Left brace ({)
Backslash (\)

Right square bracket (])
Left square bracket ([)
Circumflex (%)

Tilde ()

Exclamation point (!)
Pound sign (#)

Vertical bar (1)

Dollar sign ($)
Commercial at-sign (@)
Accent grave (")

When you specify a locale with the LC_ALL variable, the LC_SYNTAX
environment variable is set. The shell uses the LC_SYNTAX environment variable
to determine the code points to use for the 13 variant characters. This means the
shell can dynamically adapt to the code page of the current locale.

Applications that use LC_SYNTAX will work in multiple locales using multiple code
pages. To be sensitive to the 13 variant characters, an application must be enabled
to use LC_SYNTAX. For information on how to do this, see 0OS/390 C/C++

Programming Guide.

50 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

—— LC_SYNTAX—An Example

For example, consider the echo command and its use of the backslash (\)
character. The backslash is one of the 13 variant characters. When the echo
style is all or sysv, the following command:

echo 'this is\nreal handy'

produces the following output at the terminal:

this is

real handy

echo finds and converts the \n in the input to a <newline> character in the
output. To do this, echo must know the encoding for the backslash character in

the current user's environment—in this case, the character generated by the
user's terminal when the backslash key is pressed.

A 3270 terminal operating in the USA locale En_US.IBM-037 (code page
IBM-037) generates X'EQ' for the backslash, while a 3270 terminal operating in
the German locale De_DE.IBM-273 (code page IBM-273) generates X'EC".
The LC_SYNTAX locale category provides this locale-specific hexadecimal
encoding information to echo and the other utilities.

When the USA user runs in locale En_US.IBM-037, echo determines from the
LC_SYNTAX information in this locale that the expected encoding for backslash
is X'EO'. Likewise, when the German user runs in locale De_DE.IBM-273,
echo determines from the LC_SYNTAX information in this locale that the
expected encoding for backslash is X'EC".

Limitations
The LC_SYNTAX setting does not affect:

* REXX execs.

e The ISPF shell (ISHELL). ISHELL runs in the locale that MVS is using, and
therefore this could be different from the shell locale.

e Shell scripts: The code page in which a shell script is encoded must match the
code page of the locale in which it is run. For a shell script to be shared by
multiple users, they must all be in a locale that uses the same code page as
the code page in which the shell script is encoded.

If you have different users operating in various locales, you need multiple
copies of a shell script, one for each different locale code page. You can use
the iconv command to convert a shell script from one code page to another.

The LOCPATH Environment Variable

LOCPATH is an environment variable that tells the setlocale() function the name of
the directory from which to load locale object files. If LOCPATH is not defined, the
default directory /usr/lib/nis/locale is searched. LOCPATH is similar to the PATH
environment variable; it contains a list of HFS directories separated by colons. For
detailed information on how setlocale() searches for locale object files, see the
description of setlocale() in OS/390 C/C++ Run-Time Library Reference.

Chapter 6. Customizing the tcsh Shell 51

Customizing the Language of Your Messages

If you want your messages displayed in a different language than that specified in
the system-wide /etc/.login, add this line to your .login:

setenv LANG your_language
your_language is the first part of the locale name—for example, Ja_JP in the locale

name JA_JP.IBM-939. Currently, OS/390 UNIX ships messages in English, Kaniji
and Simplified Chinese.

Setting Your Local Time Zone

The shell and utilities assume that the times stored in the file system and returned
by the operating system are stored using the Greenwich Mean Time (GMT) or
Universal Time Coordinated (UTC) as a universal reference. In the system-wide
letc/csh.login, the TZ environment variable maps that reference time to the local
time specified with the variable. You can use a different time zone by setting the TZ
variable in your .login.

The three primary fields in the time zone specification are:
1. The local standard time, abbreviated—for example, EST or MSEZ.

2. The time offset west from the universal reference time, typically specified in
hours (minutes and seconds are optional). A minus sign (-) indicates an offset
east of the universal reference time.

3. The daylight savings time zone, abbreviated—for example, EDT. If this and the
first field are identical or this value is missing, daylight savings time conversion
is disabled. Optionally, you can specify an additional rule that indicates when
Daylight Savings Time starts and ends.

For example, if you want to set your time zone to Eastern Standard Time (EST)and
export it, you would specify:

setenv TZ "ESTHEDT"

e EST is Eastern Standard Time, the local time zone.
¢ The standard time zone is 5 hours west of the universal reference time.
e EDT is Eastern Daylight Savings time zone.

For complete information on how to specify the local time zone, see 0OS/390 UNIX
System Services Command Reference.

Building a STEPLIB Environment: The STEPLIB Environment Variable

Traditionally, some MVS users have preferred to alter the search order for MVS
executable files when they are running a new or test version of an application
program, such as a runtime library. To do this, they code a STEPLIB DD statement
on the JCL used to run the application. Accessed ahead of LINKLIB or LPALIB, a
STEPLIB is a set of private libraries where the new or test version of the
application is stored.

The STEPLIB environment variable provides the ability to use a STEPLIB when

running an HFS executable file. This variable is used to determine how to set up
the STEPLIB environment for an executable file.

52 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

You can set the variable in one of three ways:

setenv STEPLIB CURRENT Passes on any currently active TASKLIB, STEPLIB, or
JOBLIB allocations from the invoker's MVS program
search order environment to the environment created for
the executable file to run in. Any STEPLIB environment in
the invoker's process image is re-created in the new
process image for the executable file when the file is
invoked. This is the default value that is set if no
STEPLIB variable is specified.

If an application uses fork(), spawn(), or exec(), then the
STEPLIB data sets must be cataloged.

setenv STEPLIB NONE Specifies that no STEPLIB environment should be set up
for executable files.

setenv STEPLIB DSN1:DSN2:DSN3 Sets up a library search order for the STEPLIB, in
the order that the data sets are specified. You can specify
up to 255 fully qualified data set names, separated by
colons—for example:

setenv STEPLIB SMITH.C.LOADLIB:SMITH.PL1.LOADLIB

The specified data sets must be cataloged MVS load
libraries that you have security access to. The data sets
specified here are built into a STEPLIB environment for
the executable file.

Restrictions on STEPLIB Data Sets

For executable files that have the set-user-ID or set-group-ID bit set, there are
restrictions on the data sets that can be built into the STEPLIB environment for the
file to run in. The system programmer maintains a STEPLIB sanction list of data
sets that can be included in the STEPLIB environment for such executable files.
Only data sets on that list are built into the STEPLIB environment for such files. If
you need a data set added to the list, contact your system programmer. For more
information on the STEPLIB sanction list, see OS/390 UNIX System Services
Planning.

Setting Variables for a Shell Session

The set and unset commands let you set and unset variables for your shell
session. These variables control the way the shell handles certain situations. To
display the shell variables that are currently set, type set. To turn an option on,
enter:

set name
where name is the name of the option you want to turn on. If you want an option
turned on for every shell session, put the set command in your .tschre file.

To turn an option off, enter:

unset name
The following discussion highlights some of the options you may find useful. For all

the options, see set in the tcsh shell under set in 0S/390 UNIX System Services
Command Reference.

Chapter 6. Customizing the tcsh Shell 53

Displaying Current Option Settings
The command:
set

displays all current option settings.

Controlling Redirection
The command:

set noclobber

indicates that you do not want the > redirection operator to overwrite existing files.
When this option is on and you specify the construct >file, the redirection works
only if file does not already exist. If you have this option on and you really do want
to redirect output into an existing file, you must use >lIfile (with an “or” bar after the
>) to indicate output redirection.

Preventing Wildcard Character Expansion
The command:

set noglob

tells the shell not to expand wildcard characters in filenames. This command is
occasionally useful if you are entering command lines that contain a number of
characters that would normally be expanded.

Displaying Input from a File
The command:

set xtrace

tells the shell to display its input on the screen as the input is read. This command
lets you keep track of material that comes from a file.

Displaying Deletion Verification
The command:

set rmstar

prompts you for deletion verification when you enter the rm command in
conjunction with the * character.

Files Accessed at Termination

When you terminate the tcsh shell, the following files are read at logout in this
order:

1. /etc/csh.logout
2. $HOME/.logout

54 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

Chapter 7. Working with tcsh Shell Commands

The shell is, above all, a programmer's interface. As a result, the shell commands
are strongly slanted towards the needs of a programmer. The tcsh shell has many
general tools that can help any programmer, and is specifically designed to have
syntax similar to the C programming language. In addition, there are a number of
commands designed especially for the C programmer.

Specifying Shell Command Options

Most of the commands discussed in this chapter accept options. Shell command
options are usually specified by a minus sign (-) followed by a single character. For
example, the Is command simply lists a directory's contents in multiple columns on
your screen. However:

1s —F
distinguishes between various file types when listing the contents of a directory.
1s -1

lists directory names in a single column.

Options consisting of a minus sign followed by a character are called simple
options. You specify simple options after the name of the command and before any
other arguments for the command (that is, arguments that are not options). For
example, you would enter:

1s -1 dirl

to list the contents of dir1 in a single column.

Command options and arguments must be typed as singlebyte characters.
Additionally, delimiters such as a slash, curly brackets, and parentheses must be
typed as singlebyte characters.

The order of options and arguments is important. If you enter:
1s dirl —F

Is lists the contents of dir1 and then tries to list the contents of the directory, or
attributes of the file, called —F.

As a special notation, most tcsh shell commands let you specify a double minus
sign (--) to separate the options from the nonoption arguments; -- means that
there are no more options. Thus, if you really have a directory named —F, you could
enter:

1s -- —F

to list the contents of that directory or the file attributes.

The tcsh shell gives you a shorthand way to specify more than one simple option to
a command. For example, =t and —v are both simple options that you can specify

with the cat command. (To find out what these options do, read the description of
cat in OS5/390 UNIX System Services Command Reference.) You could enter:

cat -t —-v file

© Copyright IBM Corp. 1999 55

or you could combine the two options into:
cat —tv file

The order of the options is not important:
cat —vt file

is equivalent to the previous version of the command.

Specifying Options with Accompanying Arguments

In addition to simple options, some commands accept options that have
accompanying arguments. Such options look like simple options followed by
additional information. The argument may be a number, a string, the name of a file,
or something else.

For example, if you read the description of ps in 0S/390 UNIX System Services
Command Reference, you will see that ps accepts an argument of the form:

—u userlist

When 0S/390 UNIX System Services Command Reference shows part of a
command line in jtalics, the italicized material is just a placeholder; when you
actually use the command, you should fill in something else in its place. In this
case, the userlist should be a string of one or more UID numbers or login names
separated by commas and enclosed in single quotes. In the command:

ps —u 'macneil,welliel’

the userlist string is macneil,wellie1. (If the string does not contain spaces, tabs, or
other special characters, you can actually omit the enclosing single quotes, but the
command is often easier to read if you use quotes anyway.) When executed, ps
displays information for the specified users.

Help for Shell Command Usage

If you incorrectly specify a command, a usage note for the command is displayed.
The usage note displays the proper format for the command. Often you can display
a usage note deliberately if you specify the command with a -? option.

For online help information about a command, see “Online Help” on page 76.

Understanding Standard Input, Standard Output, and Standard Error
Once a command begins running, it has access to three files:
1. It reads from its standard input file. By default, standard input is the keyboard.
2. It writes to its standard output file.

 If you invoke a shell command from the shell, a C program, or a REXX
program invoked from TSO READY, standard output is directed to your
terminal screen by default.

 If you invoke a shell command, REXX program, or C program from the
ISPF shell, standard output cannot be directed to your terminal screen. You
can specify an HFS file or use the default, a temporary file.

3. It writes error messages to its standard error file.

56 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

 If you invoke a shell command from the shell or from a C program or from
a REXX program invoked from TSO READY, standard error is directed to
your terminal screen by default.

¢ If you invoke a shell command, REXX program, or C program from the
ISPF shell, standard error cannot be directed to your terminal screen. You
can specify an HFS file or use the default, a temporary file.

If the standard output or standard error file contains any data when the
command completes, the file is displayed for you to browse.

Using the Shell:

In the shell, the names for these files are:

 stdin for the standard input file.
o stdout for the standard output file.
 stderr for the standard error file.

Using TSO/E:

When you are invoking the BPXBATCH utility, you can specify these standard files
in MVS DD statements, TSO/E ALLOCATE commands, or DYNALLOC macros
using the ddnames:

e STDIN for standard input
e STDOUT for standard output
e STDERR for standard error

Using ISPF:

When you run shell commands, REXX programs, and C programs from the ISPF
shell, stdout, and stderr cannot be directed to your terminal. You can specify an
HFS file, or use the default—a temporary file. If it has any contents, the file is
displayed for you to browse when the command or program completes.

Redirecting Command Output to a File

Commands entered at the command line typically use the three standard files
described in the previous section, but you can redirect the output for a command to
a file you name. If you redirect output to a file that does not already exist, the
system creates the file automatically.

Most shell commands display information on your workstation screen, standard
output. If you redirect the output, you can save the output from a command in a file
instead. The output is sent to the file rather than to the screen. At the end of any
command, enter:

>filename
For example:
cat filel file2 file3 >outfile

writes the contents of the three files into another file called outfile. All the
information in the original three files is concatenated into a single file, outfile.

Chapter 7. Working with tcsh Shell Commands 57

When you redirect output with >filename and it is an existing file, the output writes
over any information that the file already contains. To append command output at
the end of the file, use:

>>filename

instead.

Another example:
(sort -u filel >output) >&outerr
redirects the result of the sort to the file named output (instead of standard output)
and redirects any error messages to the file outerr, which is a record of errors
encountered during various sorts.
Suppose you entered:
sort -u filea >output
In this command, you see two redirections:
e Error output from the sort is redirected to standard output, the display screen.
¢ The result of the sort is redirected to the file named output.
Here is another example of redirection, sending both standard error and standard

output to a file. This command produces the program hello and a listing with error
messages in a file called hello.list:

c89 -0 hello -V hello.c >&hello.list

Redirecting Input from a File

You can redirect input in much the same way that you redirect output. A command
that normally takes input from standard input can be redirected to take input from a
file instead. For example, with this mailx command, you can send the file lessons
to another user.

mailx JAYD <lessons

The file lessons becomes input to mailx, rather than your input from the keyboard.

Redirecting Error Output to a File
You can redirect error output from the workstation screen to a file. For example:
(sort -u filea >dev/tty) >& outerr

sorts filea, checking for unique output records. Any messages regarding duplicate
records are redirected to a file named outerr.

And if you do not care about seeing the error output, you can just redirect it to
/dev/null, also known as the “bit bucket.” This is equivalent to discarding the error
messages.

(sort -u filea >/dev/tty) >& /dev/null

58 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

Dumping Nontext Files to Standard Output

The od command can dump the contents of a file to standard output, your
workstation screen, in several different formats.

od file
dumps a file in octal.
od -h file

dumps the file in hexadecimal. Either of these may be useful if you want to check
the actual contents of a nontext file. Other dump formats are available.

Setting Up an Alias for a Command

After you have used the shell for a while, you will probably find that there are some
commands that you use frequently. Rather than typing them over and over, you can
set up an alias for these commands. An alias is a personalized name that stands
for all or part of a command. You can create an alias by entering:

alias name "string"

in response to the shell's usual prompt for input. This is not a normal command; it
is an instruction to the shell itself.

For example, suppose you have a hard time remembering that the mv command
actually renames files. To make life easier for yourself, you could set up a simple
alias by entering this on your command line:

alias renam "mv"

From this point onward in your session, whenever the shell sees the command
renam, the renam is replaced with mv. The alias facility lets you create more
usable commands.

Clearly, you could use an alias to save yourself some typing too. You could define
c as an alias for cat. Then you would enter:

c file
to get the effect of:
cat file

Defining an Alias
If you will be using an alias frequently, put the alias command in your profile file
($HOME/.tcshrc). That way, you do not have to type them in every time you start
using the shell. See “Understanding the Startup Files” on page 41 for more
information about customizing your startup files.
To display all the currently defined aliases, you just enter:

alias

and the shell displays them.

Chapter 7. Working with tcsh Shell Commands 59

Arguments in Aliases
Any arguments that follow an alias are treated just as if they had been following the
command that the alias stands for. For example, if you define the alias f as follows:

alias f "Ts"

the shell replaces f with Is, which is the command to list files in a directory.

You can refer to arguments in an alias by simply adding them at the end of the
alias as you would with a command. For example:

f -la

would perform the Is command with the arguments la, which will list all the files in
the directory in a long directory listing format. And,

f /bin

will list the contents of the /bin directory.

Redefining an Alias for a Session

You can redefine an alias during a session, even if it is defined in your profile file. If
you enter the command:

alias name "string"

during a session and name is already an alias, the shell forgets the old meaning
and uses the new meaning from then on.

Setting Up an Alias for a Particular Version of a Command

If you tend to use a command with the same options every time, you may want to
set up an alias for the command with those particular options. Let's take an
example. The grep command searches through files and prints out lines that
contain a requested string. For example:

grep hello file

displays all the lines of file that contain the string hello. Normally, grep
distinguishes between uppercase and lowercase letters; this means, for example,
that the search in the previous example does not display lines that contained
HELLO, Hello, and so forth. If you want grep to ignore the case of letters as it
searches, you must specify the —i option, as in:

grep -i hello file

This finds hello, HELLO, Hello, and so on.

If you think you prefer to use the —i version of grep most of the time, you can
define the alias:

alias grep "grep -i"

From this point on, if you use the command:

grep string file

it is automatically converted to:

grep -i string file

and you get the case-insensitive version of the command grep.

As another example, the rm command to delete (remove) a file has an —i option
that prompts you to confirm the deletion. The filename and a question mark are

60 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

Turning Off an

displayed. For example, if you entered rm -i filel and file1 is in your working
directory, you would see the prompt:

filel: ?

before the system actually removes the file. You then enter y (yes) or n (no) in
response. If you like this extra bit of safety, you might define:

alias rm "rm -i

After this, when you call rm, it automatically checks with you before deleting a file,
just to make sure that you really want to delete it.

It may seem odd to define an alias that has the same name as a command that is
used in the alias, but this is so common that the shell checks specially for an alias
of the same name, and does the correct thing.

If you find yourself using the same option every time you call a command, you
might consider creating an appropriate alias so that the shell automatically adds the
option. Of course, the best place to define this alias is in your .teshre file; then the
alias is set up every time you invoke the shell.

Alias

If you have set up an alias like the one previously described for rm, you may find
that you do not want the alias to apply in some situations. For example, when you
delete a huge number of files, you probably do not want rm to ask if it is okay to
delete each one. In this situation, you have several options:

¢ Get rid of the alias entirely. The command:
unalias rm

gets rid of the rm alias for the session. After this, when you enter rm, you get
the real rm command.

e Escape the alias. If you put a backslash in front of an alias, the shell uses the
real command rather than the alias. For example:

\rm file
e Specify the full pathname. For example:
/bin/rm file

tells the shell to run the program in /bin/rm. The shell does not perform alias
substitution when you specify a command as a pathname.

These alternatives should help you get around options that you have automatically
associated with a command.

Combining Commands

There are several simple ways you can combine several commands on a single
command line.

¢ You can run a series of commands, one after the other:

Using a semicolon (;)
Using && and Il

* You can run more than one command concurrently:

Chapter 7. Working with tcsh Shell Commands 61

Using a pipe (I) or a filter with a pipe

The output from the first command is piped to the next command as the first
command is running.

Using a Semicolon (;)

The shell lets you enter several commands on the same command line. To do this,
just use the semicolon character to separate the commands; for example:

cd mydir ; 1s

Also, if you have defined the alias:
alias 1 "1s -1"

you can enter:

cd mydir ; 1

since you can use aliases such as | after a semicolon.

Using && and Il

When stringing together more than two commands, you may want to control the
running of the second command based on the outcome of the first command. You
can use:

&& If the command that precedes && completes successfully, the command
following && is run. Leave a space on either side of the && operator:
command && command.

Il If the command that precedes Il fails, the command following Il is run.
Leave a space on either side of the Il operator: command || command.

Using a Pipe
The output from one command can be piped in as input to the next command. Two
or more commands linked by a pipe (l) are called a pipeline. A pipeline is written
as:

command | command | ...

You enter the commands on the same line and separate them by the “or-bar”
character |.

Many commands are well suited to being used in a pipeline. For example, the grep
command searches for a particular string in input from a file or standard input (the
keyboard). A command such as:

history | grep "cp"

displays all the cp commands recorded among the 16 most recently recorded
commands in your history file. The command:

1s =1 | grep "Jan"

uses Is to obtain information on the contents of the working directory and uses
grep to search through this information and display only the lines that contain the
string Jan. The pipeline displays the files that were last changed in January.

A filter is a command that can read from standard input and write to standard

output. A filter is often used within a pipeline. In the following example, grep is the
filter:

62 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

ps -e | grep cc | wc -1

lists all your processes currently active in the system, pipes the output to grep,
which searches for every instance of the string cc. The output from grep is then
piped to we, which counts every line in which the string cc occurs and sends the
number of lines to standard output.

Using Substitution in Commands

Another shell feature that is useful for programmers is command substitution. When
encountering a construct of the form:

“command”

in an input command line, the shell runs the given command. It then puts the output
of the command, after converting newlines into spaces, back into the command
line, replacing command, and runs the new command line. This is called command
substitution.

As an example of how a programmer could use command substitution, consider a
file called srclist, containing the following list of source code filenames: alpha.c,
beta.c, and gamma.c. If you enter the command:

grep printf “cat srclist”

the shell runs cat against the contents of srclist, and rewrites the original
command line, so that this line appears as:

grep printf alpha.c beta.c gamma.c

This line is then run, with grep searching through the given files, displaying lines
that contain the string printf. This type of construct quickly locates all references
to a particular variable or function in the source code for a program.

Using the find Command in Command Substitution Constructs

The find command is useful in command substitution constructs. find displays the
names of files that have specified characteristics. For example:

find dirl —name "x.c"

finds all files in the directory dirl whose names match the wildcard pattern *.c. In
other words, it finds all files in that directory with names having the .c suffix.

The command:

1s -1 “find dirl —name "*.c""

finds all the .c files and then uses Is to display information about these files.

Complicating things further, you could enter
Is -1 “find dirl —name "*.c"~ | grep -F "Nov"

This sets up a pipeline that displays Is information only for files that were last
changed in November. (To be perfectly accurate, it also displays information on
files that have the string Nov in their names, t00.)

Another useful find option has the form:

find path —ctime number

Chapter 7. Working with tcsh Shell Commands 63

This says that you want to find files that have changed in the last number of days.
For example:

1s -1 “find dir —ctime 1°

displays Is information on all files that changed either yesterday or today.

On many UNIX and AIX systems, the find command prints out the filenames only if
you specify the —print option. Thus, you would have to enter:

find dir -name "*.c" —print

to get the results just described. The OS/390 UNIX find command automatically
prints its results without —print. However, if you have an existing shell script or
compatibility with UNIX systems is important to you, you can use —print.

For more information on the find command, see 0OS/390 UNIX System Services
Command Reference.

Characters That Have Special Meaning to the Shell

Certain characters have special meaning to the shell; these are often called
metacharacters. If you enter a command that contains any of these characters, the
shell often assumes that you are using the character in its special sense.

Characters Used with Commands
Character Usage

I Pipes the output from one command to a second command;
separates commands in a pipeline.

I Separates two commands. If the command preceding Il fails, it runs
the following command (Boolean OR operator).

> Redirects stdout.

< Redirects stdin.

& Runs a command in the background, if placed at the end of a
command line.

>& Used for redirecting stdout and stderr.

&& Separates two commands. If the command preceding && succeeds, it

runs the following command (Boolean AND operator).

; Separates sequential commands; allows you to enter more than one
command on the same line.

() Around a sequence of commands, groups those commands that are
to run as a separate process in a subshell environment. The
commands run in a separate execution environment: changes to
variables, the working directory, open files, and so on, will not remain
in effect after the last command finishes.

() is also used to group mathematical operations.

{} Around a sequence of commands, groups those commands that are
run in the current shell environment. Changes to variables, etc., will
affect the current shell.

64 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

Both { and } are reserved words to the shell. To make it possible for
the shell to recognize these symbols, you must enter a blank or
<newline> after the {, and a semicolon or <newline> before the }.

Following a command in a shell script, indicates the beginning of a
comment.

At the beginning of a string, indicates it is a variable name.

In general, the backslash character turns off the special meaning of
the character that follows it. For more information, see “Using a
Special Character without Its Special Meaning” on page 66.

A pair of single quotes turns off the special meaning of all characters
within the quotes. For more information, see “Using a Special
Character without Its Special Meaning” on page 66.

A pair of double quotes turns off the special meaning of the
characters within the quotes, except that !event, $var, and ~cmd™ will
show history, variable, and command substitution. See “Using a
Special Character without Its Special Meaning” on page 66 for more
information.

Characters Used in Filenames

Character
/

Usage
Separates the components of a file's pathname.

(Tilde) symbolizes your home directory when used by itself. When
used together with a user ID, ™ symbolizes that user's home directory.
For example:

“valerie/.tcshrc
refers to user VALERIE's .tcshrc file.

When used as a component of a pathname, indicates the working
directory.

When used as a component of a pathname, indicates the parent
directory.

Used as a wildcard character that can match any one character,
except a leading dot (.).

Used as a wildcard character that can match a sequence of zero or
more characters, except a leading dot (.).

Redirecting Input and Output

Character Usage Example

< Redirects input to a “Redirecting Input from a File” on page 58.
specified file.

> Redirects output to a “Redirecting Command Output to a File” on
specified file. page 57.

>> Redirects output to be “Redirecting Command Output to a File” on
appended to the end of page 57.
the specified file.

>& Redirects stdout and “Redirecting Error Output to a File” on
stderr. page 58.

Chapter 7. Working with tcsh Shell Commands 65

Character Usage Example

<<text Reads standard input until This is used in what is called a “here
it encounters text. document.” Input is usually typed on the
screen or in a shell script. For example, this
script creates a file called hello.c, compiles
it into hello, and then executes it:

create program
cat > hello.c << EOF
main() {

puts("Hello, World!\n");
}
EOF
compile program
c89 -0 hello hello.c
#execute program
hello

When you run the shell script, it runs the
cat > hello.c command using the input
between the two End_of_File strings.

Using a Special Character without Its Special Meaning

If you do not want to use the special sense of the metacharacters, instruct the shell
to ignore them by escaping them or quoting them. To do this, you use:

\

The Backslash (\)

The backslash character (\) turns off the special meaning of the character that
follows it. For example:

echo it\'s me
prints:

it's me

If you just try:
echo it's me

without the backslash, the shell prints a > prompt after you press <Enter>instead of
the usual $. The > prompt is a continuation prompt. An apostrophe ' without a
backslash is taken to be the start of a string and the shell assumes that the string
keeps going until you type another apostrophe, even if that goes on for several
lines. The shell does not process the string until you type the closing apostrophe.

So remember to put a backslash in front of any special character, unless you know
its special meaning and you want that meaning. Because a backslash itself is a
special character, you must type two of them whenever you want a single
backslash.

66 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

A Pair of Single Quotes (' ')

A pair of single quotes (' ') turns off the special meaning of all characters within
the quotes.

A Pair of Double Quotes (" ")

A pair of double quotes turns off the special meaning of the characters within the
quotes, except that !event, $var, and ~cmd™ will show history, variable, and
command substitution.

Using a Wildcard Character to Specify Filenames

If you have used other operating systems, you are probably familiar with the
concept of wildcard characters. (In an MVS context, the wildcard character is
referred to as a global character, or pattern-matching character.) A wildcard
character is a special character that may be used to save typing in filenames in
shell commands. The tcsh shell recognizes several different wildcard characters:

*
?

[]

The * Character

The asterisk (*) stands for any sequence of zero or more characters, except a
leading dot. You can use the asterisk in filenames. For example:

1s aax

lists all files in the working directory with names that begin with aa.

The command:
mv *.c dirl/dir2

moves every file with the .¢ suffix from your working directory to the directory
dir1/dir2.

You can use the * wildcard character in directory names as well as in filenames.
For example:

cat */*.c

displays the contents of all files that have the .c suffix, in directories under your
working directory.

The ? Character

In a pathname, the question mark ? can stand for any single character, except a
leading dot. For example:

file.?

refers to any and all files with names that consist of file. followed by any single
character. This can mean file.a, file.b, file.c, and so on ... whichever of the files
currently exist.

You can combine * and ?.

1s *.?

Chapter 7. Working with tcsh Shell Commands 67

displays the names of all files under the working directory that have one-character
filename suffixes.

Again, you can use the ? in directory names as well as filenames. For example:
1s ?272/%

shows all files in every directory under your working directory that have a
three-character name.

The Square Brackets []

Square brackets containing one or more characters stand for any one of the
contained characters. For example:

[bch]at
matches bat, cat, or hat.
1s [abc]*

lists all files in the working directory the names of which start with a, b, or c,
followed by any other sequence of zero or more characters. In other words, it lists
all files whose names start with a, b, or c.

You can specify ranges of characters inside the square brackets by specifying the
first character in the sequence, a hyphen (=), and the last character. For example:

[a-m]
This matches any character from a through m.

Suppose, for example, that you want to copy the contents of the working directory
into two separate directories. You might enter:

cp [a-m]* dira

to copy all files with names beginning with the letters a through m to the directory
dira, and then issue the second command:

cp [n-z]* dirb

to copy the rest of the files to the directory dirb. A command such as:
rm *.[a-z]

removes every file with a suffix consisting of a single lowercase letter.

If the first character inside a bracket construct is an exclamation mark !, the
construct matches any character that is not inside the brackets. For example:

1s ['a—-m]*

lists any file that does not begin with one of the letters in the range a through m.

In the same way:
rm [10-9]*

removes any file with a name that does not start with a digit.

68 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

Retrieving Previously Entered Commands
In the tcsh shell, you can retrieve previously issued commands using:

e The history command, combined with the ! command

e The two retrieve function keys that are part of the TSO/E OMVS command
interface to the shell

e Command-line editing, when you are using an asynchronous terminal interface

Retrieving Commands from the History File

The shell records each command that you enter in a file under your home directory.
This file is called the history file; its name is .history. If you enter the command:

history

the shell displays the current contents of your history file. Each command is
numbered.

You can rerun any of the commands in your history file by typing !, followed by a
space, followed by the number of the command you want to use.

For example, suppose that you are a programmer and you enter a complicated
command to compile part of a program. The program contains a syntax error, so
you call a text editor to edit the source code and correct the problem. Now you
want to run the same compile command on the corrected program. You may save
yourself a good deal of typing by using:

history

to find out the number of the previous compile command and then running the
command with !. For example, if the history file shows you that the command you
want to run is number 44, you would type:

| 44

to run the previous compile command.

Another time-saver is to specify your shell prompt as:
set prompt="\!>

in your .teshrce file. The shell prompt is then preceded by the number assigned to
the command in the command history file.

If you type ! followed by a space, followed by a string of characters (not beginning
with a digit), the shell checks backward through the history file and runs the most
recent command that begins with the given string. For instance, look at the
compilation example. Suppose you are using the c¢++ command to compile your
program. Then:

I c++
looks back through the history and runs the most recent ¢++ command. You do not

even have to check on the number of the command you want to enter. The shell
displays the selected command in the output area of the screen and then runs it.

This backward-search feature of ! can search for aliases as well as normal

commands. ! searches for the beginning of the command line as you typed it, not
the way that the line looked after the alias was replaced.

Chapter 7. Working with tcsh Shell Commands 69

If you enter !! without a number after it, the shell repeats the most recent
command.

Editing Commands from the History File
Suppose that you have a sequence of source files named file1.c, file2.c, file3.c,
and so on that you want to compile with similar €89 commands. This situation is a
little different from the one discussed in the previous section. You do not want to
rerun the same command for each file; the command has the same form each time,
but you have to specify in a new filename each time.

You can still do this using the history file. The command:
~old _string™new_string

runs a previous command but replaces the first occurrence of the old string with the
new string. For example, suppose you compile filel.c with:

c89 options filel.c
Then the command:
~filel~file2

tells the shell to look at the previous command and to change file1 to file2. The
shell makes this change, and then displays and runs the modified command.

~ile2~file3
performs the same kind of operation, changing file2 in the previous command to

file3 and then going ahead with the compilation. This saves you the trouble of
retyping all the options for the command.

Using the Retrieve Function Keys

If you are using the OMVS interface, there are two function key settings for
retrieving commands:

Retrieve This key performs a “backward retrieve” function. It retrieves a saved
command from a stack of saved input lines, starting with the most recent
and moving down to the oldest available line.

FwdRetr This key is used with the Retrieve key to retrieve commands from the
stack of saved input lines. If you press the Retrieve key one too many
times and go past the line you want, you can press the FwdRetr key to
display the line that was previously retrieved by the Retrieve key.

Press the Retrieve key repeatedly until the command you want to use is displayed
on the command line. Once the command is displayed, you can modify the
command or use it as it is displayed. Press <Enter> to run the command.

Command-Line Editing
When you use rlogin or telnet to login to the shell, you can use command-line
editing. Command-line editing lets you access commands from your history file, edit
them, and run the result. You have already seen this process before, when reading
about some of the features of the ! command.

Command editing is useful at those times when you are running the same

sequence of commands, or slight variations on the same sequence of commands.
The point of command editing is to save yourself the trouble of typing the same

70 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

thing over and over again—look especially for long commands that normally require
a lot of typing. Command editing is also useful when you have made a mistake in
typing a command line and wish to correct it.

Using the vi Command Editor
If you run the command:

bindkey -v

it tells the shell that you want the ability to edit commands the way that you
normally edit text with vi; you are set up for vi command editing. Whenever the
shell prompts you for input, it is as if the shell puts you into vi insert mode on a
new line at the end of the history file. You can type in a new command just as you
normally would.

You can also press <Esc> to enter a vi-like command mode. When you enter
command mode, you can use the usual cursor movement commands to move
around on the command line, or to move up and down in the history file. For
example:

* Press the k key to move back to the previous line in the history file (the last
command line you entered). Press the k key again, and you move to the line
before that.

e Press j and you move forward in the history file.

In this way it is simple to retrieve recent commands from the history file. You can
then edit them using standard vi commands. For example, you can use $ to move
to the end of the line, and A to begin appending text to the end of the line. When
you have edited the line to produce the command that you want to run, simply
press <Enter> to run that line.

As you might expect, you can use these search commands:

/string
?string

to search backwards and forwards through the history file. You can edit the
command line with these vi commands:

Move to next word
Move to previous word
delete

change

append

insert

undo

c—®mo0o0UCTs

and many of the other vi commands. For a complete list of available commands,
see the description of tesh in 0S5/390 UNIX System Services Command Reference.

Using the emacs Command Editor
To set up for emacs command editing, enter:

bindkey -e

This lets you use commands identical to emacs commands to edit your shell
command line. For a more information, see the description of tesh in 0OS/390 UNIX
System Services Command Reference.

Chapter 7. Working with tcsh Shell Commands 71

Using Filename Completion

Note: Filename Completion requires the use of the TAB key. This key must be
mapped correctly for the feature to work. Most connections through telnet
and rlogin will transmit the TAB information correctly. If you are connected
in any other manner, this feature may not work correctly.

The tcsh shell provides a time saving feature for completing filenames. Rather than
having to type out the entire string to access a file or execute a program, you can
type just the first letter or letters and let the shell help you with the rest.

For example, if you have a file called phonebook, and you want to list the contents
of this file on the screen with the more command, you can do so by typing the
command, the first letter or letters of the file, and then pressing the TAB key. For
example, if you type:

more ph
and then press the TAB key, the shell will provide you with:

more phonebook
you can then press ENTER and execute the command.

If you have more than one filename that matches the letter or letters you have
typed, the shell will alert you with a beep. For example, if you have three files,
called list1, list2, and list3, and you type:

more 1i

and press TAB, the beep will sound, and the shell will complete the filename as far
as it can:

more list
you must then type 1, 2, or 3 and press ENTER.

If you are unsure of how many files there are, or which one you want, you can type
<CRTL-D> when the shell beeps, and you will be provided with matching names.
For example:

> more list
Tistl Tist2 1ist3
> more list

Underneath the matching names the command prompt is displayed again. Now you
can enter the number that you wish and then press ENTER.

If there are no matches for the letter or letters you have typed, the shell will beep,
but when you press <CRTL-D>, nothing will be displayed.

You can also use filename completion to aid in changing between directories with
long paths. If you keep files in the directory stuff/data/graphics, it is easier to use
filename completion to access the directory than to type the entire path by hand.
For example, if you are in your home directory, and stuff is a subdirectory
containing data/graphics, and you want to change into that directory, you can do
the following:

72 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

cd s [TAB]

cd stuff/

cd stuff/d [TAB]

cd stuff/data

cd stuff/data/g [TAB]
cd stuff/data/graphics

then press ENTER, and the directory change command will execute.

More information on filename completion and the complete command can be found
in the OS/390 UNIX System Services Command Reference.

Using Record-Keeping Commands

Record-keeping commands can be very helpful for programmers. For example,
suppose you have a program that is split into several source files. For the sake of
simplicity, assume that the source files all have the extension .c and are all stored
in a subdirectory called src.

It is often the case that you want to find out which source files in the subdirectory
refer to a particular variable or function. You can do this very simply with the
command:

grep 'name' src/*.c

The command checks all the appropriate files in the subdirectory src and displays
the lines that contain the given name. Each line is labeled with the name of the file
that contains the line. You can quickly find the use of a function or data object in
source files.

As another example of using record-keeping commands, suppose that you are
working on a large program and every few days you back up the source code for
the program by copying it to a directory in a different file system (as a precaution).
You would like to compare the current versions of your source files with one of the
saved versions, to find out what changes have been made between the two. The
command:

diff oldfile newfile

prints out all the differences between two versions of a file, making comparisons
possible.

The cksum command gives a checksum for each file. If applied to two versions of
what was at one time the same file, cksum gives a convenient way to tell if the
files are still the same. It does not, however, indicate what the differences are.

The find command also has applications to programming. For example, suppose
you are looking for a particular C source program but cannot remember where it is
stored.

find / —name '=*.c'

searches all the files and file systems, starting at the root, and displays the names
of all files with the .c extension.

Chapter 7. Working with tcsh Shell Commands 73

Finding Elements in a File and Presenting Them in a Specific Format

awk is a powerful command that can perform many different operations on files.
The general purpose of awk is to read the contents of one or more files, obtain
selected pieces of information from the files, and present the information in a
specified format.

One simple way to use awk is with a command line with the form:

awk '/regexp/ {action}' file

This asks awk to obtain information from the specified file. awk obtains the
information by performing the specified action on every line in the file that contains
a string matching the given regular expression, regexp. (For further information, see

the appendix on regular expressions in 0S/390 UNIX System Services Command
Reference.) For example:

awk '/abc/ {print}' file

displays every record in the file that contains the string abc.

Timing Programs

The time command lets you time programs to find out how much processor time
they actually require. You might use this to compare two versions of a program to
see if one runs faster than the other. You can run a program with:

time command-line

where command-line is a command line that invokes the program you want to time.
time runs the program and displays:

e The total time the program took to execute, labeled real
e The total time spent in the user program, labeled user

e The central processor time spent performing system services for the user,
labeled sys

Using the passwd Command
You can change user's passwords by using the passwd command:

passwd [-u userid]

The passwd command changes the login password for the user ID specified. If
userid is omitted, the login name associated with the current terminal is used. You
are prompted for the new password, which may be truncated to the length defined
as the maximum length for the passwords.

For example:
passwd
changes the password for the invoker. The invoker is prompted for the old

password and the new password values.

Non-superusers can change the password for another user if they know the user ID
and current password. Another example changes the password for user ID Jerry:

passwd -u Jerry

74 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

For more information about the passwd command, see 0S/390 UNIX System
Services Command Reference.

Switching to Superuser or Another ID

With the su command, you can switch to any user ID, including the superuser. A
user can switch to superuser authority (with an effective UID of 0), if the user is
permitted to the BPX.SUPERUSER FACILITY class profile within the Resource
Access Control Facility (RACF). Either the ISPF shell or the su shell command can
be used for switching to superuser authority.

If you do not specify a user ID, the su command changes your authorization to that
of the superuser. If you specify a user ID, su changes your authorization to that of
the specified user ID.

When you switch to superuser (UID 0) without specifying a userid, you keep your
MVS identity (TSO/E ID). You keep your access authority to MVS data sets, while
gaining authority to access any HFS files.

When you change user ID by specifying a user ID and password, you assume the
MVS identity of the new userid even if the userid has UID 0.

If you use the —s option on the su command you will not be prompted for a
password. Use this option if you have access to the SURROGATE facility class
profile BPX.SRV.userid. The userid is the MVS userid associated with the target
uID.

To return to your own user ID, type:
exit

This returns you to the shell in which you entered the su command.

Using the whoami Command

The whoami command displays a username associated with the effective user ID,
unlike the who am i command which displays the login name.

For example, if you login as 'user1' but then you use the su command to change to

‘user2"

command returned
who am I userl
whoami user?

For more information on the whoami command, see 0S5/390 UNIX System
Services Command Reference.

Using the tso Command

To run a TSO/E command from the shell or in a shell script, simply preface the
TSO/E command with the tso shell command; for example:

tso -t tso_command

There are two options you can use:

Chapter 7. Working with tcsh Shell Commands 75

e Specify the -t option to run a command through the TSO/E service routine. The

command output is written to stdout. If you specify a relative pathname, the
command looks for the file in your current directory.

Note: TSO/E has some restrictions on the type of commands that can be run
using the TSO/E service routine (mini-TSO environment). In summary,
you cannot run the following commands in this environment:

— Commands that run authorized

— FIB (foreground initiated background) commands

— Other commands that require the TSO/E task structure, i.e.,
interactive commands such as oedit, where interactive means that
the user can interact with the command processing while issuing
additional terminal input (subcommands, function keys). For
example, once the oedit command is entered, the user can enter
additional subcommands to add more lines and then quit or exit the
command.

For a full description of the restrictions, see the section on IKITSOEV in
0S5/390 TSO/E Programming Guide.

Specify the -o option to run a TSO command as if it had been entered on the
OMVS command line and run using the TSO subcommand or function key. If
you use a relative pathname, the command looks for the file in the working
directory of your TSO/E session, which is typically your home directory.

If no option is specified, the following rules are applied in this order:

1. If stdout is not a tty, the TSO service routine is used since it is possible that

the command output is redirected to a file or piped to another command.
Otherwise,

2. If the controlling tty supports 3270 passthrough mode, OMVS is used.

Otherwise,

3. The TSO service routine is used.

The tso command supports several environment variables. For more information
about the tso command and the environment variables associated with it, see
0S/390 UNIX System Services Command Reference.

Online Help

Two help facilities are available with the shell:

e The man command, which you can use to display help information about a

shell command. The man page is displayed in your shell session, and you can
work in the shell while viewing the help information.

The TSO/E OHELP command, which displays online reference information
about shell commands, TSO/E commands, C functions, callable services, and
messages issued by the shell and dbx.

The IBM BookManager READ product is a requirement for OHELP. The help
information is displayed in a BookManager session; while viewing the help
information, you cannot work in the shell.

76 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

Using the man Command

You can use the man command to get help information about a shell command.
The man syntax is:

man command_name
e To scroll the information in a man page, press <Enter>.

* To end the display of a man page, type q and press <Enter>.

To search for a particular string in a system that has a list of one-line command
descriptions, use the -k option:

man -k string
For example, to produce a list of all the shell commands for editing, you could type:

man -k edit

You can use the man command to view manual descriptions of TSO/E commands.
To do this, you must prefix all commands with tso. For example, to view a
description of the MOUNT command, you would enter:

man tsomount

You can also use the man command to view manual descriptions of dbx
subcommands. To do this, you must prefix all subcommands with dbx. For
example, to view a description of the dbx alias subcommand, you would enter:

man dbxalias

For complete information about the man command, see 0S5/390 UNIX System
Services Command Reference.

Using the OHELP Command

The TSO/E OHELP command provides a similar capability to the man shell
command. OHELP displays online reference information about commands, C
functions, callable services, and messages issued by the shell and dbx.

Your system must have the BookManager READ product installed for you to use
OHELP.

The OHELP syntax is:
OHELP ref _id search_item

ref_id A number that specifies the online book to be searched. The
default is 1 for the OS/390 UNIX System Services Command
Reference. Each installation can define which number is
associated with each book. To see the list of available books
and the number associated with each book, type ohelp.

search_item This can specify a:

e Command name

e C function name

e Callable service name

e Message number

e Text string (enclosed in double quotes)

Chapter 7. Working with tcsh Shell Commands 77

If you omit this operand, OHELP displays the table of contents
of the book specified by the ref_id.

Example: Getting Help for a Command
For example, if you want information on the ¢p shell command, you would enter:

OHELP cp

(You do not need to enter the value 1 because 1 is the default.)

NN NN TN =N
—
(<]
~

Command ===>
Fl=Help

Fuzzy matches for: CP

.33 cp -- Copy a file

.0 Appendix A. 0S/390 Shell Command Summary

21 chcp -- Set or query ASCII/EBCDIC code pages for the terminal
RONT_1 Permuted Index

.17 cat -- Concatenate or display a text file
.89 In -- Create a Tink to a file

mv -- Rename or move a file or directory
.133 rm -- Remove a directory entry

.159 touch -- Change the file access and modification times
.162 trap -- Intercept abnormal conditions and interrupts
.34 cpio -- Copy in/out file archives

.42 dd -- Convert and copy a file

.184 vi -- Use the display-oriented interactive text editor

List A11 Topics with Matches

Search matches 1 to 13 of 13

SCROLL ===> PAGE

F4=Text F5=No Text F6=Review F7=Bkwd F8=Fwd
F10=Explain F12=Cancel

Figure 11. Sample Output from the Command OHELP cp

When you look at the output, you can see a boxed display overlaying another
display. The boxed display, titled “List All Topics with Matches” lists all references
to the cp command in the online OS/390 UNIX System Services Command

Reference.

e Fuzzy matches for: CP is the heading for the list of references to cp that were
found. BookManager converts the shell command name to uppercase.

e Search Matches 1 to 13 of 13 indicates that this boxed display contains all of
the search matches. If there were a very long list of search matches, you would
need to scroll to the next screen to get to the end of the list.

e If you press PF4 (PF4=TEXT) while viewing the list, an explanation of the
reason for the maich is displayed.

e Your cursor is under the first item in the boxed display: 2.33 cp. This is the cp
command description from 0S/390 UNIX System Services Command
Reference . The first item in the list is usually the reference information for the
language element you specified. Press <Enter>. You can read through the
entire command description.

* To redisplay the boxed display of the search results, type search cp. Press
<Enter>. Alternatively, you can position your cursor under the selection Search

78 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

at the top of the screen. Press <Enter>. On the pulldown menu, select List all
topics with matches and press <Enter>.

» After you select a match, you can use type find cp to move to the next match
If you press the Cancel function key, the boxed display disappears and you see the

underlying information: the table of contents for the online OS/390 UNIX System
Services Command Reference.

To exit the online help, use the Cancel and Exit function keys, as appropriate, from
each panel.

Example: Searching Help for All Instances of a Language Element

Name

If you want to look at the reference information for all types of language element
with the name chmod, you enter the command:

ohelp * chmod

The output displayed would look similar to this:

List A11 Books with Matches
Command ===> SCROLL ===> PAGE

4 of 4 Books Searched
Fuzzy matches for: CHMOD
Search matches 1 to 4 of 4

BPXA5MO0 0S/390 UNIX System Services Command Reference

BPXBIMOO 0S/390 UNIX System Services Assembler Callable Services
BPXA7MOO C/MVS Library Reference

BPXA4MOO 0S/390 UNIX System Services User's Guide

F13=Help F14=Split F19=Bkwd F20=Fwd F21=Swap F22=Explain
F24=Cancel
F13=Help F14=Split Fl16=Wordcheck F17=Synonyms F21=Swap
F24=Cancel

Figure 12. Sample Output from the Command OHELP * chmod

When you look at the output, you see a boxed display overlaying another display.
The boxed display, titled “List All Books with Matches” lists all the reference books
that document a language element named chmod command.

e 4 of 4 Books Searched indicates that four books were searched.

e Fuzzy matches for: CHMOD is the heading for the list of references to chmod
that were found. BookManager converts the shell command name to
uppercase.

Chapter 7. Working with tcsh Shell Commands 79

e Search matches 1 to 4 of 4 indicates that this boxed display contains all of
the search matches.

e Your cursor is under the first book in the list: BPXA5M00. If you press <Enter>,
you see a boxed display showing all search matches for chmod in the online
0S/390 UNIX System Services Command Reference. The first item in the list is
usually the reference information for the language element you specified. Press
<Enter>. You can read through the entire function description.

e To return to the boxed display from the reference information, position your
cursor under the selection Search at the top of the screen. Press <Enter>. On
the pulldown menu, select List all topics with matches and press <Enter>.

e The remaining items listed are cross-references to the chmod function
throughout the online 0OS/390 UNIX System Services Command Reference.

If you press <F12>, the boxed display disappears and you see the “Set Up a
Search” panel, which allows you to search for a different name.

To exit the online help, use <F12> and <F3> as appropriate.

Searching for a Text String

To search for a text string, enclose the text in double quotes and specify the ref_id
for the specific book you want to search. For example, the command

ohelp 4 "improper type"

will search the book OS/390 UNIX System Services Messages and Codes for
messages that contain the text improper type.

If you are searching for a text string and you use an * for ref_id, OHELP will
search all the books on the shelf and locate every instance of that string.

Shell Messages

Messages issued by the tcsh shell and utilities are prefixed with the letters FSUC.
To display online reference information about any shell message, use the OHELP
command. The shell messages are documented in OS5/390 UNIX System Services
Messages and Codes.

80 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

Chapter 8. Writing tcsh Shell Scripts

Most people find themselves using some sequences of commands over and over
again.

e A programmer may always use the same commands to compile source code,
and link the resulting object code.

* A bookkeeper may have to go through the same sequence of shell commands
each week to update the books and produce a report.

To simplify such jobs, the shell lets you run a sequence of commands that have
been stored in a text file. For example, the programmer could store all the
appropriate compiling and linking commands in a file. A file containing commands
in this way is called a shell script. After such a file is completed and it is made
“executable,” the programmer can run all the commands in the file by entering the
filename on the command line.

Putting commands in a shell script has several advantages over typing the
commands individually. Using a shell script:

* Reduces the amount of typing you have to do. You have to type in the shell
script only once. Then you can run all the commands in the script by entering
the name of the file as a single shell command. A shell script can save you a
lot of time and effort if you are working with many files, or if some command
lines have several options.

¢ Reduces the number of errors. If you are typing in ten commands, you have
ten chances to make a mistake. With a shell script, however, you can take your
time, edit the file carefully, and get it right before you try to run it.

* Makes it easy for other people to do what you do. For example, consider the
bookkeeper mentioned earlier. When the bookkeeper goes on vacation,
someone else has to fill in. It is much easier for the substitute bookkeeper to
type a single command that does everything correctly than to try to type in the
full sequence of commands.

For all these reasons, you will probably find that the use of shell scripts makes your
work easier and more productive. This chapter can provide only a brief overview,
but it should give you an idea of how to write and use shell scripts.

Running a Shell Script

You can run a shell script by typing the name of the file that contains the script. For
example, suppose you have a script named totals.scp that has three shell
commands in it. If you enter:

totals.scp

the shell runs the three commands.

Before you can run a shell script, you must have read and execute permission to
the file. Use the chmod and umask commands to set the permissions.

For another example, suppose you want to compile a collection of files written in
the C programming language. You could use the €89, cc, or c++ command. The

© Copyright IBM Corp. 1999 81

¢89 command, for example, compiles any file file.c, link-edits the object module,
and produces an executable file. The shell script:

c89 -c filel.c file2.c # compile only
c89 -0 outfile filel.o file2.0 file3.c # outfile for executable

compiles and link-edits the files and produces an executable file, outfile. Notice
that in a shell script you precede a comment with a #.

If you store this script in an executable file named compile, it could be run with the
single command compile. A new process is created for the script to run in.

To run a shell script in your current environment, without creating a new process,
use the source command. You could run the calculate shell script this way:

source calculate

Should you want to use a shell script that updates a variable in the current
environment, run it with the source command.

Improving Shell Script Performance: When using the tcsh shell, the
_BPX_SPAWN_SCRIPT environment variable should be set to NO. This variable is
only intended for use with the OS/390 shell. If this variable is inherited from an
0OS/390 shell session, put

#1/bin/tcsh

as the first line in your tcsh shell scripts to avoid any errors. If tcsh is your login
shell, you should unset _BPX_SPAWN_SCRIPT, since it is only used for increasing
the performance of OS/390 shell scripts.

Using the Magic Number

All tcsh scripts must have # as the first character of the script. When a script file
starts with #*, the kernel's spawn and exec services recognize the file name after
the #* as the program to be run. It is recommended that the first line of all tcsh
scripts look like:

#1/bin/tcsh

with /bin/tcsh being the location of tcsh on the OS/390 UNIX system. The kernel
recognizes the magic value (#*) and runs /bin/tcsh.

Using TSO/E Commands in Shell Scripts

A shell script can include TSO/E commands as well as shell commands, and it can
process TSO/E command output. You use the tso shell command to run the TSO/E
command.

Using Variables

You can think of shell scripts as programs made up of shell commands. To allow
more versatile shell scripts, the shell supports many of the features of normal
programming languages.

In a conventional programming language, a variable is a name that has an
associated value. When you want to use the value, you can use the name instead.

82 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

Creating a Shell Variable

The shell also lets you create variables. A shell variable name can consist of
uppercase or lowercase letters, plus digits and the underscore character _. The
name can have any length, but the first character cannot be a digit. Uppercase
letters are distinguished from lowercase ones, so NAME, name, and Name are all
different names.

To create a shell variable, just enter:

set name='string'

as a command to the shell. For example:
set home='/usr/adams'

sets up a variable with the name home and the value /usr/adams.

After you set a variable, you refer to it by prefixing its name with a dollar sign ($).
Any command can use the value of a variable by referring to it this way. For
example, if home is set to /usr/adams:

cd $home

is equivalent to:

cd /usr/adams

Similarly:

cp $home/* /newdir

is equivalent to:

cp /usr/adams/* /newdir

To change the value of an existing variable, you use a command with the same
form as the existing variable. For example:

set home='/usr/benjk'

changes the value of home from /usr/adams to /usr/benjk.

If the value on the right-hand side of the = sign does not contain spaces, tab
characters, or other special characters, you can leave out the single quotes. For
example, you can enter:

home=/usr/benjk

Calculating with Variables

Suppose you run the following commands either in a shell script or by typing in one
command after another:

set i=1
set j=$i+l
echo $j

The output of echo is 1+1 because a normal variable assignment assigns a string
to a variable. Thus j gets the string 1+1.

To evaluate an arithmetic expression, you can enter:

@ variable=expression

Chapter 8. Writing tcsh Shell Scripts 83

This command line assigns the value of an expression to the given variable. For
example:

i=1

@ j=$i +1

echo $j

Here j is assigned the value of the expression and the echo command displays the
value 2.

You can also use @ to change the value of a variable. If you enter:

i=1
@ i=$i +1
echo $i

the @ command changes the value of i. The new value of i is the old value plus
1.

An @ command can have any of the standard arithmetic expressions:

-A Negative A

AxB A times B

A/ B A divided by B

A%B Remainder of A divided by B

A+B A plus B

A-B A minus B

The standard mathematical order of operations is used, as shown in the way that
operations are grouped:

e All unary minus operations are carried out;
e Then any *, /, or % operations (from left to right in the order they appear);
e Then any additions or subtractions (from left to right in the order they appear).

Many operators use special shell characters, so you usually need to put double
quotes around the expression. Thus:

@i= 5+2=%*3

assigns 11 to i, since the multiplication is done first. You can use parentheses in
the usual way to change the order of operations. For example:
@i=((6+2)*3)

assigns 21 to 1.

Note: @ does not work with numbers that have fractional parts. It works only with
integers.

Setting Environment Variables
Up to this point, we have talked about defining shell variables and then using them
in later command lines. You can also define a shell variable and then call a shell
script that makes use of that variable. But you have to do a certain amount of
preparation first.

A shell script is run as a child process to the parent shell. By default, the child
process does not share any variables with the parent. If you define a variable var in

84 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

the parent shell, it is local to the current session; any shell script, or child process,
that you call will not inherit var.

To deal with this situation, you can enter the following:

setenv var [value]

The setenv command says that you want the variable var passed on to all the
child processes that you execute in this session. After you do this, var becomes
inherited and the variable is known to all the commands and shell scripts that you
use.

As an example, suppose you enter the commands:

setenv myname "Friar Tuck"

Now all your child processes can use the myname variable to obtain the
associated name. You may, for example, have shell scripts that write form letters
that contain your name, Friar Tuck, obtained from the myname variable.

Note: You could use single or double quotes to enclose the variable value. See
“Quoting Variable Values” on page 42 for more information.

When a script or child process begins running, it automatically inherits all the
environment variables passed on to it. However, if the script changes the value of
one of those variables, that change is not passed back to the parent process
—unless you run the script with the source utility.

By default, any variables created within a shell script are local to that script. This
means that when another program is run, those variables do not apply in its
environment. However, the script can use the setenv command to turn shell
variables into global environment ones. Inside a shell script:

setenv name [value]

indicates that the variable with the given name should be defined as an
environment variable. When other programs are run from that script, they inherit the
value of all environment variables. However, when the script ends, all its
environment variables are lost to the calling shell.

Some variables are automatically inherited by the software that creates them. For
example, if you invoke the shell, the initialization procedure automatically marks the
home variables for environment variables so that other commands and shell scripts
can use it. In Chapter 6, you saw that in a typical .tecshre file for an individual user,
the PATH variable is an environmental variable. Making the PATH variable an
environmental variable ensures that search rules and changes to search rules are
automatically shared by all shell sessions and scripts.

Using Positional Parameters — the $N Construct

The sample shell script discussed earlier in this chapter compiled and link-edited a
program stored in a collection of source modules. This section discusses a shell
script that can compile and link-edit a C program stored in any file.

To create such a script, you need to be familiar with the idea of positional
parameters. When the shell encounters a $N construct formed by a $ followed by a

Chapter 8. Writing tcsh Shell Scripts 85

single digit, it replaces the construct with a value taken from the command line that
started the shell script.

» $1 refers to the first string after the name of the script file on the command line

» $2 refers to the second string, and so on.

As a simple example, consider a shell script named echoit consisting only of the
command:

#
echo $1

Suppose we run the command:
echoit hello

The shell reads the shell script from echoit and tries to run the command it
contains. When the shell sees the $1 construct in the echo command, it goes back
to the command line and obtains the first string following the name of the shell
script on the command line. The shell replaces the $1 with this string, so the echo
command becomes:

echo hello

The shell then runs this command.

A construct like $1 is called a positional parameter. Parameters in a shell script are
replaced with strings from the command line when the script is run. The strings on
the command line are called positional parameter values or command-line
arguments.

If you enter:

echoit Hello there

the string Hello is considered parameter value $1 and there is $2. Of course, the
shell script is only:

echo §1

so the echo command displays only the Hello.

Positional parameters that include a blank can be enclosed in quotes (single or
double). For example:

echoit "Hello there"

echoes the two words instead of just one, because the two words are handled as
one parameter.

Returning to a compile and link example, a programmer could write a more general
shell script as:

c89 -c $1.c
c89 -0 $1 $1.0

If this shell script were named clink, the command:
clink prog

would compile and link prog.c, producing an executable file named prog in the
working directory. In the same way, the command:

clink dir/prog2

86 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

would compile and link dir/prog2.c. The shell script compiles and links a C
program stored in a single file.

As another example of a shell script containing a positional parameter, suppose
that the file lookup contains:

grep $1 address

(where address is a file containing names, addresses, and other useful
information). The command:

Tookup Smith

displays address information on anyone in the file named Smith.

Using Quotes to Enclose a Construct in a Shell Script
A $N construct in a shell script can be enclosed in double or single quotes.

* When double quotes are used, the parameter is replaced by the appropriate
value from the command line. For example, suppose the file search contains:

grep II$1II *
If you enter the command:
search 'two words'

the parameter value 'two words' replaces the construct $1 in the grep
command:

grep "two words" =*

If the grep command does not contain the double quotes, the parameter
replacement would result in:

grep two words =*
which has an entirely different meaning.

* When you use single quotes to enclose a $N construct in a shell script, the $N is
not replaced by the corresponding parameter value. For example, if the file
search contains:

grep '$1' x

grep searches for the string $1. The $1 is not replaced by a value from the
command line. In general, single quotes are “stronger” than double quotes.
Less is more!

Using Parameter and Variable Expansion

As we just discussed, a $ followed by a number stands for a positional parameter
passed to the script or function. A positional parameter is represented with either a
single digit (except 0) or two or more digits in curly braces; for example, 7 and {15}
are both valid representations of positional parameters. For example, if the
command:

echo $1

appeared in a shell script, it would echo the first positional parameter.

Similarly, a $ followed by the name of a shell variable (such as $HOME) stands for
the value of the variable.

Chapter 8. Writing tcsh Shell Scripts 87

These constructs are called parameter expansions. In this sense, the term
parameter can mean either a positional parameter or a shell variable.

The tcsh shell also supports more complicated forms of parameter expansions,
letting you obtain only part of a parameter value or a modified form of the value.

Modifier Description

r Root of value

e Extension of value

Head of value

t Tail of value

For example, to extract only part of a filename, you can add one of the above
modifiers as follows:

Filename r e h t
/usr/bin/vi.txt /ust/bin/vi txt /usr/bin vi.txt
/u/bobby/mail /u/bobby/mail empty /u/bobby mail
storybook.pdf storybook pdf empty storybook.pdf
INSTALL INSTALL empty empty INSTALL

Using Special Parameters in Commands and Shell Scripts

The tcsh shell has a variety of special parameters that may be used in command
lines and shell scripts. These parameters are listed in OS/390 UNIX System
Services Command Reference under tesh in the "Variable Substitution" section.

Using Control Structures

The shell provides facilities similar to those found in programming languages. It
offers these control structures, which are related to programming control structures:

e The if conditional
e The while loop
e The for loop

The if Conditional

An if conditional runs a sequence of commands if a particular condition is met. It
has the form:

if (expr) command
The end of the commands is indicated by endif. For example, you could have:

if (-d §1) then
1s $1
endif

This tests to see if the string associated with the first positional parameter, $1, is
the name of a directory. If so, it runs an Is command to display the contents of the
directory.

88 05/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

Any number of commands may come between the then and the endif that ends
the control structure. For example, you might have written:

if (-d §1) then
echo "$1 is a directory"
1s $1

endif

This example also shows that the commands do not have to begin on the same
line as then, and the condition being tested does not have to begin on the same
line as if. The condition and the commands are indented to make them stand out
more clearly. This is a good way to make your shell scripts easier to read.

Another form of the if conditional is:

if (expr) then
commands

else

commands

endif

If the condition is true, the commands after the then are run; otherwise, the
commands after the else are run. For example, suppose you know that the string
associated with the variable pathname is the name of either a directory or a file.
Then you could write:

if (-d $pathname) then
echo "$pathname is a directory"
1s $pathname
else
echo "$pathname is a file"
cat $pathname
endif

If the value of pathname is the name of a file, this shell script uses echo to display
an appropriate message, and then uses cat to display the contents of the file.

The final form of the if control structure is:

if (exprl) then
commands1

else if (expr2) then
commands?2

else if (expr3) then
commands3

else

commands

endif

In this example, if expr1 is true, commands1 are run; otherwise, the shell goes on
to check expr2. If that is true, commands2 are run; otherwise, the shell goes on to
check expr3 and so on. If none of the test conditions are true, the commands after
the else are run. Here is an example of how this can be used:

Chapter 8. Writing tcsh Shell Scripts 89

if (! $?argv) then

echo "no positional parameters"
else if (-d $1) then

echo "$1 is a directory"

1s $1
else if (-f $1) then

echo "$1 is a file"

cat $1
else

echo "$1 is just a string"
endif

The test after the if determines if the value of the first positional parameter, $1, is
an empty string. If so, there are no positional parameters, so the shell script uses
echo to display an appropriate message; otherwise, the script checks to see if the
parameter is a directory name; if so, the contents of the directory are listed with Is
(after an appropriate message). If that does not work, the script checks to see if the
parameter is a filename; if so, the contents of the file are listed with cat (after an
appropriate message). Finally, if none of the previous tests work, the parameter is
assumed to be an arbitrary string, and the script displays a message to this effect.

You could put that script into a file named listit and run commands of the form:

listit name

to list the contents of name in a useful form.

The while Loop

The while loop repeats one or more commands while a particular condition is true.
The loop has the form:

while (expr)
commands
end

The shell first tests to see if condition (expr) is true. If it is, the shell runs the
commands. The shell then goes back to check the condition. If it is still true, the
shell runs the commands again, and so on, until the condition is found to be false.

As an example of how this can be used, suppose you want to run a program
named prog 100 times to get an idea of the program's average running speed. The
following shell script does the job:
@ i=100
date
while ($i > 0)
prog
@ i--
end
date

The script begins by setting a variable i to 100. It then uses the date command to
get the current date and time.

Next the script runs a while loop. The condition says that the loop should keep on
going as long as the value of iis greater than zero. The commands of the loop run
prog and then subtract 1 from the /i variable, similiar to C programming language
syntax. In this way, i goes down by 1 each time through the loop, until it is no
longer greater than 0. At this point, the loop stops and the final instruction of the

90 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

script prints out the date and time at the end of the loop. The difference between
the starting time and the ending time should give some idea of how long it took to
run the program 100 times.

(Of course, the shell itself takes some time to perform the condition and to do the
calculations with i. If prog takes a long time to run, the time spent by the shell is
relatively unimportant; if prog is a quick program, the extra time that the shell takes
may be large enough to make the timing incorrect.)

The foreach Loop
The final control structure to be examined is the foreach loop. It has the form:

foreach name (wordlist)
commands
end

The parameter name should be a variable name; if this variable doesn't exist, it is
created. The parameter listis a list of strings separated by spaces. The shell
begins by assigning the first string in list to the variable name. It then runs the
commands once. Then the shell assigns the next string in list to name, and repeats
the commands. The shell runs the commands once for each string in list.

As a simple example of a shell script that uses foreach, consider:

foreach file (*.c)
c89 §file
end

When the shell looks at the foreach line, it expands the expression *.c to produce
a list containing the names of all files (in the working directory) that have the suffix
.c. The variable file is assigned each of the names in this list, in turn. The result of
the foreach loop is to use the €89 command to compile all .c files in the working
directory. You could also write:

foreach file (*.c)
echo $file
c89 §file

end

so that the shell script displayed each filename before compiling it. This would let
you keep track of what the script was doing.

As you can see, the foreach loop is a powerful control structure. The list can also
be created with command substitution, as in:

foreach file (“find . -name "x.c" -print™)
echo $file
c89 $file

end

Here the find command finds all .c files in the working directory, and then compiles
these files. This is similar to the previous shell script, but also looks at
subdirectories of the working directory.

Chapter 8. Writing tcsh Shell Scripts 91

Combining Control Structures
You can combine control structures by nesting (that is, putting one inside another).
For example:

foreach file (“find . -name "x.c" -print™)
if (-M $file > -M $1) then
echo $file
c89 -c $file
endif
end

This shell script takes one positional parameter, giving the name of a file. The script
looks in the working directory and finds the names of all .c files. The if control
structure inside the foreach loop tests each file to see if it is older than the file
named on the command line. If the .c file is older, echo displays the name, and the
file is compiled. You can think of this as making a set of files up to date with the
filename specified on the command line.

92 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

Chapter 9. tcsh Shell Command Summary

The following list presents the built-in tcsh shell commands, grouped by the task a
user might want to perform, and their functions. Similar tasks are organized

together.
General Use
alloc Show the amount of dynamic memory acquired
builtins Print the names of all built-in commands
bye Terminate the login shell
echo Write arguments to standard output
echotc Exercise the terminal capabilities in args
exec Run a command and open, close, or copy the file descriptors
glob Write each word to standard output
hashstat Print a statistic line on hash table effectiveness
login Terminate a login shell
logout Terminate a login shell
nice Run a command at a different priority
notify Notify user of job status changes
repeat Execute command count times
source Read and execute commands from name
time Display processor and elapsed times for a command
where Report all instances of command
which Display next executed command

Controlling Your Environment

© Copyright IBM Corp. 1999

@ (at)
alias
bindkey
complete
history
hup
newgrp
onintr
printenv
rehash
sched
set
setenv
settc
setty
shift
telltc
unalias
uncomplete
unhash
unlimit
unset
unsetenv
watchlog

Print the value of tcsh shell variables, or assign a value
Display or create a command alias

List all bound keys, or change key bindings

List completions

Display a command history list

Run command so it exits on a hang-up signal
Change to a new group

Control the action of the tcsh shell on interrupts
Display the values of environment variables
Recompute internal hash table

Print scheduled event list

Set or unset command options and positional parameters
Set environment variable name to value

Tell tcsh shell the terminal capability cap value
Control tty mode changes

Shift positional parameters

List terminal capability values

Remove alias definitions

Remove completions whose names match pattern
Disable use of internal hash table

Remove resource limitations

Unset values and attributes of variables and functions
Remove environment variables that match pattern
Report on users who are logged in.

93

Managing Directories

cd
chdir
dirs
popd
pushd

Change the working directory

Change the working directory

Print the directory stack

Pop the directory stack

Make exchanges within directory stack

Computing and Managing Logic

break Exit from a loop in a shell script
breaksw Cause a break from a switch
continue Skip to the next iteration of a loop in a shell script
default Label default case in a switch statement
eval Construct a command by concatenating arguments
exec Run a command and open, close, or copy the file descriptors
exit Return to the shell's parent process or to TSO/E
filetest Apply a file inquiry operator to a file
Managing Files
Is-F List files

Controlling Processes

stop
suspend
time
wait

Move a job to the background

Bring a job into the foreground

Return the status of jobs in the current session

End a process or job, or send it a signal

Limit consumption of processes

Start a process that is immune to hangups

Suspend a process or job

Send a SIGSTOP to the current shell

Display processor and elapsed times for a command
Wait for a child process to end

94 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

Part 3. 0S/390 UNIX System Services Command Reference

© Copyright IBM Corp. 1999 95

96 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

alias

Chapter 10. tcsh Commands

alias — Display or create a command alias

Format
alias [-tx] [name[=value] ...]
alias -r
tcsh shell: alias [name [wordlist]
Description

When the first word of a shell command line is not a shell keyword, alias causes
the shell to check for the word in the list of currently defined aliases. If it finds a
match, the shell replaces the alias with its associated string value. The result is a
new command line that might begin with a shell function name, a built-in command,
an external command, or another alias.

When the shell performs alias substitution, it checks to see if value ends with a
blank. If so, the shell also checks the next word of the command line for aliases.
The shell then checks the new command line for aliases and expands them,
following these same rules. This process continues until there are no aliases left on
the command line, or recursion occurs in the expansion of aliases.

Calling alias without parameters displays all the currently defined aliases and their
associated values. Values appear with appropriate quoting so that they are suitable
for reinput to the shell.

Calling alias with parameters of the form name=value creates an alias for each
name with the given string value.

If you are defining an alias where value contains a backslash character, you must
precede it with another backslash. The shell interprets the backslash as the escape
character when it performs the expansion. If you use double quotes to enclose
value, you must precede each of the two backslashes with an additional backslash,
because the shell escapes characters—that is, the shell does not interpret the
character as it normally does—both when assigning the alias and again when
expanding it.

To avoid using four backslashes to represent a single backslash, use single quotes
rather than double quotes to enclose value, because the shell does not escape
characters enclosed in single quotes during assignment. As a result, the shell
escapes characters in single quotes only when expanding the alias.

Calling alias with name without any value assignment displays the function name
(name) and its associated string value (value) with appropriate quoting.

DBCS Recommendation: We recommend that you use singlebyte characters

when specifying an alias name, because the POSIX standard states that alias
names must contain only characters in the POSIX portable character set.

© Copyright IBM Corp. 1999 97

alias

Options

Example

alias in the tcsh shell

Without arguments, alias in the tcsh shell prints all aliases. With name, alias prints
the alias for name. With name and wordlist, alias assigns wordlist as the alias of
name. wordlist is command and filename substituted. name may not be alias or
unalias.

See also “unalias in the tcsh shell” on page 199.

—r Removes all tracked aliases.

-t Makes each name on the command line a tracked alias. Each tracked alias
resolves to its full pathname; the shell thus avoids searching the PATH
directories whenever you run the command. The shell assigns the full
pathname of a tracked alias to the alias the first time you invoke it; the shell
reassigns a pathname the first time you use the alias after changing the
PATH variable.

When you enter the command:
set —h

each subsequent command you use in the shell automatically becomes a
tracked alias. Running alias with the —t option, but without any specified
names, displays all currently defined tracked aliases with appropriate quoting.

—x Marks each alias name on the command line for export. If you specify —x
without any names on the command line, alias displays all exported aliases.
Only exported aliases are passed to a shell that runs a shell script.

Several aliases are built into the shell. Some of them are:

alias autoload="typeset —fu
alias functions="typeset —f"
alias hash="alias —-t"

alias history="fc -1"

alias integer="typeset —i"
alias nohup="nohup "

alias r="fc —s"

alias stop="kill -STOP"
alias suspend="stop \$\$"

You can change or remove any of these aliases, and the changes will remain in
effect for the current shell and any shell scripts or child shells invoked implicitly
from the command. These aliases are reset to their default built-in values each time
a new shell is invoked from the command line.

The command:
alias 1s="1s -C"

defines Is as an alias. From this point onward, when you issue an Is command, it
produces multicolumn output by default.

98 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

Localization

Usage Notes

Exit Values

Portability

alias

alias in the tcsh shell: examples
To alias the !! history command, use \I-1 instead of \I\l. For example:

alias mf 'more \!-1§'

creates an alias for looking at the file named by the final argument of the previously
entered command. Example output would be the following:

alias mf 'more \!-1%'
echo "We Tove tcsh." > filel
mf

We Tove tcsh.
"filel" (EOF)

where mf pulls the last argument of the previous command (file1), and then
displays that file using the more command.

alias uses the following localization environment variables:

* LANG

e LC_ALL

e LC_CTYPE

e LC_MESSAGES
* NLSPATH

1. alias is a built-in shell command.

2. Because exported aliases are only available in the current shell environment
and to the child processes of this environment, they are not available to any
new shell environments that are started (via the exec sh command, for
example). To make an alias available to all shell environments, define it as a
nonexported alias in the ENV file, which is executed whenever a new shell is
run.

0 Successful completion
1 Failure because an alias could not be set
2 Failure because of an incorrect command-line option

If you define alias to determine the values of a set of names, the exit value is the
number of those names that are not currently defined as aliases.

POSIX.2 User Portability Extension, OS/390 UNIX kornshell.

The -t and —x options are extensions to the POSIX standard.

Chapter 10. tcsh Commands 99

bg

Related Information
fc, hash, nohup,set, sh, typeset, unalias, tcsh

bg — Move a job to the background

Format
bg [job...]
tcsh shell: bg [%job ...]
Description
bg runs one or more jobs in the background. The job IDs given on the command
line identify these jobs, which should all be ones that are currently stopped. If you
do not specify any job IDs, bg uses the most recently stopped job.
bg works only if job control is enabled; see the —m option of set for more
information. Job control is enabled by default in the OS/390 shell.
bg in the tcsh shell
In the tcsh shell, bg puts the specified jobs (or, without arguments, the current job)
into the background, continuing each if it is stopped. job may be a number, a string,
" %, + or - .
In the tcsh shell, %job & is a synonym of the bg command.
Localization
bg uses the following localization environment variables:
 LANG
e LC_ALL
e LC_CTYPE
e LC_MESSAGES
e NLSPATH
Usage Note

bg is a built-in shell command.

Exit Values

0 Successful completion
>0
Failure because a job argument is incorrect or there is no current job

If an error occurs, bg exits and does not place the job in the background.

100 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

break

Portability
POSIX.2 User Portability Extension, UNIX systems.

Related Information
at, batch, fg, jobs, set, tcsh

break — Exit from a loop in a shell script

Format
break [number]
tcsh shell: break
Description
break exits from a for, select, while, or until loop in a shell script. If number is
given, break exits from the given number of enclosing loops. The default value of
numberis 1.
break in the tcsh shell
In the tcsh shell, break causes execution to resume after the end of the nearest
enclosing foreach or while. The remaining commands on the current line are
executed. Multi-level breaks are thus possible by writing them all on one line.
Localization
break uses the following localization environment variables:
 LANG
e LC_ALL
e LC_CTYPE
e LC_MESSAGES
* NLSPATH
Usage Note

break is a special built-in shell command.

Exit Value
break always exits with an exit status of 0.

Portability
POSIX.2, X/Open Portability Guide.

Related Information
continue, sh, tcsh

Chapter 10. tcsh Commands 101

cd

cd — Change the working directory

Format
cd [directory]
cd old new
cd -
tesh shell: ed [-p] [-1] [-nl-v] [name]
Description

The command ¢d directory changes the working directory of the current shell
execution environment (see sh) to directory. If you specify directory as an absolute
pathname, beginning with /, this is the target directory. cd assumes the target
directory to be the name just as you specified it. If you specify directory as a
relative pathname, cd assumes it to be relative to the current working directory.

If the variable CDPATH is defined in the shell, the built-in ed command searches
for a relative pathname in each of the directories defined in CDPATH. If cd finds
the directory outside the working directory, it displays the new working directory.

Use colons to separate directories in CDPATH. In CDPATH, a null string
represents the working directory. For example, if the value of CDPATH begins with
a separator character, cd searches the working directory first; if it ends with a
separator character, cd searches the working directory last.

In the shell, the command cd - is a special case that changes the current working
directory to the previous working directory by exchanging the values of the
variables PWD and OLDPWD.

Note: Repeating this command toggles the current working directory between the
current and the previous working directory.

Calling ed without arguments sets the working directory to the value of the HOME
environment variable, if the variable exists. If there is no HOME variable, cd does
not change the working directory.

The form cd old new is an extension to the POSIX standard and optionally to the
Korn shell. The shell keeps the name of the working directory in the variable PWD.
The e¢d command scans the current value of PWD and replaces the first occurrence
of the string old with the string new. The shell displays the resulting value of PWD,
and it becomes the new working directory.

If either directory is a symbolic link to another directory, the behavior depends on
the setting of the shell's —o logical option. See the set command for more
information.

cd in the tcsh shell

If a directory name is given, cd changes the tcsh shell's working directory to name.
If not, it changes the directory to home. If name is '-' it is interpreted as the
previous working directory. If name is not a subdirectory of the current directory
(and does not begin with /, ./ or ../), each component of the tcsh variable cdpath is
checked to see if it has a subdirectory name. Finally, if all else fails but name is a

102 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

cd

tcsh shell variable whose value begins with /, then this is tried to see if it is a
directory (see also the implicited tcsh shell variable).
Options for the ed tcsh built-in command are:

-1 Output is expanded explicitly to home or the pathname of the home directory
for the user.

-n Entries are wrapped before they reach the edge of the screen.
-p Prints the final directory stack.
-v Entries are printed one per line, preceded by their stack positions.

If more than one of -n or -v is given, -v takes precedence. -p is accepted but
does nothing.

Environment Variables

Localization

Usage Note

Exit Values

cd uses the following environment variables:

CDPATH
Contains a list of directories for ed to search in when directory is a
relative pathname.

HOME Contains the name of your home directory. This is used when you do not
specify directory on the command line.

OLDPWD
Contains the pathname of the previous working directory. This is used by
cd -

PWD Contains the pathname of the current working directory. This is set by cd
after changing to that directory.

cd uses the following localization environment variables:

* LANG

e LC_ALL

e LC_CTYPE

e LC_MESSAGES
* NLSPATH

cd is a built-in shell command.

0 Successful completion
1 Failure due to any of the following:

¢ No HOME directory

¢ No previous directory

¢ A search for directory failed

¢ An old-to-new substitution failed

2 An incorrect command-line option

Chapter 10. tcsh Commands 103

continue

Messages

Portability

Possible error messages include:

dir bad directory
cd could not locate the target directory. This does not change the working
directory.

Restricted
You are using the restricted version of the shell (for example, by specifying the
—r option for sh). The restricted shell does not allow the e¢d command.

No HOME directory
You have not assigned a value to the HOME environment variable. Thus,
when you run cd in order to return to your home directory, e¢d cannot
determine what your home directory is.

No previous directory
You tried the command cd - to return to your previous directory; but there is
no record of your previous directory.

Pattern o/d not found in dir
You tried a command of the form ed old new. However, the name of the
working directory dir does not contain any string matching the regular
expression old.

POSIX.2, X/Open Portability Guide.
All OS/390 UNIX systems feature the first form of the command.

The cd old new form of the command is an extension of the POSIX standard.

Related Information

dirs, popd, pushd, set, sh, tcsh

continue — Skip to the next iteration of a loop in a shell script

Format

Description

Usage Note

continue [n]

continue skips to the next iteration of an enclosing for, select, until, or while loop
in a shell script. If a number n is given, execution continues at the loop control of
the nth enclosing loop. The default value of nis 1.

continue is a special built-in shell command.

104 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

Localization

echo

continue uses the following localization environment variables:

Exit Values

LANG

LC_ALL
LC_MESSAGES
NLSPATH

0 Successful completion
1 The value of n given was not an unsigned decimal greater than 0.

Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

Related Information

break, sh, tcsh

echo — Write arguments to standard output

Format

echo argument ...

tcsh shell: echo [-n] word...

Description

echo writes its arguments, specified with the argument argument, to standard
output. echo accepts these C-style escape sequences:

\a

\b

\c

\f

\n

\r

\t

\v
\Onum

\-

Bell

Backspace

Removes any following characters, including \n and \r.
Form feed

Newline

Carriage return

Horizontal tab

Vertical tab

The byte with the numeric value specified by the zero to three-digit octal
num.

Backslash

echo follows the final argument with a newline unless it finds \c in the arguments.
Arguments are subject to standard argument manipulation.

echo in the tcsh shell
In the tcsh shell, echo writes each word to the shell's standard output, separated
by spaces and terminated with a newline.

tcsh echo accepts these C-style escape sequences:

\a

Bell

Chapter 10. tcsh Commands 105

echo

Examples

Usage Note

Localization

Exit Value

Portability

\b Backspace

\e Escape

\f Form feed

\n Newline

\r Carriage return

\t Horizontal tab

\v Vertical tab

\nnn The EBCDIC character corresponding to the octal number nnn

See “tcsh — Invoke a C shell” on page 129.

1. One important use of echo is to expand filenames on the command line, as in:

echo *.[ch]

This displays the names of all files with names ending in .c or .h—typically C
source and include (header) files. echo displays the names on a single line. If
there are no filenames in the working directory that end in .c or .h, echo simply
displays the string *.[ch].

. echo is also convenient for passing small amounts of input to a filter or a file:

echo 'this is\nreal handy' > testfile

echo is a built-in shell command.

echo uses the following localization environment variables:

LANG

LC_ALL
LC_MESSAGES
LC_SYNTAX
NLSPATH

echo always returns the following exit status value:

0 Successful completion

POSIX.2, X/Open Portability Guide, UNIX System V.

The POSIX.2 standard does not include escape sequences, so a strictly conforming
application cannot use them. printf is suggested as a replacement.

Related Information
sh, tcsh

106 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

eval

eval — Construct a command by concatenating arguments

Format

Description

Examples

Usage Note

Localization

Exit Value

eval [argument ...]

tcsh shell: eval argument ...

The shell evaluates each argument as it would for any command. eval then
concatenates the resulting strings, separated by spaces, and evaluates and
executes this string in the current shell environment.

eval in the tcsh shell

In the tcsh shell, eval treats the arguments as input to the shell and executes the
resulting command(s) in the context of the current shell. This is usually used to
execute commands generated as the result of command or variable substitution,
since parsing occurs before these substitutions. See “tcsh — Invoke a C shell” on
page 129.

The command:

forainl 23
do

eval x$a=fred
done

sets variables x71, x2, and x3to fred. Then:
echo $x1 $x2 $x3

produces: fred fred fred

eval is a special built-in shell command.

eval uses the following localization environment variables:

LANG

LC_ALL
LC_MESSAGES
NLSPATH

The only possible exit status value is:

0 You specified no arguments or the specified arguments were empty strings

Otherwise, the exit status of eval is the exit status of the command that eval runs.

Chapter 10. tcsh Commands 107

exec

Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

Related Information

exec, sh, tcsh

exec — Run a command and open, close, or copy the file descriptors

Format

Description

Usage Note

Localization

exec [command_line]

tcsh shell: exeec command

The command._line argument for exec specifies a command line for another
command. exec runs this command without creating a new process. Some people
picture this action as overlaying the command on top of the currently running shell.
Thus, when the command exits, control returns to the parent of the shell.

Input and output redirections are valid in command_line. You can change the input
and output descriptors of the shell by giving only input and output redirections in
the command. For example:

exec 2>errors

redirects the standard error stream to errors in all subsequent commands ran by
the shell.

If you do not specify command_line, exec returns a successful exit status.

exec in the tcsh shell
In the tcsh shell, exec executes the specified command in place of the currrent
shell. See “tcsh — Invoke a C shell” on page 129.

exec is a special built-in shell command.

exec uses the following localization environment variables:

* LANG

e LC_ALL

e LC_MESSAGES
* NLSPATH

108 05/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

exit

Exit Values

If you specify command_line, exec does not return to the shell. Instead, the shell
exits with the exit status of command_line or one of the following exit status values:

1-125 A redirection error occurred.

126 The command in command_line was found, but it was not an executable
utility.

127 The given command_line could not be run because the command could not
be found in the current PATH environment.

If you did not specify command_line, exec returns with an exit value of zero.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

Related Information
sh, tcsh

exit — Return to the shell's parent process or to TSO/E

Format
exit [expression)

tcsh shell: exit [expr]

Description

exit ends the shell. If there is an expression, the value of the expression is the exit
status of the shell.

The value of expression should be between 0 and 255. The EXIT trap is raised by
the exit command, unless exit is being called from inside an EXIT trap.

If you have a shell background job running, you cannot exit from the shell until it
completes. However, you can switch to subcommand mode and exit.

exit in the tcsh shell

The shell exits either with the value of the specified expression or, without
expression, with the value of the status variable. The value of expression should
be between 0 and 255. See “tcsh — Invoke a C shell” on page 129.

Usage Note

exit is a special built-in shell command.

Chapter 10. tcsh Commands 109

fg

Localization
exit uses the following localization environment variables:

LANG

LC_ALL
LC_MESSAGES
NLSPATH

Exit Values

exit returns the value of the arithmetic expression specified by the expression
argument to the parent process as the exit status of the shell. If you omit
expression, exit returns the exit status of the last command run.

Related Information
return, sh, tcsh

The exit() ANSI C function, the _exit callable service, and the _exit() POSIX C
function are unrelated to the exit shell command.

fg — Bring a job into the foreground

Format
fg [%job-identifier]
tcsh shell: fg [%job ...]
Description
fg restarts a suspended job or moves a job from the background to the foreground.
To identify the job, you give a job-identifier (preceded by %) as given by the jobs
command.
If you do not specify job-identifier, g uses the most recent job to be suspended
(with the kill command) or placed in the background (with the bg command). fg is
available only if you have enabled job control. See the —m option of set for more
information.
fg in the tcsh shell
In the tcsh shell, fg brings the specified jobs (or, without arguments, the current
job) into the foreground, continuing each if it is stopped. job may be ", %, +, —, a
number, or a string. See also the run-fg-editor editor command described in “tcsh
— Invoke a C shell” on page 129.
Localization
fg uses the following localization environment variables:
* LANG
e LC_ALL
e LC_CTYPE
e LC_MESSAGES
* NLSPATH

110 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

Exit Values

Messages

Portability

history

0 Successful completion
>0
No current job

Possible error messages include:

Not a stopped job Job was not stopped.

POSIX.2 User Portability Extension.

Related Information

bg, jobs, kill, ps, tcsh

history — Display a command history list

Format

Description

history [first[last]]

tcsh shell:

history [-hTr] [n]

history -SI-LI-M [filename]

history -c

history is an alias for fc —I. Like fc —I, history displays the list of commands that
have been input to an interactive shell. This command does not edit or reenter the
commands. If you omit /ast, history displays all commands from the one indicated
by first through to the previous command entered. If you omit both first and last
with this command, the default command range is the 16 most recently entered
commands.

history in the tcsh shell
In the tcsh shell, history, used alone, prints the history event list. If n is given only
the n most recent events are printed or saved.

Note: See “tcsh — Invoke a C shell” on page 129 for descriptions of the tcsh
shell variables and commands indicated below.

The tcsh shell history built-in command uses the following options:
» With -h, the history list is printed without leading numbers.

e With -T, timestamps are printed also in comment form. (This can be used to
produce files suitable for loading with history -L or source -h.)

e With -r, the order of printing is most recent first rather than oldest first.

Chapter 10. tcsh Commands 111

jobs

e With -8, history saves the history list to filename. If the first word of the
savehist shell variable is set to a number, at most that many lines are saved. If
the second word of savehist is set to merge, the history list is merged with the
existing history file instead of replacing it (if there is one) and sorted by time
stamp. Merging is intended for an environment like the X Window System with
several shells in simultaneous use. Currently it only succeeds when the shells
quit one after another.

* With -L, the shell appends filename, which is presumably a history list saved by
the -S option or the savehist mechanism, to the history list. -M is like -L, but
the contents of filename are merged into the history list and sorted by
timestamp. In either case, histfile is used if filename is not given and "/.history
is used if histfile is unset. history -L is exactly like source -h except that it
does not require a filename.

* With -¢, clears the history list.

tesh login shells do the equivalent of history -L on startup and, if savehist is set,
history -S before exiting. Because only “/.teshrc is normally sourced before
“I.history, histfile should be set in “/.tcshrc rather than ".login. If histlit is set, the
first form (history [-hTr] [n]) and second form (history -SI-LI-M [filename]) print
and save the literal (unexpanded) form of the history list.

Related Information

fc, sh, tcsh

jobs — Return the status of jobs in the current session

Format

Description

jobs [-lI-p] [job-identifier...]

tcsh shell: jobs [-1]

jobs produces a list of the processes in the current session. Each such process is
numbered for easy identification by fg or kill, and is described by a line of
information:

[job-identifier] default state shell command

job-identifier
Is a decimal number that identifies the process for such commands as fg
and kill (preface job-identifier with % when used with these commands).

default
Identifies the process that would be the default for the fg and bg
commands (that is, the most recently suspended process). If defaultis a +,
this process is the default job. If default is a —, this job becomes the default
when the current default job exits. There is at most one + job and one —
job.

state Shows a job as:

Running If it is not suspended and has not exited

112 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

Options

Localization

Usage Note

Exit Values

Portability

kill

Done If it exited successfully
Done(exit status) If it exited with a nonzero exit status

Stopped (signal) If it is suspended; signal is the signal that suspended
the job

shell_command
Is the associated shell command that created the process.

jobs in the tcsh shell
In the tcsh shell, jobs lists the active jobs. With I, lists process IDs in addition to
the normal information. See “tcsh — Invoke a C shell” on page 129.

-l Displays the process group ID of a job (before state).
—p Displays the process IDs of all processes.

The -l and —p options are mutually exclusive.

jobs uses the following localization environment variables:

* LANG

e LC_ALL

e LC_CTYPE

« LC_MESSAGES
* NLSPATH

jobs is a built-in shell command.

0 Successful completion
2 Failure due to an incorrect command-line argument

POSIX.2 User Portability Extension.

Related Information

bg, fg, kill, ps, wait, tcsh

kill — End a process or job, or send it a signal

Format

kill -l [exit_status]

kill [-s signal_name] [pid ...] [job-identifier ...]
kill [-signal_name] [pid ...] [job-identifier ...]
kill [-signal_numben [pid ...] [job-identifier ...]

tcsh shell:

Chapter 10. tcsh Commands 113

kill

Description

Options

kill [-signal] %joblpid ...

kill -1

kill ends a process by sending it a signal. The default signal is SIGTERM.

kill in the tcsh shell

In the tcsh shell, kill [-signall %joblpid ... sends the specified signal (or if none is
given, the TERM (terminate) signal) to the specified jobs or processes. job may be
a number, a string, ", %, + or - . Signals are either given by number or by name.
When using the tcsh kill command, do not use the first three characters (SIG) of
the signal_name. Enter the signal_name with uppercase characters. For example, if
you want to send the SIGTERM signal, you would enter kill -TERM pid not kill
-SIGTERM pid.

There is no default job. Specifying kill alone does not send a signal to the current
job. If the signal being sent is TERM or HUP (hangup), then the job or process is
sent a CONT (continue) signal as well.

kill -1 lists the signal names. See “tcsh — Invoke a C shell” on page 129.

The signal_numbers and signal_names described in “Options” are also used with
the tcsh kill command.

-l Displays the names of all supported signals. If you specify exit_status, and it
is the exit code of a ended process, kill displays the ending signal of that
process.

—s signal_name
Sends the signal signal_name to the process instead of the SIGTERM signal.
When using the kill command, do not use the first three characters (SIG) of
the signal_name. Enter the signal_name with uppercase characters. For
example, if you want to send the SIGABRT signal, enter:

kill —s ABRT pid

—signal_name
(Obsolete.) Same as —s signal_name.

—signal_number
(Obsolete.) A non-negative integer representing the signal to be sent to the
process, instead of SIGTERM.

The signal_number represents the signal_name shown below:

signal_number signal_name
SIGNULL
SIGHUP
SIGINT
SIGQUIT
SIGILL
SIGPOLL
SIGABRT
SIGSTOP

NO OB N RO

114 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

Options

kill

8 SIGFPE

9 SIGKILL
10 SIGBUS
11 SIGSEGV
12 SIGSYS
13 SIGPIPE
14 SIGALRM
15 SIGTERM
16 SIGUSR1
17 SIGUSR2
18 SIGABND
19 SIGCONT
20 SIGCHLD
21 SIGTTIN
22 SIGTTOU
23 SIGIO

24 SIGQUIT
25 SIGTSTP
26 SIGTRAP
27 SIGIOERR
28 SIGWINCH
29 SIGXCPU
30 SIGXFSZ
31 SIGVTALRM
32 SIGPROF
38 SIGDCE
39 SIGDUMP

Note: The signal_numbers (3 and 6) associated with SIGQUIT and SIGABRT,

respectively, differ from the values of SIGQUIT and SIGABRT used by the
0S/390 kernel, but they are supported for compatibility with other UNIX
platforms. (The kill command will send the OS/390 SIGQUIT or SIGABRT
to the process.) (This note is also true for kill in the tcsh shell) .

job-identifier

pid

Is the job identifier reported by the shell when a process is started with &. It is
one way to identify a process. It is also reported by the jobs command. When
using the job identifier with the kill command, the job identifier must be
prefaced with a percent (%) sign. For example, if the job identifier is 2, the Kill
command would be entered as follows:

ki1l —s KILL %2
Is the process ID that the shell reports when a process is started with &. You
can also find it using the ps command. The pid argument is a number that

may be specified as octal, decimal, or hex. Process IDs are reported in
decimal. kill supports negative values for pid.

If pid is negative but not -1, the signal is sent to all processes whose process
group ID is equal to the absolute value of pid. The negative pid is specified in
this way:

kill =KILL — —-nn

where nn is the process group ID and may have a range of 2 to 7 digits (nn
to nnnnnnn).

Chapter 10. tcsh Commands 115

kill

kill —s KILL — -9812753

The format must include the — before the —nn in order to specify the process
group ID.

If pid is 0, the signal is sent to all processes in the process group of the
invoker.

The process to be killed must belong to the current user, unless he or she is the
superuser.

Localization
kill uses the following localization environment variables:

* LANG

e LC_ALL

e LC_CTYPE

« LC_MESSAGES
* NLSPATH

Usage Notes
kill is a built-in shell command.

Exit Values
0 Successful completion

1 Failure due to one of the following:

e The job or process did not exist
e There was an error in command-line syntax

2 Failure due to one of the following:

¢ Two jobs or processes did not exist
¢ Incorrect command-line argument
¢ Incorrect signal

>2
Tells the number of processes that could not be killed

Messages
Possible error messages include:

job-identifier is not a job
You specified an incorrect ID.

signal_name is not a valid signal
You specified a noninteger signal for kill, or you specified a signal that is
outside the range of valid signal numbers.

Portability
POSIX.2, X/Open Portability Guide.

116 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

newgrp

Related Information

jobs, ps, sh, tcsh

newgrp — Change to a new group

Format

Description

newgrp [-] [group]
newgrp [-] [group]

tcsh shell: newgrp [-] group

newgrp lets you change to a new group. You stay logged in and your working
directory does not change, but access permissions are calculated according to your
new real and effective group IDs. If an error occurs, your session may be ended,
and you must log in again.

After the group IDs are changed, a new shell is initialized within the existing
process, effectively overlaying the current shell from which newgrp was invoked.
The new shell is determined from the initial program value of the OMVS segment of
your user profile.

newgrp does not change the value of exported shell variables, and all others are
either set to their default or are unset.

If you did not specify any arguments on the command line, newgrp changes to the
default group specified for your user ID in the system user database. It also sets
the list of supplementary groups to that set in the systems group database.

If you specify a group, newgrp changes your real and effective group ID to that
group. You are permitted to change to that group only if you are a member of that
group, as specified in the system group database.

group can be a group name from the security facility group database, or it can be a
numeric group ID. If a numeric group exists as a group name in the group data
base, the group ID number associated with that group is used.

On systems where the supplementary group list also contains the new effective
group ID or where the previous effective group ID was actually in the
supplementary group list:

» |f the supplementary group list also contains the new effective group ID,
newgrp changes the effective group ID.

» |f the supplementary group list does not contain the new effective group ID,
newgrp adds it to the list (if there is room).

On systems where the supplementary group list does not normally contain the
effective group ID or where the old effective group ID was not in the supplementary
group list:

 If the supplementary group list contains the new effective group ID, newgrp
removes it from the list.

Chapter 10. tcsh Commands 117

newgrp

Options

Localization

Usage Notes

Exit Values

Portability

* If the supplementary group list does not contain the old effective group ID,
newgrp adds it to the list (if there is room).

newgrp in the tcsh shell
newgrp in the tcsh shell, as in the OS/390 shell, allows you to change to a new

group.

=l Starts the new shell session as a login session. This implies that it can run
any shell profile code.

- Is the obsolescent version of —I.

newgrp uses the following localization environment variables:

* LANG

e LC_ALL
LC_CTYPE
LC_MESSAGES
NLSPATH

newgrp is not supported from an address space running multiple processes
because it would cause all processes in the address space to have their security
environment changed unexpectedly. If you are using the OMVS interface, you must
be using the NOSHAREAS parameter before you issue the newgrp command.
Also, if you are running in an environment with the _BPX_SHAREAS environment
variable set to YES, you must unset it and start a new shell before issuing newgrp.
For example:

unset _BPX_SHAREAS; sh

If newgrp succeeds, its exit status is that of the shell. Otherwise, the exit status is:

>0
Failure because newgrp could not obtain the proper user or group information
or because it could not run the shell, and it ends the current shell.

POSIX.2 User Portability Extension, UNIX systems.

Related Information

export, fc, sh, tcsh

118 05/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

nice

nice — Run a command at a different priority

Format

Description

Options

Localization

nice [-n number] command-line nice [-number] command-line

tcsh shell: nice [+number] [command]

nice runs a command at a different priority than usual. Normally, nice lowers the
current priority by 10.

The command-line must invoke a single utility command, without using compound
commands, pipelines, command substitution, and other special structures.

nice in the tcsh shell

In the tcsh shell, nice sets the scheduling priority for the tcsh shell to number, or,
without number, to 4. With command, nice runs command at the appropriate
priority. The greater the number, the less cpu the process gets. The super-user
may specify negative priority by using:

nice -number ...

command is always executed in a sub-shell, and the restrictions placed on

commands in simple if statements apply. See “tcsh — Invoke a C shell” on
page 129.

—n number
Lowers the current priority by number. On systems supporting higher
priorities, a user with appropriate privileges can use nice to increase priority
by specifying a negative value for number. For example,

nice —n -3 command
runs the command with an increased priority of 3.

—number
Is an obsolescent version of —n number.

nice uses the following localization environment variables:

* LANG

e LC_ALL

e LC_CTYPE

e LC_MESSAGES
* NLSPATH

Chapter 10. tcsh Commands 119

nohup

Exit Values

Portability

If nice invokes the command-line, it exits with the exit status returned by
command-line; otherwise its exit status is one of the following:

1-125 An error occurred in the nice utility.
126 nice could not invoke command-line.
127 nice could not find the utility specified in command-line.

POSIX.2 User Portability Extension, X/Open Portability Guide, UNIX systems.

Related Information

nohup, renice, tcsh

nohup — Start a process that is immune to hangups

Format

Description

nohup command-line

tcsh shell: nohup command

nohup invokes a utility program using the given command-line. The utility runs
normally; however, it ignores the SIGHUP signal.

If the standard output is a terminal, nohup appends the utility's output to a file
named nohup.out in the working directory. This file is created if it doesn't already
exist; if it can't be created in the working directory, it is created in your home
directory.

If the standard error stream is a terminal, nohup redirects the utility's error output
to the same file as the standard output.

nohup simply runs a program from an executable file. command-line cannot
contain such special shell constructs as compound commands or pipelines;
however, you can use nohup to invoke a version of the shell to run such a
command line, as in:

nohup sh —c 'command*ssq.

where command can contain such constructs.

nohup in the tcsh shell

With command, nohup runs command such that it will ignore hangup signals.
Commands may set their own response to hangups, overriding nohup. Without an
argument (allowed only in a shell script), nohup causes the tcsh shell to ignore
hangups for the remainder of the script. See “tcsh — Invoke a C shell” on

page 129.

120 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

printenv

Localization
nohup uses the following localization environment variables:
 LANG
e LC_ALL
e LC_CTYPE

e LC_MESSAGES
* NLSPATH

Exit Values

126 nohup found the utility program but could not invoke it.
127 An error occurred before nohup invoked the utility, or nohup could not find
the utility program.

Otherwise, the exit status is the exit status of the utility program that is invoked.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

Related Information
exec, hup, nice, sh, tcsh

printenv — Display the values of environment variables

Format
printenv [name]
tcsh shell: printenv [name]

Description
The printenv command displays the values of environment variables. If the name
argument is specified, only the value associated with name is printed. If it is not
specified, printenv displays the current environment variables, one name=value pair
per line.
If a name argument is specified but is not defined in the environment variable,
printenv returns exit status 1; otherwise it returns status 0.
printenv in the tcsh shell
In the tcsh shell, printenv prints the names and values of all environment variables
or, with name, the value of the environment variable named. See “tcsh — Invoke a
C shell” on page 129.

Options

There are no options.

Chapter 10. tcsh Commands 121

set

Example
To find the current setting of the HOME environment variable, enter:
printenv HOME

Usage Notes
1. Only one name argument can be specified.

2. printenv SOMENAME is equivalent to echo $SOMENAME for exported
variables.

3. printenv without any arguments is functionally equivalent to env without any
arguments.

Exit Values

0 Successful completion

1 Failure due to one of the following:
¢ More than one environment variable was specified
¢ An option was specified (printenv has no options)

Portability

printenv is compatible with the AIX printenv utility.

Related Information
env, tcsh

set — Set or unset command options and positional parameters

Format
set [tabCefhiKkLmnpstuvx-] [+0[flag]] [tAname][parameter ...]

tcsh shell:

. set [-r]

. set [-r] name ...

. set [-r] name=word ...

. set [-r] [-fl-I] name=(wordlist) ...
. set namelindex]=word ...

Ok~ -=

Description

Calling set without arguments displays the names and values of all shell variables,
sorted by name, in the following format:

Variable="value"

The quoting allows the output to be reinput to the shell using the built-in command
eval. Arguments of the form —option set each shell flag specified as an option.
Similarly, arguments of the form +option turn off each of the shell flags specified as
an option. (Contrary to what you might expect, — means on, and + means off.)

Note: All of the set options except A, —s, —, and — are shell flags. Shell flags
can also be set on the sh command line at invocation.

122 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

Options

set

set in the tcsh shell
tesh shell: See format section above to view the forms described below.

1. The first form of the command prints the value of all shell variables. Variables
which contain more than a single word print as a parenthesized word list.

Variables which are read-only will only be displayed by using the -r option. For
forms 2, 3 and 4, if -r is specified, the value is set to read-only.

2. The second form sets name to the null string.
3. The third form sets name to the single word.

4. The fourth form sets name to the list of words in wordlist. In all cases the value
is command and filename expanded. If -f or -l is specified, set only unique
words keeping their order. -f prefers the first occurrence of a word, and -l the
last.

5. The fifth form sets the index'th component of name to word, this component
must already exist.

These arguments can be repeated to set and/or make read-only multiple variables
in a single set command. However, variable expansion happens for all arguments
before any setting occurs. Also, '=' can be adjacent to both name and word or
separated from both by whitespace, but cannot be adjacent to only one or the
other. For example:

set -r name=word and set -r name = word

are allowed, but

set -r name= word and set -r name =word

are not allowed.

See “tcsh — Invoke a C shell” on page 129.

—a Sets all subsequently defined variables for export.
—b Notifies you when background jobs finish running.

—C Prevents the output redirection operator > from overwriting an existing file.
Use the alternate operator >| to force an overwrite.

—e Tells a noninteractive shell to execute the ERR trap and then exit. This flag is
disabled when reading profiles.

—f Disables pathname generation.
—h Makes all commands use tracked aliases.
—i Makes the shell interactive.

—K Tells the shell to use KornShell-compatible behavior in any case where the
POSIX.2 behavior is different from the behavior specified by the KornShell.
For more details, see the let and trap command descriptions.

-k Allows assignment parameters anywhere on the command line and still
includes them in the environment of the command.

-L Makes the shell a login shell. Setting this flag is effective only at shell
invocation.

Chapter 10. tcsh Commands 123

set

-m Runs each background job in a separate process group and reports on each

as they complete.
—-n Tells a noninteractive shell to read commands but not run them.

-o flag

Sets a shell flag. If you do not specify flag, this option lists all shell flags that
are currently set. flag can be one of the following:

allexport Is the same as the —a option.

errexit Is the same as the —e option.

bgnice Runs background jobs at a lower priority.

emacs Specifies emacs- style inline editor for command entry. See
shedit for information about the emacsediting mode.

gmacs Specifies gmacs- style inline editor for command entry. See
shedit for information about the gmacs editing mode.

ignoreeof Tells the shell not to exit when an end-of-file character is
entered.

interactive Is the same as the —i option.

keyword Is the same as the —k option.

korn Is the same as the —K option.

logical Specifies that ed, pwd and the PWD variable use logical
pathnames in directories with symbolic links. If this flag is not
set, these built-ins and PWD use physical directory pathnames.
For example, assume /usr/spool is a symbolic link to
Ivar/spool, and that it is your current directory. If logical is not
set, PWD has the value /var/spool, and c¢d changes the current
directory to /var. If logical is set, PWD has the value /usr/spool
and cd changes the current directory to /usr.

login Is the same as the —L option of sh.

markdirs Adds a trailing slash (/) to filename-generated directories.

monitor Is the same as the —m option.

noclobber |s the same as the —C option.

noexec Is the same as the —n option.

noglob Is the same as the —f option.

nolog Does not record function definitions in the history file.

notify Is the same as the —b option.

nounset Is the same as the —u option.

privileged |s the same as the —p option.

trackall Is the same as the —h option.

verbose Is the same as the —v option.

xtrace Is the same as the —x option.

Vi Specifies vi- style inline editor. See shedit for information about

the viediting mode.

124 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

Usage Notes

Localization

Exit Values

Portability

set

warnstopped
Tells the shell to issue a warning, but not to exit, when there are
stopped jobs.

—p Resets the PATH variable to the default value, disables processing of
$HOME/.profile, and ignores the value of the ENV variable.

—s Sorts the positional parameters.
-t Exits after reading and running one command.

—u Tells the shell to issue an error message if an unset parameter is used in a
substitution.

—v Prints shell input lines as they are read.

—X Prints commands and their arguments as they run.

Other options:

- Turns off the —v and —x options. Also, parameters that follow this option do
not set shell flags, but are assigned to positional parameters (see sh).

— Specifies that parameters following this option do not set shell flags, but are
assigned to positional parameters.

+A name
Assigns the parameter list to the elements of name, starting at namel0].

—A name
Unsets name and then assigns the parameter list to the elements of name
starting at name[0].

set is a special built-in shell command.

set uses the following localization environment variables:

* LANG

e LC_ALL

e LC_MESSAGES
* NLSPATH

0 Successful completion
Failure due to an incorrect command-line argument
2 Failure resulting in a usage message, usually due to a missing argument

—_

POSIX.2, X/Open Portability Guide.

Several shell flags are extensions of the POSIX standard: bgnice, ignoreeof,
keyword, markdirs, monitor, noglob, nolog, privileged, and trackall are
extensions of the POSIX standard, along with the shell flags A, =h, =k, =p, =s,
and =t.

Chapter 10. tcsh Commands 125

shift

Related Information

alias, eval, export, sh, trap, typeset, shedit, tcsh

shift — Shift positional parameters

Format

Description

Examples

Usage Note

Localization

shift [expression]

tesh shell: shift [variable]

Note: shift can be used in all OS/390 shells (/bin/sh and tcsh).

shift renames the positional parameters so that i+nth positional parameter
becomes the ith positional parameter, where n is the value of the given arithmetic
expression. If you omit expression, the default value is 1. The value of expression
must be between zero and the number of positional parameters ($#), inclusive. The
value of $# is updated.

shift in the tcsh shell

Without arguments, shift discards argv[1] and shifts the members of argv to the
left. It is an error for argv not to be set or to have less than one word as value.
With variable, shift performs the same function on variable. See “tcsh — Invoke a
C shell” on page 129.

The commands:

set abcd
shift 2
echo $*
produce:

cd

shift is a special built-in shell command.

shift uses the following localization environment variables:

* LANG

LC_ALL
LC_MESSAGES
NLSPATH

126 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

Exit Values

Messages

Portability

stop

0 Successful completion

1 Failure because the expression had a negative value or was greater than the
number of positional parameters.

Possible error messages include:

bad shift count expr
You specified an expression that did not evaluate to a humber in the range
from 0 to the number of remaining positional parameters.

POSIX.2, X/Open Portability Guide, UNIX systems.

Allowing an expression, rather than just a number, is an extension found in the
0S/390 UNIX System Services shell (a KornShell).

Related Information

set, sh, tcsh

stop — Suspend a process or job

Format

Description

Options

stop [pid ...] [job—identifier ...]

tcsh shell: stop %jobipid ...

Note: stop can be used in all 0S/390 shells (/bin/sh and tcsh).

stop is an alias for kill -STOP. Like kill -STOP, stop sends a SIGSTOP to the
process you specify.

See “kill — End a process or job, or send it a signal” on page 113 for more
information.

stop in the tcsh shell

In the tcsh shell, stop stops the specified jobs or processes which are executing in
the background. job may be a number, a string, ", %, + or - . There is no default
job. Specifying stop alone does not stop the current job. See “tcsh — Invoke a C
shell” on page 129.

job-identifier
Is the job identifier reported by the shell when a process is started with &. It is
one way to identify a process. It is also reported by the jobs command. When
using the job identifier with the stop command, the job identifier must be

Chapter 10. tcsh Commands 127

suspend

pid

prefaced with a percent (%) sign. For example, if the job identifier is 2, the
stop command would be entered as follows:

stop %2
Is the process ID that the shell reports when a process is started with &. You
can also find it using the ps command. The pid argument is a number that

may be specified as octal, decimal, or hex. Process IDs are reported in
decimal. stop supports negative values for pid.

If pid is negative but not -1, the signal is sent to all processes whose process
group ID is equal to the absolute value of pid. The negative pid is specified in
this way:

stop — —nn

where nn is the process group ID and may have a range of 2 to 7 digits (nn
to nnnnnnn).

stop — -9812753

The format must include the — before the —nn in order to specify the process
group ID.

If pid is 0, the signal is sent to all processes in the process group of the
invoker.

The process to be killed must belong to the current user, unless he or she is the
superuser.

Related Information
kill, jobs, sh, suspend, tcsh

suspend — Send a SIGSTOP to the current shell

Format

Description

suspend

tcsh shell: same as above

suspend is an alias for stop $$, where stop is an alias of kill -STOP and $$
expands to the current process of the shell. suspend sends a SIGSTOP to the
current shell.

See “kill — End a process or job, or send it a signal” on page 113 for more
information.

suspend in the tcsh shell
suspend causes the tcsh shell to stop in its tracks, much as if it had been sent a
stop signal with ~Z. See “tcsh — Invoke a C shell” on page 129.

128 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

tcsh

Related Information

kill, sh, tcsh

tcsh — Invoke a C shell

Format

Description

tcsh [-becdeFfimngstvVxX]
tcsh -l

Note: -lis a lowercase L, not an uppercase i.

tesh contains the following sections and subsections:

e Options and invocation

e QOptions

e Editing

e Command syntax

e Substitutions

e Command Execution

e Features

e Jobs

e Status Reporting

¢ Automatic, Periodic, and Time Events
e Native Language System Report
 Signal Handling

¢ Built-in Commands

¢ Shell and Environment Variables
e Files

¢ Problems and Limitations

Options and Invocation

The tcsh shell is an enhanced but completely compatible version of the Berkeley
UNIX C shell, csh. It is a command language interpreter usable both as an
interactive login shell and a shell script command processor. It includes a
command-line editor, programmable word completion, spelling correction, a history
mechanism, job control, and a C-like syntax.

You can invoke the shell by typing an explicit tesh command. A login shell can also
be specified by invoking the shell with the —I option as the only argument.

A login shell begins by executing commands from the system files /etc/csh.cshrc
and /etc/csh.login. It then executes commands from files in the user's home
directory: first “/.teshre, then “/.history (or the value of the histfile shell variable),
then "/.login, and finally “/.cshdirs (or the value of the dirsfile shell variable). The
shell reads /etc/csh.login after /etc/csh.cshrc.

Non-login shells read only /etc/csh.cshrc and “/.teshre or “/.cshrc on invocation.

Commands like stty, which need be run only once per login, usually go in the
user's “/.login file.

Chapter 10. tcsh Commands 129

tcsh

Options

In the normal case, the shell begins reading commands from the terminal,
prompting with >. The shell repeatedly reads a line of command input, breaks it into
words, places it on the command history list, and then parses and executes each
command in the line. See “Command Execution” on page 148.

A user can log out of a tcsh shell session by typing “D, logout, or login on an
empty line (see ignoreeof shell variable), or via the shell's autologout mechanism.
When a login shell terminates, it sets the logout shell variable to normal or
automatic as appropriate, then executes commands from the files /etc/csh.logout
and “/.logout.

Note: The names of the system login and logout files vary from system to system
for compatibility with different csh variants; see “tcsh Files” on page 172.

If the first argument (argument 0) to the tcsh shell is - (hyphen), then it is a login
shell. You can also specify the login shell by invoking the tcsh shell with the -l as
the only argument.

The OS/390 UNIX System Services tcsh shell accepts the following options on the
command line:

-b Forces a break from option processing, causing any further shell arguments to
be treated as non-option arguments. The remaining arguments will not be
interpreted as shell options. This may be used to pass options to a shell script
without confusion or possible subterfuge.

—c Reads and executes commands stored in the command shell (this option
must be present and must be a single arugment). Any remaining arguments
are placed in the argv shell variable.

—d Loads the directory stack from "/.cshdirs as described under “Options and
Invocation” on page 129, whether or not it is a login shell.

—e Terminates shell if any invoked command terminates abnormally or yields a
non-zero exit status.

—i Invokes an interactive shell and prompts for its top-level input, even if it
appears to not be a terminal. Shells are interactive without this option if their
inputs and outputs are terminals.

-l Invokes a login shell. Only applicable if —I is the only option specified.
Note: -l is a lower-case L not an upper-case i.
—-m Loads “/.teshrec even if it does not belong to the effective user.

—-n Parses commands but does not execute them. This aids in debugging shell
scripts.

—q Accepts SIGQUIT and behaves when it is used under a debugger. Job control
is disabled. (u)

—-s Take command input from the standard input.

-t Reads and executes a single line of input. A \ (backslash) may be used to
escape the newline at the end of this line and continue onto another line.

—v Sets the verbose shell variable so command input is echoed after history
substitution.

130 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

tcsh

—x Sets the echo shell variable so commands are echoed immediately before
execution.

-V Sets the verbose shell variable even before executing “/.teshre.

—-X Isto—-xas-Visto-v.

After processing of option arguments, if arguments remain but none of the —c, —i,
-s, or —t were given, the first argument is taken as the name of a file of commands,
or script , to be executed. The shell opens this file and saves its name for possible
resubstitution by $0. Since many systems use shells whose shell scripts are not
compatible with this shell, the tcsh shell uses such a standard shell to execute a
script whose character is not a #, that is, which does not start with a comment.

Remaining arguments are placed in the argv shell variable.

tcsh shell Editing

In this section, we first describe the Command-Line Editor. We then discuss
Completion and Listing and Spelling Correction which describe two sets of
functionality that are implemented as editor commands but which deserve their own
treatment. Finally, the Editor Commands section lists and describes the editor
commands specific to the tcsh shell and their default bindings.

tcsh shell Command-Line Editor

Command-line input can be edited using key sequences much like those used in
GNU Emacs or vi. The editor is active only when the edit shell variable is set,
which it is by default in interactive shells. The bindkey built-in command can
display and change key bindings. Emacs-style key bindings are used by default,
but bindkey can change the key bindings to vi-style bindings.

The shell always binds the arrow keys to:

down down-history

up up-history

left backward-char

right forward-char

unless doing so would alter another single-character binding. One can set the arrow

key escape sequences to the empty string with settc to prevent these bindings.

Other key bindings are, for the most part, what Emacs and vi users would expect
and can easily be displayed by bindkey, so there is no need to list them here.
Likewise, bindkey can list the editor commands with a short description of each.

Note: Editor commands do not have the same notion of a word as does the tcsh
shell. The editor delimits words with any non-alphanumeric characters not in
the shell variable wordchars, while the tcsh shell recognizes only
whitespace and some of the characters with special meanings to it, listed
under “Command Syntax” on page 139.

Chapter 10. tcsh Commands 131

tcsh

Completion and Listing

The tcsh shell is often able to complete words when given a unique abbreviation.
Type part of a word (for example Is /usr/lost) and press the tab key to run the
complete-word editor command. The shell completes the filename /usr/lost to
lusr/lost+found/, replacing the incomplete word with the complete word in the input
buffer. (Note the terminal / (forward slash); completion adds a / to the end of
completed directories and a space to the end of other completed words, to speed
typing and provide a visual indicator of successful completion. The addsuffix shell
variable can be unset to prevent this.) If no match is found (for example,
lusr/lost+found doesn't exist), the terminal bell rings. If the word is already
complete (for example, there is a /usr/lost on your system, or you were thinking
too far ahead and typed the whole thing) a / or space is added to the end if it isn't
already there.

Completion works anywhere in the line, not just at the end; completed text pushes
the rest of the line to the right. Completion in the middle of a word often results in
leftover characters to the right of the cursor which need to be deleted.

Commands and variables can be completed in much the same way. For example,
typing em [tab] would complete 'em' to 'emacs' if emacs were the only command
on your system beginning with 'em'. Completion can find a command in any
directory in the path or if given a full pathname. Typing echo $arftab] would
complete '$ar' to '$argv' if no other variable began with ‘ar'.

The shell parses the input buffer to determine whether the word you want to
complete should be completed as a filename, command or variable. The first word
in the buffer and the first word following ';', 'I', '1&', '&&" or 'lI' is considered to be a
command. A word beginning with '$' is considered to be a variable. Anything else is
a filename. An empty line is completed as a filename.

You can list the possible completions of a word at any time by typing D to run the
delete-char-or-list-or-eof editor command. The tcsh shell lists the possible
completions using the Is-F built-in and reprints the prompt and unfinished command
line, for example:

> 1s Jusr/1['~D]
Tbin/ 1ib/ local/ Tost+found/
> 1s /Jusr/1

If the autolist shell variable is set, the tcsh shell lists the remaining choices (if any)
whenever completion fails:

> set autolist

> nm /usr/1ib/1ibt[tab]
libtermcap.a@ libtermlib.a@
> nm /usr/1ib/1ibterm

If autolist is set to ambiguous, choices are listed only if multiple matches are
possible, and if the completion adds no new characters to the name to be matched.

A filename to be completed can contain variables, your own or others' home
directories abbreviated with ~ (tilde; see “Filename Substitution” on page 146) and
directory stack entries abbreviated with = (equal; see “Directory Stack Substitution”
on page 147). For example:

132 05/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

tcsh

> 1s "k["™D]

kahn kas kellogg
> 1s “ke[tab]

> 1s “kellogg/

or

> set local = /usr/local
> 1s $1o[tab]

> 1s $local/["D]

bin/ etc/ 1ib/ man/ src/
> 1s $local/

Variables can also be expanded explicitly with the expand-variables editor
command.

delete-char-or-list-or-eof only lists at the end of the line; in the middle of a line it
deletes the character under the cursor and on an empty line it logs one out or, if
ignoreeof is set, does nothing. M-"D, bound to the editor command list-choices,
lists completion possibilities anywhere on a line, and list-choices (or any one of
the related editor commands which do or don't delete, list and/or log out, listed
under delete-char-or-list-or-eof) can be bound to ~D with the bindkey built-in
command if so desired.

The complete-word-fwd and complete-word-back editor commands (not bound to
any keys by default) can be used to cycle up and down through the list of possible
completions, replacing the current word with the next or previous word in the list.

The tcsh shell variable fignore can be set to a list of suffixes to be ignored by
completion. Consider the following:

> Is

Makefile condiments.h™ main.o side.c
README main.c meal side.o
condiments.h main.c”

> set fignore = (.0 \7)

> emacs ma[”~D]

main.c main.c” main.o

> emacs ma[tab]

> emacs main.c

'main.c™ and 'main.o' are ignored by completion (but not listing), because they end
in suffixes in fignore. \ is needed in front of ~ to prevent it from being expanded to
home as described under “Filename Substitution” on page 146. fignore is ignored
if only one completion is possible.

If the complete shell variable is set to enhance, completion: 1.) ignores case and
2.) considers periods, hyphens and underscores (., '-' and '_") to be word
separators and hyphens and underscores to be equivalent.

If you had the following files:

comp.lang.c comp.lang.perl comp.std.c++
comp.lang.c++ comp.std.c

and typed mail -f c./.c[tab], it would be completed to mail -f comp.lang.c, and ~D
would list comp.lang.c and comp.lang.c++. mail -f c..c++["D] would list
comp.lang.c++ and comp.std.c++. Typing rm a--file[*D] in the following directory

Chapter 10. tcsh Commands 133

tcsh

A_silly_file a-hyphenated-file another_silly_file

would list all three files, because case is ignored and hyphens and underscores are
equivalent. Periods, however, are not equivalent to hyphens or underscores.

Completion and listing are affected by several other tcsh shell variables: recexact
can be set to complete on the shortest possible unique match, even if more typing
might result in a longer match. For example:

> 1s

fodder foo food foonly
> set recexact

> rm fo[tab]

just beeps, because 'fo' could expand to 'fod’ or 'foo', but if we type another '0/,

> rm foo[tab]
> rm foo

the completion completes on 'foo', even though 'food' and 'foonly' also match.
autoexpand can be set to run the expand-history editor command before each
completion attempt, and correct can be set to complete commands automatically
after one hits 'return'. matchbeep can be set to make completion beep or not beep
in a variety of situations, and nobeep can be set to never beep at all. nostat can
be set to a list of directories and/or patterns which match directories to prevent the
completion mechanism from stat(2)ing those directories.

Note: The completion operation succeeds, but faster. The setting of nostat is
evident when using the listflags variable. For example:

>set listflags=x

>1s-F /u/pluto
Dirl/exel*

>set nostat=(/u/pluto/)
>1s-F /u/pluto
Dirlexel

>

Although, you must be careful when setting nostat to keep the trailing /
(forward slash).

listmax and listmaxrows can be set to limit the number of items and rows
(respectively) that are listed without asking first. recognize_only_executables can
be set to make the shell list only executables when listing commands, but it is quite
slow.

Finally, the complete built-in command can be used to tell the shell how to
complete words other than filenames, commands and variables. Completion and
listing do not work on glob-patterns (see “Filename Substitution” on page 146), but
the list-glob and expand-glob editor commands perform equivalent functions for
glob-patterns.

Spelling Correction
The tcsh shell can sometimes correct the spelling of filenames, commands and
variable names as well as completing and listing them.

Individual words can be spelling-corrected with the spell-word editor command

(usually bound to M-s and M-S where M=Meta Key or escape (ESC) key) and the
entire input buffer with spell-line (usually bound to M-$). The correct shell variable

134 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

tcsh

can be set to 'cmd' to correct the command name or ‘all' to correct the entire line
each time return is typed.

When spelling correction is invoked in any of these ways and the shell thinks that
any part of the command line is misspelled, it prompts with the corrected line:

> set correct = cmd
> 1z /usr/bin
CORRECT>1s /usr/bin (y|n|e|a)?

where one can answer 'y' or space to execute the corrected line, 'e' to leave the
uncorrected command in the input buffer, 'a' to abort the command as if ~C had
been hit, and anything else to execute the original line unchanged.

Spelling correction recognizes user-defined completions (see the complete built-in
command). If an input word in a position for which a completion is defined
resembles a word in the completion list, spelling correction registers a misspelling
and suggests the latter word as a correction. However, if the input word does not
match any of the possible completions for that position, spelling correction does not
register a misspelling.

Like completion, spelling correction works anywhere in the line, pushing the rest of
the line to the right and possibly leaving extra characters to the right of the cursor.

Attention: Spelling correction is not guaranteed to work the way one intends, and
is provided mostly as an experimental feature.

Editor Commands

bindkey lists key bindings and bindkey -I lists and briefly describes editor
commands. Only new or especially interesting editor commands are described
here. See emacs and vi for descriptions of each editor's key bindings.

The character or characters to which each command is bound by default is given in
parentheses. ~character means a control character and M-character a meta
character, typed as escape-character on terminals without a meta key. Case
counts, but commands which are bound to letters by default are bound to both
lower- and uppercase letters for convenience.

complete-word
Completes a word as described under “Completion and Listing” on page 132.

complete-word-back
Like complete-word-fwd, but steps up from the end of the list.

complete-word-fwd
Replaces the current word with the first word in the list of possible
completions. May be repeated to step down through the list. At the end of the
list, beeps and reverts to the incomplete word.

complete-word-raw
Like complete-word, but ignores user-defined completions.

copy-prev-word
Copies the previous word in the current line into the input buffer. See also
insert-last-word.

dabbrev-expand
Expands the current word to the most recent preceding one for which the
current is a leading substring, wrapping around the history list (once) if

Chapter 10. tcsh Commands 135

tcsh

necessary. Repeating dabbrev-expand without any intervening typing
changes to the next previous word etc., skipping identical matches much like
history-search-backward does.

delete-char (not bound)
Deletes the character under the cursor. See also delete-char-or-list-or-eof.

delete-char-or-eof (not bound)
Does delete-char if there is a character under the cursor or end-of-file on an
empty file. See also delete-char-or-list-or-eof.

delete-char-or-list (not bound)
Does delete-char if there is a character under the cursor or list-choices at the
end of the line. See also delete-char-or-list-or-eof.

delete-char-or-list-or-eof (~D)
Does delete-char if there is a character under the cursor, list-choices at the
end of the line or end-of-file on an empty line. See also delete-char-or-eof,
delete-char-or-list and list-or-eof.

down-history
Like up-history, but steps down, stopping at the original input line.

end-of-file
Signals an end of file, causing the tcsh shell to exit unless the ignoreeof shell
variable is set to prevent this. See also delete-char-or-list-or-eof.

expand-history (M-space)
Expands history substitutions in the current word. See “History Substitution”
on page 140. See also magic-space, toggle-literal-history, and the
autoexpand shell variable.

expand-glob(~X-*)
Expands the glob-pattern to the left of the cursor. For example:

>1s testx["X-*]
would expand to

>1s testl.c test2.c

if those were the only two files in your directory that begin with 'test'. See
“Filename Substitution” on page 146.

expand-line (not bound)
Like expand-history, but expands history substitutions in each word in the
input buffer.

expand-variables (*X-$)
Expands the variable to the left of the cursor. See “Variable Substitution” on
page 144.

history-search-backward (M-p, M-P)
Searches backwards through the history list for a command beginning with
the current contents of the input buffer up to the cursor and copies it into the
input buffer. The search string may be a glob-pattern (see “Filename
Substitution” on page 146) containing ™', '?', '[]' or {}'. up-history and
down-history will proceed from the appropriate point in the history list.
Emacs mode only. See also history-search-forward and i-search-back.

history-search-forward(M-n, M-N)
Like history-search-backward, but searches forward.

136 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

tcsh

i-search-back (not bound)
Searches backward like history-search-backward, copies the first match into
the input buffer with the cursor positioned at the end of the pattern, and
prompts with 'bck: ' and the first match. Additional characters may be typed
to extend the search. i-search-back may be typed to continue searching with
the same pattern, wrapping around the history list if necessary,
(i~search-back must be bound to a single character for this to work) or one of
the following special characters may be typed:

~“W Appends the rest of the word under the cursor to the search pattern.

delete (or any character bound to backward-delete-char)
Undoes the effect of the last character and deletes a character from the
search pattern if appropriate.

~G If the previous search was successful, aborts the entire search. If not,
goes back to the last successful search.

escape
Ends the search, leaving the current line in the input buffer.

Any other character not bound to self-insert-command terminates the
search, leaving the current line in the input buffer, and is then interpreted as
normal input. In particular, a carriage return causes the current line to be
executed. Emacs mode only. See also i-search-fwd and
history-search-backward.

i-search-fwd
Like i-search-back, but searches forward.

insert-last-word (M-_)
Inserts the last word of the previous line (!$) into the input buffer. See also
copy-prev-word.

list-choices (M-D)
Lists completion possibilities as described under “Completion and Listing” on
page 132. See also delete-char-or-list-or-eof.

list-choices-raw (*X-"D)
Like list-choices, but ignores user-defined completions.

list-glob (*X-g, ~X-G)
Lists (via the Is-F) matches to the glob-pattern (see “Filename Substitution”
on page 146) to the left of the cursor.

list-or-eof (not bound)
Does list-choices or end-of-file on an empty line. See also
delete-char-or-list-or-eof.

magic-space (not bound)
Expands history substitutions in the current line, like expand-history, and
appends a space. magic-space is designed to be bound to the spacebar, but
is not bound by default.

normalize-command (*X-?)
Searches for the current word in PATH and, if it is found, replaces it with the
full path to the executable. Special characters are quoted. Aliases are
expanded and quoted but commands within aliases are not. This command is
useful with commands which take commands as arguments, for example, dbx
and sh -x.

Chapter 10. tcsh Commands 137

tcsh

normalize-path (*X-n, ~X-N)
Expands the current word as described under the expand setting of the
symlinks shell variable.

overwrite-mode (unbound)
Toggles between input and overwrite modes.

run-fg-editor (M-"2)
Saves the current input line and looks for a stopped job with a name equal to
the last component of the file name part of the EDITOR or VISUAL
environment variables, or, if neither is set, ed or vi. If such a job is found, it is
restarted as if fg %job had been typed. This is used to toggle back and forth
between an editor and the shell easily. Some people bind this command to ~Z
so they can do this even more easily.

run-help (M-h, M-H)
Searches for documentation on the current command, using the same notion
of current command as the completion routines, and prints it. There is no
way to use a pager; run-help is designed for short help files. Documentation
should be in a file named command.help, command.1, command.6,
command.8 or command, which should be in one of the directories listed in
the HPATH enviroment variable. If there is more than one help file only the
first is printed.

self-insert-command (text characters)
In insert mode (the default), inserts the typed character into the input line after
the character under the cursor. In overwrite mode, replaces the character
under the cursor with the typed character. The input mode is normally
preserved between lines, but the inputmode shell variable can be set to
insert or overwrite to put the editor in that mode at the beginning of each line.
See also overwrite-mode.

sequence-lead-in (arrow prefix, meta prefix, ~X)
Indicates that the following characters are part of a multi-key sequence.
Binding a command to a multi-key sequence really creates two bindings: the
first character to sequence-lead-in and the whole sequence to the command.
All sequences beginning with a character bound to sequence-lead-in are
effectively bound to undefined-key unless bound to another command.

spell-line (M-$)
Attempts to correct the spelling of each word in the input buffer, like
spell-word, but ignores words whose first character is one of -', "I, "™ or '%',
or which contain \', "' or '?', to avoid problems with switches, substitutions
and the like. See “Spelling Correction” on page 134.

spell-word (M-s, M-S)
Attempts to correct the spelling of the current word as described under
“Spelling Correction” on page 134. Checks each component of a word which
appears to be a pathname.

toggle-literal-history (M-r, M-R)
Expands or unexpands history substitutions in the input buffer. See also
expand-history and the autoexpand shell variable.

undefined-key (any unbound key)
Beeps.

138 05/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

tcsh

up-history (up-arrow, ~P)
Copies the previous entry in the history list into the input buffer. If histlit is
set, uses the literal form of the entry. May be repeated to step up through the
history list, stopping at the top.

vi-search-back (?)
Prompts with ? for a search string (which may be a glob-pattern, as with
history-search-backward), searches for it and copies it into the input buffer.
The bell rings if no match is found. Hitting return ends the search and leaves
the last match in the input buffer. Hitting escape ends the search and
executes the match. vi mode only.

vi-search-fwd (/)
Like vi-search-back, but searches forward.

which-command (M-?)
Does a which (built-in command) on the first word of the input buffer.

Command Syntax

The tcsh shell splits input lines into words at blanks and tabs. The special
characters ‘&', 'I', ';', '<', '>', '(, and)" and the doubled characters '&&', 'lI', '<<' and
'>>' are always separate words, whether or not they are surrounded by whitespace.

When the tcsh shell's input is not a terminal, the character '#' is taken to begin a
comment. Each # and the rest of the input line on which it appears is discarded
before further parsing.

A special character (including a blank or tab) may be prevented from having its
special meaning, and possibly made part of another word, by preceding it with a
backslash (\) or enclosing it in single ('), double (") or backward (' ~ ') quotes.
When not otherwise quoted a newline preceded by a \ is equivalent to a blank, but
inside quotes this sequence results in a newline.

Furthermore, all substitutions (see “Substitutions” on page 140) except history
substitution can be prevented by enclosing the strings (or parts of strings) in which
they appear with single quotes or by quoting the crucial character(s) (e.g. '$' or '™
for variable substitution or command substitution respectively) with \. (alias
substitution is no exception: quoting in any way any character of a word for which
an alias has been defined prevents substitution of the alias. The usual way of
quoting an alias is to precede it with a backslash.) History substitution is prevented
by backslashes but not by single quotes. Strings quoted with double or backward
quotes undergo Variable substitution and Command substitution, but other
substitutions are prevented.

Text inside single or double quotes becomes a single word (or part of one).
Metacharacters in these strings, including blanks and tabs, do not form separate
words. Only in one special case (see “Command Substitution” on page 146) can a
double-quoted string yield parts of more than one word; single-quoted strings never
do. Backward quotes are special: they signal command substitution, which may
result in more than one word.

Quoting complex strings, particularly strings which themselves contain quoting

characters, can be confusing. Remember that quotes need not be used as they are
in human writing! It may be easier to quote not an entire string, but only those parts

Chapter 10. tcsh Commands 139

tcsh

Substitutions

of the string which need quoting, using different types of quoting to do so if
appropriate.

The backslash_quote shell variable can be set to make backslashes always quote
\, ', and ". This may make complex quoting tasks easier, but it can cause syntax
errors in csh (or tcsh) scripts.

This section describes the various transformations the tcsh shell performs on input
in the order in which they occur. The section will cover data structures involved and
the commands and variables which affect them. Remember that substitutions can
be prevented by quoting as described under “Command Syntax” on page 139.

History Substitution

Each command, or event, input from the terminal is saved in the history list. The
previous command is always saved, and the history shell variable can be set to a
number to save that many commands. The histdup shell variable can be set to not
save duplicate events or consecutive duplicate events.

Saved commands are numbered sequentially from 1 and stamped with the time. It
is not usually necessary to use event numbers, but the current event number can
be made part of the prompt by placing an exclamation point (!) in the prompt shell
variable.

The shell actually saves history in expanded and literal (unexpanded) forms. If the
histlit shell variable is set, commands that display and store history use the literal
form.

The history built-in command can print, store in a file, restore and clear the history
list at any time, and the savehist and histfile shell variables can be set to store the
history list automatically on logout and restore it on login.

History substitutions introduce words from the history list into the input stream,
making it easy to repeat commands, repeat arguments of a previous command in
the current command, or fix spelling mistakes in the previous command with little
typing and a high degree of confidence.

History substitutions begin with the character |. They may begin anywhere in the
input stream, but they do not nest. The ! may be preceded by a \ to prevent its
special meaning; for convenience, a ! is passed unchanged when it is followed by a
blank, tab, newline, = or (. History substitutions also occur when an input line
begins with ~. This special abbreviation will be described later. The characters used
to signal history substitution (! and *) can be changed by setting the histchars
shell variable. Any input line which contains a history substitution is printed before it
is executed.

A history substitution may have an event specification, which indicates the event
from which words are to be taken, a word designator, which selects particular
words from the chosen event, and/or a modifier, which manipulates the selected
words.

An event specification can be

n A number, referring to a particular event

140 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

tcsh

—-n An offset, referring to the even n before the current event

The current event. This should be used carefully in csf, where there is no
check for recursion. tcsh allows 10 levels of recursion.

! The previous event (equivalent to -1)

s The most recent event whose first word begins with the string s

?s? The most recent event which contains the string s. The second ? can be
omitted if it is immediately followed by a newline.

For example, consider this bit of someone's history list:

9 8:30 nroff -man wumpus.man

10 8:31 cp wumpus.man wumpus.man old
11 8:36 vi wumpus.man

12 8:37 diff wumpus.man.old wumpus.man

The commands are shown with their event numbers and time stamps. The current
event, which we haven't typed in yet, is event 13. 111 and !-2 refer to event 11. !!
refers to the previous event, 12. !l can be abbreviated ! if it is followed by : (colon;
described below). In refers to event 9, which begins with n. 1?70ld? also refers to
event 12, which contains old. Without word designators or modifiers history
references simply expand to the entire event, so we might type !cp to redo the copy
command or 'lmore if the diff output scrolled off the top of the screen.

History references may be insulated from the surrounding text with braces if
necessary. For example, lvdoc would look for a command beginning with vdoc,
and, in this example, not find one, but !{v}doc would expand unambiguously to vi
wumpus.mandoc. Even in braces, history substitutions do not nest.

While csh expands, for example, 13d to event 3 with the letter d appended to it,
tcsh expands it to the last event beginning with 3d; only completely numeric
arguments are treated as event numbers. This makes it possible to recall events
beginning with numbers. To expand !3d as in csh say \3d.

To select words from an event we can follow the event specification by a : (colon)
and a designator for the desired words. The words of an input line are numbered
from 0, the first (usually command) word being 0, the second word (first argument)
being 1, etc. The basic word designators are:

0 The first command word

n The nth argument

n The first argument, equivalent to 1

$ The last argument

% The word matched by an ?s? search

x-y A range of words

-y Equivalent to 0—y

* Equivalent to ~=$, but returns nothing if the event contains only 1 word
x* Equivalent to x-$

x- Equivalent to x* but omitting the last word ($)

Selected words are inserted into the command line separated by single blanks. For
example, the diff command in the previous example might have been typed as diff

Chapter 10. tcsh Commands 141

tcsh

II:1.0ld !I:1(using :1 to select the first argument from the previous event) or diff
1-2:2 1-2:1to select and swap the arguments from the cp command. If we didn't care
about the order of the diff we might have said diff /-2:7-2or simply diff /-2:*. The
cp command might have been written ep wumpus.man !#:1.0ld, using # to refer to
the current event. In:- hurkle.man would reuse the first two words from the nroff
command to say nroff -man hurkle.man.

The : separating the event specification from the word designator can be omitted if
the argument selector begins with a ', '$', ™', '%' or '-'. For example, our diff
command might have been diff /*.old ! or, equivalently, diff !/$.old /!$.
However, if !l is abbreviated !, an argument selector beginning with - (hypen) will be
interpreted as an event specification.

A history reference may have a word designator but no event specification. It then
references the previous command. Continuing our diff example, we could have
said simply diff /*.old "or, to get the arguments in the opposite order, just diff /*.

The word or words in a history reference can be edited, or modified, by following it
with one or more modifiers, each preceded by a : (colon):

h Remove a trailing pathname component, leaving the head.

t Remove all leading pathname components, leaving the tail.

r Remove a filename extension .xxx, leaving the root name.

e Remove all but the extenstion

u Uppercase the first lowercase letter.

| Lowercase the first uppercase letter.

s/l/r Substitute / for r. Iis simply a string like r, not a regular expression as in the
eponymous ed command. Any character may be used as the delimiter in
place of /; a \ can be used to quote the delimiter inside / and r. The character
& in the ris replaced by /; \ also quotes &. If /is empty ("), the /from a
previous substitution or the s from a previous ?s? event specification is used.
The trailing delimiter may be omitted if it is immediately followed by a newline.

& Repeat the previous substitution
Apply the following modifier once to each word.

Apply the following modifier as many times as possible to a single word. ‘a'
and 'g' can be used together to apply a modifier globally. In the current
implementation, using the 'a' and 's' modifiers together can lead to an infinite
loop. For example, :as/f/ff/ will never terminate. This behavior might change in
the future.

p Print the new command line but do not execute it.

q Quote the substituted words, preventing further substitutions.

X Like q, but break into words at blanks, tabs and newlines.

Modifiers are applied only to the first modifiable word (unless 'g' is used). It is an
error for no word to be modifiable.

For example, the diff command might have been written as diff wumpus.man.old
I#*:r, using :r to remove .old from the first argument on the same line (1#"). We
could say echo hello out there, then echo /*:u to capitalize 'hello', echo /*:au to say
it out loud, or echo /*:agu to really shout. We might follow mail -s "/ forgot my

142 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

tcsh

password" rot with I:s/rot/root to correct the spelling of 'root' (but see “Spelling
Correction” on page 134 for a different approach).

There is a special abbreviation for substitutions. ~, when it is the first character on
an input line, is equivalent to /:s™. Thus, we might have said ~rot*root to make the
spelling correction in the previous example. This is the only history substitution
which does not explicitly begin with !.

In csh as such, only one modifier may be applied to each history or variable
expansion. In tcsh, more than one may be used, for example

% mv wumpus.man /usr/man/manl/wumpus.1
% man !$:t:r
man wumpus

In csh, the result would be wumpus.1:r. A substitution followed by a colon may
need to be insulated from it with braces:

> mv a.out /usr/games/wumpus

> setenv PATH !$:h:$PATH

Bad ! modifier: §.

> setenv PATH !{-2$:h}:$PATH

setenv PATH /usr/games:/bin:/usr/bin:.

The first attempt would succeed in csh but fails in tcsh, because tcsh expects
another modifier after the second colon rather than $.

Finally, history can be accessed through the editor as well as through the
substitutions just described. The following commands search for events in the
history list and compile them into the input buffer:

e up-history

e down-history
 history-search-backward
¢ history-search-forward
* ji-search-back

* j-search-fwd
 vi-search-back
 vi-search-fwd

e copy-prev-word

e insert-last-word

The toggle-literal-history editor command switches between the expanded and
literal forms of history lines in the input buffer. expand-history and expand-line
expand history substitutions in the current word and in the entire input buffer
respectively.

Alias Substitution

The shell maintains a list of aliases which can be set, unset and printed by the
alias and unalias commands. After a command line is parsed into simple
commands (see “Command Execution” on page 148) the first word of each
command, left-to-right, is checked to see if it has an alias. If so, the first word is
replaced by the alias. If the alias contains a history reference, it undergoes history
substitution as though the original command were the previous input line. If the
alias does not contain a history reference, the argument list is left untouched.

Thus if the alias for Is were Is -l the command Is /usrwould become Is -l /usr, the
argument list here being undisturbed. If the alias for lookup were grep

Chapter 10. tcsh Commands 143

tcsh

/etc/passwd then lookup bill would become grep bill /etc/passwd. Aliases can be
used to introduce parser metasyntax. For example, alias print pr \!* [|pr' defines a
command (print) which prints its arguments to the line printer.

Alias substitution is repeated until the first word of the command has no alias. If an
alias substitution does not change the first word (as in the previous example) it is
flagged to prevent a loop. Other loops are detected and cause an error.

Some aliases are referred to by the shell; see “tcsh Built-in Commands” on
page 156.

Variable Substitution

The tcsh shell maintains a list of variables, each of which has as value a list of zero
or more words. The values of tcsh shell variables can be displayed and changed
with the set and unset commands. The system maintains its own list of
"environment" variables. These can be displayed and changed with printenv,
setenv and unsetenv.

Variables may be made read-only with set -r. Read-only variables may not be
modified or unset; attempting to do so will cause an error. Once made read-only, a
variable cannot be made writable, so set -r should be used with caution.
Environment variables cannot be made read-only.

Some variables are set by the tcsh shell or referred to by it. For instance, the argv
variable is an image of the shell's argument list, and words of this variable's value
are referred to in special ways. Some of the variables referred to by the tcsh shell
are toggles; the shell does not care what their value is, only whether they are set or
not. For instance, the verbose variable is a toggle which causes command input to
be echoed. The -v command line option sets this variable. Special shell variables
lists all variables which are referred to by the shell.

Other operations treat variables numerically. The @ (at) command permits numeric
calculations to be performed and the result assigned to a variable. Variable values
are, however, always represented as (zero or more) strings. For the purposes of
numeric operations, the null string is considered to be zero, and the second and
subsequent words of multiword values are ignored.

After the input line is aliased and parsed, and before each command is executed,
variable substitution is performed keyed by $ characters. This expansion can be
prevented by preceding the $ with a \ except within double quotes (") where it
always occurs, and within single quotes (') where it never occurs. Strings quoted
by backward quotes or accents (~) are interpreted later (see “Command
Substitution” on page 146) so $ substitution does not occur there until later, if at all.
A $ is passed unchanged if followed by a blank, tab, or end-of-line.

Input/output redirections are recognized before variable expansion, and are variable
expanded separately. Otherwise, the command name and entire argument list are
expanded together. It is thus possible for the first (command) word (to this point) to
generate more than one word, the first of which becomes the command name, and
the rest of which become arguments.

Unless enclosed in double quotes (") or given the :q modifier the results of variable

substitution may eventually be command and filename substituted. Within *, a
variable whose value consists of multiple words expands to a (portion of a) single

144 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

tcsh

word, with the words of the variable's value separated by blanks. When the :q
modifier is applied to a substitution the variable will expand to multiple words with
each word separated by a blank and quoted to prevent later command or filename
substitution.

The following metasequences are provided for introducing variable values into the
shell input. Except as noted, it is an error to reference a variable which is not set.

$name[selector]

${name[selector]}
Substitutes only the selected words from the value of name. The selector is
subjected to $ substitution and may consist of a single number or two
numbers separated by a - (hyphen). The first word of a variable's value is
numbered 1. If the first number of a range is omitted it defaults to 1. If the last
member of a range is omitted it defaults to $#name. The selector * selects alll
words. It is not an error for a range to be empty if the second argument is
omitted or in range.

$0 Substitutes the name of the file from which command input is being read. An
error occurs if the name is not known.

$number

${number}
Equivalent to $argv[number].

$* Equivalent to $argv, which is equivalent to $argv[*].

The : (colon) modifiers described under “History Substitution” on page 140, except
for :p, can be applied to the substitutions above. More than one may be used.
Braces may be needed to insulate a variable substitution from a literal colon just as
with history substitution; any modifiers must appear within the braces. The following
substitutions can not be modified with : modifiers.

$?name

${?name}
Substitutes the string 1 if name is set, 0 if it is not.

$0 Substitutes the name of the file from which command input is being read. An
error occurs if the name is not known.

$?0 Substitutes 1 if the current input filename is known, 0 if it is not. Always 0 in
interactive shells.

$#name or ${#name}
Substitutes the number of words in name.

$# Equivalent to '$#argv'.

$%name
${%name}

Substitutes the number of characters in name.

$%number

Chapter 10. tcsh Commands 145

tcsh

${%number}
Substitutes the number of characters in $argv[number].

$? Equivalent to $status.
$$ Substitutes the (decimal) process number of the (parent) shell.

$! Substitutes the (decimal) process number of the last background process
started by this shell.

$< Substitutes a line from the standard input, with no further interpretation
thereafter. It can be used to read from the keyboard in a shell script. While
csh always quotes $<, as if it were equivalent to $<:q, tcsh does not.
Furthermore, when tcsh is waiting for a line to be typed the user may type an
interrupt to interrupt the sequence into which the line is to be substituted, but
csh does not allow this.

The editor command expand-variables, normally bound to ~X-$, can be used to
interactively expand individual variables.

Command, Filename and Directory Stack Substitiution

The remaining substitutions are applied selectively to the arguments of tcsh built-in
commands. This means that portions of expressions which are not evaluated are
not subjected to these expansions. For commands which are not internal to the
tcsh shell, the command name is substituted separately from the argument list. This
occurs very late, after input-output redirection is performed, and in a child of the
main shell.

Command Substitution: Command substitution is indicated by a command
enclosed in ' ' '. The output from such a command is broken into separate words at
blanks, tabs and newlines, and null words are discarded. The output is variable and
command substituted and put in place of the original string.

Command substitutions inside double quotes (") retain blanks and tabs; only
newlines force new words. The single final newline does not force a new word in
any case. It is thus possible for a command substitution to yield only part of a word,
even if the command outputs a complete line.

Filename Substitution: |f a word contains any of the characters ™', '?', " or '{' or
begins with the character "™ it is a candidate for filename substitution, also known

as globbing. This word is then regarded as a pattern (glob-pattern), and replaced
with an alphabetically sorted list of file names which match the pattern.

In matching filenames, the character . (period) at the beginning of a filename or
immediately following a / (forward slash), as well as the character / must be
matched explicitly. The character * matches any string of characters, including the
null string. The character ? matches any single character. The sequence [...]
matches any one of the characters enclosed. Within [...], a pair of characters
separated by - matches any character lexically between the two.

Some glob-patterns can be negated: The sequence [*...] matches any single
character not specified by the characters and/or ranges of characters in the braces.

An entire glob-pattern can also be negated with ~:

146 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

tcsh

> echo *

bang crash crunch ouch
> echo ~cr*

bang ouch

Glob-patterns which do not use '?', ™', or'[]' or which use '{}' or "' (below) are not
negated correctly.

The metanotation a{b,c,d}e is a shorthand for abe ace ade. Left-to-right order is
preserved: /usr/source/s1/{oldls,Is}.c expands to /usr/source/s1/oldls.c
lusr/source/s1/ls.c. The results of matches are sorted separately at a low level to
preserve this order: ../{memo,*box} might expand to ../memo ../box ../mbox. (Note
that 'memo' was not sorted with the results of matching *box'.) It is not an error
when this construct expands to files which do not exist, but it is possible to get an
error from a command to which the expanded list is passed. This construct may be
nested. As a special case the words {, } and {} are passed undisturbed. The
character ™ at the beginning of a filename refers to home directories. Standing
alone, i.e. 7, it expands to the invoker's home directory as reflected in the value of
the home shell variable. When followed by a name consisting of letters, digits and -
(hyphen) characters the shell searches for a user with that name and substitutes
their home directory; thus "ken might expand to /usr/ken and "ken/chmach to
lusr/ken/chmach. If the character ~ is followed by a character other than a letter or
/ or appears elsewhere than at the beginning of a word, it is left undisturbed. A
command like setenv MANPATH /usr/man:/usr/local/man:/lib/man does not,
therefore, do home directory substitution as one might hope. It is an error for a
glob-pattern containing ™, '?", '[' or ™, with or without ™, not to match any files.
However, only one pattern in a list of glob-patterns must match a file (so that, for
example, rm *.a *.c *.0 would fail only if there were no files in the current directory
ending in '.a', '.c', or ".0'), and if the nonomatch shell variable is set a pattern (or list
of patterns) which matches nothing is left unchanged rather than causing an error.

The noglob shell variable can be set to prevent filename substitution, and the
expand-glob editor command, normally bound to ~X-*, can be used to interactively
expand individual filename substitutions.

Directory Stack Substitution: The directory stack is a list of directories,
numbered from zero, used by the pushd, popd and dirs built-in commands for
tesh. dirs can print, store in a file, restore and clear the directory stack at any time,
and the savedirs and dirsfile shell variables can be set to store the directory stack
automatically on logout and restore it on login. The dirstack shell variable can be
examined to see the directory stack and set to put arbitrary directories into the
directory stack.

The character = (equal) followed by one or more digits expands to an entry in the

directory stack. The special case =- expands to the last directory in the stack. For
example,

Chapter 10. tcsh Commands 147

tcsh

> dirs -v

0 /usr/bin

1 /usr/spool/uucp
2 /usr/accts/sys

> echo =1
/usr/spool/uucp

> echo =0/calendar
/usr/bin/calendar
> echo =-
Jusr/accts/sys

The noglob and nonomatch shell variables and the expand-glob editor command
apply to directory stack as well as filename substitutions.

Other Substitutions: There are several more transformations involving filenames,
not strictly related to the above but mentioned here for completeness. Any filename
may be expanded to a full path when the symlinks variable is set to expand.
Quoting prevents this expansion, and the normalize-path editor command does it
on demand. The normalize-command editor command expands commands in
PATH into full paths on demand. Finally, ed and pushd interpret - (hyphen) as the
old working directory (equivalent to the tcsh shell variable owd). This is not a
substitution at all, but an abbreviation recognized only by those commands.
Nonetheless, it too can be prevented by quoting.

Command Execution

The next three sections describe how the shell executes commands and deals with
their input and output.

Simple Commands, Pipelines, and Sequences

A simple command is a sequence of words, the first of which specifies the
command to be executed. A series of simple commands joined by 'I' characters
forms a pipeline. The output of each command in a pipeline is connected to the
input of the next.

Simple commands and pipelines may be joined into sequences with ';', and will be
executed sequentially. Commands and pipelines can also be joined into sequences
with 'll' or '&&’, indicating, as in the C language, that the second is to be executed
only if the first fails or succeeds respectively.

A simple command, pipeline or sequence may be placed in parentheses, ()', to
form a simple command, which may in turn be a component of a pipeline or
sequence. A command, pipeline or sequence can be executed without waiting for it
to terminate by following it with an '&".

Built-in and Non-Built-in Command Execution

tcsh Built-in commands are executed within the shell. If any component of a
pipeline except the last is a built-in command, the pipeline is executed in a
subshell.

Parenthesized commands are always executed in a subshell:
(cd; pwd); pwd

which prints the home directory, leaving you where you were (printing this after the
home directory), while

148 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

tcsh

cd; pwd

leaves you in the home directory. Parenthesized commands are most often used to
prevent cd from affecting the current shell.

When a command to be executed is found not to be a built-in command the tcsh
shell attempts to execute the command via execve. Each word in the variable
pathnames a directory in which the tcsh shell will look for the command. If it is
given neither a -c nor a -t option, the shell hashes the names in these directories
into an internal table so that it will only try an execve in a directory if there is a
possibility that the command resides there. This greatly speeds command location
when a large number of directories are present in the search path. If this
mechanism has been turned off (via unhash), if the shell was given a -c or -t
argument or in any case for each directory component of path which does not
begin with a /, the shell concatenates the current working directory with the given
command name to form a pathname of a file which it then attempts to execute.

If the file has execute permissions but is not an executable to the system (that is, it
is neither an executable binary nor a script which specifies its interpreter), then it is
assumed to be a file containing shell commands and a new shell is spawned to
read it. The shell special alias may be set to specify an interpreter other than the
shell itself.

Input or Output
The standard input and standard output of a command may be redirected with the
following syntax:

Table 1 (Page 1 of 2). Standard Input/Output Syntax for tcsh Shell

Syntax Description

< name Open file name (which is first variable, command and filename
expanded) as the standard input.

<< word Read the shell input up to a line which is identical to word. word is not
subjected to variable, filename or command substitution, and each input
line is compared to word before any substitutions are done on this input
line. Unless a quoting \, ", ' ' or appears in word variable and
command substitution is performed on the intervening lines, allowing \ to
quote $, \ and ' (single quote). Commands which are substituted have
all blanks, tabs, and newlines preserved, except for the final newline
which is dropped. The resultant text is placed in an anonymous
temporary file which is given to the command as standard input.

> name The file name is used as standard output. If the file does not exist then
>! name it is created; if the file exists, its is overwritten and, therefore, the

>& name previous contents are lost.

>&! name

If the shell variable noclobber is set, then the file must not exist or be a
character special file (for example, a terminal or /dev/null) or an error
results. This helps prevent accidental destruction of files. In this case
the | forms can be used to suppress this check.

The forms involving & (ampersand) route the diagnostic output into the
specified file as well as the standard output. name is expanded in the
same way as < input filenames are.

Chapter 10. tcsh Commands 149

tcsh

Features

Table 1 (Page 2 of 2). Standard Input/Output Syntax for tcsh Shell

Syntax Description

>> name Like >, but appends output to the end of name. If the shell variable
>>& name noclobber is set, then it is an error for the file not to exist, unless one of
>>| name the ! forms is given.

>>&! name

A command receives the environment in which the shell was invoked as modified
by the input-output parameters and the presence of the command in a pipeline.
Thus, unlike some previous shells, commands run from a file of shell commands
have no access to the text of the commands by default; rather they receive the
original standard input of the shell. The << mechanism should be used to present
inline data. This permits shell command scripts to function as components of
pipelines and allows the shell to block read its input. The default standard input for
a command run detached is not the empty file /dev/null, but the original standard
input of the shell. If this is a terminal and if the process attempts to read from the
terminal, then the process will block and the user will be notified (see “Jobs” on
page 153).

Diagnostic output may be directed through a pipe with the standard output. Simply
use the form |& rather than just I.

The shell cannot presently redirect diagnostic output without also redirecting
standard output, but (command > output-file) >& error-file is often an acceptable
workaround. Either output-file or error-file may be /dev/tty to send output to the
terminal.

Having described how the tcsh shell accepts, parses and executes command lines,
we now turn to a variety of its useful features.

Control Flow

The tcsh shell contains a number of commands which can be used to regulate the
flow of control in command files (shell scripts) and (in limited by useful ways) from
terminal output. These commands all operate by forcing the shell to reread or skip
in its input and, due to the implementation, restrict the placement of some of the
commands.

The foreach, switch, and while statements, as well as the if-then-else form of the if
statement, require that the major keywords appear in a single simple command on
an input line.

If the shell's input is not seekable, the shell buffers up input whenever a loop is
being read and performs seeks in this internal buffer to accomplish the rereading
implied by the loop . (To the extent that this allows, backward gotos will succeed on
non-seekable inputs.)

150 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

tcsh

Expressions

The if, while, and exit built-in commands use expressions with a common syntax.
The expressions can include any of the operators described in the next three
sections. Note that the @ built-in command has its own separate syntax.

Logical, Arithmetical and Comparison Operators: These operators are similar
to those of C and have the same precendence. They include:

| | && | N & == 1= =" !— <= >=
<><<>> +-%x /%517 ()
Here the precedence increases to the right, '==""I="'="and """, '<=' '>=' <" and '>/,

'<<"and '>>', '+'and -, ™' / and '%' being in groups, at the same level. The '==""I='
'=""and 'I"" operators compare their arguments as strings; all others operate on
numbers. The operators '=™" and 'I"" are like 'l=" and '==' except that the right hand
side is a glob-pattern (see “Filename Substitution” on page 146) against which the
left hand operand is matched. This reduces the need for use of the switch built-in
command in shell scripts when all that is really needed is pattern matching.

Strings which begins with 0 are considered octal numbers. Null or missing
arguments are considered 0. The results of all expressions are strings, which
represent decimal numbers. It is important to note that no two components of an
expression can appear in the same word; except when adjacent to components of
expressions which are syntactically significant to the parser ('$' 'I' '<' '>' '(' ')') they
should be surrounded by spaces.

Command Exit Status: Commands can be executed in expressions and their exit
status returned by enclosing them in braces ({}). Remember that the braces should
be separated from the words of the command by spaces. Command executions
succeed, returning true, that is, 1, if the command exits with status 0, otherwise
they fail, returning false (0). If more detailed status information is required then the
command should be executed outside of an expression and the status shell
variable examined.

File Inquiry Operators: Some of these operators perform true/false tests on files
and related objects. They are of the form -op file, where op is one of:

r Read access

w Write access

X Execute access

Executable in the path or shell built-in. For example, =X Is and =X Is-F are
generally true, but =X /bin/ls is not.

Existence
Ownership
Zero size
Non-zero size

Plain file

o = » X o0 o

Directory

Symbolic link

b Block special file

Chapter 10. tcsh Commands 151

tcsh

Character special file
Named pipe (fifo)
Socket special file
Set-user ID bit is set
Set-group-ID bit is set
Sticky bit is set

X @ © »W T O

L

t file_descriptor (which must be a digit) is an open file descriptor for a terminal
device

L Applies subsequent operators in a multiple-operator test to a symbolic link
rather that to the file to which the link points

file is command and filename expanded and then tested to see if it has the
specified relationship to the real user. If file does not exist or is inaccessible or, for
the operators indicated by *, if the specified file type does not exist on the current
system, then all inquiries return false (0).

These operators may be combined for conciseness: -xy file is equivalent to -x file
&& -y file. For example, -fx is true (returns 1) for plain executable files, but not for
directories.

L may be used in a multiple-operator test to apply subsequent operators to a
symbolic link rather that to the file to which the link points. For example, -ILo is true
for links owned by the invoking user. Lr, Lw, and Lx are always ture for links and
false for non-links. L has a different meaning when it is the last operator in a
multiple-operator test.

It is possible but not useful, and sometimes misleading, to combine operators which
expect file to be a file with operators which do not (for example, X and t).
Following L witha non-file operator can lead to particularly strange results.

Other operators return other information, i.e. not just @ or 1. They have the same
format as before where op may be one of:

A Last file access time, as the number of seconds since epoch

Like A, but in timestamp format, that is, 'Fri May 14 16:36:10 1993'

Last file modification time

Like M, but in timestamp format

Last inode modification time

Like C, but in timestamp format

U0 O0== >

Device number

Inode number

Composite file identifier, in the form device : inode
The name of the file pointed to by a symbolic link
Number of (hard) links

Permissions, in octal, without leading zero

v v Zr T

Like P, with leading zero

152 05/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

Jobs

tcsh

P mode
Equivalent to -P mode & file, that is, -P22 file returns 22 if file is writable by
group and other, 20 if by group only, and 0 if by neither.

P mode:
Like P mode, with leading zero

Numeric userid
Username, or the numeric userid if the username is unknown

Numeric groupid

© 0 c c

Groupname, or the numeric groupid if the groupname is unknown
Y4 Size in bytes

Only one of these operators may appear in a multiple-operator test, and it must be
the last. L has a different meaning at the end of and elsewhere in a
multiple-operator test. Because 0 is a valid return value for many of these
operators, they do not return 0 when they fail: most return -1, and F returns :
(colon).

File inquiry operators can also be evaluated with the filetest built-in command.

The shell associates a job with each pipeline. It keeps a table of current jobs,
printed by the jobs command, and assigns them small integer numbers. When a job
is started asynchronously with & (ampersand), the shell prints a line which looks
like

[1] 1234

indicating that the job which was started asynchronously was job number 1 and
had one (top-level) process, whose process id was 1234.

If you are running a job and wish to do something else you may press the suspend
key (usually ~Z), which sends a STOP signal to the current job. The shell will then
normally indicate that the job has been 'Suspended' and print another prompt. If the
listjobs shell variable is set, all jobs will be listed like the jobs built-in command; if
it is set to 'long' the listing will be in long format, like jobs -l. You can then
manipulate the state of the suspended job. You can put it in the background with
the bg command or run some other commands and eventually bring the job back
into the foreground with fg. (See also the run-fg-editor editor command.) A ~Z
takes effect immediately and is like an interrupt in that pending output and unread
input are discarded when it is typed. The wait built-in command causes the shell to
wait for all background jobs to complete.

The 7] key sends a delayed suspend signal, which does not generate a STOP
signal until a program attempts to read it, to the current job. This can usefully be
typed ahead when you have prepared some commands for a job which you wish to
stop after it has read them. The ~Y key performs this function in csh; in tcsh , ~Y is
an editing command.

A job being run in the background stops if it tries to read from the terminal.
Background jobs are normally allowed to produce output, but this can be disabled
by giving the command stty tostop. If you set the stty option, then background jobs
will stop when they try to produce output like they do when they try to read input.

Chapter 10. tcsh Commands 153

tcsh

There are several ways to refer to jobs in the shell. The character % introduces a
job name. If you wish to refer to job number 1, you can name it as %1. Just naming
a job brings it to the foreground; thus %' is a synonym for fg %17, bringing job 1
back into the foreground. Similarly, saying %1 & resumes job 1 in the background,
just like bg %7. A job can also be named by an unambigous prefix of the string
typed in to start it: %ex would normally restart a suspended 'ex' job, if there were
only one suspended job whose name began with the string 'ex'. It is also possible
to say %7 string to specify a job whose text contains string , if there is only one
such job.

The shell maintains a notion of the current and previous jobs. In output pertaining
to jobs, the current job is marked with a + (plus) and the previous job with a -
(hyphen). The abbreviations %+, %, and (by analogy with the syntax of the history
mechanism) %% all refer to the current job, and %- refers to the previous job.

The job control mechanism requires that the stty option new be set on some
systems. It is an artifact from a new implementation of the tty driver which allows
generation of interrupt characters from the keyboard to tell jobs to stop. See stty
and the setty tcsh built-in command for details on setting options in the new tty
driver.

Status Reporting

The tcsh shell learns immediately whenever a process changes state. It normally
informs you whenever a job becomes blocked so that no further progress is
possible, but only just before it prints a prompt. This is done so that it does not
otherwise disturb your work. If, however, you set the shell variable notify, the shell
will notify you immediately of changes of status in background jobs. There is also a
shell command notify which marks a single process so that its status changes will
be immediately reported. By default notify marks the current process; simply say
'notify' after starting a background job to mark it.

When you try to leave the shell while jobs are stopped, you will be warned that
You have stopped jobs.' You may use the jobs command to see what they are. If
you do this or immediately try to exit again, the shell will not warn you a second
time, and the suspended jobs will be terminated.

Automatic, Periodic and Timed Events

There are various ways to run commands and take other actions automatically at
various times in the life cycle of the shell.

e The sched built-in command puts commands in a scheduled-event list, to be
executed by the shell at a given time.

* The beepcmd, cwdemd, periodic and precmd special aliases can be set,
respectively, to execute commands when the shell wants to ring the bell, when
the working directory changes, every tperiod minutes and before each prompt.

e The autologout shell variable can be set to log out of the shell after a given
number of minutes of inactivity.

¢ The mail shell variable can be set to check for new mail periodically.

e The printexitvalue shell variable can be set to print the exit status of
commands which exit with a status other than zero.

154 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

tcsh

e The rmstar shell variable can be set to ask the user, when rm * is typed, if that
is really what was meant.

* The time shell variable can be set to execute the time built-in command after
the completion of any process that takes more than a given number of CPU
seconds.

* The watch and who shell variables can be set to report when selected users
log in or out, and the log built-in command reports on those users at any time.

National Language System Report
When using the system's NLS, the setlocale function is called to determine
appropriate character classification and sorting. This function typically examines the
LANG and LC_CTYPE environment variables; refer to the system documentation
for further details.

Unknown characters (those that are neither printable nor control characters) are
printed in the format \nnn.

The version shell variable indicates what options were chosen when the shell was
compiled. Note also the newgrp built-in and echo_style shell variables and the
locations of the shell's input files (see “tcsh Files” on page 172).

The tcsh shell currently does not support 3 locales. They are IBM-1388 (Chinese),
IBM-933 (Korean) and IBM-937 (Traditional Chinese).

Signal Handling
Login shells ignore interrupts when reading the file "/.logout. The shell ignores quit
signals unless started with -q. Login shells catch the terminate signal, but non-login
shells inherit the terminate behavior from their parents. Other signals have the
values which the shell inherited from its parent.

In shell scripts, the shell's handling of interrupt and terminate signals can be
controlled with onintr, and its handling of hangups can be controlled with hup and
nohup.

The shell exits on a hangup (see also the logout shell variable). By default, the
shell's children do too, but the shell does not send them a hangup when it exits.
hup arranges for the shell to send a hangup to a child when it exits, and nohup
sets a child to ignore hangups.

Terminal Management

The shell uses three different sets of terminal (tty) modes: edit, used when editing,
quote, used when quoting literal characters, and execute, used when executing
commands. The shell holds some settings in each mode constant, so commands
which leave the tty in a confused state do not interfere with the shell. The shell also
matches changes in the speed and padding of the tty. The list of tty modes that are
kept constant can be examined and modified with the setty built-in. Although the
editor uses CBREAK mode (or its equivalent), it takes typed-ahead characters
anyway.

The echotc, settc and telltc commands can be used to manipulate and debug
terminal capabilities from the command line.

Chapter 10. tcsh Commands 155

tcsh

The tcsh shell adapts to window resizing automatically and adjusts the environment
variables LINES and COLUMNS if set.

tcsh Built-in Commands

The list below contains tesh built-in commands which are not /bin/sh built-ins.
Descriptions for these commands are found at the end of this chapter.

% filetest popd uncomplete
alloc glob pushd unhash
bindkey hashstat rehash unlimit
breaksw hup repeat unsetenv
builtins limit sched watchlog
bye login setenv where

chdir logout settc which
complete Is-F setty

dirs notify source

echotc onintr telltc

Other tcsh built-in commands are also found in the OS/390 shell. In some cases,
they may differ in function; see the specific command description for a discussion of
the tcsh version of the command.

: (colon) cd fg nice stop unset
@ (at) echo history nohup suspend wait
alias eval jobs printenv time

bg exec kill set umask

break exit newgrp shift unalias

As well as built-in commands, the tcsh shell has a set of special aliases:

beepcmd periodic shell
cwdemd precmd

If set, each of these aliases executes automatically at the indicated time. They are
initially undefined. For more information about aliases, see “Alias Substitution” on
page 143.

Descriptions of these aliases are as follows:

beepcmd
Runs when the shell wants to ring the terminal bell.

cwdemd
Runs after every change of working directory. For example, if the user is
working on an X window system using xterm and a re-parenting window
manager that supports title bars such as twm and does

> alias cwdemd 'echo -n "~[]2;${HOST}:$cwd ~G"'

then the shell will change the title of the running xterm to be the name of the
host, a colon, and the full current working directory. A fancier way to do that is

> alias cwdemd ‘echo -n "~[]2;${HOST}:$cwd~G~[]1;${HOST}~G""

This will put the hostname and working directory on the title bar but only the
hostname in the icon manager menu. Putting a cd, pushd or popd in
cwdemd may cause an infinite loop.

156 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

tcsh

periodic

Runs every tperiod minutes. This provides a convenient means for checking
on common but infrequent changes such as new mail. For example, if one
does

> set tperiod = 30

> alias periodic checknews

then the checknews program runs every 30 minutes. If periodic is set but
tperiod is unset or set to 0, periodic behaves like precmd.

precmd

Runs just before each prompt is printed. For example, if one does

> alias precmd date

then date runs just before the shell prompts for each command. There are
no limits on what precmd can be set to do, but discretion should be used.

shell

Specifies the interpreter for executable scripts which do not themselves
specify an interpreter. The first word should be a full pathname to the desired
interpreter. For example: /bin/tesh or /ust/local/bin/tcsh (by default, this is
set to /bin/tcsh).

tcsh Programming Constructs

1.

breaksw

Causes a break from a switch, resuming after the endsw.

. case label

A label in a switch. See the switch built-in description.

. continue

Continues execution of the nearest enclosing while or foreach. The rest of the
commands on the current line are executed.

. default

Labels the default case in a switch statement. It should come after all case
labels.

else
end
endif
endsw

See the description of the foreach, if, switch, and while statements that
follow.

. goto word

With goto, word is filename and command substituted to yield a string of the
form label. The tcsh shell rewinds its input as much as possible, searches for a
line of the form label, possible preceded by blanks or tabs, and continues
exectution after that line.

Chapter 10. tcsh Commands 157

tcsh

10.

foreach

end

Successively sets the variable name to each member of wordlist and executes
the sequence of commands between this command and the matching end.
(Both foreach and end must appear alone on separate lines.) The built-in
command continue may be used to continue the loop prematurely and the
built-in command break to terminate it prematurely. When this command is
read from the terminal, the loop is read once prompting with foreach? (or
prompt2) before any statements in the loop are executed. If you make a
mistake typing in a loop at the terminal you can rub it out.

if (expr) then

;ise if (expr2) then
else

;.ndif

If the specified expr is true then the commands to the first else are executed;
otherwise if expr2 is true then the commands to the second else are executed,
etc.. Any number of else-if pairs are possible; only one endif is needed. The
else part is optional. (The words else and endif must appear at the beginning
of input lines; the if must appear alone on its input line or after an else.)

switch (string)
case sirt:

breaksw
default

breaksw
endsw

Each case label is successively matched, against the specified string which is
first command and filename expanded. The file metacharacters *, ? and [...]
may be used in the case labels, which are variable expanded. If none of the
labels match before a default label is found, then the execution begins after
the default label. Each case label and the default label must appear at the
beginning of a line. The command breaksw causes execution to continue after
the endsw. Otherwise control may fall through case labels and default labels
as in C. If no label matches and there is no default, execution continues after
the endsw.

while (expr)

end

158 05/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

tcsh

Executes the commands between the while and the matching end while expr
(expression) evaluates non-zero. while and end must appear alone on their
input lines. break and continue may be used to terminate or continue the loop
prematurely. If the input is a terminal, the user is prompted the first time
through the loop as with foreach.

tcsh Shell and Environment Variables

The variables described in this section have special meaning to the tcsh shell. The
tcsh shell sets addsuffix, argv, autologout, command, echo_style, edit, gid,
group, home, loginsh, path, prompt, prompt2, prompt3, shell, shivl, tcsh,
term, tty, uid, user, and version at startup. They do not change thereafter, unless
changed by the user. The tcsh shell updates cwd, dirstack, owd, and status when
necessary, and sets logout on logout.

The shell synchronizes group, home, path, shivl, term, and user with the
environment variables of the same names: whenever the environment variable
changes the shell changes the correpsonding shell variable to match (unless the
shell variable is read-only) and vice versa. Although cwd and PWD have identical
meanings, they are not synchronized in this manner.

The shell automatically interconverts the different formats of path and PATH.

Table 2 (Page 1 of 9). tcsh Built-in Shell Variables

Variable Purpose

addsuffix If set, filename completion adds / to the end of directories and a space
to the end of normal files.

ampm This variable gives a user the ability to alter the time format in their tcsh
prompt. Specifically, ampm will override the %T and %P formatting
sequences in a user's prompt. If set, all times are shown in 12hour
AM/PM format.

argv The arguments to the shell. Positional parameters are taken from argv,
that is, $1 is replaced by $argv, etc.. Set by default, but usually empty in
interactive shells.

autocorrect If set, the spell-word editor command is invoked automatically before
each completion. (This variable is not implemented.)

autoexpand If set, the expand-history editor command is invoked automatically
before each completion attempt.

autolist If set, possibilities are listed after an ambiguous completion. If set to
ambiguous, possibilites are listed only when no new characters are
added by completion.

autologout Set to the number of minutes of inactivity before automatic logout.
Automatic locking is an unsupported feature on the OS/390 platform. If
you specify a second parameter on the autologout statement (intending
it to be for autolock), this parameter will be assigned to autologout.
When the shell automatically logs out, it prints 'autologout’, sets the
variable logout to automatic and exits. Set to 60 (automatic logout after
60 minutes) by default in login and superuser shells, but not if the shell
thinks it is running under a window system (the DISPLAY environment
variable is set), or the tty is a pseudo-tty (pty). See also the logout shell
variable.

Chapter 10. tcsh Commands 159

tcsh

Table 2 (Page 2 of 9). tcsh Built-in Shell Variables

Variable

Purpose

backslash_
quote

If set, backslashes (\) always quote \, ' (single quote) and " (double
quote). This may make complex quoting tasks easier, but it can cause
syntax errors in csh scripts.

cdpath

A list of directories in which ¢d should search for subdirectories if they
aren't found in the current directory.

command

If set, the command which was passed to the shell with the -¢ flag.

complete

If set to enhance, completion first ignores case and then considers
periods, hyphens and underscores (., -' and '_') to be word separators
and hyphens and underscores to be equivalent.

correct

If set to cmd, commands are automatically spelling-corrected. If set to
complete, commands are automatically completed. If set to all, the
entire command line is corrected.

cwd

The full pathname of the current directory. See also the dirstack and
owd shell variables.

dextract

If set, pushd +n extracts the nth directory from the directory stack rather
than rotating it to the top.

dirsfile

The default location in which dirs -S and dirs -L look for a history file. If
unset, “/.cshdirs is used. Because only 7/.teshre is normally sourced
before “/.cshdirs, dirsfile should be set in “/.teshre rather than "/.login.

For example:

set dirsfile = “/.cshdirs

dirstack

An array of all the directories on the directory stack. $dirstack[1] is the
current working directory, $dirstack[2] the first directory on the stack,
etc. Note that the current working directory is $dirstack[1] but =0 in
directory stack substitutions, etc. One can change the stack arbitrarily
by setting dirstack, but the first element (the current working directory)
is always correct. See also the cwd and owd shell variables.

dunique

If set, pushd removes any instances of name from the stack before
pushing it onto the stack.

echo

If set, each command with its arguments is echoed just before it is
executed. For non-built-in commands all expansions occur before
echoing. Built-in commands are echoed before command and filename
substitution, since these substitutions are then done selectively. Set by
the -x command line option.

160 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

tcsh

Table 2 (Page 3 of 9). tcsh Built-in Shell Variables

Variable

Purpose

echo_style

The style of the echo built-in. May be set to:
bsd Don't echo a newline if the first argument is -n.

sysv
Recognize backslashed escape sequences in echo strings.

both Recognizes both the -n flag and backslashed escape sequences;

the default.

none
Recognize neither.

Set to both by default to the local system default.

The following is an example of this variable's use:

> echo $echo_style
bsd

> echo "\n"

\n

> echo -n "test"
test>

> set echo_style=sysv
> echo $echo_style
Sysv

> echo "\n"

> echo -n "test"

-n test

> set echo_style=both
> echo $echo_style
both

> echo -n "test"
test> echo "\n"

>set echo_style=none
> echo $echo_style
none

> echo -n "test"

-n test

> echo "\n"

\n

>

edit

If set, the command-line editor is used. Set by default in interactive
shells.

ellipsis

If set, the %cC'/'%. and %C prompt sequences (see the prompt shell

variable) indicate skipped directories with an ellipsis (...) instead of /.

fignore

Lists file name suffixes to be ignored by completion.

filec

In the tcsh shell, completion is always used and this variable is ignored.

gid

The user's real group ID.

group

The user's group name.

histchars

A string value determining the characters used in history substitution.

The first character of its value is used as the history substitution
character, replacing the default character ! (exclamation point). The

second character of its value replaces the character ~ (caret) in quick

substitutions.

Chapter 10. tcsh Commands

161

tcsh

Table 2 (Page 4 of 9). tcsh Built-in Shell Variables

Variable

Purpose

histdup

Controls handling of duplicate entries in the history list. If set to all only
unique history events are entered in the history list. If set to prev and
the last history event is the same as the current command, then the
current command is not entered in the history. If set to erase and the
same event is found in the history list, that old event gets erased and
the current one gets inserted. The prev and all options renumber history
events so there are no gaps.

histfile

The default location in which history -S and history -L look for a
history file. If unset, 7.history is used. histfile is useful when sharing
the same home directory between different machines, or when saving
separate histories on different terminals. Because only 7.tcshrc is
normally sourced before 7.history, histfile should be set in 7.tcshrc
rather than 7.login.

An example:

set histfile = 7/.history

histlit

If set, built-in and editor commands and the savehist mechanism use
the literal (unexpanded) form of lines in the history list. See also the
toggle-literal-history editor command.

history

The first word indicates the number of history events to save. The
optional second word indicates the format in which history is printed; if
not given, %h\t%T\t%R\n is used. The format sequences are described
below under prompt. (Note that %R has a variable meaning). Set to
100 by default.

home

Initialized to the home directory of the invoker. The filename expansion
of ~ refers to this variable.

ignoreeof

If set to the empty string or 0 and the input device is a terminal, the
end-of-file command (usually generated by the user by typing ~D on an
empty line) causes the shell to print 'Use "logout" to leave tcsh.' instead
of exiting. This prevents the shell from accidentally being killed. If set to
a number n, the shell ignores n - 1 consecutive end-of-files and exits on
the nth. If unset, 1 is used. That is, the shell exits on a single "D.

implicited

If set, the shell treats a directory name typed as a command as though
it were a request to change to that directory. If set to verbose, the
change of directory is echoed to the standard output. This behavior is
inhibited in non-interactive shell scripts, or for command strings with
more than one word. Changing directory takes precedence over
executing a like-named command, but it is done after alias substitutions.
Tilde and variable expansions work as expected.

inputmode

If set to insert or overwrite, puts the editor into that input mode at the
beginning of each line.

listflags

If set to x, a or A, or any combination thereof (for example, xA), they are
used as flags to Is-F, making it act like Is -xF, Is -Fa, Is -FA or a
combination (for example, Is -FxA): a shows all files (even if they start
with a "), A shows all files but '.' and '..!, and x sorts across instead of
down. If the second word of listflags is set, it is used as the path to
Is(1).

listjobs

If set, all jobs are listed when a job is suspended. If set to long, the
listing is in long format.

162 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

tcsh

Table 2 (Page 5 of 9). tcsh Built-in Shell Variables

Variable

Purpose

listlinks

If set, the Is-F built-in command shows the type of file to which each
symbolic link points. For an example of its use, see “Is-F built-in
command for tcsh: List files” on page 186.

listmax

The maximum number of items which the list-choices editor ocmmand
will list without asking first.

listmaxrows

The maximum number of rows of items which the list-choices editor
command will list without asking first.

loginsh

Set by the shell if is a login shell. Setting or unsetting it within a shell
has no effect. See also shlvl.

logout

Set by the shell to normal before a normal logout, automatic before an
automatic logout, and hangup if the shell was killed by a hangup signal
(see “Signal Handling” on page 155). See also the autologout shell
variable.

mail

The names of the files or directories to check for incoming mail,
separated by whitespace, and optionally preceeded by a numeric word.
Before each prompt, if 10 minutes have passed since the last check, the
shell checks each file and says 'You have new mail.' (or, if mail contains
multiple files, "You have new mail in name.") if the filesize is greater than
zero in size and has a modification time greater than its access time.

If you are in a login shell, then no mail file is reported unless it has been
modified after the time the shell has started up, in order to prevent
redundant notifications. Most login programs will tell you whether or not
you have mail when you log in.

If a file specified in mail is a directory, the shell will count each file
within that directory as a separate message, and will report 'You have n
mails.' or 'You have n mails in name.' as appropriate. This functionality
is provided primarily for those systems which store mail in this manner,
such as the Andrew Mail System.

If the first word of mail is numeric it is taken as a different mail checking
interval, in seconds. Under very rare circumstances, the shell may
report 'You have mail.' instead of 'You have new mail.'

matchbeep

If set to never, completion never beeps. If set to nomatch, it beeps only
when there is no match. If set to ambiguous, it beeps when there are
multiple matches. If set to notunique, it beeps when there is one exact
and other longer matches. If unset, ambiguous is used.

nobeep

If set, beeping is completely disabled.

noclobber

If set, restrictions are placed on output redirection to insure that files are
not accidentally destroyed and that >> redirections refer to existing files,
as described in “Input or Output” on page 149.

noglob

If set, filename substitution and directory stack substitution are inhibited.
This is most useful in shell scripts which do not deal with filenames, or
after a list of filenames has been obtained and further expansions are
not desirable.

nokaniji

If set and the shell supports Kaniji (see the version shell variable), it is
disabled so that the meta key can be used.

nonomatch

If set, a filename substitution or directory stack substitution which does
not match any existing files is left untouched rather than causing an
error. It is still an error for the substitution to be malformed, that is, echo
[still gives an error.

163

Chapter 10. tcsh Commands

tcsh

Table 2 (Page 6 of 9). tcsh Built-in Shell Variables

Variable Purpose

nostat A list of directories (or glob-patterns which match directories; see
“Filename Substitution” on page 146) that should not be stat(2)ed
during a completion operation. This is usually used to exclude
directories which take too much time to stat(2), for example /afs.

notify If set, the shell announces job completions asynchronously. The default
is to present job completions just before printing a prompt.

owd The old working directory, equivalent to the - (hyphen) used by ed and
pushd. See also the cwd and dirstack shell variables.

path A list of directories in which to look for executable commands. A null

word specifies the current directory. If there is no path variable then only
full pathnames will execute. path is set by the shell at startup from the
PATH environment variable or, if PATH does not exist, to a
system-dependent default something like (/usr/local/bin /usr/bsd /bin
/usr/bin .). The shell may put "' first or last in path or omit it entirely
depending on how it was compiled; see the version shell variable. A
shell which is given neither the -¢ nor the -t option hashes the contents
of the directories in path after reading 7.tcshrc and each time path is
reset. If one adds a new command to a directory in path while the shell
is active, one may need to do a rehash for the shell to find it.

printexitvalue

If set and an interactive program exits with a non-zero status, the shell
prints 'Exit status'.

prompt2 The string with which to prompt in while and foreach loops and after
lines ending in \. The same format sequences may be used as in
prompt (note the variable meaning of %R). Set by default to %R? in
interactive shells.

prompt3 The string with which to prompt when confirming automatic spelling
correction. The same format sequences may be used as in prompt
(note the variable meaning of %R). Set by default to CORRECT>%R
(vinlela)? in interactive shells.

promptchars | If set (to a two-character string), the %# formatting sequence in the
prompt shell variable is replaced with the first character for normal users
and the second character for the superuser.

pushdtohome If set, pushd without arguments does pushd *, like cd.

pushdsilent If set, pushd and popd do not print the directory stack.

recexact If set, completion completes on an exact match even if a longer match
is possible.

recoghize_ If set, command listing displays only files in the path that are

only_ executable.

executables

rmstar

If set, the user is prompted before rm * is executed.

rprompt

The string to print on the right-hand side of the screen (after the
command input) when the prompt is being displayed on the left. It
recognises the same formatting characters as prompt. It will
automatically disappear and reappear as necessary, to ensure that
command input isn't obscured, and will only appear if the prompt,
command input, and itself will fit together on the first line. If edit isn't
set, then rprompt will be printed after the prompt and before the
command input.

savedirs

If set, the shell does dirs -S before exiting.

164 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

tcsh

Table 2 (Page 7 of 9). tcsh Built-in Shell Variables

Variable Purpose

savehist If set, the shell does history -S before exiting. If the first word is set to
a number, at most that many lines are saved. (The number must be
less than or equal to history.) If the second word is set to merge, the
history list is merged with the existing history file instead of replacing it
(if there is one) and sorted by time stamp and the most recent events
are retained.

An example:

set savehist = (15 merge)

sched The format in which the sched built-in command prints scheduled
events. If not given, %h\t%T\t%R\n is used. The format sequences are
described above under prompt; note the variable meaning of %R.

shell The file in which the shell resides. This is used in forking shells to
interpret files which have execute bits set, but which are not executable
by the system (see “Built-in and Non-Built-in Command Execution” on
page 148. Initialized to the (system-dependent) home of the shell.

shivl The number of nested shells. Reset to 1 in login shells. See also
loginsh.
status The status returned by the last command. If it terminated abnormally,

then 0200 is added to the status. tcsh built-in commands which fail
return exit status 1, all other built-in commands return status 0.

tcsh The version number of the shell in the format R.VV.PP, where R is the
major release number, VV the current version and PP the patchlevel.

term The terminal type. Usually set in 7.Jogin as described under “Options
and Invocation” on page 129.

tperiod The period, in minutes, between executions of the periodic special alias.

tty The name of the tty, or empty if not attached to one.

uid The user's login name.

user The user's login name.

verbose If set, causes the words of each command to be printed, after history

substitution (if any). Set by the —v command line option.

Chapter 10. tcsh Commands 165

tcsh

Table 2 (Page 8 of 9). tcsh Built-in Shell Variables

Variable

Purpose

version

The version ID stamp. It contains the shell's version number (see tcsh),
origin, release date, vendor, operating system and machine (see
VENDOR, OSTYPE, and MACHTYPE environment variables) and a
comma-separated list of options which were set at compile time.
Options which are set by default in the distribution are noted.

8b
7b

nis

dl
nd
\
dtr
bye

al

kan

sm
hb

ng
rh

afs

The shell is eight bit clean; default.
The shell is not eight bit clean.
The system's NLS is used; default for systems with NLS.

Login shells execute /etc/csh.login before instead of after
letc/csh.cshrec and 7.login before instead of after “/.teshre and
“I.history.

""is put last in path for security; default.

"' is omitted from path for security.

vi-style editing is the default rather than emacs.
Login shells drop DTR when exiting.

bye is a synomym for logout and log is an alternate name for
watchlog.

autologout is enabled; default.

Kanji is used and the ISO character set is ignored, unless the
nokaniji shell variable is set.

The system's malloc is used.

The #!<program> <args> convention is emulated when executing
shell scripts.

The newgrp built-in is available.

The shell attempts to set the REMOTEHOST environment
variable.

The shell verifies your password with kerberos server if local
authentication fails. The afsuser shell variable or the AFSUSER
environment variable override your local username if set.

An administrator may enter additional strings to indicate differences in
the local version.

visiblebell

If set, a screen flash is used rather than the audible bell. See
nobeep.(Currently not implemented)

166 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

tcsh

Table 2 (Page 9 of 9). tcsh Built-in Shell Variables

Variable

Purpose

watch

A list of user/terminal pairs to watch for logins and logouts. If either the
user is any all terminals are watched for the given user and vice versa.
Setting watch to (any any) watches all users and terminals. For
example,

set watch = (george ttyd 1 any console $user any)

reports activity of the user george on ttyd1, any user on the console,
and oneself (or a trespasser) on any terminal.

Logins and logouts are checked every 10 minutes by default, but the
first word of watch can be set to a number to check every so many
minutes. For example,

set watch = (1 any any)

reports any login/logout once every minute. For the impatient, the log
built-in command triggers a watch report at any time. All current logins
are reported (as with the log built-in) when watch is first set.

The who shell variable controls the format of watch reports.

who

The format string for watch messages. The following sequences are
replaced by the given information:

%n The name of the user who logged in/out.

%a The observed action, i.e., 'logged on'. 'logged off', or 'replaced
olduser on'.

%l The terminal (tty) on which the user logged in/out.

%M The full hostname of the remote host, or 'local’ if the login/logout
was from the local host.

%m The hostname of the remote host up to the first '.' (period). The
full name is printed if it is an IP address or an X Window System
display.

%M and %m are available only on systems which store the remote
hostname in /etc/utmp. If unset, %n has %a %I from %m. is used, or
%n has %a %l. on systems which don't store the remote hostname.

wordchars

A list of non-alphanumeric characters to be considered part of a word by
the forward-word, back-ward word, etc. editor commands. If unset,
*?_-[I'=is used.

tcsh shell variables not described in the above table are described below:

prompt

The string which is printed before reading each command from the terminal.
prompt may include any of the following formatting sequences, which are
replaced by the given information:

%[The current working directory.

%"~ The current working directory, but with one's home directory represented
by ~ and other users' home directories represented by “user as per
filename substitution. “user substitution happens only if the shell has
already used “user in a pathname in the current session.

%c[[0]n], %.[[0]n]
The trailing component of the current working directory, or n trailing
components if a digit n is given. If n begins with 0, the number of

Chapter 10. tcsh Commands 167

tcsh

skipped components precede the trailing component(s) in the format
ftrailing. If the ellipsis shell variable is set, skipped components are
represented by an ellipsis so the whole becomes ...trailing. ~
substitution is done as in %™ above, but the © component is ignored
when counting trailing components.

%C Like %c, but without ~ substitution.

%h, %!, !
The current history event number.

%M The full hostname.
%m The hostname up to the first ".' (period).

%S (%s)
Start (stop) standout mode.

%B (%b)
Start (stop) boldfacing mode.

%U (%u)
Start (stop) underline mode.

%t, %@
The time of day in 12—hour AM/PM format.

%T Like %t, but in 24—hour format (but see the ampm shell variable).
%p The precise time of day in 12—hour AM/PM format, with seconds.

%P Like %p, but in 24—hour format (but see the ampm shell variable).
\c cis parsed as in bindkey.

~c cis parsed as in bindkey.

%% A single %.

%n The user name.

%d The weekday in '‘Day' format.

%D The day in 'dd' format.

%w The month in 'Mon' format.

%W The month in 'mm' format.

%y The year in 'yy' format.

%Y The year in 'yyyy' format.

%l The tcsh shell's tty.

%L Clears from the end of the prompt to end of the display or the end of the
line.

%$ Expands the shell or environment variable name immediately after the $.

%# > (or the first character of the promptchars shell variable) for normal
users, # (or the second character of promptchars) for the superuser.

Y%{string %}
Includes string as a literal escape sequence. It should be used only to

change terminal attributes and should not move the cursor location.
This cannot be the last sequence in prompt.

168 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

tcsh

%? The return code of the command executed just before the prompt.

%R In prompt2, the status of the parser. In prompt3, the corrected string.
In history, the history string.

The bold, standout and underline sequences are often used to distinguish a
superuser shell. For example,

>set prompt = "%m [%h] %B[%@%b [%/] you rang?"
tut [37] [2:54] [/usr/accts/sys] you rang? _

Set by default to %# in interactive shells.

symlinks
Can be set to several different values to control symbolic link ('symlink’)
resolution:

 If set to chase, whenever the current directory changes to a directory
containing a symbolic link, it is expanded to the real name of the directory
to which the link points. This does not work for the user's home directory.

 If set to ignore, the shell tries to construct a current directory relative to
the current directory before the link was crossed. This means that cding
through a symbolic link and then cd..'ing returns one to the original
directory. This only affects built-in commands and filename completion.

» If set to expand, the shell tries to fix symbolic links by actually expanding
arguments which look like pathnames. This affects any command, not just
built-ins. Unfortunately, this does not work for hard-to-recognize filenames,
such as those embedded in command options. Expansion may be
prevented by quoting. While this setting is usually the most convenient, it
is sometimes misleading and sometimes confusing when it fails to
recognize an argument which should be expanded. A compromise is to
use ignore and use the editor command normalize-path (bound by default
to ~X-n) when necessary.

Some examples are in order. First, let's set up some play directories:

> cd /tmp
> mkdir from from/src to
> Tn -s from/src to/dist

Here's the behavior with symlinks unset,

> cd /tmp/to/dist; echo $cwd
/tmp/to/dist

> cd ..; echo $cwd

/tmp/from

here's the behavior with symlinks set to chase,

> cd /tmp/to/dst; echo $cwd
/tmp/from/src

>cd ..; echo $cwd
/tmp/from

here's the behavior with symlinks set to ignore,

> cd /tmp/to/dist; echo $cwd
/tmp/to/dst

>cd ..; echo $cwd

/tmp/to

and here's the behavior with symlinks set to expand.

Chapter 10. tcsh Commands 169

tcsh

> cd /tmp/to/dist; echo $cwd
/tmp/to/dst

>cd ..; echo $cwd

/tmp/to

> cd /tmp/to/dist; echo $cwd
/tmp/to/dst

>cd ".."; echo $cwd
/tmp/from

> /bin/echo .

/tmp/to

> /bin/echo ".."

expand expansion:
1. works just like ignore for built-ins like cd,

2. is prevented by quoting, and

3. happens before filenames are passed to non-built-in commands.

time

If set to a number, then the time built-in command executes automatically
after each command which takes more than that many CPU seconds. If there
is a second word, it is used as a format string for the output of the time
built-in. The following sequences may be used in the format string:

%U The time the process spent in user mode in cpu seconds.

%S The time the process spent in kernel mode in cpu seconds.

%E The elapsed (wall clock) time in seconds.

%P The CPU percentage computed as (%U + %S) / %E.

%W The number of times the process was swapped.

%X The average amount in (shared) text space used in Kbytes.

%D The average amount in (unshared) data/stack space used in Kbytes.

%K The total space used (%X + %D) in Kbytes.

%M The maximum memory the process had in use at any time in Kbytes.

%F The number of major page faults (page needed to be brought from disk).

%R The number of minor page faults.

%l The number of input operations.

%0 The number of output operations.

%r The number of socket messages received.
%s The number of socket messages sent.

%k The number of signals received.

%w The number of voluntary context switches (waits).

%c The number of involuntary context switches.

Only the first four sequences are supported on systems without BSD resource

limit functions. The default time format is
Uu %Ss %E %P %X+%Dk %I+%0i0 %Fpf+%Ww

for systems that support resource usage reporting.

170 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

tcsh

The following table contains a list of tcsh environment variables.

Table 3. tcsh Environment Variables

Environment

Variable Purpose

COLUMNS A list of directories in which ed should search for subdirectories if they
aren't found in the current directory.

DISPLAY Used by X Window System. If set, the shell does not set autologout.

EDITOR The pathname to a default editor. See also the VISUAL environment
variable and the run-fg-editor editor command.

GROUP Equivalent to the group shell variable.

HOME Equivalent to the home shell variable..

HOST Initialized to the name of the machine on which the shell is running, as
determined by the gethostname system call.

HOSTTYPE Initialized to the type of the machine on which the shell is running, as
determined at compile time. This variable is obsolete and will be
removed in a future version.

HPATH A colon-separated list of directories in which the run-help editor
command looks for command documentation.

LANG Gives the preferred character environment. See “National Language
System Report” on page 155.

LC_CTYPE If set, only ctype character handling is changed. See “National
Language System Report” on page 155.

LINES The number of lines in the terminal. See “Terminal Management” on
page 155.

MACHTYPE | The machine type (microprocessor class or machine model), as
determined at compile time.

NOREBIND If set, printable characters are not rebound to self-insert-command.
After a user sets NOREBIND, a new shell must be started. See
“National Language System Report” on page 155.

OSTYPE The operating system, as determined at compile time.

PATH A colon-separated list of directories in which to look for executables.
Equivalent to the path shell variable, but in a different format..

PWD Equivalent to the ewd shell variable, but not synchronized to it; updated
only after an acutal directory change.

REMOTE- The host from which the user has logged in remotely, if this is the case

HOST and the shell is able to determine it. (The OS/390 tcsh shell is not
currently compiled with REMOTEHOST defined; see the version shell
variable).

SHLVL Equivalent to the shlvl shell variable.

TERM Equivalent to the term shell variable.

USER Equivalent to the user shell variable.

VENDOR The vendor, as determined at compile time.

VISUAL The pathname to a default full-screen editor. See the EDITOR

environment variable and the run-fg-editor editor command.

Chapter 10. tcsh Commands 171

tcsh

tcsh Files

letc/csh.cshrec
Read first by every shell.

letc/csh.login
Read by login shells after /etc/csh.cshrc..

“I.tcshre
Read by every shell after /etc/csh.cshre or its equivalent.

“I.history
Read by login shells after “/.tcshrc if savehist is set. See also histfile.

“I.login
The shell reads 7/.login after "/.teshrc and 7/.history. See the version shell
variable.

“I.cshdirs
Read by login shells after “/.login if savedirs is set. See also dirsfile.

“l.logout
Read by login shells at logout.

/bin/sh
Used to interpret shell scripts not starting with a #.

tmp/sh*
Temporary file for < <.

tcsh shell: Problems and Limitations

When a suspended command is restarted, the tcsh shell prints the directory it
started in if this is different from the current directory. This can be misleading (that
is, wrong) as the job may have changed directories internally.

Shell built-in functions are not stoppable/restartable. Command sequences of the
form 'a ; b ; c' are also not handled gracefully when stopping is attempted. If you
suspend 'b', the tcsh shell will then immediately execute 'c'. This is especially
noticeable if this expansion results from an alias. It suffices to place the sequence
of commands in ()'s to force it to a subshell, for example, (a; b ; c).

Control over tty output after processes are started is primitive. In a virtual terminal
interface much more interesting things could be done with output control.

Alias substitution is most often used to clumsily simulate shell procedures; shell
procedures should be provided rather than aliases.

Commands within loops are not placed in the history list. Control structures should
be parsed rather than being recognized as built-in commands. This would allow
control commands to be placed anywhere, to be combined with |, and to be used
with & and ; (semi-colon) metasyntax.

foreach doesn't ignore here documents when looking for its end.

It should be possible to use the : (colon) modifiers on the output of command
substitutions.

The screen update for lines longer than the screen width is very poor if the terminal
cannot move the cursor up (terminal type 'dumb’).

172 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

tcsh: % (percent)

It is not necessary for HPATH and NOREBIND to be environment variables.

Glob-patterns which do not use '?', ™' or '[]' or which use '{}' or
correctly.

are not negated

The single-command form of if does output redirection even if the expression is
false and the command is not executed.

Is-F includes file identification characters when sorting filenames and does not
handle control characters in filenames well. It cannot be interrupted.

visiblebell shell variable is currently not implemented.

In filename and programmed completion, the 'C' completion rule word list type does
not correctly select completion from the given directory.

There are three locales (codepages) which the tcsh shell will not correctly support:
IBM-1388 (Chinese), IBM-933 (Korean) and IBM-937 (Traditional Chinese).

If you want to help maintain and test tcsh, send mail to listserv@mx.gw.com with
the text 'subscribe tcsh .

Limitations
Some limitations of the tcsh shell are:

* Words can be no longer than 1024 characters.
e The system limits argument lists to 10240 characters.

e The number of arguments to a command which involves filename expansion is
limited to 1/6th the number of characters allowed in an argument list.

¢ Command substitutions may substitute no more characters than are allowed in
an argument list.

e To detect looping, the shell restricts the number of alias substitutions on a
single line to 20.

Related Information

: (colon), @ (at), alias, bg, break, cd, continue, echo, eval, exec, exit, fg,
history, jobs, kill, newgrp, nice, nohup, printenv, set, shift, stop, suspend,
time, umask, unalias, unset, wait

% (percent) built-in command for tcsh: Move jobs to the foreground or

background

% [job] [&]

Chapter 10. tcsh Commands 173

tcsh: bindkey

Description
%, is a synonym for the fg built-in command.

* % (percent) without arguments will bring the current job to the foreground.

* % specified with a job number attempts to bring that particular job to the
foreground.

* % job & will move the specified job to the background. This syntax works the
same as the bg built-in command. If no job is specified, the current job is
moved to the background.

Note: Current jobs will have a + next to the status column in jobs command
output. See “Jobs” on page 153.

Related Information
jobs, tcsh

alloc built-in command for tcsh: Show the amount of dynamic
memory acquired

Format
alloc argument

Description

Shows the amount of dynamic memory acquired, broken down into used and free
memory. The argument shows the number of free and used blocks in each size
category. The categories start at size 8 and double at each step.

Note: alloc is supported, but the output is not meaningful on OS/390.

Related Information
tcsh

bindkey built-in command for tcsh: List all bound keys

Format

bindkey [-lI-dI-el-vI-u]

bindkey [-a] [-b] [-K] [-1] [- -] key

bindkey [-a] [-b] [-k] [-cl-s] [- =] key command
Description

bindkey specified alone (without options, key, or key command) lists all bound
keys and the editor command to which each is bound.

bindkey specified with key (with or without options) lists the editor command to
which key is bound.

bindkey specified with key command (with or without options) binds the editor
command to key.

174 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

Options

Usage Notes

tcsh: bindkey

-l Lists all commands and a short description of each.

—-d Binds all keys to the standard bindings for the default editor.
—e Binds all keys to the standard GNU Emacs-like bindings.

-v Binds all keys to the standard vi-like bindings.

—a Lists or changes key-bindings in the alternative key map. This is the key map
used in vi command mode.

-b key is interpreted as a control character written ~character ("A') or
C-character ('C-A"), a meta character written M-character (‘M-A"), or an
extended prefix key written X-character ('X-A").

-k keyis interpreted as a symbolic arrow key name, which may be one of 'down’,
‘up, 'left' or 'right'.

-r Removes key's binding. Be careful: bindkey -r does not bind key to
self-insert-command, it unbinds key completely.

—¢ command is interpreted as a built-in or external command instead of an editor
command.

—-s command is taken as a literal string and treated as terminal input when key is
typed. Bound keys in command are themselves reinterpreted, and this
continues for ten levels of interpretation.

— — Forces a break from option processing, so the next word is taken as key even
if it begins with '-',

1. key may be a single character or a string. If a command is bound to a string,
the first character of the string is bound to sequence-lead-in and the entire
string is bound to the command.

2. Control characters in key can be literal (they can be typed by preceding them
with the editor command quoted-insert, normally bound to *V') or written
caret-character style, for example, “A'. Delete is written *?' (caret-question
mark). key and command can contain backslashed escape sequences (in the
style of System V echo) as follows:

\a Bell

\b Backspace

\e Escape

\f Form feed

\n Newline

\r Carriage return
\t Horizontal tab
\v Vertical tab

\nnn The EBCDIC character corresponding to the octal number nnn

\' nullifies the special meaning of the following characters, notably V' and "'

Chapter 10. tcsh Commands 175

tcsh: complete

Related Information
tcsh

builtins built-in command for tcsh: Prints the names of all built-in
commands

Format
builtins

Description
Prints the names of all built-in commands.

Related Information
tcsh

bye built-in command for tcsh: Terminate the login shell

Format
bye

Description
A synonym for the logout built-in command. (See the version shell variable.)

Related Information
logout

chdir built-in shell command for tcsh: Change the working directory

Format
chdir

Description
A synonym for the ed built-in command.

Related Information
cd, tcsh

complete built-in command for tcsh: List completions

176 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

Format

Description

Arguments

tcsh: complete

complete[command [word/pattern/list:select)/[[suffix]/] ...]]

complete, without arguments, lists all completions. With command, complete lists
completions for command. With command and word etc., complete defines
completions.

command

command may be a full command name or a glob-pattern. See “Filename
Substitution” on page 146. It can begin with — to indicate that completion
should be used only when command is ambiguous.

word

word specifies which word relative to the current word is to be completed, and
may be one of the following:

(o

Current-word completion. pattern is a glob-pattern which must match the
beginning of the current word on the command line. pattern is ignored
when completing the current word.

Like ¢, but includes pattern when completing the current word.

Next-word completion. pattern is a glob-pattern which must match the
beginning of the previous word on the command line.

Like n, but must match the beginning of the word two before the current
word.

Position-dependent completion. pattern is a numeric range, with the
same syntax used to index shell variables, which must include the
current word.

list The list of possible completions, which may be one of the following:

@ mM —+~ 0 g o T o

— S—

w » S

—-~

Aliases

Bindings (editor commands)

Directories

Directories which begin with the supplied path prefix
Environment variables

Filenames

Filenames which begin with the supplied path prefix
Groupnames

Jobs

Limits

Nothing

Shell variables

Signals

Plain (text) files

Chapter 10. tcsh Commands 177

tcsh: complete

Examples

Plain (text) files which begin with the supplied path prefix
Any variables
Usernames

Like n, but prints select when list-choices is used

X X © < =

Completions
Svar Words from the variable var
(..-) Words from the given list

Words from the output of command

select

select is an optional glob-pattern. If given, only words from list which match
select are considered and the fignore shell variable is ignored. The last three
types of completion may not have a select pattern, and x uses select as an
explanatory message when the list-choices editor command is used.

suffix

suffix is a single character to be appended to a successful completion. If null,
no character is appended. If omitted (in which case the fourth delimiter can
also be omitted), a slash is appended to directories and a space to other
words.

1. Some commands take only directories as arguments, so there's no point in

completing plain files. For example:
> complete cd 'p/1/d/'

completes only the first word following ed (p/7) with a directory.

. p-type completion can be used to narrow down command completion. For

example:

> co["D]

complete compress

> complete -co* 'p/0/(compress)/’
> co[”D]

> compress

This completion completes commands (words in position 0, p/0) which begin
with co (thus matching co”) to compress (the only word in the list). The leading
- indicates that this completion is to be used only with ambiguous commands.

> complete find 'n/-user/u/'

This is an example of n-type completion. Any word following find and
immediately following -user is completed from the list of users.

> complete cc 'c/-I/d/!

This demonstrates c-type completion. Any word following cc and beginning with
-l is completed as a directory. -/is not taken as part of the directory because
we used lowercase c.

5. Different lists are useful with different commands:

178 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

10.

tcsh: complete

complete alias 'p/l/a/'

complete man 'p/x/c/'

complete set 'p/1/s/'

complete true 'p/1/x:Truth has no options./'

vV V. V V

These complete words following alias with aliases, man with commands, and
set with shell variables. true doesn't have any options, so x does nothing when
completion is attempted and prints Truth has no options.' when completion
choices are listed.

The man example, and several other examples below, could just as well have
used ¢/* or n/* as p/*.

Words can be completed from a variable evaluated at completion time,

> complete ftp 'p/1/$hostnames/'
> set hostnames = (rtfm.mit.edu tesla.ee.cornell.edu)

> ftp [~D]

rtfm.mit.edu tesla.ee.cornell.edu

> ftp [~C]

> set hostnames = (rtfm.mit.edu tesla.ee.cornell.edu uunet.uu.net)
> ftp [~D]

rtfm.mit.edu tesla.ee.cornell.edu uunet.uu.net
or from a command run at completion time:

> complete kill 'p//'ps | awk \{print\ \$1\}'/"
> ki1l -9 [~D]
23113 23377 23380 23406 23429 23529 23530 PID

The complete command does not itself quote its arguments, so the braces,
space and $ in {print $1} must be quoted explicitly.

. One command can have multiple completions:

> complete dbx 'p/2/(core)/' 'p/x/c/’

This example completes the second argument to dbx with the word core and
all other arguments with commands. The positional completion is specified
before the next-word completion. Since completions are evaluated from left to
right, if the next-word completion were specified first it would always match and
the positional completion would never be executed. This is a common mistake
when defining a completion.

. The select pattern is useful when a command takes only files with particular

forms as arguments. For example,
> complete cc 'p/*/f:*.[cao]/"

completes cc arguments only to files ending in .c, .a, or .0. select can also
exclude files, using negation of a glob-pattern as described under “Filename
Substitution” on page 146.

. One might use

> complete rm 'p/*/f:”*.{c,h,cc,C,tex,1,man,1,y}/"

to exclude precious source code from rm completion. Of course, one could still
type excluded names manually or override the completion mechanism using the
complete-word-raw or list-choices-raw editor command.

The D, F and T lists are like d, f and t respectively, but they use the select
argument in a different way: to restrict completion to files beginning with a

Chapter 10. tcsh Commands 179

tesh: dirs

11.

12.

particular path prefix. For example, the ElIm mail program uses = as an
abbreviation for one's mail directory. One might use

> complete elm c@=@F:$HOME/Mail/@

to complete elm -f = as if it were elm -f /Mail/. We used @ instead of / to avoid
confusion with the select argument, and we used $HOME instead of ~ because
home directory substitution only works at the beginning of a word.

suffix is used to add a nonstandard suffix (not space or /' for directories) to
completed words. For example,

> complete finger 'c/*@/$hostnames/' 'p/1/u/@'

completes arguments to finger from the list of users, appends an @, and then
completes after the @ from the hosthames variable. Note the order in which
the completions are specified.

A more complex example:

complete find \

'n/-name/f/' 'n/-newer/f/' 'n/-{,n}cpio/f/' \
'n/-exec/c/' 'n/-ok/c/' 'n/-user/u/' \
'n/-group/g/' 'n/-fstype/(nfs 4.2)/' \
'n/-type/(b cd f1ps)/'\

'c/-/(name newer cpio ncpio exec ok user \
group fstype type atime ctime depth inum \

1s mtime nogroup nouser perm print prune \
size xdev)/' \

‘p/*/d/!

This completes words following -name, -newer, -cpio or ncpio (note the pattern
which matches both) to files, words following -exec or -ok to commands, words
following user and group to users and groups respectively and words following
-fstype or -type to members of the given lists. It also completes the switches
themselves from the given list (note the use of c-type completion) and
completes anything not otherwise completed to a directory.

Programmed completions are ignored if the word being completed is a tilde
substitution (beginning with 7) or a variable (beginning with $). complete is an
experimental feature, and the syntax may change in future versions of the shell.
See also the uncomplete built-in command.

Related Information

tcsh, uncomplete

dirs built-in command for tcsh: Print the directory stack

Format

dirs [-1] [-nl-v]
dirs -SI-L [filename]
dirs -c

180 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

Description

tcsh: dirs

dirs used alone prints the directory stack in the following format: The top of the

stack
exam

>pu
/bin
>pu
/tmp

/tmp
> di
/tmp
> di
0/t
1/b
5 -

Options

—C

is at the left and the first directory in the stack is the current directory. For
ple:

<========== # (Change to home dir
shd /bin <== # Change dir to /bin and add /bin to dir stack

shd /tmp <== # Change dir to /tmp and add /tmp to dir stack

/bin ~
irs <======== # Display current dir stack
/bin ~
rs -1 <===== # Display in expanded (long) format
/bin /u/erinf
rs -v <===== # Display in verbose format
mp
in
pd <======== # Change dir back to /bin and remove /tmp from dir stack

Output is expanded explicitly to home or the pathname of the home directory
for the user.

Entries are wrapped before they reach the edge of the screen.
Entries are printed one per line, preceded by their stack postions.
If more than one of -n or -v is given, -v takes precedence.

Saves the directory stack to filename as a series of ed and pushd
commands.

The tcsh shell sources filename, which is presumably a directory stack file
saved by the -S option or the savedirs mechanism. In either case, dirsfile is
used if filename is not given and "/.cshdirs is used if dirsfile is unset.

Login shells do the equivalent of dirs -L on startup and, if savedirs is set,
you should issue dirs -S before exiting. Because only “/.teshrc is normally
sourced before “/.cshdirs, dirsfile should be set in “/.teshre rather than
“I.login.

Clear the directory stack.

Related Information

tesh

Chapter 10. tcsh Commands 181

tcsh: filetest

echotc built-in command for tcsh: Exercise the terminal capabilities in

args

Format

Description

Options

echotc [-sv] arg ...

echotc uses the terminal capabilities in args. For example, echotc cm 3 10 sends
it to column 3 and row 10.

If arg is baud, cols, lines, meta or tabs, echotc prints the value of that capability
(either yes or no, which indicates that the terminal does or does not have that
capability). You might use this to make the output from a shell script less verbose
on slow terminals, or limit command output to the number of lines on the screen:

> set history="echotc lines~
> @ history--

Termcap strings may contain wildcards which will not echo correctly. One should
use double quotes when setting a shell variable to a terminal capability string, as in
the following example that places the date in the status line:

> set standout="echotc so

> set end_standout="echotc se~

> echo -n "$standout"; date; echo -n "$end standout"
Mon Oct 25 10:06:48 EDT 1999

>

Note: The date, as indicated above, is printed out in standout mode.

The infocmp command can be used to print the current terminal description in
termcap format (instead of terminfo format).

-s Nonexistent capabilities return the empty string rather than causing an
error.
-V Messages are verbose.

Related Information

tesh

filetest built-in command for tcsh: Apply the op file inquiry operator to

a file

Format

filetest -op file —

182 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

tcsh: hashstat

Description

filetest applies op (which is a file inquiry operator) to each file and returns the
results as a space-separated list. For more information on file inquiry operators, see
“File Inquiry Operators” on page 151.

Related Information
tcsh

glob built-in command for tcsh: Write each word to standard output

Format
glob wordiist

Description

glob is like echo, but no \ (backslash) escapes are recognized and words are
delimited by null characters in the output. This command is useful for programs
which wish to use the shell to filename expand a list of words.

Related Information
echo, tcsh

hashstat built-in command for tcsh: Print a statistic line on hash table
effectiveness

Format
hashstat

Description
hashstat prints a statistics line indicating how effective the internal hash table has
been at locating commands (and avoiding exec's). An exec is attempted for each
component of the path where the hash function indicates a possible hit, and in each
component which does not begin with a / (forward slash).

0S/390 systems have a vfork() command, however, tcsh is not compiled to use it.
Typically on machines without vfork, hashstat prints only the number and size of
hash buckets, but on OS/390 systems, a hashstat print out would contain this:

> hashstat
> hashstat 512 hash buckets of 8 bits each

>

Related Information
tcsh

Chapter 10. tcsh Commands 183

tesh: limit

hup built-in command for tcsh: Run command so it exits on a hang-up

signal

Format

Description

hup [command)]

With command, hup runs the command such that it will exit on a hangup signal
and arranges for the shell to send it a hangup signal when the shell exits.
Commands may set their own response to hangups, overriding hup. Without an
argument (allowed only in a shell script), hup causes the shell to exit on a hangup
for the remainder of the script. See “Signal Handling” on page 155.

Related Information

nohup, tcsh

limit built-in command for tcsh: Limit consumption of processes

Format

Description

limit [-h] [resource [maximum-use]]

limit limits the consumption by the current process and each process it creates to
not individually exceed maximum-use on the specified resource. If no maximum-use
is given, then the current limit is printed; if no resource is given, then all limitations
are given. If the -h flag is given, the hard limits are used instead of the current
limits. The hard limits impose a ceiling on the values of the current limits. All hard
limits can be raised only by a process which has superuser authority (except for
coredumpsize, vmemoryuse, and descriptors), but a user may lower or raise the
current limits within the legal range.

Controllable resources currently include:

cputime
The maximum number of cpu-seconds to be used by each process.

filesize
The largest single file which can be created.

datasize
The maximum growth of the data+stack region via sbrk beyond the end of
the program text.

stacksize
The maximum size of the automatically-extended stack region.

coredumpsize
The size of the largest core dump that will be created.

memoryuse
The maximum amount of physical memory a process may have allocated to it
at a given time.

184 05/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

tcsh: login

maximum-use may be given as a (floating point or integer) number followed by a
scale factor. For all limits other than cputime the default scale is k or kilobytes
(1024 bytes); a scale factor of m or megabytes may also be used. For cputime the
default scaling is seconds, while m for minutes or h for hours, or a time of the form
mm:ss giving minutes and seconds may be used.

For both resource names and scale factors, unambiguous prefixes of the names
suffice.

Related Information
tesh, ulimit, unlimit

Also see setrlimit() in 0S/390 C/C++ Run-Time Library Reference.

log built-in command for tcsh: Print the watch tcsh shell variable

Format
log

Description
Prints the watch shell variable and reports on every user indicated in watch that is
logged in, regardless of when they last logged in.

Note: The OS/390 tcsh shell is compiled to use watchlog. If you attempt to use
log on an OS/390 system, you will get an error that says "Command not
found".

Related Information
tcsh, watchlog

login built-in command for tcsh: Terminate a login shell

Format
login

Description

login terminates a login shell, replacing it with an instance of /bin/login. This is
one way to log off (included for compatibility with sh).

Related Information
logout, tcsh

Chapter 10. tcsh Commands 185

tcsh: IsF

logout built-in command for tcsh: Terminate a login shell

Format
logout

Description
logout terminates a login shell. Especially useful if ignoreeof is set.

Related Information
login, tcsh

Is-F built-in command for tcsh: List files

Format
Is-F [-switch ...] [file ...]

Description

In the tcsh shell, Is-F lists files like Is -F, but is much faster than Is-F. It identifies
each type of special file in the listing with a special character:

/ Directory

* Executable

Block device

% Character device
I Named pipe

= Socket

@ Symbolic link

If the listlinks shell variable is set, symbolic links are identified in more detail (only,
of course, on systems which have them):

@ Symbolic link to a non-directory
> Symbolic link to a directory
& Symbolic link to nowhere

listlinks also slows down Is-F.

If you use files which are set-up as follows:

186 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

Usage Note

tcsh: notify

#creating a file
touch filel
#creating a symbolic 1link to the file
In -s filel Tinkl
#creating a directory
mkdir dirl
#creating a symbolic 1ink to the directory
In -s dirl Tinkdirl
#creating a symbolic 1ink to a file that doesn't exist
In -s noexist linktonowhere

when you issue an Is-F with listlinks unset, you will get the following output:

> 1s-F
dirl/ filel 1inkl@ 1inkdirl@ Tinktonowhere@

>

with listlinks set:

> set Tistlinks
> 1s-F
dirl/ filel 1inkl@ 1inkdirl> Tinktonowhere&

>

If the listflags shell variable is set to x, a or A, or any combination thereof (for
example, xA), they are used as flags to Is-F, making it act like Is -xF, Is -Fa, Is -FA
or a combination Is -FxA. On OS/390, Is -C is the default. However, on machines
where Is -C is not the default, Is-F acts like Is -CF, unless listflags contains an x,
in which case it acts like Is -xF.

See “tcsh — Invoke a C shell” on page 129.

To view an online manual description for the Is-F command, you must type Is-F
without the dash. So, to see the man page you would issue:

man 1sF

Related Information

Is, tcsh

notify built-in command for tcsh: Notify user of job status changes

Format

Description

notify [%job ...]

notify causes the shell to notify the user asynchronously when the status of any of
the specified jobs (or, without %job, the current job) changes, instead of waiting
until the next prompt. job may be a number, a string, ", %, + or '-' as described
under “Jobs” on page 153. See also the notify shell variable.

Chapter 10. tcsh Commands 187

tcsh: popd

Related Information

tesh

onintr built-in command for tcsh: Control the action of the tcsh shell

on interrupts

Format

Description

onintr [-l/abel]

onintr controls the action of the shell on interrupts. Without arguments, onintr
restores the default action of the shell on interrupts, which is to terminate shell
scripts or to return to the terminal command input level. With '-', causes all
interrupts to be ignored. With /abel, causes the shell to execute a goto /abel when
an interrupt is received or a child process terminates because it was interrupted.

onintr is ignored if the shell is running detached and in system startup files, where
interrupts are disabled anyway.

Related Information

goto, tcsh

popd built-in command for tcsh: Pop the directory stack

Format

Description

Options

popd [-p] [-] [-nl-v] [+n]

popd without options, pops the directory stack and returns to the new top directory.
With a number +n, discards the n'th entry in the stack. All forms of popd print the
final directory stack, just like dirs. The pushdsilent shell variable can be set to
prevent this.

-l Output is expanded explicitly to home or the pathname of the home directory
for the user.

-n Entries are wrapped before they reach the edge of the screen.
-p Overrides pushdsilent.
-v Entries are printed one per line, preceded by their stack postions.

If more than one of -n or -v is given, -v takes precedence.

188 05/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

tcsh: pushd

Related Information
tcsh

pushd built-in command for tcsh: Make exchanges within directory
stack

Format
pushd [-p] [-I] [-nl-v] [namel +n]
Description
pushd with options, exchanges the top two elements of the directory stack. If
pushdtohome is set, pushd without arguments does pushd ~, like ed. With name,
pushd pushes the current working directory onto the directory stack and changes
to name. If name is '-', it is interpreted as the previous working directory (see
“Filename Substitution” on page 146). If dunique is set, pushd removes any
instances of name from the stack before pushing it onto the stack. With a number
+n, pushd rotates the n'th element of the directory stack around to be the top
element and changes to it. If dextract is set, however, pushd +n extracts the n'th
directory, pushes it onto the top of the stack and changes to it. So, instead of just
rotating the entire stack around, dextract lets the user have the n'th directory
extracted from its current position, and pushes it onto the top. For example:
> pushd /tmp
/tmp ~
> pushd /bin
/bin /tmp ~
> pushd /u
/u /bin /tmp ~
> pushd /usr
Jusr /u /bin /tmp ~
> pushd +2
/bin /tmp = /usr /u
> set dextract
> dirs
/bin /tmp = /usr /u
> pushd +2
~ /bin /tmp /usr /u
>
Finally, all forms of pushd print the final directory stack, just like dirs. The
pushdsilent tcsh shell variable can be set to prevent this.
Options

=l Output is expanded explicitly to home or the pathname of the home directory
for the user.

-n Entries are wrapped before they reach the edge of the screen.
-p Overrides pushdsilent.
-v Entries are printed one per line, preceded by their stack postions.

If more than one of -n or -v is given, -v takes precedence.

Chapter 10. tcsh Commands 189

tcsh: sched

Related Information

cd, tecsh

rehash built-in command for tcsh: Recompute internal hash table

Format

Description

rehash

rehash causes the internal hash table of the contents of the directories in the path
variable to be recomputed. This is needed if new commands are added to
directories in path while you are logged in. This should only be necessary if you
add commands to one of your own directories, or if a systems programmer
changes the contents of one of the system directories. Also flushes the cache of
home directories built by tilde (") expansion.

Related Information

hashstat, tcsh

repeat built-in command for tcsh: Execute command count times

Format

Description

repeat count command

The specified command is executed count times. repeat is subject to the same
restrictions as the command in the one line if statement. 1/O redirections occur
exactly once, even if count is 0.

Related Information

tesh

sched built-in command for tcsh: Print scheduled event list

Format

sched
sched hh:mm command
sched n

190 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

Description

tcsh: setenv

sched used alone prints the scheduled-event list. The sched shell variable may be
set to define the format in which the scheduled-event list is printed. sched hh:mm
command adds command to the scheduled-event list. For example:

>sched 11:00 echo It\'s eleven o\'clock.

causes the shell to echo 'lt's eleven o'clock.' at 11 AM. The time may be in 12-hour
AM/PM format

>sched 5pm set prompt='[%h] It\'s after 5; go home: >'
or may be relative to the current time:

>sched +2:15 /usr/lib/uucp/uucico -rl -sother

A relative time specification may not use AM/PM format. The third form removes
item n from the event list:

> sched

1 Wed Apr 4 15:42 /usr/lib/uucp/uucico -rl -sother

2 Wed Apr 4 17:00 set prompt=[%h] It's after 5; go home: >
> sched -2

> sched

1

Wed Apr 4 15:42 /usr/lib/uucp/uucico -rl -sother

A command in the scheduled-event list is executed just before the first prompt is
printed after the time when the command is scheduled. It is possible to miss the
exact time when the command is to be run, but an overdue command will execute
at the next prompt. A command which comes due while the shell is waiting for user
input is executed immediately. However, normal operation of an already-running
command will not be interrupted so that a scheduled-event list element may be run.

This mechanism is similar to, but not the same as, the at command on some UNIX
systems. Its major disadvantage is that it may not run a command at exactly the
specified time. Its major advantage is that because sched runs directly from the
shell, it has access to shell variables and other structures. This provides a
mechanism for changing one's working environment based on the time of day.

Related Information

tesh

setenv built-in command for tcsh: Set environment variable name to

value

Format

Description

setenv [name [valu€]]

setenv without arguments, prints the names and values of all environment
variables. Given name, sets the environment variable name to value or, without
value, to the null string.

Chapter 10. tcsh Commands 191

tcsh: setty

Related Information
tcsh

settc built-in command for tcsh: Tell tcsh shell the terminal capability
cap value

Format
settc cap value

Description

settc tells the tcsh shell to believe that the terminal capability cap (as defined in
termcap) has the value value. No sanity checking is done. Concept terminal users
may have to settc xn no to get proper wrapping at the rightmost column.

Related Information
tcsh

setty built-in command for tcsh: Control tty mode changes

Format
setty [-dI-ql-x] [-a] [+]-]mode]

Description

setty controls which tty modes the shell does not allow to change. Without
arguments, setty lists the modes in the chosen set which are fixed on (+mode) or
off (-mode). The available modes, and thus the display, vary from system to
system. With +mode, -mode or mode, fixes mode on or off or removes control from
mode in the chosen set. For example, setty +echok echoe fixes echok mode on
and allows commands to turn echoe mode on or off, both when the shell is
executing commands.

Options
—a List all tty modes in the chosen set whether or not they are fixed.
[-dI-gl-x]
Tells setty to act on the edit, quote or execute set of tty modes respectively;
without -d, -q or -x, execute is used.

Related Information
tesh

192 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

tcsh: uncomplete

source built-in command for tcsh: Read and execute commands from
name

Format
source [-h] name [args ...]

Description

Using source, the shell reads and executes commands from name. The commands
are not placed on the history list. If any arguments are given, they are placed in
argv. source commands may be nested; if they are nested too deeply the shell
may run out of file descriptors. An error in a source at any level terminates all
nested source commands.

Options
—h Commands are placed on the history list instead of being executed, much like
history -L.

Related Information
history, tcsh

telltc built-in command for tcsh: List terminal capability values

Format
telltc

Description
telltc lists the values of all terminal capabilities.

Related Information
tcsh

uncomplete built-in command for tcsh: Remove completions whose
names match pattern

Format
uncomplete pattern

Description

uncomplete removes all completions whose names match pattern. For example,
uncomplete * removes all completions. It is not an error for nothing to be
uncompleted.

Chapter 10. tcsh Commands 193

tcsh: unsetenv

Related Information
complete, tcsh

unhash built-in command for tcsh: Disable use of internal hash table

Format
unhash

Description
unhash disables use of the internal hash table to speed location of executed
programs.

Related Information
tcsh

unlimit built-in command for tcsh: Remove resource limitations

Format
unlimit [-h] [resource]

Description
unlimit removes the limitation on resource or, if no resource is specified, all
resource limitations.

The hard limit may be lowered to any value that is greater than or equal to the soft
limit. All hard limits can be raised only by a process which has superuser authority
except for coredumpsize, vmemoryuse, and descriptors. This behavior is
identical to ulimit in the OS/390 shell. Both the soft limit and hard limit can be
changed by a single call to setrlimit().

Options

—h Corresponding hard limits are removed. Only the superuser may do this.

Related Information
limit, tesh, ulimit

Also see setrlimit() in OS/390 C/C++ Run-Time Library Reference.

unsetenv built-in command for tcsh: Remove environmental variables
that match pattern

194 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

tcsh: which

Format
unsetenv pattern

Description

unsetenv removes all environment variables whose names match pattern. For
example, unsetenv * removes all environment variables; we strongly recommend
against this. It is not an error for nothing to be unsetenved.

Related Information
setenv, tcsh

watchlog built-in command for tcsh: Print the watch shell variable

Format
watchlog

Description

watch is an alternate name for the log built-in command. It prints the watch shell
variable and reports on every user indicated in watch that is logged in, regardless
of when they last logged in.

See the version shell variable.

Related Information
log, tcsh

where built-in command for tcsh: Report all instances of command

Format
where command

Description

where reports all known instances of command, including aliases, built-ins and
executables in path.

Related Information
tesh, which

which built-in command for tcsh: Display next executed command

Chapter 10. tcsh Commands 195

time

Format

Description

which command

which displays the command that will be executed by the shell after substitutions,
path searching, and so on. This command correctly reports tcsh aliases and
built-ins. See also the which-command editor command.

Related Information

tesh, where

time — Display processor and elapsed times for a command

Format

Description

Option

Usage Note

Localization

time [-p] command-line

tcsh shell: time [command]

time runs the command given as its argument and produces a breakdown of total
time to run (real), total time spent in the user program (user), and total time spent
in system processor overhead (sys).

Times given are statistical, based on where execution is at a clock tick. Output is
written to standard error (stderr).

time in the tcsh shell

time executes command (which must be a simple command, not an alias, a
pipeline, a command list, or a parenthesized command list) and prints a time
summary as described under the tcsh time variable (see “tcsh — Invoke a C shell”
on page 129). If necessary, an extra shell is created to print the time statistic when
the command completes. Without command, time prints a time summary for the
current shell and its children.

—p Guarantees that the historical format of the time command is output.

time is a built-in shell command.

time uses the following localization environment variables:

* LANG

e LC_ALL

e LC_CTYPE

e LC_MESSAGES
* LC_NUMERIC
* NLSPATH

196 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

Exit Values

Portability

umask

If time successfully invokes command-line, it returns the exit status of
command-line. Otherwise, possible exit status values are:

0 Successful completion

1 An error occurred in the time utility

2 Failure due to an invalid command-line option
2 Invalid command-line argument

126 time found command but could not invoke it
127 time could not find command

POSIX.2 User Portability Extension, X/Open Portability Guide, UNIX systems.

Related Information

sh, tcsh

umask — Set or return the file mode creation mask

Format

Description

umask [-S] [mode]

tcsh shell: umask [value]

umask sets the file-creation permission-code mask of the invoking process to the
given mode. You can specify the mode in any of the formats recognized by chmod,;
see chmod for more information.

The mode may be specified in symbolic (rwx) or octal format. The symbolic form
specifies what permissions are allowed. The octal form specifies what permissions
are disallowed.

The file-creation permission-code mask (often called the umask) modifies the
default (initial) permissions for any file created by the process. The umask specifies
the permissions which are not to be allowed.

If the bit is turned off in the umask, a process can set it on when it creates a file. If
you specify:

umask a=rx

you have allowed files to be created with read and execute access for all users. If

you were to look at the mask, it would be 0222. The write bit is set, because write

is not allowed. If you want to permit created files to have read, write, and execute

access, then set umask to 0000. If you call umask without a mode argument,
umask displays the current umask.

Chapter 10. tcsh Commands 197

unalias

umask in the tcsh shell

In the tcsh shell, umask sets the file creation mask to value, which is given in octal.
Common values for the mask are 002, giving all access to the group and read and
execute access to others, and 022, giving read and execute access to the group
and others. Without value, umask prints the current file creation mask. See “tcsh —
Invoke a C shell” on page 129.

Options
-S Displays the umask in a symbolic form:
u=perms,g=perms,o=perms
giving owner, group and other permissions. Permissions are specified as
combinations of the letters r (read), w (write), and x (execute).
Localization
umask uses the following localization environment variables:
 LANG
e LC_ALL
e LC_CTYPE
e LC_MESSAGES
e NLSPATH

Exit Values

0 Successful completion
1 Failure due to an incorrect command-line argument, or incorrect mode

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

Related Information
chmod, tcsh

unalias — Remove alias definitions

Format
unalias name ...
unalias —a
tcsh shell: unalias pattern
Description

unalias removes each alias name from the current shell execution environment.

198 05/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

Options

Localization

Usage Notes

Exit Values

Portability

unset

unalias in the tcsh shell
In the tcsh shell, unalias removes all aliases whose names match pattern. For
example,

unalias *

removes all aliases. It is not an error for nothing to be unaliased. See “tcsh —
Invoke a C shell” on page 129.

—a Removes all aliases in the current shell execution environment.

unalias uses the following localization environment variables:

* LANG

e LC_ALL
LC_CTYPE
LC_MESSAGES
NLSPATH

unalias is a built-in shell command.

0 Successful completion

1 There was an alias that could not be removed

2 Failure due to an incorrect command-line option or there were two aliases that

could not be removed

>2
Tells the number of aliases that could not be removed

POSIX.2 User Portability Extension, X/Open Portability Guide.

Related Information

alias, sh, tcsh

unset — Unset values and attributes of variables and functions

Format

unset name ...
unset —fv name ...

tcsh shell: unset pattern

Chapter 10. tcsh Commands

199

unset

Description

Options

Usage Notes

Localization

Exit Values

Messages

Calling unset with no options removes the value and attributes of each variable or
function name.

unset in the tcsh shell
unset removes all variables whose names match pattern, unless they are
read-only. For example:

unset =
which we strongly recommend you do not do, will remove all variables unless they
are read-only. It is not an error for nothing to be unset.

See “tcsh — Invoke a C shell” on page 129.

—f Removes the value and attributes of each function name.
—v Removes the attribute and value of the variable name. This is the default if no
options are specified.

unset cannot remove names that have been set read-only.

unset is a special built-in shell command.

unset uses the following localization environment variables:

* LANG

e LC_ALL

e LC_MESSAGES
* NLSPATH

0 Successful completion
1 Failure due to an incorrect command-line option
2 Failure due to an incorrect command-line argument

Otherwise, unset returns the number of specified names that are incorrect, not
currently set, or read-only.

Possible error messages include:

name readonly variable
The given name cannot be deleted because it has been marked read-only.

200 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

Portability

wait

POSIX.2, X/Open Portability Guide.

Related Information

sh, readonly, tcsh

wait — Wait for a child process to end

Format

Description

Localization

Usage Notes

Exit Values

wait [pidljob-id ...]

tcsh shell: wait

wait waits for one or more jobs or child processes to complete in the background. If
you specify one or more job-id arguments, wait waits for all processes in each job
to end. If you specify pid, wait waits for the child process with that process ID (PID)
to end. If no child process has that process ID, wait returns immediately.

If you specify neither a pid nor a job-id, wait waits for the process IDs known to the
invoking shell to complete.

wait in the tcsh shell

The tcsh shell waits for all background jobs. If the shell is interactive, an interrupt
will disrupt the wait and cause the shell to print the names and job numbers of all
outstanding jobs. See “tcsh — Invoke a C shell” on page 129.

wait uses the following localization environment variables:

* LANG

e LC_ALL
LC_CTYPE
LC_MESSAGES
NLSPATH

wait is a built-in shell command.

If you specified a job-id that has terminated or is unknown by the invoking shell, an
error message and a return code of 127 is returned. If you specified a pid that has
terminated or is unknown to the shell, a return code of 127 is returned. If a signal
ended the process abnormally, the exit status is a value greater than 128 unique to
that signal. Otherwise, possible exit status values are:

0 Successful completion
1-126
An error occurred

Chapter 10. tcsh Commands 201

wait

127
A specified pid or job-id has terminated or is unknown by the invoking shell

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

Related Information
sleep, tcsh

202 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

Localization

Chapter 11. Localization

Internationalization enables you to work in a cultural context that is comfortable for
you through locales, character sets, and a number of special environment variables.
The process of adapting an internationalized application or program, particular to a
language or cultural milieu, is termed localization.

A locale is the subset of your environment that deals with language and cultural
conventions. It is made up of a number of categories, each of which is associated
with an environment variable and controls a specific aspect of the environment. The
following list shows the categories and their spheres of influence:

LC_COLLATE
Collating (sorting) order.

LC_CTYPE
Character classification and case conversion.

LC_MESSAGES
Formats of informative and diagnostic messages and interactive responses.

LC_MONETARY
Monetary formatting.

LC_NUMERIC
Numeric, nonmonetary formatting.

LC_TIME
Date and time formats.

LC_SYNTAX
EBCDIC-variant character encodings used by some C functions and utilities.

To give a locale control over a category, set the corresponding variable to the
name of the locale. In addition to the environment variables associated with the
categories, there are two other variables which are used in conjunction with
localization, LANG and LC_ALL. All of these variables affect the performance of
the shell commands. The general effects apply to most commands, but certain
commands such as sort, with its dependence on LC_COLLATE, require special
attention to be paid to one or more of the variables; this manual discusses such
cases in the Localization section of the command. The effects of each environment
variable is as follows:

LANG
Determines the international language value. Utilities and applications can use
the information from the given locale to provide error messages and
instructions in that locale's language. If LC_ALL variable is not defined, any
undefined variable is treated as though it contained the value of LANG.

LC_ALL
Overrides the value of LANG and the values of any of the other variables
starting with LC_.

LC_COLLATE
Identifies the locale that controls the collating (sorting) order of characters and
determines the behavior of ranges, equivalence classes, and multicharacter
collating elements.

© Copyright IBM Corp. 1999 203

Localization

LC_CTYPE
Identifies the locale that defines character classes (for example, alpha, digit,
blank) and their behavior (for example, the mapping of lowercase letters to
uppercase letters). This locale also determines the interpretation of sequences
of bytes as characters (such as singlebyte versus doublebyte characters).

LC_MESSAGES
Identifies the locale that controls the processing of affirmative and negative
responses. This locale also defines the language and cultural conventions
used when writing messages.

LC_MONETARY
Determines the locale that controls monetary-related numeric formatting (for
example, currency symbol, decimal point character, and thousands separator).

LC_NUMERIC
Determines the locale that controls numeric formatting (for example, decimal
point character and thousands separator).

LC_TIME
Identifies the locale that determines the format of time and date strings.

LC_SYNTAX
Identifies the locale that defines the encodings for the variant characters in
the portable character set.

The NLSPATH localization variable specifies where the message catalogs are to
be found.

For example,
NLSPATH="/system/n1s1ib/%N.cat"

specifies that the OS/390 shell is to look for all message catalogs in the directory
Isystem/nislib, where the catalog name is to be constructed from the name
parameter passed to the OS/390 shell with the suffix .cat.

Substitution fields consist of a % symbol, followed by a single-letter keyword. These
keywords are currently defined:

%N The value of the name parameter

%L The value of the LC_MESSAGES category, or LANG, depending on how the
catopen() function that opens this catalog is coded. For more information,
refer to catopen() in OS/390 C/C++ Run-Time Library Reference.

%l The language element from the LC_MESSAGES category

%t The territory element from the LC_MESSAGES category

%c The codeset element from the LC_MESSAGES category

Templates defined in NLSPATH are separated by colons (:). A leading colon or two
adjacent colons (::) are equivalent to specifying %N. For example:

NLSPATH=":%N.cat:/nl1s1ib/%L/%N.cat"

specifies that the OS/390 shell should look for the requested message catalog in
name, name.cat, and /nlslib/category/name.cat, where category is the value of the
LC_MESSAGES or LANG category of the current locale.

Do not set the NLSPATH variable unless you need to override the default system
path. Otherwise the commands may behave unpredictably.

204 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

FSUC0501 « FSUC0901

Part 4. 0S/390 UNIX System Services Messages and Codes

FSUCO0501 Load average unavailable
Explanation: The load average editing command could not be completed.

System Action: Command ends.

FSUC0606 No matching command

Explanation: Command completion was not successful because the command does not
exist.

System Action: Command ends.

User Response: Respecify statement with a valid command.

FSUC0607 Ambiguous command

Explanation: Command completion as not successful because more than one command
matched the specifications.

System Action: Command ends.

User Response: Respecify command in a more precise manner.

FSUCO0721 program-name: No entry for terminal type string
Explanation: There was no entry for the specified terminal type in the terminfo database.

System Action: Processing continues.

FSUCO0722 program-name: using dumb terminal settings.
Explanation: No terminfo could be found, so a dumb terminal is being used.

System Action: Processing continues.

FSUC0801 Unknown switch

Explanation: An incorrect option was passed to the setty command. Valid options are: a,
q, d, x.

System Action: Command ends.

User Response: Correct the syntax, and reissue statement.

FSUC0802 Invalid argument
Explanation: An incorrect argument was passed to the setty command.
System Action: Command ends.

User Response: Check the syntax, and reissue command.

FSUC0901 AddXkey: Null extended-key not allowed.
Explanation: A null extended-key was issued on the bindkey command.
System Action: Command ends.

User Response: Reissue the command using a non-null extended-key.

© Copyright IBM Corp. 1999 205

FSUC0902 - FSUC1101

FSUC0902 AddXkey: sequence-lead-in command not allowed

Explanation: A sequence-lead-in command cannot be bound to multicharacter key
binding.

System Action: Command ends.

User Response: Reissue statement with a different command.

FSUC0903 DeleteXkey: Null extended-key not allowed.
Explanation: A null extended-key was issued on the bindkey -r command.
System Action: Command ends.

User Response: Reissue the command using a non-null extended-key.

FSUC0904 Unbound extended key key
Explanation: The specified key on the bindkey command was not bound to anything.
System Action: Command ends.

User Response: Respecify command with the proper syntax.

FSUC0905 Some extended keys too long for internal print buffer
Explanation: The extended key was longer than the 95 character buffer limit.

System Action: Command ends.

FSUC0907 no input
Explanation: There is no specified function associated with this key.

System Action: Command ends.

FSUC0908 Something must follow: string
Explanation: The syntax of your bindkey command is not correct.
System Action: Command ends.

User Response: Check syntax, and reissue statement.

FSUC0909 Octal constant does not fit in a char.
Explanation: An octal constant was entered which is greater than 400.
System Action: Command ends.

User Response: Respecify command with an octal value less than 400.

FSUC1101 Warning: no access to tty (string).

Explanation: You do not have access to tty job control. The process specified does not
belong to a process in the same session with the tty.

User Response: Contact the system programmer.

System Programmer Response: setpgid() or tcsetpgrp() system call failed. These calls
succeed only if processed by a super-user, or if id is the real or effective user(group) id of
the calling process.

206 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

FSUC1102 « FSUC1703

FSUC1102 Thus no job control in this shell.

Explanation: You do not have access to tty job control. The process specified does not
belong to a process in the same session with the tty.

User Response: Contact the system programmer.

System Programmer Response: setpgid() or tcsetpgrp() system call failed. These calls
succeed only if processed by a super-user, or if id is the real or effective user(group) id of
the calling process.

FSUC1305 string: shell built-in command.

Explanation: The command specified is a shell built-in command. It is a registered
command but not found in alias.

FSUC1306 string: Command not found.

Explanation: The command specified was not found. It is not a registered command nor an
alias.

User Response: Check the syntax on the command issued, including options and
arguments, and try again.

FSUC1307 where: / in command makes no sense.

Explanation: The command specified is not a valid command. Cannot process / in
command.

User Response: Check the syntax on the command issued, including options and
arguments, and try again.

FSUC1308 string is aliased to.

Explanation: If the command specified is an alias, then display its alias path.

FSUC1309 string is a shell built-in.

Explanation: The command specified is a shell built-in command.

FSUC1501 string: string: Can't string string limit.

Explanation: Unable to set/remove file size limits. Write to stderror file.

FSUC1607 Bad seek type number.
Explanation: Bad seek type. Valid seek types are 0, 1, and 2.

User Response: Respecify command with valid seek type.

FSUC1701 BUG: waiting for background job!.

Explanation: Now keep pausing as long as we are not interrupted (SIGINT), and the target
process, or any of its friends, are still running.

System Programmer Response: Processing continues.

User Response: Please wait for process to return.

FSUC1703 BUG: process flushed twice.
Explanation: Process id is 0.

System Programmer Response: Process is ended.

Part 4. 0S/390 UNIX System Services Messages and Codes 207

FSUC1708 « FSUC2204

FSUC1708 BUG: status=status

Explanation: Unrecognized process status message received.

FSUC1709 (core dumped).

Explanation: Process ends with core dump.

FSUC1712 string: Already suspended.

Explanation: Current shell is suspended/stopped.

FSUC1801 Warning: ridiculously long PATH truncated.

Explanation: Incorrect PATH specified. Exported path exceeds maximum buffer size.

FSUC1802 Warning: unknown multibyte display; using default(euc(JP)).
Explanation: Incorrect multibyte display type. Using default multibyte display (euc(JP)).

FSUC1803 Warning: unknown multibyte code number; multibyte disabled.

Explanation: Incorrect multibyte code received. Multibyte disabled.

FSUC1804 Warning: Invalid multibyte table length (number); multibyte disabled.

Explanation: Incorrect multibyte table length. Multibyte disabled.

FSUC1805 Warning: bad multibyte code at offset +number; multibyte disabled.
Explanation: Bad multibyte code at offset. Multibyte disabled.

FSUC2001 Invalid key name string.

Explanation: The specified key name is not valid.

FSUC2002 Bad key name: string.

Explanation: The specified key name is not valid.

FSUC2003 Bad command name: string.

Explanation: The command name is not valid.

FSUC2004 Bad key spec string.

Explanation: Bad key specified.

FSUC2005 Null string specification.

Explanation: String is empty.

FSUC2203 Faulty alias precmd removed.

Explanation: You cannot alias precmd.

FSUC2204 Faulty alias cwdcmd removed.

Explanation: You cannot alias cwdemd.

208 05/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

FSUC2205 « FSUC2607

FSUC2205 Faulty alias beepcmd removed.

Explanation: You cannot alias beepcmd.

FSUC2206 Faulty alias periodic removed.

Explanation: You cannot alias periodic.

FSUC2323 getwd: Cannot stat / (string).

Explanation: Unable to get status of / directory. Write to stderror file.

FSUC2324 getwd: Cannot stat . (string).

Explanation: Unable to get status of . directory. Write to stderror file.

FSUC2325 getwd: Cannot stat directory string (string).

Explanation: Unable to get status of working directory. Write to stderror file.

FSUC2326 getwd: Cannot open directory string (string).

Explanation: Unable to open working directory. Write to stderror file.

FSUC2327 getwd: Cannot find . in .. (string).

Explanation: Unable to find . in .. directory. Write to stderror file.

FSUC2502 error: bsd_signal(number) signal out of range.
Explanation: Bsd signal is out of range.
User Response: Contact your system programmer.

System Programmer Response: Determine why bsd_signal was out of range.

FSUC2503 error: bsd_signal(number) - sigaction failed, errno number.
Explanation: Bsd signal failed.
User Response: Contact your system programmer.

System Programmer Response: Determine why bsd signal failed.

FSUC2601 cannot stat siring. Please unset watch.
Explanation: Unable to get temporary file status.

User Response: Verify that temporary file exists and _PATH_UTMP temporary file
environmental variable has been set.

FSUC2602 string cannot be opened. Please unset watch.
Explanation: Unable to open temporary file.

User Response: Verify that temporary file exists and _PATH_UTMP temporary file
environmental variable has been set.

FSUC2607 name has terminal date from host.

Explanation: Display current element data with host field.

Part 4. OS/390 UNIX System Services Messages and Codes

209

FSUC3004 - FSUC5002

FSUC3004 string: Internal match error.

Explanation: An internal editing command error has occured.
System Action: Command ends.

User Response: Contact your system administrator.

System Programmer Response: Follow local procedures for reporting a problem to IBM.

FSUC3009 tcsh internal error: |1 don't know what I'm looking for!
Explanation: An internal error has occurred for a completion command.
System Action: Command ends.

User Response: Contact your system programmer.

System Programmer Response: Follow local procedures for reporting a problem to IBM.

FSUC3110 not a directory

Explanation: Completion cannot process successfully because the specified name is not a
valid directory.

System Action: Command ends.

User Response: Reissue the command with a valid directory name.

FSUC3111 not found

Explanation: Completion cannot process successfully because the specified file/directory
name cannot be found.

System Action: Command ends.

User Response: Reissue the command with a valid file/directory name.

FSUC3112 unreadable

Explanation: Completion cannot process successfully because the specified file/directory
name cannot be read.

System Action: Command ends.

User Response: Change permissions of file/directory, or reissue the command with a
different, readable file/directory.

FSUC5001 Syntax Error
Explanation: A command or construct was issued with incorrect syntax.
System Action: Command ends.

User Response: Check the syntax on the command or construct and reissue.

FSUC5002 string is not allowed
Explanation: You are not allowed to have a < or a numerical digit after a $?, $#, or $%.
System Action: Command ends.

User Response: Correct the syntax and reissue the command.

210 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

FSUC5003 « FSUC5010

FSUC5003 Word too long

Explanation: Word used in $ expansion, command substitution or history substitution is
more than the buffer can hold.

System Action: Command ends.

User Response: Try to split the expansion to use multiple smaller expansions.

FSUC5004 $< line too long
Explanation: The input value for $< is longer than the buffer allows.
System Action: Command ends.

User Response: Try to shorten the input and/or split input between multiple reads.

FSUC5005 No file for $0

Explanation: $0 is the name for the current shell input file. If unknown, this var is unset,
and any reference to it is an error.

System Action: Command ends.

User Response: Set $0 and reissue command.

FSUC5006 Incomplete [modifier
Explanation: A newline or EOF indicator was reached before the ending].
System Action: Command ends.

User Response: Respecify command with correct syntax.

FSUC5007 $ expansion must end before “
Explanation: The $ expansion was incomplete before reaching the “ character.
System Action: Command ends.

User Response: Respecify command, placing the “ character after variable expansion.

FSUC5008 Bad : modifier in $ (%c)
Explanation: Valid modifiers are limited to luhtrgxes.
System Action: Command ends.

User Response: Respecify command with valid modifiers.

FSUC5009 Subscript error
Explanation: The closing “ on the array subscript was not found after a numerical value.
System Action: Command ends.

User Response: Correct the syntax and reissue the command.

FSUC5010 Badly formed number
Explanation: Statement indicated requires numerical value.
System Action: Command ends.

User Response: Check the syntax and reissue the statement.

Part 4. 0S/390 UNIX System Services Messages and Codes 211

FSUC5011 « FSUC5018

FSUC5011 No more words

Explanation: argv or variable specified on shift command is either not set or has less than
one word as value.

System Action: Command ends.

User Response: set the shift argument to have enough words, or stop using shift
command when all words are shifted.

FSUC5012 Missing file name
Explanation: Command specified is expecting a filename to be passed as an argument.
System Action: Command ends.

User Response: Respecify the command with the appropriate filename.

FSUC5013 Internal glob error
Explanation: An internal glob error has occurred.
System Action: Command ends.

User Response: Contact the system programmer or try and reissue the statement without
glob characters.

System Programmer Response: Follow your local procedures for reporting a problem to
IBM.

FSUC5014 Command not found
Explanation: The command specified was not found in your search path.
System Action: Command ends.

User Response: Check if the command exists, change search path as necessary.

FSUC5015 Too few arguments
Explanation: Function specified requires more arguments than you have listed.
System Action: Command ends.

User Response: Check command syntax and reissue the statement.

FSUC5016 Too many arguments
Explanation: Function specified requires fewer arguments than you have listed.
System Action: Command ends.

User Response: Check the command syntax and reissue the statement.

FSUC5017 Too dangerous to alias that
Explanation: It is not valid to alias the commands alias and unalias.
System Action: Command ends.

User Response: Do not try and alias these commands.

FSUC5018 Empty if
Explanation: The value of the if command cannot be NULL.
System Action: Command ends.

User Response: Issue if statement with non-null expression.

212 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

FSUC5019 « FSUC5026

FSUC5019 Improper then
Explanation: then statement must be followed by a command.
System Action: Command ends.

User Response: Reissue then followed by a valid command.

FSUC5020 Words not parenthesized
Explanation: The wordlist within the foreach statement must be enclosed in parenthesis.
System Action: Command ends.

User Response: Enclose the wordlist in parenthesis and reissue the statement.

FSUC5021 string not found
Explanation: Either a then, endif, endsw, end or a case label statement was not found.
System Action: Command ends.

User Response: Check the syntax of conditional statement, adding appropriate tag.

FSUC5022 Improper mask
Explanation: Masking values for the umask command must be between 0 and 777.
System Action: Command ends.

User Response: Reissue the umask command with the appropriate masking values.

FSUC5023 No such limit

Explanation: The resource value specified for the limit command does not exist.
Controllable resources are: cputime, filesize, datasize, stacksize, coredumpsize, and
memoryuse.

System Action: Command ends.

User Response: Reissue limit command with one of the resources listed above.

FSUC5024 Argument too large
Explanation: You have exceeded the maximum or minimum value defined on your system.
System Action: Command ends.

User Response: If possible, respecify argument within appropriate boundaries.

FSUC5025 Improper or unknown scale factor

Explanation: The scale factor for the maximum use field of the limit command is not valid.
Valid values are either k for kilobytes, or m for megabytes.

System Action: Command ends.

User Response: Reissue limit command with an appropriate scale factor.

FSUC5026 Undefined variable
Explanation: Variable used in specified command is undefined.
System Action: Command ends.

User Response: Define variable with the set command before using.

Part 4. 0S/390 UNIX System Services Messages and Codes 213

FSUC5027 » FSUC5033

FSUC5027 Directory stack not that deep

Explanation: The numerical value following the = is greater than the size of the directory
stack.

System Action: Command ends.

User Response: You can find out how deep the directory stack is with the dirs -v
command. Reissue =n where n is no greater than the largest stack value.

FSUC5028 Bad signal number
Explanation: The user specified an unknown signal number on the kill command.
System Action: Command ends.

User Response: Valid signal names and numbers are listed in OS/390 UNIX System
Services Command Reference under the kill command.

FSUC5029 Unknown signal; kill -l lists signals
Explanation: The user specified an unknown signal on the kill command.
System Action: Command ends.

User Response: The -l option will list valid signal names. Reissue the command with a
valid signal name.

FSUC5030 Variable name must begin with a letter
Explanation: The variable being initialized after the set command must begin with a letter.
System Action: Command ends.

User Response: Change name of variable so that a character occupies the first position.

FSUC5031 Variable name too long

Explanation: The variable name after the set command cannot exceed 30 characters in
length.

System Action: Command ends.

User Response: Shorten variable name to less than 30 characters.

FSUC5032 Variable name must contain alphanumeric characters

Explanation: Variable name after the set command is expected to consist only of
alphabetic characters, or a combination of alphabetic and numeric characters where the first
letter in the variable name is alphabetic.

System Action: Command ends.

User Response: Change variable name to meet syntax guidelines.

FSUC5033 No job control in this shell
Explanation: This shell does not have job control capabilities.
System Action: Command ends.

User Response: Do not issue any job control commands.

214 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

FSUC5034 « FSUC5041

FSUC5034 Expression Syntax
Explanation: Syntax of specified command is not correct.
System Action: Command ends.

User Response: Check syntax and respecify command.

FSUC5035 No home directory

Explanation: The $home variable is not set, therefore you cannot issue the cd or chdir
command without any arguments.

System Action: Command ends.

User Response: Either set $home or specify a directory on the ¢d or chdir command.

FSUC5036 Can't change to home directory

Explanation: The $home variable is not set so using the ‘’ character to reference your
home directory is not valid.

System Action: Command ends.

User Response: Either set $home or explicitly specify directory.

FSUC5037 Invalid null command.
Explanation: An unexpected NULL string was encountered.
System Action: Command ends.

User Response: Check syntax and reissue command.

FSUC5038 Assignment missing expression
Explanation: The @ name=expr command is missing the expr argument.
System Action: Command ends.

User Response: Reissue statement specifying expr argument.

FSUC5039 Unknown operator
Explanation: The operator used in the @ command is not valid.
System Action: Command ends.

User Response: Check syntax and reissue statement.

FSUC5040 Ambiguous
Explanation: Specified function is ambiguous.
System Action: Command ends.

User Response: Check syntax, and reissue the statement.

FSUC5041 filename: File exists
Explanation: The specified file already exists and cannot be appended to or overwritten.
System Action: Command ends.

User Response: Use a different filename, or rename existing file.

Part 4. 0S/390 UNIX System Services Messages and Codes 215

FSUC5042 - FSUC5048

FSUC5042 Argument for -c ends in backslash
Explanation: The -c tcsh option cannot be used with a script file that ends in a backslash.
System Action: Command ends.

User Response: Change name of script so that it does not end in a backslash.

FSUC5043 Interrupted
Explanation: A SIGINT has been received. Specified process has been interrupted.

System Action: Specified process has been interrupted.

FSUC5044 Subscript out of range
Explanation: User tried to access a value outside the scope of the array.
System Action: Command ends.

User Response: The $#variable command will tell you how many elements are in the
array. Your subscript value must be an integer no greater than this value, but no less than
one.

FSUC5045 Line overflow
Explanation: A line within the here-document notation exceeded the 1020 character limit.
System Action: Command ends.

User Response: Use multiple here-documents, so that you can split the input such that it
fits within this character limit.

FSUC5046 No such job
Explanation: There is no job with the corresponding name/number.
System Action: Command ends.

User Response: The jobs -l command will list all current jobs, along with their
corresponding process id's. Any job specified must be listed in the jobs -l output.

FSUC5047 Can't from terminal

Explanation: The onintr command cannot be issued from a terminal. The hup and nohup
commands cannot be issued from a terminal without a corresponding command.

System Action: Command ends.

User Response: The onintr command can be issued from a script. The hup and nohup
commands must be issued with a corresponding command, or can be issued without
commands from a script.

FSUC5048 Not in while/foreach

Explanation: A break, end, or continue statement can only be issued from inside a while
or foreach loop.

System Action: Command ends.

User Response: Check syntax of statement. Make any necessary changes and reissue.

216 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

FSUC5049 « FSUC5055

FSUC5049 No more processes

Explanation: There are insufficient resources to create another process, or you have
already reached the maximum number of processes you can run.

System Action: Command ends.
User Response: Contact your system administrator.

System Programmer Response: Determine why fork() failed.

FSUC5050 No match

Explanation: The wildcard expansion issued in your statement does not expand to a valid
argument.

System Action: Command ends.

User Response: Be more explicit when issuing this statement.

FSUC5051 Missing character
Explanation: Statement missing either -, }, “, or).
System Action: Command ends.

User Response: Check syntax and respecify.

FSUC5052 Unmatched character
Explanation: A closing ' or " is missing from your statement.

User Response: Check syntax and respecify.

FSUC5053 Out of memory
Explanation: There were not enough system resources to allocate the required memory.
System Action: Command ends.

User Response: Free up more system resources and try again, or contact your system
administrator for additional help.

FSUC5054 Can't make pipe
Explanation: Pipe command cannot be processed.
System Action: Command ends.

User Response: Check syntax and reissue statement.

FSUC5055 function: return-code
Explanation: A system error has occured for the specified function.
System Action: Command ends.

User Response: A correlating return code has been given. Contact your system
administrator.

System Programmer Response: Follow local procedures for reporting a problem to IBM.

Part 4. 0S/390 UNIX System Services Messages and Codes 217

FSUC5058 « FSUC5067

FSUC5058 Arguments should be jobs or process id's

Explanation: Arguments to the specified command need to be either jobs or process id's.
These can be found using the jobs -l builtin command.

System Action: Command ends.

User Response: Respecify command with arguments that are found in the jobs -l
command.

FSUC5059 No current job
Explanation: Specified command cannot process because there is no current job.

System Action: Command ends.

FSUC5060 No previous job
Explanation: Specified command cannot process because there is no previous job.

System Action: Command ends.

FSUC5061 No job matches pattern
Explanation: There is no job that matches string in the ‘“%?string’ reference.
System Action: Command ends.

User Response: You can get a list of all current jobs with the jobs command. Use a job
from within that list.

FSUC5062 Fork nesting > number; maybe ...’ loop

Explanation: There is a maximum nesting limit of 16 processes. This is done to avoid
forking loops.

System Action: Command ends.

User Response: Try to minimize the use of subshells and nested calls to builtin functions.

FSUC5063 No job control in subshells
Explanation: Job commands can only be issued from the parent shell.
System Action: Command ends.

User Response: Return to parent shell and reissue command.

FSUC5065 string There are suspended jobs
Explanation: There are suspended jobs in the shell that prevent you from exiting.
System Action: Command ends, shell still remains active.

User Response: To find out what jobs are suspended, issue the jobs command and either
resume or Kill these jobs.

FSUC5067 No other directory

Explanation: The pushd command with no arguments will exchange the top two elements
in the stack. In this case, it cannot process because there is only one directory entry in the
stack.

System Action: Command ends.

User Response: Cannot issue command until there is more than one entry in the stack.

218 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

FSUC5068 « FSUC5076

FSUC5068 Directory stack empty

Explanation: The directory stack is empty, so the popd command can neither print values,
nor remove directories from it.

System Action: Command ends.

User Response: Cannot issue command until there are entries in the stack.

FSUC5069 Bad directory
Explanation: The directory specified on the popd command is not valid.
System Action: Command ends.

User Response: Respecify with a valid entry from the stack. This can be found using the
dirs builtin command.

FSUC5071 No operand for -h flag
Explanation: When using the source -h command, no operand was given.
System Action: Command ends.

User Response: Reissue with an argument after -h.

FSUC5072 Not a login shell

Explanation: The login and logout commands both terminate the login shell. These
commands cannot process if they are issued from a non-login shell.

System Action: Command ends, shell still remains active.

User Response: To exit, issue the exit command.

FSUC5073 Division by 0
Explanation: Divide by 0 is not allowed.
System Action: Command ends.

User Response: Respecify equation so that a divide by 0 does not occur.

FSUC5074 Mod by 0
Explanation: In the expression a%b, b was evaluated to be 0 which attempts a divide by 0.
System Action: Command ends.

User Response: Respecify statement so that b does not equate to 0

FSUC5075 Bad scaling; did you mean string?

Explanation: Scale factors for all resources besides cputime default to k or kilobytes. A
scale factor of m or megabytes may also be used. For cputime, the default scaling is in
seconds, but m for minutes, h for hours or a time form of mm:ss (where m=minutes and
s=seconds) may also be used.

System Action: Command ends.

User Response: Respecify the limit command with syntax in the proper format.

FSUC5076 Can't suspend a login shell (yet)
Explanation: The suspend command cannot be issued when operating from a login shell.
System Action: Command ends, shell still remains active.

User Response: Try using the logout command instead.

Part 4. 0S/390 UNIX System Services Messages and Codes 219

FSUC5077 » FSUC5085

FSUC5077 Unknown user: user
Explanation: The user specified in user does not exist.
System Action: Command ends.

User Response: Check that the user exists, check spelling.

FSUC5078 No $home variable set
Explanation: Cannot cd to the home directory as the $home variable is not set.
System Action: Command ends.

User Response: Set the $home variable, and the reissue command.

FSUC5080 $, ! or < not allowed with $# or $?
Explanation: Anillegal $, ! or < was found in the name portion of $# name or $?name.
System Action: Command ends.

User Response: Reissue this shell variable without the illegal characters.

FSUC5081 Newline in variable name
Explanation: An illegal newline character was found in the variable name.
System Action: Command ends.

User Response: Respecify the variable name to exclude any newlines. Respecify the
command.

FSUC5082 * not allowed with $# or $?
Explanation: A wildcard character was found in name portion of either $#name or $?name
System Action: Command ends.

User Response: Respecify the shell variable reference without a * in name.

FSUC5083 $?<digit> or $#<digit> not allowed
Explanation: $? or $# cannot be followed by a digit.
System Action: Command ends.

User Response: Respecify the shell variable reference with a variable name as an
argument.

FSUC5084 lllegal variable name
Explanation: Variable name must consist only of alphanumeric characters.
System Action: Command ends.

User Response: Take any non-alphnumeric characters out of the variable name.

FSUC5085 Newline in variable index
Explanation: A newline character is not allowed in the index of an array.
System Action: Command ends.

User Response: Respecify array[index] without any newlines in index.

220 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

FSUC5086 « FSUC5093

FSUC5086 Expansion buffer overflow

Explanation: While attempting to resolve a variable expansion (such as $expression), the
1020 character buffer limit was exceeded .

System Action: Command ends.

User Response: Try and minimize complex expressions.

FSUC5087 Variable syntax
Explanation: Variable modifiers cannot have a :g or :a at the end of the word selector.
System Action: Command ends.

User Response: Correct the syntax of modifiers, and the reissue command.

FSUC5088 Bad ! form
Explanation: No closing } was found on the ! history substitution character.
System Action: Command ends.

User Response: Correct the syntax of the statement and reissue.

FSUC5089 No previous substitute
Explanation: There is no previous s substitution for the ” modifier to repeat.
System Action: Command ends.

User Response: Cannot use this modifier until you issue a valid s substitution. Use another
form and/or combination of modifiers to process desired history substitution.

FSUC5090 Bad substitute
Explanation: The :s/x/y/ modifier format is not of proper syntax.
System Action: Command ends.

User Response: Correct the syntax, and reissue the statement.

FSUC5091 No previous left hand side
Explanation: There is no previous left hand side for the :s/x/y/ modifier format.
System Action: Command ends.

User Response: Correct the syntax, and reissue the statement.

FSUC5092 Right hand side too long
Explanation: The right hand side of the :s/x/y/ modifier format is too long.
System Action: Command ends.

User Response: Try to shorten the substitution, try and use another form of history
substitution, or manually type in command line.

FSUC5093 Bad ! modifier: modifier
Explanation: Valid modifiers are:ps &rehtqgxulganda.
System Action: Command ends.

User Response: Respecify command with valid modifiers.

Part 4. 0S/390 UNIX System Services Messages and Codes 221

FSUC5094 « FSUC5101

FSUC5094 Modifier failed
Explanation: Specified modifier could not complete properly.
System Action: Command ends.

User Response: Check syntax and logic of the statement.

FSUC5095 Substitution buffer overflow

System Action: Command ends.

FSUC5096 Bad ! arg selector

Explanation: The % modifier must be used in conjunction with the !?string? reference (for
example, 1?string?:%) where % will match the entire word matching string.

System Action: Command ends.

User Response: Correct the syntax and reissue the statement.

FSUC5097 No prev search

Explanation: !?? will repeat the last search command. In this case, there is no previous
search command, therefore, this form of history substitution cannot process.

System Action: Command ends.

User Response: Use another form of history substitution.

FSUC5098 string: Event not found

Explanation: !?string? will be replaced with the most recent history line containing string in
line. No match was found, hence, no history substitution can occur.

System Action: Command ends.

User Response: Use another form of history substitution, or explicitly type in the command.

FSUC5099 Too many)'s
Explanation: There are more closing parenthesis than opening parenthesis.
System Action: Command ends.

User Response: Correct the syntax and reissue the statement.

FSUC5100 Too many ('s
Explanation: There are more opening parenthesis than closing parenthesis.
System Action: Command ends.

User Response: Correct the syntax and reissue the statement.

FSUC5101 Badly placed (
Explanation: The syntax of your statement is not correct due to a misplaced (.
System Action: Command ends.

User Response: Correct the syntax and reissue the statement.

222 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

FSUC5102 « FSUC5108

FSUC5102 Missing name for redirect

Explanation: The < or > redirection symbols were used without the appropriate source or
target arguments.

System Action: Command ends.

User Response: Reissue the statement with valid arguments on redirection.

FSUC5103 Ambiguous output redirect

Explanation: Output redirection cannot process because the filename and/or pipe is
ambiguous.

System Action: Command ends.

User Response: Correct the syntax, and reissue the statement.

FSUC5104 Can't << within ()'s
Explanation: The << redirection symbol cannot be used within a set of parenthesis.
System Action: Command ends.

User Response: Reissue the statement without this symbol inside the ()'s. You may want
to try putting the << shell input lines inside a variable, or within a file.

FSUC5105 Ambiguous input redirect

Explanation: Input redirection cannot process because the filename and/or pipe is
ambiguous.

System Action: Command ends.

User Response: Correct the syntax, and reissue the statement.

FSUC5106 Badly placed ()'s
Explanation: The syntax of your statement is not correct due to a misplaced parenthesis.
System Programmer Response: Command ends.

User Response: Correct the syntax and reissue the statement.

FSUC5107 Alias loop
Explanation: You have exceeded the maximum value of 50 nested alias expansions.
System Action: Command ends.

User Response: If possible, do not nest this alias.

FSUC5108 No $watch variable set

Explanation: The log’/‘watchlog command cannot process because the $watch variable
was not set.

System Action: Command ends.

User Response: You must set the $watch variable in order to use this command.

Part 4. 0S/390 UNIX System Services Messages and Codes 223

FSUC5109 » FSUC5119

FSUC5109 No scheduled events

Explanation: The -n option on the sched command cannot process because there are no
scheduled events to remove.

System Action: Command ends.

User Response: There are no scheduled events to remove, therefore you don't need to
take further action.

FSUC5111 Not that many scheduled events

Explanation: The -n option on the sched command cannot process because there are not
n number of scheduled events.

System Action: Command ends.

User Response: To see what the correct number of the event is, use the sched command
with no arguments. Reissue sched -n with the correct n value.

FSUC5112 No command to run
Explanation: A corresponding command for the sched command was not given.
System Action: Command ends.

User Response: Reissue the command with the correct syntax.

FSUC5113 Invalid time for event
Explanation: The time for the sched command is not valid.
System Action: Command ends.

User Response: Correct time syntax and reissue statement.

FSUC5114 Relative time inconsistent with am/pm

Explanation: Relative time cannot have an AM/PM extension. Relative time is number of
hours and minutes away from the current time.

System Action: Command ends.

User Response: Reissue the statement without AM/PM extension.

FSUC5117 Unknown capability capability
Explanation: The terminal capability passed into the settc command is unknown.
System Action: Command ends.

User Response: Reissue statement with a correct terminal capability.

FSUC5118 Unknown termcap parameter parameter
Explanation: Valid termcap parameters are: d,2,3,.,+,%,>,i,r,n,B,D
System Action: Command ends.

User Response: Reissue statement with a valid termcap parameter.

FSUC5119 Too many arguments for command (arguments-required)

Explanation: More arguments were given for the specified command than it's syntax
allows.

System Action: Command ends.

User Response: Correct syntax and reissue statement.

224 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

FSUC5120 « FSUC5131

FSUC5120 command requires number arguments
Explanation: The command specified is not in proper syntax.
System Action: Command ends.

User Response: Correct syntax and reissue command.

FSUC5122 file: return-code. Binary file not executable

Explanation: File failed execution with the specified return code. Even though the file has
the proper permissions, it is not an executable file.

System Action: Command ends.

User Response: See the return code description for how to proceed. Check the spelling of
the command entered.

FSUC5123 !# History loop

Explanation: The !# event specification for history substitution has reached its maximum of
10 levels of recursion.

System Action: Command ends.

User Response: Either use another form of history substitution or explicitly type in
command.

FSUC5124 Malformed file inquiry
Explanation: The syntax of the filetest command is incorrect.
System Action: Command ends.

User Response: Correct the syntax, making sure to check the file inquiry operator is valid.

FSUC5125 Selector overflow
Explanation: Expansion of the selector expression exceeded the 2056 character limit.
System Action: Command ends.

User Response: Try and simplify the expression.

FSUC5129 Invalid completion: argument
Explanation: The specified list argument for the completion rule is not valid.
System Action: Command ends.

User Response: Correct syntax using a valid list specifier.

FSUC5130 Invalid string: string
Explanation: The specified command or separator field is not of the correct syntax.
System Action: Command ends.

User Response: Correct syntax and reissue completion rule.

FSUC5131 Missing separator separator after string string

Explanation: The syntax of the completion statement is not correct due to the specified
missing separator.

System Action: Command ends.

User Response: Correct syntax and reissue statement.

Part 4. 0S/390 UNIX System Services Messages and Codes 225

FSUC5132 « FSUC5140

FSUC5132 Incomplete command: string
Explanation: There is no specified range for the positional completion rule.
System Action: Command ends.

User Response: Respecify rule with correct syntax.

FSUC5133 No operand for -m flag
Explanation: The syntax for the -m option on the source command is incorrect.
System Action: Command ends.

User Response: Reissue statement with correct syntax.

FSUC5135 $variable is read-only

Explanation: The specified variable is read only. Any operations that may need to write,
append or delete this variable cannot be processed.

System Action: Command ends.

User Response: Do not set this variable as read only, or use another variable.

FSUC5136 No such job

Explanation: The job specified on the command does not exist. You can get a list of jobs
and their corresponding process ID's by issuing the jobs -l command.

System Action: Command ends.

User Response: Reissue command with a valid job.

FSUC5137 Unknown colorls variable variable

Explanation: The LS_COLORS shell variable could not be processed because the
specified variable is not valid.

System Action: Command ends.

User Response: Correct syntax and reissue statement.

FSUC5138 The autolock feature is not implemented

Explanation: The command set autologout=(x y) was issued in which the y variable was
intended to specify the number of minutes the shell can sit idle before it automatically locks.

System Action: The autologout command is still implemented, however autologout takes
on the value of the y variable, rather than the x.

User Response: If this is not the value you want to take effect for autologout, respecify
the statement with only one parameter.

FSUC5140 pid/job-number: string

Explanation: The Kkill() run-time function failed with the specified pid/job number and
returned the printed system message. Either the specified signal isn't supported, the caller
does not have permission to send to the process specified, or there are no processes
corresponding to the specified pid.

System Action: The kill command terminates without sending the signal to the
process/job.

User Response: Double-check the value of the pid or job number you used when issuing
the kill command.

226 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

FSUC5141 « FSUC5142

FSUC5141 The afsuser special shell variable is not implemented

Explanation: Since the autolock feature is not implemented, setting this variable offers no
benefit.

System Action: Processing continues.

User Response: None.

FSUC5142 The autocorrect special shell variable is not implemented

Explanation: Setting this variable will not automatically invoke the spell-word editor
command before each completion attempt.

System Action: Processing continues.

User Response: To spell check a word, you can manually invoke the spell-word editor
command. To find out what this command is mapped to, issue the bindkey command

Part 4. 0S/390 UNIX System Services Messages and Codes 227

228 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

Part 5. Appendixes

© Copyright IBM Corp. 1999 229

230 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

Appendix A. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this publication
at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1999 231

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation

Mail Station P300

2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

If you are viewing this information softcopy, the photographs and color illustrations
may not appear.

Programming Interface

This publication documents intended Programming Interfaces that allow the
customer to write programs to obtain services of OS/390 UNIX System Services
(OS/390 UNIX).

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

ACF/NTAM
BookManager
C/370

IBM

IBMLink
Library Reader
MVS/ESA
OpenEdition
0S/390
RACF

SP
System/370
TalkLink

UNIX is a registered trademark in the United States and other countries licensed
exclusively through The Open Group.

Other company, product, and service names may be trademarks or service marks
of others.

232 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

ANSI American National Standards Institute

DFS Transarc Corporation

IEEE Institute of Electrical and Electronics Engineers
ISO International Organization for Standardization
Network File System Sun Microsystems, Inc.

NFS Sun Microsystems, Inc.

Notes Lotus Development Corporation

POSIX Institute of Electrical and Electronics Engineers

The information contained in the glossary section and tagged by the word [POSIX]
is copyrighted information of the Institute of Electrical and Electronics Engineers,
Inc., extracted from IEEE Std 1003.1-1990, IEEE P1003.0, and IEEE P1003.2. This
information was written within the context of these documents in their entirety. The
IEEE takes no responsibility or liability for and will assume no liability for any
damages resulting from the reader's misinterpretation of said information resulting
from the placement and context in this publication. Information is reproduced with
the permission of the IEEE.

Appendix A. Notices 233

234 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

Index

Special Characters
' ' escape character 67
; (semicolon) 62
-- option 55
_C89_CLIB_PREFIX variable 10
? 67
/dev/null 58
letc/csh.cshrc

copying from /etc/profile 3

customizing the 9

used by tcsh login - 129
letc/csh.login

customizing the 7

used by tcsh login - 129
letclinit

NLS customizationl

for Japanese and Simplified Chinese 21

letc/login

customizing tcsh shell

for Japanese and Simplified Chinese 21

letc/passwd
explanation of 6
* syntax 63
< 58
$() syntax 63
$HOME/.login

customizing 9
$HOME!/.tcshrc

customizing 9
$N construct 86
* 67
\ continuation character 38
\ escape character 66
&& 62
82
> 57
> prompt 66
>> 58
I 62

Numerics
2> 58

A

AD/Cycle C/370 compiler

ViR2 17
address

TCP/IP X-Window application 28
alias

creating 97

© Copyright IBM Corp. 1999

alias (continued)

defining 59

detecting 198

redefining 60

removing

definitions 198

turning off 61
alias shell command 59, 97
alloc tcsh shell command 174
ALLOCATE TSO/E command

specifying standard files 57
ampm shell variable 159
argument 56

concatenating in the current shell environment

evaluating
in the current shell environment 107
writing to standard output 105
argv shell variable 159
arithmetic
calculation 83
ASCII terminal interface 37
autocorrect shell variable 159
autoexpand shell variable 159
autolist shell variable 159
autologout shell variable 159
Automatic, Periodic, and Timed Events 154

B

backslash (\) character 66
backslash shell variable 160
bg shell command 100
bindkey tcsh sell command 174
bit

bucket 58
BookManager READ 76, 77
BPX.SUPERUSER FACILITY 75
BPXBATCH

national language support 49
break shell command 101
built-in shell commands

alias 97

bg 100

break 101

cd 102

echo 105

exit 109

jobs 112

kil 114

time 196

unalias 198

wait 201

107

235

builtins tcsh shell command 176

C

C shell
See tcsh shell 3
C/C++ compiler
invoking earlier levels 11
selecting a previous version 10
using the same compiler 11
ViR1 16
ViR2 15
V1IR3 14
V2R4 13
V2R5 13
V2R6 12
V2R7 12
V2R8 12
C++
customizing
for tcsh shell 9
c89
customizing
for tcsh shell 9
cc
customizing
for tcsh shell 9
cd shell command 102
CDPATH environment variable
used by cd 103
cdpath shell variable 160
change
groups 117
working directories 102
changing a password 74
character set
doublebyte, usinga 39
characters, variant 28, 50
child process
waiting for it to end 201
cksum shell command 73

CLIST 33
clocks 196
close

file descriptors 108
COLUMNS tcsh environment variable 171
comand shell variable 160
combined commands
filter 62
pipe 62
command
aliases
creating or displaying 97
argument 28, 56
combining more than one 61
constructing
in the current shell environment 107

command (continued)
continuation character (\) 38
creating aliases 97
displaying
aliases 97
elapsed time 196
editing 70
flag 28
history 69
function keys 70
r command 69
interrupting 38

option 28, 55
options
setting 122

unsetting 122
retrievinga 69
running
at a different priority 119
setting options 122
specifying command lines for another
command 108
substitution 63
TSO/E
OHELP 77
unsetting options 122
usage 56
command aliases
displaying 97
command line
editing 70
specifying for another command 108
command, shell
alias 59
cksum 73
echo 43
find 63, 73
grep 60
history 69
man 77
od 59
passwd 74
printenv 43
rm 60
set 43, 53
su 75
time 74
tso 75, 82
which 47
whoami 75
Communications Server session
ISPF Edit 38
multiple logins 38
compiler
AD/Cycle C/370 VIR2 17
C/C++ V3R2 17

236 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

compiler (continued)

selecting previous, for Language Environment 10,

11,13
using the same one, for Language Environment
ViR1 16
ViR2 15
V1R2 C/C++ 16
V1iR3 14
V2R4 13
V2R5 13
V2R7 12
V2R8 12
complete shell variable 160
concatenate
arguments in the current shell environment 107
concatenating
libraries to ISPF ddnames 23
construct
commands in the current shell environment 107
construct, quotes around 87
continuation
character (\) 38
prompt 66
continue shell command 104
control structure 88
foreach loop 91
if conditional 88
while loop 90
copy
file descriptors 108
correct shell variable 160
create
command aliases 97
cron daemon 28
Ctrl-C 38
current working directory
changing to previous working directory 102
setting to value of the HOME environment
variable 102
curses applications
terminfo database 17
customization

tcshre 44
C++

for tcsh shell 9
c89

for tcsh shell 9
cc 9
PATH variable 45
shell

_C89_CLIB_PREFIX environment variable 10
shell options 53
tcsh shell 6

electronic mail 18

environment variables 6
tcsh shell startup files 41

cwd shell variable 160

D

daemons 28
data set
cataloged 53
STEPLIB, cataloging the 53
delete
alias definitions 198
attributes of variables and functions 200
values of variables and functions 200
detect
aliases 198
dextract shell variable 160
dirsfile shell variable 160
dirstack shell variable 160
display
command aliases 97
elapsed time for a command 196
environment variables 122
names of
shell variables 122
processors 196
values of
shell variables 122
values of environment variables 121
DISPLAY tcsh environment variable 171
displaying a user name 75
double quotes enclosing a construct 67, 87
doublebyte character set
usinga 39
dump, nontext file 59
dunique shell variable 160
dynamic link library (DLL)
environment variable 47

E

echo shell command 43, 105
echo shell variable 160
echo_style shell variable 161
edit shell variable 161
editor

command editing 70
EDITOR tcsh environment variable 171
electronic mail

customizing

tcsh shell 18

ellipsis shell variable 161
emacs editor 71
end

jobs 114

processes 114

shells 109

Index

237

environment file 44
environment variable
_C89_CLIB_PREFIX 10
CDPATH
used by cd 103
changing dynamically 43
customizing
for tcsh shell 6
displaying 43, 122
displaying the value of a 121
HOME
used by cd 103
LANG 48, 52
LC_ALL 48
LC_COLLATE 48
LC_CTYPE 48
LC_MESSAGES 48
LC_SYNTAX 50
LOCPATH 51
OLDPWD
used by cd 103
PATH, setting 45
PWD
used by cd 103
STEPLIB 52
TZ 52
error
redirection 58
standard 56
escape
character
shell command 66
eval shell command 107
evaluate

arguments in the current shell environment

exec shell command 108
exit shell command 109
expansion, preventing wildcard 54
export

aliases 98
export variable 84
expressions 83

F

fg shell command 110

fignore shell variable 161

file
tcshre 44
nontext, dumping 59
passing small amounts to 106
sh_history 69

file-creation permission-code mask
setting or returning 197

file descriptor
closing 108

file descriptor (continued)
copying 108
opening 108
file mode creation mask
setting or returning 197
filename
expanding on command line 106
using a wildcard character 67
filec shell variable 161
Filename Completion, Using 72
files
/etc/csh.cshrc
used by tcsh login - 129
/etc/csh.login
used by tcsh login 129
HOME/.profile
used by tcsh login - 129
filter 62
passing small amounts to 106
find shell command 63, 73
flag 28
See also option
FOMTLINP module 37
for loop
exiting from, in a shell script 101
foreach loop 91
FSUM messages 80
ftp 39
function
unsetting values and attributes of

G
GID 29
gid shell variable 161
gmacs 124
Greenwich Mean Time (GMT) 52
grep shell command 60
group
changing 117
group shell variable 161
GROUP tcsh environment variable

H

help facility 76
histchars shell variable 161
histdup shell variable 162
histfile shell variable 162
histlit shell variable 162
history file 69
editing commands 70
history shell command 69
history shell variable 162
HOME environment variable
used by cd 103

238 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

200

171

home shell variable 162
HOME tcsh environment variable 171
HOME!/.profile file

used by tcsh login 129
HOST tcsh environment variable 171
HOSTTYPE tcsh environment variable 171
HPATH tcsh environment variable 171

if conditional 88
ignoreeof shell variable 162
implicitcd shell variable 162
inetd daemon 28
input
passing small amounts to filter or file 106
redirection 58
standard 56
inputmode shell variable 162
interactive shell 130
internationalization
explanation of 203
invoke
shell 129
utilities, ignoring the SIGHUP signal 120
ISPF
setting to display Japanese 23
shell
locale 51
ISPMLIB
ISPF ddname 23
ISPPLIB
ISPF ddname 23
ISPTLIB
ISPF ddname 23

J

Japanese
issuing messages 22
setting ISPF for 23
JCL
shell commands 32
specifying standard files 57
job
ending 114
moving
from background to foreground 110
to background 100
restarting a suspended 110
returning list of, in current session 112
running in background 100
waiting for it to end 201
job control language 32
See also JCL

jobs shell command 112

K

kill shell command 114
KornShell 27

L

LANG environment variable 203
LANG tcsh environment variable 171
LANG variable 48, 52
Language Environment

selecting previous compilers 10, 11

UNIT=SYSDA 10

using the same compiler 11

ViR1 16

ViR2 15

ViR3 14

V2R4 13

V2R5 13

V2R6 12

V2R7 12

V2R8 12
language, messages 52
LC_ALL environment variable 203
LC_ALL variable 48
LC_COLLATE environment variable 203
LC_COLLATE variable 48
LC_CTYPE environment variable 203
LC_CTYPE tcsh environment variable 171
LC_CTYPE variable 48
LC_MESSAGES environment variable 203
LC_MESSAGES variable 48
LC_MONETARY environment variable 203
LC_NUMERIC environment variable 203
LC_SYNTAX environment variable 203
LC_SYNTAX variable 50

limitations 51
LC_TIME environment variable 203
lex shell command, locale modifications 48
LIBPATH variable 47
LINES tcsh environment variable 171
listflags shell variable 162
listjobs shell variable 162
listlinks shell variable 163
listmax shell variable 163
listmaxrows shell variable 163
locale

changing the 47

customizing lex, mailx, make, and yacc 48

default 28

giving it control over a category 203

ISPF shell 51

LC_SYNTAX 50

example 50
limitations 51

Index

239

locale (continued)
lex, mailx, make, and yacc 48
LOCPATH variable 51
object files 51
REXX execs 51
selecting a 47, 50
shell and utilities, changing 47
variant characters 28, 50
localization
categories of 203
explanation of 203
LOCPATH variable 51
logging in 129
login
multiple 38
remote system, froma 37
script 44
login shell 129
loginsh shell variable 163
logout shell variable 163
loop
exiting from, in a shell script 101
skipping to the next iteration of a 104

M

MACHTYPE tcsh environment variable 171

magic number 82
mail
tcsh shell
customization 18
mail shell variable 163
mailx shell command
locale modifications 48
make shell command
locale modifications 48
man shell command 77
matchbeep shell variable 163
message service 22
messages
language of 52
shell 80
metacharacter 64
MMS (MVS message service) 22
modified expansion 88
move
jobs from background to foreground 110
positional parameters 126
multiple commands
filter 62
pipe 62
multiple logins 38
multiple sessions
asynchronous terminal interface 38

N

Native Language System Report 155
newgrp shell command 117
nice shell command 119
nickname
creating 97
nobeep shell variable 163
noclobber shell variable 163
nogob shell variable 163
nohup shell command 120
nokanji shell variable 163
nonomatch shell variable 163
NOREBIND tcsh environment variable 171
nostat shell variable 164
Notices 231
notify shell variable 164

o)

od shell command 59

OHELP TSO/E command 77
BookManager READ 76

OLDPWD environment variable
used by cd 103

OMVS TSO/E command
invoking the OS/390 shell with 5
specifying Japanese language 23

online help 76

open file descriptors 108

option settings, shell session, deletion

verification 54

option settings, shell session, displaying 54

option, shell command 55
OSTYPE tcsh environment variable 171
output
redirection 57
standard 56
overlay commands 108
owd shell variable 164

P

parameter
expansion 88
positional 88
setting 122
shifting 126
unsetting 122
special 88
parameter substitution 155
parent process
returning to the 109
pass
small amounts of input to filter or file 106

240 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

passwd shell command 74
password, changing 74
path shell variable 164
PATH tcsh environment variable 171
PATH variable setting 45
pipe 62
pipeline 62
positional parameter 85, 87, 126

See also parameter, positional
printenv shell command 43, 121
printexitvalue shell variable 164
priority

running commands at a different 119
process

ending 114

returning

file-creation permission-code masks 197
sending signals to 114
setting
file-creation permission-code masks 197

process list

returning 112
processor

displaying 196
PROFILE PLANGUAGE setting 23
program

timing 74
programming 55
prompt shell variable

description of 167
prompt, continuation 66
prompt2 shell variable 164
prompt3 shell variable 164
promptchars shell variable 164
pushdsilent shell variable 164
pushdtohome shell variable 164
PWD environment variable

used by cd 103
PWD tcsh environment variable 171

Q

quotes enclosing a construct 87

R

RACF 29
BPX.SUPERUSER FACILITY 75
recexact shell variable 164
recognize_only_executables shell variable 164
record keeping 73
redirection 57
controlling 54
remote login 37
REMOTEHOST tcsh environment variable
description of 171

remove
alias definitions 198
attributes of shell variables 200
attributes of variables and functions 200
values of variables and functions 200
Resource Access Control Facility 29
See also RACF
restart suspended jobs 110
retrieve function key 70
retrieving commands 69
return
file mode creation masks 197
list of jobs in current session 112
to the parent process 109
to TSO/E 109
REXX 33
calling OS/390 UNIX System Services 33
rlogin 37
rlogin session
ISPF Edit 38
multiple logins 38
retrieving commands 70
rlogin shell command, porting 37
rm shell command 60
rmstar shell variable 164
rprompt shell variable 164
run
commands
at a different priority 119
with the exec command 108
run-time library
ViR1 16
ViR2 15
V1IR3 15
V2R4 13
V2R6 12

S

savedirs shell variable 164
savehist shell variable 165
sched tcsh shell variable 165
SDSF 34
search path 45

verifying 47
security 29
security, RACF 29
select loop

exiting from, in a shell script 101
send

signals to processes 114
session, returning list of jobs in 112
sessions

ASCII terminal limitations 38
set

command options 122

Index

241

set (continued)
file mode creation masks 197
positional parameters 122
set shell command 43, 53, 122
setlocale() 51
sh_history file 69

shell
alias command, and the 97
arguments
evaluating 107
command

escape characters 66
command -- option 55
command lines 97
customizing

tcsh 6
daemons 28
ending 109
evaluating

arguments 107
execution environment

removing aliases from 198
initialization of 5
invoking 129
invoking the OS/390 5

with OMVS command 5
keywords 97
messages 80
metacharacter 64
OpenMVS locale 51
options

deletion verification 54

displaying settings 54

setting 53
remote login 37
removing attributes of shell variables 200
script

executable 81

running 81
scripts

exits from loops ina 101

skipping to the next iteration of a loop 104
special characters 64
special parameters 88
variable 88

arithmetic calculation 83

creating 83

exporting 84
variables

removing attributes of 200

shell pre-defined aliases
history 111
stop 127
suspend 128

shell tcsh shell variable 165

shell variable
customizing
for tcsh shell 6
displaying
names of 122
values of 122
shift positional parameters 126
shift shell command 126
SHLVL tcsh environment variable 171
shlvl tecsh shell variable 165
show
elapsed time for a command 196
names of
shell variables 122
processors 196
values of
shell variables 122
SIGHUP signal
ignored when utility is invoked 120
signal
sending to processes 114
signal handling 155
single quotes enclosing a construct 67, 87
skip to the next iteration of a loop in a shell

script 104
source command 82
special

characters 64
parameters 88
special built-in shell commands

break 101

continue 104

eval 107

exec 108

set 122

shell 109

shift 126

unset 200
specify

command lines for another command 108
square brackets

wildcard expansion 68
standard error

ddname 57

meaning 56

redirection 58
standard input

ddname 57

meaning 56

redirection 58
standard output

ddname 57

meaning 56

redirection 57
standard output (stdout)

writing

arguments to 105

242 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

status reporting 154
status tcsh shell variable 165
stdin file 57
stdout (standard output)
writing
arguments to 105
stdout file 57
STEPLIB data sets 53
STEPLIB variable 52
sterr file 57
stop
shell 109
su shell command 75
substitution, command 63
superuser 29
switching to 75
whoami command 75
symlinks tcsh shell variable 169
SYS1.KHELP
concatenating 23
SYS1.PHELP
concatenating 23
SYS1.SBPXMCHS
concatenating 23
SYS1.SBPXMJPN
concatenating 23
SYS1.SBPXPCHS
concatenating 23
SYS1.SBPXPJPN
concatenating 23
SYS1.SBPXTCHS
concatenating 23
SYS1.SBPXTJPN
concatenating 23
SYSHELP
ISPF ddname 23
System Display and Search Facility 34
See also SDSF

T
TCP/IP
address for X-Window application 28
File Transfer Protocol (FTP) facility 39
tcsh
command execution 148
command syntax 139
signal handling 155
tcsh environment variable
COLUMNS
description of 171
DISPLAY
description of 171
EDITOR
description of 171
GROUP
description of 171

tcsh environment variable (continued)

HOME

description of 171
HOST

description of 171
HOSTTYPE

description of 171
HPATH

description of 171
LANG

description of 171
LC_CTYPE

description of 171
LINES

description of 171
MACHTYPE

description of 171
NOREBIND

description of 171
OSTYPE

description of 171
PATH

description of 171
PWD

description of 171
REMOTEHOST 171
SHLVL

description of 171
TERM

description of 171
USER

description of 171
VENDOR

description of 171
VISUAL

description of 171

tcsh files 172
tcsh shell

alias shell command 97

automatic, periodic, and timed events

bg shell command 100
break shell command 101
cd shell command 102
changing the locale 47
customizing the 5

echo shell command 105
eval shell command 107
exec shell command 108
exit shell command 109
features 150

fg shell command 110
history shell command 111
jobs shell command 113
kill shell command 114
locale, changing the 47
Is—F shell command 186

154

Index

243

tcsh shell (continued)

migration issues 3

Native Language System Report 155
newgrp shell command 118
nice shell command 119
nohup shell command 120
printenv shell command 121
problems and limitations 172
set shell command 123

shift shell command 126
status reporting 154

stop shell command 127
substitutions 140

suspend shell command 128
time shell command 196
umask shell command 198
unalias shell command 199
unset shell command 200
wait shell command 201

tecsh shell command 129

alloc 174
bindkey 174
builtins 176

tcsh shell variable

ampm 159
argv 159
autocorrect

description of 159
autoexpand

description of 159
autolist

description of 159
autologout

description of 159
backslash 160
cdpath 160
command 160
complete

description of 160
correct 160
cwd

description of 160
dextract

description of 160
dirsfile

description of 160
dirstack

description of 160
dunique

description of 160
echo

description of 160
echo_style

description of 161
edit

description of 161

tcsh shell variable (continued)

fignore

description of 161
filec

description of 161
gid

description of 161
group

description of 161
histchars

description of 161
histdup

description of 162
histfile

description of 162
histlit

description of 162
history

description of 162
home

description of 162
ignoreeof

description of 162
implicitcd

description of 162
inputmode

description of 162
listflags

description of 162
listjobs

description of 162
listlinks

description of 163
listmax

description of 163
listmaxrows

description of 163
loginsh 163
logout

description of 163
mail

description of 163
matchbeep

description of 163
nobeep

description of 163
noclobber

description of 163
noglob

description of 163
nokaniji

description of 163
nonomatch

description of 163
nostat

description of 164

244 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

notify
description of
owd
description of
path
description of
printexitvalue
description of
prompt 167
prompt2
description of
prompt3
description of
promptchars
description of
pushdsilent
description of
pushdtohome
description of
recexact
description of

recognize_only_executables

description of
rmstar

description of
rprompt

description of
savedirs

description of
savehist

description of
sched

description of
shell

description of
shivl

description of
status

description of
symlinks

description of
tcsh

description of
term

description of
time 170
tperiod

description of
tty

description of
uid

description of
user

description of
verbose

description of

tcsh shell variable (continued)

164
164
164

164

164
164
164
164
164
164
164
164
164
164
165
165
165
165
165
169
161, 165

165

165
165
165
165

165

tcsh shell variable (continued)
version
description of 166
visiblebell
description of 166
watch
description of 167
who
description of 167
wordchars
description of 167
tcsh tesh shell variable 165
telnet 37
from the OS/390 UNIX shell 39
TERM tcsh environment variable 171
term tcsh shell variable 165
terminal
ASCII interface 37
terminal definitions
terminfo database 17

Termination of tcsh shell, Files Accessed at 54

terminfo database
creating 17

tic utility 17

time program 196

time shell command 74, 196

time tcsh shell variable
description of 170

time zone, specifying the 52

tperiod tcsh shell variable 165

tso shell command
shell script, ina 82

tso shell commmand 75

TSO/E
ftp and telnet 39

TSO/E (Time Sharing Option Extensions)
help panels in Japanese 22
messages, issuing in Japanese 22
returning to the 109

tty tcsh shell variable 165

TZ variable 52

U
UuiD 29
changing 75
uid tcsh shell variable 165
umask shell command 197
unalias shell command 61, 198
UNIT=SYSDA
using a system that doesn't have it 10
Universal Time Coordinated (UTC) 52
UNIX C shell 129
unset
attributes of variables and functions 200
command options 122

Index

245

unset (continued)

positional parameters 122

values of variables and functions 200
unset shell command 200
until loop

exiting from, in a shell script 101
user profile, RACF

customizing

for tcsh shell 6

USER tcsh environment variable 171
user tcsh shell variable 165
Using Filename Completion 72
utility

invoking, while ignoring the SIGHUP signal 120
utility definition 28

\'}

variable
environment
displaying 43
LANG 48, 52
LC_ALL 48
LC_COLLATE 48
LC_CTYPE 48
LC_MESSAGES 48
LC_SYNTAX 50
LIBPATH 47
LOCPATH 51
PATH 45
TZ 52
exporting 84
parameters used by shell 155
shell
arithmetic calculation 83
creating 83
unsetting values and attributes of 200
variant characters 28, 50
VENDOR tcsh environment variable 171
verbose tcsh shell variable 165
version tcsh shell variable 166
vi editor
command editing 71
visiblebell tcsh shell variable 166
VISUAL tcsh environment variable 171

w

wait
for child process to end 201
for jobs to end 201
wait shell command 201
watch tcsh shell variable 167
which shell command 47
while loop 90
exiting from, in a shell script 101

who tcsh shell variable 167
whoami shell command 75
wildcard character 67
preventing expansion 54
wordchars tcsh shell variable 167
working directory
changing
to directory 102
to previous working directory 102
setting to value of the HOME environment
variable 102
workstation, remote login 37
write
arguments to standard output 105

X

X-Window application, running an 28
X-Window, TCP/IP workstation address 28

Y

yacc shell command
locale modifications 48

246 0S/390 V2R9 UNIX System Services tcsh (C Shell) Kit Support Guide

Communicating Your Comments to IBM

0S/390
UNIX System Services
tcsh (C Shell) Kit Support Guide

Publication No. b

If you especially like or dislike anything about this book, please use one of the methods
listed below to send your comments to IBM. Whichever method you choose, make sure you
send your name, address, and telephone number if you would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject matter,
or completeness of this book. However, the comments you send should pertain to only the
information in this manual and the way in which the information is presented. To request
additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized
remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute
your comments in any way it believes appropriate without incurring any obligation to you.

If you are mailing a reader's comment form (RCF) from a country other than the United
States, you can give the RCF to the local IBM branch office or IBM representative for
postage-paid mailing.

 If you prefer to send comments by mail, use the RCF at the back of this book.
e If you prefer to send comments by FAX, use this number:

— FAX: (International Access Code)+1+914+432-9405
« If you prefer to send comments electronically, use one of these network IDs:

— IBM Mail Exchange: USIB6TC9 at IBMMAIL
— Internet e-mail: mhvrcfs @ us.ibm.com
— World Wide Web: http://www.ibm.com/s390/0s390/

Make sure to include the following in your note:
¢ Title and publication number of this book
e Page number or topic to which your comment applies

Optionally, if you include your telephone number, we will be able to respond to your
comments by phone.

Reader's Comments — We'd Like to Hear from You

0S/390
UNIX System Services
tcsh (C Shell) Kit Support Guide

Publication No. b

You may use this form to communicate your comments about this publication, its organization, or subject

matter, with the understanding that IBM may use or distribute whatever information you supply in any way
it believes appropriate without incurring any obligation to you. Your comments will be sent to the author's
department for whatever review and action, if any, are deemed appropriate.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please
direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM
representative or to the IBM branch office serving your locality.

Today's date:

What is your occupation?
Newsletter number of latest Technical Newsletter (if any) concerning this publication:

How did you use this publication?

As an introduction As a text (student)

,_,,_

[]
[1] As a reference manual As a text (instructor)
[]

For another purpose (explain)

Is there anything you especially like or dislike about the organization, presentation, or writing in this
manual? Helpful comments include general usefulness of the book; possible additions, deletions, and
clarifications; specific errors and omissions.

Page Number: Comment:

Name Address

Company or Organization

Phone No.

Reader's Comments — We'd Like to Hear from You

b

Fold and Tape

Please do not staple

Fold and Tape

BUSINESS REPLY MAIL

FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

Department 55JA, Mail Station P384
2455 South Road

Poughkeepsie, NY 12601-5400

NO POSTAGE
NECESSARY

IF MAILED IN THE
UNITED STATES

Fold and Tape

Please do not staple

Fold and Tape

Cut or Fold
Along Line

Cut or Fold
Along Line

Program Number: 5647-A01

Printed in U.S.A.

