
OS/390

UNIX System Services: APAR OW43776

���

OS/390

UNIX System Services: APAR OW43776

���

ii Support Guide for APAR OW43776

Contents

About This Guide . v

Part 1. APAR OW43776: OS/390 UNIX System Services Library 1

Chapter 1. APAR OW43776: OS/390 UNIX System Services Planning 3
Chapter 12. Summary of Interface Changes. 3

BPXPRMxx . 3
Operator Commands . 4
Chapter 14. Customizing OS/390 UNIX 5
Chapter 23. Managing Operations 17

Chapter 29. Tuning Performance 33
Adjusting Storage Size . 33
Using DASD Cache . 34
Improving Performance of Run-Time Routines 34
Improving Compiler Performance 35
Caching RACF User and Group Information in VLF 36
Checking the Owning UIDs and GIDs on Files 36
Moving HFS Executables into the Link Pack Area 37
Tuning Limits in Parmlib . 38
Making Sure that the Sticky Bit for the OS/390 Shell Is On. 41
Improving the OS/390 Shell Performance 41
Improving Performance on POSIX by Using Medium-Weight Processes . . . 41
Improving Performance of Security Checking 41
OMVS Command and TSO/E Response Time 41

Part 2. APAR OW43776: OS/390 MVS Library 43

Chapter 2. APAR OW43776: OS/390 MVS System Commands 45
Displaying OS/390 UNIX System Services Status 45
SETOMVS Command . 54

Syntax . 54
Parameters . 55

Chapter 3. APAR OW43776: OS/390 MVS System Commands Summary 65
Display or D OMVS . 65
SETOMVS Command . 65

Chapter 4. APAR OW43776: OS/390 MVS Initialization and Tuning
Reference. 67

BPXPRMxx (OS/390 UNIX System Services Parameters) 67
Syntax Rules for BPXPRMxx. 68
Syntax of BPXPRMxx . 68
Syntax Example of BPXPRMxx 71
IBM-Supplied Default for BPXPRMxx. 71
Statements and Parameters for BPXPRMxx 72

Chapter 5. APAR OW43776: OS/390 MVS System Messages 101
BPX Messages . 101

Chapter 6. APAR OW43776: OS/390 MVS Routing and Descriptor Codes 103
BPX Messages . 103

© Copyright IBM Corp. 1996, 2000 iii

Part 3. Appendixes . 109

Notices . 111
Programming Interface Information 112
Trademarks. 112

Index . 115

iv Support Guide for APAR OW43776

About This Guide

This document supports APAR OW43776 for OS/390 UNIX System Services
(OS/390 UNIX), which is available for OS/390 Version 2 Releases 8, 9, and 10. The
information is based on the Release 9 library. This document is available only on
the OS/390 UNIX web site at:

http://www.s390.ibm.com/unix/release/apar.html

© Copyright IBM Corp. 1996, 2000 v

vi Support Guide for APAR OW43776

Part 1. APAR OW43776: OS/390 UNIX System Services Library

© Copyright IBM Corp. 1996, 2000 1

2 Support Guide for APAR OW43776

Chapter 1. APAR OW43776: OS/390 UNIX System Services
Planning

Chapter 12. Summary of Interface Changes
This section summarizes the new and changed interface components of OS/390
UNIX.

BPXPRMxx
Table 1 lists new and changed statements on the BPXPRMxx parmlib member.
While Chapter 14. Customizing OS/390 UNIX has some information about certain
BPXPRMxx statements, see OS/390 MVS Initialization and Tuning Reference for
more detailed information about each statement.

Table 1. Summary of OS/390 UNIX Changes to BPXPRMxx

Statement Release Description Related Support

RUNOPTS V2R4 New statement: RUNOPTS specifies that the
Language Environment Run-Time library services
be passed to /etc/init as the Language
Environment Run-Time options.

Language Environment

SYSCALL_COUNTS V2R4 New statement: SYSCALL_COUNTS records
the number of system calls.

System calls

IPCMSGBYTES V2R7 Changed statement: The maximum number of
bytes in a queue has been changed.

Performance

IPCMSGQMNUM V2R7 Changed statement: The maximum number of
messages for each message queue has been
changed.

Performance

IPCSHMMPAGES V2R7 Changed statement: The maximum number of
pages for a shared memory segment has been
changed.

Performance

MAXASSIZE V2R8 New function: You can use the RACF
ADDUSER and ALTUSER commands to specify
user limits.

RACF

MAXCPUTIME V2R8 New function: You can use the RACF
ADDUSER and ALTUSER commands to specify
user limits.

RACF

MAXFILEPROC V2R8 New function: You can use the RACF
ADDUSER and ALTUSER commands to specify
user limits.

RACF

MAXMMAPAREA V2R8 New function: You can use the RACF
ADDUSER and ALTUSER commands to specify
user limits.

RACF

MAXPROCUSER V2R8 New function: You can use the RACF
ADDUSER and ALTUSER commands to specify
user limits.

RACF

MAXQUEDSIGS V2R8 New statement: MAXQUEDSIGS specifies the
number of signals that are to be concurrently
queued within a single process.

Performance

MAXTHREADS V2R8 New function: You can use the RACF
ADDUSER and ALTUSER commands to specify
user limits.

RACF

© Copyright IBM Corp. 1996, 2000 3

Table 1. Summary of OS/390 UNIX Changes to BPXPRMxx (continued)

Statement Release Description Related Support

MOUNT V2R9 New keywords:

v SYSNAME(system_name) specifies the
system that the mount should be performed
on.

v AUTOMOVE | NOAUTOMOVE specifies
whether the file system is to be automatically
moved to another system, which will then
become the server, if the original server is
brought down.

Shared HFS

ROOT V2R9 New keywords:

v SYSNAME(system_name) specifies the
system that the mount should be performed
on.

v AUTOMOVE | NOAUTOMOVE specifies
whether the file system is to be automatically
moved to another system, which will then
become the server, if the original server is
brought down.

Shared HFS

SHLIBRGNSIZE() V2R9 New statement: SHRLIBRGNSIZE() specifies
the size of the shared library region within the
system

Shared library

SHLIBMAXPAGES() V2R9 New statement: SHRLIBMAXPAGES() specifies
the amount of data space storage to be used for
non-system shared library objects.

Shared library

SYSPLEX V2R9 New statement: SYSPLEX specifies that
resources be shared across the sysplex.

Shared HFS

VERSION('nnnn') V2R9 New statement: VERSION('nnnn') enables
multiple releases and service levels of the
binaries to exist and participate in shared HFS

Shared HFS

LIMMSG(NONE|
SYSTEM|ALL)

V2R10 New statement: LIMMSG(NONE|SYSTEM|ALL)
controls the displaying of console messages that
indicate when parmlib limits are reaching critical
levels.

RAS Enhancements

Operator Commands
Table 2 on page 5 lists new and changed operator commands that affect OS/390
UNIX. For more information, see OS/390 MVS System Commands.

Table 2 on page 5 lists new and changed operator commands that affect OS/390
UNIX. For more information, see OS/390 MVS System Commands.

OS/390 UNIX System Services Planning

4 Support Guide for APAR OW43776

|
|
||
|
|
|

|

Table 2. Summary of New and Changed Operator Commands

Operator Command Release Description Related Support

SETOMVS V2R8 New operand: The RESET operand enables you
to dynamically add the FILESYSTYPE,
NETWORK, and SUBFILESYSTYPE statements
to the BPXPRMxx parmlib member.

File system

V2R9 New operand: The SYNTAXCHECK operand
enables you to check the syntax of a BPXPRMxx
parmlib member before doing an IPL.

BPXRMxx

V2R10 New operands: The PID= operand dynamically
changes a limit for a process.

LIMMSG=NONE|SYSTEM|ALL specifies how
console messages that indicate when parmlib
limits are reaching critical levels are to be
displayed.

RAS Enhancements

DISPLAY OMVS V2R9 New operands: The CINET operand displays the
network routing information for the Common
INET prerouter.

The PFS operand displays information about the
FILESYSTYPE, SUBFILESYSTYPE, and
NETWORK statements.

File system

V2R10 New operands:

The LIMITS keyword displays information about
OS/390 UNIX System Services parmlib limits and
current system usage. With the PID= keyword,
LIMITS displays information for an individual
process.

The RESET keyword, with D OMVS,LIMITS,
resets the high-water marks for system limits to
0.

The BRL operand, with D OMVS,PID=, displays
thread-level information for any thread that is in a
byte-range lock wait.

RAS Enhancements

Chapter 14. Customizing OS/390 UNIX

Customizing the BPXPRMxx Parmlib Members
The BPXPRMxx parmlib member contains the parameters that control processing
and the file system. IBM recommends that you have two BPXPRMxx parmlib
members, one defining the values to be used for system setup and the other
defining the file systems. Using these two members makes it easier to migrate from
one release to another, especially when using the ServerPac method of installation.
OS/390 MVS Initialization and Tuning Reference contains a complete description of
the BPXPRMxx statements.

When you complete your installation activities, you have one or two BPXPRMxx
members, depending on whether you used ServerPac or CBPDO:

v With ServerPac, you receive two members, as IBM recommends.

v With CBPDO, after you complete all the instructions in the OS/390 Program
Directory, you have the one member that you copied from SYS1.SAMPLIB.

OS/390 UNIX System Services Planning

Chapter 1. APAR OW43776: OS/390 UNIX System Services Planning 5

||
|

|
|
|
|

|

|
|
|
|
|

|
|
|

In this case, you should define a second BPXPRMxx member so that the system
setup parameters are in one member and the parameters that define the file
systems are in the other.

Customize these BPXPRMxx members, according to the instructions in this section
and the needs of your installation. When customizing, remember to use columns 1
through 71 for data; columns 72 through 80 are ignored.

Figure 1 shows the IBM-supplied BPXPRMXX member in SYS1.SAMPLIB for the
current release.

OS/390 UNIX System Services Planning

6 Support Guide for APAR OW43776

MAXPROCSYS(900)
MAXPROCUSER(25)
MAXUIDS(200)
MAXFILEPROC(2000)
MAXPTYS(800)
CTRACE(CTIBPX00)
/*STEPLIBLIST('/etc/steplib') */
/*USERIDALIASTABLE('/etc/tablename') */

FILESYSTYPE TYPE(HFS)
ENTRYPOINT(GFUAINIT)
PARM(' ')

/* FILESYSTYPE TYPE(AUTOMNT) */
/* ENTRYPOINT(BPXTAMD) */

/* FILESYSTYPE TYPE(TFS) */
/* ENTRYPOINT(BPXTFS) */

/* FILESYSTYPE TYPE(NFS) */
/* ENTRYPOINT(GFSCINIT) */
/* ASNAME(MVSNFSC) */
/* PARM('biod(6)') */

ROOT FILESYSTEM('OMVS.ROOT')
TYPE(HFS)
MODE(RDWR)

/* MOUNT FILESYSTEM('OMVS.USER.JOE') */
/* TYPE(HFS) */
/* MODE(RDWR) */
/* MOUNTPOINT('/u/joe') */
/* NOSETUID */
/* WAIT */
/* SECURITY */

FILESYSTYPE TYPE(UDS) ENTRYPOINT(BPXTUINT)
NETWORK DOMAINNAME(AF_UNIX)

DOMAINNUMBER(1)
MAXSOCKETS(200)
TYPE(UDS)

FILESYSTYPE TYPE(INET) ENTRYPOINT(EZBPFINI)
NETWORK DOMAINNAME(AF_INET)

DOMAINNUMBER(2)
MAXSOCKETS(2000)
TYPE(INET)

/* FILESYSTYPE TYPE(CINET) ENTRYPOINT(BPXTCINT) */
/* NETWORK DOMAINNAME(AF_INET) */
/* DOMAINNUMBER(2) */
/* MAXSOCKETS(2000) */
/* TYPE(CINET) */
/* INADDRANYPORT(2000) */
/* INADDRANYCOUNT(325) */

Figure 1. BPXPRMXX Parmlib Member in SAMPLIB (Part 1 of 2)

OS/390 UNIX System Services Planning

Chapter 1. APAR OW43776: OS/390 UNIX System Services Planning 7

Defining File Systems:

Defining System Limits: You can customize your BPXPRMxx parmlib member to
provide the performance needed for the way your installation uses kernel services.

Table 3 on page 9 lists the system-wide and process-level limits that can be set in
the BPXPRMxx parmlib member.

/* SUBFILESYSTYPE NAME(LINET) */
/* TYPE(CINET) */
/* ENTRYPOINT(BPXTLINT) */

/* SUBFILESYSTYPE NAME(TCPIP) */
/* TYPE(CINET) */
/* ENTRYPOINT(EZBPFINI) */
/* DEFAULT */

/* SUBFILESYSTYPE NAME(TCPIP2) */
/* TYPE(CINET) */

ENTRYPOINT(EZBPFINI) */

MAXTHREADTASKS(1000)
MAXTHREADS(200)

/*PRIORITYPG (n,...,n)*/
/*PRIORITYGOAL (n,...,n)*/

IPCMSGNIDS (500)
IPCMSGQBYTES (2147483647)
IPCMSGQMNUM (10000)
IPCSHMNIDS (500)
IPCSHMSPAGES (262144)
IPCSHMMPAGES (25600)
IPCSHMNSEGS (500)
IPCSEMNIDS (500)
IPCSEMNSEMS (1000)
IPCSEMNOPS (25)
MAXMMAPAREA(40960)

/* MAXFILESIZE(1000) */

MAXCORESIZE(4194304)
MAXASSIZE(209715200)
MAXCPUTIME(1000)
MAXSHAREPAGES(131072)
FORKCOPY(COW)
SYSPLEX(NO)
SUPERUSER(BPXROOT)
TTYGROUP(TTY)
STARTUP_PROC(OMVS)

/* STARTUP_EXEC('Dsname(Memname)',SysoutClass) */
/* RUNOPTS('runtime options') */

SYSCALL_COUNTS(NO)
MAXQUEUEDSIGS(1000)
SHRLIBRGNSIZE(67108864)
SHRLIBMAXPAGES(4096)
LIMMSG(NONE)

Figure 1. BPXPRMXX Parmlib Member in SAMPLIB (Part 2 of 2)

OS/390 UNIX System Services Planning

8 Support Guide for APAR OW43776

Table 3. System-Wide and Process-Level Limits

System-Wide Limits Process-Level Limits

MAXPROCSYS MAXPROCUSER

MAXCPUTIME MAXFILEPROC

MAXUIDS MAXTHREADTASKS

MAXPTYS MAXTHREADS

MAXRTYS MAXQUEUEDSIGS

MAXMMAPAREA MAXFILESIZE

MAXSHAREPAGES MAXCORESIZE

MAXASSIZE

IPCMSGNIDS

IPCSHMNIDS

IPCSHMSPAGES

IPCSEMNIDS

IPCMSGQBYTES

IPCMSGQMNUM

IPCSHMMPAGES

IPCSHMNSEGS

IPCSEMNSEMS

IPCSEMNOPS

FORKCOPY

STEPLIBLIST

USERIDALIASTABLE

PRIORITYPG

PRIORITYGOAL

SYSCALL_COUNTS

NOARGS

SUPERUSER

TTYGROUP

SHRLIBMAXPAGES

VERSION

LIMMSG

CTRACE: Use the CTRACE statement to provide tracing while the kernel is
starting and to avoid having to issue a TRACE operator command to set tracing
options. See “CTnBPXxx Parmlib Member to Control Tracing” for information about
specifying your customized component trace parmlib members.

The only way to change any CTRACE value is with the TRACE command. You
cannot use the SETOMVS or SET OMVS command to change the value.

LIMMSG: Use the LIMMSG statement to control the display of console messages
that indicate when parmlib limits are reaching critical levels. For more information,
see “Displaying the Status of OS/390 UNIX Parmlib Limits” on page 28.

OS/390 UNIX System Services Planning

Chapter 1. APAR OW43776: OS/390 UNIX System Services Planning 9

|

|
|
|

MAXASSIZE: MAXASSIZE is the maximum region size (in bytes) for an address
space. You can set a system-wide limit in BPXPRMxx and then set higher limits for
individual users. Use the RACF ADDUSER or ALTUSER command to specify the
ASSIZEMAX limit on a per-user basis as follows:
ALTUSER userid OMVS(ASSIZEMAX(nnnn)

MAXCPUTIME: MAXCPUTIME is the time limit (in seconds) for processes that
were created by rlogind and other daemons. You can set a system-wide limit in
BPXPRMxx and then set higher limits for individual users. Use the RACF
ADDUSER or ALTUSER command to specify the CPUTIMEMAX limit on a per user
basis as follows:
ALTUSER userid OMVS(CPUTIMEMAX(nnnn))

MAXFILEPROC: Use MAXFILEPROC to determine the number of
character-special files, /dev/fdxx, that a single process can have open concurrently.
You can also limit the amount of system resources available to a single user
process.

When selecting a value, consider the following factors:

v For conformance to standards, set MAXFILEPROC to at least 16 to conform to
the POSIX standard or at least 25 to conform to the FIPS standard.

It is recommended that you set this value to 256.

v The minimum value of 3 supports stdin, stdout, and stderr.

v The value must be larger than 3 to support shell users. If the value is too small,
the shell may issue the message “File descriptor not available.” If this message
occurs, increase the MAXFILEPROC value.

A process can change the MAXFILEPROC value using the setrlimit() function. Only
processes with appropriate privileges can increase their limits.

You can set a system-wide limit in BPXPRMxx and then set higher limits for
individual users. Use the RACF ADDUSER or ALTUSER command to specify the
FILEPROCMAX limit on a per user basis as follows:
ALTUSER userid OMVS(FILEPROCMAX(nnnn))

“Dynamically Changing Certain BPXPRMxx Parameter Values” on page 22 explains
how to dynamically change the MAXFILEPROC value.

MAXMMAPAREA: For MAXMMAPAREA, you can set a system-wide limit in
BPXPRMxx and then set higher limits for individual users. Use the RACF
ADDUSER or ALTUSER command to specify the MMAPAREAMAX limit on a per
user basis as follows:
ALTUSER userid OMVS(MMAPAREAMAX(nnnn))

MAXPROCSYS: You can manage system resources by limiting the number of
processes that the system is to support. The values that you specify for
MAXPROCSYS, MAXPROCUSER, and MAXUIDS are interrelated. When selecting
a value for MAXPROCSYS, remember that these processes are needed:

v The initialization process (BPXOINIT)

v /usr/sbin/init, for starting and processing

v exec sh to run a shell script

v The process in which the shell script runs

OS/390 UNIX System Services Planning

10 Support Guide for APAR OW43776

Plan on one process for each daemon (for example, inetd and cron) that you start
from a shell script such as /etc/rc. In addition, each shell user needs a minimum of
three processes and possibly a few more for piping between shell commands.

Do not specify a higher value for MAXPROCSYS than your system can support
because most processes use an entire MVS address space. This value will vary,
depending on your environment. If you set the value too high, failures (EAGAIN) for
fork or spawn might occur because WLM could not provide enough fork initiators.

“Dynamically Changing Certain BPXPRMxx Parameter Values” on page 22 explains
how to dynamically change the MAXPROCYS value.

For an example of MAXPROCSYS, MAXPROCUSER, MAXRTYS, MAXPTYS, and
MAXUIDS settings in BPXPRMxx, see “Tuning Process Activity” on page 39.

MAXPROCUSER: To improve performance, use MAXPROCUSER to limit user
activity. For a typical shell user who starts up 1 to 3 shells, set the limit to 10.

When selecting a value, consider the following factors:

v Set MAXPROCUSER to at least 16 to conform to the POSIX standard for
CHILD_MAX, or to at least 25 to conform to the FIPS standard.

v A low MAXPROCUSER value limits the number of concurrent processes that a
user can run. A low value limits a user’s consumption of processing time, virtual
storage, and other system resources.

v Some daemons or users run without UID(0), and may create many address
spaces. In these cases, give the daemon ID a high enough PROCUSERMAX
value in the OMVS segment.

A user with a UID of 0 is not limited by the MAXPROCUSER value because a
superuser may need to be able to log on and use kernel services to solve a
problem.

Though not recommended, the security administrator can give the same OMVS UID
to more than one TSO/E user ID. Therefore, the number of users can be greater
than the number of UIDs that are defined. Check with the security administrator; if
users share UIDs, you will need to define a greater number of processes for each
user.

You can set a system-wide limit in BPXPRMxx and then set higher limits for
individual users. Use the RACF ADDUSER or ALTUSER command to specify the
PROCUSERMAX limit on a per-user basis as follows:
ALTUSER userid OMVS(PROCUSERMAX(nnnn))

MAXPTYS: Use MAXPTYS to manage the number of interactive shell sessions,
where each interactive session requires one pseudo-TTY pair. Do not specify an
arbitrarily high value for MAXPTYS. But, because each user may have more than
one session, it is recommended that you allow four pseudo-TTY pairs for each user
(MAXUIDS * 4). Specify a MAXPTYS value that is at least twice the MAXUIDS
value.

“Dynamically Changing Certain BPXPRMxx Parameter Values” on page 22 explains
how to dynamically change the MAXPTYS value.

MAXRTYS: MAXRTYS enables you to manage the number of interactive shell
sessions that are accessed by Communications Server terminal support. When you
specify this value, each interactive session requires one remote TTY. Avoid

OS/390 UNIX System Services Planning

Chapter 1. APAR OW43776: OS/390 UNIX System Services Planning 11

specifying an arbitrarily high value for MAXRTYS. However, because each user
may have more than one session, you should allow four remote TTY files for each
user (MAXUIDS * 4).

The MAXRTYS value influences the configuration of Communications Server nodes
and associated terminal files.

“Dynamically Changing Certain BPXPRMxx Parameter Values” on page 22 explains
how to dynamically change the MAXPROCYS value.

MAXTHREADS: MAXTHREADS is the maximum number of threads that a single
process can have active concurrently. If an application needs to create more than
the recommended maximum in SAMPLIB, it must minimize storage allocated below
the 16M line by specifying C run-time options. For information on the
set_thread_limit service (BPX1STL), refer to OS/390 UNIX System Services
Programming: Assembler Callable Services Reference.

You can set a system-wide limit in BPXPRMxx and then set higher limits for
individual users by using the RACF ADDUSER or ALTUSER command to specify
the THREADSMAX limit on a per user basis as follows:
ALTUSER userid OMVS(THREADSMAX(nnnn))

MAXTHREADTASKS: MAXTHREADTASKS is the maximum number of MVS tasks
that a single process can have concurrently active.

A high MAXTHREADTASKS value may affect storage and performance. Each task
requires additional storage for the following:
v The control blocks built by the kernel
v The control blocks and data areas required by the run-time library
v System control blocks such as the TCB and RB

MAXUIDS: MAXUIDS limits the number of active UIDs. When you select a value
for MAXUIDS, consider the following factors:

v Because users are likely to run with three or more concurrent processes each,
they require more system resources than typical TSO/E users.

v If the MAXUIDS value is too high relative to the MAXPROCSYS value, too many
users can invoke the shell. All users may be affected, because forks might begin
to fail.

For example, if your installation can support 400 concurrent processes—
MAXPROCSYS(400)—and each UID needs an average of 4 processes, then the
system can support 100 users. For this operating system, specify
MAXUIDS(100).

PRIORITYGOAL: If you are using your system to run a critical real-time application
program, set the performance groups or service classes to meet the needs of the
application program. It is difficult to run both real-time application programs and
general users on the same OS/390 UNIX system. There is no mechanism to restrict
any set of users from access to the nice() and setpriority() functions. For more
information, see “nice(), setpriority(), and chpriority()” on page 41.

PRIORITYPG: If you are using your system to run a critical real-time application
program, set the performance groups or service classes to meet the needs of the
application program. It is difficult to run both real-time application programs and
general users on the same OS/390 UNIX system. There is no mechanism to restrict

OS/390 UNIX System Services Planning

12 Support Guide for APAR OW43776

any set of users from access to the nice() and setpriority() functions. For more
information, see “nice(), setpriority(), and chpriority()” on page 41

STEPLIBLIST: With STEPLIBLIST, programs can have temporary access to files
that are not normally accessible to other users. Step libraries have many uses; one
is so that selected users can test new versions of run-time libraries before the new
versions are made available to everyone on the system. Customers who do not put
the Language Environment run-time library SCEERUN into the linklist should put
the SCEERUN data set name in this file.

If your installation runs programs that have the setuid or setgid bit turned on, only
those load libraries that are found in the STEPLIBLIST sanction list are set up as
step libraries in the environment that those programs will run in. Because programs
with the setuid or setgid bit turned on are considered privileged programs, they
must run in a controlled environment. The STEPLIBLIST sanction list provides this
control by allowing those programs to use only the step libraries that are considered
trusted by the installation.

IBM recommends that the pathname of the file be /etc/steplib. This fits in with the
IBM strategy to place all customized data in the /etc directory.

If you do not specify a value for STEPLIBLIST, step libraries will not be set up for
set-user-ID and set-group-ID executable files.

These step libraries are set up as a result of the invocation of a HFS executable file
using the exec service (BPX1EXC), the attach_exec service (BPX1ATX) or spawn
(BPX1SPN) service. After one of those services has been invoked, the step libraries
can be propagated from the calling task’s environment. They can also be specified
by using the STEPLIB environment variable that is passed to the exec service.
When the exec service invokes a set-user-ID or set-group-ID executable file, only
those libraries that are found in the sanctioned list are set up as step libraries in the
environment that the executable file will run in.

The following is a list of formatting rules for the STEBLIBLIST file that contains the
sanctioned list:

v You can include comment lines in the list. Each comment line must start with /*
and end with */.

v You must follow standard MVS data set naming conventions in naming the files
in the list.

v Each data set name must be fully qualified and cannot be enclosed in quotation
marks.

v Each data set name must be on a line by itself, with no comments.

v You must use uppercase letters for data set names.

v You can put blanks before and after each data set name. Entirely blank lines in
the list are ignored.

v You can use the * character to specify multiple files that begin with the same
characters. For example, if you list SYS1.*, you are sanctioning any file that
begins with SYS1. as a step library.

If the file does not follow these formatting rules, the sanctioned list is not built using
the file.

You should catalog each data set listed in the file to prevent user versions of the
data set from being used.

OS/390 UNIX System Services Planning

Chapter 1. APAR OW43776: OS/390 UNIX System Services Planning 13

Following is a sample sanctioned list file:

You can create or update the sanctioned list file using the OSTEPLIB command,
which specifies read and execute permissions for all users (permissions 555). The
sanctioned list file must be protected from update by nonprivileged users; therefore,
only users with superuser authority should be given update access to it.

Because a working copy of the sanctioned list is maintained in storage, an update
to the file will take effect when the next setuid(0) program is run from a process
with read access to the stepliblist file.

Use the SETOMVS or SET OMVS command to dynamically change the value of
STEPLIBLIST; this changes the current system settings. To make a permanent
change, edit the BPXPRMxx member that will be used for IPLs.

USERIDALIASTABLE: On most UNIX systems, you use lowercase IDs. With
OS/390 UNIX, typically you will use the uppercase user IDs and group names
specified in your security database. In some cases, however, you may want to use
lowercase or mixed case names in OS/390 UNIX processing. To do that, you need
to create a user ID alias table to associate lowercase or mixed case alias names
with uppercase OS/390 user ID and group names.

IBM recommends that the pathname of the file be /etc/tablename. This fits in with
the IBM strategy to place all customized data in the /etc directory. If a value for
USERIDALIASTABLE is not specified, alias names are not used.

Using the USERIDALIASTABLE statement degrades performance slightly. The more
names that you define, the greater the performance degradation. Installations are
encouraged to continue using uppercase-only userids and group names defined in
their security databases.

Following is a list of formatting rules for the userid alias table:

v You can include comment lines in the list. Each comment line must start with /*
and end with */.

v You must follow standard MVS userid and group name naming conventions in
the first column.

/**/
/* */
/* Name: Sample Sanctioned List for set-user-ID and set-group-ID */
/* files */
/* */
/* Updated by: May only be updated by OSTEPLIB TSO/E command */
/* */
/* Description: Contains a list of data set names that may */
/* be used as STEPLIB libraries for SETUID */
/* programs */
/* */
/* Wild cards may be used to specify multiple */
/* data set names that have the same prefix */
/* characters. */
/* */
/**/

/**/
/* Sanction all data set names beginning with CEE.SCEERUN */
/**/
CEE.SCEERUN*

OS/390 UNIX System Services Planning

14 Support Guide for APAR OW43776

v You must follow XPG4 standard naming conventions in the second column.

v Do not enclose the names in quotation marks.

v Each userid or group name and associated alias name must be on a line by
itself, with no comments.

v The MVS userids and group names must be located in columns 1-8 and the
associated aliases must be located on the same line in columns 10-17.

v The MVS name and the alias name must be separated by 1 or more blanks.

v The tags :userids and :groups must be used to delineate between userids and
group names.

– If no tags are present in the file, then all names in the file are assumed to be
userids.

– If there are any names listed before a tag, those names are considered to be
userids.

– If a :userids tag is present, then all name lines following it and up to the next
tag are considered to be userids.

– If a :groups tag is present, then all name lines following it and up to the next
tag are considered to be group names.

– If specified, the tag must start in column 1.

– The tag names are not case sensitive.

If the file does not follow these formatting rules, the alias name may not be
recognized and various functions relating to the attempted use of the alias may fail.

Following is a sample userid and group name alias table:

OS/390 UNIX System Services Planning

Chapter 1. APAR OW43776: OS/390 UNIX System Services Planning 15

For UUCP, you must set up userid UUCP or define uucp as an alias. Likewise, you
must set up group ID UUCPG or define uucpg as an alias.

For more information, refer to Chapter 19, “Customizing the OS/390 UNIX Shell”
and Chapter 22, “Configuring the UNIX-to-UNIX Copy Program (UUCP).”

The userid/group name alias table must be protected from update by non-privileged
users; therefore, only users with superuser authority should be given update access
to it. All users should be given read access to the file.

Once a user is logged into the system, changing the userid/group name alias table
does not change the alias name immediately. Database queries, however, will yield
the new alias if the userid performing the query has read/execute access to the
userid/group name alias table. The table is checked every 15 minutes and
refreshed if it has been changed. If a change needs to be activated sooner, you can
use the SETOMVS or SET OMVS command. See “Dynamically Changing the
BPXPRMxx Parameter Values” on page 21 for more information.

/**/
/* */
/* Name: Sample user ID/group name alias table */
/* */
/* Description: Contains a list of MVS user IDs and their */
/* associated alias names. */
/* */
/* Alias names may be constructed from the following characters: */
/* */
/* A B C D E F G H I J K L M N O P Q R S T U V W X Y Z */
/* a b c d e f g h i j k l m n o p q r s t u v w x y z */
/* 0 1 2 3 4 5 6 7 8 9 . _ - */
/* */
/* The hyphen shall not be used as the first character. */
/* */
/***/

/***/
/* Mixed case group names */
/***/
:Groups
DEPTD10 DeptD10
DEPTD20 DeptD20

/***/
/* Non-alphanumeric alias user IDs and group names */
/***/
:UserIDs
/***/
/* Mixed case alias names */
/***/
MYUSERID MyUserid

/***/
/* Easier to remember alias names */
/***/
K61XDLBC Daniel

JOEDOE Joe_Doe
MRDOE Mr.Doe
ABCD A-B-C-D
:groups
DEVEL OE-Dev
TEST OE_Test

OS/390 UNIX System Services Planning

16 Support Guide for APAR OW43776

Chapter 23. Managing Operations
OS/390 UNIX is designed to be continually available. This chapter discusses these
tasks, which are done by operators.

Task Page

Stopping Processes 17

Terminating Threads with the MODIFY Command 18

Shutting Down OS/390 UNIX 19

Dynamically Changing the BPXPRMxx Parameter Values 21

Tracing Events in OS/390 UNIX 26

Displaying the Status of the Kernel 27

Taking a Dump of the Kernel and User Processes 29

Recovering from a Failure 31

Managing Interprocess Communication (IPC) 33

For information about the CANCEL, DISPLAY, MODIFY MSGRT, and TRACE
operator commands, see OS/390 MVS System Commands.

Stopping Processes
There are three ways to stop a process:

v The operator enters a MODIFY operator command to terminate a process.

v A shell user enters the kill command to cancel processes.

v The operator enters a CANCEL command to stop an address space containing a
process. If the address space contains multiple processes, CANCEL terminates
all of the processes.

Terminating a Process with the MODIFY Command: If a process is hung, the
operator can enter one of these two MODIFY console commands to terminate the
process:

v To allow the signal interface routine to receive control before the process is
terminated, issue:
F BPXOINIT,TERM=pppp

where pppp is the process identifier.

v Sometimes a process is not terminated when a TERM request is sent. In these
cases, issue:
F BPXOINIT,FORCE=pppp

where pppp is the process identifier.

Terminating a Process with the kill Command: The best way to end a process
is to issue the kill command. Using the DISPLAY OMVS operator command or the
ps command, display all the active processes. Then issue the kill command,
specifying the signal and the PID (process identifier) for the process.

Start by sending a SIGTERM signal:
kill -s TERM pid

where pid is the process identifier. If that does not work, try sending a SIGKILL
signal:

OS/390 UNIX System Services Planning

Chapter 1. APAR OW43776: OS/390 UNIX System Services Planning 17

kill -s KILL pid

where pid is the process identifier.

Terminating a Process with the CANCEL Command: An operator can cancel all
processes or selected processes in an address space. To cancel all processes, use
the CANCEL command. Before issuing CANCEL, display all processes running in
that address space and the address space identifier by issuing:
DISPLAY OMVS,A=xxxx

If there is only one process in the address space or if you want to terminate all the
processes, issue:
CANCEL name,A=asid

For example, for a user with a TSO/E userid of JOE, Figure 2 shows how to obtain
the ASIDs for the user’s work and then cancel the user’s process that is running the
sleep 6000 shell command.

If you want to terminate one or more selected processes in an address space, but
not all the processes, then use the MODIFY command as described in “Terminating
a Process with the MODIFY Command” on page 17 or the kill command as
described in “Terminating a Process with the kill Command” on page 17.

Terminating Threads with the MODIFY Command
An operator can terminate a thread, without disrupting the entire process. The
syntax of the MODIFY command to terminate a thread is:
F BPXOINIT,{TERM}=pid[.tid]

{FORCE}

where

v pid indicates the process identifier (PID) of the thread to be terminated. The PID
is specified in decimal form as displayed by the D OMVS command.

v tid indicates the thread identifier (TID) of the thread to be terminated. The TID is
16 hexadecimal (0-9,A-F) characters as displayed by the following command:
D OMVS,PID=pppppppp

v TERM= indicates the signal interface routine will be allowed to receive control
before the thread is terminated.

v FORCE= indicates the signal interface routine will not be allowed to receive control
before the thread is terminated.

display omvs,u=joe
BPXO001I 17.12.23 DISPLAY OMVS 361

OMVS ACTIVE OMVS=(93)
USER JOBNAME ASID PID PPID STATE START CT_SECS
JOE JOE 001D 5 1 1RI 17.00.10 1.203
JOE JOE3 001B 131076 262147 1SI 17.00.10 .111

LATCHWAITPID= 0 CMD=sleep 6000
JOE JOE1 0041 262147 5 1WI 17.00.10 .595

LATCHWAITPID= 0 CMD=-sh

cancel joe3,a=1b

Figure 2. Console Display for a CANCEL Command

OS/390 UNIX System Services Planning

18 Support Guide for APAR OW43776

Although abnormal termination of a thread usually causes a process to terminate,
using the MODIFY command to terminate a thread will not cause the process to
terminate.

You will typically want to terminate a single thread when the thread represents a
single user in a server address space. Otherwise, random termination of threads
can cause some processes to hang or fail.

If a thread in a process is hung, the operator can enter one of these two MODIFY
console commands to terminate the thread without terminating the entire process.
We recommend that you use the TERM keyword first, and if that does not succeed,
use FORCE:

v To allow the signal interface routine to receive control before the thread is
terminated, use:
F BPXOINIT,TERM,PID=pppppppp.tttttttttttttttt

where pppppppp is the process identifier and tttttttttttttttt is the thread
identifier.

v To terminate the thread without allowing the signal interface routine to receive
control, use:
F BPXOINIT,FORCE,PID=pppppppp.tttttttttttttttt

where pppppppp is the process identifier and tttttttttttttttt is the thread
identifier.

Shutting Down OS/390 UNIX
This section explains how to shut down OS/390 UNIX. When you are doing a
planned shutdown and will be re-IPLing the system, issue the following operator
command:
F BPXOINIT,SHUTDOWN=FORKINIT

“Planned Shutdowns” describes the procedure. If you want to shut down the system
as part of JES2 maintenance and do not want to re-IPL the system, use the
following operator command:
F BPXOINIT,SHUTDOWN=FORKS

“Partial Shutdowns (for JES2 Maintenance)” on page 20 describes the procedure.

Planned Shutdowns: As part of a planned shutdown, you should clean up the
system first before re-IPLing.

1. Use the operator SEND command to send a note to all TSO/E users telling
them that the system will be shut down at a certain time. For example:
send 'The system is being shut down in five minutes. Log off.',NOW

2. Use the wall command to send a similar note about the impending shutdown
to all logged-on shell users. For example:
wall The system is being shut down in five minutes. Please log off.

3. Prevent new TSO/E logons and shut down other OS/390 subsystems (such as
CICS and IMS), following your usual procedures.

4. Shut down all JES initiators.

5. Unmount all NFS-mounted file systems as part of the normal shutdown
process.

OS/390 UNIX System Services Planning

Chapter 1. APAR OW43776: OS/390 UNIX System Services Planning 19

6. Use normal shutdown procedures to terminate all file system address spaces
such as TCP/IP and DFSS. Do this after the final warning has been sent to
users that the system is terminating.

7. Terminate running daemons such as inetd. To get a list of daemons that are
running, issue, for example:
D OMVS,U=OMVSKERN

In this example, OMVSKERN is the userid that is used for the kernel and
daemons. In addition, you can display all processes (most daemons will have
recognizable names) by issuing:
D OMVS,A=ALL

Then use the F BPXOINIT,PID=xxxxxxxx operator command or the kill
command to terminate those processes.

8. Terminate any remaining processes and unmount all file systems (including the
root file system) by using the bpxstop tool. It is available from the tools and
toys page on the OS/390 UNIX web site.
http://www.ibm.com/s390/unix/

9. Take down JES. At this point, there may still be a number of initiators that are
provided by WLM for use on fork and spawn. These initiators time out after 30
minutes on their own. To terminate the initiators, you can issue the following
operator command:
F BPXOINIT,SHUTDOWN=FORKINIT

10. After all the processes have been terminated, you can do any of the following:
v IPL
v Power off
v Take down JES, restart JES, and then rebuild your environment. For

example:

– Remount any file systems that you unmounted. To do all the mounts, you
must issue mount commands or construct a REXX exec or CLIST. If you
are using automount for user file systems, there will be less work
involved.

– If you terminated the address spaces for TCP/IP and DFSS, you must
restart these.

– If you terminated daemons, logon to TSO as superuser and run /etc/rc
from a shell or from the ISHELL.

– Notify users that the system is once again available for UNIX
processing.

Partial Shutdowns (for JES2 Maintenance): Before JES2 can be shut down for
maintenance purposes, part of OS/390 UNIX must be shut down. This section
explains how you can terminate all of the forked processes without having to re-IPL
the entire system. (The kernel remains active but new forked processes are not
allowed.) Use this procedure for JES2 maintenance only.

Do the partial shutdown as infrequently as possible because it is a disruptive
shutdown; all the user processes that are either forked or non-local spawned are
terminated.

After the forked processes have been terminated, you can terminate the colony
address space. Now JES2 can be shut down for maintenance. OS/390 UNIX can

OS/390 UNIX System Services Planning

20 Support Guide for APAR OW43776

be reinitialized after JES2 has been restarted, and forked processes will start being
dubbed again. The file system colonies can then be restarted manually. The
following steps describe the procedure:

1. Use the operator SEND command to send a note to all TSO/E users telling
them that the system will be shut down. For example:
send 'The system is being shut down in five minutes. Please log off.'

2. Use the wall command to send a similar note to all logged-on shell users:
wall The system is being shut down in five minutes. Please log off.

3. Issue the following operator command to begin the shutdown of OS/390 UNIX.
F BPXOINIT,SHUTDOWN=FORKS

This terminates all forked and non-local spawned address spaces on the
system. If the operator receives a success message, the shutdown can be
continued.

A failure message means that some forked processes or non-local spawned
address spaces could not be terminated. Try to find these processes by issuing:
D OMVS,A=ALL

To terminate them, issue:
F BPXOINIT,FORCE,PID=xxxxxxxx

If that does not work, use the CANCEL or FORCE operator commands.

4. Terminate the file system colonies. Use normal shutdown procedures to close all
file system address spaces such as Network File System Client (NFSC) and the
Distributed File System Cache Manager (DFSCM).

For NFSC, determine what the process name was used to start this colony. Use
this name to cancel it. (For example, C NFSC.)

For DFSCM, use the procedure in OS/390 Distributed File Service DFS
Administration Guide and Reference to stop the DFS Cache Manager. Issue
STOP DFSCM to stop DFSCM.

For all other colonies, use the procedures documented in their publications.

5. Now you can do whatever corrective or maintenance actions that were needed
for JES2, such as restarting it.

6. To restart OS/390 UNIX, issue the Modify (F) command.
F BPXOINIT,RESTART=FORKS

7. Restart the file system address spaces.

For NFSC, you have to respond to the operator message BPXF014D issued
when the colony was taken down. Then reissue all the mounts.

For DFSCM, respond to the operator message BPXF014D.

For all other colonies, use the procedures they have documented in their
product publications.

Dynamically Changing the BPXPRMxx Parameter Values
The SETOMVS command enables you to modify BPXPRMxx parmlib settings
without re-IPLing. For example:
SETOMVS MAXTHREADTASKS=100,MAXPROCUSER=8

You can dynamically change process-wide limits separately for each process. For
example:
SETOMVS PID=123,MAXFILEPROC=200

OS/390 UNIX System Services Planning

Chapter 1. APAR OW43776: OS/390 UNIX System Services Planning 21

The SET OMVS command enables you to dynamically change the BPXPRMxx
parmlib members that are in effect. Because you can have multiple BPXPRMxx
definitions, you can easily reconfigure a large set of the system characteristics. You
can keep the reconfiguration settings in a permanent location for later reference or
reuse. A sample SET OMVS command is:
SET OMVS=(AA,BB)

If a parameter is specified more than once with different values, in the parmlib
members, the first value specified is the first value that is used. For example, if you
specify SET OMVS=(AA,BB) where AA has a MAXPROCUSER=10 value and BB
has a MAXPROCUSER=5 value, MAXPROCUSER =10 is used.

You can use the SETOMVS RESET command to dynamically add the
FILESYSTYPE, NETWORK, and SUBFILESYSTYPE statements without having to
re-IPL. However, if you change the values, a re-IPL will be necessary. For more
information, see “Dynamically Adding FILESYSTYPE Statements in BPXPRMxx” on
page 24.

See OS/390 MVS System Commands for a complete description of the SET OMVS
and SETOMVS commands.

You can use the SETOMVS SYNTAXCHECK operator command to check the
syntax of a BPXPRMxx parmlib member before doing an IPL. (You cannot use that
command to verify whether HFS datasets or mount points are valid.)

Dynamically Changing Certain BPXPRMxx Parameter Values: The
MAXPROCSYS, MAXPTYS, MAXRTYS, MAXFILEPROC, IPCMSGNIDS,
IPCSEMNIDS, IPCSHMNIDS, and IPCSHMSPAGES specify maximum values. You
can use the SETOMVS or SET OMVS command to dynamically increase the
current system setting, but if you specify a value that is too low or too high, you will
get an error message. To use a value outside the range, you will need to change
the specification in BPXPRMxx and re-IPL.

To avoid specifying a value that is too low or too high, you can use a formula to
calculate the maximum values. The minimum value is sometimes the current setting
of the parameter and sometimes lower than that, as identified in the description of
each parameter. The formula for each parameter is described later in this section.

The following example shows you how to perform the calculations using the
IPCMSGNIDS parameter, which determines the highest number of unique message
queues in the system. To use SETOMVS IPCMSGNIDS=xxx to increase the current
setting, you must calculate the highest number that you can specify. According to
the description of IPCMSGNIDS in “IPCMSGNIDS and IPCSEMNIDS” on page 23,
the formula is:
MIN(20000,MAX(4096,3*initial value))

For this example, the current value of IPCMSGNIDS is 1000; the value of
IPCMSGNIDS at IPL is also 1000 (that is, 1000 is the initial value). Use the formula
in the following way:

1. Compare 4096 with 3 times 1000 to find the higher number (the MAX). 4096 is
the higher number.

2. Compare 20000 with 4096 to find the smaller number (the MIN). 4096 is the
smaller number.

Therefore, the highest number that you can specify on SETOMVS IPCMSGNIDS is
4096. The range of numbers that you can specify is 1000 (the current value) to

OS/390 UNIX System Services Planning

22 Support Guide for APAR OW43776

4096. The correct SETOMVS command for increasing the message queue limit to
the maximum (assuming a starting value of 1000) would be:
SETOMVS IPCMSGNIDS=4096

To change to a number higher than 4096 (but lower than 20000), you will have to
change BPXPRMxx and re-IPL.

MAXPROCSYS: The range that you can use has a minimum value of 5; the
maximum value is based on the following formula:
MIN(32767,MAX(4096,3*initial value)

The initial value is the MAXPROCSYS value that was specified during BPXPRMxx
initialization. You cannot use a value less than 5. If you want to use a value greater
than the current maximum (as calculated by the formula) but lower than the initial
maximum (32767), you will have to change the value in BPXPRMxx and re-IPL.

MAXPTYS: The range’s minimum value is 1 and the maximum is based on the
following formula:
MIN(10000,MAX(256,2*initial value)

The initial value is the MAXPTYS value that was specified during BPXPRMxx
initialization.

MAXRTYS: The range’s minimum value is the current setting of MAXRTYS, and
the maximum is based on the following formula:
MIN(10000,MAX(256,2*initial value)

The initial value is the MAXRTYS value that was specified during BPXPRMxx
initialization. If you want to use a value greater than the current maximum (as
calculated by the formula) but lower than the initial maximum (10000), you will have
to change the value in BPXPRMxx and re-IPL.

IPCMSGNIDS and IPCSEMNIDS: The range’s minimum value is the current
setting of IPCMSGNIDS or IPCSEMNIDS, and the maximum is based on the
following formula:
MIN(20000,MAX(4096,3*initial value)

The initial value is the value that was specified during BPXPRMxx initialization. If
you want to use a value greater than the current maximum (as calculated by the
formula) but lower than the initial maximum (20000), you will have to change the
value in BPXPRMxx and re-IPL.

IPCSHMNIDS and IPCSHMSPAGES: The range’s minimum value is the current
setting of IPCMSGNIDS or IPCSHMSPAGES, and the maximum is based on the
following formula:
MIN(20000,MAX(4096,3*initial value)

The initial value is the value that was specified during BPXPRMxx initialization. If
you want to use a value greater than the current maximum (as calculated by the
formula) but lower than the initial maximum (20000), you will have to change the
value in BPXPRMxx and re-IPL.

Dynamically Switching to Different BPXPRMxx Members: Another way to
dynamically reconfigure parameters is to use the SET OMVS command to change
the BPXPRMxx parmlib members that are in effect. With the SET OMVS command,

OS/390 UNIX System Services Planning

Chapter 1. APAR OW43776: OS/390 UNIX System Services Planning 23

you can have multiple BPXPRMxx definitions and use them to easily reconfigure a
set of the OS/390 UNIX system characteristics. You can keep the reconfiguration
settings in a permanent location for later reference or reuse.

For example, you could keep the system limits parameters that can be reconfigured
in parmlib member BPXPRMLI. When you need to change any of the limits, edit the
parmlib member and then issue SET OMVS. For example:
SET OMVS=(LI)

Changes to system limits (for example, MAXPROCSYS) take effect immediately.
Changes to user limits (for example, MAXTHREADS) are set when a new user
enters the system (for example, rlogin or a batch job). These limits persist for the
length of the user connection to OS/390 UNIX.

Dynamically Adding FILESYSTYPE Statements in BPXPRMxx: Use the
SETOMVS RESET command to dynamically add the FILESYSTYPE, NETWORK,
and SUBFILESYSTYPE statements without having to re-IPL. If you want to change
the values, you will have to edit the BPXPMRxx member that is used for IPLs. You
can also dynamically add the parmlib statements currently supported by SETOMVS,
such as MAXPROCSYS.

To display information about the current FILESYSTYPE, NETWORK, or
SUBFILESYSTYPE statements, issue the following command:
DISPLAY OMVS,PFS

The following section shows examples of some of the more common configuration
changes, adding the HFS and adding sockets. The examples discuss:

1. Activating the HFS file system for the first time.

2. Activating a single sockets file system for the first time.

3. Activating multiple sockets file systems for the first time with Common INET.

4. Adding another sockets file system to an existing common INET configuration.

5. Changing the MAXSOCKETS value.

Activating the HFS File System for the First Time: To activate the HFS file system
for the first time, do the following:

1. Set up a root HFS dataset.

2. Create a temporary BPXPRMtt member that has the following statement:
FILESYSTYPE TYPE(HFS) ENTRYPOINT(GFUAINIT)

3. Issue SETOMVS RESET(tt).

4. From TSO or the ISHELL, do the following:

a. Unmount the current root file system.

b. Mount the root HFS dataset as the new root file system.

c. Mount any additional HFS datasets as needed.

5. Add the following statements to the BPXPRMxx parmlib member used on IPL:

a. The FILESYSTYPE statement used above.

b. A ROOT statement for the root HFS.

c. MOUNT statements for the additional mounts that should be done initially.

Activating a Single Sockets File System for the First Time: This example explains
how to activate a single sockets file system for the first time. It uses the SecureWay

OS/390 UNIX System Services Planning

24 Support Guide for APAR OW43776

TCP/IP Socket File System for network sockets and also brings up support for local
sockets. The MAXSOCKETS value used is just an example; the value that you use
may be different.

1. Create a temporary BPXPRMtt member with the following statements:
/* Start Address Family AF_INET for Network Sockets /*
FILESYSTYPE TYPE(INET) ENTRYPOINT(EZBPFINI)
NETWORK TYPE(INET) MAXSOCKETS(2000)

DOMAINNAME(AF_INET) DOMAINNUMBER(2)

/* Start Address Family AF_UNIX for Local Sockets */
FILESYSTYPE TYPE(UDS) ENTRYPOINT(BPXTUINT)
NETWORK TYPE(UDS) MAXSOCKETS(1000)

DOMAINNAME(AF_UNIX) DOMAINNUMBER(1)

2. Issue SETOMVS RESET(tt).

3. Start the TCPIP address space.

4. Add these parmlib statements to the BPXPRMxx member used on IPL.

Activating Multiple Sockets File Systems for the First Time with Common INET:
This example shows how to activate multiple sockets file systems for the first time
with Common INET. It starts two socket file systems, TCP/IP and AnyNet. Because
they both support address family AF_INET, they are configured underneath
Common INET to give applications the appearance of a single AF_INET socket file
system.

Because this is an example of the initial configuration of sockets, the support for
local, or AF_UNIX, sockets is also included for completeness.

1. Create a temporary BPXPRMtt member with the following statements:
/* Start Address Family AF_INET for Common INET */
FILESYSTYPE TYPE(CINET) ENTRYPOINT(BPXTCINT)
NETWORK TYPE(CINET) MAXSOCKETS(1000)

DOMAINNAME(AF_INET) DOMAINNUMBER(2)
INADDRANYPORT(5000) INADDRANYCOUNT(100)

/* Start TCP/IP and AnyNet under Common INET */
SUBFILESYSTYPE TYPE(CINET) NAME(TCPIP) ENTRYOINT(EZBPFINI) DEFAULT
SUBFILESYSTYPE TIME(CINET) NAME(ANYNET) ENTRYPOINT(ISTOEPIT)

2. Issue SETOMVS RESET(tt).

3. Start the TCPIP address space.

4. Start the Sockets Over SNA address space.

5. Add these parmlib statements to the BPXPRMxx member used on IPL.

The names used in the example, TCPIP and ANYNET must match those used when
configuring the associated products.

Increasing the MAXSOCKETS Value: This example shuts down TCP/IP and brings
it back up with a new value for MAXSOCKETS:

1. Shut down TCP/IP. For example:
p tcpip

Most socket programs and daemons will either terminate after TCP/IP is shut
down or will tolerate a recycle of TCP/IP. There may be others that will have to
be stopped manually.

2. Create a temporary BPXPRMtt member that has the following statements:
NETWORK TYPE(INET) MAXSOCKETS(10000)

DOMAINNAME(AF_INET) DOMAINNUMBER(2)

3. Issue SETOMVS RESET=(tt).

OS/390 UNIX System Services Planning

Chapter 1. APAR OW43776: OS/390 UNIX System Services Planning 25

4. Restart TCP/IP. For example:S TCPIP.

5. Restart the socket programs and daemons, as necessary.

6. Update the MAXSOCKETS value in the BPXPRMxx member used on IPL.

Only the SecureWay Socket PFS, EZBPFINI, supports picking up a new
MAXSOCKETS value when it is recycled.

The MAXSOCKETS value for a Common INET configuration can be changed with a
similar procedure:

1. The TYPE() keyword of the NETWORK statement would specify the TYPE
name of the Common INET PFS, which was “CINET” in the previous examples.

2. Common INET is not shut down, though, and the change takes effect in each
TCP/IP stack when that stack was recycled.

3. INADDRANYPORT and INADDRANYCOUNT cannot be changed.

Adding Another Sockets File System to an Existing Common INET Configuration:
This example starts a second SecureWay Sockets File System and uses names
based on the previous examples.

1. Create a temporary BPXPRMtt member with the following statements:
SUBFILESYSTYPE TYPE(CINET) NAME(TCPIP2) ENTRYPOINT(EZBPFINI)

2. Issue SETOMVS RESET(tt).

3. Start the TCPIP2 address space.

4. Add this parmlib statement to the BPXPRMxx member used on IPL.

Tracing Events in OS/390 UNIX
To provide problem data, events are traced. When the OMVS address space is
started, the trace automatically starts. The trace cannot be completely turned off.

Your installation specifies events to be traced in CTnBPXxx parmlib members. Each
member should specify one or more events; keep the number of events small
because tracing affects system performance. The installation can filter the events by
address spaces, user IDs, and level of detail.

The CTnBPXxx member to be used when the OMVS address space is initialized is
identified on the CTRACE parameter of the BPXPRMxx parmlib member. You also
specify the size of the trace buffers in the CTnBPXxx member used when the
system is IPLed. You can change the buffer size while OS/390 UNIX is running. The
buffer can be 16KB minimum to 4MB maximum. If you need a different buffer size,
change buffer size (BUFSIZE) in a CTnBPXxx member and issue:
TRACE CT,ON,COMP=SYSOMVS,PARM=CTnBPXxx

An operator starts and stops tracing events in the OS/390 UNIX system with the
commands:
TRACE CT,ON,COMP=SYSOMVS,PARM=CTnBPXxx
TRACE CT,OFF,COMP=SYSOMVS

The operator can resume full tracing, with the previously used CTnBPXxx parmlib
member or a different member, with the command:
TRACE CT,ON,COMP=SYSOMVS,PARM=CTnBPXxx

The PARM operand specifies the parmlib member with the tracing options.

Tracing DFSMS/MVS Events: You can also trace DFSMS/MVS events for the
HFS. For example, to set up a trace, you can enter the following command:

OS/390 UNIX System Services Planning

26 Support Guide for APAR OW43776

TRACE CT,nnnnk,COMP=SYSSMS
R X,OPTIONS=(CALL,RRTN,CB,SUSP,EXITA,COMP=(ALL,NOIMF,NOSSF)),END

or:
TRACE CT,nnnnk,COMP=SYSSMS
R X,OPTIONS=(ENTRY,EXIT,EXITA,CB,COMP=(PFS,CDM)),END

Attention: SMS trace buffers are allocated in every initiator running kernel
workloads. They are allocated in DREF ELSQA, which can cause a shortage
of real pages.

For information about how to set up and use a trace, and for diagnosis information
on interpreting a trace, see OS/390 DFSMSdfp Diagnosis Reference.

Re-creating Problems for IBM Service: If you are re-creating a problem for IBM
service, it is generally a good idea to increase the OMVS CTRACE buffer size to
4MB. To do this, issue:
TRACE CT,4M,COMP=SYSOMVS,PARM=CTnBPXxx

with the parmlib member specifying the desired options. Alternatively, you could
change the parmlib member to specify the desired buffer size. After you capture the
dump for the problem, you can reset the trace buffer size to the original setting.
Issue:
TRACE CT,xxxK,COMP=SYSOMVS

where xxxK is the size of the desired trace buffer.

Displaying the Status of the Kernel
Display information about the kernel or processes as follows:

v The operator enters a DISPLAY OMVS command to display the status of the
kernel and processes.

v The operator enters the DISPLAY TRACE,COMP=SYSOMVS command to
display the status of the kernel trace.

v A shell user enters the ps command or the PS ISHELL command to display the
status of the user’s processes.

v A superuser enters the ps command or the PS ISHELL command to display the
status of all processes.

The operator displays the status for kernel services with the command:
DISPLAY OMVS

The command can be used to show information about a userid, about the parmlib
members that are in effect, or about the current values of reconfigurable parmlib
member settings.

To display the status of address spaces that the userid JANES is using and the
processor resources used by each address space, the operator enters:
DISPLAY OMVS,U=JANES

For another example, see Figure 2 on page 18.

If the system IPLed with the specification of OMVS=(XX,YY,ZZ), the output for the D
OMVS command is:

OS/390 UNIX System Services Planning

Chapter 1. APAR OW43776: OS/390 UNIX System Services Planning 27

BPXO004I 10.17.23 DISPLAY OMVS 869
OMVS ACTIVE 000E OMVS=(XX,YY,ZZ)

The keyword OPTIONS lets you display the current configuration of the BPXPRMxx
parmlib statements that are reconfigurable via the SET OMVS or SETOMVS
command. The updated output from D OMVS,OPTIONS reflects any changes that
resulted from a SETOMVS or a SET OMVS= operator command invocation.

In this example, when the PID option is used to obtain the thread identifiers, the
output is:

You can then cancel selected threads, as shown in this example:
F BPXOINIT,FORCE=117440514.04962E5800000003
BPXM027I COMMAND ACCEPTED.

F BPXOINIT,TERM=117440514.0496624800000009
BPXM027I COMMAND ACCEPTED.

An operator displays status for the rest of the OS/390 system with the commands:

v DISPLAY TS,LIST: The number of time-sharing users, including the number of
users

v DISPLAY JOBS,LIST: The number of active jobs, including the number of
address spaces that were forked or that were created in other ways but
requested kernel services.

v DISPLAY A,LIST: The combined information from the DISPLAY TS,LIST and
DISPLAY JOBS,LIST commands.

Displaying the Status of OS/390 UNIX Parmlib Limits: You can display
information about current system-wide parmlib limits, including current usage and
high-water usage, with the DISPLAY OMVS,LIMITS command:
DISPLAY OMVS,L

BPXO051I 14.05.52 DISPLAY OMVS 904
OMVS 0042 ACTIVE OMVS=(69)
SYSTEM WIDE LIMITS: LIMMSG=NONE

CURRENT HIGHWATER SYSTEM
USAGE USAGE LIMIT

MAXPROCSYS 1 4 256
MAXUIDS 0 0 200

D OMVS,PID=117440514

BPXO040I 14.16.58 DISPLAY OMVS 177
OMVS 000E ACTIVE OMVS=(93)
USER JOBNAME ASID PID PPID STATE START CT_SECS
MEGA TC1 0021 117440514 117440515 HKI 14.16.14 .170

LATCHWAITPID= 0 CMD=ACEECACH
THREAD_ID TCB@ PRI_JOB USERNAME ACC_TIME SC STATE
0496146000000000 009E0438 .050 PTJ KU
04961D0800000001 009D5E88 .002 SLP JSN
049625B000000002 009D8798 .003 SLP JSN
04962E5800000003 009D5090 .012 SLP JSN
0496370000000004 009D5228 .011 SLP JSN
04963FA800000005 009D5A88 .010 SLP JSN
0496485000000006 009D8048 .011 SLP JSN
049650F800000007 009D81E0 .011 SLP JSN
049659A000000008 009D8378 .011 SLP JSN
0496624800000009 009D8510 .011 SLP JSN
04966AF00000000A 009D8930 .030 SLP JSN

OS/390 UNIX System Services Planning

28 Support Guide for APAR OW43776

|
|
|

|

|
|
|
|
|
|
|
|

MAXPTYS 0 0 256
MAXMMAPAREA 0 0 256
MAXSHAREPAGES 0 10 4096
IPCMSGNIDS 0 0 500
IPCSEMNIDS 0 0 500
IPCSHMNIDS 0 0 500
IPCSHMSPAGES 0 0 262144 *
IPCMSGQBYTES --- 0 262144
IPCMSGQMNUM --- 0 10000
IPCSHMMPAGES --- 0 256
SHRLIBRGNSIZE 0 0 67108864
SHRLIBMAXPAGES 0 0 4096

An * displayed after a system limit indicates that the system limit was changed via a
SETOMVS or SET OMVS= command.

The display output shows for each limit the current usage, high-water (peak) usage,
and the system limit as specified in the BPXPRMxx parmlib member. The displayed
system values may be the values as specified in the BPXPRMxx parmlib member,
or they may be the modified values resulting from the SETOMVS or SET OMVS
commands.

You can also use the DISPLAY OMVS,LIMITS command with the PID= operand to
display information about high-water marks and current usage for an individual
process. See OS/390 UNIX System Services Command Reference.

The high-water marks for the system limits can be reset to 0 with the D
OMVS,LIMITS,RESET command. Process limit high-water marks cannot be reset.

Taking a Dump of the Kernel and User Processes
If you have a loop, hang, or wait condition in a process and need a dump for
diagnosis, you need to dump several types of data:

v The kernel address space.

v Any kernel data spaces that may be associated with the problem.

v Any process address spaces that may be associated with the problem.

v Appropriate storage areas containing system control blocks (for example, SQA,
CSA, RGN, TRT).

The steps are:

1. Use DISPLAY commands to display information on currently active address
spaces and data spaces. (For more details on these DISPLAY commands, see
OS/390 MVS System Commands.)

2. Allocate a sufficiently large dump data set.

3. Take the dump.

4. Review the dump completion information.

Displaying the Kernel Address Space: To find the kernel address space and
associated data spaces, use D A,OMVS. Here is a sample output:

OS/390 UNIX System Services Planning

Chapter 1. APAR OW43776: OS/390 UNIX System Services Planning 29

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|

|
|
|

|
|

The display output shows the kernel address space identifier (ASID) as A=nnnn
where nnnn is the hexadecimal ASID value. In this example, A=000E. The display
output also shows the data space names associated with the kernel address space.
The system uses these data spaces as follows:

v SYSZBPX1 for kernel data (including CTRACE buffers). The CTRACE buffers
are automatically included in the dump and need not be explicitly added to a
DUMP command or a SLIP trap.

v SYSZBPX2 for file system data

v SYSZBPX3 for pipes

v SYSIGWB1 for byte-range locking

v SYSGFU01 for file system adapter

v SYSZBPXU for AF_UNIX sockets

v SYSZBPXC for common INET sockets

v SYSZBPXL for local AF_INET sockets

Dump other data spaces if there is reason to believe that they contain data that
could be useful in analyzing the problem.

Displaying Process Information: To display the process information for address
spaces, use D OMVS,A=ALL. Here is a sample output:

The display output shows all of the active processes, ASIDs, process identifiers,
parent process IDs, and states. Use this to obtain ASIDs of processes you wish to
dump.

Displaying Global Resource Information: To display global resource serialization
information to see possible latch contention, use D GRS,C.

D A,OMVS
IEE115I 12.55.47 94.208 ACTIVITY 503
JOBS M/S TS USERS SYSAS INITS ACTIVE/MAX VTAM
00001 00013 00002 00019 00019 00002/00050
OMVS OMVS OMVS NSW SO A=000E PER=NO SMC=000

PGN=001 DMN=001 AFF=NONE
CT=033.466S ET=03.44.48
WUID=STC06055 USERID=OMVSKE
ADDR SPACE ASTE=0173ECC0
DSPNAME=SYSZBPXU ASTE=00A35
DSPNAME=SYSGFU01 ASTE=007F8
DSPNAME=SYSZBPX3 ASTE=007F8
DSPNAME=SYSIGWB1 ASTE=007F8
DSPNAME=SYSZBPX2 ASTE=00A35
DSPNAME=SYSZBPX1 ASTE=00A35

D OMVS,A=ALL

USER JOBNAME ASID PID PPID STATE
OMVSKERN BPXOINIT 002A 1 0 1WI
MVS TCPIP 002B 65538 1 MR
DCEKERN DCEKERN 003A 262147 1 HK
DCEKERN DCEKERN 003A 262148 262147 HK
DCEKERN DCEKERN 003A 65541 262147 HK
DCEKERN DCEKERN 003A 65542 262147 HF
DCEKERN DCEKERN 003A 7 262147 HK
DCEKERN DCEKERN 003A 8 262147 HK
TS65106 TS65106 0032 9 1 1RI
TS65106 TS65106 0032 10 9 1CI

LATCHWAITPID= 0 CMD=-sh

OS/390 UNIX System Services Planning

30 Support Guide for APAR OW43776

This display may show latch contention, which could be the cause of the problem.
You should dump the address space of the process holding the latch. If the latch is
a file system latch, dump the file system data space SYSZBPX2 also.

Allocating a Sufficiently Large Dump Data Set: Because you are dumping
multiple address spaces, multiple data spaces, and multiple storage data areas, you
may need a much larger dump data set defined than is normally used for dumping
a single address space. You should preallocate a very large SYS1.DUMPnn data
set. For more information on SYS1.DUMPnn data, see the DUMPDS command in
OS/390 MVS System Commands.

SDUMP has a limit on how much storage it allows in a single dump. It is called
MAXSPACE. To determine the current value of MAXSPACE, issue the D D,O
command. The default value is 500 megabytes. To change this value, issue:
CD SET,SDUMP,MAXSPACE=nnnnM

In a large server environment, you may need to increase MAXSPACE to 2000M (2
gigabytes) or more.

Taking the Dump: To initiate the dump, enter this command:
DUMP COMM=(dname)

where dname is a descriptive name for this dump. You can specify up to 100
characters for the title of the dump. The system responds and gives you a prompt
ID. You reply by specifying the data to be included in the dump. If you specify the
operand CONT, the system will prompt you for more input.

In the following examples of replies you can give, rn is the REPLY number to the
prompt.

The data areas in the following reply contain system control blocks and data areas
generally necessary for investigating problems:
R rn,SDATA=(CSA,SQA,RGN,TRT,GRSQ),CONT

In the next reply, x'E' is the OMVS address space. The other address space IDs
specified are those believed to be part of the problem. You can specify up to 15
ASIDs.
R rn,ASID=(E,3A,32),CONT

This example specifies data spaces:
R rn,DSPNAME=('OMVS'.SYSZBPX2,'OMVS'.SYSZBPX1),END

The file system data space, SYSZBPX2, is useful if the hang condition appears to
be due to a file system latch.

For more information on the DUMP command, particularly on specifying a large
number of operands, see OS/390 MVS System Commands.

Reviewing Dump Completion Information: After the dump completes, you
receive an IEA911E message indicating whether the dump was complete or partial.
If it was partial, check the SDRSN value. If insufficient disk space is the reason,
delete the dump, allocate a larger dump data set, and request the dump again.

Recovering from a Failure
The operator needs to recover if a failure occurs:

OS/390 UNIX System Services Planning

Chapter 1. APAR OW43776: OS/390 UNIX System Services Planning 31

v Kernel failure: As a result, interactive processing in the shell and OS/390 UNIX
applications fail.

v File system type failure: OS/390 UNIX continues processing even though the
file system type is not operational. Requests to use the files in any file systems
of that file system type will fail.

v File system failure: As a result, some files cannot be used, which may cause
programs to fail.

The operator starts recovery by collecting messages and a dump, if written.

System Services Failure: If the OS/390 UNIX system fails, the operator collects
problem data, which includes messages, SVC dumps, and SYS1.LOGREC records
for abends and decides if re-IPL is warranted.

The work in progress when the failure occurred is lost and must be started from the
beginning.

File System Type Failure: After a failure of a file system type, the system issues
message BPXF014D. In response, the operator or automation corrects the problem
as indicated by previous messages and then enters R in reply to message
BPXF014D.

File System Failure: These events can be symptoms of file system failure:
v 0F4 abend
v EMVSPFSFILE return code
v EMVSPFSPERM return code
v A file becomes unrecognizable or unopenable

After a failure of a file system, the operator:

1. Restores the HFS data set with the data set from the previous level. For more
information on recovering an HFS data set, see:
v OS/390 DFSMS Migration
v OS/390 DFSMShsm Storage Administration Guide

2. Asks a superuser to logically mount the restored HFS data set with a TSO/E
MOUNT command.

3. Notifies all shell users that when they invoke the shell they will mount a
backlevel file system, telling them the mount point. (Use the wall command to
broadcast a message to all shell users.)

Files added since the back-level data set was saved must be re-created and added
again.

If the physical file system owning the root fails, or if the root file system is
unmounted, the operator must restore the root file system. This can be done by a
superuser who is defined with a home directory of /; (root). All work in progress
when the failure occurred is lost and must be started from the beginning.

Recovery of DCE Components: Perform any necessary backup of OS/390 DCE
program libraries, configurations, and optional data sets as a part of your regular
installation backup and recovery procedures. See OS/390 DCE Administration
Guide for information about DCE recovery.

OS/390 UNIX System Services Planning

32 Support Guide for APAR OW43776

Managing Interprocess Communication (IPC)
Users can invoke applications that create IPC resources and wait for IPC
resources. IPC resources are not automatically released when a process terminates
or a user logs off. Therefore, it is possible that an IPC user may need assistance to:

v Remove an IPC resource using the shell’s ipcrm command

v Remove an IPC resource using the shell’s ipcrm command to release a user
from an IPC wait state

To display IPC resources and which userid owns the resource, issue the following
command:
ipcs -w

To delete message queue IDs, use the ipcrm -q or ipcrm -Q command.

Another problem may occur when a user waits a long time for a resource such as
semaphores or a message receive. Removing a message queue ID or semaphore
ID brings any users in an IPC wait state out of the wait state. To display which
users are waiting for semaphores and message queues, issue:
ipcs -w

Chapter 29. Tuning Performance
You need to take some tuning steps because you are combining MVS and UNIX.
There are two tuning situations, depending on how your system is being used: as a
production system or a porting system. For both, you can take important steps to
improve performance and control resource consumption.

To learn how to improve performance on a porting system, read Chapter 8 of
Porting Applications to the OS/390 UNIX Platform, GG24-4473.

These are the key areas to target when you start to tune the production system:

Task Page

Adjusting Storage Size 33

Using DASD Cache 34

Improving Performance of Run-Time Routines 34

Improving Compiler Performance 35

Caching RACF User and Group Information in VLF 36

Checking the Owning UIDs and GIDs on Files 36

Moving HFS Executables into the Link Pack Area 37

Tuning Limits in Parmlib 38

Making Sure that the Sticky Bit for the OS/390 Shell Is On 41

Improving the OS/390 Shell Performance 41

Improving Performance on POSIX by Using Medium-Weight
Processes

41

Improving Performance of Security Checking 41

Adjusting Storage Size
If your system is running in an LPAR or as a VM guest, the storage size should be
at least 64M.

OS/390 UNIX System Services Planning

Chapter 1. APAR OW43776: OS/390 UNIX System Services Planning 33

Using DASD Cache
Place on cached DASD:

v Volumes that contain user file systems. To get the responsiveness that UNIX
users are accustomed to, place these volumes on cached DASD that has SET
DASD FAST WRITE on. Do this because the hierarchical file system hardens all
file system data to disk synchronously. (Data is stored on disk synchronously on
certain writes, and any remaining data is stored to disk synchronously on close.
That is, the close does not return to the user until the file has been completely
stored on disk.)

Note: To avoid DASD contention, the user file systems should be distributed
among multiple control units and DASDs. Too many user file systems on
one volume can negatively affect I/O performance.

v The RACF data base.

Improving Performance of Run-Time Routines
When C programs (including the shell and utilities) are run, they frequently use
routines from the Language Environment run-time library, which come from the
SCEERUN data set. On average, about 4 MB of the run-time library are loaded into
memory for every address space running a Language Environment-enabled
program, and copied on every fork. If you have 200 address spaces running, this
uses 800 MB of pageable storage. It also increases your paging rates or reduces
the amount of work that the system can support. For information about the effect of
putting modules into the LPA, see OS/390 MVS Initialization and Tuning Guide.

The following sections describe how you can reduce this overhead and improve
performance.

Placing SCEERUN in the Link Pack Area
Because the SCEERUN data set has many modules that are not reentrant, you
cannot place the entire data set in the Link Pack Area (LPALSTxx parmlib).
However, as of OS/390 Release 6, there is a new SCEELPA data set that contains
a subset of the SCEERUN modules—those that are re-entrant, reside above the
line, and are heavily used by OS/390 UNIX System Services. (For more
information, see OS/390 Language Environment Customization.)

If you put the SCEERUN data set in the link list (LNKLSTxx), you can place the
new SCEELPA data set in LPA list. Doing this will improve performance.

You can also add additional modules to the LPA, using the Modify Link Pack Area
(MLPA=) option at IPL. You can also use the Dynamic LPA capability (SET
PROG=). Using the Dynamic LPA method avoids the performance degradation that
occurs with the use of MLPA.

The RUNOPTS parameter in the BPXPRMxx parmlib member specifies the
Language Environment run-time options that is to be passed to /etc/init when using
RTLS.

Placing SCEERUN in the Link List
If you choose not to put any modules from SCEERUN in the LPA, you can still put
SCEERUN in the link list. This will not perform as well as having modules in LPA,
but can still benefit from reduced input/output due to management by LLA and VLF.

OS/390 UNIX System Services Planning

34 Support Guide for APAR OW43776

Managing the Run-Time Library with RTLS

Some installations cannot put the current level of the Language Environment
run-time library into the LINKLIST because older Language Environment levels are
needed to run key production applications. This means that key run-time library
routines cannot be put in the LPA for better performance. In addition, you cannot
put the SCEELPA data set as part of the LPALSTxx.

The answer to this problem is Run-Time Library Services. RTLS enables
installations to use more than one level of the run-time library on the same system
without using STEPLIBs. They can put key run-time library modules from more than
one level of Language Environment into common storage for shared access.

See OS/390 Language Environment Customization for information on using RTLS
on your system. You will need to set up some FACILITY profiles, as documented in
the CSVRTLxx description in OS/390 MVS Initialization and Tuning Reference.

After you set up RTLS, you only need to set up RUNOPTS in the BPXPRMxx
member for most OS/390 UNIX environments. (Customizing the BPXPRMxx
member is discussed in “Customizing the BPXPRMxx Parmlib Members” on page 5.

For OS/390 UNIX users to use RTLS, you must also specify RTLS(ON), LIBRARY,
and, optionally, VERSION run-time options in the RUNOPTS parameter of the
BPXPRMxx parmlib member. For example:
RUNOPTS(RTLS(ON) LIBRARY(xxxxxxxx) VERSION(yyyyyyyy)

where xxxxxxxx is the library name and yyyyyyyy is the version name assigned in
the CSVRTLxx parmlib member for the current level of Language Environment (for
example, CEE.SCEERUN).

Managing the Run-Time Library in STEPLIBs
If you decide not to put the run-time library in the link list or RTLS, then you must
set up the appropriate STEPLIB for each application that needs to load modules
from SCEERUN. Although this method always uses additional virtual storage, you
can improve performance by defining the SCEERUN data set to LLA. This reduces
the I/O that is needed to load the run-time modules.

Improving Compiler Performance
This section discusses how you can improve compiler performance by placing the
C/C++ compiler and Program Management Binder in the LPA. As of OS/390
Release 7, you no longer have to make any changes to the c89, cc, cxx, and c++
utilities.

Putting Compiler Load Modules into LPA
On systems where application development is the primary activity, performance may
be improved if you put CBC.SCBCCMP in the LPALST concatenation. All compiler
modules run above the line and they consume just over 42 MB in total.

Place the program binder in LPA:

v From SYS1.LINKLIB:

Module Location

IEFIB600 (alias IEFXB603) 44K below the line

IEWBLINK 2K below the line

OS/390 UNIX System Services Planning

Chapter 1. APAR OW43776: OS/390 UNIX System Services Planning 35

IEWBLINK has these aliases:
alias HEWL
alias HEWLDRGO
alias HEWLH096
alias HEWLOAD
alias HEWLOADR
alias IEWBLDGO
alias IEWBLOAD
alias IEWBLODI
alias IEWBODEF
alias IEWL
alias IEWLDRGO
alias IEWLOAD
alias IEWLOADI
alias EWLOADR
alias LINKEDIT
alias LOADER

v From CEE.SCEERUN:

Module Location

EDCRNLIB (alias EDCRNLST) Above the line

Caching RACF User and Group Information in VLF
Caching UIDs and GIDs improves performance for commands such as ls -l, which
must convert UID numbers to user IDs and GID numbers to RACF group names.
RACF allows you to cache UID and GID information in Virtual Lookaside Facility
(VLF). Add the following VLF options to the COFVLFxx member of SYS1.PARMLIB
to enable the caching:
CLASS NAME(IRRUMAP)

EMAJ(UMAP)
CLASS NAME(IRRGMAP)

EMAJ(GMAP)
CLASS NAME(IRRSMAP)

EMAJ(SMAP)

For details about these VLF and the other VLF classes that are used by RACF, see
OS/390 SecureWay Security Server RACF System Programmer’s Guide.

Start VLF, specifying the updated member (in this example, COFVLF33 member)
with an operator command:
START VLF,SUB=MSTR,NN=33

Because VLF is started after RACF and OMVS, you may get a message from
RACF during the IPL saying that running without VLF will cause slower
performance. If VLF is being started, you can ignore this message.

For information about updating the VLF parmlib member COFVLFxx, see
“COFVLFxx Parmlib Member to Activate RACF Classes” in Chapter 14,
“Customizing OS/390 UNIX”.

Checking the Owning UIDs and GIDs on Files
Ensure that all files in your file system have a valid owning UID and GID. If you
restore files from an archive and accidentally keeps a UID and GID from another

OS/390 UNIX System Services Planning

36 Support Guide for APAR OW43776

system that are not valid on the system, it can create problems that affect response
time. For example, suppose that there is an invalid UID associated with a file. When
you use a utility that checks the UID (such as ls -l), RACF searches the entire
database for the UID. To prevent this search, IBM provides APAR OW23748 for
OS/390 Releases 2 and 3.

For customers running Release 3 or higher, APAR OW30858 introduces the
UNIXMAP class to prevent the search. When a file is transferred through NFS, an
owning UID of 0 is changed to -2. This is often done with the client’s user’s identity
within the RPC because NFS does not want to assume that a superuser on one
system is also a superuser on another system. OS/390 UNIX does not support a
UID of -2. As a consequence, you get files on your system with an owning UID of
4294967294. Be sure to change this to a valid owning UID.

Moving HFS Executables into the Link Pack Area
Some executables in the HFS may be commonly used by many concurrent users,
or they may be loaded and deleted frequently during normal production. Such
executables are performance sensitive, and they may be good candidates for
inclusion in the LPA. Moving such programs to the LPA can reduce storage
consumption, reduce DASD I/O activity for loads, and reduce the storage copied on
each fork().

One thing to consider when you analyze which HFS executables belong in LPA is
that modules with the sticky bit on are not eligible for local spawn(). If your
executable is normally invoked by spawn(), either by the shell or by another
application, turning on the sticky bit forces spawn() processing to execute the
program in a spawned child address space. In cases where local spawn() would be
used if the sticky bit were not on, this reduces the benefit of loading the executable
from the LPA.

To move an executable in the HFS into the LPA, do the following steps:

1. If the executable or DLL name is less than 8 characters excluding the extension
(such as longname.dll):

a. Bind the executable or DLL into a PDS (for example, LONGNAME)

b. For the executable or DLL in the HFS, turn on the sticky bit. For example:
chmod +t longname.dll

c. If the executable or DLL name has invalid characters, then do a symbolic
link such as:
ln -s longname long+name

2. If the executable or DLL name is more than 8 characters long, excluding the
extension (for example, reallylonglongname.dll:

a. Bind the executable or DLL into a PDS (for example, REALLY)

b. Create an external link for the name. For example:
ln -e REALLY reallylonglongname.dll

To bind the executable or DLL into a PDS, you can use the following sample JCL:

OS/390 UNIX System Services Planning

Chapter 1. APAR OW43776: OS/390 UNIX System Services Planning 37

Note: You should use an SMP/E usermod to link any IBM-supplied programs from
an HFS into another library. (For example, in order to load it into LPA.) Doing
so automatically keeps the two copies of the module at the same level when
service is installed. It also provides a record of modifications to your
systems. See OS/390 SMP/E User’s Guide for more information about
SMP/E usermods.

Also, not all modules are eligible for LPA. Modules placed in LPA must be
both reentrant and executable. For more information, see OS/390 MVS
Initialization and Tuning Reference.

Tuning Limits in Parmlib
This section contains information that may be helpful in tuning your OS/390 UNIX
environment. It provides guidelines that should prove to be generally helpful.
However, because each installation is unique, some of the recommendations may
not be appropriate for your system.

For more information, refer to these books:
v OS/390 MVS Planning: Workload Management
v OS/390 MVS Initialization and Tuning Guide
v OS/390 MVS Initialization and Tuning Reference for parmlib members
v RMF User’s Guide for RMF monitoring
v RMF Report Analysis for RMF reports

Monitoring Parmlib Limits
You can monitor the status of OS/390 UNIX system and process limits with the D
OMVS, LIMITS operator command and console messages that indicate when limits
are reaching critical levels.

You can then use SET OMVS or SETOMVS to change certain system limits
dynamically, or SETOMVS with PID= to change a process-level limit for a specific
process. See OS/390 MVS System Commands.

//PUTINLPA JOB MSGLEVEL=(1,1)
//* *
//* INLMOD DD STATEMENT SPECIFIES THE DIRECTORY THAT CONTAINS *
//* THE PROGRAM. *
//* *
//* THE INCLUDE STATEMENT SPECIFIES THE NAME OF THE FILE TO *
//* RUN FROM THE LPA. *
//* *
//* THE NAME STATEMENT SPECIFIES THE FILE NAME BUT IN *
//* UPPERCASE. THIS MUST BE SAME AS THE FILE NAME. *
//* *
//LINK EXEC PGM=IEWL,REGION=100M,
// PARM='LIST,XREF,LET,RENT,REUS,AMODE=31,RMODE=ANY,CASE=MIXED'
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(10,10))
//SYSPRINT DD SYSOUT=*
//INLMOD DD PATH='/bin/'
//SYSLMOD DD DSN=OECMD.LPALIB,DISP=SHR
//SYSLIN DD *

INCLUDE INLMOD(myprog)
ENTRY CEESTART
NAME MYPROG(R)

/*

Figure 3. Job for Placing a Program in the LPA

OS/390 UNIX System Services Planning

38 Support Guide for APAR OW43776

|
|
|
|

|
|
|

The LIMMSG(NONE|SYSTEM|ALL) statement in the BPXPRMxx parmlib member
controls message activity for limits checking. You can specify whether no console
messages are to be displayed when any of the parmlib limits have been reached
(NONE); console messages are to be displayed for all processes that reach system
limits and for certain process limits (SYSTEM); or console messages are to be
displayed for all the system limits and the process limits (ALL).

The LIMMSG options (SYSTEM|ALL|NONE) can be changed with the SETOMVS
LIMMSG command. The LIMMSG value appears in the D OMVS,O display.

If the LIMMSG statement is specified with SYSTEM or ALL, a warning console
message appears whenever a limit reaches 85%, 90%, 95%, and 100%; identifying
the process that has reached the limit. As the limit reaches the next limit level, the
prior message is removed from the console and a new message is displayed
indicating the new limit level that has been reached. When the limit falls below the
85% threshold, a message is issued indicating that the resource shortage has been
relieved.

Changing from LIMMSG(ALL) or LIMMSG(SYSTEM) to LIMMSG(NONE) with the
SETOMVS command stops any further monitoring of resources. However, existing
outstanding messages are not deleted from the screen for a process until the limit
is relieved for that process.

Note: When LIMMSG(ALL) is in effect, a large number of messages can be issued.
This option is best suited for use during the initial configuration of a system,
when the installation has not yet determined the optimal settings for the
OS/390 UNIX parmlib limits.

Tuning Process Activity
OS/390 UNIX provides the system programmer with a number of controls that
monitor and tune the use of system resources by users. This section focuses on the
following fields in the BPXPRMxx statements:
v MAXUIDS
v MAXPTYS
v MAXRTYS
v MAXPROCUSER
v MAXPROCSYS

Initial Rules of Thumb:

1. Assume that each user will consume up to double the system resources
required for a TSO/E user.

2. Assume that at most 4 PTYs or RTYs will be required per average user.

3. Assume that the starting point for maximum processes per user is 25.

4. Assume that 4 concurrent processes will be required by the average active user.

5. Assume that 5 processes will be required for various daemons.

6. Assume that 3 concurrent address spaces will be required by the average active
user. This number will be high if your users are running with the
_BPX_SHAREAS environment variable set to YES or REUSE.

If you have a few users who need a large number of processes, you should set the
process limits for these users by using the PROCUSERMAX keyword in the OMVS
segment.

OS/390 UNIX System Services Planning

Chapter 1. APAR OW43776: OS/390 UNIX System Services Planning 39

|
|
|
|
|
|

|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|

Example: Assume that your system supports 600 TSO/E users and has enough
capacity for 20 additional users. Rather than adding more TSO/E work, you want to
allow TSO/E users to access OS/390 UNIX. You have no other OS/390 UNIX work
on your system at this time.

In this example, in BPXPRMxx, the initial settings might be:
MAXUIDS(20)
MAXPTYS(80)
MAXRTYS(80)
MAXPROCUSER(25)
MAXPROCSYS(85)

MAXUIDS
20 - If you allow 20 current TSO/E users to access the OS/390 UNIX
system, each of them could consume twice the resource they normally used
for TSO/E. This would require all your remaining system resources.

MAXPTYS
80 - Assume that 4 PTYs are needed per user. Users can login with
multiple sessions at the same time.

MAXRTYS
80 - Assume that 4 RTYs are needed per user. Users can login with
multiple sessions at the same time.

MAXPROCUSER
25 - This should normally be a reasonable starting point. Some users may
require more processes, depending on the work they are doing. This value
can be set only on a system-wide basis.

MAXPROCSYS
85 - Assume that you need 4 processes per user and 5 processes for
daemons. (20 users * 4) + 5 daemons = 85 processes.

Controlling Use of ESQA
A number of services use base OS/390 functions that uses ESQA storage. Much of
this storage is fixed, consuming main memory rather than only virtual storage.
Installations having constraints on virtual storage or main memory can control the
amount of ESQA storage used by the following services:
v Shared Memory
v Memory map files
v ptrace
v fork (copy-on-write)

The following BPXPRMxx parmlib statements are the primary means of controlling
consumption by UNIX services:

v MAXSHAREPAGES controls the maximum number of shared pages to be used
for fork, shared memory, memory map files, and ptrace. ESQA storage is
required for each shared page.

v FORKCOPY determines whether fork should use copy-on-write support.
Copy-on-write support should normally reduce the cost of fork by removing the
need to copy all the parent’s virtual storage to the child address space. However,
on systems with storage constraints, the benefit of copy-on-write may be
outweighed by the impact on ESQA storage.

Follow these guidelines:

– If the run-time library is in the link pack area, specify FORKCOPY(COPY).

– If the run-time library is not in the link pack area, specify FORKCOPY(COW).

OS/390 UNIX System Services Planning

40 Support Guide for APAR OW43776

Other statements in the BPXPRMxx parmlib member provide more detailed control
of how shared memory, and memory map files can be used.

For more detail on statements in the BPXPRMxx parmlib member, see
“Customizing the BPXPRMxx Parmlib Members” on page 5. For more detail on
ESQA and other storage requirements for MVS, see “Evaluating Virtual Storage
Needs” in Chapter 14, “Customizing OS/390 UNIX”.

nice(), setpriority(), and chpriority()

Making Sure that the Sticky Bit for the OS/390 Shell Is On

Improving the OS/390 Shell Performance

Improving Performance on POSIX by Using Medium-Weight Processes

Improving Performance of Security Checking

OMVS Command and TSO/E Response Time

OS/390 UNIX System Services Planning

Chapter 1. APAR OW43776: OS/390 UNIX System Services Planning 41

OS/390 UNIX System Services Planning

42 Support Guide for APAR OW43776

Part 2. APAR OW43776: OS/390 MVS Library

© Copyright IBM Corp. 1996, 2000 43

44 Support Guide for APAR OW43776

Chapter 2. APAR OW43776: OS/390 MVS System Commands

Displaying OS/390 UNIX System Services Status
The MVS operator can use the DISPLAY command to obtain:
v OS/390 UNIX System Services status information (for example, active or

terminating)
v Hierarchical file system (HFS) information
v OS/390 UNIX System Services process information for address spaces
v The current setting for all OS/390 UNIX System Services parmlib statements
v Information about multiple parmlib members
v Information about each physical file system that is currently part of the OS/390

UNIX System Services configuration
v Routing information from the Common Inet Pre-Router routing tables.
v Information about OS/390 UNIX System Services parmlib limits, including current

system-wide and process limits, their high-water marks, and current usage.
v Thread-level information for any thread that is in a byte-range lock wait.

You can use this command to display address space information for a user who has
a process that is hung. You can also use the information returned from this
command to determine how many address spaces a given TSO/E user ID is using,
whether an address space is using too many resources, and whether a user’s
process is waiting for an OpenMVS kernel function to complete.

The syntax for the DISPLAY OMVS command is:

D OMVS[{,SUMMARY|S}]
|,{ASID|A}=ALL
|,{ASID|A}=asid
|,U=userid
|,{PID}=processid[,BRL]
|,{FILE|F[,CAPS|C]}
|,{VSERVER|V}
|,{PFS|P}
|,{CINET|CI}=All|TPname
|,{OPTIONS|O}
|,{LIMITS|L[,PID=ProcessId][,RESET]}

[,L={a|cc|cca|name|name-a}]

SUMMARY or S
Displays status of OpenMVS processes, file systems, and servers (for example,
active or terminating) and the BPXPRMxx parmlib member specified during
initialization or specified by the SET OMVS= OS/390 UNIX System Services
command.

ASID= or A=ALL
Displays process information for all OS/390 UNIX System Services address
spaces.

ASID= or A=asid
Displays process information for the specified hexadecimal address space ID
(ASID). If the specified ASID is not an OS/390 UNIX System Services address
space, an error message is issued.

U=userid
Displays process information for all processes associated with the specified

© Copyright IBM Corp. 1996, 2000 45

|
|

|

TSO/E user ID. Use this operand when a user requests that a hung process be
canceled. You can display all processes owned by the user and find the
address space ID (ASID) of the process that needs to be canceled. Then use
the CANCEL command to cancel the address space.

PID=processid
Displays thread information for the processid that is specified in decimal
numbers. In a sysplex environment, the D OMVS,PID= command must always
be issued from the system on which the specified process is running.

FILE or F
Displays a list of HFS file systems that OS/390 UNIX System Services is
currently using and the status of each HFS.

VSERVER or V
Displays process information for all processes that have been defined as
servers that use the virtual file system (VFS) callable services API.

CAPS or C
Displays variable data containing lowercase letters in uppercase.

CINET = or CI = ALL|tpname
Displays the Common Inet routing information for all of the active transport
providers in use by the Common Inet Pre-Router. The transport providers were
specified with the SUBFILESYSTYPE statements in the BPXPRMxx profile or
specified with the SETOMVS command. The network routing information was
specified in the appropriate data set for the transport provider. When the name
(tpname) of an active transport provider is specified, the command displays the
Common Inet routing information for that specific transport provider.

OPTIONS or O
Displays the current settings of the options that

(a) were set during initialization in the parmlib member BPXPRMxx or by a
SET OMVS or SETOMVS command after initialization, and that

(b) can be altered dynamically via a SET OMVS or SETOMVS command.

PFS or P = Physical File System
Displays information about each physical file system that is currently part of the
OS/390 UNIX System Services configuration. The physical file systems were
specified in the BPXPRMxx profile, or with the SETOMVS command, or are an
internal part of OS/390 Unix System Services.

LIMITS or L
Displays information about current OS/390 UNIX System Services parmlib
limits, their high-water marks, and current system usage. When the PID=
keyword is specified, LIMITS displays high-water marks and current usage for
an individual process.

RESET
Resets the high-water mark for a system limit to 0.

BRL
Displays thread-level information for any thread that is in a byte-range lock wait.
This operand can only be specified with PID=.

Example 1

To display process information for all OS/390 UNIX System Services address
spaces, enter:
DISPLAY OMVS,A=ALL

DISPLAY OMVS Command

46 Support Guide for APAR OW43776

|
|
|
|
|

|
|

OS/390 UNIX System Services status information (OMVS ACTIVE) appears before
the process information.
BPXO040I 14.31.40 DISPLAY OMVS 018
OMVS 000E ACTIVE OMVS=(93)
USER JOBNAME ASID PID PPID STATE START CT_SECS
IBMUSER BPXOINIT 0013 1 0 MKI 11.02.40 .037

LATCHWAITPID= 0 CMD=BPXPINPR
SERVER=Init Process AF= 0 MF=65535 TYPE=FILE

MEGA MEGA 001A 16777218 1 1RI 11.18.17 .634
LATCHWAITPID= 0 CMD=OMVS

MEGA MEGA 001A 16777219 16777218 1CI 11.18.25 .634
LATCHWAITPID= 0 CMD=sh -L

Example 2

To display OS/390 UNIX System Services process information on all OS/390 UNIX
System Services address spaces owned by user ID MEGA, enter:
DISPLAY OMVS,U=MEGA

OS/390 UNIX System Services status information (OMVS ACTIVE) appears before the
process information.
BPXO040I 14.34.15 DISPLAY OMVS 021
OMVS 000E ACTIVE OMVS=(93)
USER JOBNAME ASID PID PPID STATE START CT_SECS
MEGA MEGA 001A 16777218 1 1RI 11.18.17 .634

LATCHWAITPID= 0 CMD=OMVS
MEGA MEGA 001A 16777219 16777218 1CI 11.18.25 .634

LATCHWAITPID= 0 CMD=sh -L

Example 3

To display OS/390 UNIX System Services process information for the address
space with ASID equal to 001A, enter:
DISPLAY OMVS,ASID=1A

OS/390 UNIX System Services status information (OMVS ACTIVE) appears before the
process information.
BPXO040I 14.36.04 DISPLAY OMVS 024
OMVS 000E ACTIVE OMVS=(93)
USER JOBNAME ASID PID PPID STATE START CT_SECS
MEGA MEGA 001A 16777218 1 1RI 11.18.17 .634

LATCHWAITPID= 0 CMD=OMVS
MEGA MEGA 001A 16777219 16777218 1CI 11.18.25 .634

LATCHWAITPID= 0 CMD=sh -L

Example 4

To display detailed file system information on currently mounted files, enter:
DISPLAY OMVS,FILE

OS/390 UNIX System Services status information (OMVS ACTIVE) appears before the
file system information.
00 BPXO0451 12.28.28 DISPLAY OMVS 011

OMVS 000E ACTIVE OMVS=(66)
TYPENAME DEVICE ----------STATUS----------- MODE
HFS 4 ACTIVE READ

NAME=POSIX.USR.LPP
PATH=/usr/lpp
MOUNT PARM=SYNC(60)

DISPLAY OMVS Command

Chapter 2. APAR OW43776: OS/390 MVS System Commands 47

OWNER=SYSTEM2 AUTOMOVE=Y CLIENT
QSYSTEM=system1 QJOBNAME=FRED QPID=34567

HFS 3 ACTIVE READ
NAME=POSIX.HFS.NLS
PATH=/usr/ib/nls
OWNER=SYSTEM2 AUTOMOVE=Y CLIENT=Y

HFS 2 ACTIVE READ
NAME=POSIX.HFS.MAN
PATH=/usr/man
OWNER=SYSTEM3 AUTOMOVE=Y CLIENT=Y

HFS 1 ACTIVE RDWR
NAME=POSIX.HFS.FS
PATH=/
OWNER= AUTOMOVE=N CLIENT=N

Example 5

To display process information for all processes that have been defined as a server,
enter:
DISPLAY OMVS,V

OS/390 UNIX System Services status information (OMVS ACTIVE) appears before the
file system information.
BPXO040I 14.38.46 DISPLAY OMVS 030
OMVS 000E ACTIVE OMVS=(93)
USER JOBNAME ASID PID PPID STATE START CT_SECSS
IBMUSER BPXOINIT 0013 1 0 MKI 11.02.40 .0373

LATCHWAITPID= 0 CMD=BPXPINPR
SERVER=Init Process AF= 0 MF=65535 TYPE=FILE

Example 6

To display all options set during initilization by the parmlib member BPXPRMxx or
with the SET command, enter:
DISPLAY OMVS,O

d omvs,o

BPXO043I 10.26.49 DISPLAY OMVS 007
OMVS 000E ACTIVE OMVS=(69)
OS/390 UNIX CURRENT CONFIGURATION SETTINGS:
MAXPROCSYS = 256 MAXPROCUSER = 16
MAXFILEPROC = 256 MAXFILESIZE = NOLIMIT
MAXCPUTIME = 1000 MAXUIDS = 200
MAXPTYS = 256
MAXMMAPAREA = 256 MAXASSIZE = 41943040
MAXTHREADS = 200 MAXTHREADTASKS = 50
MAXCORESIZE = 4194304 MAXSHAREPAGES = 4096
IPCMSGQBYTES = 262144 IPCMSGQMNUM = 10000
IPCMSGNIDS = 500 IPCSEMNIDS = 500
IPCSEMNOPS = 25 IPCSEMNSEMS = 25
IPCSHMMPAGES = 256 IPCSHMNIDS = 500
IPCSHMNSEGS = 10 IPCSHMSPAGES = 262144
SUPERUSER = BPXROOT FORKCOPY = COW
STEPLIBLIST =
USERIDALIASTABLE=
PRIORITYPG VALUES: NONE
PRIORITYGOAL VALUES: NONE
MAXQUEUEDSIGS = 1000 SHRLIBRGNSIZE = 67108864
SHRLIBMAXPAGES = 4096 VERSION = / SSYSCALL COUNTS = NO TTYGRO
SYSPLEX = NO BRLM SERVER = N/A
LIMMSG = NONE

DISPLAY OMVS Command

48 Support Guide for APAR OW43776

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Note: The SYSPLEX (YES) option indicates the system is in a sysplex and is using
the shared HFS capability. You cannot dynamically change the SYSPLEX
parameter through SETOMVS or SET OMVS. For more information, see the
chapter on Shared HFS in OS/390 UNIX System Services Planning.

Example 7

To display the thread information for the processid 1, enter:
DISPLAY OMVS,PID=1

BPXO040I 11.13.40 DISPLAY OMVS 971
OMVS 000E ACTIVE OMVS=(93)
USER JOBNAME ASID PID PPID STATE START CT_SECS
IBMUSER BPXOINIT 0013 1 0 MKI 11.02.40 .037

LATCHWAITPID= 0 CMD=BPXPINPR
SERVER=Init Process AF= 0 MF=65535 TYPE=FILE
THREAD_ID TCB@ PRI_JOB USERNAME ACC_TIME SC STATE
04B9267800000000 009DEA70 OMVS .028 WAT W
04B92F2000000001 009DE8D8 .003 VRT Y
04B937C800000002 009DE278 OMVS .002 KIN K

Example 8

To display information about each physical file system that is currently part of the
OS/390 UNIX System Services configuration when the physical file systems are
specified in the BPXPRMxx profile, enter:
D OMVS,P

BPXO046I 14.35.38 DISPLAY OMVS 092
OMVS 000E ACTIVE OMVS=(33)
PFS CONFIGURATION INFORMATION
PFS TYPE DESCRIPTION ENTRY MAXSOCK OPNSOCK HIGHUSED
TCP SOCKETS AF_INET EZBPFINI 50000 244 8146
UDS SOCKETS AF_UNIX BPXTUINT 64 6 10
HFS LOCAL FILE SYSTEM GFUAINIT
BPXFTCLN CLEANUP DAEMON BPXFTCLN
BPXFTSYN SYNC DAEMON BPXFTSYN
BPXFPINT PIPE BPXFPINT
BPXFCSIN CHAR SPECIAL BPXFCSIN
NFS REMOTE FILE SYSTEM GFSCINIT

PFS NAME DESCRIPTION ENTRY STATUS FLAGS
TCP41 SOCKETS EZBPFINI ACT CD
TCP42 SOCKETS EZBPFINI ACT
TCP43 SOCKETS EZBPFINI INACT SD
TCP44 SOCKETS EZBPFINI INACT

PFS PARM INFORMATION
HFS SYNCDEFAULT(60) FIXED(50) VIRTUAL(100)

CURRENT VALUES: FIXED(55) VIRTUAL(100)
NFS biod(6)

The information displayed is:

PFS TYPE
For each FILESYSTYPE statement, the data specified with the TYPE operand
is displayed.

PFS DESCRIPTION
A brief description of the physical file system.

DISPLAY OMVS Command

Chapter 2. APAR OW43776: OS/390 MVS System Commands 49

ENTRY
The name of the load module specified with the ENTRYPOINT operand on the
FILESYSTYPE or SUBFILESYSTYPE statements.

MAXSOCK
This is the MAXSOCKETS operand of a NETWORK statement for a sockets
physical file system. It specifies the maximum number of sockets that can be
open at one time for the address family.

OPNSOCK
OPEN SOCKETS: The number of sockets that are currently opened for this
sockets physical file system.

HIGHUSED
The highest number of sockets that have been in use at one time for each of
the configured address families.

PFS NAME
For each SUBFILESYSTYPE statement, the transport provider specified with
the NAME operand is displayed.

STATUS
The status of each PFS specified with the SUBFILESYSTYPE statement: ACT
= ACTIVE, INACT = INACTIVE.

FLAGS
Additional information for each PFS that was defined with the
SUBFILESYSTYPE statement:

CD Current Default transport provider. The system is currently using this
PFS as the default transport provider although it wasn’t specified as the
default with the SUBFILESYSTYPE statement.

SD Specified Default transport provider. This PFS was specified as the
default transport provider with the SUBFILESYSTYPE statement.
Currently, however, it is not being used as the default.

SC Specified is Current default transport provider. This PFS was specified
as the default transport provider with the SUBFILESYSTYPE statement
and the system is currently using it as the default.

PARM INFORMATION
Data specified with the PARM operand on the FILESYSTYPE or
SUBFILESYSTYPE statements is displayed. For the HFS, in addition to the IPL
settings specified with PARM, the current settings for the FIXED and VIRTUAL
PARMs are displayed.

Notes:

1. Although you may specify up to 1024 bytes of parameter information in the
BPXPRMxx profile, only the first 165 bytes of parameter information is
displayed.

2. If a dash (’-’) should appear as the first character for any PFS name, it means
the PFS is dead.

Example 9

To display the Common Inet routing information when there are three active
transport providers:
DISPLAY OMVS,CINET=ALLBPXO0nnI 17:12:37 DISPLAY OMVS nn
OMVS 000E ACTIVE OMVS=(ZD)
HOME INTERFACE INFORMATION

DISPLAY OMVS Command

50 Support Guide for APAR OW43776

TP NAME HOME ADDRESS FLAGS
TCP41 127.116.117.233 DRS
TCP42 127.116.118.234
TCP43 127.116.119.235

HOST ROUTE INFORMATION
TP NAME HOST DESTINATION
TCP41 127.117.193.234
TCP41 127.117.194.234
TCP42 127.117.195.234

NETWORK ROUTE INFORMATION
TP NAME NET DESTINATION NET MASK METRIC
TCP41 127.111.000.000 255.255.000.000 10
TCP42 127.113.000.000 255.255.000.000 0
TCP41 197.119.119.000 255.255.255.000 F
TCP43 009.000.000.000 255.000.000.000 F

The information displayed is:

TP NAME
The name of the transport provider for which the information is being displayed.

HOME ADDRESS
The internet protocol (IP) address of the transport provider.

HOST DESTINATION
When a transport provider is connected to a host, the host IP address is
displayed.

NET DESTINATION
When a transport provider supplies network routing information to the Common
Inet Pre-Router, the network destination address is the IP address of a network
that can be accessed through the transport provider.

NET MASK
A mask that is applied to destination IP addresses to separate the network
number from the host number.

METRIC
When selecting a route, if two transport providers can access the same route,
the Common Inet Pre-Router selects the route with the best metric. The higher
the number, the better the metric. The metric 255 = a direct connection

FLAGS
DRS = Default Routes Supported: When the Common Inet Pre-Router cannot
find a specified IP address in its routing tables, it passes the request to a
transport provider that supports default routes. If no transport provider supports
default routes, the request is rejected with ENETUNREACH.

Note: When the cinet is not installed, similar routing information can be obtained by
using the netstat TC tpname gate command or the onetstat -p tpname -r
command.

Example 10

To display information about current system-wide parmlib limits, enter:
DISPLAY OMVS,L

BPXO051I 14.05.52 DISPLAY OMVS 904
OMVS 0042 ACTIVE OMVS=(69)
SYSTEM WIDE LIMITS: LIMMSG=SYSTEM

CURRENT HIGHWATER SYSTEM
USAGE USAGE LIMIT

DISPLAY OMVS Command

Chapter 2. APAR OW43776: OS/390 MVS System Commands 51

|

|

|

|
|
|
|
|

MAXPROCSYS 1 4 256
MAXUIDS 0 0 200
MAXPTYS 0 0 256
MAXMMAPAREA 0 0 256
MAXSHAREPAGES 0 10 4096
IPCMSGNIDS 0 0 500
IPCSEMNIDS 0 0 500
IPCSHMNIDS 0 0 500
IPCSHMSPAGES 0 0 262144 *
IPCMSGQBYTES --- 0 262144
IPCMSGQMNUM --- 0 10000
IPCSHMMPAGES --- 0 256
SHRLIBRGNSIZE 0 0 67108864
SHRLIBMAXPAGES 0 0 4096

An * displayed after a system limit indicates that the system limit was changed via a
SETOMVS or SET OMVS= command.

Note: Although IPCMSGQBYTES, IPCSMSGQMNUM, and IPCSHMMPAGES are
displayed in the output of the D OMVS,L command, these resources are not
monitored and no resource messages are issued.

Example 11

To display information about current parmlib limits for a process with a PID of
33554434, enter:
DISPLAY OMVS,L,PID=33554434

d omvs,l,pid=33554434
BPXO051I 14.06.49 DISPLAY OMVS 907
OMVS 0042 ACTIVE OMVS=(69)
USER JOBNAME ASID PID PPID STATE START CT_SECS
WELLIE1 WELLIE1 001C 33554434 1 IRI 14.04.38 .015

LATCHWAITPID= 0 CMD=EXEC
PROCESS LIMITS: LIMMSG=SYSTEM

CURRENT HIGHWATER PROCESS
USAGE USAGE LIMIT

MAXFILEPROC 0 1 256,1000
MAXFILESIZE --- --- NOLIMIT
MAXPROCUSER 1 4 16
MAXQUEUEDSIGS 0 0 1000
MAXTHREADS 0 0 200
MAXTHREADTASKS 0 0 50
IPCSHMNSEGS 0 0 10
MAXCORESIZE --- --- 4194304,NOLIMIT

An * displayed after a process limit indicates that the limit was changed, either
directly, with a SETOMVS,PID= command; or indirectly, by a global change of this
value with a SETOMVS command.

The values displayed are in the same units as the values used in the SETOMVS
command. For example, MAXFILESIZE is displayed in units of 4KB.

Notes:

1. Although MAXFILESIZE and MAXCORESIZE are displayed in the output, their
current and high-water usage are not monitored, and no resource messages are
issued for these resources.

2. The MAXPROCUSER limit is based on UID, as opposed to PID, value. The
current and high-water usage values reflect all values for all processes that
have the same UID as the UID for the specified PID.

DISPLAY OMVS Command

52 Support Guide for APAR OW43776

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|

|

|
|
|

|
|
|

3. For UID=0, there is no limit on MAXPROCUSER. When the PID= value in the
DISPLAY command is for a process with UID=0, the process limit appears as
unlimited. For example:
MAXPROCUSER 4 11 NOLIMIT

4. MAXCORESIZE, MAXFILESIZE, and MAXFILEPROC each have hard and soft
limits. (See the documentation for the C-RTL function setrlimit() in OS/390
C/C++ Run-Time Library Reference.) When the hard and soft limits are the
same, only one value is displayed. When the limits are different, both values are
displayed: first the soft limit and then the hard limit, separated by a comma.

In the preceding example, MAXFILEPROC has a hard limit of 100 and a soft
limit of 256. For MAXFILESIZE, the soft limit is equal to the hard limit and is
unlimited. For MAXCORESIZE, the soft limit is 4 194 304 and the hard limit is
unlimited.

Example 12

If the SETOMVS command is issued to change the value of MAXFILEPROC to
256, the information displayed is:

CURRENT HIGHWATER PROCESS
USAGE USAGE LIMIT

MAXFILEPROC 0 0 256 *
.
.
.

If the process changes its soft limit for MAXFILEPROC to 100 (using the setrlimit()
function), the information displayed is:

CURRENT HIGHWATER PROCESS
USAGE USAGE LIMIT

MAXFILEPROC 0 0 100,256
.
.
.

Example 13

To display thread-level information for any thread that is in a byte-range lock wait.
enter:
D OMVS,PID=16777219,BRL

BPXO040I 13.50.54 DISPLAY OMVS 042
OMVS 000E ACTIVE OMVS=(99)
USER JOBNAME ASID PID PPID STATE START CT_SECS
WELLIE0 WELLIE0 0015 16777219 16777218 1CI 14.11.53 .703

LATCHWAITPID= 0 CMD=sh -L
THREAD_ID TCB@ PRI_JOB USERNAME ACC_TIME SC STATE
250640E000000002 009C8550 OMVS .124 RED C
BRLWAIT DEV=00000001 INO=0000002E FILE=/u/john/filenam+ PID=12345678

The information displayed is:

FILE
Up to 16 characters of the filename of the file that is being locked. It the
filename has more than 16 characters, the first 15 are displayed, followed by a
plus sign (+).

PID
The process ID of another process that is blocking this process from obtaining

DISPLAY OMVS Command

Chapter 2. APAR OW43776: OS/390 MVS System Commands 53

|
|
|

|

|
|
|
|
|

|
|
|
|

|

|
|

|
|
|
|
|
|

|
|

|
|
|
|
|
|

|

the lock. Usually this is the owner (or one of the owners) of a lock on the same
range, but sometimes it is another process that is also waiting.

INO
The inode number of the file, as shown by ls -i.

DEV
The device number of the file’s mounted file system.

SETOMVS Command
Use the SETOMVS command to change dynamically the options that OS/390 UNIX
System Services currently is using. These options are originally set in the
BPXPRMxx parmlib member at the time of initially program loading (IPL’ing) the
system. For more information on the BPXPRMxx parmlib member, see OS/390
UNIX System Services Planning.

Changes to all of the system-wide limits take effect immediately. When a process
limit is updated, all processes that are using the system-wide process limit have
their limits updated. All process limit changes take effect immediately, except for
those processes with a user-defined process limit (defined in the OMVS segment or
set with a SETOMVS PID= command). An exception is MAXASSIZE and
MAXCPUTIME, which are not changed for active processes.

Note: If a process-level limit is lowered with the SETOMVS command, there may
be some processes that will immediately hit 100% usage. Depending on the
process limit specified and what the process is doing, this could cause failure
for some processes.

Syntax
The complete syntax for the SETOMVS command is:

DISPLAY OMVS Command

54 Support Guide for APAR OW43776

|
|
|
|
|
|

|
|
|
|

|

SETOMVS SETOMVS EXTENSIONS (sysplex exclusive)

SETOMVS [FORKCOPY=(COPY|COW)]
[,IPCSEMNIDS=ipcsemnids]
[,IPCSEMNOPS=ipcsemnops]
[,IPCSEMNSEMS=ipcsemnsems]
[,IPCMSGQBYTES=ipcmsgqbytes]
[,IPCMSGNIDS=ipcmsgnids]
[,IPCSHMMPAGES=ipcshmmpages]
[,IPCSHMNIDS=ipcshmnids]
[,IPCSHMNSEGS=ipcshmnsegs]
[,IPCSHMSPAGES=ipcshmspages]
[,IPCMSGQMNUM=ipcmsgqmnum]
[,MAXASSIZE=maxassize]
[,MAXCORESIZE=maxcoresize]
[,MAXCPUTIME=maxcputime]
[,MAXFILEPROC=maxfileproc]
[,MAXFILESIZE=(maxfilesize|NOLIMIT)]
[,MAXMMAPAREA=maxmmaparea]
[,MAXPROCSYS=maxprocsys]
[,MAXPROCUSER=maxprocuser]
[,MAXPTYS=maxptys]
[,MAXRTYS=maxrtys]
[,MAXSHAREPAGES=maxsharepages]
[,MAXTHREADS=maxthreads]
[,MAXTHREADTASKS=maxthreadtasks]
[,MAXUIDS=maxuids]
[,PID=pid,processlimitname=newvalue]
[,PRIORITYGOAL=(n) | NONE]
[,PRIORITYPG=(n) | NONE] ;
[,STEPLIBLIST='stepliblist']
[,SUPERUSER=superuser]
[,SYNTAXCHECK='parmlibmember']
[,TTYGROUP=ttygroup]
[,USERIDALIASTABLE=useridaliastable]
[,VERSION='string']
[,LIMMSG=[NONE|SYSTEM|ALL]]

SETOMVS FILESYS
,FILESYSTEM=filesystem
,AUTOMOVE=YES|NO
,SYSNAME=sysname|* or

SETOMVS FILESYS
,FILESYSTEM=filesystem
,AUTOMOVE=YES|NO or

SETOMVS FILESYS
,FILESYSTEM=filesystem
,SYSNAME=sysname|* or

SETOMVS FILESYS
,MOUNTPOINT=mountpoint
,AUTOMOVE=YES|NO
,SYSNAME=sysname|* or

SETOMVS FILESYS
,MOUNTPOINT=mountpoint
,AUTOMOVE=YES|NO or

SETOMVS FILESYS
,MOUNTPOINT=mountpoint
,SYSNAME=sysname|* or

SETOMVS FILESYS
,FROMSYS=sysname
,SYSNAME=sysname|*

Note: FILESYSTEM, MOUNTPOINT, and FROMSYS
are mutually exclusive parameters. When you specify
FILESYS, you must supply one of these three
parameters.

Parameters
AUTOMOVE=YES|NO, FILESYS=filesys, FILESYSTEM=filesystem,
FROMSYS=sysname, MOUNTPOINT=mountpoint, SYSNAME=sysname|*, and
VERSION=’nnnn’, which are described in this section, are parameters that are
used in a sysplex environment where systems are exploiting shared HFS. For more
information on shared HFS in a sysplex, see OS/390 UNIX System Services
Planning.

The parameters are:

AUTOMOVE=YES|NO
The AUTOMOVE|NOAUTOMOVE parameters apply only in a sysplex where
systems are participating in shared HFS. The AUTOMOVE and NOAUTOMOVE
parameters indicate what happens if the system that owns a file system goes
down. AUTOMOVE indicates that ownership of the file system automatically
changes to another system participating in shared HFS. NOAUTOMOVE
indicates that ownership of the file system is not moved if the owning system
goes down; as a result, the file system becomes inaccessible. AUTOMOVE is
the default.

SETOMVS Command

Chapter 2. APAR OW43776: OS/390 MVS System Commands 55

|

|

Note: AUTOMOVE is not allowed when moving multiple filesystems. Also, in
OS/390 R9 and later, to ensure that the root is always available, use the
default for AUTOMOVE.

FILESYS=filesys
In a sysplex environment, this parameter alerts the parser that commands
which change mount attributes are forthcoming.

For examples on the use of this parameter when making move or change
requests, see OS/390 UNIX System Services Planning.

FILESYSTEM=filesystem
In a sysplex environment, FILESYSTEM is the 45 character alphanumeric
field that denotes the name of the filesystem to be changed or moved. This
filesystem name may be in the following form: ’OMVS.USER.JOE’.
FILESYSTEM, MOUNTPOINT, and FROMSYS are mutually exclusive
parameters.

For examples on the use of this parameter when making move or change
requests, see OS/390 UNIX System Services Planning.

FROMSYS=sysname
In a sysplex environment, this parameter indicates the system where all the
filesystems will be moved from. The filesystems will be moved to the
system identified by the sysname keyword. FILESYSTEM, MOUNTPOINT,
and FROMSYS are mutually exclusive parameters.

MOUNTPOINT=mountpoint
In a sysplex environment, MOUNTPOINT is the mountpoint specification.
For example:
'/usr/d1'

It is case sensitive. This is the mountpoint where the filesystem is mounted.
If specified, the filesystem associated with this mountpoint will be moved or
changed. FILESYSTEM, MOUNTPOINT, and FROMSYS are mutually
exclusive parameters.

For examples on the use of this parameter when making move or change
requests, see OS/390 UNIX System Services Planning.

FORKCOPY = (COPY|COW)
Specifies how user storage is copied from the parent process to the child
process during a fork() system call.

If you specify FORKCOPY(COW), all fork() calls are processed in
copy-on-write (COW) mode if the suppression-on-protection hardware feature is
available. Before the storage is modified, both the parent and child processes
refer to the same view of the data. The parent storage is copied to the child as
soon as storage is modified, either by the parent or the child.

Using copy-on-write causes the system to use the extended system queue area
(ESQA) to manage page sharing.

If you specify FORKCOPY(COPY), fork() immediately copies the parent
storage to the child, regardless of whether the suppression-on-protection feature
is available. Use this option to avoid any additional ESQA use in support of
fork().

SETOMVS Command

56 Support Guide for APAR OW43776

Follow these guidelines:

v If the run-time library is in the link pack area, specify FORKCOPY(COPY).

v If the run-time library is not in the link pack area, specify FORKCOPY(COW).

If you do not specify FORKCOPY, the default is FORKCOPY(COW).

IPCSEMNIDS = ipcsemnids
Specifies the maximum number of unique semaphore sets in the system. The
range is from 1 to 20 000. The default is 500.

IPCSEMNOPS = ipcsemnops
Specifies the maximum number of operations for each semaphore operation
call. The range is from 0 to 32 767. The default is 25. This is a system-wide
limit.

IPCSEMNSEMS = ipcsemnsems
Specifies the maximum number of semaphores for each semaphor set. The
range is from 0 to 32 767. The default is 25.

IPCMSGQBYTES = ipcmsgqbytes
Specifies the maximum number of bytes in a single message queue. The range
is from 0 to 1 048 576. The default is 262 144.

IPCMSGNIDS = ipcmsgnids
Specifies the maximum number of unique message queues in the system. The
range is from 1 to 20 000. The default is 500.

IPCSHMMPAGES = ipcshmmpages
Specifies the maximum number of pages for a shared memory segment. The
range is from 1 to 25 600. The default is 256.

IPCSHMNIDS = ipcshmnids
Specifies the maximum number of unique shared memory segments in the
system. The range is from 1 to 20 000. The default is 500.

IPCSHMNSEGS = ipcshmnsegs
Specifies the maximum number of shared memory segments attached for each
address space. The range is from 0 to 1 000. The default is 10.

IPCSHMSPAGES = ipcshmspages
Specifies the maximum number of pages for shared memory segments in the
system. The range is from 0 to 2 621 440. The default is 262 144.

IPCMSGQMNUM = ipcmsqgmnum
Specifies the maximum number of messages for each message queue in the
system. The range is from 0 to 20 000. The default is 10 000.

LIMMSG=(NONE|SYSTEM|ALL)
Specifies how console messages that indicate when system parmlib limits are
reaching critical levels are to be displayed:

NONE No console messages are to be displayed when any of the parmlib
limits have been reached.

SYSTEM
Console messages are to be displayed for all processes that reach
system limits. In addition, messages are to be displayed for each
process limit of a process if:
v The process limit or limits are defined in the OMVS segment of the

owning User ID
v The process limit or limits have been changed with a SETOMVS

PID=pid,process_limit

SETOMVS Command

Chapter 2. APAR OW43776: OS/390 MVS System Commands 57

|
|
|

||
|

|
|
|
|
|
|
|
|

ALL Console messages are to be displayed for the system limits and for the
process limits, regardless of which process reaches a process limit.

Default: NONE

MAXASSIZE = maxassize
Specifies the RLIMIT_AS hard limit resource value that processes receive when
they are dubbed a process. RLIMIT_AS indicates the address space region
size. The soft limit is obtained from MVS. If the soft limit value from MVS is
greater than the MAXASSIZE value, the hard limit is set to the soft limit.

This value is also used when processes are initiated by a daemon process
using an exec after setuid(). In this case, both the RLIMIT_AS hard and soft
limit values are set to the MAXASSIZE value.

Refer to the description of setrlimit() in OS/390 UNIX System Services
Programming: Assembler Callable Services Reference for more information
about RLIMIT_AS.

The range is from 10 485 760 (10MB) to 2 147 483 647; the default is
41 943 040 (40MB).

MAXCORESIZE = maxcoresize
Specifies the RLIMIT_CORE soft and hard limit resource values that processes
receive when they are dubbed a process. RLIMIT_CORE indicates the
maximum core dump file size (in bytes) that a process can create. Also, it
specifies the limit when they are initiated by a daemon process using an exec
after setuid().

Refer to the description of setrlimit() in OS/390 UNIX System Services
Programming: Assembler Callable Services Reference for more information
about RLIMIT_CORE.

The range is from 0 to 2 147 483 647; the default is 4 194 304 (4MB).

MAXCPUTIME = maxcputime
Specifies the RLIMIT_CPU hard limit resource values that processes receive
when they are dubbed a process. RLIMIT_CPU indicates the CPU time that a
process is allowed to use, in seconds. The soft limit is obtained from MVS. If
the soft limit value from MVS is greater than the MAXCPUTIME value, the hard
limit is set to the soft limit. This value is also used when processes are initiated
by a daemon process using an exec after setuid(). In this case, both the
RLIMIT_CPU hard and soft limit values are set to the MAXCPUTIME value.

Refer to the description of setrlimit() in OS/390 UNIX System Services
Programming: Assembler Callable Services Reference for more information
about RLIMIT_CPU.

The range is from 7 to 2 147 483 647. The default is 1 000.

Specifying a value of 2 147 483 647 indicates unlimited CPU time.

MAXFILEPROC = maxfileproc
Specifies the maximum number of files that a single user is allowed to have
concurrently active or allocated. The range is 3 to 65 535.

MAXFILESIZE = (maxfilesize | NOLIMIT)
Specifies the RLIMIT_FSIZE soft and hard limit resource values that processes

SETOMVS Command

58 Support Guide for APAR OW43776

||
|

|

receive when they are dubbed a process. RLIMIT_FSIZE indicates the
maximum file size (in 4KB increments) that a process can create. Also, it
specifies the limit when they are initiated by a daemon process using an exec
after setuid().

The range is from 0 to 524 228 If you specify 0, no files will be created by the
process. Omitting this statement or specifying NOLIMIT indicates an unlimited
file size.

MAXMMAPAREA = maxmmaparea
Specifies the maximum amount of data space storage (in pages) that can be
allocated for memory mappings of HFS files. Storage is not allocated until
memory mappings are active.

The range is from 1 to 16 777 216. The default is 4 096.

MAXPROCSYS = maxprocsys
Specifies the maximum number of processes that OS/390 UNIX System
Services will allow to be active at the same time. The range is 5 to 32 767; the
default and the value in BPXPRMXX is 200.

MAXPROCUSER = maxprocuser
Specifies the maximum number of processes that a single OMVS user ID (UID)
is allowed to have active at the same time, regardless of how the process
became an OS/390 UNIX process. The range is 3 to 32 767;

MAXPTYS = maxptys
Specifies the maximum number of pseudo-TTY (pseudoterminal) sessions that
can be active at the same time. The range is 1 to 10 000; the default and the
value in BPXPRMXX is 256.

MAXPTYS lets you manage the number of interactive shell sessions. When you
specify this value, each interactive session requires one pseudo-TTY pair. You
should avoid specifying an arbitrarily high value for MAXPTYS. However,
because each interactive user may have more than one session, we
recommend that you allow 4 pseudo-TTY pairs for each user (MAXUIDS * 4).
The MAXPTYS value influences the number of pseudo-TTY pairs that can be
defined in the file system.

MAXRTYS = maxrtys
Specifies the maximum number of remote-terminal sessions that can be active
concurrently. The range is from 1 to 10 000; the default and the value in
BPXPRMXX is 256.

MAXRTYS lets you manage the number of interactive shell sessions that are
accessed by OCS terminal support. When you specify this value, each
interactive session requires one remote TTY. You should avoid specifying an
arbitrarily high value for MAXRTYs. However, because each interactive user
may have more than one session, we recommend that you allow 4 remote TTY
files for each user (MAXUIDS * 4).

The value of this parameter has no effect unless OCS support is active.

The MAXRTYS value influences the configuration of OCS nodes and
associated terminal files.

MAXSHAREPAGES = maxsharepages
Specifies the maximum number of shared storage pages that can be

SETOMVS Command

Chapter 2. APAR OW43776: OS/390 MVS System Commands 59

concurrently in use by OS/390 UNIX functions. This can be used to control the
amount of ESQA consumed, since the shared storage pages cause the
consumption of ESQA storage.

The range is from 0 to 32 768 000. The default is 131 072 pages.

MAXTHREADS = maxthreads
Specifies the maximum number of pthread_created threads, including those
running, queued, and exited but not detached, that a single process can have
currently active. Specifying a value of 0 prevents applications from using
pthread_create. The range is 0 to 100 000; the default and the value in
BPXPRMXX is 200.

MAXTHREADTASKS = maxthreadtasks
Specifies the maximum number of MVS tasks created with pthread_create
(BPX1PTC) that a single user may have concurrently active in a process. The
range is 1 to 32 768; the default and the value in BPXPRMXX is 50.

MAXTHREADTASKS lets you limit the amount of system resources available to
a single user process.

v The minimum value of 1 prevents a process from performing any
pthread_creates.

v A high MAXTHREADTASKS value may affect storage and performance.
Each task requires additional storage for:
– The control blocks built by the OpenMVS kernel
– The control blocks and data areas required by the runtime library
– System control blocks such as the TCB and RB

Individual processes can alter these limits dynamically.

MAXUIDS = maxuids
Specifies the maximum number of unique OMVS user IDs (UIDs) that can use
OS/390 UNIX at the same time. The UIDs are for interactive users or for
programs that requested OS/390 UNIX. The range is 1 to 32 767; the default
and the value in BPXPRMXX is 200.

MAXUIDS lets you limit the number of active UIDs. Select a MAXUIDS by
considering:

v Each OS/390 UNIX user is likely to run with 3 or more concurrent processes.
Therefore, OS/390 UNIX users require more system resources than typical
TSO/E users.

v If the MAXUIDS value is too high relative to the MAXPROCSYS value, too
many users can invoke the shell. All users may be affected, because forks
may begin to fail.

For example, if your installation can support 400 concurrent processes —
MAXPROCSYS(400) — and each UID needs an average of 4 processes,
then the system can support 100 users. For this operating system, specify
MAXUIDS(100).

In assigning a value to MAXUIDS, consider if the security administrator
assigned the same OMVS UID to more than one TSO/E user ID.

PID=pid,processlimitname=value
Dynamically changes a process-level limit for the process represented by pid.

PRIORITYGOAL = (n) | NONE
Specify from 1 to 40 service classes. These classes can be from 1 to 8

SETOMVS Command

60 Support Guide for APAR OW43776

|
|

characters. If you do not specify this statement, or if you specify NONE, no
array is created for it. All service classes specified on the PRIORITYGOAL
option must also be specified in your workload manager service policy.

Generally, we do not recommend that you set PRIORITYGOAL.

PRIORITYPG = (n) | NONE
Specify from 1 to 40 performance group numbers, in a range from 1 to 999. If
you do not specify this statement, or if you specify NONE, no array is created
for it. If you specify fewer than 40 values, the last value specified is propagated
to the end of the array.

All performance groups specified on the PRIORITYPG statement must also be
specified in the IEAIPSxx parmlib member.

Generally, we do not recommend that you set PRIORITYPG.

RESET = (xx)
Specifies the parmlib file containing parameters that are to be applied
immediately to the running OS/390 UNIX System Services environment. The
variable specifies the character suffix of the BPXPRMxx member that is to be
used to change the environment. Any properly constructed BPXPRMxx member
can be used. This parameter accepts only the single keyword and parmfile
specification. Additional keywords separated by commas are not accepted.

The SETOMVS RESET command is similar to the SET OMVS command. The
following table shows the acceptable parameters for each.

Note: SETOMVS RESET accepts only a single parameter; SET OMVS accepts
more than one parameter.

Table 4. Acceptable Parameter Statements and Their Applicability

Parameter Statement SET OMVS= (xx, yy, ...) SETOMVS RESET= (xx)

MAXASSIZE Yes Yes

MAXCPUTIME Yes Yes

MAXCORESIZE Yes Yes

MAXFILESIZE Yes Yes

MAXFILEPROC Yes Yes

MAXMMAPAREA Yes Yes

MAXPROCSYS Yes Yes

MAXPROCUSER Yes Yes

MAXPTYS Yes Yes

MAXSHAREPAGES Yes Yes

MAXTHREADTASKS Yes Yes

MAXTHREADS Yes Yes

MAXRTYS Yes Yes

MAXUIDS Yes Yes

IPCMSGNIDS Yes Yes

IPCMSGQBYTES Yes Yes

IPCMSGQMNUM Yes Yes

IPCSEMNIDS Yes Yes

SETOMVS Command

Chapter 2. APAR OW43776: OS/390 MVS System Commands 61

Table 4. Acceptable Parameter Statements and Their Applicability (continued)

Parameter Statement SET OMVS= (xx, yy, ...) SETOMVS RESET= (xx)

IPCSEMNOPS Yes Yes

IPCSEMNSEMS Yes Yes

IPCSHMMPAGES Yes Yes

IPCSHMNIDS Yes Yes

IPCSHMNSEGS Yes Yes

IPCSHMSPAGES Yes Yes

FORKCOPY Yes Yes

STEPLIBLIST Yes Yes

USERIDALIASTABLE Yes Yes

PRIORITYPG Yes Yes

PRIORITYGOAL Yes Yes

TTYGROUP Yes Yes

SUPERUSER Yes Yes

CTRACE No No

SYSCALL_COUNTS Yes Yes

FILESYSTYPE No Yes

SUBFILESYSTYPE No Yes

NETWORK No Yes

MOUNT No No

ROOT No No

RUNOPTS No No

STARTUP_PROC No No

STARTUP_EXEC No No

SYSPLEX No No

AUTOMOVE No No

FILESYS No No

FILESYSTEM No No

FROMSYS No No

MOUNTPOINT No No

SYSNAME No No

VERSION Yes Yes

STEPLIBLIST = 'stepliblist'
Specifies the path name of a hierarchical file system (HFS) file. This file is
intended to contain a list of data sets that are sanctioned by the installation for
use as step libraries during the running of set-user-ID and set-group-ID
executable programs.

SUPERUSER = superuser
This statement specifies a superuser name. You can specify a 1-to-8-character
name that conforms to restrictions for an OS/390 user ID. The user ID specified
on SUPERUSER must be defined to the security product and should have a

SETOMVS Command

62 Support Guide for APAR OW43776

UID of 0 assigned to it. The user ID specified with setuid() is used when a
daemon switches to an unknown identity with a UID of 0.

The default is SUPERUSER(BPXROOT).

SYNTAXCHECK=(xx)
Specifies that the operator wishes to check the syntax of the designated parmlib
member. For example, to check the syntax of BPXPRMZ1 the operator enters:
SETOMVS SYNTAXCHECK=(Z1)

The system returns a message indicating either that the syntax is correct or that
syntax errors were found and written into the hard copy log. This command
parses the parmlib member in the same manner, and with the same messages
as during IPL.

Note: SYNTAXCHECK checks only syntax and does not verify that HFS data
sets or mount points are valid.

SYSCALL_COUNTS = (YES|NO)
Specifies whether to accumulate syscall counts in internal kernel data areas so
that the RMF data gatherer can record this information.

The default is NO.

If you specify YES, the path length for the most frequently used kernel system
calls is increased by more than 150 instructions.

SYSNAME=sysname|*
sysname is the 1-8 alphanumeric name of a system participating in shared
HFS. This system must be IPLed with SYSPLEX(YES). sysname specifies the
particular system on which a mount should be performed. This system will then
become the owner of the file system mounted. If *(asterisk) is specified, it
represents any other randomly selected system taking part in shared HFS. The
asterisk specification is not available with the FROMSYS parameter.

For examples of the use of this parameter when making move or change
requests, see ″Shared HFS in a Sysplex″ in OS/390 UNIX System Services
Planning.

TTYGROUP = ttygroup
This specifies a 1-to-8-character name that must conform to the restrictions for
an OS/390 group name. Slave pseudoterminals (ptys) and OCS rtys are given
this group name when they are first opened. This group name should be
defined to the security product and have a unique GID. No users should be
connected to this group.

The name is used by certain setgid() programs, such as talk and write, when
attempting to write to another user’s pty or rty.

The default is TTYGROUP(TTY).

USERIDALIASTABLE = 'useridaliastable'
Enables installations to associate alias names with MVS user IDs and group
names. If specified, the alias names are used in OS/390 UNIX System Services
processing for the user IDs and group names listed in the table.

SETOMVS Command

Chapter 2. APAR OW43776: OS/390 MVS System Commands 63

Specifying USERIDALIASTABLE causes performance to degrade slightly. The
more names that you define, the greater the performance degradation.
Installations are encouraged to continue using uppercase-only user IDs and
group names.

The USERIDALIASTABLE statement specifies the pathname of a hierarchical
file system (HFS) file. This file is intended to contain a list of MVS user IDs and
group names with their associated alias names.

VERSION = 'nnnn'
The VERSION statement applies only to systems that are exploiting shared
HFS. VERSION allows multiple releases and service levels of the binaries to
coexist and participate in HFS sharing. A directory with the value nnnn specified
on VERSION is dynamically created at system initialization under the sysplex
root and is used as a mount point for the version HFS. This directory, however,
is only dynamically created if the sysplex root HFS is mounted read/write.

Note: nnnn is a case-sensitive character string no greater than 8 characters in
length. It indicates a specific instance of the version HFS. The most
appropriate values for nnnn are the name of the target zone, &SYSR1,
or another qualifier meaningful to the system programmer. For example,
if the system is at V2R9, you can specify REL9 for VERSION.

When SYSPLEX(YES) is specified, you must also specify the VERSION
parameter.

The VERSION value is substituted in the content of symbolic links that contain
$VERSION. For scenarios describing the use of the version HFS, see ″Shared
HFS in a Sysplex″ in OS/390 UNIX System Services Planning.

When testing or changing to a new Maintenance Level (PTF), you can change
the VERSION value dynamically by using the SETOMVS command:
SETOMVS VERSION='string'

You can also change the settings of this parameter via SET OMVS=(xx) and
SETOMVS RESET=(xx) parmlib specifications.

Note: We do not recommend changing version dynamically if you have any
users logged on or running applications; replacing the system files for
these users may be disruptive.

SETOMVS Command

64 Support Guide for APAR OW43776

Chapter 3. APAR OW43776: OS/390 MVS System Commands
Summary

Display or D OMVS

Example: The following DISPLAY command shows information about OS/390 UNIX System Services (OS/390 UNIX):

D OMVS[{,SUMMARY|S}]
|,{ASID|A}=ALL
|,{ASID|A}=asid
|,U=userid
|,{PID}=processid[,BRL]
|,{FILE|F[,CAPS|C]}
|,{VSERVER|V}
|,{PFS|P}
|,{CINET|CI}=All|TPname
|,{OPTIONS|O}
|,{LIMITS|L[,PID=ProcessId][,RESET]}

[,L={a|cc|cca|name|name-a}]

SETOMVS Command

Purpose: Use the SETOMVS command to change the options dynamically that OS/390 UNIX System Services uses.
These options are originally set in the BPXPRMxx member of SYS1.PARMLIB at the time of initially program loading
(IPL’ing) the system.

The complete syntax for the SETOMVS command is:

© Copyright IBM Corp. 1996, 2000 65

|

SETOMVS SETOMVS EXTENSIONS (sysplex exclusive)

SETOMVS [FORKCOPY=(COPY|COW)]
[,IPCSEMNIDS=ipcsemnids]
[,IPCSEMNOPS=ipcsemnops]
[,IPCSEMNSEMS=ipcsemnsems]
[,IPCMSGQBYTES=ipcmsgqbytes]
[,IPCMSGNIDS=ipcmsgnids]
[,IPCSHMMPAGES=ipcshmmpages]
[,IPCSHMNIDS=ipcshmnids]
[,IPCSHMNSEGS=ipcshmnsegs]
[,IPCSHMSPAGES=ipcshmspages]
[,IPCMSGQMNUM=ipcmsgqmnum]
[,MAXASSIZE=maxassize]
[,MAXCORESIZE=maxcoresize]
[,MAXCPUTIME=maxcputime]
[,MAXFILEPROC=maxfileproc]
[,MAXFILESIZE=(maxfilesize|NOLIMIT)]
[,MAXMMAPAREA=maxmmaparea]
[,MAXPROCSYS=maxprocsys]
[,MAXPROCUSER=maxprocuser]
[,MAXPTYS=maxptys]
[,MAXRTYS=maxrtys]
[,MAXSHAREPAGES=maxsharepages]
[,MAXTHREADS=maxthreads]
[,MAXTHREADTASKS=maxthreadtasks]
[,MAXUIDS=maxuids]
[,PID=pid,processlimitname=newvalue]
[,PRIORITYGOAL=(n) | NONE]
[,PRIORITYPG=(n) | NONE] ;
[,STEPLIBLIST='stepliblist']
[,SUPERUSER=superuser]
[,SYNTAXCHECK='parmlibmember']
[,TTYGROUP=ttygroup]
[,USERIDALIASTABLE=useridaliastable]
[,VERSION='string']
[,LIMMSG=[NONE|SYSTEM|ALL]]

SETOMVS FILESYS
,FILESYSTEM=filesystem
,AUTOMOVE=YES|NO
,SYSNAME=sysname|* or

SETOMVS FILESYS
,FILESYSTEM=filesystem
,AUTOMOVE=YES|NO or

SETOMVS FILESYS
,FILESYSTEM=filesystem
,SYSNAME=sysname|* or

SETOMVS FILESYS
,MOUNTPOINT=mountpoint
,AUTOMOVE=YES|NO
,SYSNAME=sysname|* or

SETOMVS FILESYS
,MOUNTPOINT=mountpoint
,AUTOMOVE=YES|NO or

SETOMVS FILESYS
,MOUNTPOINT=mountpoint
,SYSNAME=sysname|* or

SETOMVS FILESYS
,FROMSYS=sysname
,SYSNAME=sysname|*

Note: FILESYSTEM, MOUNTPOINT, and FROMSYS
are mutually exclusive parameters. When you specify
FILESYS, you must supply one of these three
parameters.

SETOMVS Command

66 Support Guide for APAR OW43776

|

|

Chapter 4. APAR OW43776: OS/390 MVS Initialization and
Tuning Reference

BPXPRMxx (OS/390 UNIX System Services Parameters)
BPXPRMxx contains the parameters that control the OS/390 UNIX System Services
(OS/390 UNIX) environment and the file systems. IBM recommends that you have
two BPXPRMxx parmlib members, one defining the values to be used for system
setup and the other defining the file systems. This makes it easier to migrate from
one release to another, especially when using the ServerPac method of installation.

After installation is complete, the operator needs to specify OMVS=xx in the
IEADYDxx parmlib member. To specify which BPXPRMxx parmlib member to start
with, the operator can include OMVS=xx in the reply to the IPL message or
OMVS=xx in the IEASYSxx parmlib member. The two alphanumeric characters,
represented by xx, are appended to BPXPRM to form the name of the BPXPRMxx
parmlib member.

If OMVS=xx is not specified in the reply to the IPL message or is not in the
IEASYSxx member, or if OMVS=DEFAULT is specified, defaults are used for each
parameter and OMVS is started in minimum mode. For more information about
running in minimum mode and full function mode, see OS/390 UNIX System
Services Planning. If the operator specifies OMVS=xx in the IPL reply to the
message, it overrides the OMVS=xx specified in IEASYSxx.

Note: The START OMVS,OMVS=xx command is not valid when issued from the
command console. OMVS=xx is not valid in parmlib COMMNDxx.

You can use multiple parmlib members to start OMVS. This is shown by the
following reply to the IPL message:
R 0,CLPA,SYSP=R3,LNK=(R3,R2,L),OMVS=(AA,BB,CC)

The parmlib member BPXPRMCC would be processed first, followed by and
overridden by BPXPRMBB, followed by and overridden by BPXPRMAA. This
means that any parameter in BPXPRMAA has precedence over the same
parameter in BPXPMRBB and BPXPRMCC.

For example, if you specify MAXFILESIZE in all three parmlib members, the value
MAXFILESIZE in BPXPRMAA will be the value used to start OMVS.

You can also specify multiple OMVS parmlib members in IEASYSxx. For example:
OMVS=(AA,BB,CC)

If MOUNT statements are specified in each parmlib member, the files are mounted
in the following order: BPXPRMAA, BPXPRMBB, and BPXPRMCC.

To modify BPXPRMxx parmlib settings without re-IPLing, you can use the
SETOMVS operator command, or you can dynamically change the BPXPRMxx
parmlib members that are in effect by using the SET OMVS operator command.
See “Dynamically Changing the BPXPRMxx Values” in OS/390 UNIX System
Services Planning for more information. See OS/390 MVS System Commands for
more information about the SETOMVS and SET OMVS commands.

© Copyright IBM Corp. 1996, 2000 67

Syntax Rules for BPXPRMxx
When customizing BPXPRMxx, the following rules apply:

v If the member contains duplicates of these statements, the last occurrence is
used. If a statement that has a default is omitted, the default is used.

v Use columns 1 through 71 for data; columns 72 through 80 are ignored.

v Enter one or more statements on a line, or use several lines for one statement.

v Use blanks as delimiters. Multiple blanks are interpreted as a single blank.
Blanks are allowed between parameters and values; for example,
MAXPROCSYS(500) and MAXPROCSYS (500) are allowed and have the same
meaning.

v Comments may appear in columns 1-71 and must begin with “/*“ and end with
“*/“.

v Enter values in uppercase, lowercase, or mixed case. The system converts the
input to uppercase, except for values enclosed in single quotes, which are
processed without changing the case.

v Values that require single quotes and that are the only ones allowed to be in
single quotes are:
– STEPLIBLIST
– USERIDALIASTABLE
– FILESYSTEM in the ROOT and MOUNT statements
– MOUNTPOINT in the MOUNT statement
– PARM in the FILESYSTYPE, ROOT, MOUNT, and SUBFILESYSTYPE

statements
– RUNOPTS
– VERSION

v Enclose values in single quotes, using the following rules:

– Two single quotes next to each other on the same line are considered as a
single quote. For example, John''s file is considered to be John's file.
One quote in column 71 and another in column 1 of the next line are not
considered as a single quote. This input is treated as two strings or an error.

– Because some values can be up to 1023 characters, a value can require
multiple lines. Place one quote at the beginning of the value, stop the value in
column 72 of each line, continue the value in column 1 of the next line, and
complete the value with one quote. For example:
column column
1 71
| |

MOUNT FILESYSTEM('HFS.WORKDS') MOUNTPOINT('/u/john/namedir1/namedir2
/namedir3/namedir4') TYPE(HFS) MODE(RDWR)

Syntax of BPXPRMxx

{MAXPROCSYS(nnnnn)}

{MAXPROCUSER(nnnnn)}

{MAXUIDS(nnnnn)}

{MAXFILEPROC(nnnnn)}

{MAXTHREADTASKS(nnnnn)}

{MAXTHREADS(nnnnnn)}

{MAXPTYS(nnnnn)}

BPXPRMxx

68 Support Guide for APAR OW43776

{MAXRTYS(nnnnn)}

{MAXFILESIZE(nnnnn|NOLIMIT)}

{MAXCORESIZE(nnnnn)}

{MAXASSIZE(nnnnn)}

{MAXCPUTIME(nnnnn)}

{MAXMMAPAREA(nnnnn)}

{MAXSHAREPAGES(nnnnn)}

{SHRLIBRGNSIZE(nnnnn)}

{SHRLIBMAXPAGES(nnnnn)}

{PRIORITYPG(n1,n2,...n40|NONE)}

{PRIORITYGOAL(service_class_name1,service_class_name2,...service_class_name40|NONE)}

{IPCMSGNIDS(nnnnn)}

{IPCMSGQBYTES(nnnnn)}

{IPCMSGQMNUM(nnnnn)}

{IPCSEMNIDS(nnnnn)}

{IPCSEMNOPS(nnnnn)}

{IPCSEMNSEMS(nnnnn)}

{IPCSHMMPAGES(nnnnn)}

{IPCSHMNIDS(nnnnn)}

{IPCSHMNSEGS(nnnnn)}

{IPCSHMSPAGES(nnnnn)}

{FORKCOPY(COW|COPY)}

{SUPERUSER(user_name)}

{TTYGROUP(group_name)}

{CTRACE(parmlib_member_name)}

{STEPLIBLIST('/etc/steplib')}

{USERIDALIASTABLE('/etc/tablename')}

{FILESYSTYPE TYPE(type_name)
ENTRYPOINT(entry_name)
PARM('parm')}

{SYSPLEX(YES|NO)}

{VERSION('nnnn')}

BPXPRMxx

Chapter 4. APAR OW43776: OS/390 MVS Initialization and Tuning Reference 69

{ROOT FILESYSTEM('fsname') or DDNAME(ddname)
TYPE(type_name)
MODE(access)
PARM('parameter')
SETUID|NOSETUID
SYSNAME(sysname)
AUTOMOVE|NOAUTOMOVE}

{MOUNT FILESYSTEM('fsname') or DDNAME(ddname)
TYPE(type_name)
MOUNTPOINT('pathname')
MODE(access)
PARM('parameter')
SETUID|NOSETUID
WAIT|NOWAIT
SECURITY|NOSECURITY
SYSNAME(sysname)
AUTOMOVE|NOAUTOMOVE}

{NETWORK DOMAINNAME(sockets_domain_name)
DOMAINNUMBER(sockets_domain_number)
MAXSOCKETS(nnnnn)
TYPE(type_name)
INADDRANYPORT(starting_port_number)
INADDRANYCOUNT(number_of_ports_to_reserve)}

{SUBFILESYSTYPE NAME(transport_name)
TYPE(type_name)
ENTRYPOINT(entry_name)
PARM('parameter')
DEFAULT}

{STARTUP_PROC(procname)}

{STARTUP_EXEC('dsname(membername)',class)}

{RUNOPTS('string')}

{SYSCALL_COUNTS(YES/NO)}

{MAXQUEUEDSIGS(nnnnnn)}

{LIMMSG(NONE|SYSTEM|ALL)}

BPXPRMxx

70 Support Guide for APAR OW43776

|

Syntax Example of BPXPRMxx

IBM-Supplied Default for BPXPRMxx
There is no default BPXPRMxx parmlib member. A sample parmlib member
BPXPRMXX is provided in SYS1.SAMPLIB.

MAXPROCSYS(400)
MAXPROCUSER(16)
MAXUIDS(200)
MAXFILEPROC(20)
MAXTHREADTASKS(100)
MAXTHREADS(500)
MAXPTYS(100)
MAXRTYS(100)
MAXFILESIZE(1000)
MAXCORESIZE(4194304)
MAXASSIZE(41943040)
MAXCPUTIME(1000)
MAXMMAPAREA(4096)
MAXSHAREPAGES(32768)
PRIORITYPG(7,7,7,7,7,6,5,999,3,2,1)
PRIORITYGOAL(CICS4,CICS4,CICS4,CICS3,CICS2,CICS1,TSO2,TSO1,BAT3,BAT2)
IPCMSGNIDS(500)
IPCMSGQBYTES(262144)
IPCMSGQMNUM(100000)
IPCSEMNIDS(500)
IPCSEMNOPS(25)
IPCSEMNSEMS(25)
IPCSHMMPAGES(256)
IPCSHMNIDS(500)
IPCSHMNSEGS(10)
IPCSHMSPAGES(262144)
FORKCOPY(COW)
SUPERUSER(BPXROOT)
TTYGROUP(TTY)
CTRACE(CTCBPX23)
STEBLIBLIST('/etc/steplib')
USERIDALIASTABLE('/etc/tablename')
SYSPLEX(YES)
VERSION('REL9')
FILESYSTYPE TYPE(HFS)

ENTRYPOINT(GFUAINIT)
PARM('SYNCDEFAULT(0) FIXED(2) VIRTUAL(128)')

ROOT FILESYSTEM('OMVS.ROOT')
TYPE(HFS)
MODE(RDWR)
SYSNAME(SY1)
AUTOMOVE

MOUNT FILESYSTEM('OMVS.USER.JONES')
TYPE(HFS)
MOUNTPOINT('/u/jones')
MODE(RDWR)
SYSNAME(SY1)
NOAUTOMOVE

FILESYSTYPE TYPE(INET)
ENTRYPOINT(EZBPFINI)

NETWORK DOMAINNAME(AF_INET)
DOMAINNUMBER(2)
MAXSOCKETS(2000)
TYPE(INET)

STARTUP_PROC(OMVS)
STARTUP_EXEC('OMVS.ROOT(REXX01)',A)
RUNOPTS('RTLS(ON) LIBRARY(SYSCEE) VERSION(OS24)')
SYSCALL_COUNTS(YES)
MAXQUEUEDSIGS(1000)

BPXPRMxx

Chapter 4. APAR OW43776: OS/390 MVS Initialization and Tuning Reference 71

Statements and Parameters for BPXPRMxx
For guidance information about selecting values for the statements, see
Customizing the OS/390 UNIX Environment in OS/390 UNIX System Services
Planning.

MAXPROCSYS(nnnnn)
Specifies the maximum number of OS/390 UNIX processes that the system
allows.

Value Range: nnnnn is a decimal value from 5 to 32767.

Default: 200

You can use the SETOMVS or SET OMVS command to dynamically increase
or decrease the value of MAXPROCSYS. To make a permanent change, edit
the BPXPRMxx member that will be used for IPLs.

If you are using SETOMVS or SET OMVS to change the value, the new value
must be within a certain range, or you will get an error message. The range that
you can use has a minimum value of 5; the maximum value is based on the
following calculation:
MIN(32767,MAX(4096,3*initial value))

The initial value is the MAXPROCSYS value that was specified during
BPXPRMxx initialization. You cannot use a value less than 5. If you want to use
a value greater than the current maximum (as calculated by the formula) but
lower than the initial maximum (32767), you will have to change the value in
BPXPRMxx and re-IPL. For an example of how to calculate the maximum value
in the range, see “Dynamically Changing Certain BPXPRMxx Parameter
Values“ in OS/390 UNIX System Services Planning.

For additional information, see MAXPROCSYS in OS/390 UNIX System
Services Planning.

MAXPROCUSER(nnnnn)
Specifies the maximum number of processes that a single OS/390 UNIX user
ID can have concurrently active, regardless of how the processes were created.
MAXPROCUSER is the same as the CHILD_MAX variable in the POSIX
standard.

A value of 25 is required for FIPS 151-2 compliance and a value of 16 is
required for POSIX.1 (ISO/IEC 9945-1:1990[E] IEEE Std 1003.1-1990) standard
compliance.

The number of processes is tracked by user ID (UID). When a user attempts to
create a new process, the limit value for the user (defined by either the user
profile or the default OPTN value) is compared to the value maintained for the
user’s UID. If the user maximum is larger than the current process count for the
UID, the user can create another process. If not, the user is not allowed to
create a new process. For example, if user “A“, with a user-defined limit of 10,
tries to create a process and the UID limit is already 12, user “A“ is not allowed
to create the new process. Since only 12 processes are currently created, user
“B“, with a user-defined limit of 20, is allowed to create a new process.

BPXPRMxx

72 Support Guide for APAR OW43776

Use the SETOMVS or SET OMVS command to dynamically increase or
decrease the MAXPROCUSER values. To make a permanent change, edit the
BPXPRMxx member that will be used for IPLs.

For additional information, see MAXPROCUSER in OS/390 UNIX System
Services Planning.

Value Range: nnnnn is a decimal value from 3 to 32767.

Default: 25

MAXUIDS(nnnnn)
Specifies the maximum number of OS/390 UNIX user IDs (UIDs) that can
operate concurrently.

Value Range: nnnnn is a decimal value from 1 to 32767.

Default: 200

Use the SETOMVS or SET OMVS command to dynamically increase or
decrease the value of MAXUIDS. To make a permanent change, edit the
BPXPRMxx member that will be used for IPLs.

For additional information, see MAXUIDS in OS/390 UNIX System Services
Planning.

MAXFILEPROC(nnnnn)
Specifies the maximum number of files that a single process can have
concurrently active or allocated. MAXFILEPROC is the same as the
OPEN_MAX variable in the POSIX standard.

Value Range: nnnnn is a decimal value from 3 to 65535.

Default: 64

Use the SETOMVS or SET OMVS command to dynamically increase or
decrease the value of MAXFILEPROC. To make a permanent change, edit the
BPXPRMxx member that will be used for IPLs.

For additional information, see MAXFILEPROC in OS/390 UNIX System
Services Planning.

MAXTHREADTASKS(nnnnn)
Specifies the maximum number of MVS tasks that a single process can have
concurrently active for pthread_created threads.

Value Range: nnnnn is a decimal value from 0 to 32768.

Default: 50

You can change the value of MAXTHREADTASKS dynamically using the
SETOMVS or SET OMVS command. To make a permanent change, edit the
BPXPRMxx member that will be used for IPLs.

For additional information, see MAXTHREADTASKS in OS/390 UNIX System
Services Planning.

BPXPRMxx

Chapter 4. APAR OW43776: OS/390 MVS Initialization and Tuning Reference 73

MAXTHREADS(nnnnnn)
Specifies the maximum number of pthread_created threads, including running,
queued, and exited but undetached, that a single process can have
concurrently active. Specifying a value of 0 prevents applications from using
pthread_create.

Value Range: nnnnnn is a decimal value from 0 to 100000.

Default: 200

You can change the value of MAXTHREADS dynamically using the SETOMVS
or SET OMVS command. To make a permanent change, edit the BPXPRMxx
member that will be used for IPLs.

For additional information, see MAXTHREADS in OS/390 UNIX System
Services Planning.

MAXPTYS(nnnnn)
Specifies the maximum number of pseudoterminals (pseudo-TTYs or PTYs) for
the system.

Value Range: nnnnn is a decimal value from 1 to 10000.

Default: 256

You can use the SETOMVS or SET OMVS command to dynamically increase
the value of MAXPTYS. To make a permanent change, edit the BPXPRMxx
member that will be used for IPLs.

If you are using SETOMVS or SET OMVS to change the value, the new value
must be within a certain range. If it is outside the range, you will get an error
message. To use a value that is outside this range, you must change the
MAXPTYS specification in BPXPRMxx and re-IPL. The range’s minimum value
is 1 and the maximum is based on the following calculation:
MIN(10000,MAX(256,2*initial value)

The initial value is the MAXPTYS value that was specified during BPXPRMxx
initialization. For an example of how to calculate the maximum value in the
range, see “Dynamically Changing Certain BPXPRMxx Parameter Values“ in
OS/390 UNIX System Services Planning.

For additional information, see MAXPTYS in OS/390 UNIX System Services
Planning.

MAXRTYS(nnnnn)
Specifies the maximum number of remote terminal sessions that can be active
at the same time.

Value Range: nnnnn is a decimal value from 1 to 10000.

Default: 256

You can use the SETOMVS or SET OMVS command to dynamically increase
the value of MAXRTYS. To decrease the value of MAXRTYS, you will have to
change BPXPRMxx and re-IPL. To make a permanent change, edit the
BPXPRMxx member that will be used for IPLs.

BPXPRMxx

74 Support Guide for APAR OW43776

If you are using SETOMVS or SET OMVS to change the value, the new value
must be within a certain range, or you will get an error message. To use a value
that is outside this range, you must change the MAXRTYS specification in
BPXPRMxx and re-IPL. The range’s minimum value is the current setting of
MAXRTYS, and the maximum is based on the following calculation:
MIN(10000,MAX(256,2*initial value)

The initial value is the MAXRTYS value that was specified during BPXPRMxx
initialization. If you want to use a value greater than the current maximum (as
calculated by the formula) but lower than the initial maximum (10000), you will
have to change the value in BPXPRMxx and re-IPL. For an example of how to
calculate the maximum value in the range, see “Dynamically Changing Certain
BPXPRMxx Parameter Values“ in OS/390 UNIX System Services Planning.

For additional information, see MAXRTYS in OS/390 UNIX System Services
Planning.

MAXFILESIZE(nnnnn|NOLIMIT)
Specifies the RLIMIT_FSIZE soft and hard resource values that a process
receives when it is identified as a process. RLIMIT_FSIZE indicates the
maximum file size (in 4KB increments) that a process can create. It also
specifies the limit when they are initiated by a daemon process using an exec()
after a setuid(). For more information about RLIMIT_FSIZE, see the description
of setrlimit() in OS/390 UNIX System Services Programming: Assembler
Callable Services Reference.

Value Range: nnnnn is a decimal value from a minimum of 0 to a maximum of
greater than 2147483647 (2 gigabytes) in 4 kilobyte increments. If
MAXFILESIZE is not specified or MAXFILESIZE(NOLIMIT) is specified, there
will be no limit to the size of files created, except for the architectural limit of the
system.

If you specify 0, the process does not create any files. Omitting this statement
indicates an unlimited file size.

Default: 1000

Use the SETOMVS or SET OMVS command to dynamically increase or
decrease the value of MAXFILESIZE. To make a permanent change, edit the
BPXPRMxx member that will be used in IPLs.

MAXCORESIZE(nnnnn)
Specifies the RLIMIT_CORE soft and hard resource values that a process
receives when it is identified as a process. RLIMIT_CORE indicates the
maximum core dump file size (in bytes) that a process can create. It also
specifies the limit when they are initiated by a daemon process using an exec()
after a setuid(). For more information about RLIMIT_CORE, see the description
of setrlimit() in OS/390 UNIX System Services Programming: Assembler
Callable Services Reference.

Value Range: nnnnn is a decimal value from 0 to 2147483647 (2 gigabytes).

Default: 4194304 (4 megabytes) Specifying a value of 2147483647 (2
gigabytes) indicates an unlimited core file size.

BPXPRMxx

Chapter 4. APAR OW43776: OS/390 MVS Initialization and Tuning Reference 75

Use the SETOMVS or SET OMVS command to dynamically increase or
decrease the value of MAXCORESIZE. To make a permanent change, edit the
BPXPRMxx member that will be used for IPLs.

MAXASSIZE(nnnnn)
Specifies the RLIMIT_AS resource values that a process receives when it is
identified as a process. RLIMIT_AS indicates the address space region size.
For more information about RLIMIT_AS, refer to the description of setrlimit in
OS/390 UNIX System Services Programming: Assembler Callable Services
Reference.

The soft limit is obtained from MVS; if it is greater than the MAXASSIZE value,
the hard limit is set to the soft limit. This value is also used when processes are
initiated by a daemon process using an exec() after setuid(). In this case, both
the RLIMIT_ AS hard and soft limit values are set to the MAXASSIZE specified
value.

When processes are initiated by a daemon process using an exec() after
setuid(), this value is used. Therefore, MAXASSIZE will be the region size for
all processes created via rlogin or telnet. In this case, both the RLIMIT_AS hard
and soft limit values are set to the MAXASSIZE value.

A superuser can override this value by specifying a new region size in the
spawn inheritance structure on __spawn(). Or you can change the value of
MAXASSIZE dynamically by using the SETOMVS or SET OMVS command.This
change only affects the new processes created after the change was made.

Note: The IEFUSI user exit can modify the region size of an address space.
Users are strongly discouraged from altering the region size of address
spaces in the OMVS subsystem category.

Value Range: nnnnn is a decimal value from 10485760 (10 megabytes) to
2147483647 (2 gigabytes).

Default: 41943040 (40 megabytes)

Use the SETOMVS or SET OMVS command to dynamically increase or
decrease the value of MAXASSIZE. To make a permanent change, edit the
BPXPRMxx member that will be used for IPLs.

For additional information, see MAXASSIZE in OS/390 UNIX System Services
Planning.

MAXCPUTIME(nnnnn)
Specifies the RLIMIT_CPU resource values that a process receives when it is
identified as a process. RLIMIT_CPU indicates the CPU time, in seconds, that a
process can use. For more information about RLIMIT_CPU, refer to the
description of setrlimit() in OS/390 UNIX System Services Programming:
Assembler Callable Services Reference.

If the soft limit value from MVS is greater than the MAXCPUTIME value, the
hard limit is set to the soft limit. This value is also used when processes are
initiated by a daemon process using an exec() after setuid(). In this case, both
the RLIMIT_CPU hard and soft limit values are set to the MAXCPUTIME value.

A superuser can override this value by specifying a new time limit in the spawn
inheritance structure on __spawn().

BPXPRMxx

76 Support Guide for APAR OW43776

For processes running in or forked from TSO or BATCH, the MAXCPUTIME
value has no effect. The TIME limit is inherited from the parent. If a TIME
parameter is specified on the JCL for the started task, then that value is used. If
not, then the TIME value is taken from the JES default TIME value.

For processes created by the rlogin command or other daemons,
MAXCPUTIME is the time limit for the address space.

Value Range: nnnnn is a decimal value from 7 to 2147483647 (2 gigabytes).

Default: 1000

Use the SETOMVS or SET OMVS command to dynamically increase the value
of MAXCPUTIME. To make a permanent change, edit the BPXPRMxx member
that will be used for IPLs.

For additional information, see MAXCPUTIME in OS/390 UNIX System
Services Planning.

MAXMMAPAREA(nnnnn)
Specifies the maximum amount of data space storage space (in pages) that can
be allocated for memory mappings of HFS files. Storage is not allocated until
the memory mapping is active.

Using memory map services causes a large amount of system memory to be
consumed. For each page (4KB) that is memory-mapped, 96 bytes of ESQA
are consumed when a file is not shared with any other users. When a file is
shared by multiple users, each user after the first causes 32 bytes of ESQA to
be consumed for each shared page. Assuming that the default of 4096 pages is
taken, and assuming that no sharing is done by mmap() users, a maximum of
384KB of ESQA could be consumed. The ESQA storage is consumed when the
mmap() function is invoked rather than when the page is accessed by the
memory mapping application program.

If you have applications using the __MAP_MEGA option, you can map very
large files without the system overhead in ESQA. For more information, see
“Extended System Queue Area (ESQA“ in OS/390 UNIX System Services
Planning.

Value Range: nnnnn is a decimal value from 1 to 16777216.

Default: 4096

You can change the value of MAXMMAPAREA dynamically using the
SETOMVS or SET OMVS command. To make a permanent change, edit the
BPXPRMxx member that will be used for IPLs.

For additional information, see MAXMMAPAREA in OS/390 UNIX System
Services Planning.

MAXSHAREPAGES(nnnnn)
Specifies the maximum amount of shared system storage pages that OS/390
UNIX functions can use. This limit applies to the mmap, shmat, ptrace, and
fork functions.

The fork service uses shared storage only when FORKCOPY(COW) is
specified. Because the fork and ptrace functions use the shared storage pages

BPXPRMxx

Chapter 4. APAR OW43776: OS/390 MVS Initialization and Tuning Reference 77

as a boost to performance, the usage is not critical to the completion of these
functions. For this reason, when the amount of shared storage pages being
used reaches approximately 60% of the specified limit, these functions no
longer use the shared storage to complete their function. Because the shmat()
function is considered the most critical of the functions, it continues to use the
shared storage pages until the total consumption reaches the specified limit.
The mmap function continues to use the shared storage pages until total
shared storage consumption reaches approximately 80% of the limit.

Because each page of shared storage requires the associated consumption of
extended system queue area (ESQA) storage, limiting the shared storage
usage provides a way to limit the ESQA usage by OS/390 UNIX users. If you
use the __IPC_MEGA or __MAP_MEGA options, then the shared pages limits
are not affected because MEGA does not affect the system ESQA overhead.

Value Range: nnnnn is a decimal value from 0 to 32768000.

Default: 131072

Use the SETOMVS or SET OMVS command to dynamically increase or
decrease the MAXSHAREPAGES value. To make a permanent change, edit the
BPXPRMxx member that will be used for IPLs.

SHRLIBRGNSIZE(nnnnn)
Specifies the size of the shared library region for address spaces that load
system shared library modules. For these address spaces, the size specified is
allocated from high-end private storage and is used for the loading of system
shared library modules. This storage is not allocated in an address space until it
loads a system shared library module.

Value Range: nnnnn is a decimal value between 16777215 (16 megabytes)
and 1610612735 (1.5 gigabytes).

Default: 67108863

For information on setting the value, see SHRLIBRGNSIZE in OS/390 UNIX
System Services Planning.

SHRLIBMAXPAGES(nnnnn)
Specifies the number of data space storage pages that can be allocated for
non-system shared library modules. The data space storage is not allocated
until a non-system shared library is loaded.

Value Range: nnnnn is a decimal value between 1 and 16777215.

Default: 4096

For information on setting the value, see SHRLIBMAXPAGES in OS/390 UNIX
System Services Planning.

PRIORITYPG(n1,n2,...n40)
Specifies a list of 1 to 40 performance group numbers separated by commas,
which are used in association with the setpriority, nice and chpriority callable
services when the system is running in compatibility mode. These functions
allow a program to alter the priority of one or more processes.

BPXPRMxx

78 Support Guide for APAR OW43776

Generally, it is recommended that you not set PRIORITYPG unless the
nice(), setpriority() or chpriority() values must be enabled.

If the list has less than 40 entries, the system propagates the last performance
group specified into the remaining unspecified entries in the table. For example:

PRIORITYPG(7,7,7,7,7,6,5,999,3,2,1)

The performance groups specified on the PRIORITYPG statement must also be
specified in the IEAIPSxx parmlib member.

PRIORITYPG(NONE) means that there are no values. If you do not specify
PRIORITYPG, that means that there are no values.

Only superusers can increase their values. Regular users can only decrease
their priority values; they cannot increase their priority values. If you do not want
to allow your users to increase the priority but still want to enable the nice() and
setpriority() functions, define a range of performance groups or service classes
with priority increments on a base that is normal for the users. Using these
functions lets the user order the priority of processes, but will not let a user
improve performance over that of other users.

Value Range: n is a decimal value from 1 to 999.

Default: None

You can use the SETOMVS or SET OMVS command to specify a new range of
priority settings. To make a permanent change, edit the BPXPRMxx member
that will be used for IPLs.

For additional information, see PRIORITYPG in OS/390 UNIX System Services
Planning.

PRIORITYGOAL(service_class_name1,service_class_name2,...service_class_name40)

Specifies a list of 1 to 40 service class names of 8 characters or less separated
by commas, which are used in association with the setpriority, nice and
chpriority callable services when the system is running in goal mode. These
functions allow a program to alter the priority of one or more processes.

Generally, it is recommended that you not set PRIORITYGOAL unless the
nice(), setpriority() or chpriority() values must be enabled.

If the list has less than 40 entries, the system propagates the last service class
specified into the remaining unspecified entries in the table. For example:

PRIORITYGOAL(CICS4,CICS4,CICS4,CICS3,CICS2,CICS1,TSO2,TSO1,BAT3,BAT2)

If you do not specify this statement, arrays are not created for it. All service
classes specified on the PRIORITYGOAL statement must also be specified in
your workload manager service policy.

PRIORITYGOAL(NONE) means that there are no values. If you do not specify
PRIORITYGOAL, that means that there are no values.

If you do not want to allow users to increase the priority but still want to enable
the nice() and setpriority() functions, define a range of performance groups or
service classes with priority increments on a base that is normal for the users.

BPXPRMxx

Chapter 4. APAR OW43776: OS/390 MVS Initialization and Tuning Reference 79

Using these functions lets the user order the priority of processes, but will not
let a user improve performance over that of other users.

Value Range: service_class_name is a 1 to 8 character value.

Default: None

You can dynamically change the values of PRIORITYGOAL by using the
SETOMVS or SET OMVS command. To make a permanent change, edit the
BPXPRMxx member that will be used for IPLs.

For additional information, see PRIORITYGOAL in OS/390 UNIX System
Services Planning.

IPCMSGNIDS(nnnnn)
Specifies the maximum number of unique system-wide message queues.

Value Range: nnnnn is a decimal value from 1 to 20000.

Default: 500

You can change the value of IPCMSGNIDS dynamically using the SETOMVS or
SET OMVS command. The new minimum is the current value. The new
maximum is calculated as follows:
MIN(initial maximum,MAX(4096,3*initial value))

You can increase but not decrease the value, as described in OS/390 UNIX
System Services Planning.

IPCMSGQBYTES(nnnnn)
Specifies the maximum number of bytes in a single message queue.

Value Range: nnnnn is a decimal value from 0 to 2147483647.

Note: The high end of this range is not obtainable due to storage constraints.
The actual maximum range varies due to storage allocation and system
usage.

Default: 262144

You can change the value of IPCMSGQBYTES dynamically using the
SETOMVS or SET OMVS command.

IPCMSGQMNUM(nnnnn)
Specifies the maximum number of system-wide messages for each queue.

Value Range: nnnnn is a decimal value from 0 to 2147483647.

Note: The high end of this range is not obtainable due to storage constraints.
The actual maximum range varies due to storage allocation and system
usage.

Default: 10000

You can change the value of IPCMSGQMNUM dynamically using the
SETOMVS or SET OMVS command.

BPXPRMxx

80 Support Guide for APAR OW43776

IPCSEMNIDS(nnnnn)
Specifies the maximum number of unique system-wide semaphore sets.

Value Range: nnnnn is a decimal value from 1 to 20000.

Default: 500

You can change the value of IPCSEMNIDS dynamically using the SETOMVS or
SET OMVS command, as described in OS/390 UNIX System Services
Planning.

IPCSEMNOPS(nnnnn)
Specifies the maximum number of operations for each semop call.

Value Range: nnnnn is a decimal value from 0 to 32767.

Default: 25

You can change the value of IPCSEMNOPS dynamically using the SETOMVS
or SET OMVS command.

IPCSEMNSEMS(nnnnn)
Specifies the maximum number of semaphores for each semaphore set.

Value Range: nnnnn is a decimal value from 0 to 32767.

Default: 25

You can change the value of IPCSEMNSEMS dynamically using the SETOMVS
or SET OMVS command.

IPCSHMMPAGES(nnnnn)
Specifies the maximum number of pages for shared memory segments.

Value Range: nnnnn is a decimal value from 1 to 524287.

Note: The high end of this range is not obtainable due to storage constraints.
The actual maximum range varies due to storage allocation and system
usage.

Default: 256

You can change the value of IPCSHMMPAGES dynamically using the
SETOMVS or SET OMVS command.

IPCSHMNIDS(nnnnn)
Specifies the maximum number of unique system-wide shared memory
segments.

Value Range: nnnnn is a decimal value from 1 to 20000.

Default: 500

You can change the value of IPCSHMNIDS dynamically using the SETOMVS or
SET OMVS command. The new minimum is the same as the current value. The
new maximum is calculated as follows:
MIN(initial maximum,MAX(4096,3*initial value))

BPXPRMxx

Chapter 4. APAR OW43776: OS/390 MVS Initialization and Tuning Reference 81

You can increase but not decrease the value, as described in OS/390 UNIX
System Services Planning.

IPCSHMNSEGS(nnnnn)
Specifies the maximum number of attached shared memory segments for each
address space.

Value Range: nnnnn is a decimal value from 0 to 1000.

Default: 10

You can change the value of IPCSHMNSEGS dynamically using the SETOMVS
or SET OMVS command.

IPCSHMSPAGES(nnnnn)
Specifies the maximum number of system-wide shared pages created by calls
to the fork and shmat functions.

Value Range: nnnnn is a decimal value from 0 to 2621440.

Default: 262144

You can change the value of IPCSHMSPAGES dynamically using the
SETOMVS or SET OMVS command. The new minimum is the same as the
current value. The new maximum is calculated as follows:
MIN(initial maximum,MAX(4096,3*initial value))

You can increase but not decrease the value, as described in OS/390 UNIX
System Services Planning.

FORKCOPY(COW|COPY)
Specifies how user storage is to be copied from the parent process to the child
process during a fork() system call.

FORKCOPY(COW) specifies that all fork() calls are processed with the
copy-on-write mode if the suppression-on-protection (SOP) hardware feature is
available. Before the storage is modified, both the parent and child process
refer to the same view of the data. The parent storage is copied to the child
only if either the parent or the child modifies the storage. FORKCOPY(COW)
causes the system to use the ESQA to manage page sharing.

FORKCOPY(COPY) specifies that fork() immediately copies the parent storage
to the child, whether the SOP is available or not. Use this option to avoid any
additional ESQA use in support of fork.

Follow these guidelines:
v If the run-time library is in the link pack area, specify FORKCOPY(COPY).
v If the run-time library is not in the link pack area, specify FORKCOPY(COW).

Default: COW

You can change the value of FORKCOPY dynamically using the SETOMVS or
SET OMVS command. To make a permanent change, edit the BPXPRMxx
member used for IPLs.

SUPERUSER(user_name)
Superuser name, which must conform to the restrictions for an OS/390 user ID.
The user name must also be defined to RACF (or another security product) and

BPXPRMxx

82 Support Guide for APAR OW43776

must have an OS/390 UNIX user ID (UID) of 0. For example, in RACF, specify
OMVS(UID(0)) on the ADDUSER command.

When a daemon issues a setuid() to set a UID to 0 and the user ID is not
known, setuid() uses the user ID from the SUPERUSER statement.

Never permit the userid BPXROOT to the BPX.DAEMON profile (described in
“Setting Up the BPX.* FACILITY Class Profiles“ in OS/390 UNIX System
Services Planning). This warning applies even if you use a name other than
BPXROOT.

Value Range: user_name is a 1 to 8 character value.

Default: BPXROOT

Use the SETOMVS or SET OMVS command to dynamically change the value
of SUPERUSER. To make a permanent change, edit the BPXPRMxx member
that is used for IPLs.

TTYGROUP(group_name)
Specifies the OS/390 group name given to slave pseudoterminals (PTYs) and
OCS remote terminals (RTYs). This group name should be defined to the
security product and must have a unique group ID (GID). No users should be
connected to this group.

The group_name is used by certain setgid() programs, such as talk and write,
when writing to another user’s PTY or RTY.

Value Range: group_name is a 1 to 8 character value.

Default: TTY

You can change the value of TTYGROUP dynamically using the SETOMVS or
SET OMVS command. To make a permanent change, edit the BPXPRMxx
member that will be used for future IPLs.

CTRACE(parmlib_member_name)
Specifies the parmlib member that contains the initial tracing options to be used
for the OS/390 UNIX component. Use this statement to provide tracing while
the kernel is starting and to avoid having to issue a TRACE operator command
to set tracing options.

Default: CTIBPX00

STEPLIBLIST('/etc/steplib')
Specifies the pathname of a hierarchical file system (HFS) file. This file is
intended to contain a list of MVS datasets that are sanctioned by the installation
for use as step libraries for programs that have the set-user-ID and set-group-ID
bit set.

Use the SETOMVS or SET OMVS command to dynamically change the value
of STEPLIBLIST. To make a permanent change, edit the BPXPRMxx member
that will be used for IPLs.

For additional information, see STEPLIBLIST in OS/390 UNIX System Services
Planning.

BPXPRMxx

Chapter 4. APAR OW43776: OS/390 MVS Initialization and Tuning Reference 83

USERIDALIASTABLE('/etc/tablename')
Specifies the pathname of a hierarchical file system (HFS) file. This file is
intended to contain a list of MVS user IDs and group names with their
corresponding alias names. The alias names can contain any characters in the
portable filename character set.

You can change USERIDALIASTABLE dynamically using the SETOMVS or SET
OMVS command. To make a permanent change, edit the BPXPRMxx member
that will be used for IPLs.

Once a user is logged into the system, changing the user ID or group name
alias table does not change the alias name immediately. If a change needs to
be activated sooner, you can use the SETOMVS or SET OMVS command to
change the table more quickly.

For additional information, see USERIDALIASTABLE in OS/390 UNIX System
Services Planning.

FILESYSTYPE TYPE(type_name) ENTRYPOINT(entry_name) PARM('parm')

ASNAME(proc_name)
Specifies the type of file system that is to be started. BPXPRMxx can contain
more than one FILESYSTYPE statement.

When SYSPLEX(YES) is specified, each FILESYSTYPE in use within the
participating shared HFS group must be defined for all systems participating in
shared HFS. The easiest way to accomplish this is by having a single
BPXPRMxx member that contains file system information for each system
participating in shared HFS. If you decide to define a BPXPRMxx for each
system, the FILESYSTYPE statements must be identical on each system. For
more information on shared HFS, see “Shared HFS in a Sysplex“ in OS/390
UNIX System Services Planning.

Note that any facilities required for a particular FILESYSTYPE must be initiated
on all systems participating in shared HFS. For example, NFS requires TCP/IP,
so if you specify an NFS FILESYSTYPE, you must also initialize TCP/IP on
NFS initialization.

The SETOMVS RESET command can be used to dynamically specify new
FILESYSTYPE statements. To make a permanent change, edit the BPXPRMxx
member used for IPLs. For more information, see “Dynamically Adding
FILESYSTYPE Statements in BPXPRMxx“ in OS/390 UNIX System Services
Planning.

The parameters are:

TYPE(type_name)
Specifies the name of the file system type that is to control the file system.

In the FILESYSTYPE statement, specify a name for the TYPE file system.
For example, you could use the following, or assign your own names:
v HFS for a hierarchical file system (HFS)
v TFS for a temporary file system (TFS)
v UDS for UNIX domain (AF_UNIX) sockets
v INET for network (AF_INET) sockets
v LINET for local (AF_INET) sockets
v CINET for common INET sockets

BPXPRMxx

84 Support Guide for APAR OW43776

v AUTOMNT for an automounted file system
v DFSC for accessing global namespace.
v NFS for accessing remote files.

For additional information, see FILESYSTYPE in OS/390 UNIX System
Services Planning.

TYPE is a required parameter. The name is 1 to 8 characters; the system
converts the name to uppercase.

ENTRYPOINT(entry_name)
Specifies the name of the load module containing the entry point into the
file system type.

ENTRYPOINT is a required parameter. The name is 1 to 8 characters; the
system converts the name to uppercase. Refer to the documentation for the
specific physical file system for valid entry point names.

PARM('parm')
Provides a parameter to be passed directly to the file system type. The
parameter format and content are specified by the file system type.

PARM is an optional parameter. The parameter is up to 1024 characters
long; the characters can be in uppercase, lowercase, or both. The
parameter must be enclosed in single quotes.

If the physical file system specified does not expect a PARM operand, it
ignores all PARM operands.

SYNCDEFAULT(t), VIRTUAL(max), FIXED(min) and NOWRITEPROTECT
are valid only when ENTRYPOINT is GFUAINIT.

Note: If a syntax error is found in any of these four parameters
(SYNCDEFAULT, VIRTUAL, FIXED, or NOWRITEPROTECT), an
error message is issued and all four parameters are set to the
default values.

SYNCDEFAULT(t)

t specifies the number of seconds used as a default for the sync
daemon interval. When the sync daemon is active, the meta data for
a file system is hardened. Setting t to 0 indicates that the file system
should harden meta data synchronously with syscall requests.

Sync interval values are rounded up to the next 30-second value.
For example, specifying 31 seconds results in a sync interval of 60
seconds.

The maximum value that can be specified for t is 65535. Values
between 65535 and 99999 are rejected.

A value of 99999 specifies that no sync daemon intervals are
specified, and thus, the meta data is not hardened.

Default: 60 seconds

VIRTUAL(max)

max specifies the maximum amount of virtual storage (in megabytes)
that HFS data and meta data buffers should use. The minimum
value that can be specified is 32M. If less than 32M is specified, an
informational message is issued and max is set to 32M. The
maximum limit can be changed dynamically by invoking the

BPXPRMxx

Chapter 4. APAR OW43776: OS/390 MVS Initialization and Tuning Reference 85

confighfs shell command. See OS/390 UNIX System Services
Command Reference for more information about the confighfs shell
command.

Note: HFS may temporarily exceed the limit set in max to avoid
failure of a file read or write request, but the amount of buffers
used is reduced to the max specification or less as soon as
possible.

If you do not specifically set a value for VIRTUAL(max), the system
assigns to max a default value which is equal to half the amount of
real storage available to the system at HFS initialization. (Note: The
sample BPXPRMxx parmlib member provided in SYS1.SAMPLIB
uses this default.) It is recommended that you consider how this
storage change will affect your current system storage usage.

Also, starting in R7, OS/390 uses more buffers. IBM recommends
that you monitor the paging of your system. If paging is increasing,
you might need to set a lower value on the VIRTUAL parameter to
relieve the situation.

Default: 50% of real storage available to the system at HFS
initialization time.

FIXED(min)

min specifies the amount of virtual storage (in megabytes) that is
fixed at HFS initialization time and remains fixed even if HFS activity
drops to zero. min must be less than or equal to VIRTUAL(max).

min cannot exceed 50% of real storage available to the system. If
the allowed amount of storage is exceeded, an informational
message is issued and min is set to 50% of real storage. The
minimum limit can be changed dynamically by invoking the
confighfs shell command. See OS/390 UNIX System Services
Command Reference for more information about the confighfs shell
command.

Default: 0

NOWRITEPROTECT

– This keyword overrides the WRITEPROTECT function introduced
with OS/390 R7 (DFSMS 1.5). When NOWRITEPROTECT is
specified, the file system is not protected from being read/write
mounted by multiple systems simultaneously. Read/write mounting by
multiple systems corrupts the file system.

Extreme care should be taken when specifying this keyword. It
should only be used when there is no possibility of the file system
being mounted by multiple systems.

Use of the NOWRITEPROTECT keyword avoids an additional file
system read operation that is required at Sync time to support the
WRITEPROTECT function.

– Default: WRITEPROTECT

ASNAME(proc_name)
Specifies the name of a procedure in SYS1.PROCLIB that is to be used to
start the address space that is initialized by the physical file system (PFS).
Specify ASNAME for any PFS that does not run in the kernel address
space. The name you specify is also used for the name of the address
space.

BPXPRMxx

86 Support Guide for APAR OW43776

ASNAME is an optional parameter. The name is 1 to 8 characters; the
system converts the name to uppercase. If you do not specify ASNAME, or
specify in ASNAME the name of the kernel address space, the PFS is
initialized in the kernel address space.

If the physical file system specified does not expect an ASNAME operand, it
ignores all ASNAME operands. Refer to the documentation for the specific
physical file system for valid ASNAME operands.

SYSPLEX(YES|NO)
For OS/390 UNIX System Services, the SYSPLEX statement specifies whether
a system should join the SYSBPX XCF group to share HFS resources across
the sysplex. If SYSPLEX(YES) is specified, the system participates in shared
HFS. If SYSPLEX(NO) is specified, the system does not participate in shared
HFS. If the SYSPLEX statement is not provided, the default is SYSPLEX(NO).
Also, to participate in shared HFS, the systems must be at R9 level or later. For
more information on shared HFS, see “Shared HFS in a Sysplex“ in OS/390
UNIX System Services Planning.

Note: You cannot adjust the SYSPLEX field dynamically. There is no
SETOMVS, SET OMVS, or SETOMVS RESET=(xx) capability. To
change the value of SYSPLEX, you must re-IPL the system.

Default: NO

VERSION('nnnn')
The VERSION statement applies only to systems that are exploiting shared
HFS. VERSION allows multiple releases and service levels of the binaries to
coexist and participate in shared HFS. A directory with the value nnnn specified
on VERSION is dynamically created at system initialization under the sysplex
root and is used as a mount point for the version HFS. This directory, however,
is only dynamically created if the sysplex root HFS is mounted read/write.

Note: nnnn is a case-sensitive character string no greater than 8 characters in
length. It indicates a specific instance of the version HFS. The most
appropriate values for nnnn are the name of the target zone, &SYSR1,
or another qualifier meaningful to the system programmer. For example,
if the system is at V2R9, you can specify REL9 for VERSION.

When SYSPLEX(YES) is specified, you must also specify the VERSION
parameter.

The VERSION value is substituted in the content of symbolic links that contain
$VERSION. For scenarios describing the use of the version HFS, see “Shared
HFS in a Sysplex“ in OS/390 UNIX System Services Planning.

When testing or changing to a new Maintenance Level (PTF), the VERSION
value can be changed dynamically by using the SETOMVS command:
SETOMVS VERSION='string'

You can also change the settings of this parameter via SET OMVS=(xx) and
SETOMVS RESET=(xx) parmlib specifications.

Note: We do not recommend changing VERSION dynamically if you have any
users logged on or running applications; replacing the system files for
these users may be disruptive.

BPXPRMxx

Chapter 4. APAR OW43776: OS/390 MVS Initialization and Tuning Reference 87

ROOT FILESYSTEM('fsname') DDNAME(ddname) TYPE(type_name)
MODE(access) PARM('parameter') SETUID|NOSETUID

AUTOMOVE|NOAUTOMOVESYSNAME(sysname)
Specifies a file system that OS/390 UNIX is to logically mount as the root file
system.

Note: The ROOT statement is optional. If not specified, a TFS file system is
mounted as the root.

To change the value of the ROOT statement without having to re-IPL, you can
use the TSO/E MOUNT and UNMOUNT commands.

The root file system can be unmounted using the TSO/E UNMOUNT command
or ISHELL. Ensure that you specify the IMMEDIATE option.

The parameters are:

FILESYSTEM('fsname')
The name of the root file system. The name must be unique in the system.

Either FILESYSTEM or DDNAME is required; do not specify both. The
name is 1 to 44 characters; the characters can be in uppercase, lowercase,
or both. The name must be enclosed in single quotes. An HFS dataset
name must conform to the rules of MVS dataset names.

DDNAME(ddname)
The ddname on the JCL DD statement that defines the root file system. To
use the DDNAME parameter, a DD statement for the HFS dataset
containing the root file system should be placed in the OS/390 UNIX
cataloged procedure.

Either FILESYSTEM or DDNAME is required; do not specify both. The
ddname is 1 to 8 characters; the system converts the ddname to
uppercase.

TYPE(type_name)
Specifies the name of a file system type identified in a FILESYSTYPE
statement. The TYPE(type_name) parameter must be the same as the
TYPE(type_name) parameter on a FILESYSTYPE statement.

TYPE is a required parameter. The name is 1 to 8 characters; the system
converts the name to uppercase.

MODE(access)
Specifies access to the root file system by all users:
v READ: Users can only read the root file system.
v RDWR: Users can read and write in the root file system.

Default: RDWR

PARM('parameter')
Provides a parameter to be passed directly to the file system type. The
parameter format and content are specified by the file system type.

PARM is an optional parameter. The parameter is up to 1024 characters
long; the characters can be in uppercase, lowercase, or both. The
parameter must be enclosed in single quotes.

BPXPRMxx

88 Support Guide for APAR OW43776

If the physical file system specified does not expect a PARM operand, it
ignores all PARM operands. Refer to the documentation for the specific
physical file system for valid entry point names.

SYNC(t), VIRTUAL(max), FIXED(min) and NOWRITEPROTECT are valid
only when ENTRYPOINT is GFUAINIT.

Note: If a syntax error is found in any of these parameters (SYNC,
VIRTUAL, FIXED, or NOWRITEPROTECT), an error message is
issued and all four parameters are set to the default values.

SYNC(t)

t specifies the number of seconds used as a default for the sync
daemon interval. When the sync daemon is active, the meta data for
a file system is hardened. Setting t to 0 indicates that the file system
should harden meta data synchronously with syscall requests.

Sync interval values are rounded up to the next 30-second value.
For example, specifying 31 seconds results in a sync interval of 60
seconds.

The maximum value that can be specified for t is 65535. Values
between 65535 and 99999 are rejected.

A value of 99999 specifies that no sync daemon intervals are
specified, and thus, the meta data is not hardened.

Default: 60 seconds

VIRTUAL(max)

max specifies the maximum amount of virtual storage (in megabytes)
that HFS data and meta data buffers should use. The minimum
value that can be specified is 32M. If less than 32M is specified, an
informational message is issued and max is set to 32M. The
maximum limit can be changed dynamically by invoking the
confighfs shell command. See OS/390 UNIX System Services
Command Reference for more information about the confighfs shell
command.

Note: HFS may temporarily exceed the limit set in max to avoid
failure of a file read or write request, but the amount of buffers
used is reduced to the max specification or less as soon as
possible.

If you do not specifically set a value for VIRTUAL(max), the system
assigns to max a default value which is equal to half the amount of
real storage available to the system at HFS initialization. (Note: The
sample BPXPRMxx parmlib member provided in SYS1.SAMPLIB
uses this default.) It is recommended that you consider how this
storage change will affect your current system storage usage.

Also, starting in R7, OS/390 uses more buffers. IBM recommends
that you monitor the paging of your system. If paging is increasing,
you might need to set a lower value on the VIRTUAL parameter to
relieve the situation.

Default: 50% of real storage available to the system at HFS
initialization time.

FIXED(min)

min specifies the amount of virtual storage (in megabytes) that is
fixed at HFS initialization time and remains fixed even if HFS activity
drops to zero. min must be less than or equal to VIRTUAL(max).

BPXPRMxx

Chapter 4. APAR OW43776: OS/390 MVS Initialization and Tuning Reference 89

min cannot exceed 50% of real storage available to the system. If
the allowed amount of storage is exceeded, an informational
message is issued and min is set to 50% of real storage. The
minimum limit can be changed dynamically by invoking the
confighfs shell command. See OS/390 UNIX System Services
Command Reference for more information about the confighfs shell
command.

Default: 0

NOWRITEPROTECT

– This keyword overrides the WRITEPROTECT function. When
NOWRITEPROTECT is specified, the file system is not protected
from being read/write mounted by multiple systems simultaneously.
Read/write mounting by multiple systems corrupts the file system.

Extreme care should be taken when specifying this keyword. It
should only be used when there is no possibility of the file system
being mounted by multiple systems.

Use of the NOWRITEPROTECT keyword avoids an additional file
system read operation that is required at Sync time to support the
WRITEPROTECT function.

– Default: WRITEPROTECT

SETUID|NOSETUID
SETUID specifies that the setuid() and setgid() mode bit on an executable
file will be supported.

NOSETUID specifies that the setuid() and setgid() mode bit on an
executable file will not be supported. The UID or GID will not be changed
when the program is executed and the APF and Program Control extended
attributes are not honored. The entire HFS is uncontrolled.

Default: SETUID

AUTOMOVE|NOAUTOMOVE
For a description, see AUTOMOVE|NOAUTOMOVE on the MOUNT
statement. In OS/390 R9 and later, to ensure that the root is always
available, use the default.

Default: AUTOMOVE

SYSNAME(sysname)
For a description, see SYSNAME on the MOUNT statement. In OS/390 R9
and later, to ensure that the root is always available, use the default.

Default: The name of the system the command is processed on.

MOUNT FILESYSTEM('fsname') DDNAME(ddname) TYPE(type_name)
MOUNTPOINT('pathname') MODE(access) PARM('parameter')

SETUID|NOSETUID WAIT|NOWAIT SECURITY|NOSECURITY

AUTOMOVE|NOAUTOMOVESYSNAME(sysname)
Specifies a file system that OS/390 UNIX is to logically mount onto the root file
system or another file system.

Mount statements are processed in the sequence in which they appear. If they
are cascading, the system will mount the first file system first. Make sure that a

BPXPRMxx

90 Support Guide for APAR OW43776

mount point exists before the file system is mounted. If you mount a file system
over an existing directory containing files, you will cover up the existing files.

If a MOUNT statement uses a DDNAME parameter to identify the HFS data set,
allocate that HFS data set in the OMVS cataloged procedure. See “Customizing
the OMVS Cataloged Procedure to Run the Kernel Initialization Program“ in
OS/390 UNIX System Services Planning.

The MOUNT statement is optional; the BPXPRMxx member can contain one or
more MOUNT statements.

The MOUNT parameters are:

FILESYSTEM('fsname')
The name of the file system. The name must be unique in the system.

Either FILESYSTEM or DDNAME is required; do not specify both. The
name is 1 to 44 characters; the characters can be in uppercase, lowercase,
or both. The name must be enclosed in single quotes. An HFS dataset
name must conform to the rules of MVS dataset names.

DDNAME(ddname)
The ddname on the JCL DD statement that defines the file system. To use
the DDNAME parameter, a DD statement for the HFS dataset containing
the mountable file system should be placed in the OMVS cataloged
procedure.

Either FILESYSTEM or DDNAME is required; do not specify both. The
name is 1 to 8 characters; the system converts the ddname to uppercase.

TYPE(type_name)
Specifies the name of a file system type identified in a FILESYSTYPE
statement. The TYPE(type_name) parameter must be the same as the
TYPE(type_name) parameter on a FILESYSTYPE statement.

TYPE is a required parameter. The name is 1 to 8 characters; the system
converts the name to uppercase.

MOUNTPOINT('pathname')
Specifies the pathname of the directory onto which the file system is to be
mounted.

Mount point restrictions are:

v The mount point must be a directory.

v Any files in the directory are not accessible while the file system is
mounted.

v Only one mount can be active at any time for a mount point.

v A file system can be mounted at only one directory at any time.

MOUNTPOINT is required. The pathname is up to 1023 characters long;
the characters can be in uppercase, lowercase, or both. The pathname
must be enclosed in single quotes.

MODE(access)
Specifies access to the mounted file system by all users:
v READ: Users can only read the file system being mounted.
v RDWR: Users can read and write in the file system being mounted.

BPXPRMxx

Chapter 4. APAR OW43776: OS/390 MVS Initialization and Tuning Reference 91

Default: RDWR

PARM('parameter')
Provides a parameter to be passed directly to the file system type. The
parameter format and content are specified by the file system type.

PARM is an optional parameter. The parameter is up to 1024 characters
long; the characters can be in uppercase, lowercase, or both. The
parameter must be enclosed in single quotes.

If the physical file system specified does not expect a PARM operand, it
ignores all PARM operands. Refer to the documentation for the specific
physical file system for valid entry point names.

SYNC(t), VIRTUAL(max), FIXED(min) and NOWRITEPROTECT are valid
only when ENTRYPOINT is GFUAINIT.

Note: If a syntax error is found in any of these parameters (SYNC,
VIRTUAL, FIXED, or NOWRITEPROTECT), an error message is
issued and all four parameters are set to the default values.

SYNC(t)

t specifies the number of seconds used as a default for the sync
daemon interval. When the sync daemon is active, the meta data for
a file system is hardened. Setting t to 0 indicates that the file system
should harden meta data synchronously with syscall requests.

Sync interval values are rounded up to the next 30-second value.
For example, specifying 31 seconds results in a sync interval of 60
seconds.

The maximum value that can be specified for t is 65535. Values
between 65535 and 99999 are rejected.

A value of 99999 specifies that no sync daemon intervals are
specified, and thus, the meta data is not hardened.

Default: 60 seconds

VIRTUAL(max)

max specifies the maximum amount of virtual storage (in megabytes)
that HFS data and meta data buffers should use. The minimum
value that can be specified is 32M. If less than 32M is specified, an
informational message is issued and max is set to 32M. The
maximum limit can be changed dynamically by invoking the
confighfs shell command. See OS/390 UNIX System Services
Command Reference for more information about the confighfs shell
command.

Note: HFS may temporarily exceed the limit set in max to avoid
failure of a file read or write request, but the amount of buffers
used is reduced to the max specification or less as soon as
possible.

If you do not specifically set a value for VIRTUAL(max), the system
assigns to max a default value which is equal to half the amount of
real storage available to the system at HFS initialization. (Note: The
sample BPXPRMxx parmlib member provided in SYS1.SAMPLIB
uses this default.) It is recommended that you consider how this
storage change will affect your current system storage usage.

BPXPRMxx

92 Support Guide for APAR OW43776

Also, starting in R7, OS/390 uses more buffers. IBM recommends
that you monitor the paging of your system. If paging is increasing,
you might need to set a lower value on the VIRTUAL parameter to
relieve the situation.

Default: 50% of real storage available to the system at HFS
initialization time.

FIXED(min)

min specifies the amount of virtual storage (in megabytes) that is
fixed at HFS initialization time and remains fixed even if HFS activity
drops to zero. min must be less than or equal to VIRTUAL(max).

min cannot exceed 50% of real storage available to the system. If
the allowed amount of storage is exceeded, an informational
message is issued and min is set to 50% of real storage. The
minimum limit can be changed dynamically by invoking the
confighfs shell command. See OS/390 UNIX System Services
Command Reference for more information about the confighfs shell
command.

Default: 0

NOWRITEPROTECT

– This keyword overrides the WRITEPROTECT function. When
NOWRITEPROTECT is specified, the file system is not protected
from being read/write mounted by multiple systems simultaneously.
Read/write mounting by multiple systems corrupts the file system.

Extreme care should be taken when specifying this keyword. It
should only be used when there is no possibility of the file system
being mounted by multiple systems.

Use of the NOWRITEPROTECT keyword avoids an additional file
system read operation that is required at Sync time to support the
WRITEPROTECT function.

– Default: WRITEPROTECT

SETUID|NOSETUID
SETUID specifies that the setuid() and setgid() mode bit on an executable
file will be supported.

NOSETUID specifies that the setuid() and setgid() mode bit on an
executable file will not be supported. The UID or GID will not be changed
when the program is executed and the APF and Program Control extended
attributes are not honored. The entire HFS is uncontrolled.

Default: SETUID

WAIT|NOWAIT
WAIT specifies that processing should not continue during an asynchronous
mount.

NOWAIT specifies that processing should continue during an asynchronous
mount.

Default: WAIT

SECURITY|NOSECURITY
SECURITY specifies that security checks should be performed.

NOSECURITY specifies that security checks should not be performed.

BPXPRMxx

Chapter 4. APAR OW43776: OS/390 MVS Initialization and Tuning Reference 93

Default: SECURITY

AUTOMOVE|NOAUTOMOVE
The AUTOMOVE|NOAUTOMOVE parameters apply only in a sysplex where
systems are participating in shared HFS. The AUTOMOVE and
NOAUTOMOVE parameters indicate what happens if the system that owns
a file system goes down. AUTOMOVE indicates that ownership of the file
system automatically changes to another system participating in shared
HFS. NOAUTOMOVE indicates that ownership of the file system is not
moved if the owning system goes down; as a result, the file system
becomes inaccessible.

For file systems that are mostly used by DFS clients, consider specifying
NOAUTOMOVE on the MOUNT statement. By doing so, the file systems
will not change ownership if the system is suddenly recycled, and they will
be available for automatic re-export by DFS. This is recommended because
a file system can only be exported by the DFS server at the system that
owns the file system. Once a file system has been exported by DFS, it
cannot be moved until it has been unexported from DFS. When recovering
from system outages, you need to weigh sysplex availability against
availability to the DFS clients. When an owning system recycles and a
DFS-exported file system has been taken over by one of the other systems,
DFS cannot automatically re-export that file system. The file system will
have to be moved from its current owner back to the original DFS system—
the one that has just been recycled— and then exported again.

Default: AUTOMOVE

SYSNAME(sysname)
For systems participating in shared HFS, SYSNAME specifies the particular
system on which a mount should be performed. This system will then
become the owner of the file system mounted. This system must be IPLed
with SYSPLEX(YES).

Default: The name of the system, if IPLed with SYSPLEX(YES), that the
mount is processed on.

Note: In OS/390 R9 and later, to ensure that the root is always available,
use the defaults for SYSNAME and AUTOMOVE.

For additional information, see MOUNT in OS/390 UNIX System Services
Planning.

NETWORK DOMAINNAME(sockets_domain_name)
DOMAINNUMBER(sockets_domain_number) MAXSOCKETS(number)
TYPE(type_name) INADDRANYPORT(starting_port_number)

INADDRANYCOUNT(number_of_ports_to_reserve)
Specifies that a socket physical file system domain should be readied for use.
The UDS matches the TYPE on the previous FILESYSTYPE statement.

Use the SETOMVS RESET command to dynamically change the NETWORK
values. To make a permanent change, edit the BPXPRMxx member used for
IPLs. For more information, see “Dynamically Adding FILESYSTYPE
Statements in BPXPRMxx“ in OS/390 UNIX System Services Planning.

Provide a NETWORK statement for each socket file system domain to be
initialized.

BPXPRMxx

94 Support Guide for APAR OW43776

v For AF_UNIX file systems, always include a FILESYSTYPE statement
specifying ENTRYPOINT(BPXTUINT) and a NETWORK statement with a
matching TYPE, usually TYPE(UDS), on both.

v For TCP/IP sockets, always include a FILESYSTYPE statement specifying
ENTRYPOINT(EZBPFINI) and a NETWORK statement with a matching
TYPE, usually TYPE(INET), on both.

v For CINET sockets, include a FILESYSTYPE statement with ENTRYPOINT
(BPXCTCINT) and a NETWORK statement with a matching TYPE, usually
TYPE(CNET), that specifies INADDRANYPORT and INADDRANYCOUNT.
See “Specifying INADDRANYPORT and INADDRANYCOUNT“ in OS/390
UNIX System Services Planning for more information.

DOMAINNAME(sockets_domain_name)
The 1 to 16 character name by which this socket file system domain is to
be known.

DOMAINNUMBER(sockets_domain_number)
A number that matches the value defined for this domain name. The
currently supported values for this field are:
1 AF_UNIX
2 AF_INET

The following table shows some supported domain names, domain
numbers, and their associated entry point names. See the documentation
for the physical file system you are using to get the correct entry point
name.

Table 5. Supported Domains

Domain name Domain number Entry point

AF_UNIX 1 BPXTUINT

AF_INET 2 EZBPFINI, BPXTCINT,
BPXTLINT

MAXSOCKETS(nnnnn)
Specifies the maximum number of sockets supported by this file system.
You can specify a value from 0 to 64498. This is an optional parameter. The
maximum value that this field can have is defined by each domain. If a
value larger than the maximum is specified, an informational message is
issued and the value used is the maximum. If this parameter is omitted, a
default value of 100 is used.

Note: Ensure that this number is large enough for socket connections for
all applications using your OS/390 UNIX environment. This upper
limit is set when the NETWORK statement is processed during IPL.
It can only be changed if the NETWORK statement is changed using
the SETOMVS RESET command, and the physical filesystem named
in the FILESYSTYPE statement associated with that NETWORK
statement (such as TCP/IP) can be stopped and restarted.

TYPE(type_name)
Specifies the name of a file system type identified in a FILESYSTYPE
statement. The TYPE(type_name) must be the same as the
TYPE(type_name) parameter on a FILESYSTYPE statement.

TYPE is a required parameter. The name is 1 to 8 characters; the system
converts the name to uppercase.

BPXPRMxx

Chapter 4. APAR OW43776: OS/390 MVS Initialization and Tuning Reference 95

INADDRANYPORT(starting_port_number)
Specifies the starting port number for the range of port numbers that the
system reserves for use with PORT 0, INADDR_ANY binds. This value is
only needed for CINET.

Value Range: starting_port_number is a decimal value from 1024 to 65535.
Ports 1 — 1023 are well-known ports that cannot be reserved for use with
PORT 0, INADDR_ANY binds.

Default: If neither INADDRANYPORT or INADDRANYCOUNT is specified,
the default for INADDRANYPORT is 63000. Otherwise, no ports are
reserved (0).

Note: If you do not want to support INADDRANY with CINET, you should
specify INADDRANYPORT(xx), where xx is a valid value, without
specifying INADDRANYCOUNT.

INADDRANYCOUNT(number_of_ports_to_reserve)
Specifies the number of ports that the system reserves, starting with the
port number specified in the INADDRANYPORT parameter. This value is
only needed for CINET.

Value Range: number_of_ports_to_reserve is a decimal value from 1 to
4000.

Default: If neither INADDRANYPORT or INADDRANYCOUNT is specified,
the default for INADDRANYCOUNT is 1000. Otherwise, no ports are
reserved (0).

SUBFILESYSTYPE NAME(transport_name) TYPE(type_name)

ENTRYPOINT(entry_name) PARM('parameter') DEFAULT
Specifies an AF_INET physical file system that is to run underneath the INET
socket file system. TCPIP and TCPIP2 are the names that TCP/IP uses to
identify itself during its initialization, and CINET matches the TYPE operand on
the previous FILESYSTYPE and NETWORK statements. In the case of TCP/IP,
the NAME() value is the procname. The system attaches the EZBPFINI load
module during initialization, and this file system should be used as the default
INET physical file system.

The SUBFILESYSTYPE statement is associated with its corresponding
FILESYSTYPE and NETWORK statements by matching the value specified in
the TYPE operand.

The value specified on all of the TYPE operands must match, but can be any 1-
to 8-character value. The value specified on the NAME parameter on the
SUBFILESYSTYPE statement is the name that will be used by the physical file
system when it is initialized.

For SecureWay Communications Server, the SUBFILESYSTYPE statement
must match the TCPIPJOBNAME of that stack. See “Customizing the File
System Statements on the BPXPRMxx Member“ in OS/390 UNIX System
Services Planning for more details.

BPXPRMxx

96 Support Guide for APAR OW43776

New SUBFILESYSTYPE statements can be added dynamically. However, you
cannot dynamically change (or delete) a value. For more information, see
“Dynamically Adding FILESYSTYPE Statements in BPXPRMxx“ in OS/390
UNIX System Services Planning.

The parameters are:

NAME(transport_name)
Specifies the name that identifies this file system to the CINET physical file
system.

NAME is a required parameter. The name is 1 to 8 characters; the system
converts the name to uppercase. The value specified by the NAME
parameter on the SUBFILESYSTYPE statement is the name that the
physical file system uses to identify itself when it is initialized. For example,
for TCP/IP, this is the starting procedure name.

TYPE(type_name)
Specifies the name of the CINET file system type identified in a
FILESYSTYPE statement. The TYPE(type_name) parameter must be the
same name that was used for the TYPE(type_name) parameter on the
FILESYSTYPE statement for the CINET physical file system.

TYPE is a required parameter. The name is 1 to 8 characters; the system
converts the name to uppercase.

ENTRYPOINT(entry_name)
Specifies the name of the load module containing the entry point into the
file system type.

ENTRYPOINT is a required parameter. The name is 1 to 8 characters; the
system converts the name to uppercase.

PARM('parameter')
Provides a parameter to be passed to the transport driver. The parameter
format and content are specified by the file system receiving the data.

PARM is an optional parameter. The parameter is up to 1024 characters
long; the characters can be in uppercase, lowercase, or both. If the
characters are not all in uppercase, the parameter must be enclosed in
single quotes.

If the physical file system specified does not expect a PARM operand, it
ignores all PARM operands. Refer to the documentation for the specific
physical file system for valid entry point names.

DEFAULT
Identifies this file system as the default CINET file system.

DEFAULT is an optional parameter. If it is not specified, the file system
specified in the first SUBFILESYSTYPE statement found in the parmlib
member is designated as the default. See “Setting Up for CINET AF_INET
Sockets” in OS/390 UNIX System Services Planning for more information
about the use of the DEFAULT parameter.

For additional information, see SUBFILESYSTYPE in OS/390 UNIX System
Services Planning.

BPXPRMxx

Chapter 4. APAR OW43776: OS/390 MVS Initialization and Tuning Reference 97

STARTUP_PROC
This statement specifies a 1-to-8-character name of a started JCL procedure
that initializes the kernel. The name specified in this statement must exist on
the system before IPL or errors will occur.

Using a started procedure other than OMVS is strongly discouraged. If you
want to change the value of STARTUP_PROC, you will have to edit the
BPXPRMxx member and then re-IPL. You cannot use the SET OMVS or
SETOMVS command to change the value.

If you decide to use a started procedure other than OMVS:

v The replacement started procedure must also be a single jobstep procedure
that invokes the BPXINIT program (EXEC PGM=BPXINIT). If it invokes any
other program, the OMVS initialization will fail.

v Change the procedure name in the RACF started procedures table or the
definitions in the STARTED Class. See “Preparing the RACF Security
Program“ in OS/390 UNIX System Services Planning.

Note: Renaming OMVS to some other value may affect the setup of other
products such as TCP/IP.

Default: STARTUP_PROC(OMVS).

STARTUP_EXEC
STARTUP_EXEC names a REXX exec that does application environment
initialization for OS/390 UNIX. This statement is optional; if it is specified, the
BPXOINIT process will not run /etc/init. The startup exec is typically used by an
installation that does not have an HFS, but is using a TFS for a file system. It
can be used to populate the TFS with any directories and files that are needed.
It is specified as:
STARTUP_EXEC('Dsname(Memname)',SysoutClass)

where:
v Dsname is a 1-to-44-character valid dataset name.
v Memname is a 1-to-8-character valid REXX exec member.
v SysoutClass is 1 character and is alphanumeric and specifies the sysout

class that the REXX exec will run under. Specifying SysoutClass is optional.

If you want to change the value of STARTUP_EXEC, you will have to edit the
BPXPRMxx member and then reIPL. You cannot use the SET OMVS or
SETOMVS command to change the value.

Default: There is no default value for STARTUP_EXEC.

RUNOPTS('string')
Specifies the _CEE_RUNOPTS environment variable used when OS/390 UNIX
initialization invokes /etc/init or /usr/sbin/init. This string provides runtime
options to Language Environment programs in environments where these
options are not available from other sources. OS/390 UNIX passes the
_CEE_RUNOPTS value and all programs invoked from /etc/rc to the shell.

If you want to change the value of RUNOPTS, you will have to edit the
BPXPRMxx member and then re-IPL. You cannot use the SET OMVS or
SETOMVS command to change the value. After the value is specified in
BPXPRMxx, you can use one of the following methods to change this string:

v The system is re-IPLed with a new BPXPRMxx RUNOPTS string.

BPXPRMxx

98 Support Guide for APAR OW43776

v The user or installation sets _CEE_RUNOPTS in /etc/rc or /etc/init.config.

v A program or shell script sets _CEE_RUNOPTS.

If you do not specify a value for RUNOPTS, the RUNOPTS string or
_CEE_RUNOPTS environment variable is not provided.

The TSO/E OMVS command uses the specified options as the Language
Environment run-time options, by default.

The setting of RUNOPTS has no effect on BPXBATCH jobs.

If RTLS will be used to access the Language Environment run-time library,
RUNOPTS should specify the RTLS(ON), LIBRARY, and, optionally, VERSION
run-time options. Use the RUNOPTS parameter only when using RTLS. Before
using RTLS, you must set up FACILITY profiles as documented in the
CSVRTLxx description.

Specifying the RUNOPTS parameter causes the kernel to set the
_CEE_RUNOPTS environment variable when starting /etc/init, or when the
TSO/E OMVS command is entered. This environment variable is normally
propagated to subsequent processes (such as /etc/init to /bin/sh to /etc/rc to
/bin/inetd to /bin/rlogind to /bin/sh for shell users).

To do this, you must make sure that any other steps in the flow (such as export
statements in /etc/rc) do not overwrite the value of _CEE_RUNOPTS. If
additional run-time options are needed, they should be concatenated to the old
value of _CEE_RUNOPTS.

Value Range: From 1 to 250 characters.

Default: No RUNOPTS string or _CEE_RUNOPTS environment variable is
provided.

Restrictions:

v The string must be enclosed in parentheses and quotes ('').

v An empty string (' ') is not valid.

v Although all characters are allowed, nulls, slashes (/), unbalanced SO/SI, and
unbalanced parentheses and quotes cause unpredictable problems in areas
such as the TSO/E OMVS command.

For more information on specifying RUNOPTS strings, see “Customizing the
BPXPRMxx Parmlib Member“ in OS/390 UNIX System Services Planning.

SYSCALL_COUNTS(YES/NO)
Specifies that syscall counts are to be accumulated in internal kernel data areas
so that the RMF data gatherer can record the information.

If you specify YES, the path length for the most frequently used OS/390 UNIX
system calls is increased by more than 150 instructions.

Default: NO

Use the SETOMVS or SET OMVS command to dynamically change the value
of SYSCALL_COUNT. To make a permenent change, edit the BPXPRMxx
member used for IPLs.

BPXPRMxx

Chapter 4. APAR OW43776: OS/390 MVS Initialization and Tuning Reference 99

MAXQUEUEDSIGS(nnnnnn)
Specifies the maximum number of signals that OS/390 UNIX allows to be
concurrently queued within a single process.

Value Range: nnnnnn is a decimal value from 1 to 100000.

Default: 1000

You can change the value of MAXQUEUEDSIGS dynamically using the
SETOMVS or SET OMVS command. To make a permanent change, edit the
BPXPRMxx member that will be used for future IPLs.

LIMMSG(NONE|SYSTEM|ALL)
Specifies how console messages that indicate when parmlib limits are reaching
critical levels are to be displayed:

NONE No console messages are to be displayed when any of the parmlib
limits have been reached.

SYSTEM
Console messages are to be displayed for all processes that reach
system limits. In addition, messages are to be displayed for each
process limit of a process if:
v The process limit or limits are defined in the OMVS segment of the

owning User ID
v The process limit or limits have been changed with a SETOMVS

PID=pid,process_limit

ALL Console messages are to be displayed for the system limits and for the
process limits, regardless of which process reaches a process limit.

Default: NONE

BPXPRMxx

100 Support Guide for APAR OW43776

|
|
|

||
|

|
|
|
|
|
|
|
|

||
|

|

Chapter 5. APAR OW43776: OS/390 MVS System Messages

BPX Messages

BPXI038I TASKprocname HAS ABNORMALLY
ENDED. text

Explanation: The OS/390 UNIX task abnormally
ended and cannot be recovered. The end of task exit
routine (ETXR) failed to reattach it after a preset
number of attempts.

text is one of the following:

MEMORY MAP PROCESSING IS SUSPENDED UNTIL

THE NEXT IPL
OS/390 UNIX memory map processing is being
suspended until the next IPL.

MODIFY BPXOINIT PROCESSING IS SUSPENDED
OS/390 UNIX MODIFY BPXOINIT console
commands are being suspended until the next IPL.

NETWORK DISPATCHER WORKLOAD BALANCING

IS SUSPENDED
The OS/390 UNIX Network Dispatcher workload
balancing function is being suspended until the next
IPL.

In the message text:

procname
The name of the OS/390 UNIX task that abnormally
ended

Source: OS/390 UNIX System Services kernel (BPX)

Module: BPXQETXR

System Action: The system continues.

Operator Response: None.

System Programmer Response: The identified
OS/390 UNIX task has ended. The function is
unavailable until the next IPL. The system should have
presented other information that identifies the cause of
the task failure.

BPXI039E SYSTEM LIMIT limitname HAS
REACHED nn% OF ITS CURRENT
CAPACITY OF currentlimit

Explanation: The specified OS/390 UNIX system limit
has reached a critical level.

In the message text:

limitname
The name of the OS/390 UNIX system limit

nn The percentage of the system limit that has been
reached

currentlimit
The current setting for the named system limit

Source: OS/390 UNIX System Services kernel (BPX)

Module: BPXMSLIM

System Action: No action is taken.

Operator Response: If the condition persists, contact
the system programmer.

System Programmer Response: If it is determined
that the limit is too restrictive, raise the specified limit
using the SETOMVS command.

BPXI040I PROCESS LIMIT limitname HAS
REACHED nn% OF ITS CURRENT
CAPACITY OF currentlimit FOR PID=pid
IN JOB jobname RUNNING IN
ADDRESS SPACE asid

Explanation: The specified OS/390 UNIX process limit
has reached a critical level.

In the message text:

limitname
The name of the OS/390 UNIX process limit

nn The percentage of the process limit that has been
reached

currentlimit
The current setting for the named process limit

pid The process ID of the process that encountered the
limit

jobname
The Jobname of the address space that
encountered the limit

asid
The address space ID of the address space that
encountered the limit

Source: OS/390 UNIX System Services kernel (BPX)

Module: BPXMSLIM

System Action: No action is taken.

Operator Response: If the condition persists, contact
the system programmer.

System Programmer Response: If it is determined
that the specified limit is too restrictive, raise it using the
SETOMVS command.

© Copyright IBM Corp. 1996, 2000 101

||
|
|

|
|

|

|
|

||
|

|
|

|

|

|

|
|

|
|
|

||
|
|
|
|

|
|

|

|
|

||
|

|
|

||
|

|
|
|

|
|
|

|

|

|

|
|

|
|
|

BPXI041I RESOURCE SHORTAGE FOR
limitnameHAS BEEN RELIEVED

Explanation: The resource shortage for limit limitname
has been relieved.

In the message text:

limitname
The name of the OS/390 UNIX system limit

Source: OS/390 UNIX System Services kernel (BPX)

Module: BPXSLIM

System Action: No action is taken.

BPXI042I RESOURCE SHORTAGE FOR limitname
FOR PID=pid HAS BEEN RELIEVED

Explanation: The resource shortage for limit limitname
for process pid has been relieved.

In the message text:

limitname
The name of the OS/390 UNIX process limit

pid The process ID of the process that encountered the
limit

Source: OS/390 UNIX System Services kernel (BPX)

Module: BPXMSLIM

System Action: No action is taken.

BPXO017I SETOMVS ERROR. LOWERING
limitname IS CURRENTLY NOT
ALLOWED. A WARNING MESSAGE
FOR THIS LIMIT IS OUTSTANDING.

Explanation: The system does not allow you to lower
a limit, limitname, for which there is an outstanding
warning message. For a description of the limit, refer to
the BPXPRMXX sample parmlib member.

limitname is one of the following

MAXPROCSYS
MAXUIDS
MAXPTYS
MAXMMAPAREA
MAXSHAREPAGES
IPCSMSGNIDS
IPCSEMNIDS
IPCSHMNIDS
IPCSHMSPAGES
SHRLIBRGNSIZE
SHRLIBMAXPAGES
IPCMSGQBYTES
IPCMSGQMNUM
IPCSHMMPAGES
INET MAXSOCKETS
UNIX MAXSOCKETS
MAXFILEPROC

MAXPROCUSER
MAXQUEUEDSIG
MAXTHREADS
MAXTHREADTASKS
IPCSHMNSEGS

:

Source: OS/390 UNIX System Services kernel (BPX)

Module: BPXOTASK, BPXMIMST

System Action: The system does not change the limit
value.

Operator Response: None.

System Programmer Response: To solve the
displayed problem, increase the limit value for the
specified resource.

BPXO029I LIMMSG CHANGED FROM oldvalue TO
newvalue

Explanation: The system-wide value for LIMMSG has
been changed. Warning messages will now be issued
using the new value.

In the message text:

oldvalue
The old value for LIMMSG

newvalue
The new value for LIMMSG

Source: OS/390 UNIX System Services kernel (BPX)

Module: BPXMU1

System Action: The LIMMSG value has been
changed successfully.

Operator Response: None.

System Programmer Response: None.

102 Support Guide for APAR OW43776

||
|

|
|

|

|
|

|

|

|

||
|

|
|

|

|
|

||
|

|

|

|

||
|
|
|

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|

|

|

|
|

|

|
|
|

||
|

|
|
|

|

|
|

|
|

|

|

|
|

|

|

Chapter 6. APAR OW43776: OS/390 MVS Routing and
Descriptor Codes

BPX Messages

Message Identifier Routing Code Descriptor Code
BPXB001E 1,10 3
BPXB002E 1 11
BPXB003I 2 4
BPXB004E 1 11
BPXB005I 2 4
BPXC001I 2 4
BPXF001I 2 4
BPXF002I 2 4
BPXF003I 2 4
BPXF004I 2,10 4
BPXF005I 2,10 4
BPXF006I 2 4
BPXF007I 2,10 4
BPXF008I 2,10 4
BPXF009I 2,10 4
BPXF010I 2,10 4
BPXF011I 2,10 4
BPXF012I 2,10 4
BPXF013I 2 4
BPXF014D 2 2
BPXF015I * 5
BPXF016I 2 4
BPXF017I 2 4
BPXF018I 2 4
BPXF019I 2 4
BPXF020I 2 11
BPXF021I 2 4
BPXF022I 2 4
BPXF023I 2,10 4
BPXF024I 2 4
BPXF025I 2 4
BPXF026I 2 4
BPXF027I 2 4
BPXF028I 2 4
BPXF029E 2 11
BPXF030I 2,10 4
BPXF031I 2,10 4
BPXF032D 2 2
BPXF033I 2,10 4
BPXF101E - 5
BPXF102E 2 5
BPXF103E 2 5
BPXF104E 2 5
BPXF105E 2 2
BPXF106E 2 2
BPXF107E 2 5
BPXF108E 2 5
BPXF110E 2 2

© Copyright IBM Corp. 1996, 2000 103

Message Identifier Routing Code Descriptor Code
BPXF111E 2 2
BPXF112W 2 2
BPXF113W 2 2
BPXF114E - 5
BPXF115E 2 5
BPXF116E - 5
BPXF117E 2 2
BPXF118W 2 2
BPXF119W 2 2
BPXF120E 2 5
BPXF121E 2 5
BPXF123E 2 2
BPXF124E 2 2
BPXF125E 2 2
BPXF126E 2 5
BPXF127E 2 5
BPXF128E 2 5
BPXF129E 2 5
BPXF130E 2 5
BPXF131E 2 5
BPXF132E 2 5
BPXF134E 2 2
BPXF135E 2 2
BPXF136E 2 5
BPXF137E 2 2
BPXF138E 2 2
BPXF139E 2 2
BPXF140E 2 2
BPXF141E 2 2
BPXF142E 2 2
BPXF143E 2 2
BPXF144I - -
BPXF145E 2 2
BPXF146E 2 2
BPXF147E 2 2
BPXF148E 2 2
BPXF150I 2 5
BPXF151I 2 5
BPXF152W 2 2
BPXF153W 2 2
BPXF154E 2 2
BPXF155E 2 2
BPXF156E 2 2
BPXF157E 2 2
BPXF158E 2 2
BPXF159E 2 5
BPXF160E 2 2
BPXF161I 2 2
BPXF162E 2 2
BPXF163E 2 2
BPXF164E 2 2
BPXF165E 2 2
BPXF166E 2 2
BPXF167E 2 2

104 Support Guide for APAR OW43776

Message Identifier Routing Code Descriptor Code
BPXF168E 2 2
BPXF169E 2 2
BPXF170E 2 2
BPXF171E 2 2
BPXF172E 2 2
BPXF173E 2 2
BPXF174E 2 2
BPXF175E 2 2
BPXF176E 2 2
BPXF201I 2,10 4
BPXF202I 2 4
BPXF203I 2 4
BPXF204I 2 4
BPXF205I 2 4
BPXF206I 2 4
BPXF207I 2 4
BPXF208I 2 4
BPXF209I 2 4
BPXF210I 2 4
BPXF211I 2,10 4
BPXF212I 2,10 4
BPXF213E 1, 2 3
BPXF214E 2 11
BPXF215E 2 11
BPXF216E 1, 2 3
BPXF217E 1, 2 3
BPXF218I 2 4
BPXI002I 2 4
BPXI003I 2 4
BPXI004I 2 4
BPXI005I 2 4
BPXI006I - 4
BPXI007I - 4
BPXI008I - 4
BPXI009I - 4
BPXI010I - 4
BPXI011I - 4
BPXI012I 2,10 4
BPXI013I 2,10 4
BPXI014I 2,10 4
BPXI015I 2 4
BPXI016I 2 4
BPXI017I 2 4
BPXI018I 2 4
BPXI019I 2 4
BPXI020I 2 4
BPXI021I 2 4
BPXI022I - 4
BPXI023I - 4
BPXI024I - 4
BPXI025I - 4
BPXI026I 2 4
BPXI027I 2 4
BPXI028E 1 11

Chapter 6. APAR OW43776: OS/390 MVS Routing and Descriptor Codes 105

Message Identifier Routing Code Descriptor Code
BPXI029I 1,2,10 12
BPXI030I 1,2,10 12
BPXI031E 1 1
BPXI032E 1,10 11
BPXI033E 1,10 11
BPXI034I 2 4
BPXI035E 1 11
BPXI038I 2 4
BPXI039E 1 11
BPXI040I 1 11
BPXI041I 2,10 4
BPXI042I 2,10 4
BPXM001I 11 6
BPXM002I 11 6
BPXM004I 11 6
BPXM006I 11 6
BPXM007I 11 6
BPXM008I 11 6
BPXM009I 11 6
BPXM010I 11 6
BPXM011I 11 6
BPXM012I 11 6
BPXM013I 11 6
BPXM014I 11 6
BPXM015I 11 6
BPXM016I 11 6
BPXM017I 11 6
BPXM018I 11 6
BPXM019I 11 6
BPXM020I 11 6
BPXM021E 2 5
BPXM022E 2 5
BPXM023I 2 4
BPXM024I 2 4
BPXM025I 2 4
BPXM026I 2 4
BPXM027I 2 4
BPXM028I 2 4
BPXM029I 2 4
BPXM030I 2 12
BPXM031I 2 12
BPXM032E 1,10 11
BPXM033I 2 12
BPXM036I 2 4
BPXM037I 2 4
BPXM038I 2 4
BPXM039I 2 4
BPXM040I 2 4
BPXM041I 2 4
BPXM042I 2 4
BPXM043I 2 4
BPXM047I 11 6
BPXN001I 2 4
BPXN002I 2 4

106 Support Guide for APAR OW43776

Message Identifier Routing Code Descriptor Code
BPXO001I # 5,8,9
BPXO002I # 5,8,9
BPXO003I # 5,8,9
BPXO006I 2 5
BPXO007I 2 5
BPXO008I 2 5
BPXO009I 2 5
BPXO012I 2 5
BPXO015I 2 5
BPXO016I 2 5
BPXO017I 2,10 4
BPXO024I 2 5
BPXO025I 2 5
BPXO026I 2 5
BPXO027I 2 5
BPXO028I 2 5
BPXO029I 2 4
BPXO030I 2 5
BPXO031I 2,10 4
BPXO032I 2 5
BPXO033I 2,10 4
BPXO034I 2 5
BPXO035I 2,10 4
BPXO036I 2 5
BPXO037E 2 5
BPXO038I 2 5
BPXO039I 2, 10 4
BPXO040I - 5,8,9
BPXO041I - 5,8,9
BPXO042I - 5,8,9
BPXO043I - 5,8,9
BPXO044I - 5,8,9
BPXO045I - 5,8,9
BPXO046I - 5,8,9
BPXO047I - 5,8,9
BPXO048I 2 5
BPXP001I 2 4
BPXP003E 1,10 11
BPXP004E 1,10 11
BPXP005I - 4
BPXP006E 1,10 11
BPXP007E 1,10 11
BPXP008E 1,10 11
BPXT001I 2,10 4
BPXU001I 2 4
BPXU002I 2 4
BPXU003I 2 4
BPXU004I 2 4
BPXU005I 2,10 4
BPXW0000I 2 2
BPXW0001I 2 2
BPXW0002I 2 2
BPXW0003I 2 2
BPXW0004I 2 2

Chapter 6. APAR OW43776: OS/390 MVS Routing and Descriptor Codes 107

|||

|||

Message Identifier Routing Code Descriptor Code

108 Support Guide for APAR OW43776

Part 3. Appendixes

© Copyright IBM Corp. 1996, 2000 109

110 Support Guide for APAR OW43776

Notices

This information was developed for products and services offered in the USA.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1996, 2000 111

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Mail Station P300
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

If you are viewing this information softcopy, the photographs and color illustrations
may not appear.

Programming Interface Information
This book is intended to help the customer plan for, customize, operate, manage,
and maintain an OS/390 system with OS/390 UNIX System Services (OS/390
UNIX).

This book primarily documents intended Programming Interfaces that allow the
customer to write programs that use OS/390 UNIX.

This book also documents information that is NOT intended to be used as
Programming Interfaces of OS/390 UNIX. This information is identified where it
occurs, either by an introductory statement to a chapter or section or by the
following marking:

NOT Programming Interface information

End of NOT Programming Interface information

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

AnyNet
CICS
CICS/ESA
DFSMS/MVS
DFSMSdfp
DFSMShsm
IBM
IMS
Language Environment
OS/390
RACF
RMF

112 Support Guide for APAR OW43776

VTAM

Lotus, Domino, and Lotus Go Webserver are trademarks of the Lotus Development
Corporation.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, and service names may be trademarks or service marks
of others:

DFS Transarc Corporation

Notices 113

114 Support Guide for APAR OW43776

Index

Special Characters
_CEE_RUNOPTS variable

when specifying RUNOPTS 99
/etc directory

putting USERIDALIASTABLE in 14

A
abend code

0F4 32
address space

canceling 18
region size 76

APAR
OW23748 37

ASID|A on DISPLAY command 45
ASNAME parameter in BPXPRMxx 86

B
BPXPRMLI parmlib member

keeping reconfigurable parameters in 24
BPXPRMxx parmlib member

changing, with setomvs 54
description 67
dynamically adding filetypes to 24
dynamically changing values of 21
switching to different members 23

BPXPRMxx sample job
migration template 3

bpxstop 20
BRL on DISPLAY command 46

C
cancel

processes 17
CANCEL command

stopping
processes 18

stopping address space 18
CAPS|C on DISPLAY command 46
CBC.SCBCCMP

putting into LPA 35
CEE.SCEERUN 36
commands

Interprocess Communication (IPC) 33
compiler load modules

putting into LPA 35
CTnBPXxx parmlib member

for tracing 26
CTRACE buffer size

increasing the 27
CTRACE parameter in BPXPRMxx 83
CTRACE statement

customizing in BPXPRMxx 9

D
DASD cache

performance 34
DCE

recovery 32
DDNAME parameter in BPXPRMxx 88, 91
DEFAULT parameter in BPXPRMxx 97
display

information about processes
ps shell command 27

status of the kernel 27
DISPLAY command 27

ASID|A operand 45
BRL operand 46
CAPS|C operand 46
FILE|F operand 46
LIMITS|L operand 46
OMVS operand 45
OPTIONS|O operand 46
PID operand 46
RESET operand 46
SUMMARY|S operand 45
U operand 45
VSERVER|V operand 46

DISPLAY OMVS command
BRL operand 4
displaying

current PFSes 24
LIMITS keyword 4

DOMAINNAME parameter in BPXPRMxx 95
DOMAINNUMBER parameter in BPXPRMxx 95
dump

how to take a 29
dynamic LPA 34

E
EDCRNLIB module 36
EDCRNLST module 36
ENTRYPOINT parameter in BPXPRMxx 85, 97
ESQA (extended system queue area)

controlling use of 40
events

tracing 26
EZBPFINI load module

in BPXPRMxx 96

F
failure

file system 32
file system type 32
kernel 32
system services 32

failure recovery 31
file descriptor not available message 10
file system

UID and GID, invalid 36

© Copyright IBM Corp. 1996, 2000 115

FILE|F on DISPLAY command 46
FILESYSTEM parameter in BPXPRMxx 88, 91
FILESYSTYPE parameter in BPXPRMxx 84
FILESYSTYPE statement

dynamically adding 24
FIXED parameter in PBXPRMxx 89, 93
FIXED parmeter in PBXPRMxx 86
FORKCOPY parameter in BPXPRMXX 82
FORKCOPY statement

customizing in BPXPRMxx 40

H
HFS (hierarchical file system)

link pack area (LPA) 37

I
IEFIB600 35
IEFUSI user exit 76
IEWBLINK 35
INADDRANYCOUNT parameter in BPXPRMxx 96
INADDRANYPORT parameter in BPXPRMxx 96
interface changes 3
Interprocess Communication (IPC)

managing 33
IPC (Interprocess Communication)

managing 33
IPCMSGNIDS

dynamically changing 23
IPCMSGNIDS parameter in BPXPRMxx 80
IPCMSGQBYTES parameter in BPXPRMxx 80
IPCMSGQMNUM parameter in BPXPRMxx 80
IPCSEMNIDS

dynamically changing 23
IPCSEMNIDS parameter in BPXPRMxx 81
IPCSEMNOPS parameter in BPXPRMxx 81
IPCSEMNSEMS parameter in BPXPRMxx 81
IPCSHMGPAGES

dynamically changing 23
IPCSHMMPAGES parameter in BPXPRMxx 81
IPCSHMNIDS

dynamically changing 23
IPCSHMNIDS parameter in BPXPRMxx 81
IPCSHMNSEGS parameter in BPXPRMxx 82
IPCSHMSPAGES parameter in BPXPRMxx 82
IPL

shutting down system first 19

J
JES2 maintenance

partial shutdown of OS/390 UNIX 20

K
kernel

failure 32
taking dump of a 29

kill shell command
stopping

processes 17

L
Language Environment

run-time library (SCEERUN)
putting in LNKLST 34
putting in the LNKLIST 35

run-time routines 34
LIMITS parameter value

DISPLAY OMVS command 28
LIMITS|L on DISPLAY command 46
LIMMSG parameter in BPXPRMxx 57, 100
LIMMSG statement

customizing in BPXPRMxx 9
link list (LNKLST) 34
Link Pack Area (LPA) 34
LNKLST (link list) 34
LPA (link pack area)

moving HFS executables into the 37
LPA (Link Pack Area)

c89 run-time routines 35
dynamic 34
inserting modules in 34
putting the run-time library in it 34

ls shell command
performance 36
reducing long response time 37

M
managing

system limits 38
MAXASSIZE parameter in BPXPRMxx 76
MAXASSIZE statement

customizing in BPXPRMxx 10
MAXCORESIZE parameter in BPXPRMxx 75
MAXCPUTIME parameter in BPXPRMxx 76
MAXCPUTIME statement

customizing in BPXPRMxx 10
MAXFILEPROC parameter in BPXPRMxx 73
MAXFILEPROC statement

customizing in BPXPRMxx 10
MAXFILESIZE parameter in BPXPRMxx 75
MAXMMAPAREA parameter in BPXPRMxx 77
MAXMMAPAREA statement

customizing in BPXPRMxx 10
MAXPROCSYS parameter in BPXPRMxx 72
MAXPROCSYS statement

customizing in BPXPRMxx 10, 40
dynamically changing 23

MAXPROCUSER parameter in BPXPRMxx 72
MAXPROCUSER statement

customizing in BPXPRMxx 11, 40
MAXPTYS parameter in BPXPRMxx 74
MAXPTYS statement

customizing in BPXPRMxx 11, 40
dynamically changing 23

MAXQUEUEDSIGS parameter in BPXPRMxx 100

116 Support Guide for APAR OW43776

MAXRTYS parameter in BPXPRMxx 74
MAXRTYS statement

customizing in BPXPRMxx 11, 40
dynamically changing 23

MAXSHAREPAGES parameter in BPXPRMxx 77
MAXSHAREPAGES statement

customizing in BPXPRMxx 40
MAXSOCKETS parameter

increasing value of 25
MAXSOCKETS parameter in BPXPRMxx 95
MAXSPACE

determining the value of 31
increasing the value of 31

MAXTHREADS statement
customizing in BPXPRMxx 12

MAXTHREADS statement in BPXPRMxx 74
MAXTHREADTASKS parameter in BPXPRMxx 73
MAXTHREADTASKS statement

customizing in BPXPRMxx 12
MAXUIDS parameter in BPXPRMxx 73
MAXUIDS statement

customizing in BPXPRMxx 12, 40
message

BPXF014D 32
MODE parameter in BPXPRMxx 88
MODIFY command 18

stopping
processes 17

modules
EDCRNLIB 36
EDCRNLST 36
IEFIB600 35
IEWBLINK 35

MOUNT parameter in BPXPRMxx 90
MOUNTPOINT parameter in BPXPRMxx 91
multiple sockets

activating for first time 25

N
NAME parameter in BPXPRMxx 97
NETWORK statement in BPXPRMxx 94
NOSECURITY parameter in BPXPRMxx 93
NOSETUID parameter in BPXPRMxx 90, 93
Notices 111
NOWAIT parameter in BPXPRMxx 93
NOWRITEPROTECT parameter in PBXPRMxx 86, 90,

93

O
OMVS parameter

TRACE command 27
OPEN_MAX variable 10
operation 17
operator commands

list of changes 4
OPTIONS|O on DISPLAY command 46

P
PARM parameter in BPXPRMxx 85, 88, 92, 97

parmlib member
BPXPRMLI 24
BPXPRMxx 67

partial shutdown
for JES2 maintenance 20

performance
DASD cache 34
ls shell command 36
OS/390 UNIX 33
parmlib limits 38
storage size 33

PID (process ID)
displaying 17

PID on DISPLAY command 46
PRIORITYGOAL parameter in BPXPRMxx 79
PRIORITYGOAL statement

customizing in BPXPRMxx 12
PRIORITYPG parameter in BPXPRMxx 78
PRIORITYPG statement

customizing in BPXPRMxx 12
problem determination

taking a dump 29
process

canceling 18
ID

displaying 17
stopping

with the CANCEL command 18
with the kill command 17

process activity
tuning 39

Program Management Binder 35
ps shell command

displaying processes with 27

R
RACF (Resource Access Control Facility)

GIDs, caching 36
UIDs, caching 36

recovery
DCE components 32
failure 31
file system 32
file system type 32
system services 32

region size 76
RESET on DISPLAY command 46
return code

EMVSPFSFILE 32
EMVSPFSPERM 32

ROOT parameter in BPXPRMxx 88
RTLS (Run-Time Library Services)

managing the run-time library with 35
using 35

run-time library
LPA, placing in

c89 35
putting in the LNKLST 34, 35
using RTLS 35
using STEPLIBs 35

Index 117

Run-Time Library Services (RTLS)
managing the run-time library with 35
using 35

S
sample job

BPXPRMxx
migration template 3

SCEELPA data set 34
SCEERUN

putting in the LNKLIST 34, 35
using RTLS 35
using STEPLIBs LNKLIST 35

SECURITY parameter in BPXPRMxx 93
sending

messages to users 19
SET OMVS command

dynamically changing values of BPXPRMxx parmlib
members 21

for a process 21
switching to different BPXPRMxx members

dynamically 23
SET OMVS RESET command

dynamically changing values of BPXPRMxx parmlib
members 21

for a process 21
SETOMVS command 54

dynamically changing values of BPXPRMxx parmlib
members 21

for a process 21
PID= keyword 4
syntax 54

SETOMVS RESET command
dynamically adding physical file systems to

BPXPRMxx 24
SETOMVS SYNTAXCHECK command 22
SETUID parameter in BPXPRMxx 90, 93
SHRLIBMAXPAGES parameter in BPXPRMxxx 78
SHRLIBREGSIZE parameter in BPXPRMxxx 78
shutdown

partial 20
planned 19

shutting down
partial, for JES2 maintenance 20
system before an IPL 19

single sockets
activating for first time 24

sockets
activating

multiple 25
single 24

STARTUP_EXEC parameter in BPXPRMxx 98
STARTUP_PROC parameter in BPXPRMxx 98
STEBLIBLIST parameter in BPXPRMxx 83
STEPLIB

using to manage the run-time library 35
STEPLIBLIST statement

customizing in BPXPRMxx 13
stopping

processes 17

stopping (continued)
thread 18

SUBFILESYSTYPE parameter in BPXPRMxx 96
SUMMARY|S on DISPLAY command 45
SUPERUSER parameter in BPXPRMXX 82
symbolic links

in a sysplex 64, 87
SYNC parameter in PBXPRMxx 89, 92
SYNCDEFAULT parmeter in PBXPRMxx 85
SYS1.LINKLIB 35
SYSOMVS parameter value

DISPLAY TRACE command 28
TRACE command 26

sysplex
BPXPRMxx SYSPLEX statement 87
BPXPRMxx VERSION statement 64, 87
SETOMVS AUTOMOVE paramater 56
SETOMVS FILESYS paramater 56
SETOMVS FILESYSTEM paramater 56
SETOMVS FROMSYS parameter 56
SETOMVS MOUNTPOINT parameter 56
SETOMVS SYSNAME parameter 63
XCF Group 87

system
shutting down before an IPL 19

system limits
defining 8
displaying status 28
managing 38

T
thread

canceling 18
TRACE command 26
tracing events 26
TTYGROUP parameter in BPXPRMxx 83
tuning

parmlib limits 38
process activity 39
processing 33

TYPE parameter in BPXPRMxx 84, 88, 91, 95, 97

U
U on DISPLAY command 45
user processes

taking dump of a 29
USERIDALIASTABLE parameter in BPXPRMxx 84
USERIDALIASTABLE statement

customizing in BPXPRMxx 14

V
VIRTUAL parameter in PBXPRMxx 89, 92
VIRTUAL parmeter in PBXPRMxx 85
VLF (virtual lookaside facility)

caching UIDs and GIDs 36
VSERVER|V on DISPLAY command 46

118 Support Guide for APAR OW43776

W
WAIT parameter in BPXPRMxx 93

wall command 19

Index 119

120 Support Guide for APAR OW43776

����

Program Number: 5647-A01

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

	Contents
	About This Guide
	Part 1. APAR OW43776: OS/390 UNIX System Services Library
	Chapter 1. APAR OW43776: OS/390 UNIX System ServicesPlanning
	Chapter 12. Summary of Interface Changes
	BPXPRMxx
	Operator Commands
	Chapter 14. Customizing OS/390 UNIX
	Customizing the BPXPRMxx Parmlib Members

	Chapter 23. Managing Operations
	Stopping Processes
	Terminating Threads with the MODIFY Command
	Shutting Down OS/390 UNIX
	Dynamically Changing the BPXPRMxx Parameter Values
	Tracing Events in OS/390 UNIX
	Displaying the Status of the Kernel
	Taking a Dump of the Kernel and User Processes
	Recovering from a Failure
	Managing Interprocess Communication (IPC)

	Chapter 29. Tuning Performance
	Adjusting Storage Size
	Using DASD Cache
	Improving Performance of Run-Time Routines
	Placing SCEERUN in the Link Pack Area
	Placing SCEERUN in the Link List
	Managing the Run-Time Library with RTLS
	Managing the Run-Time Library in STEPLIBs

	Improving Compiler Performance
	Putting Compiler Load Modules into LPA

	Caching RACF User and Group Information in VLF
	Checking the Owning UIDs and GIDs on Files
	Moving HFS Executables into the Link Pack Area
	Tuning Limits in Parmlib
	Monitoring Parmlib Limits
	Tuning Process Activity
	Controlling Use of ESQA
	nice(), setpriority(), and chpriority()

	Making Sure that the Sticky Bit for the OS/390 Shell Is On
	Improving the OS/390 Shell Performance
	Improving Performance on POSIX by Using Medium-Weight Processes
	Improving Performance of Security Checking
	OMVS Command and TSO/E Response Time

	Part 2. APAR OW43776: OS/390 MVS Library
	Chapter 2. APAR OW43776: OS/390 MVS System Commands
	Displaying OS/390 UNIX System Services Status
	SETOMVS Command
	Syntax
	Parameters

	Chapter 3. APAR OW43776: OS/390 MVS System CommandsSummary
	Display or D OMVS
	SETOMVS Command

	Chapter 4. APAR OW43776: OS/390 MVS Initialization andTuning Reference
	BPXPRMxx (OS/390 UNIX System Services Parameters)
	Syntax Rules for BPXPRMxx
	Syntax of BPXPRMxx
	Syntax Example of BPXPRMxx
	IBM-Supplied Default for BPXPRMxx
	Statements and Parameters for BPXPRMxx

	Chapter 5. APAR OW43776: OS/390 MVS System Messages
	BPX Messages

	Chapter 6. APAR OW43776: OS/390 MVS Routing andDescriptor Codes
	BPX Messages

	Part 3. Appendixes
	Notices
	Programming Interface Information
	Trademarks

	Index

