

z/OS MVS IPCS Customization (SA23-1383-00)
Topic: IPCS Installation Package
SubTopic: Customizing Data Privacy for Diagnostics

Customizing Data Privacy for Diagnostics
The Data Privacy for Diagnostics Analyzer provides the facilities to scan and identify
data within dumps that may be sensitive personal information (SPI). The Data Privacy
for Diagnostics Analyzer runs via batch jobs and utilizes the zFS file system to retain all
its required input, and as a repository for its reports. Required inputs include
dictionaries used to identify SPI. Reports can be generated to help a user understand
what caused pages to be flagged as containing sensitive data. Users will be able to
provide feedback by updating this information in the file system and running the
feedback analysis tool to improve the SPI data detection/analysis. SPI data detection
is achieved through the use of grammar tokens. An input token is a set of printable
characters that are separated by a delimiter of a space or non-printable character.
Tokens are then matched against built-in or custom identifiers to determine if they are
deemed as sensitive. Customization of the Data Privacy for Diagnostics Analyzer can
tailor which tokens are to be flagged as sensitive data or treated as non-sensitive
information.
In order to use the Analyzer, some initial set up must be performed. To help with this
set up, a sample batch job has been provided. The batch job will create and initialize
the file system, mount it to the desired mount point, and run an initialization shell
script. See 'SYS1.SAMPLIB(BLSDPJIN)' for instructions on how to modify the sample
batch job example to run it on a different system(s).
One consideration that should be given is to the access control for this file system.
Some of the sub-directories may contain sensitive data that has been extracted from
dumps, or data that has been ingested by your customization for dump analysis. This
data may be in reports, in files after feedback has been given and data has been
ingested. Therefore, you want to ensure that only intended personnel have access to
these folders. The sample JCL BLSDPJIN assigns the permission to the directory with
the MODE parameter on the MKDIR statement that defines the file system directory,
which defaults to (7,5,0). One option for you is to use FSACCESS to control user access
to this data. See Steps for restricting access to a zFS file system in "z/OS Security
Server RACF Security Administrator's Guide" for more information on using
FSACCESS to control access to file systems.
Once this initial set up is complete, a user will want to ensure that the new file system
is always mounted on the systems where the analysis will be run. The user may choose
to update the appropriate BPXPRMxx SYS1.PARMLIB members to ensure that the
mount processing occurs.

SubTopic: The Data Privacy for Diagnostics Analyzer File System

The Data Privacy for Diagnostics Analyzer File System

The set-up job BLSDPJIN performs the following steps:

 Creates the file system
 Formats the file system
 Creates the home directory
 Mounts the file system to the home directory
 Runs the initialization shell script (blsdpdp.sh note)

The file system has a required folder structure. The following describes these sub-
directories and their contents:
/<directory>/knowledgebase
This folder is used to store the ingested knowledge and user feedback.
/<directory>/knowledgebase/ingested/

This folder stores the ingested knowledge such as user provided directories and
regular expressions, and is populated by the INGEST function.

/<directory>/knowledgebase/feedback/
This folder stores the processed user feedback and is populated by the
FEEDBACK function.

/<directory>/configuration
This folder stores the configuration which is used for various operations carried out by
Data Privacy for Diagnostics Analyzer. This folder will contain the following
configuration files (which correspond to the ANALYZE, INGEST and EXTRACT modes of
operations).
/<directory>/configuration/analysis_config.json

This file contains configuration about the sensitivity analysis to be carried out on
dump. It allows customizing which built-in identifiers and ingested information
that should be used for analysis. It also allows you to customize which
combination of identifiers should be present together for data to be considered
sensitive. See the z/OS MVS IPCS User's Guide for additional information about
the analysis_config.json file including parameters and examples.

/<directory>/configuration/extract_config.json
This file contains configuration about identifiers which are to be extracted to a
file. It allows the user to display the current pattern or dictionary associated
with a built-in or customer identifier that is available for the ANALYZE function
in determining which data is to be marked as sensitive by the Analyzer. See the
z/OS MVS IPCS User's Guide for additional information about the
extract_config.json file including parameters and examples.

/<directory>/configuration/ingestion_config.json

This file contains configuration about user provided data to be ingested. The
ingested data is then available for use in future ANALYZE runs. See the z/OS
MVS IPCS User's Guide for additional information about the
ingestion_config.json file including parameters and examples.

/<directory>/reports
This folder is used to store reports generated by Data Privacy for Diagnostics Analyzer.
A subdirectory is created for each dump on which Data Privacy for Diagnostics
Analyzer ANALYZE processing is requested. The following folder structure is generated
for each dump:
/<directory>/reports/<dump-name-1>/

This folder stores reports from each invocation of ANALYZE.
/<directory>/reports/<dump-name-1>/<timestamp-of-Data Privacy for
Diagnostics Analyzer-ANALYZE-invocation>/

Stores reports of a single ANALYZE invocation. It contains the following files:
../concise_sensitive_report_<i>

This file is generated by each thread spawned by ANALYZE to process the
dump.

../sensitive_token_log_<i>
This file is generated by each thread spawned by ANALYZE to containing all of
the sensitive tokens identified in the dump. These files are generated by each
thread spawned by the ANALYZE function if the value of the SENSITIVE REPORT
field is Y on the IPCS ANALYZE panel or if the log_sensitive_tokens value is set
to TRUE in the BLSJDPA JCL that invokes the ANALYZE function.

../non_sensitive_tokens
This file contains all the non-sensitive tokens identified in the dump along with
their count. This file is generated when REPORT is requested after ANALYZE
that requested token level redaction. Token level redaction can be requested by
specifying the value N for the ALLOW PAGE LEVEL option on the ANALYZE IPCS
panel or by specifying the value 2 for the analysis_mode option in the BLSJDPA
JCL. This file can be modified to provide feedback about tokens which are
incorrectly marked as non-sensitive.

../sensitive_tokens
This file contains all the sensitive tokens identified in the dump along with

 their count. This file is generated when REPORT is requested. This file can
 be modified to provide feedback about tokens which are incorrectly marked
 as sensitive for a subsequent FEEDBACK run.

z/OS MVS IPCS User’s Guide (SA23-1384-00)
Topic: Using IPCS Functions
SubTopic: Using the IPCS Dialog
SubTopic: Using Data Privacy for Diagnostics

Data Privacy for Diagnostics Analyzer provides the capability to post process the
following dump types taken on a z15 or later processor:

 SVC
 Stand-alone
 SLIP
 SYSMDUMP (from V2.5)
 Transaction (from V2.5)

Post processing is used to redact pages that have been tagged as being sensitive by
the applications that created the pages, as well as untagged pages that will be scanned
and detected as containing sensitive data per the Data Privacy for Diagnostics
Analyzer, which requires a minimum of IBM 64-bit SDK for z/OS Java Technology
Edition version 8.0. This redacted version of the original dump is written to a new
dump data set without modifying the original dump data set. Retain both dumps for as
long as it takes to diagnose the reported problem.
Append Dump Directory records (BLSADDIR) are removed when generating a redacted
stand-alone dump.
Additional processing is required for stand-alone dumps which contain captured
dumps. If the captured dumps are required by vendors, the dumps must first be
extracted (IPCS COPYCAPD) from the original stand-alone dump, then processed
separately. Do NOT depend on captured dumps being available within a redacted
stand-alone dump.
Note: A stand-alone dump can contain one or more SVC dumps that are captured in
memory, but weren't written to a data set. It is recommended that you extract these
SVC dumps using IPCS COPYCAPD, if captured on z15 or later processors, and post
process them before sending them to IBM for further analysis to ensure that sensitive
data is properly protected.

The following functions are being provided:

REDACT
You may redact any data tagged as sensitive=yes without further analysis.
Note: You cannot perform the ANALYZE function on a dump that has already
been redacted via this process.
You can request this processing using either:

 IPCS option 5.6, specifying the ANALYZE function and BYPASS DP
ANALYSIS=Y

 Use sample job SYS1.SAMPLIB(BLSJDPFD)

ANALYZE
Any pages tagged sensitive by the applications that own that data as well as
any untagged pages detected as containing sensitive data.
Note: You cannot perform the ANALYZE function on a dump that has already
been redacted via this process.
You can request this processing using either:

 IPCS option 5.6, specifying the ANALYZE function and BYPASS DP
ANALYSIS=N

 Use sample job SYS1.SAMPLIB(BLSJDPA).

REPORT
You may create human readable reports for a dump that has been processed
by the Data Privacy for Diagnostics Analyzer. These reports, once created, are
in the <directory>/reports/<dump-name>/<run-number> directory in the file
system used for DPA processing. You can request this processing using either:

 IPCS option 5.6, specifying the REPORT function.
 Use sample job SYS1.SAMPLIB(BLSJDPR).

FEEDBACK
You may provide feedback for a dump that has been processed by the Data
Privacy for Diagnostics Analyzer. After looking through the reports and
understanding the pages that have or have not been flagged as sensitive, you
can provide feedback to help the Data Privacy for Diagnostics Analyzer
improve its sensitive data detection. More information is covered on providing
feedback later in this chapter. After updating configuration files and indicating
what tagging can be improved, you can request this processing using either:

 IPCS option 5.6, specifying the FEEDBACK function
 Use sample job SYS1.SAMPLIB(BLSJDPF).

INGEST
You may ingest data to help the Data Privacy for Diagnostics Analyzer
determine what sensitive data exists in your environment. Data can be
ingested from dictionaries, databases or other sources. This data is added to
the knowledge base information and will be used in future analysis runs. More
information is covered on providing ingested data later in this chapter. After

updating configuration files and indicating what tagging can be improved, you
can request this processing using either:

 IPCS option 5.6, specifying the INGEST function
 Use sample job SYS1.SAMPLIB(BLSJDPI).

EXTRACT
You may extract any built-in or custom identifiers from the Analyzer to a file so
that the user may see the exact criteria for determining the sensitivity of the
data via the ANALYZE function. The output file will contain either the pattern or
entire dictionary depending on the type of identifier to assist in ensuring that
the Data Privacy for Diagnostics Analyzer is correctly marking data as sensitive
or non-sensitive. More information is covered on extracting identifiers later in
this chapter. After updating configuration files and indicating which identifiers
can be written to a file, you can request this processing using either:

 IPCS option 5.6, specifying the EXTRACT function
 Use sample job SYS1.SAMPLIB(BLSJDPX).

Generally, you will want to start by performing the ANALYZE function on a dump.
Remember that this function only works on dumps captured on a z15 or later
processor. After creating the redacted version of the dump, you will want to check the
dump to understand what has been redacted. Reports are available to help you
understand why pages have been redacted. You can look at these reports to see if the
data has been properly identified as sensitive. Some reports are written in concise
form and must be formatted using the REPORT function. After running the REPORT
function, you may want to give feedback to Data Privacy for Diagnostics Analyzer
regarding some of the data that it either found as sensitive but was not actually
sensitive, or feedback on data that was sensitive but not detected as sensitive. The
FEEDBACK function allows you to perform this task. The cycle of ANALYZE / REPORT /
FEEDBACK provides a way to train the Data Privacy for Diagnostics processing in order
to produce dumps with the right level of redaction for your environment.

Another function that can be used is the INGEST function. This allows you to import
data from databases and files, and lets you create custom information that can be used
by the Data Privacy for Diagnostics Analyzer processing to help identify sensitive data.

In order to display the exact criteria that the ANALYZE function is using to determine
data sensitivity, one could use the EXTRACT function to write out any built-in or
custom identifiers to a file such that when that particular identifier is requested in the
ANALYZE configuration, the user knows exactly which tokens or what pattern will be
used to mark data as sensitive or non-sensitive.

Figure 1. Data Privacy for Diagnostics Usage Cycle

Using the Data Privacy for Diagnostics Analyzer Dialog within IPCS

When IPCS is used, panels are presented to allow you to specify parameters required
for processing. The dialog generates appropriate JCL based on the parameters
provided. If any data sets are required but not preallocated, the dialog attempts to
dynamically allocate them. If dynamic allocation fails for any reason, you should be
able to preallocate data sets using other mechanisms (such as ISPF option 3.2).

Note: Not all parameters are present on all IPCS panels for each function.

The parameters that are specified on the IPCS Data Privacy for Diagnostics Analyzer
panels are:
DATA SET NAME
The input dump data set name. This option is equivalent to the input_dataset
parameter in the JCL submitted to perform the requested function.
NEW DATA SET NAME
The output (redacted) dump data set name. This option is equivalent to the output-
dump-dataset field in the JCL submitted to perform the ANALYZE function.
TEMP DATA SET/PAT
Temporary data set names can either be a specific name or a data set name pattern.
See the help panels for more information on patterns. This option is equivalent to the
output_dataset or output_dataset_prefix parameters in the JCL submitted to perform
the requested function.
BYPASS DP ANALYSIS
Allows you to submit a job that will either perform analysis (N) or skip analysis (Y). If N
is specified, the Data Privacy for Diagnostics Analyzer step will scan the input data set
looking for additional sensitive data in addition to data identified by the applications
that allocated the storage marked as sensitive. If found, either token-level or page
level redaction will be performed based on the Allow Page Level specification. If Y is
specified, this step will be bypassed. The output data set identified by the NEW DATA
SET NAME field will only have data removed that was identified by the applications that
allocated the storage marked as sensitive.
REDACTION STRING
If you are not allowing page level redaction, this redaction string is used to overlay
data determined to be sensitive in the output dump. You may leave this field blank to
overlay the token with X or specify a string. When longer strings are detected in the
pages, the string is used in a repeated fashion. If shorter strings are found, only a
portion of the redaction string may be used. This option is equivalent to the
redaction_string parameter in the JCL submitted to perform the requested function.
NUMBER OF THREADS
For ANALYZE requests, large dumps may be processed faster by using multi-threading.
You may specify 1 to 8 for the number of threads. Each thread requested will process a
portion of the input dump, reducing the elapsed time it takes to process the entire
dump, however, it may also increase the simultaneous amount of resources required
to process the request. This option is equivalent to the thread_count parameter in the
JCL submitted to perform the requested function.
ALLOW PAGE LEVEL
If Y is specified, known as fast-analysis mode or page-level redaction, the entire page
of storage is redacted when any sensitive data is detected. Page-level redaction may
allow the analysis processing to run faster since processing will stop at the first
sensitive string in a page is found, however, it is possible that allowing page-level

redaction may cause diagnostic data to be lost. If you find this to be true, set the value
to N, known as detailed analysis mode or token-level redaction, so that data that is
determined to be sensitive will be overlaid using only the redaction string. The default
value is N or token-level redaction.
SENSITIVE REPORT
If Y is specified, reports are generated in <directory>/reports/<dump-name>/<run-
number>/sensitive_token_log_n where n is the thread number. There will be a file per
thread requested. For each string detected, data is written to these files to help you
understand what has been redacted and why. Based on this information, you may
decide to include or exclude types of data. When the REPORT function is requested, it
will consolidate these sensitive_token_log_n files into a human-readable file named
sensitive_tokens.
DPfD HOME DIR
Specify the path where the Data Privacy for Diagnostics Analyzer home directory is
configured, <directory> as previously described. Do not include the trailing '/' when
specifying this path.
JAVA HOME DIR
Specify the path where java is installed. This will be used in the batch job's STDENV set
up file to create the proper environment for the java processing to run in. Do not
include the trailing '/' when specifying this path. Data Privacy for Diagnostics requires a
minimum of IBM 64-bit SDK for z/OS Java Technology Edition version 8.0.
JAVA OPTIONS
You may provide whatever java options are desired. For example, you may need to
specify a minimum and maximum heap size for the JVM to successfully run a multi-
threaded DPfD ANALYZE request. Requesting additional threads and/or including
additional identifiers will increase the size of the heap for the JVM, so use the –Xms
and –Xmx options to adjust the minimum and maximum heap size. For more
information on JVM Command-Line Options, see the topic OpenJ9 command-line
options in IBM SDK, Java Technology Edition 8.0.0
(https://www.ibm.com/support/knowledgecenter/en/SSYKE2_8.0.0/openj9/cmdline_
specifying/index.html)
Note: Data Privacy for Diagnostics requires a minimum of IBM 64-bit SDK for z/OS
Java Technology Edition version 8.0.
JZOS LOAD MODULE
The dialog uses the JZOS Batch Launcher in the JCL that is submitted. You should
determine the correct level of JZOS installed on your system and provide the name of
the appropriate load module in this parameter. Data Privacy for Diagnostics requires a
minimum of IBM 64-bit SDK for z/OS Java Technology Edition version 8.0, thus the 64-
bit version 8 load module for JZOS Batch Launcher is JVMLDM86. For additional
information, see the JZOS Batch Launcher and Toolkit Installation and Users Guide.

(https://www.ibm.com/support/knowledgecenter/en/SSYKE2_8.0.0/com.ibm.java.zse
curity.80.doc/zsecurity-component/jzos.html)
MIGLAB DATASET
A sort E35 exit is used to remove pages flagged as sensitive. This function is provided
in module BLSRTE35 which is shipped in SYS1.MIGLIB. Should you need to override
where this exit can be loaded from, provide the name of the MIGLIB that contains the
load module you wish to run.
TEMP ALLOC PARMS
If your environment requires specific allocation parameters for dump data sets, you
may supply any allocation parameters that will ensure the data set is properly
allocated. For example, supplying DATACLAS and STORCLAS keywords may be
necessary to locate the correct storage pool and attributes.
Note: Do NOT specify RECFM, DSORG, LRECL, BLKSIZE, SPACE and TRACK as they
are used to create some of the interim data sets. If you need to use one of those
allocation parameters, request the ANALYZE function via the JCL instead of through
IPCS.
EDIT CONFIG FILE?
If Y, allows the user to edit the configuration file pertaining to the function requested
(analysis_config.json for ANALYZE or ingestion_config.json for INGEST or
extract_config.json for EXTRACT) prior to submitting the JCL to perform the requested
function. Default is N. See the analysis_config.json, extra_config.json and
ingestion_config.json sections for additional information.
RUN NUMBER
From the ANALYZE step, a run number was generated and can be found in the job
output which can be specified for this parameter when the function requested is
REPORT or FEEDBACK. If a run number is NOT specified, the most recent ANALYZE run
for the input dump is used.
DB2 JDBC PATH
For the INGEST function, if using database as the source in the ingestion_config.json
file, this field is needed to specify the path for the DB2 JDBC Driver and License JAR
files. Do not include the trailing '/' when specifying this path.

Topic: Using IPCS Functions
SubTopic: Using the IPCS Dialog
SubTopic: Using Data Privacy for Diagnostics
SubTopic: Requesting an ANALYZE run

Requesting an ANALYZE run
ANALYZE is the function that will look for sensitive data in dump records and flag those
records for redaction, or even overlay that sensitive data with a redaction string if
token-level redaction is requested. Regardless of how the job is initiated (via IPCS
option 5.6 or via the BLSJDPA JCL in SYS1.SAMPLIB) , two important configuration
files are used:

 Runtime configuration file
o This file is either built by the dialog using the supplied parameters, or is

specified via an in-stream DD statement in the BLSJDPA JCL.
 analysis_config.json file

o This file provides additional detail on what to include or exclude while
looking for sensitive data in dump records. It is located in the
<directory>/configuration/ directory in the file system. You may either
use the EDIT CONFIG FILE option Y in the ANALYZE IPCS panel to edit
this file if you want to change it, or you may directly edit it using an editor
that you are familiar with.

The Runtime configuration is a json file that is built by the dialog using the parameters
supplied on the panel, or can also be supplied as a file or an instream data set in JCL if
you use JCL to submit the job. The runtime configuration file parameters (hand-coded
in the BLSJDPA JCL) are:
"input_dataset"
Specifies the location of the input dump. You must specify a data set name as follows:
"//’<dump-dataset-name>’"
If using the ANALYZE IPCS panel, this parameter is populated by the DATA SET NAME
field.
"thread_count"
This specifies the number of worker threads to be spawned. The total number of
threads is one more than this (there is one monitor thread). If omitted, the default
value is 4 for the JCL interface. Valid values are 1-8. If using the ANALYZE IPCS panel,
this parameter is populated by the NUMBER OF THREADS field.
"record_count"
Estimated number of records in the input dump. If set to 0 or omitted, the Data Privacy
for Diagnostics Analyzer will count the actual number of records. This is used when

multiple threads are requested to ensure that the records are evenly split by the
requested number of threads. This parameter is not available in IPCS panel interface.
"output_dataset_prefix" or "output_dataset"
Specifies either the prefix to use for each thread's output dump data, or the list of
dataset(s). Either data set names or DD names may be specified on this parameter. For
example, "output_dataset_prefix":"//’SYS1.DUMP.D190926.T132348’" indicates the
prefix that will be used by each thread. Files will either be dynamically allocated or
may be pre-allocated as SYS1.DUMP.D190926.T132348.F1,
SYS1.DUMP.D190926.T132348.F2, SYS1.DUMP.D190926.T132348.F3, etc., one per
thread. When using the BLSJDPA JCL, you may also specify DDNAMEs as prefixes. For
example, you may specify "output_dataset_prefix":"//DD:ANLZO" and specify DD
statements for //ANLZOF1, //ANLZOF2, etc, for each thread's output. Alternatively, you
may use the "output_dataset" method of supplying a list of datasets. For example, you
may specify
"output_dataset":["//’SYS1.DUMP.D190926.T132348.F1’","//’SYS1.DUMP.D190926.T
132348.F2’"]. If you are using the dialog to initiate the job, you may also specify a
pattern to be used. In this case, the pattern may contain a single "%" character which
will cause the dialog to generate data set names with thread numbers substituted in
that position in the data set name. For example, you may specify
'SYS1.DUMP.D190926.T132348.F%' as the data set name pattern on the panel and
the dialog would generate
"output_dataset":["//’SYS1.DUMP.D190926.T132348.F1’","//’SYS1.DUMP.D190926.T
132348.F2’"] as the parameters.
If using the ANALYZE IPCS panel, this parameter is populated by the TEMP DATA
SET/PAT field.
"redaction_string"
String to use for redaction for pages being analyzed using detailed analysis. When a
redaction_string isn’t specified and detailed analysis is specified, sensitive data will be
replaced with X. When longer strings are detected in the pages, the string is used in a
repeated fashion. If shorter strings are found, only a portion of the redaction string may
be used. If using the ANALYZE IPCS panel, this parameter is populated by the
REDACTION STRING field.
"analysis_mode"
Specifies the analysis mode for detecting sensitive data. Valid values are 1 for Page-
Level Redaction and 2 for Token-Level Redaction. In Page-Level Redaction, the entire
page is marked as sensitive as soon as first sensitive token is identified in the page. In
Token-Level Redaction, each sensitive token is identified independently and overlaid
with the redaction_string. Note that when 1 is specified, some pages may be analyzed
using Token-Level Redaction. If using the ANALYZE IPCS panel, this parameter is
populated by the ALLOW PAGE LEVEL field, with Y being equivalent to 1 (Page-Level
Redaction) and N being equivalent to 2 (Token-Level Redaction).

"log_sensitive_tokens"
Specifies if the sensitive token log for each file should be generated. When set to TRUE,
a sensitive token log for each thread should be generated in the <directory>/reports
folder. Valid values are TRUE and FALSE. If using the ANALYZE IPCS panel, this
parameter is populated by the SENSITIVE REPORT field, with Y being equivalent to
TRUE and N being equivalent to FALSE. NOTE: by specifying TRUE, an additional file
will be generated on each ANALYZE function request, thus the Data Privacy for
Diagnostics Analyzer home directory will fill up more quickly.
"dpfd_home"
Specifies the Data Privacy for Diagnostics Analyzer home directory. If using the
ANALYZE IPCS panel, this parameter is populated by the DPfD HOME DIR field.
"character_set"
Specified the character set that should be used for decoding of the input dump. The
default value is "Cp1047”. This parameter is not available in IPCS panel interface.
Valid values are Cp1047 and US-ASCII.

The analysis_config.json file:
As your experience with this ANALYZE processing matures, this file will likely become
stable until major changes in data occur in your environment. You will likely start with
the default file supplied with the product. As your usage evolves, you may decide to
exclude or include certain built-in identifiers, use custom identifiers or add dependent
identifiers. This file is in JSON format containing keyword-value pairs and arrays used
to specify parameters to the ANALYZE function.
Parameter Descriptions:
"built_in_identifiers_include"
This specifies the built-in identifiers which should be used to detect sensitive tokens.
Values that can be supplied here are listed in the table below. If nothing is specified,
no identifiers are included. These built-in identifiers are specified in a comma-
separated list with quotes around the identifier
"built_in_identifiers_include" : [
"Identifier1",
"Identifier2",
...
"IdentifierN"
],
See Figure 1 analysis_config.json example for an example of the full file.

"built_in_identifiers_exclude"
This specifies the built-in identifiers which should not be used to detect type of tokens.
Values that can be supplied here are listed in the table below. If nothing is specified,
no identifiers are excluded. These built-in identifiers are specified in a comma-

separated list with quotes around the identifier as shown in Figure 1
analysis_config.json example.

"custom_identifiers"
This specifies any custom identifiers which should be used to detect sensitive data.
Custom identifiers can be ingested using the INGEST function and can be in the form of
dictionaries or patterns. Arrays of multiple identifiers may be specified with the
attributes of a single custom identifier enclosed in { } as described below and the
identifiers themselves are separated by commas as shown in Figure 1
analysis_config.json example. Each identifier has the following fields:
"format"

Valid value is "custom". "custom" indicates that a previously ingested dictionary
or set of patterns is specified.

"inputfilename"
File name containing the identifier data. The Data Privacy for Diagnostics
Analyzer looks for the file in /<directory>/knowledgebase/ingested/.

"entitytype"
Specifies a name for the identifier. This is used when it is part of dependent
identifier. If the entity name was provided when the file was ingested (for
"custom" format), this field can be skipped. If values are provided both during
ingestion and in analysis_config.json, the value provided in analysis_config
takes precedence. If no value is provided either during ingestion or in
analysis_config, a custom value is chosen.

"description"
Specifies description of the identifier. If values are provided both during
ingestion and in analysis_config.json, the value provided in analysis_config
takes precedence. If no value is provided either during ingestion or in
analysis_config, a custom value is chosen.

"dependent_identifiers"
This specifies a set of identifiers which are sensitive only when they all occur in a page.
Here, you specify an array where multiple dependent identifiers can be specified with
the attributes of a single dependency enclosed in { } as described below and the
dependencies themselves are separated by commas as shown in Figure 1
analysis_config.json example. When an identifier is made part of dependent_identifier,
it stops being an independent identifier. Note that all of the identifiers specified in a
dependent_identifier should be present in built_in_identifiers_include or in
custom_identifiers; otherwise, this will never be detected. Each dependent identifier
has the following fields:
"name"

Specifies name assigned to this dependent identifier.

"identifiers"
Specifies the set of identifiers belonging to this dependent identifier. These
identifiers are specified in a comma-separated list with quotes around the
identifier as shown in Figure 1 analysis_config.json example.

“built_in_ns_identifiers_include”
This specifies the built-in identifiers which should be used to detect that a token is
non-sensitive. These built-in identifiers are specified in a comma-separated list with
quotes around the identifier as shown in Figure 1 analysis_config.json example.

“built_in_ns_identifiers_exclude”
This specifies the built-in identifiers which should not be used to detect that a token is
non-sensitive. These built-in identifiers are specified in a comma-separated list with
quotes around the identifier as shown in Figure 1 analysis_config.json example.

“custom_ns_identifiers”
This specifies any custom identifiers which should be used to identify tokens as non-
sensitive data. Custom identifiers can be ingested using the INGEST function and can
be in the form of dictionaries, patterns with the attributes of a single custom identifier
enclosed in { } as described below and the identifiers themselves are separated by
commas as shown in Figure 1 analysis_config.json example. Each identifier has the
following fields:
"format"

Valid value is "custom". "custom" indicates that a previously ingested dictionary
or set of patterns is specified.

"inputfilename"
File name containing the identifier data. The Data Privacy for Diagnostics
Analyzer looks for the file in /<directory>/knowledgebase/ingested/.

"entitytype"
Specifies a name for the identifier. This is used when it is part of dependent
identifier. If the entity name was provided when the file was ingested (for
"custom" format), then this field can be skipped. If values are provided both
during ingestion and in analysis_config.json, the value provided in
analysis_config takes precedence. If no value is provided either during ingestion
or in analysis_config, a custom value is chosen.

"description"
Specifies description of the identifier. If values are provided both during
ingestion and in analysis_config.json, the value provided in analysis_config
takes precedence. If no value is provided either during ingestion or in
analysis_config, a custom value is chosen.

“printable_characters”
This field specifies set of printable characters which will be used for analysis of dumps.
When analyzing the dump, only these characters are used to construct the tokens that
will be parsed. Default value is
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz1234567890`~!@
#$%^&*()-=_+ {}[];:'\",<.>/?\\|\n "

Any incorrect information in analysis_config.json ignored. Identifiers specified in the
built_in_identifiers_exclude list take precedence over identifiers specified in the
built_in_identifiers_include list.

Figure 1. analysis_config.json example
Note: The custom_identifiers and custom_ns_identifiers are assumed to have been
created via the INGEST function in this example.
{
"built_in_identifiers_include" : [
"Month",
"FullName",
"Credit Card Type",
"Credit Card Number",
"Email",
"Zipcode",
"Day"
],
"built_in_identifiers_exclude": [
"Year",
"Date Time"
],
"custom_identifiers": [
{
"inputfilename":"acctnum.bin",
"entitytype" : "Account Number",
"description" : "List of account numbers",
"format" : "custom"
},
{
"inputfilename" : "policynum.bin”,
"entitytype" : "PolicyNumber",
"description" : "List of policy numbers",
"format" : "custom"
}
],
"dependent_identifiers": [
{
"name": "Full Person",

"identifiers": ["FullName", "Zipcode", "Email"]
},
{
"name": "Card",
"identifiers": ["Credit Card Type", "Credit Card Number"]
}
],
"built_in_ns_identifiers_include" : [
"ModuleName"
],
"built_in_ns_identifiers_exclude": [
],
"custom_ns_identifiers": [
{
"inputfilename":"branch.bin",
"entitytype" : "Branch Name",
"description" : "List of branch locations",
"format" : "custom"
},
{
"inputfilename" : "zone.bin”,
"entitytype" : "Zone",
"description" : "List of zones",
"format" : "custom"
}
]
}
The built_in_identifiers supplied with Data Privacy for Diagnostics Analyzer are (by
their very nature are not necessarily all inclusive of the particular topic, and may not be
changed over time should there be changes to the actual data set of said topic):
Identifier (not case sensitive) Description
age String patterns related to age.

Examples:
“10 years old”
“4 months old”
“dob: 1-2-1999"
Note: These string patterns will be
considered sensitive, but just the number
10 (in the first example) will not be
considered sensitive by itself.

continent Dictionary containing the names of
continents.

country Dictionary containing the names of
countries.

county Dictionary containing the names of all the
counties in US. In the United States of
America, an administrative or political
subdivision of a state is a county

credit card type Credit card identification dictionary.
Cards detected are VISA, Mastercard,
AMEX, Diners Club, Discover and JCB

credit card number Credit card pattern identification. Cards
patterns detected are VISA, Mastercard,
AMEX, Diners Club, Discover and JCB

date time Date and Time pattern identification
day Dictionary containing the names of the

days of the week.
dependent Dictionary containing the names of types

of dependents, such as daughter, son,
etc.

email Email address pattern.
eu nin National Identification Number patterns

for various EU countries.
FullName A first name and last name pair

dictionary, the combination of which is
from popular names in the US census.
NOTE: This identifier will detect a 2-word
combination of first name and last name
separated by a delimiter of a comma
and/or spaces in either order. This
identifier will NOT detect a name that
contains any middle name/initial nor
hyphenated names nor names that
contain apostrophes.

gender Dictionary containing the genders Male
and Female.

iban International Bank Account Number
(IBAN) pattern

icdv9 International Classification of Diseases
9th Revision (ICDv9) identification
dictionary.

icdv10 International Classification of Diseases
10th Revision (ICDv10) identification
dictionary.

imei International Mobile Equipment Identity
(IMEI) identification dictionary.
NOTE: This identifier only detects 15-
digit IMEI tokens.

imsi International Mobile Subscriber Identity
(IMSI) Identification dictionary.

in aadhaar card number Aadhaar identification number for
residents or passport holders of India.

in PAN card number Permanent Account Number pattern
issued by Indian Income Tax Department

international phone number International phone number
identification pattern.

ip address IP address identification pattern.
Supports both IPv4 and IPv6 addresses

latitude longitude Latitude/longitude identification pattern.
Supports GPS and DMS coordinates
formats, Ex: 12:30'23.256547S
12:30'23.256547E, N90.00.00
E180.00.00

mac address MAC Address Identification pattern.
marital status Marital status identifier dictionary.
medical name Medical Name identification pattern.

Example: John Doe MD
medical record number Medical Record Number identification

pattern, for example, MRN: CLM-
00000056055, Medical Record Number:
1234asds

month Month Name identification dictionary.
occupation Occupation identification dictionary.
PO box Identifies post office box numbers, Ex:

P.O. BOX 334, POBOX 14321412
raceOrEthnicity Dictionary identification of ethnic groups
religion Dictionary containing major religions.
street types Street Type identification, for example,

tokens containing "st."
uk nin National Insurance Number pattern.
us address Identifies US-centric address patterns

like “800 Theatre Court Garden City, NY
11530”. This just checks the format but

does not validate city and state/zip in the
address.

us phone number US specific phone/fax/pager identifier
pattern.

us ssn US Social Security Number pattern
us states US State Name identification
vehicle identification number Vehicle identification number

identification dictionary. Supports world
manufacturer identification dictionary.

year Year of Birth Identification, Any number
between 0 and current year.

zipcode Valid US zip code identifier dictionary.
Note: The following identifiers are no longer valid as of OA61591: Animal, ATC,
Hospital Name, Phone Number, US SWIFT Code

The default analysis_config.json file will include the list of included identifiers and
excluded identifiers.

Identifier checking is done using the following order:

1. User feedback indicates that a token is sensitive
2. User feedback indicates that a token is non-sensitive
3. module name check
4. Non sensitive checks (built-in + custom)
5. sensitive checks (built-in + custom)

NOTE: If the identifier is added into both the _include list and the _exclude list for
either sensitive or non-sensitive checks, it will be treated as excluded.

Topic: Using IPCS Functions
SubTopic: Using the IPCS Dialog
SubTopic: Using Data Privacy for Diagnostics
SubTopic: Requesting a REPORT run

Requesting a REPORT run
REPORT is the function that will format concise reports in the file system into human-
readable reports for the requested dump, and serves as the input to the FEEDBACK
function. By default, the reports for the last ANALYZE run will be formatted. Regardless
of how the job is initiated (via IPCS option 5.6 or via the BLSJDPR JCL), the runtime
configuration file is used to specify options for processing. This file is either built by the

dialog using the supplied parameters, or is specified via an in-stream DD statement in
the BLSJDPR JCL. The runtime configuration file parameters (built by dialog or hand-
coded in the BLSJDPR JCL) are:
"input_dataset"
Specifies the location of the input dump. You must specify a data set name as follows:
"//’<dump-dataset-name>’". During ANALYZE processing, the dump name was used as
a directory and will be used by REPORT processing to locate the files produced during
ANALYZE processing.
"dpfd_home"
Specifies the Data Privacy for Diagnostics Analyzer home directory.
"run_number"
Specifies the run number. If you omit the run_number option, it will use the most
recent ANALYZE run.
As you validate how accurate the ANALYZE processing was in detecting sensitive data
in your dumps, you may need to provide feedback to help the ANALYZE processing. In
order to provide this feedback, you need to run the REPORT processing prior to the
FEEDBACK function. The outputs of the report processing are human-readable files
that can be edited should you need to provide FEEDBACK for future ANALYZE
attempts. The files produced from the REPORT function are:
/<directory>/reports/<dump-name>/<run-number>/sensitive_tokens
This file contains the list of each token that was found to be sensitive data.
/<directory>/reports/<dump-name>/<run-number>/non_sensitive_tokens
this file, if requested, contains the list of each token that was found to be non-sensitive
data. Note that this file is only produced if Page-Level Redaction was requested during
the ANALYZE processing.

Topic: Using IPCS Functions
SubTopic: Using the IPCS Dialog
SubTopic: Using Data Privacy for Diagnostics
SubTopic: Requesting a FEEDBACK run

Requesting a FEEDBACK run
After running the ANALYZE processing, followed by the REPORT processing, you may
want to provide feedback to enhance the accuracy of future ANALYZE functions in
detecting the appropriate sensitive data for your environment. You can provide
feedback to indicate the following:

 Tokens found to be sensitive are not actually sensitive
 Tokens not found to be sensitive are actually sensitive

To do this, you must edit the reports generated from the REPORT processing. These
reports will be found in the /<directory>/reports/<dump-name>/<run-number>
directory.

 In the sensitive_tokens file, change the “Is_Analysis_Correct” field from “Y” to
“N” for any token that should not be considered sensitive.

 In the non_sensitive_tokens file, change the “Is_Analysis_Correct” field from
“Y” to “N” for any token that should be considered sensitive.

Afterwards, the FEEDBACK function can be requested. Regardless of how the job is
initiated (via IPCS option 5.6 or via the BLSJDPF JCL), the runtime configuration file is
used to specify options for processing. This file is either built by the dialog using the
supplied parameters, or is specified via an in-stream DD statement in the BLSJDPF
JCL. The runtime configuration file parameters (built by dialog or hand-coded in the
BLSJDPF JCL) are:
“input_dataset”
Specifies the location of the input dump. You must specify a data set name as follows:
“//’<dump-dataset-name>’”. During ANALYZE processing, the dump name was used
as a directory and will be used by FEEDBACK processing to locate the files produced
during ANALYZE processing.
“dpfd_home”
Specifies the Data Privacy for Diagnostics Analyzer home directory.
“run_number”
Specifies the run number. If you omit the run_number option, it will use the most
recent ANALYZE run. Ensure that the run_number is the same directory in which the
edited reports are contained.
During the FEEDBACK operation, the Data Privacy for Diagnostics Analyzer reads these
edited reports and updates the <directory>/knowledgebase/feedback/feedback.bin
file, which will be used for future ANALYZE runs.
NOTE: If the redaction string is marked as a sensitive token via FEEDBACK, it will not
be treated as a sensitive token.

Topic: Using IPCS Functions
SubTopic: Using the IPCS Dialog
SubTopic: Using Data Privacy for Diagnostics
SubTopic: Requesting an INGEST run

Requesting an INGEST run
You may want to customize the detection of sensitive data that is unique to your
environment. This can be achieved by the INGEST function, which will help the Data
Privacy for Diagnostics Analyzer to detect the sensitive data in future analysis. You can
initiate the INGEST function from either IPCS option 5.6 or the BLSJDPI JCL. Either
way, it will use the following files:
Runtime configuration file
This file is either built by the dialog using the supplied parameters, or is specified via
an in-stream DD statement in the BLSJDPI JCL.
ingestion_config.json file
This file provides detail on what the Analyzer which then can be used while analyzing
diagnostic data. It is located in the <directory>/configuration/ directory in the Data
Privacy for Diagnostics file system. You may either use the EDIT CONFIG FILE option Y
in the INGEST IPCS panel to edit this file if you want to change it, or you may directly
edit it using an editor that you are familiar with.
Regardless of how the job is initiated, the runtime configuration file is used to specify
options for processing. The runtime configuration file parameters (Built by dialog or
hand-coded in the BLSJDPI JCL) are:
"dpfd_home"
Specifies the Data Privacy for Diagnostics Analyzer home directory.
The ingestion_config.json file contains information about the identifiers to be built as
sensitive or non-sensitive tokens based on the options specified. INGEST will generate
a file in the <directory>/knowledgebase/ingested directory, which can be subsequently
specified in the analysis_config.json file to add the ingested identifier as a custom
identifier for sensitive data detection during the ANALYZE function. This data can be
ingested from dictionaries, databases or other sources.
“outputfilename”
Specifies the name of the file to be stored in the <directory>/knowledgebase/ingested
directory after successful INGEST run. This can be specified in the analysis_config.json
file as the inputfilename under the custom_identifiers option for use in future ANALYZE
requests.
“entitytype”
Specifies the name of the identifier. This is used when user does not provide one in the
analysis_config.json file in the custom_identifiers option under entitytype.
“description”
Specifies a description of the identifier. This is used in future REPORTs when user does
not provide one in the analysis_config.json file in the custom_identifiers option under
description.
"inputtype"
Specifies the type of input to INGEST. Valid values are:
"pattern"

Allows the specification of a Java Regex (or Java Regular Expression) as a
pattern for matching strings.

"dictionary"
Allows specification of exact tokens to be matched by the Data Privacy for
Diagnostics Analyzer.

"inputsource"
Specifies the source of the input data to be ingested. Valid values are:
"file"

Indicates that the source is a file with the location specified on the
“inputfilename” option.

"inline"
Indicates that the source is inline data specified in the ingestion_config.json file.

“database”
Indicates that the source is a database as specified in the “database” and
associated options. This option is only valid when “inputtype” of ”dictionary” is
specified.

Note: If you chose this option, you MUST update the DB2 JDBC PATH, by either
entering the full path to the DB2 JDBC Driver and License JARs in the DB2 JDBC
PATH field in IPCS option 5.6 or update the CLASSPATH section of the STDENV DD in
the BLSJDPI JCL to include the full path.
“inputfilename”
Specifies the path and name of the file which contains the data to be used during the
INGEST function. This option is only valid when “inputsource”:”file” is specified. The
format for specifying a dictionary or pattern in a file is 1 entry per line as such:
value1value2value3
“inlinedata”
Specifies the data to be used during the INGEST function. This option is only valid
when “inputsource”:”inline” is specified. The format for specifying inline data is:
"inlinedata" : ["value1", "value2", "value3"]
“database”
Specifies the type of database to be used as an input source. This option is only valid
when “inputsource” of ”database” is specified. Valid values are:
“DB2"

Indicates the database is DB2 installed on non-system Z platform.
“DB2zOS”

Indicates the database is DB2 installed on system-Z.
“DB2zOSptkt”

Indicates the database is DB2 to be connected via pass ticket. This is the
default value.

“databasehost”

Specifies the domain name or IP address where the database is hosted. This option is
only valid when “inputsource” of ”database” is specified. The format for specifying this
option is: “databasehost”:”<url>”
“databaseport”
Specifies the port number that identifies the DB2 subsystem. This option is only valid
when “inputsource”:”database” is specified.
“databaseusername”
Specifies the user ID used to connect to the DB2 database. This option is only valid
when “inputsource”:”database” is specified.
“databasepassword”
Specifies the password for the user ID used to connect to the DB2 database. This
option is only valid when “inputsource”:”database” is specified.
“databasename”
Specifies the name of the database containing the data to be ingested. This option is
only valid when “inputsource”:”database” is specified.
“databaseschema”
Specifies the schema in the database containing the data to be ingested. This option is
only valid when “inputsource”:”database” is specified.
“databasetablename”
Specifies the name of the table in the database containing the data to be ingested. This
option is only valid when “inputsource”:”database” is specified.
“databasecolumnname”
Specifies the name of the column in the database containing the data to be ingested.
This option is only valid when “inputsource”:”database” is specified.
Any options specified in the ingestion_config.json file which are not valid with the
specified input source will be ignored. Only 1 value per option will be processed,
except for the inline data option which may be specified in a list form. After the INGEST
request is completed, the newly created identifier must be specified in the
custom_identifiers options of the analysis_config.json file in order to be considered for
determining sensitive data for the subsequent ANALYZE requests.
Note: Only 1 custom identifier may be specified per INGEST request.

The following are examples of ingestion_config.json files.
To create a new sensitive identifier called account that will detect the account number
of customers in a dump, a pattern can be used if a certain format for the account
numbers is known. For example, an account number beginning with 2 alphabetical
characters followed by 8 numeric digits. The following is an inline pattern using Java
Regex.
{
"inputtype":"pattern",
"inputsource":"inline",

"entitytype":"account",
"description":"a pattern to determine account: 2 characters, 8 digits",
"outputfilename":"accts.bin",
"inlinedata":["\\D{2}\\d{8}"]
}

Note: That \ is an escape character in Java strings, which requires you to use \\ to
define a single \ in order to use meta Regex characters like \D (non-digit) and \d (digit).
If you have a file that contains all of the account numbers for your customers, you can
alternatively provide a file dictionary to create your custom identifier:
{
"inputtype":"dictionary",
"inputsource":"file",
"entitytype":"accounts",
"description":"a list of our customer accounts",
"outputfilename":"accts.bin",
"inputfilename":”/u/ibmuser/accounts.txt”
}
You may also INGEST a column from a DB2 database as a dictionary that can be used
to identify sensitive data:
{
"inputtype":"dictionary",
"inputsource":"database",
"entitytype":"accounts",
"description":"a list of our customer accounts",
"outputfilename":"accts.bin",
"database":"db2zos",
"databasehost":"db2host.pok.ibm.com",
"databaseport":"446",
"databaseusername":"db2user",
"databasepassword":"Bot27tle",
"databaselocation":"DBX5LOC1",
"databaseschema":"dsn8910",
"databasetablename":"DBO",
"databasecolumnname":"ACCOUNTNUMBER"
}

After the INGEST process has been completed, in order to use your newly created
customer identifier in the subsequent ANALYZE request, you must amend your
analysis_config.json file to add the accounts to the custom identifier as such:
"custom_identifiers":
[

{
"inputfilename" : "accts.bin",
"entitytype" : "accounts",
"description" : "Customer Accounts",
"format" : "custom"
}

]

z/OS MVS IPCS Commands (SA23-1382-00)

Topic: IPCS CLISTs and REXX EXECs
SubTopic: BLSXREDR REXX EXEC – Report Pages Marked as Sensitive
BLSXREDR REXX EXEC — report pages marked as sensitive
Reports the pages marked sensitive.
Use the BLSXREDR EXEC to generate a report about the parameters used to perform
analysis via Data Privacy for Diagnostics to produce the redacted dump (if the
ANALYZE function was used via the IPCS panels, but not via the BLSJDPA JCL) as well
as ranges of pages in a dump which were tagged with the SENSITIVE=YES attribute (if
the dump is not post-processed) or redacted by the Data Privacy for Diagnostics
Analyzer and being tagged with the SENSITIVE=YES attribute (if the dump is post-
processed).
Syntax
For non-IPCS environment:
%BLSXREDR <dump_dsn> [A <asid>] [DETAILS]

For IPCS environment:
BLSXREDR [A <asid>]
-OR-
BLSXREDR [ADDR <address>]

Parameters
<dump_dsn>

 Specify the name of a post-processed dump data set.
o Note: If using BLSXREDR within IPCS, this parameter cannot be specified,

and the currently ACTIVE dump data set will be used.
A <asid>

 [Optional] Specify an address space identifier number in hex as a filter to reduce
the output to contain only addresses for a specific address space. If omitted, all
ASIDs will be displayed.

o Note: ASID can be used instead of A. This parameter cannot be specified
with the ADDR parameter.

DETAILS
 [Optional] When specified, displays all pages that were tagged as SENSITIVE=NO in

addition to pages which were partially redacted by the Data Privacy for Diagnostics
Analyzer (for post-processed dumps) or marked redactable via being tagged
SENSITIVE=YES (for not post-processed dumps). This does NOT display page
ranges in which entire pages were removed from the post-processed dump due to
being tagged as SENSITIVE=YES or via the Data Privacy for Diagnostics Analyzer
when Allow Page Level was set to Y during the ANALYZE function for post-
processed dumps.

o Note: If using BLSXREDR within IPCS, this parameter cannot be specified.
ADDR <address>

 [Optional] When specified, allows the caller to filter the ranges presented as output
to include the passed address. All ASIDs and areas will be examined for a range
encompassing the passed address.

o Note: This parameter can only be specified if using BLSXREDR within IPCS
and cannot be specified with the A/ASID nor the DETAILS parameters.

