
IBM Systems and Technology Group

© 2013 IBM Corporation

IRRXUTIL – REXX interface for retrieving RACF
profile data

RUGONE

October 17, 2013

Bruce R. Wells – IBM

brwells@us.ibm.com

IBM Systems and Technology Group

© 2013 IBM Corporation
2

The information contained in this document is distributed on as "as is" basis, without any
warranty either express or implied. The customer is responsible for use of this
information and/or implementation of any techniques mentioned. IBM has reviewed the
information for accuracy, but there is no guarantee that a customer using the information
or techniques will obtain the same or similar results in its own operational environment.

In this document, any references made to an IBM licensed program are not intended to
state or imply that only IBM's licensed program may be used. Functionally equivalent
programs that do not infringe IBM's intellectual property rights may be used instead. Any
performance data contained in this document was determined in a controlled environment
and therefore, the results which may be obtained in other operating environments may
vary significantly. Users of this document should verify the applicable data for their
specific environment.

It is possible that this material may contain references to, or information about, IBM
products (machines and programs), programming, or services that are not announced in
your country. Such references or information must not be construed to mean that IBM
intends to announce such IBM Products, programming or services in your country.

IBM retains the title to the copyright in this paper as well as title to the copyright in all
underlying works. IBM retains the right to make derivative works and to republish and
distribute this paper to whomever it chooses.

Disclaimer

IBM Systems and Technology Group

© 2013 IBM Corporation
3

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries.

The following are trademarks or registered trademarks of other companies.

* Registered trademarks of IBM Corporation

* All other products may be trademarks or registered trademarks of their respective companies.

Java and all Java-related trademarks and logos are trademarks of Sun Microsystems, Inc., in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows and Windows NT are registered trademarks of Microsoft Corporation.

UNIX is a registered trademark of The Open Group in the United States and other countries.

SET and Secure Electronic Transaction are trademarks owned by SET Secure Electronic Transaction LLC.

Notes:
Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput
improvements equivalent to the performance ratios stated here.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual environmental costs and performance
characteristics will vary depending on individual customer configurations and conditions.

This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without notice. Consult your local IBM business
contact for information on the product or services available in your area.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance, compatibility, or any other claims related to non-
IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

Trademarks

•z/OS

•RACF

IBM Systems and Technology Group

© 2013 IBM Corporation
4

Agenda

� R_admin profile-extract functions

� IRRXUTIL – REXX interface to R_admin extract

IBM Systems and Technology Group

© 2013 IBM Corporation
5

Overview

� The R_admin callable service (IRRSEQ00) is an
assembler programming interface which allows
for management of RACF profiles and system
wide settings (SETROPTS)

� Easier to use than RACROUTE or ICHEINTY

� User/group extract functions added and
documentation completely rewritten in z/OS V1R7

� General resource extract added in z/OS V1R11

IBM Systems and Technology Group

© 2013 IBM Corporation
6

R_admin functions

� Run a RACF command

– By providing a command image

– By providing tokenized data

� Extract user, group or general resource profile
information

� Extract SETROPTS settings

� Retrieve a PKCS#7 password envelope

IBM Systems and Technology Group

© 2013 IBM Corporation
7

R_admin as a SAF Interface

� R_admin called by SAF router, subject to SAF
exits

� But it is a highly RACF-specific interface

– Segment names, field names, data format

� Don’t expect this to be a general administrative
interface which will work regardless of the
underlying security product

IBM Systems and Technology Group

© 2013 IBM Corporation
8

Call parameters

CALL IRRSEQ00,(Work_area, /* Common parms */

ALET,SAF_return_code, /* for all the */

ALET,RACF_return_code,/* RACF callable */

ALET,RACF_reason_code,/* services */

Function_code, /* Requested fcn */

Parm_list, /* Input p-list */

RACF_userID, /* “Run-as” user */

ACEE_ptr, /* “Run-as” ACEE */

Out_message_subpool, /* Output subpool */

Out_message_strings /* Output anchor */

),VL

IBM Systems and Technology Group

© 2013 IBM Corporation
9

R_admin General Attributes

� Caller specifies the function to perform and provides a function-
specific parameter list

� Caller provides a subpool and address field for the output

� Supervisor state callers can specify an identity under whose
authority the request will run

� Some functions are available to problem state callers, and are
protected by FACILITY resources

� Many functions require the RACF subsystem address space. Caller
does not require a TSO environment to issue a command.

Note: IRRPCOMP macro provides some mappings and constants

IBM Systems and Technology Group

© 2013 IBM Corporation
10

Profile Extract Functions

IBM Systems and Technology Group

© 2013 IBM Corporation
11

Profile extract functions

� Extract User, Group, Connect and General Resource
information from the RACF database in an
architected format which is a programming interface

� No limit imposed on output size

� Requires same authority as “list” cmd processor

� All (authorized) profile data returned

� Dataset not supported

No�Command processor authorization

�FACILITY - IRR.RADMIN.<cmd-name> (READ)

25-29,31-32

RACF address space requiredAuthorizationFunction codes

IBM Systems and Technology Group

© 2013 IBM Corporation
12

R_admin extract as a hybrid of a command processor and RACROUTE
REQUEST=EXTRACT

Suppresses fields not displayed by the
command processor

Can iteratively cycle through profiles

Problem state enabled – requires same
authorization as command

Runs in caller’s address space (much
faster than run-command)

Returned data is in the same format as
accepted by commands, eg, dates, numbers

Supervisor state caller can bypass

authorization

Returned data is character (EBCDIC)Format is architected (i.e. Easily read by
program)

Like a commandLike RACROUTE

IBM Systems and Technology Group

© 2013 IBM Corporation
13

Profile extract output format

Parm_list (input)

and

Out_message_strings
(output)

...

Segment Desc. 1

Field Descriptor 1-1

Field Descriptor 1-x

Field Data 1-1

Header

Segment Desc. 2

Segment Desc. n

Field Descriptor 2-1

Field Descriptor 2-y

Field Descriptor n-1
Field Descriptor n-z

Field Data 1-x

Field Data 2-1

Field Data n-z

Profile Name

IBM Systems and Technology Group

© 2013 IBM Corporation
14

Repeat Fields (aka “multi-value” fields)

� N-dimensional repeating data fields. E.G.

– Class authority (CLAUTH) – 1-dimensional

– Group connection in user profile – 15-dimensional

� Header field descriptor with unique name identifies

– Number of occurrences of repeat field

– Number of elements (dimension) in field

� Subsequent field descriptors for each constituent
field, repeated as necessary

IBM Systems and Technology Group

© 2013 IBM Corporation
15

“Next” requests

� For users, groups and general resources (not
connections), you can iterate through the profiles
by providing a starting value for profile name

– Next name is returned, similar to ICHEINTY NEXT or
RACROUTE REQUEST=EXTRACT TYPE=EXTRACTN

� The output of the nth request can be used as the
input of the n+1th request

– You need only re-specify flags, if desired

IBM Systems and Technology Group

© 2013 IBM Corporation
16

“Next” processing

1. Build the plist header. Specify a profile name of a single
blank to start at the top.

2. Call IRRSEQ00 passing the plist in the Parm_list
parameter. Output returned in Out_message_strings
parameter.

3. Free original (or n-1) plist.

4. Process the output as appropriate.

5. (Re)set header flags, as appropriate.

6. Call IRRSEQ00 with n-1 output as n input.

7. Iterate at step 3 until finished (RC 4/4/4).

IBM Systems and Technology Group

© 2013 IBM Corporation
17

“Next” Processing (with pictures)

Profile name

Build Plist header CALL IRRSEQ00,(Work_area,

ALET,SAF_return_code,

ALET,RACF_return_code,

ALET,RACF_reason_code,

Function_code,

Parm_list,

RACF_userID,

ACEE_ptr,

Out_message_subpool,

Out_message_strings

),VL

Call R_admin

Process output

Free previous storage
Profile name

Header

Until done (SAF RC4, RACF RC4, RACF reason code 4 means no more profiles)

Profile name
Header

IBM Systems and Technology Group

© 2013 IBM Corporation
18

NEXT processing for Resources

� When iterating through general resources, all discrete
profiles are first, followed by all generic profiles.

� To see all of them, start with x'40' (blank) as the profile name
and turn the 'generic' flag off.

� After the last discrete profile is returned, R_admin will
automatically switch to generic profiles and set the 'generic'
flag in the header accordingly.

� Subsequent calls to extract-next will return generic profiles.

� After the last generic profile is returned, r_admin will return
'not found'.

� When 'respecifying' the flags, as recommended on an earlier
slide, be sure to NOT reset this generic flag.

IBM Systems and Technology Group

© 2013 IBM Corporation
19

SETROPTS Reporting Functions

IBM Systems and Technology Group

© 2013 IBM Corporation
20

SETROPTS reporting functions

� Retrieve SETROPTS settings in one of two formats

– SMF Unload (Type 81)

– SETROPTS input format (tokenized)

• Not the same as R7 extract format (Sorry!)

� Very simple: no input parameter list required

� Have been around “forever”, but “extract” was
problem-state enabled in z/OS R11 (for IRRXUTIL)

No

�Unload, Extract pre-R11:

�Supervisor state

�SETROPTS LIST authority *not* checked

�R11 Extract:

�FACILITY - IRR.RADMIN.SETROPTS.LIST (read)

�Command processor (SETROPTS LIST) authorization

22, 23

RACF address space requiredAuthorizationFunction codes

IBM Systems and Technology Group

© 2013 IBM Corporation
21

IRRXUTIL – REXX interface to R_admin extract functions

e

x

IBM Systems and Technology Group

© 2013 IBM Corporation
22

What is IRRXUTIL?

� IRRXUTIL is a load module, shipped in z/OS V1R11
which is called by REXX programs to extract RACF
profile data.

� IRRXUTIL calls the R_admin extract functions to
extract USER, GROUP, CONNECT, RESOURCE and
SETROPTS data from RACF.

� The resulting profile data is then injected directly into
REXX variables.

� On successful return from IRRXUTIL, RACF profile
data is ready to use, just by referencing REXX
variables.

IBM Systems and Technology Group

© 2013 IBM Corporation
23

What IRRXUTIL is not

� IRRXUTIL does not have any support for any of the
other function codes supported by R_admin.

� However, it is relatively simple to create a command
image and run it directly from REXX.

IBM Systems and Technology Group

© 2013 IBM Corporation
24

Simple example
� Here is a simple program which retrieves a general

resource profile and dumps the access list.

�Note the complete lack

of parsing code. Just

retrieve the profile and

directly access the

required data.

/* REXX */

myrc=IRRXUTIL("EXTRACT","FACILITY","BPX.DAEMON","RACF","","FALSE")

say "Profile name: "||RACF.profile

do a=1 to RACF.BASE.ACLCNT.REPEATCOUNT

Say " "||RACF.BASE.ACLID.a||":"||RACF.BASE.ACLACS.a

end

IBM Systems and Technology Group

© 2013 IBM Corporation
25

What's the catch?

� The caller does need access to use R_admin extract via the
appropriate FACILITY class profile protecting the desired function.

� The caller must be allowed to retrieve the profile in question.

� The caller will only have fields they are allowed to view returned.

� R_admin will enforce all field-level-access-checking rules.

� This is all enforced by the R_admin function which IRRXUTIL calls.

Required FACILITY profileProfile Type

IRR.RADMIN.SETROPTS.LIST Setropts

IRR.RADMIN.RLIST General Resource

IRR.RADMIN.LISTGRP Group

IRR.RADMIN.LISTUSERUser, Connect

IBM Systems and Technology Group

© 2013 IBM Corporation
26

How does it work?

� myrc=IRRXUTIL(function,type,profile,stem,prefix,generic)

– Function - “EXTRACT” or “EXTRACTN”

– Type – “USER”, “GROUP”, “CONNECT”, “_SETROPTS”, any general

resource class. DATASET not supported.

– Profile – Profile to extract. Case sensitive. Specify '_SETROPTS' for

SETROPTS data.

– Stem – REXX stem variable name to populate with results. Do not put the '.'
at the end.

– Prefix – Optional prefix for returned variable name parts (more later)

– Generic – Optional, 'TRUE' or 'FALSE' (uppercase). Applies to general
resource profiles only.

IBM Systems and Technology Group

© 2013 IBM Corporation
27

IRRXUTIL return code
� myrc=IRRXUTIL(function,type,profile,stem,prefix,generic)

� MYRC is the return code from IRRXUTIL. It is a list of 5 numbers. If the
first=0, IRRXUTIL was successful and data has been returned.

0For IBM
support

For IBM support0=Rexx Error

4=R_admin
error

16Environmental error

R_admin
racfrsn

R_admin
racfrc

R_admin safrc1212R_admin failure

01=Bad length

2=Bad value

3=Imcompatible
with other parms

Index of bad
parameter

8Parameter Error

0Max
number
allowed

Min number
allowed

Number of
parms specified

4Bad number of parameters specified

00002Warning, stem contained '.'

00000Success

RC5RC4RC3RC2RC1Description

IBM Systems and Technology Group

© 2013 IBM Corporation
28

Common return codes

� 0 0 0 0 0 = Success

� 12 12 4 4 4 = Profile Not found

� 12 12 8 8 24 = Not authorized to R_admin extract

IBM Systems and Technology Group

© 2013 IBM Corporation
29

Return code checking

Check the first value in the return code string. If it is 0 (or 2), the call was
successful.

/* REXX */

myrc=IRRXUTIL("EXTRACT","FACILITY","BPX.DAEMON","RACF","","FALSE")

If (word(myrc,1)>2) then do

say "Error calling IRRXUTIL "||myrc

exit

end

say "Profile name: "||RACF.profile

do a=1 to RACF.BASE.ACLCNT.REPEATCOUNT

Say " "||RACF.BASE.ACLID.a||":"||RACF.BASE.ACLACS.a

end

IBM Systems and Technology Group

© 2013 IBM Corporation
30

2 ways to process IRRXUTIL results

� The variables which are set by IRRXUTIL can be
used in 2 ways, depending on the application

– Known data can be retrieved directly by simply referencing
REXX variables by segment and field.

– Programs with no knowledge of what segments and fields
exist are given enough information to find all of the
segments and fields returned by IRRXUTIL.

– Sadly, there is no mechanism to find out all potential
segments/field which could exist. It only returns what
exists for a given profile.

IBM Systems and Technology Group

© 2013 IBM Corporation
31

Direct retrieval of data by segment and field
� Stem variables have the form:

– stem.segment-name.field-name.0 = number of values

– stem.segment-name.field-name.n = nth value of field

� For a simple non-repeating field:

– stem.segment-name.field-name.0 = 1

– stem.segment-name.field-name.1 = value

� A repeating field may have more than 1 value:

– stem.segment-name.field-name.0 = 2

– stem.segment-name.field-name.1 = value1

– stem.segment-name.field-name.2 = value2

� Examples (where stem = RACF)

– RACF.BASE.SPECIAL.0 = 1

– RACF.BASE.SPECIAL.1 = TRUE

– RACF.OMVS.UID.0 = 1

– RACF.OMVS.UID.1 = 555

IBM Systems and Technology Group

© 2013 IBM Corporation
32

Additional control information for fields
ExampleDescriptionName

PROF.BASE.CONNECTS.REPEATCOUNT=5

PROF.BASE.SPECIAL.REPEATCOUNT=0

Number of
occurrences of
repeat group.

Repeat header
field only.

stem.segname.
fieldname.REPEATCOUNT

PROF.BASE.UAUDIT.REPEATING=”FALSE”

PROF.BASE.CGROUP.REPEATING=”TRUE”

TRUE or FALSE
– Does this field
have more than
1 value?

stem.segname.
fieldname.REPEATING

PROF.BASE.SPECIAL.BOOLEAN=”TRUE”

PROF.BASE.NAME.BOOLEAN=”FALSE”

TRUE or FALSEstem.segname.
fieldname.BOOLEAN

PROF.BASE.CREATDAT.OUTPUTONLY=”TRUE”

PROF.BASE.SPECIAL.OUTPUTONLY=”FALSE”

TRUE or FALSEstem.segname.
fieldname.OUTPUTONLY

PROF.GENERIC=”FALSE”TRUE or FALSEstem.GENERIC

PROF.PROFILE=”IBMUSER”Profile Namestem.PROFILE

PROF.CLASS = “USER"Class Namestem.CLASS

A complete table appears in the Macros and Interfaces Book.

IBM Systems and Technology Group

© 2013 IBM Corporation
33

Retrieving unknown data

A number of variables are set which define which
segments and fields have been retrieved.

� Stem.0 = number of segments

� Stem.1-n = names of segments

� Stem.segment.0 = Number of fields in a segment

� Stem.segment.1-n = Field names in that segment

� Stem.segment.field.0 = # values for field

� Stem.segment.field.0 = Field values

Much needed example on next page

IBM Systems and Technology Group

© 2013 IBM Corporation
34

Retrieving unknown data example

stem.0 = 4

.1 = “BASE”

.2 = “TSO”

.3 = “OMVS”

.4 = “CICS”

.0 = 30

.1 = “NAME”

.2 = “SPECIAL”

.3 = “CLAUTH”

.4 = … … …

.0 = 1

.1 = “BRUCE WELLS”

.0 = 1

.1 = “FALSE”

.0 = 3

.1 = “USER”

.2 = “FACILITY”

.3 = “UNIXPRIV”

stem.BASE

stem.BASE.NAME

stem.BASE.SPECIAL

stem.BASE.CLAUTH
.PROFILE = “BRWELLS”

.CLASS = “USER”

.GENERIC = “FALSE”

.VERSION = 0

.FLAGS = “00000000”

.BOOLEAN = “FALSE”

.OUTPUTONLY = “FALSE”

.REPEATING = “TRUE”

IBM Systems and Technology Group

© 2013 IBM Corporation
35

Retrieving repeating data

Repeating fields have some additional control
information stored in the 'repeat header' field.

� Stem.segment.field.repeatCount. Non-zero value
indictates field is a repeat header. This is the number of
repeat groups for this field.

� Stem.segment.field.subfield.0 = Number of subfields in
this repeat group.

� Stem.segment.field.subfield.1-n = subfield names

� Stem.segment.subfieldname.0 = same as
Stem.segment.field.repeatCount. Number of values.

� Stem.segment.subfieldname.1-n = subfield values

Much needed example on next page

IBM Systems and Technology Group

© 2013 IBM Corporation
36

Stem structure – simple repeating field

.0 = 30

.1 = “NAME”

.2 = “SPECIAL”

.3 = “CLCNT”

.4 = “CLAUTH”

.5 = “CONNECTS”

.6 = “CGROUP”

.7 = “CAUTHDA”

.8 = “COWNER”

.n = … … …

.0 = 3

.1 = “USER”

.2 = “FACILITY”

.3 = “UNIXPRIV”

stem.BASE

stem.BASE.CLCNT

.REPEATCOUNT = 3

.SUBFIELD.0 = 1

.SUBFIELD.1 = “CLAUTH”

stem.BASE.CLAUTH

.REPEATING = “TRUE”

.OUTPUTONLY = “FALSE”

.BOOLEAN = “FALSE”

.REPEATING = “FALSE”

.OUTPUTONLY = “TRUE”

.BOOLEAN = “FALSE”

IBM Systems and Technology Group

© 2013 IBM Corporation
37

Stem structure – complex repeating field

.0 = 30

.1 = “NAME”

.2 = “SPECIAL”

.3 = “CLCNT”

.4 = “CLAUTH”

.5 = “CONNECTS”

.6 = “CGROUP”

.7 = “CAUTHDA”

.8 = “COWNER”

.9 = “CLJTIME”

.10= “CLJDATE”

.n = … … …

stem.BASE

stem.BASE.CONNECTS

.REPEATCOUNT = 3

.SUBFIELD.0 = 15

.SUBFIELD.1 = “CGROUP”

.SUBFIELD.2 = “CAUTHDA”

.SUBFIELD.3 = “COWNER”

.SUBFIELD.n = … … …

.0 = 3

.1 = “SYS1”

.2 = “RACFDEV”

.3 = “IBMPOK”

stem.BASE.CGROUP

.0 = 3

.1 = “07/06/87”

.2 = “03/12/91”

.3 = “08/21/94”

stem.BASE.CAUTHDA

.0 = 3

.1 = “IBMUSER”

.2 = “ADMIN1”

.3 = “ADMIN2”

stem.BASE.COWNER

stem.BASE.CLJTIME

… … …
stem.BASE.CLJDATE

… … …

stem.BASE.Cxxxxx

… … …

IBM Systems and Technology Group

© 2013 IBM Corporation
38

Prefix, why it is important
� Consider the following program which determines if the

OMVS UID of the supplied user id matches a supplied
UID value.

/* REXX */

arg user idNum

myrc=IRRXUTIL("EXTRACT","USER",user,"RACF")

uid=idNum

if (RACF.OMVS.UID.1=uid) then

say "Uid matches"

else

say "No match"

The problem is that REXX variable UID is overused. It is used as a

variable, and also set by IRRXUTIL as part of a variable. The uses

conflict. Because we cannot expect REXX programs to anticipate all

possible future segment and field names, IRRXUTIL has a 'prefix'

option.

IBM Systems and Technology Group

© 2013 IBM Corporation
39

Prefix, why it is important
� Lets fix the program using prefix.
//* REXX */

arg user idNum

myrc=IRRXUTIL("EXTRACT","USER",user,"RACF","R_")

uid=idNum

if (RACF.R_OMVS.R_UID.1=uid) then

say "Uid matches"

else

say "No match"

The specified prefix is added to all variable name parts as the REXX

variables are created. Specifying a prefix which you know will never be

used in your program variables guarantees that there will be no name

collisions. As long as the above program does not use any variables

starting with 'R_', it is safe.

IBM Systems and Technology Group

© 2013 IBM Corporation
40

Extract Next

� The extract next function returns the profile following
the specified profile.

� To return the user following 'BOB', issue the following:

myrc=IRRXUTIL("EXTRACTN","USER","BOB","RACF")

� Repeatedly calling IRRXUTIL(EXTRACTN…) with the
previously retrieved profile is a way to iterate through
all profiles in a class.

IBM Systems and Technology Group

© 2013 IBM Corporation
41

Extract NEXT for general resources

� When extracting General Resources with
EXTRACTN, start out with non generic profiles, by
specifying 'FALSE' for the GENERIC parameter.

� Every time IRRXUTIL(EXTRACTN…) is called, pass in
the returned 'generic' indicator (stem.GENERIC),
along with the returned profile name.

� IRRXUTIL(EXTRACTN..) will automatically switch
over to GENERIC profiles when it has gone through
all discrete profiles.

IBM Systems and Technology Group

© 2013 IBM Corporation
42

Extract NEXT for general resources

� When extracting General Resources with
EXTRACTN, start out with non generic profiles, by
specifying 'FALSE' for the GENERIC parameter.

/* REXX */

class = 'FACILITY'

RACF.R_PROFILE = ' '

RACF.R_GENERIC= 'FALSE'

Do Forever

myrc=IRRXUTIL("EXTRACTN",class,RACF.R_PROFILE,"RACF","R_",RACF.R_GENERIC)

If (Word(myrc,1) <> 0) Then Do

Say myrc

Leave

End

Say RACF.R_PROFILE /* print profile name */

End

IBM Systems and Technology Group

© 2013 IBM Corporation
43

Specifying '.' as part of stem name

� IRRXUTIL resets the entire supplied stem to '' (null)
before populating any values. This means that each call
to IRRXUTIL has new data and no residual data is left
over from previous calls.

� If the stem variable contains a '.' (period) character, this
is not possible, and IRRXUTIL does not clean anything.
Return code '2' is returned as a warning that residual
data has not been cleared.

� However, this quirk can be useful, as long as the REXX
programmer is careful.

IBM Systems and Technology Group

© 2013 IBM Corporation
44

Specifying '.' as part of stem name
� This small program creates a small 'database' of user

profile data, which is easily referenced by user id.
/* REXX */

arg IDS

USERS.="" /* only init to "", never 0 */

do i=1 to words(IDS) /* populate specified users into USERS. stem */

ID=word(IDS,i) /* Get next user */

myrc=IRRXUTIL("EXTRACT","USER",ID,"USERS."||ID)

end

/* We now have all specified users saved, process them */

do i=1 to words(IDS) /* Retrieve data from multiple users without */

ID=word(IDS,i) /* extracting them again */

say ID||" Owner="||USERS.ID.BASE.OWNER.1

end

� A silly example, but it does illustrate extracting multiple users and indexing them nicely by
user id. By placing the user id as part of the stem, we can organize all extracted data by

user id. In this example, myrc is set to '2 0 0 0 0' when successful.

IBM Systems and Technology Group

© 2013 IBM Corporation
45

Specifying '.' as part of stem name, be careful
� This small program shows the wrong way to use a '.' in the stem.

/* REXX */

say "Extract users with no '.' in stem"

myrc=IRRXUTIL("EXTRACT","USER","MEGA","RACF","")

say "MEGA UID is "RACF.OMVS.UID.1

myrc=IRRXUTIL("EXTRACT","USER","ELVIS","RACF","")

say "ELVIS UID is "RACF.OMVS.UID.1

say "Extract users with '.' in stem to demonstrate error"

myrc=IRRXUTIL("EXTRACT","USER","MEGA","RACF.A","")

say "MEGA UID is "RACF.A.OMVS.UID.1

myrc=IRRXUTIL("EXTRACT","USER","ELVIS","RACF.A","")

say "ELVIS UID is "RACF.A.OMVS.UID.1

� This example demonstrates how specification of a '.' in the STEM allows residual data to
remain after an new extract operation.

IBM Systems and Technology Group

© 2013 IBM Corporation
46

Where do you find field names?
� z/OS Security Server RACF Callable Services contains

tables which document every segment and field name
supported by R_admin in appendix A.2

� Fields which are 'Returned on Extract Requests' are
supported by IRRXUTIL.

Segment

Field

Extract?

IBM Systems and Technology Group

© 2013 IBM Corporation
47

Gotchas
� IRRXUTIL sets the entire stem to "" (null) before setting new data.

Fields which do not exist in the extracted profile remain null.

This can cause problem in fields which are usually returned as numeric
fields because they also remain "", and not 0. So, care must be taken
before referencing numeric fields as numbers.

/* REXX */

arg group

myrc=IRRXUTIL("EXTRACT","GROUP",group,"RACF","")

do i=1 to RACF.BASE.SUBGROUP.0

say "Subgroup: "RACF.BASE.SUBGROUP.i

end

The above program fails if the specified group has no SUBGROUPs
because RACF.BASE.SUBGROUP.0="" which is not a number.

� Discrete profiles which contain generic characters will cause the
underlying R_admin service to fail if they are encountered during an
EXTRACTN call. This causes IRRXUTIL to fail too. The only solution
is to RDELETE these erroneous profiles. There are few cases where
discrete profiles are expected to contain generic characters and
R_admin handles these properly.

IBM Systems and Technology Group

© 2013 IBM Corporation
48

References

�RACF Callable Services – R_admin
documentation

–Field tables

�Command Language Reference

�Macros and Interfaces – IRRXUTIL, including
an exhaustive list of all REXX variables set by
IRRXUTIL.

�RACF Downloads page

–IRRXUTIL examples.

–RACSEQ – sample R_admin program

