
RACF enhanced PassTicket Support – V1.00

© Copyright IBM Corp. 2020 Page 1 of 60

RACF enhanced PassTicket Support:
 V1.00 APARs: RACF OA59196, SAF OA59197

Summary of Changes

Version Date Nature of Change

V1.00 12/2020 Initial version: RACF APAR OA59196 & SAF APAR OA59197

1 Introduction

Support for enhanced PassTickets:
Enhanced PassTickets are authentication tokens which can be generated by authorized
applications to authenticate users to other z/OS applications. Enhanced PassTickets are
functionally similar to the existing PassTicket support, now referred to as legacy
PassTickets, but use an updated algorithm.

Support is added to RACROUTE REQUEST=VERIFY and initACEE authentication
processing to validate users with an enhanced PassTicket.

Support is added to RCVTPTGN, R_GenSec and R_Ticketserv to generate and evaluate
an enhanced PassTicket.

For more details on using RACF to generate and evaluate an enhanced PassTicket, please
refer to updated publication sections below.

Enhanced PassTickets Configuration:
The security administrator can create profiles in the PTKTDATA class to configure how an
enhanced PassTicket is generated and evaluated. The profiles can be used to control
options such as which key is used to generate and evaluate the enhanced PassTicket and
its validity period.

Support for enhanced PassTickets must be enabled by activating the PTKTDATA class and
defining an enhanced PassTicket key for each application before they can be generated or
evaluated.

For more details on configuring enhanced PassTicket profiles, please refer to the z/OS
Security Server RACF Command Language Reference publication section below.

RACF enhanced PassTicket Support – V1.00

© Copyright IBM Corp. 2020 Page 2 of 60

Restriction: The ISPF panels and TSO helps are not updated for the new command
operands with OA59196 and OA59197.

2 Planning
When installing service like this, consider the following before making changes:
• Create a backup copy of your RACF database.
• Apply the RACF enhanced PassTicket APARs to all systems sharing the RACF

database.

2.1 Create a backup copy of your RACF database
Creating a backup of the RACF database is recommended whenever significant changes
are being made to RACF and the RACF database.

2.2 Apply the RACF enhanced PassTicket APARs to all systems that share the
RACF database

Make sure that the service is applied on all sharing systems, and that all the ++HOLD
documentation has been reviewed.

2.3 RACF exit considerations
The ICHRIX01 preprocessing and ICHRIX02 postprocessing exits can alter the behavior of
RACROUTE REQ=VERIFY authentication processing. When the PTKTDATA class is active
and an EPTKEYLABEL value is configured for the target application, RACROUTE
REQ=VERIFY and initACEE will begin evaluating a specified enhanced PassTicket.

Enhanced PassTickets is a new way to authenticate a user with RACF. Before activating
the PTKTDATA class and configuring the EPTKEYLABEL keyword, the installation must
ensure that any RACROUTE ICHRIX01 and ICHRIX02 exits are compatible with enhanced
PassTicket processing. For example, if these exits inspect the password parameter to
make processing decisions, they must take into account the new enhanced PassTicket
processing.

2.4 Performance considerations

When enhanced PassTickets are configured via new keywords in the SSIGNON segment,
they will be generated and evaluated by RACF APIs. Generation and evaluation of
enhanced PassTickets in RACF uses ICSF HMAC APIs and keys and may have different
performance characteristics than legacy PassTickets. Installations that wish to migrate from
legacy PassTickets to enhanced PassTickets should evaluate the performance
characteristics on a test system before implementing in production.

RACF enhanced PassTicket Support – V1.00

© Copyright IBM Corp. 2020 Page 3 of 60

3 Updated RACF publications

Chapters of the following RACF publications are affected by the new function:

Publication Name

Publication
Number

z/OS Security Server RACF Security Administrator’s Guide SA23-2289
z/OS Security Server RACF Command Language Reference SA23-2292
z/OS Security Server RACF Callable Services SA23-2293
z/OS Security Server RACF Macros and Interfaces SA23-2288
z/OS Security Server RACF Data Areas GA32-0885
z/OS Security Server RACF Messages and Codes SA23-2291

In the following sections, highlighting is used to denote changed information in existing
documentation. Sections, tables, messages, command keywords, etc. without highlighting
contain new information.

RACF enhanced PassTicket Support – V1.00

© Copyright IBM Corp. 2020 Page 4 of 60

3.1 z/OS Security Server RACF Security Administrator’s Guide
This information supplements the following chapters:
• Chapter: ‘Using PassTickets’

3.1.1 Using PassTickets

This chapter is updated to add details about enhanced PassTickets. Updated sections are
listed below with additions highlighted.

Introduction:
If your installation includes workstations and client machines that are operating in a
client/server environment, you might want to use RACF PassTickets to provide enhanced
security across a network. A PassTicket provides an alternative to the RACF password and
password phrase which allows workstations and client machines to communicate with a
host without using a RACF password or password phrase.
Use of a PassTicket removes the need to send RACF passwords and password phrases
across the network and allows you to move the user authentication part of signing on to a
host from RACF to another product or function. End users of an application can use the
PassTicket to authenticate their user IDs and log on to computer systems that contain
RACF.
This chapter describes the PassTicket and how to set up the PassTicket environment. It
includes
information about:
• Activating the PTKTDATA class
• Defining profiles in the PTKTDATA class
• How RACF processes the PassTicket
• Enabling the use of PassTickets
• Auditing the use of PassTickets
For information about the programming that is needed for an application to generate a
PassTicket, see z/OS Security Server RACF System Programmer's Guide.

The RACF PassTicket
The RACF PassTicket is a one-time-only2 password that is generated by a requesting
product or function. It is an alternative to the RACF password and password phrase that
removes the need to send RACF passwords and password phrases across the network in
clear text. It makes it possible to move the authentication of a mainframe application user
ID from RACF to another authorized function executing on the host system or to the
workstation local area network (LAN) environment.

Legacy PassTickets and enhanced PassTickets
RACF PassTickets can be configured with two different algorithms:

• The legacy PassTicket algorithm

RACF enhanced PassTicket Support – V1.00

© Copyright IBM Corp. 2020 Page 5 of 60

• The enhanced PassTicket algorithm
The legacy PassTicket algorithm is the original PassTicket implementation and the
enhanced PassTicket algorithm is an updated version of the PassTicket algorithm.
Enhanced PassTickets function much in the same way as legacy PassTickets but contain a
number of usability and security enhancements.

RACF supports generation and evaluation of PassTickets with either the legacy PassTicket
algorithm or the enhanced PassTicket algorithm per application based on PTKTDATA class
profile configuration. Both legacy PassTickets and enhanced PassTickets can be generated
by appropriately authorized applications to authenticate z/OS users to other z/OS
applications. In either case, the generated PassTicket value is supplied to z/OS
applications as an 8-character value in the password field. Both legacy PassTickets and
enhanced PassTickets are generated and evaluated using a shared secret key. Both legacy
PassTickets and enhanced PassTickets may be generated on z/OS or on other platforms
and both PassTicket generation algorithms are documented in z/OS Security Server RACF
Macros and Interfaces.

While the legacy PassTicket algorithm uses a secret 64-bit DES key, the enhanced
PassTicket algorithm uses a 256-2048 bit HMAC secret key. While legacy PassTicket key
material may be optionally masked in the RACF database, enhanced PassTickets keys
must be stored encrypted in ICSF. For more information on PassTicket keys, see
“Protecting PassTicket keys”.

While the legacy PassTickets character set uses only uppercase characters A-Z and digits
0-9, enhanced PassTickets can optionally use an expanded character set which also
includes the lowercase characters a-z and two special symbols. By supporting a much
larger set of possible valid values, enhanced PassTickets have more variability and are
therefore more secure against certain attack vectors than legacy PassTickets. The
enhanced PassTicket character set can be configured in the PTKTDATA class profile with
the TYPE(MIXED) or TYPE(UPPER) keywords in the SSIGNON segment.

While legacy PassTickets are valid 10 minutes before or after they are generated,
enhanced PassTickets provides a configurable validity period which can be set between 1
second and 10 minutes. By configuring a shorter validity period, installations can limit the
amount of time that enhanced PassTickets are valid. The enhanced PassTicket validity
period can be configured in the PTKTDATA class profile with the TIMEOUT keyword in the
SSIGNON segment.

For more information on configuring legacy and enhanced PassTickets, refer to the
SSIGNON segment for the RDEFINE and RALTER commands in the z/OS Security Server
RACF Command Language Reference.

Note: IBM strongly recommends using the enhanced PassTicket algorithm as it provides
the same capabilities as the legacy PassTicket algorithm but also provides increased
security.

RACF enhanced PassTicket Support – V1.00

© Copyright IBM Corp. 2020 Page 6 of 60

2 Because it can only gives one user access to be used to authenticate to a specific
application for a limited time interval, a RACF PassTicket is resistant to reuse. For most
applications, once a particular PassTicket is used, the same user cannot use it again for
the same application during the same 10-minute interval. For performance reasons,
RACF uses main memory for this storage. If an application can run on more than one
computer with individual memory at the same time, this level of reuse protection might
not be available.

Activating the PTKTDATA class
Before you can use PassTickets, you must activate the PTKTDATA class. The PTKTDATA
class is the class to which all profiles that contain PassTicket information are defined. To
activate the class and the function, enter:

SETROPTS CLASSACT(PTKTDATA) RACLIST(PTKTDATA)

After you activate the PTKTDATA class, you can define the necessary profiles.
Note: After you define or change the profiles, you need to refresh the class by entering:

SETROPTS RACLIST (PTKTDATA) REFRESH.

Defining profiles in the PTKTDATA class
For each application that users can gain access to with the PassTicket, you must create at
least one profile in the PTKTDATA class. The profile associates a PassTicket key with a
particular application on a particular system. The profiles can be created so they apply to:
• All users
• Users who belong to a specific RACF group
• A specific RACF user, when connected to a specific RACF group
• A specific RACF user

To define the profile, use the RDEFINE command:

RDEFINE PTKTDATA profile-name SSIGNON(key-description)
UACC(NONE)

where:
PTKTDATA

specifies the PassTicket key class.
profile-name

is the name of the profile (see “Determining PTKTDATA profile names”).
For the PTKTDATA class, the profile must be a discrete profile. Because each
application must be uniquely defined, you cannot specify a generic profile in the
PTKTDATA class. If you specify a generic profile, it is ignored during PassTicket
processing for the application, and PassTickets cannot be used to authenticate users for
that application.

RACF enhanced PassTicket Support – V1.00

© Copyright IBM Corp. 2020 Page 7 of 60

key-description
defines the PassTicket keys and related configuration settings.
For legacy PassTickets:
• A subset of these keywords specify the method RACF is to use to protect the legacy

PassTicket key in the RACF database on the host. You can specify either masking or
encryption for the method (see “Protecting legacy PassTicket keys”).

• Legacy PassTicket keys are 64-bit Data Encryption Standard (DES) keys. With DES,
eight of the 64 bits are reserved for use as parity bits, so those eight bits are not part
of the 56-bit key. In hexadecimal notation, the DES parity bits are: X'0101 0101 0101
0101'. Any two 64-bit keys are equivalent DES keys if their only difference is in one
or more of these parity bits.

For enhanced PassTickets:
• A subset of these keywords identify the enhanced PassTicket keys and related

configuration settings to be used to generate and evaluate an enhanced PassTicket.
Enhanced PassTicket keys are 256-2048 bit HMAC keys.

Determining PTKTDATA profile names
(This section is unchanged and is not included in this document.)

Protecting PassTicket keys
PassTicket keys are sensitive and must be protected from unauthorized disclosure. Entities
with access to the configured application PassTicket keys for can generate valid
PassTickets for that application.

When you define legacy PassTicket keys, RACF either masks or encrypts each key. If the
system has ICSF installed and available, you can store PassTicket keys in ICSF for added
protection. When you define enhanced PassTicket keys they must be stored in ICSF. For
more information, see “Storing legacy PassTicket Keys Masked in RACF” and “Storing
PassTicket keys encrypted in ICSF”.

Storing legacy PassTicket keys masked in RACF
Legacy PassTicket keys can be stored encrypted in ICSF or masked in RACF with a
proprietary masking algorithm when you define or alter it.
The masking algorithm is designed to provide protection against casual viewing of the
PassTicket masked keys. The algorithm is not a cryptographic algorithm and cannot
provide the level of security for the PassTicket keys that the use of cryptography can
provide.

Note: IBM STRONGLY recommends that masked PassTicket keys are not used outside of
a test environment.

To mask a legacy PassTicket key when you define or alter it, use the SSIGNON operand
and KEYMASKED value with the RDEFINE or RALTER command.

RACF enhanced PassTicket Support – V1.00

© Copyright IBM Corp. 2020 Page 8 of 60

You can use the ENCRYPTKEY keyword to encrypt a masked key and move it into the
CKDS. See “Converting legacy PassTicket masked keys to encrypted keys”.

Note: To prevent unauthorized users from looking at the PassTicket keys that are stored in
the RACF database, make sure the universal access authority (UACC) of the RACF
database is NONE. This prevents unauthorized users from listing or copying the RACF
data set that contains these sensitive keys.

Storing PassTicket keys encrypted in ICSF
ICSF can be used to store PassTicket keys in the CKDS, encrypted under the master key.
Using ICSF ensures the maximum possible security for the PassTicket keys.

For legacy PassTickets there are two options for defining the key to ICSF:
• Use the SSIGNON operand and the KEYLABEL keyword to identify the CKDS key label

to use for the particular PTKTDATA profile being added or altered. The key must refer to
a DES key with a type of DATA and a length of 8 bytes. KEYLABEL is the
recommended option as it allows for secure key entry and the use of your own naming
convention for keys. You are responsible for adding the appropriate key to the CKDS,
with the specified label, before it is used in a PassTicket operation.

• Use the SSIGNON operand and KEYENCRYPTED keyword to enter the key value to
use for the particular PTKTDATA profile being added or altered. RACF will generate a
key label value in the form IRR.SSIGNON.sysname.mmddyyyy.hhmmss.nnnnnn and
add the key to the CKDS. The key label name is not user configurable.

For enhanced PassTickets the key must be defined in ICSF:
• Use the SSIGNON operand and the EPTKEYLABEL keyword to identify the CKDS key

label to use for the particular PTKTDATA profile being added or altered.
• The key label must refer to an ICSF HMAC key with a key algorithm of HMAC, a key

type of MAC and the key usage fields must indicate GENERATE. The supported HMAC
key size range is from 32 to 256 bytes. The recommended minimum key size is 64
bytes.

• You are responsible for adding the appropriate key to the CKDS, with the specified
label, before it is used in a PassTicket operation.

• The RACF enhanced PassTicket support uses ICSF HMAC keys which require that the
ICSF CKDS is defined in either the variable length record format or common record
format (KDSR). For more information on ICSF CKDS formats please refer to Chapter 1
of the z/OS: Cryptographic Services Integrated Cryptographic Service Facility System
Programmer's Guide (SC14-7507-09)

The RLIST command displays the key label used for an encrypted key.

When the RACF database is shared, the use of ICSF is simplest when the CKDS and
RACF database are shared across a common set of systems. RACF always uses the local
system's CKDS when generating or evaluating a PassTicket. If the PassTicket is generated

RACF enhanced PassTicket Support – V1.00

© Copyright IBM Corp. 2020 Page 9 of 60

on one system, and then evaluated on a different system, the evaluation will fail if RACF is
unable to retrieve the key from the local CKDS. If the ICSF CKDS is not shared across
systems which share the RACF database, ICSF services must be used to export the
key label from the system on which the PassTicket key was defined. The key must then be
imported to the ICSF CKDS of all other systems which share the RACF database. The
ICSF CSNDSYX and CSNDSYI services can be used to export and import PassTicket keys
from the ICSF CKDS. The ICSF CSNBKEX and CSNBKIM services can also be used to
export and import PassTicket keys from the ICSF CKDS. There is a similar consideration if
you are using the remote sharing facility to propagate commands that update PTKTDATA
class profiles. If the target of the propagation is a multisystem node, the CKDS in use on
the remote node's MAIN system will be the only CKDS updated with the new PassTicket
key.

Note that older versions of RACF might have stored a legacy PassTicket key token in the
profile instead of a key label. The creation of a legacy PassTicket key token is also possible
if the user entering the RACF command lacks authorization to the CSFKEYS profile
protecting the key label name, or to the CSFKRC or CSFKRW service. Like a normal
KEYENCRYPTED key, a key token is also encrypted under the CKDS master key, but it is
stored in RACF instead of the CKDS, and thus there is no key label. RACF updates the key
token when a master key change is detected. RACF only updates a key token when it is
used in a PassTicket operation. If the master key is changed twice between use of a
specific key token, the key token is rendered unusable. When the RACF database is
shared, and the CKDS is not shared across the generating and evaluating systems, the
CKDS master keys must be the same.

The RLIST command will indicate the presence of a legacy PassTicket key token. You can
use the ENCRYPTKEY keyword of the RALTER command to move this token into the
CKDS using a RACF-generated key label name. See “Converting legacy PassTicket
masked keys to encrypted keys”.

Important: RACF does not delete keys from the CKDS. Before deleting or changing an
encrypted key, take note of the current key label value so that it can be deleted from the
CKDS, using ICSF interfaces.

Converting masked legacy PassTicket keys to encrypted keys
(This section is unchanged and is not included in this document.)

Authorization requirements for managing PassTicket keys
If SSIGNON(KEYENCRYPTED) is specified for legacy PassTickets on an RDEFINE
PTKTDATA or RALTER PTKTDATA command, access to the following ICSF services needs
to be defined:
• CSFCKI
• CSFKRC
• CSFKRW

RACF enhanced PassTicket Support – V1.00

© Copyright IBM Corp. 2020 Page 10 of 60

• CSFKRD

If SSIGNON(KEYENCRYPTED) or SSIGNON(ENCRYPTKEY) is specified for legacy
PassTickets on an RDEFINE PTKTDATA or RALTER PTKTDATA command, the user
requires READ access to keys in the form of IRR.SSIGNON.sysname.* using profiles in the
CSFKEYS class. Sysname is the name of the system where the keyword was specified.
For information on protecting ICSF resources, see z/OS Cryptographic Services ICSF
Administrator's Guide.

If RACF field level access checking is enabled, the user issuing the RDEFINE or RALTER
command specifying the SSIGNON segment must have UPDATE access to the appropriate
fields. For legacy PassTickets, UPDATE access is required to the
PTKTDATA.SSIGNON.SSKEY resource in the FIELD class. Note that the ENCRYPTKEY,
KEYENCRYPTED, KEYMASKED, KEYLABEL and NOLEGACYKEY keywords all store
data into the SSKEY field, and thus they are all protected by the same resource profile. For
details on field level access control, see “Field-level access checking” on page 196.

Examples of defining PTKTDATA class profiles
Suppose you want to define a profile for TSO in the PTKTDATA class. The system
programmer has told you that a VTAM generic resource name for TSO is not being used,
and that the SMF identifier of the system on which the TSO application is to run is R001.
The universal access is to be the default for the PTKTDATA class (NONE).

For legacy PassTickets:

You want to encrypt the legacy PassTicket key and specify a key value of
X'E001193519561977'.

To define the profile for legacy PassTickets, enter:

RDEFINE PTKTDATA TSOR001
SSIGNON(KEYENCRYPTED(E001193519561977))

For enhanced PassTickets:

You want to set the enhanced PassTicket ICSF key label to the value of
‘TSOR001.EPTKEY01' and the character set type to MIXED.

To define the profile for enhanced PassTickets, enter:

RDEFINE PTKTDATA TSOR001 SSIGNON(EPTKEYLABEL
(TSOR001.EPTKEY01) TYPE(MIXED))

When the profile definitions are complete
After you define the PTKTDATA class profile for the application program that is to generate
a PassTicket, the program can be installed and used.

RACF provides several services by which a z/OS application can request the generation of

RACF enhanced PassTicket Support – V1.00

© Copyright IBM Corp. 2020 Page 11 of 60

a PassTicket. For details on the R_GenSec and R_ticketserv services, see z/OS Security
Server Callable Server RACF Callable Services. For details on the RCVTPTGN service,
see z/OS Security Server RACF Macros and Interfaces.

For information on how to code an application program to generate a PassTicket, see z/OS
Security Server RACF Callable Services.

How RACF processes the PassTicket
To validate a password or PassTicket, RACF does the following:
1. Determines whether a profile has been defined for the application in the PTKTDATA

class.
• If a profile has not been defined and the value does not match the user's password,

the user receives a message from the application indicating that the password is not
valid.3

• If the application is defined in the PTKTDATA class, processing continues.
2. Evaluates the value entered in the password field. The evaluation determines whether:

• The value is a PassTicket consistent with this user ID, application, and time range.
• For enhanced PassTickets, the PassTicket value also must have been generated

with the same character set type (UPPER or MIXED) as the evaluator.
• It has been used previously on this computer system for this user ID, application,

and time range.
Time Considerations:
• A PassTicket is considered to be within the valid time range when the time of

generation, with respect to the clock on the generating computer, is within the
acceptable validity period of the time of evaluation, with respect to the clock on the
evaluating computer. For legacy PassTickets the acceptable validity period is 10
minutes before or after the generation time. For enhanced PassTickets the
acceptable validity period is configurable between 1 second and 10 minutes before
or after the generation time.

• Be sure that your MVS system and the evaluating computer use clock values that
are within that time range. RACF uses the value stored for coordinated universal
time (UTC), formerly called Greenwich mean time (GMT), in the algorithms that
process PassTickets.

• One way to ensure that reasonably synchronized values are used is to set UTC in
the GMT value of the MVS time of day (TOD) clock and to set a similar value in each
of the other systems with which RACF shares PassTicket information. You can still
use the MVS local time for local timestamp information, and resetting the local time
does not affect the GMT value kept in the TOD clock.

• Important: Before setting the TOD clock's GMT value to UTC, make sure that the
subsystems and applications you use are not affected.

• To be sure the MVS system clock is set properly, the system console operator
should issue:

DISPLAY T
• The system displays the time with information similar to the following:

IEE136I LOCAL: TIME=14.06.18 DATE=1997.309

RACF enhanced PassTicket Support – V1.00

© Copyright IBM Corp. 2020 Page 12 of 60

 GMT: TIME=19.06.18 DATE=1997.309
• Important: If the MVS DISPLAY T command indicates that your system clock is not

set correctly for GMT, you need to analyze the consequences of resetting the clock.
It is possible that other programs that execute on the system have been adjusted to
tolerate an incorrect GMT setting. You might need to readjust those programs before
resetting the system clock.

• See z/OS MVS Initialization and Tuning Reference and z/OS MVS System
Commands for more information on setting clocks. See z/OS Security Server RACF
Macros and Interfaces for more information on the algorithms.

Determines whether the value is a valid PassTicket.
• If the PassTicket is valid, RACF gives the user access to the desired application.
• If the value is not valid, the host application sends a message to the user indicating

that the password is not valid (assuming the value also did not evaluate correctly as
the user's RACF password).

3. Determines if the PassTicket has been used previously on this computer system for this
user ID, application, and time range.
• If the value was used before, and if PassTicket replay protection has not been

bypassed, the user receives a message from the application4 indicating that the
password is not valid.

• If the value was not used before, or PassTicket replay protection has been
bypassed, the PassTicket is considered valid and processing continues.

4. Allows or denies access to the target application.
• If the PassTicket is valid, RACF gives the user access to the desired application.
• If the value is not valid, the host application sends a message to the user indicating

that the password is not valid (assuming the value also did not evaluate correctly as
the user's RACF password).

Note: If the PassTicket key is stored in ICSF with the KEYENCRYPTED, ENCRYPTKEY,
KEYLABEL or EPTKEYLABEL keywords, ICSF must be active when RACF tries to
authenticate the PassTicket. If it is not active, RACF cannot validate the PassTicket. The
resulting message indicates that the logon attempt failed.

3 - RACF sends a message to the SYSLOG and to the security console. The application
rejects the logon request the same way it rejects an incorrect password. The text of the
message the user receives depends on the application.
4 - RACF sends a message to the SYSLOG and to the security console. The application
rejects the logon request the same way it rejects an incorrect password. The text of the
message the user receives depends on the application.

Bypassing PassTicket replay protection
You might use the option to bypass PassTicket replay protection when the threat of
PassTicket replay is not a security concern, such as in the following cases:

RACF enhanced PassTicket Support – V1.00

© Copyright IBM Corp. 2020 Page 13 of 60

• Applications which save the password and use it for multiple logons on a user's behalf.
(Note that the multiple logons must occur within the 10 minute PassTicket validity
window for this type of application to work with PassTickets.)

• Trusted registry domains that exchange PassTickets as a method of establishing trust.
• Applications that request PassTickets for a particular USERID/APPLID combination

more than once during a one-second time interval.
The option to bypass PassTicket replay protection allows the plus-or-minus-10-minute
PassTicket replay protection to be bypassed for selected applications or combinations of
selected applications, users, or groups.

Note:
1. The option to bypass PassTicket replay protection should only be used in secure
environments where access to generated PassTickets is limited within a secure or internal
network.

Bypassing legacy PassTicket replay protection
You indicate that replay protection is to be bypassed for legacy PassTickets for a particular
application by adding the text string NO REPLAY PROTECTION to the APPLDATA field of
the PTKTDATA profile for that application. You must separate each word in the string with a
single blank space, alphanumeric character, or keyboard symbol.
The NO REPLAY PROTECTION text string will always be translated to upper case by the
RALTER or RDEFINE commands.
The NO REPLAY PROTECTION text string can appear anywhere within the APPLDATA
field, allowing for the existence of other information already in the field, or for new
information that might be added in the future.
The following are examples of commands that will cause legacy PassTicket replay
protection to be bypassed.

Examples:

RALTER PTKTDATA profile-name APPLDATA('NO REPLAY PROTECTION')
RDEFINE PTKTDATA profile-name APPLDATA('NO REPLAY PROTECTION')
RDEFINE PTKTDATA profile-name
APPLDATA('FOR THIS APPLICATION NO REPLAY PROTECTION IS IN
EFFECT')

Note:
1. Other than the APPLDATA (application data) field of the application profile containing the
text string, NO REPLAY PROTECTION, there is no other external indication that replay
protection is bypassed.
2. The APPLDATA field replay protection only applies to legacy PassTickets and does not
affect the replay behavior of enhanced PassTickets.

RACF enhanced PassTicket Support – V1.00

© Copyright IBM Corp. 2020 Page 14 of 60

Bypassing enhanced PassTicket replay protection
(This section is new and not highlighted to improve readability.)

You indicate that replay protection is to be bypassed for enhanced PassTickets for a
particular application by setting the SSIGNON segment keyword REPLAY(YES) in the
PTKTDATA profile for that application.

Example:

RALTER PTKTDATA profile-name SSIGNON(REPLAY(YES))

Note:
1. The SSIGNON segment REPLAY keyword replay protection only applies to enhanced
PassTickets and does not affect the replay behavior of legacy PassTickets.

Enabling the use of PassTickets
(This section is unchanged and is not included in this document.)

Verifying the PassTicket environment
(This section is unchanged and is not included in this document.)

Migrating from legacy PassTickets to enhanced PassTickets
(This section is new and not highlighted to improve readability.)

Enhanced PassTickets provide the same capabilities as legacy PassTickets but with
improved security. Migration from legacy PassTickets to enhanced PassTickets will take
planning and effort. RACF allows for an installation to have both legacy PassTickets and
enhanced PassTickets configured for the same application in the same PTKTDATA class
profile.
When a PTKTDATA class profile contains both a legacy PassTicket key and enhanced
PassTicket key:
• PassTicket generation requests though RACF services will result in an enhanced

PassTicket
• PassTicket evaluation requests though RACF will evaluate the PassTicket with both the

legacy PassTicket algorithm and enhanced PassTicket algorithm.

Installations that wish to migrate from legacy PassTickets to enhanced PassTickets can use
the following steps as a guide:
1. Determine the desired enhanced PassTicket character type:

This setting determines the possible characters that represent the enhanced
PassTicket. TYPE(UPPER) will only use uppercase A-Z and digits 0-9. TYPE(MIXED)
also includes lowercase a-z and the symbols underscore “_” and dash “-“.
In general, installations that have RACF mixed case password support enabled should

RACF enhanced PassTicket Support – V1.00

© Copyright IBM Corp. 2020 Page 15 of 60

use TYPE(MIXED) and installations that do not have RACF mixed case password
support enabled should use TYPE(UPPER). The default value is TYPE(MIXED). The
TYPE setting of the enhanced PassTicket evaluator must match the TYPE setting of the
PassTicket generator.

2. Determine the desired enhanced PassTicket REPLAY allowed setting:
In some cases an installation may require PassTickets to be able to be replayed for a
particular application. To allow replay of enhanced PassTickets for the application set
REPLAY(YES) in the PTKTDATA class application profile. The default value is
REPLAY(NO). See “Bypassing PassTicket replay protection” for more information on
PassTicket replay considerations.

3. Define the enhanced PassTicket HMAC key in the ICSF CKDS:
The key must be defined with a key label that refers to an ICSF HMAC key with a key
algorithm of HMAC, a key type of MAC and the key usage fields must indicate
GENERATE. The supported HMAC key size range is from 32 to 256 bytes. The
recommended minimum key size is 64 bytes.
Refer to “Cryptographic Services - Integrated Cryptographic Service Facility -
Application Programmer's Guide” for details on managing ICSF keys.

4. Add the enhanced PassTicket Key Label to the PTKTDATA class profile:
Update the PTKTDATA class application profile to add the key label of the HMAC key in
ICSF using the SSIGNON segment EPTKEYLABEL keyword.
When the enhanced PassTicket key label is added to the PTKTDATA class application
profile RACF will begin to evaluate user specified passwords with the enhanced
PassTicket algorithm.
Systems which do not share the same RACF database and/or ICSF datasets will need
to provision the same enhanced PassTicket HMAC secret key in order to generate and
evaluate compatible enhanced PassTickets.

5. Update applications to generate enhanced PassTickets:
• Applications that generate PassTickets on-platform using RACF services will begin

to generate enhanced PassTickets when an enhanced PassTicket key is added to
the PTKTDATA class application profile.

• Applications that generate PassTickets outside of RACF with the PassTicket
algorithm need to be updated to support the enhanced PassTicket algorithm. Once
the application supports generation of enhanced PassTickets, it must be configured
with the same HMAC secret key and character set as RACF for evaluation to be
successful. Refer to the “z/OS Security Server RACF Macros and Interfaces” for
details on implementing the enhanced PassTicket algorithm in your own application.

6. Test enhanced PassTicket generation and evaluation:
Use the application to generate an enhanced PassTicket and attempt to use it to
authenticate to the configured target application.

7. Remove the legacy PassTicket key:
Once it has been confirmed that enhanced PassTicket evaluation is successful and all
applications are no longer generating legacy PassTickets for the target application the
legacy PassTicket key should be removed from the PTKTDATA class profile with the
NOLEGACYKEY keyword.

RACF enhanced PassTicket Support – V1.00

© Copyright IBM Corp. 2020 Page 16 of 60

Preventing errors
The following checklist describes the errors that might cause a PassTicket to fail. To
prevent these errors from occurring:
1. Read the list before you use the PassTicket.
2. Review your process to ensure that you have entered all of the information correctly.
3. Verify the information by using the procedures described in “Verifying the PassTicket
environment”.
Use this checklist to prevent or correct errors:
• The PTKTDATA class is activated.
• You issued the SETROPTS RACLIST(PTKTDATA) command.
• You issued the SETROPTS RACLIST(PTKTDATA) REFRESH command after defining

the profile.
• A PTKTDATA class profile exists for the application.
• The application name used by RACROUTE REQUEST=VERIFY during evaluation

matches the name in the PTKTDATA profile that you expect to be used. The SMF Type
80 event code 1 record includes relocate section 443, which contains the application
name that was used in the evaluation process. If a z/OS application is using the
R_Gensec, R_Ticketserv, or RCVTPTGN service to generate or evaluate a PassTicket,
and these requests are being logged (see the following topic), SMF Type 80 event code
81 (Evaluate) and event code 82 (Generate) will contain the application name in
relocate section 67.

• You issued the RDEFINE command correctly.
• A protected user ID may not be used for PassTicket authentication.
• The PassTicket key must be the same on the system which generated the PassTicket

and the system on which the PassTicket is being evaluated.
• The application name used to generate the PassTicket must match the application

name used to log on with the PassTicket. Ensure the application name is not altered by
a user exit during logon.

• PassTickets can be generated with the legacy PassTicket algorithm or enhanced
PassTicket algorithm. Enhanced PassTickets can use either a character set type of
UPPER or MIXED. The PassTicket must be evaluated with the same algorithm and
character set type as it was generated.

Even if you have followed the proper procedures, it is still possible to receive a message
stating that a password is incorrect and be denied access to the application. This can occur
if:
• PassTicket replay protection is not being bypassed, and the PassTicket was used

previously for this user, application, and time range.
• In this case, RACF generates an SMF record that logs an attempt to replay a

PassTicket.
• The GMT clock on the evaluating computer is outside the valid time range for the

PassTicket.
This can be caused by one of the following:
o The GMT clock on the generating computer and the clock on the evaluating

computer are not reasonably synchronized.
o The PassTicket was not used within approximately 10 minutes of being

RACF enhanced PassTicket Support – V1.00

© Copyright IBM Corp. 2020 Page 17 of 60

generated.
o The system clock on the evaluating computer might not be set correctly in

relation to GMT. See the information about time considerations in “How RACF
processes the PassTicket”.

• An encrypted key is being used, but the key is not preset in the local ICSF CKDS.

PassTicket diagnostic reason codes are provided when generation or evaluation of a
PassTicket fails in the following locations:

• SMF Type 80 records
o The event codes and relocate sections documented above (as containing the

application name used) also contain failure return and reason codes
• Service return and reason codes.

o The services used to generate and evaluate PassTickets (also listed above)
can provide useful diagnostic information. Note that for R_Gensec and
R_Ticketserv, the application must have requested the additional diagnostics
by using the 'extended' versions of the functions. Check if the application
provides a trace log or other diagnostic medium containing the return and
reason codes from these services.

Auditing the use of PassTickets
Generation and evaluation of PassTickets can be audited. The SETR LOGOPTIONS
settings of the PTKTDATA class, as well as the AUDIT and GLOBALAUDIT setting of the
PTKTDATA profiles which contain PassTicket keys can be used to determine how the use
of PassTickets is audited.

SMF type 80, event code 82 (PassTicket generate) records are created in the following
circumstances:
• The RCVTPTGN service is used to generate a PassTicket.
• The R_ticketserv or R_GenSec service is used to generate a PassTicket.
• The Java service, described in z/OS Security Server RACF Macros and Interfaces is

used to generate a PassTicket.

SMF type 80, event code 81 (PassTicket evaluate) records are created in the following
circumstances:
• The R_ticketserv or R_GenSec service is used to evaluate a PassTicket.
• The Java service, described in z/OS Security Server RACF Macros and Interfaces is

used to evaluate a PassTicket.

When a user provides a PassTicket to a standard z/OS authentication service, logging is
performed for the PassTicket evaluation in the SMF type 80 event code 1 record created to
record the logon event. This SMF record indicates when a user authenticates with
PassTicket and whether the PassTicket was evaluated with the legacy PassTicket
algorithm or enhanced PassTicket algorithm.

For more details on PassTicket audit records please refer to z/OS Security Server RACF
Macros and Interfaces.

RACF enhanced PassTicket Support – V1.00

© Copyright IBM Corp. 2020 Page 18 of 60

3.2 z/OS Security Server RACF Command Language Reference
This information supplements the following chapters and sections:
• Chapter: ‘RACF Command Syntax’

o Section: RDEFINE
o Section: RALTER
o Section: RLIST

3.2.1 RDEFINE

The base segment APPLDATA keyword description is updated to add details for enhanced
PassTickets.

Parameters
…
APPLDATA(‘application-data’)
…
• For the PTKTDATA class, the application data field can be used to control the replay

protection function of legacy PassTicket support. This setting applies only to legacy
PassTickets and does not control the replay behavior of enhanced PassTickets.
• PassTicket replay protection prevents the use of user IDs to be shared among

multiple users. However, in some events it is desirable to bypass this replay
protection function.

• Specifying no replay protection in the application data field indicates that
replay protection is to be bypassed. For example, the following command would
successfully result in replay protection being bypassed.

RDEFINE PTKTDATA profile-name

APPLDATA('NO REPLAY PROTECTION')

Note the following:
• There must be a single space between the words no and replay, and between

replay and protection. Lack of spaces, or additional spaces or characters, will
make the command ineffective. For example, entering the following command
would not result in replay protection being bypassed.

RDEFINE PTKTDATA profile-name

APPLDATA('NOREPLAY PROTECTION')

• The text string no replay protection will always be translated to uppercase.
• The text string no replay protection can appear anywhere in the APPLDATA field.
• See z/OS Security Server RACF Security Administrator's Guide for more information

on the PassTicket function.

RACF enhanced PassTicket Support – V1.00

© Copyright IBM Corp. 2020 Page 19 of 60

…

The SSIGNON segment is updated to add new fields for enhanced PassTickets.

Syntax

[SSIGNON (
[KEYMASKED(legacy-passticket-key-value)
 | KEYENCRYPTED(legacy-passticket-key-value)
 | KEYLABEL(legacy-passticket-label-value)]
[EPTKEYLABEL(enhanced-passticket-label-value)]
[TYPE(UPPER | MIXED)]
[TIMEOUT(timeout-seconds)]
[REPLAY(YES | NO)]

)]

SSIGNON
Defines PassTicket keys and associated configuration settings.
RACF PassTickets can be configured with two different algorithms:
• The legacy PassTicket algorithm
• The enhanced PassTicket algorithm
The legacy PassTicket algorithm is the original PassTicket implementation and uses a
DES secret key. The enhanced PassTicket algorithm is an updated version of the
PassTicket algorithm and uses an HMAC secret key. RACF supports generation and
evaluation of PassTickets with either the legacy PassTicket algorithm or the enhanced
PassTicket algorithm based on the SSIGNON segment keywords.

The KEYMASKED, KEYENCRYPTED, ENCRYPTKEY and KEYLABEL keywords
control the key to be used for the generation and evaluation of legacy PassTickets.
These keywords indicate the method you want to use to protect the legacy PassTicket
key value within the RACF database. You can mask or encrypt the key. The key-value
represents a 64-bit (8-byte) key that must be represented as 16 hexadecimal
characters. The valid characters are 0 - 9 and A - F.

The EPTKEYLABEL, TYPE, TIMEOUT and REPLAY keywords control the key and
settings to be used for the generation and evaluation of enhanced PassTickets.

RACF enhanced PassTicket Support – V1.00

© Copyright IBM Corp. 2020 Page 20 of 60

Note:

1. Before defining PassTicket keys, please read and understand the PassTicket
documentation in the z/OS Security Server RACF Security Administrator's Guide,
specifically, the topic Protecting PassTicket keys. That documentation contains
important information on setup and authorization issues, especially pertaining to the
use of ICSF with encrypted keys.
2. As with RACF passwords, the database unload facility does not unload application
keys or PassTicket keys. It will, however, indicate the method of protection of the key,
and if the key is encrypted, the key label name.
3. The RLIST command does not list the value of the application key or the PassTicket
key. Therefore, when you define the keys, you should note the value and keep it in a
secure place. Note that RLIST will, however, indicate the method of protection of the
key, and if the key is encrypted, the key label name.
4. The KEYMASKED, KEYENCRYPTED, ENCRYPTKEY and KEYLABEL legacy
PassTicket keywords all work against the same field in the RACF database. Use of
any of these RALTER keywords replaces the previous legacy PassTicket key (or its
label) in the RACF database.

KEYMASKED(legacy-passticket-key-value)

Specifies that you want to mask the legacy PassTicket key value using the masking
algorithm.
Note:

1. IBM STRONGLY recommends that masked PassTicket keys are not used
outside of a test environment.
2. You can specify this operand only once for each application key.
3. If you mask a key, you cannot encrypt it. These are mutually exclusive.

KEYENCRYPTED(legacy-passticket-key-value)
Specifies that you want to encrypt the legacy PassTicket key value.
Note:

1. Before using the KEYENCRYPTED keyword, please read and understand the
documentation describing Encrypting the PassTicket key in the z/OS Security
Server RACF Security Administrator's Guide.
2. You can specify this operand only once for each application key.
3. If you encrypt a key, you cannot mask it. These are mutually exclusive.
4. ICSF must be installed and active on the system.
You can use the RLIST command to verify that the key is protected.

KEYLABEL(legacy-passticket-label-value)

RACF enhanced PassTicket Support – V1.00

© Copyright IBM Corp. 2020 Page 21 of 60

Specifies the name of an ICSF key label to be used when generating or evaluating a
legacy PassTicket.
ICSF must be installed and active, and the key must be defined in the ICSF CKDS at
the time of use. However, this is not checked when the KEYLABEL keyword is
specified.
When using KEYLABEL, RACF does not make any calls to ICSF. The key label is
saved in the RACF database, and it is up to the installation to ensure that the key is
added to the ICSF CKDS before any PassTicket operations occur which need it. The
key must refer to a DES key with a type of DATA and a length of 8 bytes.
Note:
The KEYLABEL operand cannot be used to override the key label generated by
RACF when KEYENCRYPTED or ENCRYPTKEY is specified.

EPTKEYLABEL(enhanced-passticket-label-value)
Specifies the name of an ICSF key label to be used when generating or evaluating
an enhanced PassTicket.
ICSF must be installed and active, and the key must be defined in the ICSF CKDS at
the time of use. However, this is not checked when the EPTKEYLABEL keyword is
specified.
When using EPTKEYLABEL, RACF does not make any calls to ICSF. The key label
is saved in the RACF database, and it is up to the installation to ensure that the key
is added to the ICSF CKDS before any enhanced PassTicket operations occur which
need it.
The key label must refer to an ICSF HMAC key with a key algorithm of HMAC, a key
type of MAC and the key usage fields must indicate GENERATE. The supported
HMAC key size range is from 32 to 256 bytes. The recommended minimum key size
is 64 bytes.
The RACF enhanced PassTicket support uses ICSF HMAC keys which require that
the ICSF CKDS is defined in either the variable length record format or common
record format (KDSR). For more information on ICSF CKDS formats please refer to
Chapter 1 of the z/OS: Cryptographic Services Integrated Cryptographic Service
Facility System Programmer's Guide (SC14-7507-09).
The label name cannot exceed 64 characters. The first character must be an
alphabetic character or a national character (#, @, or $). Subsequent characters can
be a period character (.) or any alphanumeric or national character.

TYPE(UPPER | MIXED)
Specifies the character set to use for generating and evaluating an enhanced
PassTicket.
The type must be one of the following values:

UPPER – The enhanced PassTicket will be generated and evaluated with only
uppercase characters A - Z and digits 0 - 9.

RACF enhanced PassTicket Support – V1.00

© Copyright IBM Corp. 2020 Page 22 of 60

MIXED – The enhanced PassTicket will be generated and evaluated with
uppercase characters A-Z, lowercase characters a-z, digits 0-9 and the symbols
dash (-) and underscore (_).

Using type MIXED is recommended as it provides a larger set of possible PassTicket
values and is therefore more secure. Type UPPER may be required when an
application does not yet support mixed case passwords.
The default value is MIXED.

 TIMEOUT(timeout-seconds)
Specifies the number of seconds that the enhanced PassTicket is active.
The value of timeout-seconds can be between 1 and 600 seconds (10 minutes).
The default value is 60 seconds.

 REPLAY(YES | NO)
Specifies whether an enhanced PassTicket is allowed to be replayed within the
TIMEOUT value.
The default value is NO.
This setting only applies to enhanced PassTickets and does not apply to legacy
PassTickets.
The replay protection setting in the APPLDATA field only applies to legacy
PassTickets and does not apply to enhanced PassTickets.

3.2.2 RALTER

The base segment APPLDATA keyword description is updated to add details for enhanced
PassTickets.

Parameters
…
APPLDATA(‘application-data’)
…
• For the PTKTDATA class, the application data field can be used to control the replay

protection function of legacy PassTicket support. This setting applies only to legacy
PassTickets and does not control the replay behavior of enhanced PassTickets.
• PassTicket replay protection prevents the use of user IDs to be shared among

multiple users. However, in some events it is desirable to bypass this replay
protection function.

• Specifying no replay protection in the application data field indicates that
replay protection is to be bypassed. For example, the following command would
successfully result in replay protection being bypassed.

RACF enhanced PassTicket Support – V1.00

© Copyright IBM Corp. 2020 Page 23 of 60

RDEFINE PTKTDATA profile-name

APPLDATA('NO REPLAY PROTECTION')

Note the following:
• There must be a single space between the words no and replay, and between

replay and protection. Lack of spaces, or additional spaces or characters, will
make the command ineffective. For example, entering the following command
would not result in replay protection being bypassed.

RDEFINE PTKTDATA profile-name

APPLDATA('NOREPLAY PROTECTION')

• The text string no replay protection will always be translated to uppercase.
• The text string no replay protection can appear anywhere in the APPLDATA field.
• See z/OS Security Server RACF Security Administrator's Guide for more information

on the PassTicket function.
…

The SSIGNON segment is updated to add new fields for enhanced PassTickets.

Syntax

[SSIGNON (
[KEYMASKED(legacy-passticket-key-value)
 | KEYENCRYPTED(legacy-passticket-key-value)
 | ENCRYPTKEY
 | KEYLABEL(legacy-passticket-label-value)
 | NOLEGACYKEY]
[EPTKEYLABEL(enhanced-passticket-label-value) | NOEPTKEYLABEL]
[TYPE(UPPER | MIXED) | NOTYPE]
[TIMEOUT(timeout-seconds) | NOTIMEOUT]
[REPLAY(YES | NO)]

)
| NOSSIGNON]

SSIGNON | NOSSIGNON

…

RACF enhanced PassTicket Support – V1.00

© Copyright IBM Corp. 2020 Page 24 of 60

SSIGNON
Defines PassTicket keys and associated configuration settings.
RACF PassTickets can be configured with two different algorithms:
• The legacy PassTicket algorithm
• The enhanced PassTicket algorithm
The legacy PassTicket algorithm is the original PassTicket implementation and uses a
DES secret key. The enhanced PassTicket algorithm is an updated version of the
PassTicket algorithm and uses an HMAC secret key. RACF supports generation and
evaluation of PassTickets with either the legacy PassTicket algorithm or the enhanced
PassTicket algorithm based on the SSIGNON segment keywords.

The KEYMASKED, KEYENCRYPTED, ENCRYPTKEY and KEYLABEL keywords
control the key to be used for the generation and evaluation of legacy PassTickets.
These keywords indicate the method you want to use to protect the legacy PassTicket
key value within the RACF database. You can mask or encrypt the key. The key-value
represents a 64-bit (8-byte) key that must be represented as 16 hexadecimal
characters. The valid characters are 0 - 9 and A - F.

The EPTKEYLABEL, TYPE, TIMEOUT and REPLAY keywords control the key and
settings to be used for the generation and evaluation of enhanced PassTickets.

Note:

1. Before defining PassTicket keys, please read and understand the PassTicket
documentation in the z/OS Security Server RACF Security Administrator's Guide,
specifically, the topic Protecting PassTicket keys. That documentation contains
important information on setup and authorization issues, especially pertaining to the
use of ICSF with encrypted keys.
2. As with RACF passwords, the database unload facility does not unload application
keys or PassTicket keys. It will, however, indicate the method of protection of the key,
and if the key is encrypted, the key label name.
3. The RLIST command does not list the value of the application key or the PassTicket
key. Therefore, when you define the keys, you should note the value and keep it in a
secure place. Note that RLIST will, however, indicate the method of protection of the
key, and if the key is encrypted, the key label name.
4. The KEYMASKED, KEYENCRYPTED, ENCRYPTKEY and KEYLABEL legacy
PassTicket keywords all work against the same field in the RACF database. Use of
any of these RALTER keywords replaces the previous legacy PassTicket key (or its
label) in the RACF database.

KEYMASKED(legacy-passticket-key-value)

RACF enhanced PassTicket Support – V1.00

© Copyright IBM Corp. 2020 Page 25 of 60

Specifies that you want to mask the legacy PassTicket key value using the masking
algorithm.
Note:

1. IBM STRONGLY recommends that masked PassTicket keys are not used
outside of a test environment.
2. You can specify this operand only once for each application key.
3. If you mask a key, you cannot encrypt it. These are mutually exclusive.

KEYENCRYPTED(legacy-passticket-key-value)
Specifies that you want to encrypt the Legacy PassTicket key value.
Note:

1. Before using the KEYENCRYPTED keyword, please read and understand the
documentation describing Encrypting the PassTicket key in the z/OS Security
Server RACF Security Administrator's Guide.
2. You can specify this operand only once for each application key.
3. If you encrypt a key, you cannot mask it. These are mutually exclusive.
4. ICSF must be installed and active on the system.
You can use the RLIST command to verify that the key is protected.

ENCRYPTKEY
Specifies that you want to request conversion of a legacy PassTicket key to a
KEYENCRYPTED key with a key label.
If the existing key is KEYMASKED, it is converted to a KEYENCRYPTED key and
the data in the RACF database is replaced with the ICSF key label. Knowledge of
the existing key value is not necessary.
If the existing key is KEYENCRYPTED in the form of a key token, it is moved into
the ICSF CKDS and data in the RACF database is replaced with a key label.
Knowledge of the existing key value is not necessary.
If the existing key is KEYENCRYPTED and already referenced by a key label,
message IRR52254I is issued and ENCRYPTKEY is ignored.
RACF generates key label names in the form
IRR.SSIGNON.sysname.mmddyyyy.hhmmss.nnnnnn. The key label name is not
user configurable. RLIST displays the key label name. Sysname indicates the name
of the system on which the ENCRYPTKEY operation was performed.
The SEARCH command with the CLIST option provides a way of creating a 'utility' to
convert all your PassTicket keys to KEYENCRYPTED in ICSF.

KEYLABEL(legacy-passticket-label-value)
Specifies the name of an ICSF key label to be used when generating or evaluating a
legacy PassTicket.
ICSF must be installed and active, and the key must be defined in the ICSF CKDS at

RACF enhanced PassTicket Support – V1.00

© Copyright IBM Corp. 2020 Page 26 of 60

the time of use. However, this is not checked when the KEYLABEL keyword is
specified.
When using KEYLABEL, RACF does not make any calls to ICSF. The key label is
saved in the RACF database, and it is up to the installation to ensure that the key is
added to the ICSF CKDS before any PassTicket operations occur which need it. The
key must refer to a DES key with a type of DATA and a length of 8 bytes.
Note:
The KEYLABEL operand cannot be used to override the key label generated by
RACF when KEYENCRYPTED or ENCRYPTKEY is specified.

NOLEGACYKEY
Removes an existing legacy PassTicket key from the PTKTDATA profile set by the
KEYMASKED, KEYENCRYPTED or KEYLABEL keywords.

EPTKEYLABEL | NOEPTKEYLABEL
EPTKEYLABEL(enhanced-passticket-label-value)

Specifies the name of an ICSF key label to be used when generating or
evaluating an enhanced PassTicket.
ICSF must be installed and active, and the key must be defined in the ICSF
CKDS at the time of use. However, this is not checked when the EPTKEYLABEL
keyword is specified.
When using EPTKEYLABEL, RACF does not make any calls to ICSF. The key
label is saved in the RACF database, and it is up to the installation to ensure that
the key is added to the ICSF CKDS before any enhanced PassTicket operations
occur which need it.
The key label must refer to an ICSF HMAC key with a key algorithm of HMAC, a
key type of MAC and the key usage fields must indicate GENERATE. The
supported HMAC key size range is from 32 to 256 bytes. The recommended
minimum key size is 64 bytes.
The RACF enhanced PassTicket support uses ICSF HMAC keys which require
that the ICSF CKDS is defined in either the variable length record format or
common record format (KDSR). For more information on ICSF CKDS formats
please refer to Chapter 1 of the z/OS: Cryptographic Services Integrated
Cryptographic Service Facility System Programmer's Guide (SC14-7507-09).
The label name cannot exceed 64 characters. The first character must be an
alphabetic character or a national character (#, @, or $). Subsequent characters
can be a period character (.) or any alphanumeric or national character.

NOEPTKEYLABEL
Removes the enhanced PassTicket key label.

TYPE | NOTYPE
TYPE(UPPER | MIXED)

Specifies the character set to use for generating and evaluating an enhanced

RACF enhanced PassTicket Support – V1.00

© Copyright IBM Corp. 2020 Page 27 of 60

PassTicket.
The type must be one of the following values:

UPPER – The enhanced PassTicket will be generated and evaluated with
only uppercase characters A - Z and digits 0 - 9.
MIXED – The enhanced PassTicket will be generated and evaluated with
uppercase characters A - Z, lowercase characters a - z, digits 0 - 9 and the
symbols dash (-) and underscore (_).

Using type MIXED is recommended as it provides a larger set of possible
PassTicket values and therefore provides more security. Type UPPER may be
required when an application does not yet support mixed case passwords.
The default value is MIXED.

NOTYPE
Resets TYPE to the default value of MIXED.

TIMEOUT | NOTIMEOUT
TIMEOUT(timeout-seconds)

Specifies the number of seconds that the enhanced PassTicket is active.
The value of timeout-seconds can be between 1 and 600 seconds (10 minutes).
The default value is 60 seconds.

NOTIMEOUT
Resets TIMEOUT to the default value of 60 seconds.

REPLAY(YES | NO)
Specifies whether an enhanced PassTicket is allowed to be replayed within the
TIMEOUT value.
The default value is NO.
This setting only applies to enhanced PassTickets and does not apply to legacy
PassTickets.
The replay protection setting in the APPLDATA field only applies to legacy
PassTickets and does not apply to enhanced PassTickets.

NOSSIGNON
Specifies that the SSIGNON segment should be deleted.

RACF enhanced PassTicket Support – V1.00

© Copyright IBM Corp. 2020 Page 28 of 60

3.2.3 RLIST

A new SSIGNON segment is updated to add new fields for enhanced PassTickets. RLIST
is enhanced to display the new fields.

Syntax
…

[SSIGNON]

SSIGNON
Specifies that you want to display the secured signon information.

Note: Each line of the RLIST SSIGNON segment output is prefixed to indicate that it is
legacy PassTicket information or enhanced PassTicket information. RLIST will display the
default values for the TIMEOUT and REPLAY keywords even when no enhanced
PassTicket key is configured. These prefixes are displayed for the SSIGNON segment
fields for all RACF classes even those not necessarily related to PassTicket functions.

Note: The PassTicket key value cannot be displayed. However, information is displayed
that describes whether the key value is masked or encrypted, and if encrypted, the ICSF
key label name.
When the SSIGNON segment contains a PassTicket key, RLIST displays:

SSIGNON INFORMATION

When a legacy PassTicket masked key exists, the following will be displayed:
Legacy PassTicket: KEYMASKED DATA NOT DISPLAYABLE

When a legacy PassTicket key token exists, the following will be displayed:
Legacy PassTicket: KEYTOKEN DATA NOT DISPLAYABLE

When a legacy PassTicket key label exists, the following (for example) will be displayed:
Legacy PassTicket: KEYENCRYPTED LABEL:
IRR.SSIGNON.SY1.07192018.185056.915782

When an enhanced PassTicket key label exists, the following (for example) will be
displayed:

Enhanced PassTicket: Key Label = EPTKEY.APPL01

RACF enhanced PassTicket Support – V1.00

© Copyright IBM Corp. 2020 Page 29 of 60

EXAMPLES

Example Activity Label Description

…

4 Operation The security administrator wants to display secured signon
key information for profile name TSOR001 in the PTKTDATA
class to be certain that the application key is masked
instead of encrypted.

Known ELVIS1 is the user ID of the security administrator and has
the SPECIAL attribute. The security administrator wants to
issue the command as a RACF TSO command.

Command RLIST PTKTDATA TSOR001 SSIGNON

Defaults None.

Output See Figure 63

5 Operation The security administrator wants to display secured signon
key information for profile name TSOR004 in the PTKTDATA
class and to be certain that the application key is encrypted
instead of masked.

Known NONNEL is the user ID of the security administrator and has
the SPECIAL attribute. The security administrator wants to
issue the command as a RACF operator command, and the
RACF subsystem prefix is @.

Command @RLIST PTKTDATA TSOR004 SSIGNON

Defaults None.

Output See Figure 64

…

18 Operation The security administrator wants to display secured signon
key information for profile name APPL01 in the PTKTDATA
class and which contains both a legacy PassTicket key label
and an enhanced PassTicket key label.

Known The security administrator has the SPECIAL attribute.

Command RLIST PTKTDATA APPL01 SSIGNON

Defaults None.

RACF enhanced PassTicket Support – V1.00

© Copyright IBM Corp. 2020 Page 30 of 60

Output See Figure 78

…

SSIGNON INFORMATION

Legacy PassTicket: KEYMASKED DATA NOT DISPLAYABLE

Enhanced PassTicket: Timeout = 00000060

Enhanced PassTicket: Replay allowed = NO

Figure 63: Output from the RLIST command

SSIGNON INFORMATION

Legacy PassTicket: KEYENCRYPTED DATA NOT DISPLAYABLE

Enhanced PassTicket: Timeout = 00000060

Enhanced PassTicket: Replay allowed = NO

Figure 64: Output from the RLIST command

…

SSIGNON INFORMATION

Legacy PassTicket: KEYENCRYPTED LABEL: IRR.SSIGNON.SY1.07192018.185056.915782

Enhanced PassTicket: Key Label = EPTKEY.APPL01

Enhanced PassTicket: Type = UPPER

Enhanced PassTicket: Timeout = 00000120

Enhanced PassTicket: Replay Allowed = YES

Figure 78: Output from the RLIST command

RACF enhanced PassTicket Support – V1.00

© Copyright IBM Corp. 2020 Page 31 of 60

3.3 z/OS Security Server RACF Callable Services
This information supplements the following chapters and sections:
• Chapter: ‘Callable services descriptions’

o Section: ‘R_Admin (IRRSEQ00): RACF administration API’
o Section: ‘R_GenSec (IRRSGS00 or IRRSGS64): Generic security API interface’
o Section: ‘R_ticketserv (IRRSPK00): Parse or extract’

3.3.1 R_Admin (IRRSEQ00): RACF administration API

The R_admin reference appendix is updated to add new fields to the table ‘SSIGNON seg-
ment fields’:

SSIGNON segment fields:

Field name SAF field
name

Flag
byte
value

RDEFINE/RALTER keyword
reference

Allowed
on add

requests

Allowed
on alter
requests

Returned
on extract
requests

…
PTKEYLAB ptkeylab ‘Y’ SSIGNON (EPTKEYLABEL) Yes Yes Yes

‘N’ SSIGNON (NOEPTKEYLABEL) No Yes
PTTYPE pttype 'Y' SSIGNON (TYPE(xx)) Yes Yes Yes

'N' SSIGNON (NOTYPE) No Yes
PTTIMEO pttimeo 'Y' SSIGNON (TIMEOUT(xx)) Yes Yes Yes

'N' SSIGNON (NOTIMEOUT) No Yes
PTREPLAY

(boolean)
ptreplay 'Y' SSIGNON (REPLAY(YES)) Yes Yes Yes
 'N' SSIGNON (REPLAY(NO)) Yes Yes

3.3.2 R_GenSec (IRRSGS00 or IRRSGS64): Generic security API interface

The R_GenSec callable service description is updated to indicate that it also supports gen-
eration and evaluation of enhanced PassTickets.

…
Subfunction codes
Value Subfunction
1 Generate PassTicket
2 Evaluate PassTIcket
3 Evaluate PassTicket Extended
4 Generate PassTicket Extended

RACF enhanced PassTicket Support – V1.00

© Copyright IBM Corp. 2020 Page 32 of 60

Generate PassTicket(1 and 4)
This function will generate a legacy PassTicket or enhanced PassTicket for a specified
userid and application name. The type of PassTicket returned is based on the keys config-
ured in the associated PTKTDATA class profile:
• An enhanced PassTicket is returned when an enhanced PassTicket key label is

configured with the EPTKEYLABEL keyword.
• A legacy PassTicket is returned when a legacy PassTicket key is configured with the

KEYMASKED, KEYENCRYPTED or KEYLABEL keywords and no enhanced
PassTicket key label is configured.

If option code 4 (PassTicket Generate Extended) is specified, additional reason codes are
provided in the event of a PassTicket Generation failure. This is the only difference be-
tween the PassTicket Generate and PassTicket Generate Extended options. IBM recom-
mends using the extended option if your application reports SAF return and reason codes
in a trace log, or other diagnostic medium.

…

Evaluate PassTicket(2 and 3)
This function will evaluate a legacy PassTicket or enhanced PassTicket for a specified
userid and application name. When the associated PTKTDATA class profile contains a leg-
acy PassTicket key the specified PassTicket value is evaluated as a legacy PassTicket.
When the PTKTDATA class profile contains an enhanced PassTicket key the specified
PassTicket value is evaluated as an enhanced PassTicket. When the PTKTDATA class
profile contains both a legacy PassTicket key and enhanced PassTicket key the specified
PassTicket value is evaluated as both a legacy PassTicket and enhanced PassTicket.
…

Return and reason codes

SAF return
code

RACF return
code

RACF reason
code

Explanation

…

8 16 X'nnnnnnnn' PassTicket generation extended fail-
ure. X'nnnnnnnn' is the internal reason
code for the generation failure.

RACF enhanced PassTicket Support – V1.00

© Copyright IBM Corp. 2020 Page 33 of 60

3.3.3 R_ticketserv (IRRSPK00): Parse or extract

The R_ticketserv callable service description is updated to indicate that it also supports
generation and evaluation of enhanced PassTickets and to document the new Generate
Extended function.

Function

…

R_ticketserv also allows callers to generate and evaluate PassTickets. Both legacy and
enhanced PassTickets are supported.

Parameters

…

Ticket_options

The name of a fullword containing the address of a binary bit string that identifies the ticket-
specific processing to be performed. This parameter is unused when a function code of
X'0001' is specified.

When function code X'0003' is specified, the bit string is used as an integer to specify which
PassTicket operation to perform.

 X'00000001' - Generate a PassTicket
 X'00000002' - Evaluate a PassTicket
 X'00000003' - Evaluate a PassTicket Extended
 X'00000004' - Generate a PassTicket Extended

If option code 3 (PassTicket Evaluate Extended) is specified, additional reason codes are
provided in the event of a PassTicket evaluation failure. This is the only difference between
the PassTicket Evaluate and PassTicket Evaluate Extended options. IBM recommends us-
ing the extended option if your application reports SAF return and reason codes in a trace
log, or other diagnostic medium.

If option code 4 (PassTicket Generate Extended) is specified, additional reason codes are
provided in the event of a PassTicket generation failure. This is the only difference between
the PassTicket Generate and PassTicket Generate Extended options. IBM recommends
using the extended option if your application reports SAF return and reason codes in a
trace log, or other diagnostic medium.

RACF enhanced PassTicket Support – V1.00

© Copyright IBM Corp. 2020 Page 34 of 60

Return and reason codes

SAF return
code

RACF return
code

RACF reason
code

Explanation

…

8 16 X'nnnnnnnn' PassTicket generation extended fail-
ure. X'nnnnnnnn' is the internal reason
code for the generation failure.

RACF enhanced PassTicket Support – V1.00

© Copyright IBM Corp. 2020 Page 35 of 60

3.4 z/OS Security Server RACF Macros and Interfaces
This information supplements the following chapters and sections:
• Chapter: ‘RACF database unload’

o Section: ‘Record formats produced by the database unload utility’
• Chapter: ‘SMF records’

o Section: Record type 80: RACF processing record
o Section: Format of SMF type 80 records

• Chapter: The format of the unloaded SMF type data
o Section: The JOBINIT record extension

• Chapter: ‘The RACF PassTicket’
• Appendix: ‘Supplied class descriptor table entries’
• Appendix: ‘RACF database templates’

o Section: User template for the RACF database
o Section: General template for the RACF database

3.4.1 Record formats produced by the database unload utility

The General Resource SSIGNON Data Record (0530) is updated to add new fields for
enhanced PassTickets.

Field Name Type Start End Comments
GRSIGN_RECORD_TYPE Int 1 4 Record type of the SSIGNON record

(0530)
GRSIGN_NAME Char 6 251 General resource name as taken

from the profile name.
GRSIGN_CLASS_NAME Char 253 260 Name of the class to which the

general resource profile
belongs.

GRSIGN_PROTECTION Char 262 325 Method of protection for the legacy
PassTicket key. Can contain one of
the following values:
• *MASKED* - KEYMASKED

keyword was used
• *KEYTOKEN* - KEYENCRYPTED

was used, and the key exists
within a key token, perhaps due to
an error with ICSF

• Key label name – KEYLABEL or
KEYENCRYPTED was used,
and the key is stored in ICSF with
a key label. The output is the label
name, which is a 64-character
value padded with blanks if

RACF enhanced PassTicket Support – V1.00

© Copyright IBM Corp. 2020 Page 36 of 60

necessary.
• *UNKNOWN* - the format of the

data is unrecognized.
GRSIGN _KEY_LABEL Char 327 390 The enhanced PassTicket ICSF

CKDS Key Label name.
GRSIGN _TYPE Char 392 403 Enhanced PassTicket type.

GRSIGN _TIMEOUT Int 405 414 Enhanced PassTicket timeout setting.
GRSIGN _REPLAY Yes/

No
416 419 Indicates whether enhanced

PassTicket replays are allowed.

3.4.2 Record type 80: RACF processing record

Type 80 event code 1 (RACROUTE REQ=VERIFY/X) record:

The “Table of extended-length relocate section variable data” is updated to add new
enhanced PassTicket information to existing relocate 443 and to add new relocate 67.

Data type
(SMF80TP2)
dec(hex)

Data
length
(SMF80DL
2)

Format Audited
by event
code

Description (SMF80DA2)

…
67(43) variable mixed 81, 82 Byte 1: PassTicket Generation or

Evaluation Details
Bit Meaning when set
0 Legacy PassTicket
1 Evaluation: Legacy PassTicket

Successful
2 Enhanced PassTicket Type

UPPER
3 Evaluation: Enhanced PassTicket

Type UPPER Successful
4 Enhanced PassTicket Type

RACF enhanced PassTicket Support – V1.00

© Copyright IBM Corp. 2020 Page 37 of 60

MIXED
5 Evaluation: Enhanced PassTicket

Type MIXED Successful
6 Evaluation: Failure due to

PassTicket replay attempt
6-7 Reserved

Byte 2: Reserved

Byte 3-6: Return Code

Bytes 7-10: Reason Code

Bytes 11-18: Application Name

…
443(1BB) variable mixed 1 Byte 1: Authentication information:

Bit Meaning when set
0 Authenticated from VLF
1 User has active MFA factor(s)
2 MFA user allowed to fall back

when no MFA decision can be
made

3 No MFA decision for MFA user
4 IBMMFA requested that

RACROUTE REQUEST=VERIFY
return the password-expired
return code.

5 IBM MFA requested that
RACROUTE REQUEST=VERIFY
return the new-password-invalid
return code.

6 IBM MFA requested that
RACROUTE REQUEST=VERIFY
return the password-invalid return
code, but not to increment the
password revoke count (partial
success – needs more
information).

7 Relocate 443 is extended.

RACF enhanced PassTicket Support – V1.00

© Copyright IBM Corp. 2020 Page 38 of 60

Byte 2: Authenticator used:
Bit Meaning when set
0 Password Evaluated
1 Password Successful
2 Password Phrase Evaluated
3 Password Phrase Successful
4 PassTicket Evaluated
5 PassTicket Successful
6 MFA authentication successful
7 MFA authentication unsuccessful

Byte 3-6: MFA Authorization Return Code

Bytes 7-10: MFA Authorization Reason
Code

Note: Below fields are only present when
relocate 443 is extended.

Byte 11-14: PassTicket Return Code

Bytes 15-18: PassTicket Reason Code

Byte 19: Flag byte 3: Authentication
Details
Bit Meaning when set
0 Password or Password Phrase

expired
1 New Password or Password

Phrase invalid
2 Identity Token (IDT) Evaluated
3 Identity Token (IDT) Successful
4 IBM MFA requested that

RACROUTE REQUEST=VERIFY
return the password-invalid return
code, but not to increment the
password revoke count
(reauthentication requested).

RACF enhanced PassTicket Support – V1.00

© Copyright IBM Corp. 2020 Page 39 of 60

5 Legacy PassTicket Evaluated
6 Legacy PassTicket Successful
7 Enhanced PassTicket Type

UPPER Evaluated

Byte 20: Flag byte 4: Authentication
Details
Bit Meaning when set
0 Enhanced PassTicket Type

UPPER Successful
1 Enhanced PassTicket Type

MIXED Evaluated
2 Enhanced PassTicket Type

MIXED Successful
3-7 Reserved

Bytes 21-28: Derived Application Name

Byte 29-32: IDT Validation Reason Code

Byte 33-36: IDT Error Reason Code

Byte 37-40: Failing Service ID

Byte 41-44: Failing Service Return Code

Byte 45-48: Failing Service Reason Code

3.4.3 The format of the unloaded SMF type 80 data

The JOBINIT record extension

The JOBINIT record extension relocate section 443 is updated to reuse former reserved
fields as follows:

INIT_RESERVED_01 as INIT_LPT_EVAL
INIT_RESERVED_02 as INIT_LPT_SUCC
INIT_RESERVED_03 as INIT_EPT_UPPER_EVAL
INIT_RESERVED_04 as INIT_EPT_UPPER_SUCC
INIT_RESERVED_05 as INIT_EPT_MIXED_EVAL
INIT_RESERVED_06 as INIT_EPT_MIXED_SUCC

RACF enhanced PassTicket Support – V1.00

© Copyright IBM Corp. 2020 Page 40 of 60

Field Name Type Start End Comments
INIT_ACEE_VLF Yes/

No
4540 4543 The ACEE was created from the VLF

cache
INIT_MFA_USER Yes/

No
4545 4548 The user has active MFA factors

INIT_MFA_FALLBACK Yes/
No

4550 4553 The MFA user is allowed to fall back to
password authentication when MFA is
unavailable

INIT_MFA_UNAVAIL Yes/
No

4555 4558 MFA was unavailable to make an
authentication decision for the MFA
user

INIT_MFA_PWD_EXPIRED Yes/
No

4560 4563 IBM MFA requested that RACROUTE
REQUEST=VERIFY return the
password-expired return code

INIT_MFA_NPWD_INV Yes/
No

4565 4568 IBM MFA requested that RACROUTE
REQUEST=VERIFY return the new-
password-invalid return code

INIT_MFA_PART_SUCC Yes/
No

4570 4573 IBM MFA requested that RACROUTE
REQUEST=VERIFY return the
password-invalid return code, but not
to increment the password revoke
count (partial success – needs more
information).

INIT_RELO443_EXTENDED Yes/
No

4575 4578
Relocate 443 is extended.

INIT_PASSWORD_EVAL Yes/
No

4580 4583 The supplied password was evaluated

INIT_PASSWORD_SUCC Yes/
No

4585 4588 The supplied password was evaluated
successfully

INIT_PHRASE_EVAL Yes/
No

4590 4593 The supplied password phrase was
evaluated

INIT_PHRASE_SUCC Yes/
No

4595 4598 The supplied password phrase was
evaluated successfully

INIT_PASSTICKET_EVAL Yes/
No

4600 4603 The supplied password was evaluated
as a PassTicket

INIT_PASSTICKET_SUCC Yes/
No

4605 4608 The supplied password was evaluated
successfully as a PassTicket

INIT_MFA_SUCC Yes/
No

4610 4613 The supplied password phrase/phrase
was evaluated successfully as
multifactor data

RACF enhanced PassTicket Support – V1.00

© Copyright IBM Corp. 2020 Page 41 of 60

INIT_MFA_FAIL Yes/
No

4615 4618 The supplied password/phrase was
evaluated unsuccessfully as MFA data

INIT_AUTH_RSN1 Char 4620 4627 MFA Authentication return code.
Expressed as hexadecimal number.

INIT_AUTH_RSN2 Char 4629 4636 MFA Authentication reason code.
Expressed as hexadecimal number.

INIT_AUTH_RSN3 Char 4638

4645

PassTicket Authentication return code.
Expressed as hexadecimal number.

INIT_AUTH_RSN4 Char 4647

4654

PassTicket Authentication reason code.
Expressed as hexadecimal number.

INIT_PWD_PHR_EXPIRED Yes/
No

4656

4659

The supplied password or password
phrase was expired.

INIT_NPWD_NPHR_NONVAL Yes/
No

4661

4664

The supplied new password or new
password phrase was not valid.

INIT_IDT_EVAL Yes/
No

4666

4669

The supplied Identity Token (IDT) was
evaluated.

INIT_IDT_SUCC Yes/
No

4671

4674

The supplied Identity Token (IDT) was
evaluated successfully.

INIT_MFA_REAUTHENT Yes/
No

4676

4679

IBM MFA requested that RACROUTE
REQUEST=VERIFY return the
password-invalid return code, but not
to increment the password revoke
count (reauthentication requested).

INIT_RESERVED_01
INIT_LPT_EVAL

Yes/
No

4681

4684

The supplied Password was evaluated
as a legacy PassTicket.

INIT_RESERVED_02
INIT_LPT_SUCC

Yes/
No

4686

4689

The supplied Password was evaluated
successfully as a legacy PassTicket.

INIT_RESERVED_03
INIT_EPT_UPPER_EVAL

Yes/
No

4691

4694

The supplied Password was evaluated
as an enhanced PassTicket type
UPPER.

INIT_RESERVED_04
INIT_ EPT_UPPER_SUCC

Yes/
No

4696

4699

The supplied Password was evaluated
successfully as an enhanced
PassTicket type UPPER.

INIT_RESERVED_05
INIT_EPT_MIXED_EVAL

Yes/
No

4701

4704

The supplied Password was evaluated
as an enhanced PassTicket type
MIXED.

INIT_RESERVED_06
INIT_EPT_MIXED_SUCC

Yes/
No

4706

4709

The supplied Password was evaluated
successfully as an enhanced
PassTicket type MIXED.

RACF enhanced PassTicket Support – V1.00

© Copyright IBM Corp. 2020 Page 42 of 60

INIT_RESERVED_07 Yes/
No

4711

4714

Reserved for IBM's use

INIT_RESERVED_08 Yes/
No

4716

4719

Reserved for IBM's use

INIT_RESERVED_09 Yes/
No

4721

4724

Reserved for IBM's use

INIT_RESERVED_10 Yes/
No

4726

4729

Reserved for IBM's use

INIT_RESERVED_11 Yes/
No

4731

4734

Reserved for IBM's use

INIT_DERIVED_APPL_NAM Char 4736 4743 Derived Application Name
INIT_IDT_VALIDTN_RSNC Char 4745 4752 IDT Validation Reason Code

INIT_IDT_ERROR_RSNC Char 4754 4761 IDT Error Reason Code
INIT_SERVICE_CODE Char 4763 4770 Failing Service Identifier
INIT_SERVICE_RC Char 4772 4779 Failing Service Return Code
INIT_SERVICE_RSNC Char 4781 4788 Failing Service Reason Code

Type 80 event code 81 (PassTicket Evaluation) record:

The PTEVAL record extension is updated to add relocate section 67.

Field Name Type Start End Comments
…
PTEV_LPT_EVAL Yes/

No
486 489 The supplied password was evaluated

as a legacy PassTicket
PTEV_LPT_SUCC Yes/

No
491 484 The legacy PassTicket was evaluated

successfully.
PTEV_EPT_UPPER_EVAL Yes/

No
496 499 The supplied Password was evaluated

as an enhanced PassTicket type
UPPER.

PTEV_EPT_UPPER_SUCC Yes/
No

501 504 The supplied Password was evaluated
successfully as an enhanced
PassTicket type UPPER.

PTEV_EPT_MIXED_EVAL Yes/
No

506 509 The supplied Password was evaluated
as an enhanced PassTicket type
MIXED.

PTEV_EPT_MIXED_SUCC Yes/ 511 514 The supplied Password was evaluated

RACF enhanced PassTicket Support – V1.00

© Copyright IBM Corp. 2020 Page 43 of 60

No successfully as an enhanced
PassTicket type MIXED.

PTEV_REPLAY_FAILURE Yes/
No

516 519 Failure due to replay attempt.

PTEV_RESERVED_08 Yes/
No

521 524 Reserved for IBM's use

PTEV_RESERVED_09 Yes/
No

526 529 Reserved for IBM's use

PTEV_RESERVED_10 Yes/
No

531 534 Reserved for IBM's use

PTEV_RESERVED_11 Yes/
No

536 539 Reserved for IBM's use

PTEV_RESERVED_12 Yes/
No

541 544 Reserved for IBM's use

PTEV_RESERVED_13 Yes/
No

546 549 Reserved for IBM's use

PTEV_RESERVED_14 Yes/
No

551 554 Reserved for IBM's use

PTEV_RESERVED_15 Yes/
No

556 559 Reserved for IBM's use

PTEV_RESERVED_16 Yes/
No

561 564 Reserved for IBM's use

PTEV_APPL_NAME Char 566 573 Application name used to evaluate the
PassTicket.

PTEV_EVAL_RSN1 Char 575 582 Evaluation Return Code. Expressed
as hexadecimal number.

PTEV_EVAL_RSN2 Char 584 591 Evaluation Reason Code. Expressed
as hexadecimal number.

Type 80 event code 82 (PassTicket Generation) record:

The PTCREATE record extension is updated to add relocate section 67.

Field Name Type Start End Comments
PTCR_LPT Yes/

No
486 489 Generate of a legacy PassTicket was

attempted
PTCR_RESERVED_02 Yes/

No
491 494 Reserved for IBM's use

RACF enhanced PassTicket Support – V1.00

© Copyright IBM Corp. 2020 Page 44 of 60

PTCR_EPT_UPPER Yes/
No

496 499 Generate of an enhanced PassTicket
type UPPER was attempted

PTCR_RESERVED_04 Yes/
No

501 504 Reserved for IBM's use

PTCR_EPT_MIXED Yes/
No

506 509 Generate of an enhanced PassTicket
type MIXED was attempted

PTCR_RESERVED_06 Yes/
No

511 514 Reserved for IBM's use

PTCR_RESERVED_07 Yes/
No

516 519 Reserved for IBM's use

PTCR_RESERVED_08 Yes/
No

521 524 Reserved for IBM's use

PTCR_RESERVED_09 Yes/
No

526 529 Reserved for IBM's use

PTCR_RESERVED_10 Yes/
No

531 534 Reserved for IBM's use

PTCR_RESERVED_11 Yes/
No

536 539 Reserved for IBM's use

PTCR_RESERVED_12 Yes/
No

541 544 Reserved for IBM's use

PTCR_RESERVED_13 Yes/
No

546 549 Reserved for IBM's use

PTCR_RESERVED_14 Yes/
No

551 554 Reserved for IBM's use

PTCR_RESERVED_15 Yes/
No

556 559 Reserved for IBM's use

PTCR_RESERVED_16 Yes/
No

561 564 Reserved for IBM's use

PTCR_APPL_NAME Char 566 573 Application Name used to generate the
PassTicket.

PTCR_GEN_RSN1 Char 575 582 Generation Return Code. Expressed
as hexadecimal number.

PTCR_GEN_RSN2 Char 584 591 Generation Reason Code. Expressed
as hexadecimal number.

RACF enhanced PassTicket Support – V1.00

© Copyright IBM Corp. 2020 Page 45 of 60

3.4.4 RACF database templates

The SSIGNON segment is updated in the GENERAL section to add new fields for
enhanced PassTickets.

$/SEGMENT 004 SSIGNON
SSIGNON 001 00 00 00000000 00 SSIGNON - START OF SEGMENT FIELDS
SSKEY 002 00 00 00000000 00 SSIGNON - SECURE SIGNON KEY
PTKEYLAB 003 00 00 00000000 00 SSIGNON - EPT key label
PTTYPE 004 00 00 00000000 00 SSIGNON - PassTicket Type
PTTIMEO 005 00 00 00000004 00 SSIGNON – PassTicket Timeout
PTREPLAY 006 00 00 00000001 00 SSIGNON - PassTicket Replay

The RACF templates version is updated to:

VERSION OA59196 00000243.00000050

3.4.5 The RACF PassTicket

This chapter is updated to add details about enhanced PassTickets. Updated sections are
listed below with additions highlighted.

Introduction:
The RACF PassTicket is a one-time-only password that is generated by a requesting
product or function. It is an alternative to the RACF password that removes the need to
send RACF passwords across the network in clear text. It makes it possible to move the
authentication of a mainframe application user ID from RACF to another authorized
function executing on the host system or to the work station local area network (LAN)
environment. RACF provides support for the following PassTicket functions:
• Generating a PassTicket.
• Evaluating a PassTicket.

RACF PassTickets can be configured with two different algorithms:

• The legacy PassTicket algorithm
• The enhanced PassTicket algorithm

The legacy PassTicket algorithm is the original PassTicket implementation and uses a DES
secret key. The enhanced PassTicket algorithm is an updated version of the PassTicket
algorithm and uses an HMAC secret key. RACF supports generation and evaluation of
PassTickets with either the legacy PassTicket algorithm or the enhanced PassTicket
algorithm based on system configuration. IBM highly recommends using the enhanced
PassTicket algorithm as it provides the same capabilities as the legacy PassTicket
algorithm but also provides increased security.
For more information on configuring PassTickets see “The RACF PassTicket” in the z/OS
Security Server RACF Security Administrator’s Guide.

RACF enhanced PassTicket Support – V1.00

© Copyright IBM Corp. 2020 Page 46 of 60

Generating and evaluating a PassTicket
A product or function that generates a PassTicket must use the RACF legacy PassTicket
generator algorithm or enhanced PassTicket generation algorithm. These algorithms
require specific information as input data and produces a PassTicket that substitutes for a
specific end-user RACF password. RACF uses the PassTicket to authenticate the end-user
for a specific application running on a specific system that uses RACF for identification and
authentication.

There are four ways to generate and evaluate a PassTicket using the legacy PassTicket
algorithm or enhanced PassTicket algorithm:
• If the function using PassTickets is running on a z/OS system, you can use the RACF

PassTicket generation service (RCVTPTGN) to generate the PassTicket. The algorithm
is already incorporated into the service and allows RACF to generate a PassTicket on
the host. An authorized program, such as one authorized by the authorized program
facility (APF), can use the service to generate PassTickets. See “Using the RCVTPTGN
service to generate a PassTicket” for more information.

• For any function that generates a PassTicket, you can create a program that
incorporates the algorithm. See “Incorporating the PassTicket generator algorithm into
your program” for more information.

• You can use the R_ticketserv and R_GenSec callable services. This interface supports
problem state callers, and both 31-bit and 64-bit callers. For more information about
these callable services, see R_ticketserv (IRRSPK00): Parse or extract and R_GenSec
(IRRSGS00 or IRRSGS64): Generic security API interface in z/OS Security Server
RACF Callable Services.

• Java™ code can use a Java interface that uses a Java Native Interface (JNI) and calls
the R_ticketserv and R_GenSec callable services. For information about this interface,
see the JavaDoc shipped in the IRRRacfDoc.jar file, which is installed into the directory
/usr/include/java_classes. Download the jar file to a workstation, un-jar it, and read it
with a Web browser.

Using the RCVTPTGN service to generate a PassTicket
To allow RACF to authenticate a user with a PassTicket instead of a password, the non-
RACF function performing the authentication calls the RCVTPTGN service to build a
PassTicket.
The RCVTPTGN service:
• Is branch-entered by callers.
• Is not supported in cross-memory mode. Access register (AR) mode must use address

space control (ASC).
• Is not supported in SRB mode.
• Requires that the caller be in key zero.
• Is unable to generate PassTickets using the PTKTDATA profiles which are qualified by

user id and / or group. It can only generate PassTickets using profiles which match the
application name.

• Supports generation of legacy PassTickets or enhanced PassTickets based on RACF
configuration.

RACF enhanced PassTicket Support – V1.00

© Copyright IBM Corp. 2020 Page 47 of 60

Before calling the PassTicket-generation service, the application must locate the address of
the service. You can find this address from field RCVTPTGN in the RACF communications
vector table (RCVT). The ICHPRCVT macro maps the RCVT and field CVTRAC points to it
in the MVS communications vector table (CVT).

How the PassTicket-generation service works
The service:
• Uses standard linkage
• Uses the current system time, expressed in Greenwich Mean Time (GMT), 1 as input for

the algorithm
• Returns the PassTicket in general purpose register 0 (the leftmost four characters) and

general purpose register 1 (the rightmost four characters)
• The type of PassTicket returned is based on the keys configured in the associated

PTKTDATA class profile:
o An enhanced PassTicket is returned when an enhanced PassTicket key label is

configured with the EPTKEYLABEL keyword.
o A legacy PassTicket is returned when a legacy PassTicket key is configured with

the KEYMASKED, KEYENCRYPTED or KEYLABEL keywords and no enhanced
PassTicket key label is configured.

o In the case where a PTKTDATA class profile is configured to contain both a
legacy PassTicket key and enhanced PassTicket key an enhanced PassTicket is
returned.

• Provides return codes
o If a PassTicket is produced, register 15 contains a return code of 0
o If a PassTicket is not produced, register 15 contains return code of 8
o Register 0 contains a reason code. The 1st byte of the reason code indicates the

problem, the other 3 bytes may contain additional information:

Value Meaning Bytes 2-4
12 ICSF CSNBENC service failed Byte 2=ICSF RC

Byte 3 and 4=ICSF RSN
16 RACROUTE REQUEST=EXTRACT,

TYPE=ENCRYPT failed
Byte 2=SAFRC from
RACROUTE
Bytes 3 and 4=0

20 PTKTDATA class inactive 0
24 No profiles defined to the PTKTDATA

class
0

28 Unable to load ICSF CSFACEE or
CSFIQF service

Byte 2=Reason code from
z/OS LOAD macro

36 PTKTDATA profile representing the APPL
not found or the PTKTDATA profile does
not have a key saved in the SSIGNON
segment

0

52 Caller not in key 0 0
56 ICSF not initialized Byte 2=ICSF RC

RACF enhanced PassTicket Support – V1.00

© Copyright IBM Corp. 2020 Page 48 of 60

Byte 3 and 4=ICSF RSN
60 ICSF CSNBHMG service failed. Byte 2=ICSF RC

Byte 3 and 4=ICSF RSN
Other =
Internal error

Notes:
1. Register 13 must point to a standard save area.
2. No additional recovery processing is provided by the PassTicket-generation service

beyond what is already in effect within the invoking program.

Invoking the PassTicket-generation service
Following is an example of a generalized programming technique you can use with
assembler language to invoke a service. It is not intended to be syntactically correct.

L 15,RCVTPTGN
CALL (15),(userid,appname)

where:
userid

Is the RACF user ID of the user the PassTicket authenticates. This field is a maximum
of 9 bytes. The first byte contains the length of the non-blank portion of the userid field
that follows. Bytes 2 through 9 contain the user ID and must be in uppercase and left-
justified in the field.

appname
Is the application name that the PassTicket-generation service uses to locate the key
used in the PassTicket generator algorithm. This field is a maximum of 9 bytes. The first
byte is the length of the non-blank portion of the appname field that follows. Bytes 2
through 9 contain the application name and must be in uppercase and left-justified in
the field.
When the service is invoked, only the appname (not the userid or group) is used to
locate the PassTicket key. It is not possible to use the RCVTPTGN service to generate
PassTickets using keys which are stored in user id or group id qualified profiles.

Incorporating the PassTicket generator algorithm into your program
To generate a PassTicket without using the RACF service, callable services, or Java
interface, you need to incorporate either the RACF legacy PassTicket generator algorithm
or enhanced PassTicket generator algorithm into your program.

The RACF PassTicket algorithms each consist of two parts:
• The RACF PassTicket generator
• The RACF PassTicket time-coder
The time-coder is invoked from within the RACF PassTicket generator and returns its
results to the generator.

RACF enhanced PassTicket Support – V1.00

© Copyright IBM Corp. 2020 Page 49 of 60

The flowcharts in Figure 6 and Figure 7 and the descriptions that follow show how to
implement the RACF legacy PassTicket generator algorithm.

(Figures 6 and 7 are unchanged and not included in this document.)

The flowcharts in Figure 8 and Figure 9 and the descriptions that follow show how to
implement the RACF enhanced PassTicket generator algorithm.

RACF enhanced PassTicket Support – V1.00

© Copyright IBM Corp. 2020 Page 50 of 60

Figure 8. RACF enhanced PassTicket generator

RACF enhanced PassTicket Support – V1.00

© Copyright IBM Corp. 2020 Page 51 of 60

Figure 9. Algorithm for RACF enhanced PassTicket time-coder

RACF enhanced PassTicket Support – V1.00

© Copyright IBM Corp. 2020 Page 52 of 60

Input data for the generator algorithms
To successfully use the PassTicket, the target application using RACF to identify and
authenticate a user ID needs to have specific information for processing according to the
algorithm. These are:

• A RACF host user ID
• The RACF PassTicket application key
• The application name
• Time and date information
• The PassTicket algorithm type

1. The RACF user ID:

• Identifies the user ID on the system on which the target application runs
• Is represented in EBCDIC
• Is left-justified and padded with blanks on the right to a length of 8 bytes

2. The RACF PassTicket application key:
• Must match the key value used when defining the application to the PTKTDATA

class to RACF
• For the legacy PassTicket algorithm:

o This is a DES secret key.
o Contains only the characters 0 though 9 and A though F

• For the enhanced PassTicket algorithm:
o This is an HMAC secret key.

3. The application name as defined for a particular application. You can use it to
associate a PassTicket key with a particular host application. See z/OS Security Server
RACF Security Administrator's Guide for information about determining application
names.
The name:
• Is represented in EBCDIC
• Is left-justified and padded with blanks on the right to a length of 8 bytes

4. Time and date information:
This information:
• For the legacy PassTicket algorithm:

o Must be a 4-byte binary number
• For the enhanced PassTicket algorithm:

o Must be a 6-byte binary number
• Shows how many seconds elapsed since January 1, 1970, at 0000 Greenwich Mean

Time (GMT)
Several programming languages support a function for representing time in this way. In
C language, for example, you can obtain the time in this way:

1. Declare the variable ts as long.
2. Invoke the function time(&ts).

This produces the number of seconds that elapsed since January 1, 1970 at 0000 GMT,
expressed as an unsigned long integer.
Notes:

RACF enhanced PassTicket Support – V1.00

© Copyright IBM Corp. 2020 Page 53 of 60

1. It is likely that the computer that authenticates the PassTicket is not the computer that
generated it. To provide for differences in their internal clocks, the algorithms allow the
generated time to be different 10 minutes on either side of the TOD clock of than the
computer that is evaluating the PassTicket. For legacy PassTickets the generated time
must be within 10 minutes on either side of the TOD clock. For enhanced PassTickets,
the amount of time skew is configurable in the PTKTDATA class profile.
2. For RACF to properly evaluate PassTickets, the TOD clock must be properly set to
GMT rather than local time.

5. The PassTicket algorithm type:
• Identifies the type of algorithm used to generate and evaluate the PassTicket.
• The legacy PassTicket algorithm type is the original PassTicket algorithm and uses a

DES secret key.
• The enhanced PassTicket algorithm type is an improved PassTicket algorithm and

uses an HMAC secret key. An enhanced PassTicket can be generated with either a
MIXED or UPPER character set.

How the legacy PassTicket generator algorithm works
The RACF legacy PassTicket generator algorithm uses the input information to create a
legacy PassTicket. By using cryptographic techniques, the algorithm ensures that each
PassTicket is unpredictable.
The legacy PassTicket is an 8-character alphanumeric string that can contain the
characters A through Z and 0 through 9. The actual legacy PassTicket depends on the input
values.
…
(This rest of this section is unchanged and is not included in this document.)

How the legacy PassTicket time-coder algorithm works
The RACF legacy PassTicket time-coder algorithm uses the result of Step “4” of the legacy
PassTicket generator algorithm. It creates the time-coder information and passes it back to
step “6” on of that algorithm.
…
(This rest of this section is unchanged and is not included in this document.)

The legacy PassTicket permutation tables
A permutation table exists for each round of permutations that occurs during the legacy
PassTicket time-coder process.
…
(This rest of this section is unchanged and is not included in this document.)

The legacy PassTicket translation process
The legacy PassTicket time-coder output produced by the process described in Figure 7 is
translated into 8 alphanumeric characters in the following manner:
…
(This rest of this section is unchanged and is not included in this document.)

RACF enhanced PassTicket Support – V1.00

© Copyright IBM Corp. 2020 Page 54 of 60

How the enhanced PassTicket generator algorithm works
(This section is new and not highlighted to improve readability.)

The RACF enhanced PassTicket generator algorithm uses the input information to create
an enhanced PassTicket. By using cryptographic techniques, the algorithm ensures that
each enhanced PassTicket is unpredictable. The enhanced PassTicket is an 8-character
alphanumeric string which has a configurable character set. The PTKTDATA class profile
can be configured to indicate the desired character set per application by using the TYPE
keyword in the SSIGNON segment. The actual enhanced PassTicket depends on the input
values.

The following steps describe this process:
Step 1

The RACF user ID 1 and application name 3 are appended together to produce
Result-1.

Step 2
An HMAC with key 2 is performed on Result-1 to produce Result-2.
Note: All enhanced PassTicket cryptographic operations use HMAC with SHA-512
which produces 64 bytes of output.

Step 3
The left 6 bytes from Result-2 are selected as input to the next step as Result-3. The
rest are discarded.

Step 4
Result-3 is XORed with the time and date information 4 to produce Result-4.

Step 5
Result-4 is passed to the enhanced PassTicket time-coder routine to produce Result-5.

Step 6
Result-5 from the time-coder routine is converted to an 8-character string called the
enhanced PassTicket. Refer to “How the enhanced PassTicket character conversion
works”.

How the enhanced PassTicket time-coder algorithm works
(This section is new and not highlighted to improve readability.)

The RACF enhanced PassTicket time-coder algorithm uses the Result-4 from Step “4” of
the enhanced PassTicket generator algorithm. It creates the time-coder information Result-
5 and passes it back to step “6” of that algorithm.
The following steps, which make up Step “5” of the enhanced PassTicket generator
algorithm, describe this process:
Step A

Separate the 6-byte time-coder input (Result-4) into two portions, L3B (the left 3 bytes),
and R3B (the right 3 bytes) to produce Result-A.

Step B
Concatenate R3B (the right 3 bytes from Result-A) with 17 bytes of padding bytes to
form Result-B. In the resulting 20-byte string, the 3 bytes of R3B occupy the leftmost 3-
byte positions.

RACF enhanced PassTicket Support – V1.00

© Copyright IBM Corp. 2020 Page 55 of 60

The padding is a 17-byte string containing three separate fields:

1) The 1-byte round counter
The round counter starts with the value 1 and is incremented by 1 on each
subsequent use.

2) The 8-byte user ID 1
3) The 8-byte application name 3

Step C
An HMAC with key 2 is calculated on Result-B to produce Result-C.

Step D
The left 3 bytes from the Result-C are isolated and the rest of the value is discarded,
producing Result-D.

Step E
Result-D is XORed with L3B (from Result-A) to produce Result-E.

Step F
An enhanced PassTicket type MIXED is encoded as a 48-bit value and a type UPPER
is encoded as a 41-bit value. This step sets the extraneous leftmost 7 bits of a type
UPPER to binary zero.

When the enhanced PassTicket type is UPPER and the round counter is 1, 3 or 5 the
following masking operation is performed:

Perform bitwise AND on the leftmost 1 byte of Result-E with ‘01’x to set the leftmost
7 bits to zero to produce Result-F.

When the enhanced PassTicket type is MIXED or the type is UPPER and the round
counter is 2, 4 or 6:

Result-E is set as Result-F without any changes.
Step G

The values of L3B and R3B are redefined:
1. L3B is set equal to R3B.
2. R3B is set equal to Result-F.

Step H
This step counts the number of time-coder rounds that have been completed.
If the value is less than 6, the time-coder returns to Step B for another round.
If 6 rounds have been completed, processing continues with the next step.

Step I
L3B (left 3 bytes) and R3B (right 3 bytes) are recombined into a 48-bit string. This
completes the time-coder processing and produces Result-5. This result is passed back
to the generator algorithm as input to Step “6” for translation.

The enhanced PassTicket translation table:
(This section is new and not highlighted to improve readability.)

The enhanced PassTicket translation table consists of 64 slots. The first ten slots are
occupied by the numerics: 0–9. The next 26 slots are occupied by the uppercase letters of
the alphabet: A–Z. The next 26 slots are occupied by the lowercase letters of the alphabet:

RACF enhanced PassTicket Support – V1.00

© Copyright IBM Corp. 2020 Page 56 of 60

a–z. The last two slots are occupied by the special characters: dash “-“ and underscore “_”.

Note: An enhanced PassTicket with type UPPER will only use the first 36 slots (0-35) of
this translation table.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J K L M N O P

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
 Q R S T U V W X Y Z a b c d e f g h i j k l

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
 m n o p q r s t u v w x y z - _

How the enhanced PassTicket character conversion works
(This section is new and not highlighted to improve readability.)

The RACF enhanced PassTicket time-coder output is converted to an EBCDIC string value
using the following process:

Step A

Copy the 6-byte time-coder output value from Result-5 to the rightmost 6 bytes of a 64-
bit binary value to produce Result-A. The leftmost 2 bytes of Result-A are set to binary
zero.

Step B
For enhanced PassTicket type UPPER:
• Calculate modulo 36 of Result-A to produce Result-B.
For enhanced PassTicket type MIXED:
• Calculate modulo 64 of Result-A to produce Result-B.

Step C
Translate Result-B from a binary value to an EBCDIC value using the enhanced
PassTicket type translation table to produce Result-C.
For example, the binary value 33 is translated to the EBCDIC value ‘X’.

Step D
Result-C is set as an individual character of the EBCDIC enhanced PassTicket value.
The characters are concatenated together one at a time starting with the rightmost
character and proceeding to the left on each round of conversion.

Step E
When less than 8 characters have been converted:
• For enhanced PassTicket type UPPER:

o Divide Result-A by 36 to produce Result-E.
• For enhanced PassTicket type MIXED:

o Divide Result-A by 64 to produce Result-E.
Step F

Replace Result-A with Result-E.

RACF enhanced PassTicket Support – V1.00

© Copyright IBM Corp. 2020 Page 57 of 60

Step G
This step counts the number of characters that have been encoded. When there are
less than 8 characters encoded the conversion process returns to Step B for another
round.

Step H
The final enhanced PassTicket value has been assembled.

Generating a secured signon session key
Note:
1. IBM recommends that the secured signon session key not be used outside of a test

environment. It is no longer considered secure. This section is left for reference only.
2. Enhanced PassTickets and enhanced PassTicket keys cannot be used to generate a

secured signon session key.
An attempt to generate a secured signon session key with a specified enhanced
PassTicket value may fail with Return Code 4 – “Incorrect PassTicket”
An attempt to generate a secured signon session key with a PTKTDATA class profile
that contains only an enhanced PassTicket key may fail with Return Code 24 – “Error in
the session key generator process”.

…
(The remainder of this section is unchanged and not included in this document.)

RACF enhanced PassTicket Support – V1.00

© Copyright IBM Corp. 2020 Page 58 of 60

3.5 z/OS Security Server RACF Data Areas
This information supplements the following chapter and section:
• Chapter: ‘RACF Data Areas’

o Section: RCVT: RACF Communication Vector Table

3.5.1 RCVT: RACF Communication Vector Table

The RCVT: RACF Communication Vector Table adds a field to indicate that the enhanced
PassTicket Functions are available. Other products can check this field to determine if the
current version of RACF has enhanced PassTicket support added either in the base OS or
via PTF.

Offset
(dec)

Offset
(Hex)

Type Len Name(Dim) Description

...
640 280 BITSTRING 1 RCVTFLG4 Function availability bits
...
 ...1 RCVTEPT Enhanced PassTicket Functions

(OA59196) are available.
...

RACF enhanced PassTicket Support – V1.00

© Copyright IBM Corp. 2020 Page 59 of 60

3.6 z/OS Security Server RACF Messages and Codes
This information supplements the following chapter and section:
• Chapter: ‘IRR messages for commands, utilities, and other tasks’

o Section: ‘Dynamic parse (IRRDPI00) messages’

3.6.1 Dynamic parse (IRRDPI00) messages

The message IRR52218I explanation is updated to indicate it can be issued for other
segments besides CSDATA.
The message IRR52256I is added.

IRR52218I The value specified for keyword-name is not valid. The { maximum value
| minimum value | maximum length } allowed is limit.
Explanation
The value specified for keyword-name in the CSDATA segment does not fall between the
minimum and maximum values allowed for the keyword, or has an incorrect length.

For fields in the CSDATA segment the maximum and minimum values allowed, and the
maximum length of the value are set using custom field definitions in the CFDEF segment
of the CFIELD class. For more information on custom fields, see the z/OS Security Server
RACF Security Administrator's Guide.
System action
Command processing stops.
User response
You must reissue the command and specify a value that is either less than the maximum
value or greater than the minimum value specified by limit.
Parent topic: Dynamic parse (IRRDPI00) messages

IRR52256I keyword-name is an unsupported keyword. Command processing is
terminated

Explanation

The value specified for keyword-name is not supported by the command.

System action

Command processing stops.

User response

You must reissue the command with only supported keywords.

Parent topic: Dynamic parse (IRRDPI00) messages

RACF enhanced PassTicket Support – V1.00

© Copyright IBM Corp. 2020 Page 60 of 60

4 Trademarks

IBM®, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corporation, registered in many jurisdictions
worldwide. Other product and service names might be trademarks of IBM or other
companies. A current list of IBM trademarks is available on the Web at “Copyright and
trademark information” at www.ibm.com/legal/copytrade.shtml.

