
z/OS UNIX Security
Overview

New York, Tampa Bay, Dallas, and Raleigh RACF User Group

May 15, 2024

Bruce R. Wells

brwells@us.ibm.com

Navigating the presentation

NY/Tampa/Dallas/Raleigh RUG 2

Navigating the documentation

NY/Tampa/Dallas/Raleigh RUG 3

For security administrators

NY/Tampa/Dallas/Raleigh RUG 4

UNIX System Services Planning: Security chapter

NY/Tampa/Dallas/Raleigh RUG 5

The bookshelf in which
the displayed book
resides

The displayed book
The bookshelves I
reference the most are
Firefox bookmarks.

This book/chapter is
the single most
comprehensive
source of information

The relevant content

USS Command Reference: security cmds

NY/Tampa/Dallas/Raleigh RUG 6

The shell commands
you may need to
issue, stating the
authorization required
to do so

RACF Security Administrator's Guide: UNIX chapter

NY/Tampa/Dallas/Raleigh RUG 7

Serves as a good
cross-check with UNIX
Planning

For system programmers

NY/Tampa/Dallas/Raleigh RUG 8

MVS Initialization and Tuning Ref: BPXPRMxx

NY/Tampa/Dallas/Raleigh RUG 9

BPXPRMxx establishes
file system structure
at IPL, and contains
many more options
such as default system
resource limits

For auditors

NY/Tampa/Dallas/Raleigh RUG 10

RACF Auditor’s Guide: UNIX section

NY/Tampa/Dallas/Raleigh RUG
11

Describes the UNIX
logging classes, which
ones are controlled
with SETROPTS AUDIT
vs. LOGOPTIONS, and
which UNIX functions
are included in each

RACF Macros and Interfaces: SMF80/Unload

NY/Tampa/Dallas/Raleigh RUG 12

I count 41 UNIX-related
SMF 80 Events Codes you
can query in SMF Unload
(but not Report Writer!)
output. E.G. file access,
security attribute changes,
process creation, changes
to process identity, etc.

Further down and not
shown are the Database
Unload record formats.
You can see OMVS
segment info, as well as
profile and access list info
for UNIX related profiles,
such as UNIXPRIV.

For application developers

NY/Tampa/Dallas/Raleigh RUG 13

C/C++ Runtime Library Reference: individual APIs

NY/Tampa/Dallas/Raleigh RUG
14

Describes the high
level language UNIX
APIs and the authority
necessary to call
them.

USS Programming: Assembler Callable Services Ref

NY/Tampa/Dallas/Raleigh RUG 15

Describes the
assembler APIs, many
of which correspond
to C/C++ APIs,
providing a good
cross-check on
security requirements

USS Command Reference: corresponding command

NY/Tampa/Dallas/Raleigh RUG
16

Since many UNIX APIs
correspond directly to
commands, another
good cross check

RACF Callable Services

NY/Tampa/Dallas/Raleigh RUG 17

Though most of these
are only for the kernel
and file system, again,
they correspond to
the UNIX assembler
APIs and provide a
cross check

Using REXX and z/OS UNIX System Services

NY/Tampa/Dallas/Raleigh RUG 18

All kinds of good APIs for
REXXophiles, many
corresponding to the
previously described APIs.
The UNIX command
download mentioned
later uses some of these.

RACF Macros and Interfaces:
SMF80/Unload

NY/Tampa/Dallas/Raleigh RUG 19

Applications can use SMF
Unload output too! And if
you like to crawl through
the raw record, the
formats are documented
here also, in gruesome
detail.

My UNIX brain-dump of record

1. z/OS UNIX System Services File System Security

2. z/OS UNIX System Services File Security

3. z/OS UNIX System Services Users and Groups

4. The UNIX superuser

NY/Tampa/Dallas/Raleigh RUG 20

https://community.ibm.com/community/user/ibmz-and-linuxone/blogs/sneha-kanaujia1/2023/10/26/unix-file-system-security?CommunityKey=01ddfc0e-8a3c-4873-ad0b-76a90c1adcca
https://community.ibm.com/community/user/ibmz-and-linuxone/blogs/sneha-kanaujia1/2023/10/27/unix-file-security
https://community.ibm.com/community/user/ibmz-and-linuxone/blogs/sneha-kanaujia1/2023/10/30/unix-users-and-groups?communityKey=01ddfc0e-8a3c-4873-ad0b-76a90c1adcca
https://community.ibm.com/community/user/ibmz-and-linuxone/blogs/sneha-kanaujia1/2023/10/31/unix-superusers?communityKey=01ddfc0e-8a3c-4873-ad0b-76a90c1adcca

UNIX file system security

NY/Tampa/Dallas/Raleigh RUG 21

Data Sets (aggregates) are MOUNTed into a hierarchical structure

NY/Tampa/Dallas/Raleigh RUG 22

/

bin tmp etc usr u

brwells jtiltonmnelson

MyFile1 MyFile2 MyDir1

OMVS.ROOT.ZFS

OMVS.ETC.ZFS

OMVS.BRWELLS.ZFS

OMVS.MNELSON.ZFS

TSO MOUNT FILESYSTEM(OMVS.BRWELLS.ZFS) MOUNTPOINT('/u/brwells') MODE(RDWR) TYPE(ZFS)

Controls at the aggregate level

• Good old DATASET protection

• SYS1.PARMLIB

• zFS aggregates

• Including user file systems, which should not use the user ID as the HLQ

• Ability to MOUNT and UNMOUNT

• With specific modes like nosetuid, read-only, read/write, nosecurity

• SUPERUSER.FILESYS.MOUNT in the UNIXPRIV class

• SUPERUSER.FILESYS.USERMOUNT in the UNIXPRIV class

• Ability to encrypt

• ‘zfsadmin encrypt’ command can encrypt while file system is in use

• RACF FSEXEC-class profiles to prevent executables from running

• Think /tmp, which is where attackers like to deposit a ‘fingerprinting’ script

• RACF FSACCESS-class profiles to prevent entry, even from UID(0)

NY/Tampa/Dallas/Raleigh RUG 23

Auditing the environment

• Looking at the RACF profiles (SEARCH, RLIST, LISTDSD,
IRRDBU00)

• ‘df –v’ shell command displays detailed information on
all the mounted file systems
• Mount point
• Mount mode
• Aggregate name
• File system type
• Etc

• ‘find’ shell command – e.g. to discover your
setuid/setgid files

• Zfs Unload utility on RACF downloads page
• https://github.com/IBM/IBM-Z-zOS/tree/main/zOS-RACF/Downloads/ZFSUnload

NY/Tampa/Dallas/Raleigh RUG 24

https://github.com/IBM/IBM-Z-zOS/tree/main/zOS-RACF/Downloads/ZFSUnload

UNIX file security

NY/Tampa/Dallas/Raleigh RUG 25

Security attributes are meta-data
of the file
• Ownership: user and group

• Permission bits and access control lists (acls)

• Set-uid, set-gid, and sticky bits

• Logging specifications

• Extended attributes like apf and program-control

• Security label

NY/Tampa/Dallas/Raleigh RUG 26

File security attributes and how to manage them

write execute

executewrite

read

read

stickyset-gidset-uid

Other

rwx

Group

rwx

Owner

rwx

chlabel commandSecurity labelSECLABEL of

covering dataset

setfacl commandAccess Control Listcontents of parent's

default ACL

extattr commandExtended attributesSHAREAS bit on for

executable files

chaudit –a commandAUDITOR audit optionsno auditing

chaudit commandOwner audit optionsread, write, and

execute failures

chmod commandFlagsflags specified by

open()

chmod commandPermission bitsvaries by function

(qualified by umask)

chown or chgrpGroup (GID) ownerparent dir's group

chown commandUser (UID) ownereffective UID

initialized to ... File security info changed by ...

write execute

executewrite

read

read

stickyset-gidset-uid

Other

rwx

Group

rwx

Owner

rwx

chlabel commandSecurity labelSECLABEL of

covering dataset

setfacl commandAccess Control Listcontents of parent's

default ACL

extattr commandExtended attributesSHAREAS bit on for

executable files

chaudit –a commandAUDITOR audit optionsno auditing

chaudit commandOwner audit optionsread, write, and

execute failures

chmod commandFlagsflags specified by

open()

chmod commandPermission bitsvaries by function

(qualified by umask)

chown or chgrpGroup (GID) ownerparent dir's group

chown commandUser (UID) ownereffective UID

initialized to ... File security info changed by ...

NY/Tampa/Dallas/Raleigh RUG 27

Or use the RACF/TSO/UNIX command download

• https://github.com/IBM/IBM-Z-zOS/tree/main/zOS-RACF/Downloads/RacfUnixCommands

• REXX execs that act like RACF commands would if file security were protected with profiles

• ORALTER, ORLIST, OPERMIT

• Uses RACF keywords where possible

• Uses RACFish keywords where not

• All create output files

• All have a ‘recursive’ option

• All have a ‘path’ option to operate on all

 components of a specified path

• All have optional configuration variables

 (like ‘noRun’ to see what command would do)

• Documented as if they were in the RACF

 Command Language Reference

NY/Tampa/Dallas/Raleigh RUG 28

https://github.com/IBM/IBM-Z-zOS/tree/main/zOS-RACF/Downloads/RacfUnixCommands

OPERMIT syntax – RACF keywords used
OPERMIT (or whatever name you have chosen for it)

[absolute-path-name-1]

[ACCess(access-authority) | DELETE]

[ACL] [FMODEL] [DMODEL] | [ALL]

[CLASS(FSSEC)]

[DEBUG]

[FROM(absolute-path-name-2)]

[FTYPE(ACL | DMODEL | FMODEL)]

[ID(name ...)]

[OUTFILE(path-or-dataset-name)]

[PATH]

[RECursive[(CURRENT|FILESYS|ALL)]]

[RESET]

[VERBOSE]

NY/Tampa/Dallas/Raleigh RUG 29

Examples

• opermit /u/bruce/file1 id(mark) access(r-x)

• opermit /u/bruce/file1 from(/u/brwells/file2)

• opermit /u/bruce/file1 reset

• oralter /u/bruce/myfile perms(rwxr-x---)

• oralter /u/bruce/file1 owner(bruce) group(racfers)

• oralter /u/bruce/myfile noapf noprogram perms(o-w) recursive

• orlist /u/brwells

• orlist /u/brwells auth

• orlist /u/brwells/file1 auth path

NY/Tampa/Dallas/Raleigh RUG 30

ORLIST default and AUTH formats
CLASS NAME

----- ----

FSSEC /etc/inetd.conf

FILE SYSTEM CONTAINER ATTRIBUTES

NAME = ZOS24.ETC.ZFS TYPE = ZFS

MOUNT POINT = /SYSTEM/etc

Mount mode = READ/WRITE

Covered in FSACCESS class by ZOS24.ETC.*

FILE TYPE

Regular file

OWNER GROUP OWNER UNIVERSAL ACCESS YOUR ACCESS

---------- ----------- ---------------- -----------

IBMUSER SYS1 r-- rw-

SECLABEL

SYSMULTI

AUDITING

FAILURES(READ),FAILURES(UPDATE),FAILURES(EXECUTE)

GLOBALAUDIT

NONE(READ),NONE(UPDATE),NONE(EXECUTE)

CREATION DATE LAST REFERENCE DATE LAST STATUS CHANGE DATE

------------- ------------------- -----------------------

2019-09-20 2019-10-02 2019-09-20

EXTENDED ATTRIBUTES

SHAREAS

FILE MODE BITS

Sticky bit is: 0

Set-uid bit is: 0

Set-gid bit is: 0

FILE PERMISSIONS

 OWNER GROUP OTHER

 ----- ----- -----

 rw- r-- r-- (644 in octal notation)

ID TYPE ACCESS

-- ---- ------

TSOUSR4 USER R-X

SYS1 GROUP R-X NY/Tampa/Dallas/Raleigh RUG 31

OWNER GROUP OWNER UNIVERSAL ACCESS YOUR ACCESS

---------- ----------- ---------------- -----------

IBMUSER SYS1 r-- rw-

FILE PERMISSIONS

 OWNER GROUP OTHER

 ----- ----- -----

 rw- r-- r-- (644 in octal notation)

ID TYPE ACCESS

-- ---- ------

TSOUSR4 USER R-X

SYS1 GROUP R-X

Auditing the environment

• The shell ‘ls’ command with various options
• ‘ls –l’ for most of the options (ownership, permission bits,

more)
• ‘ls –W’ for the logging options
• ‘ls –E’ for the extended attributes
• ‘ls –M’ for the security label

• ‘find’ shell command – find files with any
attribute(s)/value

• ORLIST in the RACF/TSO/UNIX download
• Displays all attributes in RLIST-style format

• zFS Unload utility on RACF downloads page
• https://github.com/IBM/IBM-Z-zOS/tree/main/zOS-RACF/Downloads/ZFSUnload

NY/Tampa/Dallas/Raleigh RUG 32

https://github.com/IBM/IBM-Z-zOS/tree/main/zOS-RACF/Downloads/RacfUnixCommands
https://github.com/IBM/IBM-Z-zOS/tree/main/zOS-RACF/Downloads/ZFSUnload

UNIX users and groups

NY/Tampa/Dallas/Raleigh RUG 33

Provisioning UNIX

• Prevent UID reuse with SHARED.IDS profile in the
UNIXPRIV class

• Assign OMVS segment with UID
• Manually
• Using the AUTOUID keyword
• Using automatic OMVS segment assignment
• Using an identity management provider that takes the rest

of your enterprise into account

• The user’s default group must have an OMVS segment
with a GID

• Allocate a user file system data set
• Perhaps using the UNIX automount facility

NY/Tampa/Dallas/Raleigh RUG 34

Least Privilege – preventing UNIX

• If a new user has no need for UNIX, don’t grant it
• Why worry about new attack vectors?

• If you have automatic assignment in place, give the
user an ‘empty’ OMVS segment as part of
provisioning to block it
• ADDUSER JOE OMVS

• ALTUSER JOE OMVS(NOUID)

NY/Tampa/Dallas/Raleigh RUG 35

De-provisioning UNIX

• Beware of residual access in the file system
• File ownership
• acl entries

• Have a process to
• Deallocate their user file system
• Search and destroy(/replace) references elsewhere in the file

system
• Don’t re-assign their UID until this has been verified

• Delete the user, or at least its OMVS segment
• But if you haven’t done the above, remember its UID (in a

custom field?) so you can associate file system references
with the user ID

• And all that normal RACF stuff (IRRRID00, for example)

NY/Tampa/Dallas/Raleigh RUG 36

Auditing the environment

• Good old LISTUSER, LISTGROUP, and IRRDBU00

• ‘id’ shell command displays user’s identity as UNIX
sees it
$ id bruce

uid=266(BRUCE) gid=115(COOLKIDS) groups=213(MYDEPT), 300(MYORG),
7356(RACFDEV),9004 (IZUUSER), 1151(PEVID), 1(POSIX), 1768(RACFALL),
1000044(ZOSDEV),1000046(ZOSTOOLS),1000043(ZRACFU)

• ‘find’ command again
• Can find ownership and acl references in files, by user

ID/group or UID/GID

• zFS Unload utility again
• https://github.com/IBM/IBM-Z-zOS/tree/main/zOS-RACF/Downloads/ZFSUnload

NY/Tampa/Dallas/Raleigh RUG 37

https://github.com/IBM/IBM-Z-zOS/tree/main/zOS-RACF/Downloads/ZFSUnload

UNIX superusers

NY/Tampa/Dallas/Raleigh RUG 38

A user with UID(0), or a TRUSTED
or PRIVILEGED started task can

• Create, read, update, and delete any file

• Read and write to network sockets

• Change security attributes of a file

• Consume resources in excess of system limits

• Kill and inspect processes

• Switch into the identity of any UNIX user without authentication
• And then maybe write into APF libraries? Manage RACF profiles?

• Totally pwn you

• Exasperate your auditors due to Separation of Duties violations

NY/Tampa/Dallas/Raleigh RUG 39

Fortunately, there are ways to limit
capabilities

NY/Tampa/Dallas/Raleigh RUG 40

Scope superuser security
management capabilities

• UNIXPRIV SUPERUSER.FILESYS.DIRSRCH

• UNIXPRIV SUPERUSER.FILESYS.CHOWN

• UNIXPRIV SUPERUSER.FILESYS.CHANGEPERMS

• FACILITY BPX.FILEATTR.APF

• FACILITY BPX.FILEATTR.PROGCTL

• In fact, a superuser cannot change extended attributes
without this FACILITY authorization

• This underscores the fact that where we have extended the
POSIX standard for z/OS-specific functions, we tend not to
respect UID(0).

NY/Tampa/Dallas/Raleigh RUG
41

Scope superuser system
programmer capabilities

• UNIXPRIV SUPERUSER.FILESYS.MOUNT

• UNIXPRIV SUPERUSER.PROCESS.KILL

• UNIXPRIV SUPERUSER.PROCESS.PTRACE

NY/Tampa/Dallas/Raleigh RUG 42

Scope superuser application
identity capabilities

• UNIXPRIV SUPERUSER.FILESYS

• UNIXPRIV SUPERUSER.FILESYS.VREGISTER

• UNIXPRIV SUPERUSER.PROCESS.GETPSENT

• UNIXPRIV SUPERUSER.PROCESS.PTRACE

• UNIXPRIV SUPERUSER.SETPRIORITY

• UNIXPRIV SUPERUSER.SHMMCV.LIMIT

• FACILITY BPX.SERVER

• FACILITY BPX.DAEMON

• SURROGAT BPX.SRV.userid

• ‘Limit’ fields in the USER OMVS segment

NY/Tampa/Dallas/Raleigh RUG 43

Servers and Daemons

• Server: establishes a thread (subtask) for client after
authentication (e.g. HTTP server)

• Daemon: establishes process (address space) for client after
authentication (e.g. FTP daemon)

• Instead of requiring APF/supervisor state, access to a
FACILITY profile and requirement for a clean address space
is sufficient to establish identity

• BPX.DAEMON(READ) and UID(0) required

• BPX.SERVER or UID(0) required
• READ: Server and client require authority to protected resources

that may subsequently be accessed (unauthenticated client)
• UPDATE: Only client requires access to resources accessed

(authenticated client)

NY/Tampa/Dallas/Raleigh RUG 44

Thank you! Any Questions?

NY/Tampa/Dallas/Raleigh RUG 45

	Default Section
	Slide 1: z/OS UNIX Security Overview

	Summary Section
	Slide 2: Navigating the presentation

	Navigating the documentation
	Slide 3: Navigating the documentation
	Slide 4: For security administrators
	Slide 5: UNIX System Services Planning: Security chapter
	Slide 6: USS Command Reference: security cmds
	Slide 7: RACF Security Administrator's Guide: UNIX chapter
	Slide 8: For system programmers
	Slide 9: MVS Initialization and Tuning Ref: BPXPRMxx
	Slide 10: For auditors
	Slide 11: RACF Auditor’s Guide: UNIX section
	Slide 12: RACF Macros and Interfaces: SMF80/Unload
	Slide 13: For application developers
	Slide 14: C/C++ Runtime Library Reference: individual APIs
	Slide 15: USS Programming: Assembler Callable Services Ref
	Slide 16: USS Command Reference: corresponding command
	Slide 17: RACF Callable Services
	Slide 18: Using REXX and z/OS UNIX System Services
	Slide 19: RACF Macros and Interfaces: SMF80/Unload

	My UNIX brain-dump of record
	Slide 20: My UNIX brain-dump of record

	UNIX file system security
	Slide 21: UNIX file system security
	Slide 22: Data Sets (aggregates) are MOUNTed into a hierarchical structure
	Slide 23: Controls at the aggregate level
	Slide 24: Auditing the environment

	UNIX file security
	Slide 25: UNIX file security
	Slide 26: Security attributes are meta-data of the file
	Slide 27: File security attributes and how to manage them
	Slide 28: Or use the RACF/TSO/UNIX command download
	Slide 29: OPERMIT syntax – RACF keywords used
	Slide 30: Examples
	Slide 31: ORLIST default and AUTH formats
	Slide 32: Auditing the environment

	UNIX users and groups
	Slide 33: UNIX users and groups
	Slide 34: Provisioning UNIX
	Slide 35: Least Privilege – preventing UNIX
	Slide 36: De-provisioning UNIX
	Slide 37: Auditing the environment

	UNIX superusers
	Slide 38: UNIX superusers
	Slide 39: A user with UID(0), or a TRUSTED or PRIVILEGED started task can
	Slide 40: Fortunately, there are ways to limit capabilities
	Slide 41: Scope superuser security management capabilities
	Slide 42: Scope superuser system programmer capabilities
	Slide 43: Scope superuser application identity capabilities
	Slide 44: Servers and Daemons
	Slide 45: Thank you! Any Questions?

