
Don't be the one:
How one line of code can compromise your system integrity

Scott Woolley
Mike Kasper
IBM z/OS Secure Engineering

May 2024

NY/Tampa/Dallas/Raleigh RACF User Group

NY/Tampa/Dallas/Raleigh RACF User Group

How many lines of code does it take to compromise all
security and integrity on the z/OS solution stack?

One

NY/Tampa/Dallas/Raleigh RACF User Group

z/OS System Integrity

NY/Tampa/Dallas/Raleigh RACF User Group

What is System Integrity?

• Property of a system that prevents users from circumventing security
mechanisms

• In z/OS, this means there is no way for an unauthorized problem
program to:

• Bypass store or fetch protection

• Bypass RACF protection

• Obtain control in an authorized state

• IBM will resolve any reported system integrity problem in supported
releases

NY/Tampa/Dallas/Raleigh RACF User Group

What is “Authorized” on z/OS?

• Supervisor State (vs. Problem State)

• PSW Key 0-7 (vs. User Key 8-15)
• Also known as “System Key”

• APF Authorization
• A job step program loaded from an APF–authorized library and

was link–edited with authorization code AC=1.

NY/Tampa/Dallas/Raleigh RACF User Group

Boundaries from User Programs to Authorized or Privileged
Programs

• SVC and PC routines

• APF authorized programs
• Job step programs linked AC(1)

• Program Properties Table programs

• UNIX set-user-id and set-group-id programs

NY/Tampa/Dallas/Raleigh RACF User Group

Focus on the Boundary
& Specially Architected Instructions

Boundary between -

• Unauthorized Requester

• and its use of an Authorized Service (PC or SVC)

Safe copy instructions -

The requester’s
parameters are

NOT to be trusted.

They must be
referenced in the

caller’s key

MVCK – Move With Key

MVCSK – Move With Source Key

MVCDK – Move With Destination Key

MVCOS – Move With Optional Specifications

NY/Tampa/Dallas/Raleigh RACF User Group

Referencing User Key Storage

Why mustn’t you read or write to caller-specified storage while running in system key?

It may not actually be user key storage.

– User may pass in system key storage

– Or the key of the storage could have changed

• Time of check to time of use problem – could start as user key storage and then change to system key

storage

• Storage could be freed and replaced with system key storage

How to do safely?

- Switch to user key temporarily

- Use MVCK, MVCSK, MVCDK, MVCOS to make a safe copy

NY/Tampa/Dallas/Raleigh RACF User Group

Referencing User Key Storage

How to do safely?

- Switch to user key temporarily

- Use MVCK, MVCSK, MVCDK, MVCOS to make a safe copy

How could this be exploited?

▪ Unauthorized user can cause system code to be interrupted at any time

when enabled/unlocked

– Asynchronous abends (cancel, detach, etc.)

– Dispatcher interrupts

– Timer interrupts

• Exits run on same task (via IRB) and can view status of system service and alter

environment of task before returning control to system service

– TSO attention interrupts

NY/Tampa/Dallas/Raleigh RACF User Group

Vulnerability patterns on z/OS

NY/Tampa/Dallas/Raleigh RACF User Group

Vulnerability Patterns for z/OS

1. The Unintentionally Authorized PC

2. Untrusted Parms, Untrusted Regs

3. Untrusted, Indirectly Anchored Parms

4. Control Block Masquerade

5. Buffer Overflow

6. Index Out-of-Bounds

NY/Tampa/Dallas/Raleigh RACF User Group

Pattern #1: The Unintentionally Authorized PC

Critical keyword on the ETDEF service defining a PC:

AKM

(The Authorization Key Mask)

NY/Tampa/Dallas/Raleigh RACF User Group

Pattern #1: The Unintentionally Authorized PC

Critical keyword on the ETDEF service defining a PC:

AKM

(The Authorization Key Mask)

AKM(0) restricts the PC usage to callers running in key 0

AKM(0:15) allows the PC to be used by any caller

If a PC target routine is intended for authorized callers but
inadvertently allows unauthorized ones, it’s highly likely to have

an exposure!

NY/Tampa/Dallas/Raleigh RACF User Group

Pattern #2: Untrusted Parms, Untrusted Regs

Parms

R1
R1 is not trusted.
Parms must be
referenced in the
caller’s key!

NY/Tampa/Dallas/Raleigh RACF User Group

Pattern #2: Untrusted Parms, Untrusted Regs

Parms

R1

R13

R13 is not trusted.
PC entry is not a BASR!
This is not the address to a save area!

?

R1 is not trusted.
Parms must be
referenced in the
caller’s key!

NY/Tampa/Dallas/Raleigh RACF User Group

Pattern #2: Untrusted Parms, Untrusted Regs

Parms

R1

R13

R13 is not trusted.
PC entry is not a BASR!
This is not the address to a save area!

?

R15 is not trusted either.
PC entry is not a BASR!
This is not the entry point address!

R15 ?

R1 is not trusted.
Parms must be
referenced in the
caller’s key!

NY/Tampa/Dallas/Raleigh RACF User Group

Pattern #2: Untrusted Parms, Untrusted Regs

Parms

R1

R13

R13 is not trusted.
PC entry is not a BASR!
This is not the address to a save area!

?

R15 is not trusted either.
PC entry is not a BASR!
This is not the entry point address!

R15 ?

R1 is not trusted.
Parms must be
referenced in the
caller’s key! R4

☺

Side-note:
R4 IS
trusted
when used
as a latent
parm on
ETDEF

NY/Tampa/Dallas/Raleigh RACF User Group

Pattern #3: Untrusted, Indirectly Anchored Parms

Parms

R1

NY/Tampa/Dallas/Raleigh RACF User Group

Pattern #3: Untrusted, Indirectly Anchored Parms

Product-

Owned

Control

Block

Parms

& Ptrs to

more parms

R1

R0 control

data

R?

input/output

token

Variable-length

input/output

area

Still more indirectly

accessed parms

Product-Owned

Control Block

But they tend to look like
this…

NY/Tampa/Dallas/Raleigh RACF User Group

Pattern #3: Untrusted, Indirectly Anchored Parms

Product-

Owned

Control

Block

Parms

& Ptrs to

more parms

R1

R0 control

data

R?

input/output

token

Variable-length

input/output

area

Still more indirectly

accessed parms

Product-Owned

Control Block

But they tend to look like
this…
and every area is a separate
risk! Access in the caller’s
key!

NY/Tampa/Dallas/Raleigh RACF User Group

Pattern #4: Control Block Masquerade

Parms

& Ptrs to

more parms

R1 input/output

token

Product’s

Control Block

Extra focus is needed for control blocks…

Making a “safe copy” of a
control block owned by your
PC or SVC doesn’t help (or
necessarily work).

NY/Tampa/Dallas/Raleigh RACF User Group

Pattern #4: Control Block Masquerade

Parms

& Ptrs to

more parms

R1 input/output

token

Product’s

Control Block

Extra focus is needed for control blocks…

Product’s

Control Block

Product’s

Control Block

Product’s

Control Block

Making a “safe copy” of a
control block owned by your
PC or SVC doesn’t help (or
necessarily work).

You need to ensure it’s really
yours by running an
independent chain to the
block in a serialized manner.

NY/Tampa/Dallas/Raleigh RACF User Group

Pattern #5: Buffer Overflow

Parms

& Ptrs to

more parms

(including

the variable

length)

R1

Variable-

length

input/output

area

Extra focus is also needed for variable length areas

NY/Tampa/Dallas/Raleigh RACF User Group

Pattern #5: Buffer Overflow

Parms

& Ptrs to

more parms

(including

the variable

length)

R1

Variable-

length

input/output

area

Extra focus is also needed for variable length areas

1) Make a copy of the untrusted length field
2) Do boundary check on the length

NY/Tampa/Dallas/Raleigh RACF User Group

Pattern #5: Buffer Overflow

Clarifying the overflow of target area when copying from the caller’s input area

Large

Variable-length

Input area,

Caller’s storage,

Key 8

Service provider’s

designated storage for

a “safe copy”, Key 0

Overflow!

The caller should not

be able to alter this

data!

Copying with the caller’s key
does not protect against
overflow!

Length boundary must be
checked!

NY/Tampa/Dallas/Raleigh RACF User Group

Pattern #5: Buffer Overflow

Clarifying the over-read from source area into caller’s output area

Large

Variable-length

Output area,

Caller’s storage,

Key 8

Service provider’s

designated storage for

a “safe copy”, Key 0

Overflow!

The caller should not

be able to see this data!

Copying with the caller’s
key does not protect against
over-read!

Length boundary must be
checked!

NY/Tampa/Dallas/Raleigh RACF User Group

Pattern #6: Index Out-of-Bounds

Parms

& Ptrs to

more parms

(including an

index)

R1

Index value

Extra focus is also needed for an index into a table or array

NY/Tampa/Dallas/Raleigh RACF User Group

Pattern #6: Index Out-of-Bounds

Service provider’s

array

Bad index - should not

allow caller to read or

alter data, or branch

using this index!

4

Index value,

Caller’s storage

Service provider’s

designated storage

for a “safe copy”

Index value

Item 1

Item 2

Item 3

Copy

1) Make a copy of the untrusted index value using the key of the caller
2) Do boundary check . If index > 3 or index < 1, must reject.

Index

NY/Tampa/Dallas/Raleigh RACF User Group

Recap: Vulnerability Patterns for z/OS

1. The Unintentionally Authorized PC

2. Untrusted Parms, Untrusted Regs

3. Untrusted, Indirectly Anchored Parms

4. Control Block Masquerade

5. Buffer Overflow

6. Index Out-of-Bounds

NY/Tampa/Dallas/Raleigh RACF User Group

What not to say about
z/OS system integrity

NY/Tampa/Dallas/Raleigh RACF User Group

“I thought they checked the parameter list?”

PC routine A is available to unauthorized callers and PC routine B is only
available to system key callers, but PC routine A passed a parameter
from the user to PC routine B, causing PC routine B to overwrite storage
in system key at the address from the user. This could still be a problem
even if PC routine B is open to unauthorized callers if A runs in system
key.

PC routine A was updated to obtain its own storage.

NY/Tampa/Dallas/Raleigh RACF User Group

“Why not just add the user input to the command?”

A network interface accepted a parameter with an identifier it wanted
to add to a USS command, but it did not syntax check the input and
used a syscall that allowed for multiple commands, so the user could
append another command after the identifier which would be
executed with UID 0 on the system.

Syntax checking was added and a safer syscall was used that only
allows for one command to be run.

NY/Tampa/Dallas/Raleigh RACF User Group

“It’s in an APF library, so it must be safe to call.”

An authorized service allowed a user to specify any name for an exit
which it would load and call, since only programs from APF libraries
could be loaded, they assumed this was safe. The user specified a
program that did not validate input and caused a buffer overflow giving
the user’s program control.

The authorized service was updated to only use exit names if they
match a system admin defined list.

NY/Tampa/Dallas/Raleigh RACF User Group

“Why would it matter if the module is reentrant?”

A PC routine open to unauthorized callers loaded a non-reentrant
module and branched to it, key zero. The user set a stimer exit,
overwrote the key eight code for the non-reentrant module after it
loaded, and their instructions executed in PSW key zero.

The module was changed to be reentrant so that it would be loaded in
key zero not user key storage.

NY/Tampa/Dallas/Raleigh RACF User Group

“We linked it as AC(1) just to be sure.”

Modules that did not expect to get control as a job step task with a
parameter list were linked as AC(1), in one case because it was an
alternate entry point to a load module and in another case, it was
called by an AC(1) job step program. If invoked directly, both
overwrote storage using system key zero.

Both entry points were changed to no longer be AC(1) because they
were not really intended to be, although it was harder for the alternate
entry point.

NY/Tampa/Dallas/Raleigh RACF User Group

“My SRB doesn’t need a purge TCB or ASID.”

An SRB routine that ran in another address space was not in private
storage itself but relied on control blocks and data in the home address
space, so when the scheduling address space was restarted the control
blocks at those locations had changed but were still being used, leading
to overlays.

The SRB was updated with a purge TCB and ASID to prevent the SRB
from running after those terminate. Purge STOKEN is also available and
recommended.

NY/Tampa/Dallas/Raleigh RACF User Group

“My ENF listener exit doesn’t need EOT or EOM.”

An ENF listener ran in its home address space and was loaded into
private storage. It relied on control blocks and data in private storage
and percolated to a recovery routine too, so when the home address
space was terminated and replaced, the data and code at those
locations changed but was still used.

The ENF exit was updated to add EOT and EOM yes, to stop from
running after TCB or ASID termination.

NY/Tampa/Dallas/Raleigh RACF User Group

“If they used FORCE ARM, it’s their fault not ours.”

A started task was waiting on ECBs in storage that was being freed by
their resource managers during address space termination. FORCE
ARM led to their recovery routines getting control in unexpected ways
and caused RTM to post and update ECBs in common storage that had
been freed and reused.

Termination processing was updated to avoid freeing storage while it
was still being used.

NY/Tampa/Dallas/Raleigh RACF User Group

“We get the storage, so no need to check the size.”

A space switching PC routine was obtaining storage in a system address
space using a size specified by the user. This allowed a PC caller to
occupy all the available storage in the system address space and
prevent any other requests from being processed.

The PC routine was updated to check the size first.

NY/Tampa/Dallas/Raleigh RACF User Group

“Won’t the system initialize that to zero anyways?”

An authorized program forgot to initialize some registers and storage
but had lucked out and the compiler set those registers to values that
led to harmless abends and the storage was never used. After a
recompile the register values led to storage overlays in one case and
the storage was now used in another case, so residual data was now a
pointer.

The program was updated to initialize the data and registers, not rely
on the compiler or residual data.

NY/Tampa/Dallas/Raleigh RACF User Group

“We can’t get serialization due to performance.”

A monitor task was running a control block chain in a target address
space from an SRB it scheduled there and writing out the data out in a
report for its users. Since there was no serialization, unexpected
system key data was being written out to the report.

Even if serialization might not have been practical, addition checks
were added to verify the data again before anything was written to the
report for users.

NY/Tampa/Dallas/Raleigh RACF User Group

“We need to display all that data for diagnostics.”

A recovery routine that received control in system key was running a
save area chain based on the address in register 13 at the time of the
error and displaying all the save area data for diagnostics, even if
register 13 was not pointing to a save area.

The recovery routine was redesigned to stop displaying the data and
just get a dump instead, unless the failing PSW was in a range that was
safe.

NY/Tampa/Dallas/Raleigh RACF User Group

“No one ever complained about that program yet.”

A started task with a missing null pointer check was using data from
low storage instead of the expected control block chain to find and
update a control block. If zero it would usually abend and recover, but
in some scenarios the data in low storage could point to data that it
would overwrite using key zero.

The started task was updated to check for zero first.

NY/Tampa/Dallas/Raleigh RACF User Group

“It recovers from the abend, so it’s not vulnerable.”

After a module was extended to add a new base register the recovery
routine was not updated to restore the new base register. If an abend
occurred and it retried to a point where the base register was needed it
would usually abend and recover from that abend as well, but in some
cases, it would overwrite unintended storage in key zero due to the
unexpected value found in the base register.

Recovery was updated to restore the register.

NY/Tampa/Dallas/Raleigh RACF User Group

“Isn’t everybody using Amode31 by now?”

A new exit was added but the authorized program specifying the
address of the exit forgot to turn on the high order bit, which the
service it was calling used to determine which Amode to call the exit in.
As a result, it cut off the high order byte and called an address below
the line where a user could place their own program to get control key
zero, instead.

The high order bit was turned on to fix this.

NY/Tampa/Dallas/Raleigh RACF User Group

“The POST to the missing ASID should safely ABEND”

A POST specifying an ASCB was done to an ASID that could terminate.
When the ASID terminated the storage for the ECB was being freed and
reused causing POST to overwrite unintended storage in the new ASID.

The Safe XM Post service IEAMSXMP was used to avoid this.

NY/Tampa/Dallas/Raleigh RACF User Group

“We need to free that code to avoid a common storage leak”

It is true that obtaining common storage every time a started task or
other service is started could lead to a storage leak. However, if other
address spaces could be executing that code in an authorized state,
which is usually possible for modules in common storage, freeing the
storage out from under them can cause unintended code to execute.

The storage was anchored to a persistent control block or in one case
an authorized name token from the name token service and reused.

NY/Tampa/Dallas/Raleigh RACF User Group

Reference Material

NY/Tampa/Dallas/Raleigh RACF User Group

Links

• z/OS System Integrity Statement

• https://www.ibm.com/downloads/cas/OWGOKG40

• IBM Z Security Portal FAQ

• https://www.ibm.com/downloads/cas/EAO940BR

• z/OS MVS Programming: Authorized Assembler Services Guide

• https://www.ibm.com/docs/en/zos/3.1.0?topic=guide-protecting-system

https://www.ibm.com/downloads/cas/OWGOKG40
https://www.ibm.com/downloads/cas/EAO940BR
https://www.ibm.com/docs/en/zos/3.1.0?topic=guide-protecting-system

NY/Tampa/Dallas/Raleigh RACF User Group

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

