
Digital Signatures

for z/OS Software Packages

Kurt Quackenbush

z/OSMF Software Management and SMP/E

Poughkeepsie, NY, USA

kurtq@us.ibm.com

1

mailto:kurtq@us.ibm.com

Agenda

• Digital Signature Background

• GIMZIP Package Signing Overview

• Details for a Provider

• Details for a Consumer

2

z/OS Software Package Digital Signatures

• The SMP/E GIMZIP service routine creates portable packages of ready to

install SMP/E consumables, or already installed software.

• GIMZIP packages are delivered from IBM and other providers to customers

over the internet.

• GIMZIP is currently in use by IBM for all z/OS software product and service

deliveries:
• z/OSMF Portable Software Instances (ServerPac)

• CBPDO

• Shopz PTF orders

• SMP/E RECEIVE ORDER PTF and HOLDDATA

• GIMZIP packages are consumed by SMP/E and z/OSMF on a customer's

z/OS system where the packaged software is installed.

3

GIMPAF.XML

GIMPAF.XSL

S0001.PTFs.pax.Z

S0002.HOLDDATA.pax.Z

/ArchiveDirectory

PTF Order

z/OS Software Package Digital Signatures

A z/OSMF Portable

Software Instance is a

GIMZIP package.

An SMP/E RECEIVE

ORDER package is a

GIMZIP package.

4

Software Instance

SMP/E

Environment

Dlib data sets

Target data sets

SMPCSI data sets

(Global, Target,

and DLIB zones)

Non-SMP/E

Managed

data sets

GIMZIP

GIMZIP
PTFs

HOLDDATA

GIMPAF.XML

GIMPAF.XSL

IZUD00DF.json

S0001.dataset1.pax.Z

/ArchiveDirectory

Portable Software Instance

S0002.dataset2.pax.Z

S0003.dataset3.pax.Z

S0004.dataset4.pax.Z

S0005.dataset5.pax.Z

S0006.dataset6.pax.Z

z/OS Software Package Digital Signatures

• GIMZIP is extended to digitally sign packages.

• z/OSMF is extended to exploit GIMZIP digital package signing for Portable

Software Instances.

• SMP/E and z/OSMF are extended to verify package signatures.

• Verifying digitally signed software packages increases confidence in

authenticity (who produced it?) and integrity (has it changed in transit?) of the

software delivered in those packages.

5

Digital Signature Background

6

What is a Hash Algorithm?

• A mathematical function to convert input data of arbitrary length to a unique

output bit string of a fixed length.

• Hash values are irreversible.

7

Hash Algorithm
“The quick brown fox
jumped over the lazy dog”

Any difference in input data, large or small, produces a different hash value.

7d38b5cd25a2baf85ad3bb5b9311383e671a8a142eb302b324d4a5fba8748c69

Hash Algorithm
“The quick brown fox
jumped over the lazy cat”

da65582e1a4aafdd5a6224a9d1065683415cf8d161c2a4b1246498e7c00f3fdc

MD5

Hash Algorithm“Lorem ipsum dolor sit
amet, consectetur
adipiscing elit, sed do
eiusmod tempor
incididunt ut labore et
dolore magna aliqua.”

818c6e601a24f72750da0f6c9b8ebe28

SHA-256

Hash Algorithm
973153f86ec2da1748e63f0cf85b89835b42f8ee8018c549868a1308a19f6ca3

SHA-1

Hash Algorithm
cca0871ecbe200379f0a1e4b46de177e2d62e655

What is Public/Private Key Encryption?

• Encryption encodes data making it inaccessible to unauthorized users.

• Public/Private key pairs are very large mathematically related prime numbers.

• Data encrypted by one key can only be decrypted by the other.

8

Encryption
“The quick brown fox
jumped over the lazy dog”

Message

1e67955b2685133216340a2003202c43bcb382b01b900a673be59f9b8685fcc
cede813eef55d0e58fe44d38a0391c7e0ec216cd8b97bc7883ec0c2e5b9a6bf2
4f545730445e847d07ffb6c27d3b98b54e4b15914c5fef330167027f58c7cbd7e
a69bbbf415f2d2bdcb09c4fbefe4eac0deb92240db087b42859992e19567e7e3

Encrypted Message

Private Key

Decryption
“The quick brown fox
jumped over the lazy dog”

Message

Public Key

What is a Digital Signature?

A mathematical technique to verify the authenticity and integrity of digital data.

9

Hash

Algorithm
EncryptionC0854fb…e03c4

HashData

5c6ffb…40d95

Digitally

Signed Data

Signature is valid when

the hash values are equal.

A valid signature proves:

1. Data is unchanged

since it was signed

2. Data was signed by

Jane.

Jane

(Signer)

Hash

Algorithm

Network

John

(Verifier)C0854fb…e03c4

Hash

C0854fb…e03c4

Hash

5c6ffb…40d95

Digitally

Signed Data

Decryption

Public Key

Private Key

What is a Digital Certificate?

• File containing identity information and the public key for the certificate holder.

• X.509 is the widely accepted standard for the file format.

• A certificate authority (CA) is a trusted entity that validates identity information

and binds it to a public key in the form of a digital certificate.

• A digital certificate is “issued by” (or “signed by”) a certificate authority (CA).

10

Certificate

• Subject Name

• Issuer Name

• Not Before Date

• Not After Date

• Public Key

What is Certificate Path Validation?

• Procedure to ensure a certificate is trusted and valid for use.

• A certificate is trusted if it is issued by a trusted certificate authority (CA).

11

Subject Name: Jane Doe’s Certificate

Issuer Name: Acme CA Intermediate

Subject Name: Acme CA Intermediate

Issuer Name: Acme CA Root

Subject Name: Acme CA Root

Issuer Name: Acme CA Root

GIMZIP Package Signing

Overview

12

GIMZIP Package Signing Overview

• GIMZIP package signing is implemented using public/private key technology
• A private key is used to calculate digital signatures.

• The corresponding public key is used to verify the signatures.

• The public key is associated with an X.509 certificate, the “signing certificate”.

• The signing certificate is issued by a well known and trusted certificate authority
• The certificate authority establishes the authenticity of the package signer (is the signer who

they say they are?).

• If the certificate authority is trusted, so then a signing certificate issued by that certificate
authority can also be trusted.

• The signing certificate for the GIMZIP packages produced for IBM's z/OS product and
service offerings is issued by an IBM z/OS certificate authority
• STG Code Signing Certificate Authority - G2.

• This CA certificate is built-in to RACF and other security managers.

13

GIMZIP Package Content

GIMPAF.XML file:

• Identifies all files in the package.

• Contains SHA-1 hash for each file.

• Contains SHA-1 hash for the package.

14

GIMPAF.XML

GIMPAF.XSL

S0001.dataset1.pax.Z

S0002.dataset2.pax.Z

S0003.dataset3.pax.Z

IZUD00DF.json

/PackageDirectory

Unsigned GIMZIP package content:

GIMZIP Package Content…

GIMPAF.XML file (Unchanged):

• Identifies all files in the package. *

• Contains SHA-1 hash for each file.

• Contains SHA-1 hash for the package.

GIMPAF2.XML file:

• Identifies all files in the package.

• Contains SHA-256 hash for each file.

• Contains SHA256withRSA signature for

the package.

• Contains certification path for the

signing certificate, used for signature

validation.

15

GIMPAF.XML

GIMPAF.XSL

S0001.dataset1.pax.Z

S0002.dataset2.pax.Z

S0003.dataset3.pax.Z

IZUD00DF.json

GIMPAF2.XML

/PackageDirectory

Signed GIMZIP package content:

GIMZIP Package Content…

• SMP/E does NOT require signature verification for a signed GIMZIP package

• Therefore, as a provider, you may sign GIMZIP packages whether or not

consumers can or will verify the signatures.

16

Package Acquisition

17

GIMPAF.XML

GIMPAF.XSL

S0001.dataset1.pax.Z

S0002.dataset2.pax.Z

S0003.dataset3.pax.Z

IZUD00DF.json

GIMPAF2.XML

/PackageDirectory

GIMPAF.XML

GIMPAF.XSL

S0001.dataset1.pax.Z

S0002.dataset2.pax.Z

S0003.dataset3.pax.Z

IZUD00DF.json

/PackageDirectory

Download

<SERVER...

file="/orderdir/GIMPAF.XML"

hash="3A1B4C2D... " >

</SERVER>

<CLIENT...

>

</CLIENT>

Just like unsigned

GIMZIP package!

No changes to RECEIVE input,

no signature verification.

Package Acquisition

18

GIMPAF.XML

GIMPAF.XSL

S0001.dataset1.pax.Z

S0002.dataset2.pax.Z

S0003.dataset3.pax.Z

IZUD00DF.json

GIMPAF2.XML

/PackageDirectory

GIMPAF.XML

GIMPAF.XSL

S0001.dataset1.pax.Z

S0002.dataset2.pax.Z

S0003.dataset3.pax.Z

IZUD00DF.json

GIMPAF2.XML

/PackageDirectory

GIMPAF.XML

GIMPAF.XSL

S0001.dataset1.pax.Z

S0002.dataset2.pax.Z

S0003.dataset3.pax.Z

IZUD00DF.json

/PackageDirectory

Download

<SERVER...

file="/orderdir/GIMPAF.XML"

hash="3A1B4C2D... " >

</SERVER>

<CLIENT...

signaturekeyring="IBM.gimzip.verify" >

</CLIENT>

<SERVER...

file="/orderdir/GIMPAF.XML"

hash="3A1B4C2D... " >

</SERVER>

<CLIENT...

>

</CLIENT>

Add signature verification keyring,

and the signature is verified.

Provider One-Time Setup

19

1. Generate a public/private
key pair and certificate.

2. Request the certificate be
signed by a Certificate
Authority (Certificate Signing
Request).

3. Store the signed certificate,
its certification path, and
private key in a SAF security
manager* on z/OS.

* RACF or other SAF security manager

PrivatePublic

Public / Private Key Pair

Certificate Authority

Certificate

Security Mgr

GIMZIP Signing Process

20

data.set1
data.set2
data.set3

GIMZIP

1. Discover and Validate
the certification path.

2. Create archive files
for each data set.

3. Write the certification
path to the package.

4. Sign the package
using the private key.

S0001.data.set1.pax.Z
S0002.data.set2.pax.Z
S0003.data.set3.pax.Z

Signed GIMZIP Package

Signature

Security Mgr

Consumer One-Time Setup

21

1. Connect the CA root
certificate to a keyring in
your SAF security manager.

Security Mgr

CA Root

SMP/E Signature Verify Process

22

1. Validate certification path
using the CA root certificate
in the keyring.

2. Verify package signature
using the public key.

3. Create data sets from
archive files.

SMP/E

Signed PSWI

S0001.data.set1.pax.Z
S0002.data.set2.pax.Z
S0003.data.set3.pax.Z

Security Mgr

CA Root

data.set1
data.set2
data.set3

z/OSMF Software Management Signature Verify Process

23

1. Validate certification path
using the CA root certificate
in the keyring.

2. Verify package signature
using the public key.

3. Persist verified signer
information.

z/OSMF SM

Signed PSWI

S0001.data.set1.pax.Z
S0002.data.set2.pax.Z
S0003.data.set3.pax.Z

Security Mgr

CA Root

Verified
Signature

Details for a Provider

24

Calling GIMZIP

• Signing is optional

• New attributes in the input

<GIMZIP> tag to specify:

1. Signing certificate label

2. SAF keyring name where the

signing certificate and all

certificates in its certification path

are found.

25

<GIMZIP

signingcertificate="Kurts Signing Cert"

keyring="gimzip.signing.keyring"

>

<FILEDEF name="/tmp/T1344212/IZUD00DF.json"

archid="IZUD00DF.json" type="README"/>

<FILEDEF name="IBMUSR6.CICS.CBK.ACBKDWLD"

archid="VSMPS3.IBMUSR6.CICS.CBK.ACBKDWLD"/>

...

</GIMZIP>

GIMPAF2.XML File

If signing is indicated, the
GIMPAF2.XML file is created:

• One <ARCHDEF> for each file
in the package.

• One <X509Data> for each cert
in the certification path, from
signing cert up to root CA.

• One package signature, for
all <PKGDEF> data.

26

<PKGDEF ...>

<ARCHDEF name="filename" ...>

<hash algorithm="SHA256">hash-value</hash>

</ARCHDEF>

<SignatureInfo>

<SignatureAlgorithm>SHA256withRSA</SignatureAlgorithm>

<SignerSubjectName>subject-name</SignerSubjectName>

<CertPath>

<X509Data>

<X509SubjectName>subject-name</X509SubjectName>

<X509Certificate>certificate-data</X509Certificate>

</X509Data>

</CertPath>

</SignatureInfo>

</PKGDEF>

<?PKGSIG signature="package-signature"?>

GIMPAF2.XML Example

27

<?xml version="1.0" ?>

<PKGDEF files="3" ... >

<ARCHDEF

name="S0001.SMPPTFIN.DATA.pax.Z"

originalsize="1703520"

size="96768">

<hash algorithm="SHA256">

E25E1F235D137EBFE4BD6B33B08C722AF973D2C8EB91D8D382737B4E77687480

</hash>

</ARCHDEF>

...

<SignatureInfo>

<SignatureAlgorithm>SHA256withRSA</SignatureAlgorithm>

<SignerSubjectName

CN=Kurts Package Signing Cert, O=IBM Systems Z, C=US

</SignerSubjectName>

<CertPath>

<X509Data>

<X509SubjectName>

CN=Kurts Signing Cert, O=IBM Systems Z, C=US

</X509SubjectName>

<X509Certificate>

-----BEGIN CERTIFICATE-----

MIIDxTCCAq2gAwIBAgIBATANBgkqhkiG9w0BAQsFADBEMQswCQYDVQQGEwJVUzEV

...

...

sjR9GJvZWm0x6zMRVeZhb5h4sT8aRPkwxncjjw==

-----END CERTIFICATE-----

</X509Certificate>

</X509Data>

</CertPath>

</SignatureInfo>

</PKGDEF>

<?PKGSIG signature="BFA69472F2C2BDAA950C6FB624DEF8F007C5082041B49A2742BF3172573

E609C24AEBB7A241A02FAEB18E96EAD0E4FECDB0238586D123682C0B315EC53FAAD9805224308B3

2775ACEBC1F4F784DF3FF7C528528FEB2588E8A0E649729CC7C9534626AF063D25218CD4F8FF9EE

208FA85796BBED516333904A641DD84187747FF76548B022BA9B9C23E086A68484A9949D4AD9716

613EC2F20CC9E81AECC24149B13D981D83C296D68D82F75E78B52777F30ACE043A0A4BDD17812D3

13A3AE162CFABE8602B2E20F390C3ADFCAC1889488D67F18CB5E4A6DA16ED0F8EC65674D2849B3A

F6A1FF8BDBA2880FF3EBA4B22332B257B040F07FFDD1198C7B56DE7E60"?>

z/OSMF Software Management, Export Action

Use the Software Instance

Export as Portable

Software Instance action

to create a portable

software instance.

28

z/OSMF Software Management, Export Action…

• New option for the
Export action to sign
the portable software
instance
• Provide the signing

certificate label and
the SAF keyring

• If the option is
selected the
generated Export JCL
specifies the
certificate and keyring
for GIMZIP

• The Export REST API
is also updated to
accept input signing
certificate and SAF
keyring

29

Certificate and Key Requirements

The signing certificate and public/private key pair must meet the following
requirements:

1. Public/private key pair must be generated using the RSA algorithm and can be
from 1024 to 4096 bits long.

2. Signing certificate must have the Digital Signature key usage certificate
extension.

3. Signing certificate must not be expired.

4. Signing certificate should be issued by a well known and trusted certificate
authority (CA), whose root certificate is easily obtained by your consumers.

5. Signing certificate, the issuing root CA certificate, and intermediate CA
certificates if any, must be stored in the z/OS security manager database and
connected to a keyring.

30

Certificate and Key Requirements…

This RACF command

illustrates the key and

certificate requirements.

31

RACDCERT GENCERT ID(cert-owner) +

SUBJECTSDN(CN('My Package Signing Cert') +

O('My Company') +

C('US')) +

RSA +

SIZE(2048) +

KEYUSAGE(HANDSHAKE) +

NOTAFTER(DATE(2033-04-01)) +

SIGNWITH(CERTAUTH LABEL('My Root CA')) +

WITHLABEL('My Package Signing Cert')

Certificate and Key Requirements…

Create a keyring and

connect the signing

certificate, issuing CA root

certificate, and

intermediate CA

certificates if any.

32

RACDCERT ID(keyring-owner) ADDRING(keyringname)

RACDCERT ID(keyring-owner) +

CONNECT(ID(cert-owner) +

LABEL('My Package Signing Cert') +

RING(keyringname))

RACDCERT ID(keyring-owner) +

CONNECT(CERTAUTH +

LABEL('My Root CA’) +

USAGE(CERTAUTH) +

RING(keyringname))

Certificate and Key Authorization

Identity for GIMZIP must be
authorized to the keyring.

• If GIMZIP userid owns the
certificate, then must have
READ authority.

• If GIMZIP userid does
NOT own the certificate,
then must have UPDATE
authority.

33

RDEFINE RDATALIB keyring-owner.keyring-name.LST UACC(NONE)

PERMIT keyring-owner.keyring-name.LST +

CLASS(RDATALIB) ID(gimzip-userid) ACCESS(UPDATE)

SETROPTS RACLIST(RDATALIB) CLASSACT(RDATALIB)

SETROPTS RACLIST(RDATALIB) REFRESH

PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) +

ID(gimzip-userid) ACCESS(READ)

• Detailed instructions for a provider:
https://www.ibm.com/docs/en/zos/2.5.0?topic=routine-preparing-sign-gimzip-packages

https://www.ibm.com/docs/en/zos/2.5.0?topic=routine-preparing-sign-gimzip-packages

Details for a Consumer

34

SMP/E RECEIVE

RECEIVE ORDER, RECEIVE
FROMNET, GIMGTPKG

Package signature verification is
optional.

1. A provider can sign
packages, but supply
unchanged <SERVER> XML
to consumers
(file = GIMPAF.XML and
SHA-1 hash)

2. Consumers can continue to
download packages with
existing levels of SMP/E

• Signatures will not be verified

35

...

//SMPSRVR DD *

<SERVER

host="download.server.com"

user="S679p074"

pw="k09944D4604223r">

<PACKAGE

file="/2022102123341/PROD/GIMPAF.XML"

hash="3A14791D9F3DAA8D3DB25499538EEFBCAB5467F8"

id="21October2022">

</PACKAGE>

</SERVER>

/*

//SMPCLNT DD *

<CLIENT

javahome="/usr/lpp/java/J8.0_64"

downloadmethod="https"

downloadkeyring="*AUTH*/*"

>

</CLIENT>

/*

SMP/E RECEIVE…

RECEIVE ORDER, RECEIVE
FROMNET, GIMGTPKG

Package signature verification is
optional.

• If signature verification is
desired, specify new attribute
in <CLIENT> XML to identify
SAF keyring name for the root
certificate

• If the GIMPAF2.XML file
resides on the server, it is
downloaded and the signature
verified

• If the GIMPAF2.XML file does
not reside on the server,
processing will continue for the
unsigned package

36

//SMPSRVR DD *

<SERVER

host="download.server.com"

user="S679p074"

pw="k09944D4604223r">

<PACKAGE

file="/2022102123341/PROD/GIMPAF.XML"

hash="3A14791D9F3DAA8D3DB25499538EEFBCAB5467F8"

id="21October2022">

</PACKAGE>

</SERVER>

/*

//SMPCLNT DD *

<CLIENT

javahome="/usr/lpp/java/J8.0_64"

downloadmethod="https"

downloadkeyring="*AUTH*/*"

signaturekeyring="IBM.package.sig.verification"

>

</CLIENT>

/*

Calling GIMUNZIP

GIMUNZIP

Package signature
verification is optional.

• If signature verification
is desired, specify new
EXEC parameter and
attribute in <CLIENT>
XML to identify SAF
keyring name for the
root certificate

• SMP/E and GIMUNZIP
write a signature
information message

37

//UNZIP EXEC PGM=GIMUNZIP,PARM='VERIFYSIG=YES'

...

//SMPCLNT DD *

<CLIENT

javahome="/usr/lpp/java/J8.0_64"

signaturekeyring="IBM.package.sig.verification"

>

</CLIENT>

/*

GIM69270I SIGNATURE VALIDATION FOR FILE "/u/ibmusr6/smpnts/test/GIMPAF2.XML"

WAS SUCCESSFUL. THE GIMZIP PACKAGE WAS SIGNED BY A CERTIFICATE WITH

SUBJECT NAME "CN=Kurts Package Signing Cert, O=IBM System Z, C=US",

SERIAL NUMBER "1" AND SHA256 FINGERPRINT

"4aa0fc6708314ca95fc2699bad116158298808c089f43e1ed4600eb4170916f4".

THE SIGNING CERTIFICATE WAS ISSUED BY "CN=Kurts Root CA, O=IBM

System Z, C=US".

z/OSMF Software Management, Add Action

Three Portable Software

Instance Add actions:

1. From z/OS System

2. From Local

Workstation

3. From Download

Server

38

Portable Software Instance Add Action

z/OSMF Software Management, Add Action…

• All 3 Add actions offer a

new option to verify the

signature for a portable

software instance

• Specify the signature

verification SAF keyring

• If the option is chosen

the signature is verified

for the portable software

instance

39

Portable Software Instance Add Action

z/OSMF Software Management, Add Action…

If the PSWI is signed,

and if signature is

verified, then the

signer information is

displayed.

40

Portable Software Instance Add Action

z/OSMF Software Management, Add Action…

If the PSWI is signed,

and if the signature is

verified, then the

signer information is

persisted and

displayed on a new

tab on the Portable

Software Instance

View page

41

Portable Software Instance View Action

CA Root Certificate and Authorization

• Detailed instructions:
https://www.ibm.com/docs/en/zos/2.5.0?topic=guide-preparing-verify-signatures-gimzip-packages

• IBM certificate authority root is “STG Code Signing CA – G2”

• Automatically supplied with RACF and other security managers

• If not currently in your RACF db, RACF initialization will add it during next IPL

• Create a keyring containing the IBM CA root:

42

RACDCERT ID(userid) ADDRING(IBM.package.sig.verification)

RACDCERT ID(userid) CONNECT(CERTAUTH +

LABEL('STG Code Signing CA - G2') +

RING(IBM.package.sig.verification) +

USAGE(CERTAUTH))

https://www.ibm.com/docs/en/zos/2.5.0?topic=guide-preparing-verify-signatures-gimzip-packages

Certificate and Key Authorization

User identity under which SMP/E RECEIVE, GIMGTPKG, and GIMUNZIP runs,

and the logged-in z/OSMF userid, must be authorized to the specified keyring.

Must have READ authority to either of the following:

43

RDEFINE RDATALIB keyring-owner.keyring-name.LST UACC(NONE)

PERMIT keyring-owner.keyring-name.LST +

CLASS(RDATALIB) ID(smpe-userid) ACCESS(READ)

SETROPTS RACLIST(RDATALIB) CLASSACT(RDATALIB)

SETROPTS RACLIST(RDATALIB) REFRESH

PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) +

ID(smpe-userid) ACCESS(READ)

smpe-userid is the user identity running the SMP/E job or the logged-in

z/OSMF userid.

SMP/E and z/OSMF Software Management

Availability

• Package signing and Signature verification is integrated into z/OS 3.1.

• PTFs for the following APARs are required for z/OS 2.5 and 2.4:
• SMP/E – IO28360

• z/OSMF – PH49385

44

IBM Exploitation of Package Signing

• As of May 16, 2023, IBM is exploiting GIMZIP package signing for all z/OS

software product deliverables:

• z/OSMF Portable Software Instances (ServerPac)

• CBPDO

• IBM plans to exploit GIMZIP package signing for z/OS software service

deliverables later in 2023:

• Shopz PTF orders

• SMP/E RECEIVE ORDER PTF and HOLDDATA orders

45

Summary

• Digital Signature Background

• GIMZIP Package Signing Overview

• Details for a Provider

• How to specify a signing certificate

• Certificate requirements and authorization

• Details for a Consumer

• Create a keyring and connect the CA root

• Keyring authorization

46

	Title Slide
	Slide 1: Digital Signatures for z/OS Software Packages
	Slide 2: Agenda
	Slide 3: z/OS Software Package Digital Signatures
	Slide 4: z/OS Software Package Digital Signatures
	Slide 5: z/OS Software Package Digital Signatures
	Slide 6: Digital Signature Background
	Slide 7: What is a Hash Algorithm?
	Slide 8: What is Public/Private Key Encryption?
	Slide 9: What is a Digital Signature?
	Slide 10: What is a Digital Certificate?
	Slide 11: What is Certificate Path Validation?
	Slide 12: GIMZIP Package Signing Overview
	Slide 13: GIMZIP Package Signing Overview
	Slide 14: GIMZIP Package Content
	Slide 15: GIMZIP Package Content…
	Slide 16: GIMZIP Package Content…
	Slide 17: Package Acquisition
	Slide 18: Package Acquisition
	Slide 19: Provider One-Time Setup
	Slide 20: GIMZIP Signing Process
	Slide 21: Consumer One-Time Setup
	Slide 22: SMP/E Signature Verify Process
	Slide 23: z/OSMF Software Management Signature Verify Process
	Slide 24: Details for a Provider
	Slide 25: Calling GIMZIP
	Slide 26: GIMPAF2.XML File
	Slide 27: GIMPAF2.XML Example
	Slide 28: z/OSMF Software Management, Export Action
	Slide 29: z/OSMF Software Management, Export Action…
	Slide 30: Certificate and Key Requirements
	Slide 31: Certificate and Key Requirements…
	Slide 32: Certificate and Key Requirements…
	Slide 33: Certificate and Key Authorization
	Slide 34: Details for a Consumer
	Slide 35: SMP/E RECEIVE
	Slide 36: SMP/E RECEIVE…
	Slide 37: Calling GIMUNZIP
	Slide 38: z/OSMF Software Management, Add Action
	Slide 39: z/OSMF Software Management, Add Action…
	Slide 40: z/OSMF Software Management, Add Action…
	Slide 41: z/OSMF Software Management, Add Action…
	Slide 42: CA Root Certificate and Authorization
	Slide 43: Certificate and Key Authorization
	Slide 44: SMP/E and z/OSMF Software Management Availability
	Slide 45: IBM Exploitation of Package Signing
	Slide 46: Summary

