Session 21585
Mining z/OS Debugging Nuggets

z/OS Core Technologies —August 10, 2017

John Shebey jshebey@us.ibm.com
IBM Poughkeepsie

‘ Patty Little plittle@us.ibm.com

© 2017 1BM Corporation SHARE Providence, August 2017

14

Trademarks

The following are trademarks of the International Business Machines Corporation in the United
States andl/or other countries.

MVS

*0S/390®
*2/Architecture®
+2/OS®

* Registered trademarks of IBM Corporation

Table of Contents

Getting started o 4 4 4 4 e 44 . .
* IEAVDUMP
« IEAVCPUI
* IPCS Toolkit
* Retrieving Commands

Data Reduction « « v o 4 w o o o « o u .
* REPORT VIEW .
+ IEAVLOGD
* V5M Nuggets
* S5YSTRACE Nuggets

Digging Even DE€Per+ « + « o « « = = + « «
+ LIST Nuggets
= FIND Nuggets
= RUNCHAIN
* SYSTRACE: Performance Analysis
* SADUMP: Captured Dumps and Traces .
New Nuggets ¢« « v« o &« ¢ o o = = = = = =
= SYSTRACE: ESTA and ESTIR .
= SLIP: A=CMD .

AppendiX. . . . 4 4 4 e e 4 e e e e e e e e e e e
* VSM: Identify Subpool and Key . .
* RUNCHAIN: Sorting Output

. 12
. 15

. 39
. 41
. 43
. 48
. 50
.« 57

le

. 17
« 25
. 30
. 36

38

61

. 62
. 64

65

. €6
. 69

©
Q
b
| -
(O
4
V)
Q0
-
+—
R
Q
O

. . IEAVDUMP**
[Saliniy

* Gives an overview of an SVC Dump
* Dump information

* Type of dump, time of dump, dump title, dump reason code
* ASIDs in dump, types of storage in dump

* System information
» System name, z/OS release, machine type and model
» Time of last IPL, CPU overview, size of system trace, time zone offset

% Part of IPCS 2.61 toolkit

- IEAVDUMP Example
=f0

IEAVDUMP VERSION HBB7770

-------- GENERAL DUMP INFORMATION FOLLOWS --------

DUMP TITLE: SLIP DUMP ID=CAT1

DUMP TYPE: SLIP DUMP OF Z/0S HBB7790, SNAME ABCD

DUMP TAKEN: DEC 12 2016, 11:33:07 (LOCAL)

SLIP TRAP: SLIP SET,IF,ACTION=(SVCD),RANGE=(1901A3B2),JOBNAME=CATALOG, JOBLIST=(C

DUMP OF ASIDS:
X"'002E"' JOBNAME: CATALOG
X'0021" JOBNAME: VLF

ELAPSED GLOBAL DATA CAPTURE (GDC) TIME: 0.71 SECONDS (BEGAN AT DEC 12 2016, 11:33:07)
USE VERBX IEAVTSFS FOR MORE DETAILS ABOUT DUMP CAPTURE
SYSTEM WAS NOT QUIESCED DURING GDC
DUMP ASSOCIATED WITH LOGREC ERRORID: N/A

This excerpt from the IEAVDUMP report, highlighting from top to bottom, shows the
dump title, the type of dump, the z/OS release, the system name, the date/time of
the dump, and the ASIDs included in the dump.

Additional information that is not highlighted includes the SLIP trap when the dump
is a SLIP dump, whether or not the system was quiesced during global storage
capture (and if so, for how long), and an associated logrec errorlD if applicable.

The version number displayed at the top of the IEAVDUMP report is the version
number for the IEAVDUMP exec, not the version number of the system on which
the dump was produced.

L
o

IEAVDUMP example (cont)

-------- SYSTEM SOFTWARE INFORMATION FOLLOWS --------
SYSTEM IPLED ON: OCT 22 2016, 03:35:51 (LOCAL)
SYSTRACE SIZE: 1024K PER CPU

GMT DELTA: -5.00 HOURS

ENVIRONMENT: LPAR

ARCH: 64 BIT ENVIRONMENT

LLA SERVICES AVAILABLE: YES

VLF SERVICES AVAILABLE: YES

SECURITY PRODUCT: TOP SECRET

-------- CPU INFORMATION FOLLOWS ---=-=-=--===-==-----
CPU TYPE: 002964
CPU MODEL: N63

| # ONLINE | NOTE:

NORMAL CPUS | 9 |
Z/AAPS | 0 | A ZAAP IS IN THE CONFIGURATION.
Z/IIPS | 4 | A ZIIP IS IN THE CONFIGURATION.

SEE IEAVCPUI FOR DETAILED INFORMATION ¥¥%

This excerpt from the IEAVDUMP report, highlighting from top to bottom, shows the
date/time that the system was last IPLed, the size of a system trace trace buffer, the
time zone offset, machine type/model, and the distribution of CPs (normal, z/AAPs,
and z/lIPs). Note that more detailed information about the distribution of CPUs can
be obtained via the IPCS option 2.6i IEAVCPUI exec, to be discussed shortly.

Additional information that is not highlighted includes the security environment, as
well as verification that LLA and VLF services are available (i.e. functioning).

The version number displayed at the top of the IEAVDUMP report is the version
number for the IEAVDUMP exec, not the version number of the system on which
the dump was produced.

3k
sl S

IEAVDUMP example (cont)

ADDITIONAL DETAIL ABOUT THE DUMP DATA --------

SDRSN FIELD IS ALL ZEROES.

SEE IEAG61l1lI OR IEA911E, IN HARDCOPY SYSLOG, FOR FINAL SDRSN,
INCLUDING EXCEPTIONAL CONDITIONS THAT OCCURRED DURING THE DUMP WRITING PHASE

SDATA REQUESTED: OUTPUT OBTAINED FROM THE FOLLOWING IPCS COMMAND.

IP CBF RTCT+9C? STR(SDUMP) VIEW(FLAGS)

. Lines omitted .

==> FLAGS SET IN SDUSDATA:

Dump
Dump
Dump
Dump
Dump
Dump
Dump
Dump

current PSA.

SQA.

rgn-private area.
trace data.

CSA.

SWA.

summary dump data.
all nucleus.

This excerpt from the IEAVDUMP report, highlighting from top to bottom, shows the
SVC DUMP reason code and the areas of storage included in the SVC dump.

AL [EAVCPUI**
[Saillmiy

* Gives detailed system CPU information
* Logical CPU numbers

* CPU types

» Standard, z/IIP, or z/AAP

* Polarity: Vertical High, Medium, or Low (a.k.a. Discretionary)
* CPU-related information

* PSW of CP at time of dump

* Enabledwaitstatus, parked status

» Addresses of CPU-related control blocks: PSA, PCCA, LCCA

% Part of IPCS 2.61 toolkit

“Polarity” of a CP is determined by the weight and logical CPU quantities assigned
to this LPAR. A vertical high CP is effectively dedicated to this LPAR. A vertical
medium CP is shared with other LPARs. A vertical low CP (or discretionary CP)
only is able to run when there is demand on this LPAR and other LPARs are not
using all of their allotted CPU resource.

Vertical low CPs may be parked by WLM, meaning they are not available to run
workload for this LPAR at this time. WLM regularly evaluates whether to park or
unpark a CP based on system demand and availability of physical CPs across the
CEC.

While each CP’s PSA is addressable at location 0 by the unit of work executing on
it, the PSA control block actually lives in ESQA storage. That ESQA address is
provided in this report.

IEAVCPUIl example

------ e i e e ey sttt T bttt ittt ittt

| CPUN | CPULA | TYPE | DISC | CAP | POL | | PSW (PSAPSWSV16) |

[====== o o e e d e -+

| 0000 | 4000 | € | NO | NO | HIGH | | 07851000 80000000 00000000 1AA1832A | —§
| 0001 | | ¢ | | | || OFFLINE | &
| 0002 | 4002 | € | NO | NO | HIGH |2 | 07060000 00000000 00000000 00000000 | %
| 0003 | | ¢ | | | | £ | OFFLINE | &
| 0004 | 4004 | cP | NOo | No | MED | £ | 07060000 00000000 00000000 00000000 | =
| 0005 | | ¢ | | | | © | OFFLINE | ©
| 0006 | 4006 | € | YES | No | Low | Z| 07060000 00000000 00000000 00000000 | £
| 0007 | | ¢ |] | | £ | OFFLINE | §
| 0008 | 4008 | cP | YES | No | Low | | 07060000 00000000 00000000 00000000 | =
| 0009 | | c | | | 1O | OFFLINE | ©
| OOOA | 400A | ZIIP | NO | N0 | MED | | 07060000 00000000 00000000 00000000 | &
| OOOB | 400B | zIIP | N0 | N0 | MED | | 07060000 00000000 00000000 00000000 | §
| 000C | 400C | zIIP | YES | N0 | Low | | 07060000 00000000 00000000 00000000 | ~*

This excerpt from the IEAVCPUI shows a system with 5 general (standard) CPs, 2
of which are vertical highs, 1 of which is a vertical medium, and 2 of which are
vertical lows (or DISCretionaries). The system also has 3 z/IIPs, 2 of which are
vertical mediums, and 1 of which is a vertical low (or DISCretionary).

Note only every other standard CP is online. This is indicative of an SMT-2
environment.

10

—————— - Fommm -
CPUN | | WAIT |
------ .‘. +_____-+-
0000 | | NO |
0001 | | N/A |
0002 | — | YES |
0003 | £ | N/A |
0004 |‘§ | YES |
0005 | © | N/A |
0006 | £ | YES |
0007 | £ | N/A |
0008 | B3 | YES |
0009 | © | N/A |
000A | | YES |
0008 | | YES |
000c | | YES |

Columns omitted

Columns omitted

030F1000
01p97000
05519000
0516c000
05189000
05019000

04F38000
04EC3000

03235478
00000000
054A5098
00000000
0328B4D8
00000000
031CF478
00000000
031c2478
00000000
03237478
03289200
03247478

030F3500
00000000
03184000
00000000
0310c000
00000000
05178000
00000000
05183500
00000000
05010000
03185000
04EC7000

This excerpt from the IEAVCPUI report shows the enabled wait status and parked
status of each CP. It also shows the address of the CP’s associated PSA, PCCA,

and LCCA control blocks.

11

!L_' IPCS 2.6i Toolkit

* Great diagnostic stuff if you know how to use it!
* L2 has developed these EXECs and found them so useful that we have made them
available to you (shipped as compiled REXX execs with no formal documentation).

* Disclaimers

* “Level 2 toolkit functions are intended to be used as directed by service personnel. “
(But we’re empowering you!)

* “This CLIST is intended for IBM diagnostic support personnel. The code contained is to be used as-
is and is not supported in any way.”
* Words of assurance
* L2 uses many of these constantly. They are safe! They present no danger to your system.
* There are some real nuggets out there!

* Notes
* HELP can be displayed for each EXEC, e.g. IP IEAVCPUI HELP [degree of helpfulness varies ©]

These EXECs are very casually supported. They are not described in the IPCS
Commands manual or any other formal IBM documentation. If you find an error in a
report, L2 has probably found it too and reported it to development for future
correction. However, you are welcome to let L2 know if you'd like, understanding
that the issue will be noted but not APARed or otherwise publicly documented.

12

Name
ALET2DSP
CMD2FILE
CPUINFO
DAEINFO
DATAINFO
DISPINFO
DUMPINFO
FRRSDATA
IOSBLKS
IPLPARMS
LOCKSTAT
LOGDATAS
SAVEAREA

To display information, specify "S option n
of the option desired.
help regarding the component

Exec
IAXARZ2D

BLSXC2FI
IEAVCPUI
IEAVDAE

BLSXDINF
IEAVDISP
IEAVDUMP
IEAVFRRS
IOSFSMGB
BLSXIPLP
IEAVLOCK
IEAVLOGD
BLSXSAVA

S to the left

Enter ? to t eft of an option to display
ort.
Abstract
DataSspace Name associated with input AR/ALET

wWrites output from an input IPCS cmd to output dataset

displays high level cPU information
Formats DAE information that resides
List and where in storage addresses
Dispatchability and Tock contention information
General and environment information about the dump
validity check FRR stacks

Information about I0S blocks

values used during system initialization (IPL)
Information about locks held at time of dump

One Tine summary of input LOGREC Dataset or LOGDATA
Maps standard savearea chain. Input save area addr

in storage

The NAME column is the “option name” that is mentioned in the upper paragraph.
It is the name that the exec was known as internally by L2. You will find references
to this original name in the execs’ help files. The EXEC column is the formal name

that you should use when invoking the REXX exec via “IP execname”. The abstract

gives a one-line description of the purpose of the exec. Using IP execname HELP
may provide additional detail.

Any of these execs may be invoked via the line command: IP execname as an
alternative to selecting it off of the 2.6.i panel.

13

o

IPCS 2.6i Panel (cont)

S Name Exec Abstract

SCTSIOT IEFDDSUM Displays all DDs and DSNs in a job

SHOWVCM IEAVSVCM Displays HiperDispatch information

SIOTPLUS IEFSIOTP Maps some fields in SIOT, EDL, DDWA, VOLUNIT, etc.
_ SLIPDATA IEAVSLIP Display SLIP control block data

_ SLOTCNT 1ILRSLOTC Auxiliary slot usage information

SUMTRACE BLSXSUMT CPU usage information based on entries in SYSTRACE
SVC99RB IEFSVC99 Maps dynamic allocation request block and text units
TCBMAP IEAVTCBM Picture of TCB structure of the default ASID
VSMINFO IGVVSMIN Map of virtual Storage boundaries

WEBINFO IEAVWEBI Overview of work (ie. WEBs)

_ WISIPAMT BPXWAMT Displays the automount rules set for this system

B T T T A A END OF LIST e e e e e e e ol e e e e ol e o ol ol o ol ol ol ol e e ol ofle s ol

14

Retrieving Lengthy IPCS Commands

Option 1 allcm
you to set | >
Minimum # of

characters ¢

"E

[Siiliniy
* RETP (enter on command line without IP prefix)

* Retrieve panel with up to last 25 commands issued

———======== Retrieve --—-—==—=--

| Options Help |

o o i |
ISPF Retrieve Panel

Select the command

| |
I I
| I
| to be retrieved | remembpe
| More: + |
| 1. =1 |
| 2. cbf ascbl I
| 3. f psa |

» KEYS (enter on command line without IP prefix) — setup PF keys
* Nextto PF12, type RETRIEVE
* PF12 key willthen cycle through most recentcommands

The RETP command is an ISPF command that is particularly useful in an IPCS
session to retrieve lengthy IPCS commands that might have been forgotten or that
you need to re-execute. For this reason, it's recommended that the minimum
number of characters for a command to be saved should be set to 6. Otherwise,
the 25 command slots can fill up with short commands that are faster to type than to
retrieve via RETP. The instructions below describe how to set the minimum number
of characters to 6.

From the “Options” menu (move cursor under Options and press ENTER), select
option 1 (Set minimum number of characters saved in retrieve stack) by typing ‘1’
and pressing ENTER. On the next panel, type the minimum number of characters
(6) and press ENTER.

Note that this change affects not only saved IPCS commands, but also other
commands such as TSO and ISPF commands.

15

Data Reduction

16

- REPORT VIEW
e

EPORT VIEW allows you to view an IPCS report in ISPF Edit mode §

* Formatdesired IPCS report
* Maxto the bottom of the report to buffer the data (must do this!)

* Enter REPORT VIEW on command line
* Use ISPF Edit primary/line commands to massage/filter the data

o)

* EXCLUDE (X) lines * SORT linesbycolumnsin
 FIND (F) lines ascending/descendingorder
« DELETE (D) lines * COLSto show columnnumbers

Q' Modified output can even be saved into a new dataset
* Block off text you want to save with CCline command
* From ISPF command line, type CREATE to specify outputdataset

REPORT VIEW will only format data that has been buffered. Therefore it is
important that, after you enter your IPCS command, you max to the bottom of the
output before entering REPORT VIEW on the command line.

17

lL Commonly Used ISPF Edit Commands

il
Edit Primary Commands Edit Line Commands

F text Find text string D Delete this line
F text nn Find textin columnnn Dn Delete n lines starting at this line
F text ALL Find all instances of text string DD Deletes block of lines starting with first
X text ALL Exclude (hide) all lines with text string DRand ending wih shcomi DD
X text ALLnn Exclude (hide) all lines with text string X Exclude this line

in column nn Xn Exclude n lines starting at this line
X ALL Exclude all lines XX Exclude block of lines starting with first

; XX and ending with second XX
RESET Show all excluded lines
DELALLX Delete all excluded lines C Copy the content of the line
. Cn Copy the content of the line ‘n’ times

HEXON/OFF Show/hide hex characters cc Copy block of lines starting with first CC
coLs Show/hide ruler with columns and ending with second CC
SORTxyA/D Sort data based on contents of cols

x toy in Ascending/Descending order F Show first line of excluded text
CREATE Create new dataset with text blocked Fn Show first n lines of excluded text

off by CC/CC line command L Show last line of excluded text

Ln Show last n lines of excluded text

The edit primary commands are entered on the ISPF command line. The edit line
commands are entered in the leftmost column of the ISPF edit session (in row
numbers).

IBMMAINFRAMES.com forum post with common ISPF edit commands:

http://ibmmainframes.com/about9529.html

18

. REPORT VIEW example
il @

* Issue IPCS command (e.g. IP OMVSDATA DETAIL)
* Scroll max to bottom of report (type M on command line, followed by PF8)
* Type REPORT VIEW on command line

IPCS OUTPUT STREAM - - - - - --- Line 276744 Cols 1 130
Program Name: N/A
Space switch stack:
IP CBF 000000007D570000. ASID(X'0010') STR(BPXSTACK)

Thread Attributes:
undetached
heavy

Signal Data (Thread Level): N/A

Serialization Data: N/A

kb hh kbbb kbbb h bbbk bbb kbbb h kbbb kb bbbk bk kddd END OF DATA wdhdddddddbbdddbbbdbbbbbbbbbbbbbbbbbbbdbbbbdbbbbbddbbbdddbbdd

Command ===> REPORT VIEW SCROLL ===> CSR

19

. REPORT VIEW example (cont)
il @

* Excludealllines by typing X ALL on command line

File Edit Edit Settings Menu Utilities Compilers Test Help

VIEW IPCS.REPORT Columns 00001 00124
dkkkkk ek k kR kR Rk kR kR k Rk Rk kR Rk kR ke k ke khkdk Top of Data *hkdkkddhdkkddkhdhhdkhdkhdbk bk bk kb kdk kb ko kb k

==MSG> -Warning- The UNDO command is not available until you change

==MSG> your edit profile using the command RECOVERY ON.
000001 * & & & OPENMVS REPORT * * # #

000002

000003 Report(s): PROCESS

000004

000005 Level (s): DETAIL

000006

000007 Filter(s): NONE

ooooo8

000009

000010

000011 Suppression-On-Protection is installed
000012

000013 Kernel status: Active

000014

000015 Kernel address space name: OMVS

000016

000017 Kernel address space ID: X'0010'

oooo1s

000019 Kernel stoken: 0000004000000001
Command ===> X ALL Scroll ===> CSR

]
n
]

ovidence, August 201 20

20

. REPORT VIEW example (cont)
il @

* |ssue F 'NUMBER OF OPEN FILES’ ALL to look for all instancesof ‘NUMBER OF OPEN FILES’

File Edit Edit Settings Menu Utilities Compilers Test Help

VIEW IPCS.REPORT All lines excluded
dkkkkk ek k kR kR Rk kR kR k Rk Rk kR Rk kR ke k ke khkdk Top of Data *hkdkkddhdkkddkhdhhdkhdkhdbk bk bk kb kdk kb ko kb k

== - - - - 276766 Line(s) not Displayed
dkddkdk hdkdkdkdkdkhk kb d ok kkkdkhkkd kb dd kb d kbbb bbbk kb kdkdkddd Bottom of Data deddddedededr e dede e e e dv e o o e o o o ook o ok ok ol ok ok ol o ol ol ok ok ol e o ok ok ok e e e e e e

Command ===> F 'NUMBER OF OPEN FILES' ALL Scroll ===> CSR

ARE Providence -.:_'."”._ 21

21

*

REPORT VIEW example (cont)

* |ssue DELALL X to delete all excluded lines

File Edit Edit Settings Menu Utilities Compilers Test Help

VIEW IPCS.REPORT 253 CHARS 'NUMBER OF OPE

hkkkkk Ak kAR ARk R R kR Rk kk ke kkkkk ke Top Of Data *hddddkkdddddbbbdddbbddhhhbbhhhhdh bbb bk k kb bk kb ke khdk

=== 805 Line(s) not Displayed

000804 Number of open files for this process: 1 Token: 005C20A0

—=—= =& = = = = = = = = = - = - 953 Line(s) not Displayed

001758 Number of open files for this process: 0 Token: 005C2750

=== =745 Line(s) not Displayed

002504 Number of open files for this process: 0 Token: 005C2E00

=== 743 Line(s) not Displayed

003248 Number of open files for this process: 0 Token: 005C34B0

m == =741 Line(s) not Displayed

003990 Number of open files for this process: 0 Token: 005C3B60

— == 1236 Line(s) not Displayed

005227 Number of open files for this process: 1 Token: 005C4210

=== =769 Line(s) not Displayed

005997 Number of open files for this process: 2 Token: 005C5620

=== =9]] Line(s) not Displayed

006909 Number of open files for this process: 1 Token: 005C48CO0

=== 796 Line(s) not Displayed

007706 Number of open files for this process: 10 Token: 005C6380

=== 1166 Line(s) not Displayed

008873 Number of open files for this process: 0 Token: 005C6A30

=== =755 Line(s) not Displayed

Command ===> DEL ALL X Scroll ===> CSR
€ 7 HARE Py ence, Aup 7 22

Note that 253 instances of ‘NUMBER OF OPEN FILES’ were found.

22

. REPORT VIEW example (cont)
i @

* Issue SORT 50 57 D to sort the number of open files per process in Descending order

File Edit Edit Settings Menu Utilities Compilers Test Help
VIEW IPCS.REPORT Columns 00001 00124
B B T e e e S . s | RO SR PSRN T
dhhkdd hhdkkdb b bk bbb bbb bbbk h kb kbbb kbbb kbbb kb dd ']'op of Data whkddddddbbbdbbbbbbbbdbbbbbbbbbbbbbbb bbb bbb bbb bbb dddbbddd

000001 Number of open files for this process: 1 Token: 005C20A0
000002 Number of open files for this process: 0 Token: 005C2750
000003 Number of open files for this process: 0 Token: 005C2E00
000004 Number of open files for this process: 0 Token: 005C34B0
000005 Number of open files for this process: 0 Token: 005C3B60
000006 Number of open files for this process: 1 Token: 005C4210
000007 Number of open files for this process: 2 Token: 005C5620
0ooo008 Number of open files for this process: 1 Token: 005C48C0
000009 Number of open files for this process: 10 Token: 005C6380
000010 Number of open files for this process: 0 Token: 005C6A30
000011 Number of open files for this process: 5 Token: 005C70EOQ
ooo012 Number of open files for this process: 13 Token: 01E17D30
000013 Number of open files for this process: 1 Token: 005C84F0
000014 Number of open files for this process: 543 Token: 01E1A550
000015 Number of open files for this process: 0 Token: 005CTE40
000016 Number of open files for this process: 17 Token: 005CC120
000017 Number of open files for this process: 5 Token: 01E03580
oooo1s Number of open files for this process: 0 Token: 005CAD1O
000019 Number of open files for this process: 4 Token: 005C9250
ooo020 Number of open files for this process: 94 Token: 01E14100
Command ===> SORT 50 57 D Scroll ===> CSR

IBM Corporation SHAF

]
m
]
1

rovidence, August 201 23

23

. REPORT VIEW example (cont)
il @

* Block off lines of output with CC linecommand;issue CREATE to store outputin new dataset

File Edit Edit Settings Menu Utilities Compilers Test Help

VIEW IPCS.REPORT Columns 00001 00124

OOLEY rr m e re efee ee J ree 3 ¥ 4 * 5 + 6 e B N 0 + o Toatien Do

L e e e e R e R R e R R e R R R R e R R R s R R R R R R R e R 'rop or Data L R R R R e R R e R s R e R R R R e R e A e s R A

Cccooo1 Number of open files for this process: 543 Token: 01E1AS550

000002 Number of open files for this process: 377 Token: 01E05040

000003 Number of open files for this process: 363 Token: 01EOEA1LQ

000004 Number of open files for this process: 358 Token: 01E1B2B0O

000005 Number of open files for this process: 349 Token: 005D1ECO

000006 Number of open files for this process: 333 Token: 01E32FEOD

000007 Number of open files for this process: 322 Token: 005BE470

0ooo008 Number of open files for this process: 233 Token: 01E434B0

000009 Number of open files for this process: 139 Token: 005DEOBO

000010 Number of open files for this process: 116 Token: 005D6FO00

000011 Number of open files for this process: 113 Token: 005F6B40

ooo012 Number of open files for this process: 94 Token: 01E14100

000013 Number of open files for this process: 90 Token: 005CFD50

000014 Number of open files for this process: 66 Token: 01E5S0ABO

000015 Number of open files for this process: 56 Token: 005E5SFCO

000016 Number of open files for this process: 39 Token: 01E085CO

000017 Number of open files for this process: 39 Token: 01E11F90

oooo1s Number of open files for this process: 39 Token: 01E2A370

000019 Number of open files for this process: 35 Token: 005F1BO00

cCoozo Number of open files for this process: 28 Token: 005CB3CO

Command ===> CREATE Scroll ===> CSR
g 7 IBM HARE Providence August 2017 24

At a glance, | can see a distribution of file usage by process (with the largest users
on top).

24

L IEAVLOGD**
[Sail kg

* Reduces LOGREC records to one-line entries

* Software Records
* Symptom Records

* Works against:
» A formatted LOGREC data set
* In-core LOGREC in an SVC dump or Standalone dump

* Reports lines in order that LOGREC records are encountered
* One-line entries are sortable via various columns

*% Part of IPCS 2.6i toolkit

25

25

L4
.

—

IEAVLOGD

ine for software record includes:

System name

Date/time

CPU

ASID/jobname

Sequence number

ABEND code

Indication of whether dump was taken
Register 15

PSW

Cross memory environment

26

26

Invoking IEAVLOGD

------------------ IPCS MVS LEVEL 2 TOOLKIT ------
OPTION ===> IP IEAVLOGD

Pmmpt:

PLEASE ENTER EITHER 'DUMP' OR 'DA(....)":

Rcsponse:

DUMP
OR
DA(‘PATTY.MYLOGREC.DATASET.FMT’)

27

The command can also be entered all at once:
IP IEAVLOGD DUMP or

IP IEAVLOGD DA(‘PATTY.MYLOGREC.DATASET.FMT’)

It can be entered from any IPCS panel.

27

SOFTWARE RECORDS SUMMARY

| === SEARCH ARGUMENT ABSTRACT DATA--======-= R e Tt 15
| SYSNAME | DATE | TIME |CPU |ASID|SEQ |ABEND|DUMP | REGL5 |
i e R R et Bl B e e e e et At
[syll [349.16(10:37:40.8|4003|00F3|44270|s00c4|NO | |
Ssyll	349.16110:37:40.8	4002	00F3	44271	s00c4 (N0	
syll [349.16(11:11:53.3]0000	/0041]45010	s0878	NO			
syll	349.16]11:11:55.2	/0000	/0041	45015	s0878 N0	
[syll [349.16(11:12:03.7	0000	/0041	45020	s0878	NO	
syll	349.16	11:12:03.7	/0000/0041	45021	s00C1	NO
Ssyll 1349.16111:12:07.0/0000	/0041	45027	Ss0878	NO		
SY11 1349.16]11:12:07.6]4001/0041]45028	s0138	NO	00000000_02340003			
syll 1349.16111:12:07.6	4000	0041	45029	s0138	NO	00000000_02340003

More columns on next slide

28

28

Continued from previous slide

PSW

TIME OF ERROR DATA--======== === o mmmmmm e mmem oo | ------ SEA

| HASD | PASD | SASD | JOBNAME |

- T I B e’ e S

| 07042000
| 07041000
| 07041000
| 07041000
| 07041000
| 07851000
| 07041000
| 07042001
| 07042001

80000000
80000000
80000000
80000000
80000000
80000000
80000000
80000000
80000000

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

20733838 | 00F3|00F3 | OOF 3 |NONE-FRR |
20733322 | 00F3|00F3| OOF 3 |[NONE-FRR |
016298CE|0041|0041|0041|3YKCICI5|
016298CE|0041|/0041|0041|3YKCICIS|
016298CE|0041|0041|0041|3YKCICI5|
47F0B2DE|0041|0041|0041|3YKCICIS|
016298CE|0041|0041|0041|3YKCICIS5|
01067574|0041|0007|0041|3YKCICI5|
01067574|0041|0007|0041|3YKCICIS|

Remaining columns omitted

29

‘l= VSM Nuggets

* How to:
* Ildentify what area of storage an address lives in
* IGVWSMIN
* |ldentify what subpool an address lives in
* VERBX VSMDATA ‘SUM’ (see appendix)
* Identify who obtained storage in SQA or CSA
* VERBX VSMDATA ‘OWNCOM DETAILSORT(ADDR) CONTENT(NO)’

30

30

L IGVVSMIN**
[Sail kg

* Provides a map that breaks down an address space’s below-the-
bar and below-the-line storage into:
* Bottom and top of private storage
* Also notes user region max, current user region top, and current LSQA bottom
CSA
* Also notes any CSA-to-SQA conversion
LPA, broken down into Modifiable, Fixed, and Pageable LPA
* SQA
Nucleus broken down into R/W nucleus and Read Only nucleus

* Provides helpful nuggets about subpool numbers, LPA definitions
*% Part of IPCS 2.6i toolkit

31

When the report identifies “LSQA bottom”, it really is referring the to bottom of
authorized private storage which includes LSQA, SWA, and high private.

31

IGVVSMIN map excerpt

: R/O NUCLEUS

: R/W NUCLEUS

SQA

: PLPA

: FLPA

: MLPA

CSA

LSQA/SWA/229/230

(FREE STORAGE)

USER REGION

: SYSTEM STORAGE

OOFFFFFF
00FE1000
00FE0887
00FD4000
00E9A000

00Cc8c000

<- 16M LINE

<- R/O NUC BOTTOM
<- R/W NUC TOP

<- R/W NUC BOTTOM
<- SQA BOTTOM

<- PLPA BOTTOM

-- NO FLPA DEFINED AT IPL --

00C8B000

<- MLPA BOTTOM

-- NO CSA TO SQA CONVERSION --

00800000
00800000
007D2000
00006000

00006000

<- CSA BOTTOM

<- MAX USER REGION ADDR
<- LSQA BOTTOM

<- USER REGION TOP

<- USER REGION BOTTOM

: 00000000

32

32

14

IGVVSMIN subpool info (excerpt)

SUBPOOL INFORMATION:
EXTENDED PRIVATE STORAGE
ABOVE LINE - HIGH PRIVATE (ELSQA AND ESWA SUBPOOLS):
ELSQA & ESWA SUBPOOLS ARE ALLOCATED FROM THE TOP DOWN
ELSQA SUBPOOLS: 203-225, 233, 234, 235, 253, 254, 255
ESWA SUBPOOLS: 229, 230, 249, 236, 237
ABOVE LINE - LOW PRIVATE (USER SUBPOOLS):
USER SUBPOOLS ARE ALLOCATED FROM THE BOTTOM UP
USER SUBPOOLS : 0-132, 240, 250, 251 AND 252

ECSA SUBPOOLS 1 227, 228, 231, 241

ESQA SUBPOOLS 1 239, 245, 246, 247 AND 248
SQA SUBPOOLS : 226, 239 AND 245

CSA SUBPOOLS 1 227, 228, 231 AND 241

33

33

L4
ol

IGVVSMIN LPA info (excerpt)

LPA INFORMATION:

WHAT DETERMINES IF A MOD IS
FLPA MODS ARE SPECIFIED IN
MLPA MODS ARE SPECIFIED IN
PLPA MODS ARE SPECIFIED IN

IN FLPA, MLPA OR PLPA?

IEAFIXXX MEMBERS AT IPL.

IEALPAXX MEMBERS AT IPL.

LPALSTXX OR PROGXX MEMBERS AT IPL

34

34

VERBXVSMDATA

% ‘'OWNCOMM DETAIL SORT(ADDR) CONTENT(NO)
[Sail kg

* Provides VSM information about who owns an area of global
(CSA/SQA) storage, and when it was obtained

* Sorted in increasing address order

ASID Job Name Id St T Address Length Ret Addr MM/DD/YYYY HH:MM:SS
0053 JYKCICGO 130530102 Ac C 00BA4D60 00000150 200655A4 12/11/2016 10:49:57
0053 JYKCICGO 310530102 Ac C O0BA4EBO 00000150 200655A4 12/11/2016 10:49:57
006A FITOBMHR 10239196 0G C 00BA6BS50 00001480 00008382 12/05/2016 10:01:56
0090 JXHO839A 10185121 oG C 0O0BA8S800O0 00001000 216B8374 12/05/2016 02:11:12
027A JYKCICJ1 30530250 Ac C 00BA9040 00000150 200655A4 12/11/2016 10:58:37
027A JYKCICI1 310530250 Ac C 00BA9190 00000150 200655A4 12/11/2016 10:58:37

The CSA storage at address BA6B50 for length 14B0 was obtained at 10:01:56 on
December 5t b}' code at address 8382 in job FITOBMHR in ASID x’6A’. That job

1S no longer active on the system.
porat 35

The “T” column is the storage type. “C” indicates “CSA”. “S” indicates “SQA”.

The “St” column is the storage status. “Ac” stands for “active”, which means that
the address space which obtained the storage is still up and running. “OG” stands
for “Owner Gone” which means that the address space which obtained the storage
is now gone. Owner Gone storage is often called Orphaned Storage.

“‘Ret Addr” indicates the address of the code that obtained the storage.

35

B[1
il

Nuggets from the system trace table

* SYSTRACE formats information from the system trace table

* SYSTRACE ASID(X'yy’) TCB(X’zzzzzz’) to format entries for a specific TCB

SYSTRACE ALL START(mm/dd/yy,hh.mm.ss.dddddd)
STOP(mm/dd/yy,hh.mm.ss.dddddd) TIME(LOCAL)
to format all entries in a particular time range
SYSTRACE CPU(X’yy’) ALL TI(LO)
to format all entries on a specific CP

SYSTRACE CPUTYPE(STANDARD) ALL
to format all entries on all standard (general) CPs

SYSTRACE STATUS TIME(LOCAL) for a system trace summary

36

When an address space has lots of simultaneous activity for different TCBs, it is helpful to be able to
filter the trace entries by TCB to get a clearer picture of what is going on under your TCB of interest.
While not shown above, it is also possible to format activity for a specific SRB by filtering on its WEB
address. (For an SRB entry, the WEB address is reported under the “WU-addr” field of the
SYSTRACE report: IP SYSTRACE WEB(X'zzzzzzzz') TI(LO) .)

System trace tables are getting larger and larger, and some systems are running with many CPs.
This can make for a very large system trace table. You can narrow down how big a timeframe is
formatted by specifying a START and STOP time.

Advanced debugging sometimes requires focusing on activity on a single CPU. The SYSTRACE
CPU parameter gives you this filtering capability. Be aware that if you don’t specify “ALL”, it defaults
to showing you just the entries for the current address space on the specified CP, not all activity on
the specified CP.

Sometimes it is helpful to eliminate z/IIPs from the picture. Specifying CPUTYPE(STANDARD) will
show just entries from the general (standard) CPs. While not demonstrated above, you can also
specify CPUTYPE(ZIIP) to look at just z/IIP workload.

36

i SYSTRACE STATUS TIME(LO)

TRACE services are available
TRACE 1is active
ST=(0n,0001M,00006M) AS=0n BR=0ff EX=0n MO=0ff

The earliest timestamp in SYSTRACE is from CPU 0004: 12/14/2016 15:24:31.308528
The latest timestamp in SYSTRACE 1is from CPU 0005: 12/14/2016 15:25:40.376142

TRACE data reporting from all CPUs starts at 12/14/2016 15:25:40.201513 (CPU 0000)
TRACE data reporting from all CPUs ends at 12/14/2016 15:25:40.375447 (CPU 0001)
—————— i ittt s et
CPU | Type | Pol | Park | SYSTRACE First Local Time | SYSTRACE Last Local Time
------ e
0000 | cP | High | No | 12/14/2016 15:25:40.201513 | 12/14/2016 15:25:40.376141
000L | CP | High | No | 12/14/2016 15:25:40.135381 | 12/14/2016 15:25:40.375447
0002 | CP | Med | No | 12/14/2016 15:25:40.062828 | 12/14/2016 15:25:40.375504
0003 | cP | Med | No | 12/14/2016 15:25:39.999764 | 12/14/2016 15:25:40.375524
0004 | CP | Low | Yes | 12/14/2016 15:24:31.308528 | 12/14/2016 15:25:40.376076
0005 | zIIP | High | No | 12/14/2016 15:25:38.633241 | 12/14/2016 15:25:40.376142

37

Useful information:
- Size of trace buffer
- What range of time has all CPs represented (reporting)
- CPU numbers, CPU types, and CPU polarity

SYSTRACE STATUS can be handy for getting a quick peek at much time is
covered by each CP in the system trace, and in what time range all CPs are
represented. When looking at a portion of the trace where not all time ranges are
represented, a “-” (hyphen) will appear between the CPU number and the ASID,
making it clear that the picture you are looking at may be incomplete due to missing
trace entries from unrepresented CPs. This is an effect of different workloads on
different CPs generating different volumes of records and therefore filling up at
different rates. CPs running work that is writing fewer entries will have a longer,

older history in its trace buffer.

37

o

l.

Digging Even Deeper

38

M
=i

LIST Nuggets

c

seful (but not well-known) operands of LIST command
* INSTR (I)
* Interpretdata as Assemblerinstructions (with machine code)

0 » Useful for interpreting failing instruction when debugging an abend, or for looking at 0
OEM code for which a listing is unavailable

* DISPLAY

» Displaythe key of a page of storage, including whether the storage is fetch-protected

n * Particularly useful when debugging an ABENDOC4 PIC4 (Protection Exception) dueto a n
mismatch between the storage key and the PSW key

39

The IPCS LIST command with the INSTR () option will actually interpret data as an
Assembler instruction.

There is a storage key associated with each page of storage. The IPCS LIST
command with the DISPLAY option will display the key of page on which the
specified address resides. It also displays the fetch-protect status of the page.

39

- LIST examples
=il

LIST 01010020. ASID(X'0136') LENGTH(X'12') |

LIST 01010020. ASID(X'0136') LENGTH(X'1l2') INSTRUCTION
01010020 | 4770 5010 | BC X'7',X'10"' (,R5)
01010024 | 58F0 631C | L R15,X'31C’' (,R6)
01010028 | OSEF | BALR R14,R15

0101002a | 5870 A0CO | L R7,X'CO' (,R10)
0101002E | 4190 7010 | LA R9,X'10' (,R7)

LIST 97F5E0 ASID(1) DISPLAY

LIST O0S7FSEO0 CPU(X'00) ASID(X'0001') LENGTH(4) AREA
CPU(X'00) ASID(X'0001') ADDRESS(0097F5E0) KEY (06) ABSOLUTE (01CDBS5SEO0)
0097FSEO0. 00000000

D
The first nibble is the key. / \

The first bit of the second nibble Key O Not Fetch-Protected
is the fetch-protect bit. x'6'= b'0110'

In the output from the IPCS LIST command with DISPLAY, a two-nibble value is
presented: KEY(xx). The first nibble is the key. The second nibble is a sequence of
bits, the first of which identifies whether or not the page is fetch protected. The next
two bits are the Reference and Change bits respectively. The last bit is undefined.

40

FIND Nuggets

ME
=il
* Useful (but not-well-known) operands of FIND command
* BOUNDARY(n) or BDY(n) Examples:
» Search for a string at a specific boundaryn BDY(2) - half-word boundary
W+ Cambeused o spescop FINDG :g:% : gg;gigzzﬁzrgoundary

* BDY (bdy,index)

* Divide storage into strings 'bdy' bytes long. For each string, FIND will compare search
argument with storage once starting with 'index'into each string.

* Defaultforindexis 1 (or offset0) if it is not coded

* MASK
» Storageis ANDed with MASK before compare
© - Useful when search argument not in contiguous storage, or not in multiples of byte S04

41

The FIND command can be used to find a string of data in storage. The
BOUNDARY keyword can speed up FIND if you know that the search argument
starts on a certain boundary. Note that INDEX of 1 means offset 0.

The MASK keyword of FIND can be used when the search argument is not
contiguous, or not in a multiple of bytes. This is very useful when debugging an
overlay problem, when you need to find out where the data causing the overlay
came from.

41

- FIND examples
=il

BDY (32,5) - search a table containing 32-byte entries. For each entry, only compare the
search argument with the second word.

ASID(X'0001') ADDRESS (04553000.) STORAGE —---——=—-—=—————————-- FOUND AT 04553024.
Command ===> F x'05235D70' BDY (32,5) NOB SCROLL ===> CSR
04553000 047749C0 04F77380 FF02C010 00000000 | [Sy R S |
04553010 00000000 1F00001E 02EBD000 80009300 | o ceesenenns Fooda)
04553020 04B61ECO 05235D70 FF02C010 00000000 | ceciealioanifs wmme |
04553030 00000000 1F000053 007D1000 80007300 I acamnaara Mo et |

Search for a word ending with x'F14°,

ASID(X'0001') ADDRESS (F45FB0.) STORAGE ------—=—-—=———————————- FOUND AT F45FC4.
Command ===> FIND X'00000F14' MASK(X'OOOO0OFFF') BDY (4) SCROLL ===> CSR
00F45FBO 0140015F 00BEO15F 0000B138 812B2A94 R T o e B |
00F45FCO0 81234598 85261F14 0250COES8 0250COE8 [T T Cpe—— &{Y.&{Y |
00F45FDO 02575458 012B39FE 00000008 025758C0 | o e e {1

42

In the first example, NOB (NOBREAK) is used to request IPCS to keep searching in
storage and not stop at a page break (when storage for a page is not available).

) RUNCHAIN

U

rocess a chain of control blocks in order to:
* look for a specific one on the chain

* determine the length of the chain

« confirm an error scenario

* Basic Parameters
» ADDRESS
* LINK
« NULL
+ NAME
« AMASK
« MASK
« EXEC
« CHAIN
+« SORTBY

43

The RUNCHAIN subcommand is useful when you need to run a chain of control
blocks. In most cases we need to find out the length of the chain. In some cases
we need to find an element on the chain. The basic parameters of RUNCHAIN will
be discussed in the following pages.

43

W RUNCHAIN common parameters

» ADDRESS() - address of first control blockin chain (use ASID parm if needed).

LINK (x:y) - beginningand ending offset of forward pointerin control block.
If x is used alone, forward pointeris 4 bytes long.

NULL() - valuein LINK thatindicates end of chain (defaultis 0).
Useful when last element of chain pointsbackto first elementor trailer.

AMASK() - valueto AND with LINK to form next pointer. Defaultis x'OOFFFFFF' if
chainoriginatesbelowthe line and x'7FFFFFFF' if chain originates
abovetheline. So, if chain originates belowthe line, but elementscan
reside abovethe line, AMASK(x'7FFFFFFF') should be used.

MASK() - valueto AND with LINK before comparingto NULL.

Example: RUNC ADDR(FD4800.) LINK(4)

LIST FD4800. ASID(X'0001') LENGTH(X'04') AREA
LIST FB0O100. ASID(X'0001') LENGTH(X'04') AREA

LIST FB7200. ASID(X'0001') LENGTH(X'04') AREA

ADDRESS, LINK and NULL are the common parameters of RUNCHAIN. Before
you issue RUNCHAIN, remember to check on the offset of the forward pointer in
each element and how the chain ends.

44

| RUNCHAIN (NAME parameter)

« NAME() - name for each control block. IPCS will add sequence number.
&3 - Useful if you need to identify position of element on chain. gg

Example: RUNC ADDR(FD4800.) LINK(4) NAME(CB)

CBOO1
LIST FD4800. ASID(X'0001') LENGTH(X'04') AREA

CB002
LIST FB0100. ASID(X'0001') LENGTH(X'04') AREA

CB003
LIST FB7200. ASID(X'0001') LENGTH(X'04') AREA

CB004
LIST FB7080. ASID(X'0001') LENGTH(X'04') AREA

CBOO05
LIST FAF280. ASID(X'0001') LENGTH(X'04') AREA

45

The NAME parameter is useful when you need to identify the position of any
element on the chain.

Caution: When specifying a NAME, avoid choosing names used by IPCS (for
example: ASCB), since that will cause values associated with those existing
symbols to be replaced. LSYM can be used to see what NAMEs are currently in
use.

45

e RUNCHAIN (CHAIN parameter)

« CHAIN() - specifies maximum number of blocks to be processed.
Default is 999.

@ Scroll max to bottom of report. If number of blocks processed is 999, use larger CHAIN g
value to try to get to end of chain.

Example: RUNC ADDR(FD4800.) LINK(4) CHAIN(9999)

CB416
LIST F85100. ASID(X'0001') LENGTH(X'04') AREA

CB417
LIST F65A00. ASID(X'0001') LENGTH(X'04') AREA

CB418
LIST F97B80. ASID(X'0001') LENGTH(X'04') AREA
BLS18094I 418 blocks processed

The CHAIN parameter should be used if the chain is longer than 999 elements. If
you increase CHAIN several times, and you still cannot see the end of the chain,
the chain could be circular. Issue a FIND on the address of the first element of the
chain. If you find it twice, the chain is circular. Another way is to scroll to the
bottom of the output and issue a FIND PREV on the last element. If you find it
twice, the chain is circular.

46

- RUNCHAIN (EXEC parameter)
[m

« EXEC(()) - execute a CLIST, REXX EXEC, or IPCS command for each control
block on the chain. Note the (()).

4» * Useful if you need more information about each element. €»

Example: RUNC ADDR(FD4800.) LINK(4) EXEC((CBF X STR(ASCB)))
LIST FD4800. ASID(X'0001') LENGTH(X'04') AREA

ASCB: 00FD4800

+0000 ASCB..... ASCB MDP. ... O0FB0100 BWDP..... 00000000
+0020 JSSEQ.... 00000002 ASID..... 0001 SRME. ... 00
+002C TCBE..... 00000000 1IDA...... TF6C6EO0 RSMF..... CO
+0040 EJST..... 000002A0 1EB79E48 EREY ..coh D1BO87EF
+0058 UBET..... 00000000 TICH..... 00000000 DUMP..... 00B8EB918

47

The EXEC parameter allows you to execute a CLIST, REXX EXEC, or IPCS
subcommand for each element of the chain. This is useful if you need to obtain
more information about each element.

47

“wm BEAR-Breaking Event Address Register
=f0

* A 64-bit register containing the address of the last instructionthat
causes a break in sequential execution
* For example, a branch or a LPSW instruction

* Content of BEAR stored in PSA by H/W when any program check
occurs. This is propagated by z/0S to:
* SDWA (available in ST FAILDATA or VERBX LOGDATA)
* RTM2WA (available in SUMM FORMAT)

* Useful when diagnosing an ABENDOC1 (or other program check
abend), especially one due to a wild branch.

48

BEAR is an enhancement in z/Architecture since the zZ9 machines (a while ago).
Basically, the machine remembers the address of the last instruction that causes a
break in sequential execution (or in common terms, a branch) and surfaces this
information in a program interrupt. If this program interrupt is not resolvable,
resulting in an error condition, z/OS will save the contents of BEAR in the SDWA or
the RTM2WA.

48

%l- Finding BEARina dump
il [

TIME OF ERROR INFORMATION

PSW: 07040001 80000000 00000000 OAF8D286

INSTRUCTION LENGTH: 06 INTERRUPT CODE: 0010
FAILING INSTRUCTION TEXT: 17884280 3015E320 60180004
TRANSLATION EXCEPTION ADDRESS: 00000008 004FF800

BREAKING EVENT ADDRESS: OOOOUOOO_OAFBC'?S-‘I

SUMM FORMAT

RTM2WA: TFFAFEL10

+0000 ID....... RTM2 ADDR..... TFFAFE10 SPID..... FF LGTH..... 0011F0
+0014 VRBC..... 009FD550 ASC...... 00F882A0 CCF...... B84 - o FE R 0Cc1000

Lines omitted here

+06C8 TRNE..... 00000000 O72FF800

+06D0 BEA...... 00000000 OAF8B552
+06D8 PSW1..... 07040001 80000000 00000000 OAF8D18B0O

49

You can also find BEAR in an RTM2WA (if available) under the failing TCB in
SUMM FORMAT.

49

M
il

System Trace aidsin
diagnosing a performance problem

* SYSTRACE PERFDATA for a performance view from system trace entries
* SPIN entries in SYSTRACE report

50

50

-y SYSTRACE PERFDATA
=

v

rovides a “performance breakdown” on system trace data
* SRB, TCB, and total CPU time used per address space in trace

* Breakdown of SRB usage by address space

* Breakdown of TCB usage by address space

* LOCAL and CMS lock suspensions

* |/O times

* See

* https://share.confex.com/share/119/webprogram/Session11721.html|
for additional details

51

Like any debugging tool used to diagnose performance issues, SYSTRACE
PERFDATA is not to be considered a silver bullet. However, in cases where it
would be helpful to know what jobs are using the most CP during a small snapshot
in time, SYSTRACE PERFDATA may help. Users must have some awareness of
the system’s normal CPU usage in order to effectively analyze SYSTRACE
PERFDATA output.

51

N SYSTRACE PERFDATA excerpts

CPU Summary

CPU# went from To Seconds SRB Time TCB Time Idle Time CPU Overhead
00 16:02:24.880423 16:02:28.200541 3.320117 1.370858 1.943048 0.000000 0.040452
01 16:02:24.880437 16:02:26.878804 1.998367 1.371296 0.621700 0.000000 0.036751

5.318485 2.742155 2.564749 0.000000 0.077204

52

This slide demonstrates how SYSTRACE PERFDATA breaks down how much time
each CP spent executing SRB mode work, executing TCB mode work, or idle.

52

‘|= SYSTRACE PERFDATA excerpts

Summary for each address space in system trace:

Found 53 address spaces in SYSTRACE.
Found 145 SRB and SSRB PSWs in SYSTRACE.

CPU breakdown by ASID:

ASID Jobname SRB Time TCB Time Total Time

006B ABCDEFGH 0.001601 0.012151 0.013752
0060 CICSRGNA 0.005703 0.202266 0.207969
0078 SOMEBAT1 0.000994 0.118045 0.119040
0080 SOMEBAT6 0.006793 0.057610 0.064404
0064 PBLTEST 0.008914 0.045282 0.054196
0085 CICSRGNB 0.000725 0.074175 0.074901
0063 MYJOB 0.001004 0.112320 0.113325

k-

SYSTRACE PERFDATA excerpts

SRB and TCB breakdowns for each address space:

SRB breakdown by ASID:
ASID Jobname

006B ABCDEFGH 070C0000

ASID Jobname

0060 CICSRGNA 070C0000
0060 CICSRGNA 070C0000
0060 CICSRGNA 070C0000

PSwW # of SRBs
81174100 97
PSW # of SRBs
813C1348 273
8102E876 20
886D0656 7

0.003070
0.000046
0.000058

0.003174

TCB breakdown by ASID:

ASID Jobname TCB Adr # of DSPs
006B ABCDEFGH 009EB748 97
ASID Jobname TCB Adr # of DSPs
0060 CICSRGNA 009FA4EO 733
0060 CICSRGNA 009COE88 20
0060 CICSRGNA 009FAB20 22

0.201798
0.000319
0.000148

0.202266

54

54

SYSTRACE PERFDATA excerpts

-

Lock Events:

Lock ASID TCB/SRB Type PSW Adr Suspended at Resumed at Suspend Time
CEDQ 0009 009F6638 TCB 9276C4D8 16:02:25.532319 16:02:25.532422 0.000102
CEDQ 0001 O099D0OE8 TCB 9276C4D8 16:02:25.532572 16:02:25.532610 0.000037

2 suspends 0.000139

SSCH to I/0 times:

Device SSCH Issued I1/0 Occurred Duration

2080 16:02:24.880476 16:02:24.880680 0

2080 16:02:24.881121 16:02:24.881347 0. il v
2080 16:02:24.882362 16:02:24.882596 0.000233 Quickest I/
2080 16:02:24.882970 16:02:24.883410 0.000440 Slowest I/0
0

2080 16:02:24.883555 16:02:24.883907 .000352 Total
____________ Average

Events for 2080 :

5
0.000203
0.000440
0.001453
0.000290

55

95

.

'

SYSTRACE SPIN entries

* SPIN LKX/S entry written after spmnmg for lock for 1 second
e SPIN LKX/P entr\ written at end of spin

PR ASID WU-ADDR- IDENT CD/D PSW-- ADDRESS- UNIQUE-1 UNIQUE-2 UNIQUE-3

UNIQUE-4 UNIQUE-5 UNIQUE-6

0001 0005 02391380 SPIN LKX/S 8174c4s8 01000000 00004002 021C3cC04

00004000 000002F8 OOFF15C2

0001 0005 02391380 SPIN LKX/P 8174C4B8 02482AA2 00004002 021C3C04

00004000 000002F8 OOFF15C2

PSACLHS- PSALOCAL PASD SASD Time Local
PSACLHSE PSALOCAL PASD SASD Date-12/14/2
88000000 00000000 0003 0005 15:24:31.308
00000000

88000000 00000000 0003 0005 15:24:32.561
00000000

* Unique 4: Lock being requested (map via PSACLHS in MVS Data Areas)
* See: MVS Diagnosis: Tools and Service Aids

AND

https: / /share.confex.com/share/119/webprogram/Session11721 .html

for more information about SPIN system trace entries, including other
types of events which can generate spin entries.

56

The Unique-2 field on a SPIN/LKX entry indicates the CP where the lock holder is
Ignore the ‘4’ as this is actually a flag bit that has been set. In the
example on this slide, if you ignore the ‘4’, you see that the lock holder is executing

executing.

on CP2.

56

Captured dumps and traces

.

* When a system crashes with a flurry of abends, there may be some
extra nuggets in the SADump

&3 COPYCAPD
* Checks a SADump for SVC dumps that were captured as the system crashed

* Normally this captured storage would be freed after the dump was written, but the
system crashed before this happened

&3 SYSTRACE TTCH(LIST) TI(LO)

* Checks a SADump for system trace table snapshots taken as work units entered RTM

* Normally these captured system trace snapshots are freed when the work units exit
RTM, but the system crashed before this happened

57

57

e COPYCAPD [SADumpsonly]

COPYCAPD

Number Time stamp Title

1 01/24/2017 07:19:20 COMPON=BPX, COMPID=SCPX1,ISSUER=BPXMIPCE ,MODULE=BPXPRTRM+??7?77,

1 captured dump processed

58

This shows that there was one captured dump in this SADump. On the next slide
we see how to extract it into a dump data set which can then be initialized just like
any SVC dump. The success of this initialization and the usability of the dump will
depend on how much got written before the system crash occurred.

58

Number Time-stamp

1 01/24/2017 07:19:20 COMPON=BPX,COMPID=SCPX1,ISSUER=BPXMIPCE ,MODULE=BPXPRTRM+??7?77,
1 captured dump processed

Open volume 1 of DSNAME ('PATTYL.CAPDUMP ')

BLS18169I Dump 1 is being copied

DATA SPACE ASID(X'0005') DSPNAME(00055SDU) STOKEN(X'8000C60000001817")
DATA SPACE ASID(X'0005') DSPNAME(00053SDU) STOKEN(X'8000990000001813'")
DATA SPACE ASID(X'0005') DSPNAME(00054SDU) STOKEN(X'80009A0000001814")
IEA11005I 1 section was not accessible.

IEA11005I 4 SUMDUMP pages were not accessible.

BLS18170I 193,440 records 804,710,400 bytes, copied

Dump data set does not have to be pre—allocated but sometimes it helps avold ABENDx37 errors.

59

59

|- SYSTRACE TTCH(LIST) [SADumpsonly]
m

SYSTRACE TTCH(LIST) TI(LO)

TTCH ASID TCB TIME
*7F615000 00D3 009C4168 01/24/2017 07:19:20.068905

7EFFC0004_0006 00000000 01/24/2017 07:19:18.709728
7F0B4000 00000000 01/24/2017 07:19:16.998678
7F16C000 0001 00000 01/24/2017 07:19:04.631369

To format the 229 tl’ﬁ('%&[}ﬂ the list above

* SYSTRACE TTCH(X’7EFFC000’) ALL TI(LO)

NOTE: An “*” beside an entry indicates this is not a full-sized system trace buffer snapshot, meaning it
does not have as long of a history (just 64K) as a full-sized buffer snapshot. In order not to deplete
system resources, RTM caps the number of full-sized system trace buffer snapshots that can be

in flight simultaneously.

Other SYSTRACE filtering options may be used in conjunction with
TTCH(X'yyyyyyyy’) as well.

60

New Nuggets

61

“5 & ESTA& ESTR system trace entries (R2.1)

0000 0239 O008FEA30 *SVC D 00000000_0152E3C2 008AQCAO 0089F000 OO89EFBS8
07042000 80000000
0000 0239 O0O8BFEA30 *RCVY ESTA O0E98336 0089D8D0 00000000 008A0C80
00000000 \008FF610
0000 0239 008FEA30 SVC C 00000000_09471434 09471AFD E98336 0089D8DO
070410 80000000
RTM?2 is entered via SVC D / SDWA

RTM2 traces RCVY entry for ESTAE/ARR getting control £

RTM2 passes control to the ESTAE/ARR via SVC C SYNCH A secre"

decoderring
required!

62

62

lL ESTA & ESTR system trace entries (R2.1)

_ll BB
0000 0239 OO8FEA30 SVCR C 00000000_09471434 0000000C 00000010 0089D8DO

07041000 80000000

0000 0239 OO8FEA30 *RCVY ESTR 00000000 OOE9866C O0OO0OE98336 008FF610

0000 0239 OO8FEA30 SVCR 11 00000000_00E9866C 008A0CAO\0089FO000 008A0C80
07042000 00000000

0000 0239 OO8FEA30 DSP 00000000_00E9866C 00000000 Q089FO000 00O8A0C80
07042000 000000Q0

* SVCR Cindicates ESTAE-type recovery routine comp\\ting.
* RCVY ESTR indicates retry requested and shows the retry address,

as well as the recovery routine address
* The SVCR xx entry is a “retry effect”, not an actual SVC return. It should be ignored.

* The DSP entry indicates code getting dispatched at the retry point.
o

63

||_ SLIPA=CMD (R2.2)

Because everyone
* You can now request a command via a SLIP! asks.... Yesl =
» Allowed for both PER and non-PER SLIP traps
* Up to 8 commands may be issued

* May be combined with other SLIP actions
* Cannotbe combined with WAIT, IGNORE
* Cannotbe used as a REMOTE action (use ROUTE instead)

« Example: SLIP SET,COMP=0C4,A=CMD,CMD='DT’,END

* See SLIP section of MVS System Commands for more details.

64

Appendix

VSM: |dentify subpooland key
RUNCHAIN: Sorting output

65

65

“um VERBXVSMDATA ‘SUM ASID(dddd)
[Sai)niy

* Provides VSM (virtual storage manager) information, for both
global (common) and local (private) storage, for specified ASID

* Forjust global storage: VERBX VSMDATA ‘SUM NOASID’
* Forjust local storage: VERBX VSMDATA ‘SUM NOG ASID(dddd)’

* Includes storage map (not as detailed as IGVVSMIN), summary of
subpool sizes

* Formats VSM data structures that describe allocated and free
areas of storage

* Designed for sortability

* Can be used to identify what subpool/key a piece of storage is in

Note that dddd is the *decimal* ASID number.

66

Using VERBX VSMDATA to
identify subpool and key

'
m
* Assumption: You have an address for which you

want to determine the subpool number/key
* |P VERBX VSMDATA ‘SUM’

* SORT 115 122
* FIND SP/K

* Scroll or search until you find the VSM control block representing the
range of storage where your address lives

* VSM control block notes

* Each VSM control block has an ADDR/SIZE format describing storage area
it represents

If the VSM control block name contains an “F”, it represents free storage;
otherwise it represents subpool-assigned storage

14

67

A VSM control block represents either an allocated (subpool-assigned) or free area
of storage. The ADDR field indicates the starting address of the area, and the SIZE
field indicates the length of the area.

67

|
g

Sorted VSMDATA report (excerpt)

What subpool/key

does address 7F0100 live in?

DQE: Addr 0079000 Size 2000 TCB: 007FF6C8 sp/K: 237/
FQE: Addr 007E9000 Size ABO TCB: O007FF6C8 sP/K: 237/

DQE: Addr 007EBO00 Size 1000 TCB: 007F8680 sp/K: 230/
DQE: Addr 007eCc000 size 2000 TCB: O007FF6C8 sp/K: 237/
DQE: Addr 007EBO00 Size 1000 TCB: 007F8680 sp/K: 230/
FQE: Addr 007eC000 size F98 TCB: 007FF6C8 SP/K: 237/

DQE: Addr 007EEQ000 Size 2000 TCB: 007FF6C8 spP/K: 237/
FQE: Addr 007EF000 Size FD8 TCB: 007FF6C8 sp/K: 237/

DQE : ddr 007F0000 Ssize 1000 TCB: 007FDD40 SP/K: 230/
‘-A\ FQE: dr 007F0000 Size F70 TCB: 007FDD40 SP/K: 230/

DCOHFEEFEHOHOK M

Address 7F0100 falls withi

encompasses the range of the FQE.

contains GETMAINed storage assigned to SP230 ke}")

Addr/Sm FQE so it is free.

However, the FQE is associated with a DQE with an Addr/Size range that

Conclusion: The storage at 7F0100 is free; however, it resides on a page that

68

A VSM control block represents either an allocated (subpool-assigned) or free area of
storage. The ADDR field indicates the starting address of the area, and the SIZE field
indicates the length of the area.

VSM control blocks that represent allocated (that is, subpool-assigned) storage are:

- DQEs represent allocated pages of storage in RGN, SWA, high private, and CSA
- AQATSs represent allocated pages of storage in LSQA and SQA
VSM control blocks that represent free storage are:

- FQEs represent free fragments (less than a page) of storage in RGN, SWA, high private,
and CSA

- DFEs represent free fragments of storage in LSQA and SQA

- FBQEs represent free pages of storage. There is a pool of free pages for CSA and for
each private storage area.

68

-y RUNCHAIN (SORTBY parameter)
=
* SORTBY(sortkey ASCENDING | DESCENDING)

* Run and sort chain of elements in a specific order.

* sortkey - can be range of offsets in elements, or attribute of elements.

« ASCENDING | DESCENDING - sort order. Default is ascending

Example: RUNC ADDR(FC7380.) LINK(4) SORTBY(42:43) EXEC((LIST (x+24, X+B0?, X+AC?) LEN(8)))

Address space control block
LIST FC3D00. ASID(X'0001') LENGTH(X'0180') STRUCTURE (Ascb)

Address space control block

LIST FC3D00. ASID(X'0001') POSITION(X'+24') LENGTH(X'08') STRUCTURE (Ascb)
+00024 00FC3D24. 00690000 000100E2 o s

LIST FA6418. ASID(X'0001') LENGTH(X'08') AREA
00FA6418. C2D7E7C1 E2404040 | BPXAS |

LIST FA6BD4. ASID(X'0001') LENGTH(X'08') AREA
00FA6BD4. E2EBE2D3 D6C7C440 | SYSLOGD |

69

The SORTBY parameter allows you to sort the elements of the chain in a certain
order.

The example is valuable when trying to understand a high CPU problem where the
"hung" job is not getting CPU, and you want to check the relative dispatching
priorities between a "hung" job and the jobs that are shown executing in
SYSTRACE ALL output.

69

Questions?

Session 21585
Mining zZ/OS Debugging Nuggets

70

