








z/OS UNIX System Services (first introduced by IBM as OpenEdition in 1994) is a UNIX
operating system that runs on z/OS MVS. UNIX history dates back to 1969 when AT&T
created the original UNIX operating system. Prior to z/OS UNIX, the 2 main UNIX branches
were System V (System 5) UNIX developed by AT&T, and BSD (Berkeley Software
Distribution) UNIX developed by CSRG (Computer System Research Group) at UCB
(University of California at Berkeley). The IEEE POSIX group implemented open UNIX
standards and specifications, which z/OS UNIX conforms to. This aids with the porting of
UNIX applications to z/OS.



The OASB is the OMVS extension of the ASSB. If the AssbOasb is non-zero, then the
address space contains at least 1 process.

The OTCB is the OMVS extension of the STCB. If the StcbOtcb is non-zero, then the TCB is a
dubbed thread (known to z/OS UNIX).



Programs using z/OS UNIX normally are written in high level languages such as C or REXX.
The languages 'transform' into z/OS UNIX assembler callable services (syscalls) via the
POSIX API. Assembler callable services can also be called directly.

Physical file data can reside on DASD (HFS/zFS) or be accessed through the network
(sockets / NFS). Communication to Physical File Systems (PFS’s) is through PFS operations -
vfs_ ops for operations on entire filesystems; vn_ ops for operations on individual files.
Operating System Interface (OSI) operations provide specific callable services to PFS’s. VFS
servers use the VFS callable services API (v_xxxx) to issue file requests (using FIDs rather
than pathnames). There are other Physical File Systems (TFS, CINET, etc.) that are defined
by FILESYSTYPE statements in BPXPRMxx.



In a shared FS configuration, it’s important to understand that mounts and unmounts are
sysplex-wide. When a file system is mounted on 1 system in a shared FS sysplex, it is
“catchup” mounted on the remaining active systems in the shared FS sysplex. For HFS file
systems mounted as RDWR (read/write), the actual physical I/O is done from 1 owning
system. XCF is used to “function ship” I/O requests for a file system from the client systems
to the owning system. zFS file systems mounted as RDWR can be configured to avoid z/OS
UNIX function-shipping (sysplex-aware).



The HFS dataspaces (HFSDSPxx) typically consume the most space in a dump, and they can
usually be excluded from dumps for z/OS UNIX issues. For many types of problems, you
can get away with only dumping dataspaces SYSZBPX1 (kernel data), SYSZBPX2 (file system
data), and SYSZBPXX (CTRACE buffers), along with dataspace BPXFSCDS (OMVS CDS data) if
running in a shared FS configuration.



It’s important to understand that z/OS UNIX latch set control blocks reside in OMVS private
storage. So, when looking at a dump, the OMVS address space must be dumped in order to
determine whether there is contention with a z/OS UNIX latch.

Although latches are system-specific, they can lead to a sysplex-wide hang in a shared FS
environment, if a latch on a particular system is holding up serialized shared FS activity from
completing.



There are other address spaces, aside from the OMVS address space, that are part of the
z/OS UNIX environment. The BPXOINIT address space is automatically created as part of
OMVS initialization, and it runs the /etc/init OMVS initialization script. BPXOINIT also
handles ‘F BPXOINIT’ console commands and cleans up zombie processes.

BPXAS initiators are WLM-managed initiators in which forked processes run. A BPXAS
initiator is terminated after 30 minutes of inactivity. However, idle BPXAS initiators can be
manually shutdown via ‘F BPXOINIT,SHUTDOWN=FORKINIT’.

Some PFS’s are initialized in separate address spaces called colony address spaces.



z/OS UNIX interacts with many different product components, including PFS address spaces
for file system operations, XCF for shared file system operations, and GRS for latch
operations. The LE C/C++ Run-Time Library helps support the POSIX API.



z/OS UNIX provides a set of Assembler Callable Services, also known as system calls
(syscalls). Detailed information about the syscalls and parameters passed to the syscalls
can be found in the z/OS UNIX Programming: Assembler Callable Services Reference.
Although parameters differ for each of the syscalls, the 3 R’s (Return Value, Return Code,
Reason Code) are returned for each syscall request.



Typically, the return value (rv) is set to -1 (x’FFFFFFFF’) if an error occurs. If the return value
is -1, then the return code (errno) and reason code (errnojr) provide more specific
information about the failure. These “3 R’s” typically are externalized in messages or in
traces (e.g. OMVS CTRACE, application trace).





BPXMTEXT is a very useful tool that can be invoked from TSO, the Shell, or under IPCS. For
reason codes issued by z/OS UNIX (reason code qualifier in the range 0-20FF), BPXMTEXT
provides the reason code name and issuing module, as well as a description of the reason
code and what actions to take. Refer to the z/OS UNIX Command Reference for more
details about the use of bpxmtext from the Shell.



This slide shows common reason code qualifiers (first half of errnojr) and their respective
components.



In this example, a customer tried to unmount a file system with other file systems mounted
on it. They received a z/OS UNIX reason code of x’058800AA’. Per BPXMTEXT output, the
reason code name is ‘JRFsParentFs’ and indicates that the file system has file systems
mounted on it.



In this example, the ETCINIT job was ended abnormally via a SIGKILL.



Unlike z/OS UNIX reason codes, z/OS UNIX abend codes cannot be deciphered with
BPXMTEXT. The z/OS UNIX abend reason codes are documented in the z/OS MVS System
Codes manual.

Refer to ‘z/OS UNIX Programming: Assembler Callable Services Reference: Signal defaults’
for a list of signals and their default actions.

Note: See also Appendix A for a list of signals and signal numbers.

A signal is a mechanism by which a process may be notified of, or affected by, an
asynchronous event occurring in the system. Delivery of a signal is accomplished via an IRB
interrupt.



Some of the more commonly seen message prefixes in a z/OS UNIX environment are
displayed on this slide and the next. z/OS UNIX messages are prefixed with BPX, and Shell
messages are prefixed with FSUM.







The ‘D OMVS,A=ALL’ command displays all active z/OS UNIX processes on the system.

This output is useful, for example, to identify a zombie buildup. When a dubbed process
terminates, process blocks are kept around until status can be reported to its parent. A
process in this state is called a “zombie”.



The OWNER, AUTOMOVE, and CLIENT fields are only displayed in a shared FS environment.



The ‘D OMVS,L’ display is useful for checking whether a system limit (e.g. MAXPROCSYS)
has been reached, where as the ‘D OMVS,L,PID=‘ display is useful for checking with a
process limit (e.g. MAXFILEPROC) has been reached.



The ‘D GRS,C’ command is especially useful when diagnosing a hang in a z/OS UNIX
environment. It will show any ENQ or z/OS UNIX latch contention on a given system.



The ‘D OMVS,W’ output is extremely valuable when trying to determine the reason for
hangs or delays in a z/OS UNIX environment. When ‘D GRS,C’ shows contention with the
Mount Latch, a File System Latch, or a File Latch, the ‘D OMVS,W’ output will provide
additional information about the file system and operation involved. It also shows any
outstanding cross-system messages (received and sent), and it provides a table of other
waiting threads.



LFS version level (LFS software version)

Used to determine if systems are compatible with other systems in the shared FS plex,
and whether new functions can be enabled.

The GLOBAL display can be used to identify the z/OS release level of all systems currently
active in the shared FS sysplex. It is particularly useful in a shared FS sysplex hang situation
to identify whether any serialized function(s) are occurring, for how long, and on which
system(s).



This slide lists some of the other ‘F BPXOINIT,FILESYS=‘ commands and their uses.

The ‘F BPXOINIT,FILESYS=D,ALL’ command displays all file systems mounted in the shared FS
hierarchy and should match what ‘D OMVS,F’ shows from any given system. The
EXCEPTION command will show any discrepancies between a system’s local view and the
view from the OMVS CDS.



The FIX command is most often used for display purposes to complement the output from
the GLOBAL command. FIX processing runs on all systems in the shared FS sysplex, and it’s
necessary to check the hardcopy logs of all systems in the shared FS sysplex for any
messages in response.



If the GLOBAL output indicates that a system is delayed during unmount, quiesce, or
remount serialized activity, the FIX processing will determine whether the systems
performing those serialized functions are delayed due to other system(s). If so, message
BPXF049I identifies the systems that have not yet performed the specified operation locally.





For fork and spawn requests that do not involve changing user IDs, the jobname of the child
is set to the base jobname with a number from 1 to 9 appended at the end. For example, if
you logon to TSO, you will have a jobname that is the same as your user ID (for example,
JSHEBEY). The first fork or spawn creates an address space with JSHEBEY1. In this case, the
base jobname is JSHEBEY and all children inherit the same base jobname. Continuing this
example, if address space JSHEBEY1 does a fork or spawn, the new child address space will
have a jobname of JSHEBEY1 to JSHEBEY9. It is possible to have multiple address spaces
with the same jobname running concurrently. This is why the wildcard ‘*’ is often needed
for dumping the jobname of a forked/spawned address space.



This console dump command only needs to be issued on 1 system in a shared FS sysplex
configuration. Through use of the REMOTE parameter, dumps of OMVS and its dataspaces
are collected on each system in the shared FS sysplex.



Note the difference in syntax for the REMOTE parameter on a SLIP versus a console DUMP
command.



This SLIP trap can be used to get a dump for a specific reason code issued by z/OS UNIX
(reason code qualifier in the range 0-20FF) or from a PFS reason code (e.g. zFS, HFS, NFS,
TCPIP).



The z/OS UNIX reason code SLIP at z/OS 2.2 is identical to that of z/OS 1.13 and z/OS 2.1,
with the exception of addressing Register 13 (highlighted above in red) in the DATA=
parameter. With z/OS 2.2, the DATA operand must change to accommodate a

64-bit Register 13, since we can be running with stacks above.



OMVS CTRACE data can be filtered by OPTIONS or by JOBNAME. When filtering by
JOBNAME, it is important to note that this filtering is based on the userid of the job, not its
jobname. The userid associated with a job can be obtained from ‘D OMVS,A=ALL’ output.
However, be aware that the OMVS Kernel is traced with a JOBNAME of OMVS.

Refer to z/OS MVS Diagnosis: Tools and Service Aids for a description of what OPTIONS can
be used for filtering SYSOMVS CTRACE data.



/* ---------------------------------------------------------------- */

/* DEFAULT CTIBPX00 MEMBER */

/* ================================================================ */

TRACEOPTS

/* ---------------------------------------------------------------- */

/* ON OR OFF: PICK 1 */

/* ---------------------------------------------------------------- */

ON

/* OFF */

/* ---------------------------------------------------------------- */

/* ASID: 1 TO 16, 2-HEXBYTE VALUES */

/* ---------------------------------------------------------------- */

/* ASID(0042,0043,0044) */

/* ---------------------------------------------------------------- */

/* BUFSIZE: A VALUE IN RANGE 16K TO 4M */

/* ---------------------------------------------------------------- */

BUFSIZE(64M)

/* ---------------------------------------------------------------- */

/* OPTIONS: NAMES OF FUNCTIONS TO BE TRACED, OR "ALL", OR "NONE" */

/* ---------------------------------------------------------------- */

OPTIONS(

'ALL '

)





INFO APAR II08038 contains general z/OS UNIX doc collection procedures.



The ‘D GRS,C’ and ‘D OMVS,W’ displays can be used together when diagnosing a hang in a
non-shared FS environment.



In a shared FS environment, the ‘D GRS,C’ and ‘D OMVS,W’ commands should be routed to
all systems. The GLOBAL display also shows whether any systems(s) are stuck performing
serialized function(s) that could be hanging up the shared FS sysplex.



Sysplex-wide dumps of OMVS and its dataspaces, along with any other related PFS’s or
address spaces, are often needed when debugging a hang in a shared FS environment.

The ‘D OMVS,W’ output can help pinpoint more specific systems involved, but if in doubt,
dumps should be collected from all systems.



When OMVS initialization hangs, message BPXP006E may be issued identifying which area
of OMVS initialization is hung.



If a PFS address space gets hung, holding up OMVS initialization, message BPXP007E will be
issued. In a shared FS sysplex, it’s possible for a system to be hung in initialization due to
other serialized activity in the shared FS sysplex (message BPXF076I).





In this example, the thread with ID x’352E800000000000’ in process ID 67108975 was
terminated via a SIGKILL signal from process ID 16777241 with jobname KILLER. This
resulted in the target process terminating abnormally with an ABENDEC6 RSNFF09.



The ETCINIT job failed during OMVS initialization with an exit status code of 00000900.
Looking up the meaning of exit status code ‘09’, it indicates that /etc/log could not be
opened for output.



We see from ‘D OMVS,F’ output that the /etc file system is mounted as READ (read-only),
so /etc/log (file in /etc file system) cannot be opened for output (write).



In this example, a fork failed with rsn0B0F0028 JRMaxProc, which is indicative of the
MAXPROCSYS limit value being reached.



The ‘D OMVS,L’ display can be used to confirm that we have reached the MAXPROCSYS
limit value. We can temporarily (for the current IPL) raise the MAXPROCSYS limit value via
the SETOMVS command to provide immediate relief.



If there is a zombie buildup (state of 1Z), this can cause the process slots to be filled up, and
MAXPROCSYS reached. The most probable reason for a zombie buildup is that a parent
process does not issue a waitpid() – BPX1WAT – on its child processes. In such a case, the
parent PID of the zombies would be equal to the ID of the process that created them. In
this example, they have a parent PID of 196637, which is associated with an HTTP server.



This is an example where a system (TEST) hung in OMVS initialization due to serialized
shared FS activity on another system in the sysplex.



The GLOBAL display shows that Dead System Recovery (FILE SYSTEM RECOVERY) is currently
processing on another system (DEV).



There is MOUNT Latch contention on the system (DEV) that is stuck performing Dead
System Recovery.



The ‘D OMVS,W’ output from DEV confirms that the MOUNT Latch contention and the
Dead System Recovery hang are related. The MOUNT Latch holder is waiting on a PPRA
latch.



The ‘D GRS,C’ display shows the MOUNT Latch holder waiting for PPRA Latch#176, which is
held by TCB(x’8C0E88’) in ASID(x’8C’) WSJS1.

It may be possible to cancel job WSJS1 to free up the shared FS sysplex.



This is another example where a system (SYS2) hung in OMVS initialization due to serialized
shared FS activity on another system in the sysplex.



The GLOBAL display shows that Dead System Recovery (FILE SYSTEM RECOVERY) is currently
processing on another system (SYS3), as well as UNMOUNT processing (on SYS1) from the
day before!



The FIX command can be used to determine whether the UNMOUNT processing on SYS1 is
delayed due to another system.



In this case, the FIX processing reports (message BPXF049I) that the UNMOUNT processing
on SYS1 is waiting for a response from SYS3, and we know that SYS3 has MOUNT Latch
contention. Thus, the problem system is SYS3, which may need to be IPL’d to recover.





These references are of particular use to programmers in a z/OS UNIX environment.



The z/OS UNIX Tools and Toys page is linked off of the z/OS UNIX External Website:

http://www-03.ibm.com/servers/eserver/zseries/zos/unix/bpxa1toy.html















For some problems, it’s necessary to collect more OMVS CTRACE data for a long period of
time (possibly covering entire execution of a program or job). This is due to the limited size
of OMVS CTRACE buffers in the SYSZBPXX dataspace.



The dispatching priority of the external writer should have a dispatching priority at least
equal to OMVS. Also, please give the external writer job as large a region as possible to
minimize the chance of losing a buffer. The external writer will cut a LOGREC entry every
time it fails to successfully write the buffer to the trace data set.

For more details of sending OMVS CTRACE records to an External Writer, refer to z/OS MVS
Diagnosis: Tools and Service Aids.



OMVS CTRACE records can be formatted in IPCS via the IPCS panels (=2.7.1.D) or via the
IPCS command line interface.



OMVS CTRACE syscall entry records can be used to identify the caller of a syscall (BPX1OPN
open in this example), as well as the parmlist information for a syscall request. The first 4
bytes of each parameter will be traced, with the exception of pathname parameters, for
which up to 64 bytes of the pathname will be traced.



OMVS CTRACE syscall exit records can be used to identify the success of a syscall request.
In this example, the BPX1OPN open syscall request failed with rc81 (ENOENT) and
rsn0594003D. Per BPXMTEXT, rsn0594003D indicates JRDirNotFound.


