
Language Environment for Dummies

Thomas Petrolino
IBM Poughkeepsie
tapetro@us.ibm.com

2

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries.

The following are trademarks or registered trademarks of other companies.
* Registered trademarks of IBM Corporation

* All other products may be trademarks or registered trademarks of their respective companies.

Java and all Java-related trademarks and logos are trademarks of Sun Microsystems, Inc., in the United States and other countries.
Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.
Microsoft, Windows and Windows NT are registered trademarks of Microsoft Corporation.
UNIX is a registered trademark of The Open Group in the United States and other countries.
SET and Secure Electronic Transaction are trademarks owned by SET Secure Electronic Transaction LLC.

Notes:
Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput
improvements equivalent to the performance ratios stated here.
IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.
All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual environmental costs and performance
characteristics will vary depending on individual customer configurations and conditions.
This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without notice. Consult your local IBM business
contact for information on the product or services available in your area.
All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.
Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance, compatibility, or any other claims related to non-
IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.
Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

Trademarks

•CICS®
•DB2®
•Language Environment®
•OS/390®
•z/OS®

3

Agenda
nWhat is a Runtime Library?
nWhy LE?
nLE Terminology
nLE CEL Functions
nSetting Runtime Options
nAppendix

4

What is a Runtime Library?

Application Program
…
p1 = malloc(16); /* Obtain heap storage */
…

Runtime Library (z/OS)

malloc (Front end Routine)

-> CEEV#GH (Get Heap Storage Service Routine)

-> CEEVGSTR (Get Storage Low-level Service – z/OS)

-> GETMAIN System Service (z/OS)

5

What is a Runtime Library?

Application Program
…
p1 = malloc(16); /* Obtain heap storage */
…

Runtime Library (z/VM)

malloc (Front end Routine)

-> CEEV#GH (Get Heap Storage Service Routine)

-> CEEVGSTR (Get Storage Low-level Service – z/VM)

-> CMSSTOR System Service (z/VM)

6

What is a Runtime Library?

nA Runtime Library works together with the code produced
by a compiler to provide functionality for an application

n Obtain and manage storage
n Read and write data
n Perform math calculations

nThere are advantages to providing function in a
Runtime Library

n Greatly reduces need for the compilers to generate the code
n Shields the languages from needing detailed knowledge of the

underlying operating system and hardware
n Greatly reduces the need to recompile and re-link when fixes are

required to runtime functions

7

n Since their creation, customers were having trouble getting
COBOL and PL/I to play nicely together

nCOBOL and PL/I each designed to be stand-alone, unaware of each
other

n When leaving a COBOL program to return to a PL/I program, the
COBOL library might free storage that PL/I still wanted
n Language-specific Math Libraries produced different results

n Customers at GUIDE and SHARE worked with IBM to
design a solution

n The result: Language Environment

So, Why Language Environment?

8

C/C++

FORTRAN

PL/I

COBOL

Initialization
Abend handler

Message handler
Storage manager

Termination
CEL

COBOL

PL/I

FORTRAN

C/C++

n Pre-LE environment
n4 independent products
nupward incompatibilities
nloose adherence to standards
npurely a customer application
enabler

n LE environment
n1 product for z/OS (also z/VM and VSE)
n100% upward/downward compatibility
nstrict adherence to standards
npart of the z/OS base
nexploiters include USS, TCP/IP, BCPii,

LOTUS Domino, WebSphere, etc...

Time to make the doughnut…

9

n Language Environment not only helped the languages to
cooperate with each other, but also allowed member
languages to share each other’s features. For example:

nCOBOL can use the C and PL/I condition handling infrastructure
nStorage managed in a 'common' fashion
nAll languages now access the excellent Fortran library math routines
n“hybrid” languages – Enterprise PL/I

Other Advantages

10

Language
Environment
for z/VM,z/OS,VSE

no runtime
required

PL/I COBOL C/C++ Fortran Assembler

PL/I COBOL C/C++ Fortran ASM

CEL

PL/I COBOL

C/C++ Fortran

IMS TSO Batch CICS DB2 UNIX System Services

z/OS
z/VM

VSE

Source Code

Compilers

Operating
Environments

Operating
Systems

11

Language
Environment
for z/OS 64bit

no runtime
required

PL/I C/C++ Assembler

PL/I C/C++ ASM

CEL

PL/I

C/C++

TSO Batch DB2 UNIX System Services

z/OS

Source Code

Compilers

Operating
Environments

Operating
Systems

12

LE Terminology - Program Management

nmain program – the routine that causes the LE environment
to be initialized

nroutine either a procedure, function, or subroutine
Equivalent HLL terms:

n COBOL - program
n C/C++ - function
n PL/I - procedure, BEGIN block

nILC – inter-language communication – application contains a
mixture of languages, which introduces special issues

n how the languages' data maps across load module boundaries
n how conditions are handled
n how data can be passed and received by each language

13

LE Terminology - Program Management
nmember language – a high-level language that is compiled
with an LE-supported compiler

nmember event handler - member-supplied routine that is
called at various times as a program runs when a significant
event has occurred, or when the environment needs some
information that is held by the member

nLE-Enabled - Routine that can run with LE runtime, and may
also run with previous runtimes. Cannot make use of
Language Environment callable services.

nLE-Conforming - Routine that can run only with the LE
runtime library. Can make use of LE callable services.

14

LE Terminology – Callable Services
nLE Callable Services – programmatic way of utilizing
LE services

n AWI - Application Writer Interface
n CWI - Compiler Writer Interface
n CEE prefixed – general to all platforms
n CEE3 prefixed – specific to only z/OS

15

LE Terminology – Program Model

nregion - the range of storage the application set runs in
nprocess - set of applications that accomplish a task
nenclave - an application - set of modules that
accomplish some subtask

nthread - dispatchable unit of work that shares storage
with others in the enclave

16

LE Terminology - Program Model

region

process

enclave enclave

main main

sub

sub

sub

sub

17

LE Terminology - MVS 'Model'

region - address space

process - application

enclave - pgm - enclave

main main

sub

sub

sub

sub

18

LE Terminology – Multi-threading 'Model'

region

process
enclave

thread

main sub

sub

sub

sub

sub

thread

19

nCEL is a set of common functions and routines used by all
member languages of LE

n Initialization/Termination

n Storage Management

n Condition Handling

n Message Services

n Date/Time Services

n Math Functions

nBehavior customizable by the use of Runtime Options

LE CEL Functions

20

nLE code linked with the module begins a bootstrap
process to initialize LE

n initial storage is obtained

n LE Program Model levels are built

n active member language specific runtime is initialized via event
handler calls

nControl is given to the application code

nOnce the application ends and 'returns' to LE

n The LE environment is terminated via cleanup of Program Model levels

n System resources obtained during initialization and throughout the
execution of the application are cleaned up

Common LE Functions – Initialization/Termination

21

nLE manages two types of storage for use by the
application (and itself):

n HEAP - used for COBOL WORKING-STORAGE, C malloc, PL/I
ALLOCATE, and COBOL ALLOCATE (as of V6.1)

n STACK - module linkage (save areas), C and PL/I automatic
variables, COBOL LOCAL-STORAGE

nInitial storage is obtained with one GETMAIN and
managed internal to LE

Common LE Functions - Storage Management

22

nCondition - Any change to the normal flow of a program
n a.k.a. exception, interruption
n Could be detected by hardware or software (ours or yours)

nCondition Handler – A routine called by LE to respond to a
condition

n Registered by application using CEEHDLR, or part of a member language semantics,
such as PL/I ON statements

nCondition Handler Response
n Resume – after corrective action taken, control returns to a ‘resume cursor‘

n Either back to point of failure, or to a new resume point set by the condition handler
n Percolate - decline to handle the condition, LE calls next condition handler
n Promote - change condition meaning and percolate

Common LE Functions - Condition Handling

23

Common LE Functions - Condition Handling
nDiagnostic Documentation

n Messages (same as module prefixes)
n CEE CEL
n IGZ COBOL
n IBM PL/I
n AFH FORTRAN
n EDC C/C++

n ABEND Codes
n User ABENDs U4000-4095 reserved by LE
n Usually have reason codes to help isolate the problem

n CEEDUMP and/or system dump
n Runtime Options Report
n Storage Report

24

nallows HLLs to issue common messages

nmessages written to a common place - LE's MSGFILE

ncan be formatted in:
n Mixed-case American English (ENU)

n Uppercase American English (UEN)

n Japanese (JPN)

Common LE Functions - Message Services

25

nprovides a consistent answer when requesting date and
time from the running system

nformat date and time by country code

nparse date and time values

nconvert between different formats (Gregorian, Julian,
Asian, etc)

ncalculate days between dates, elapsed time

nget local time

Common LE Functions – Date/Time Services

26

nderived from FORTRAN math functions

nbinary, single floating point, double floating point, IEEE
support

nSee the LE Programming Reference for a complete list

Common LE Functions – Math Services

27

Runtime Options

n Allows users to specify how Language Environment
behaves when an application runs

n Performance tuning

n Error handling characteristics

n Storage management

n Production of debugging information

n May be set in many different locations with varying
scopes

28

Setting Runtime Options
nThe default RTOs for applications across all systems

n IBM-supplied defaults
n Base set of values for Language Environment RTOs

nTo set default RTOs for applications on one or more systems
nSystem defaults

n Options specified in a PARMLIB member (CEEPRMxx)
n Options specified with an operator command (SETCEE)

nTo affect applications running within a region
nRegion Level Overrides (CEEROPT/CELQROPT)

nCICS TS, LRR users (e.g. IMS), also Batch
nSeparate module loaded at runtime during region initialization
nCLER transaction for CICS environment (RTO subset)

29

Setting Runtime Options…
nTo provide RTO settings for a specific application:

nApplication Level Overrides (CEEUOPT/CELQUOPT)
n CSECT linked with the application

nProgrammer Overrides
n #pragma runopts for C/C++
n PLIXOPT for PL/I

nTo provide RTO settings for a given run of an application:
nProgram Invocation Overrides

n USS shell: export _CEE_RUNOPTS=‘runtime options’
n In batch, on EXEC card: PARM=

nDD:CEEOPTS Overrides
n Optional data set in which runtime options may be specified

30

Setting Runtime Options…

nOptions Merge (priority)
n Program Invocation Overrides
n DD:CEEOPTS Overrides
n Programmer Overrides
n Application Level Overrides
n Region Level Overrides (where applicable)
n System Defaults (CEEPRMxx and SETCEE)
n IBM-Supplied Defaults

31

Key Runtime Options

• Subtopics

•Tuning

•Diagnostics

32

Key Runtime Options - Tuning

• ALL31
• Indicates whether application runs entirely AMODE 31

• HEAP / ANYHEAP / BELOWHEAP
•Controls size, location, and disposition of heap segments

• STACK
•Controls size, location, and disposition of stack segments

• RPTSTG
• Produces a report that aids in tuning storage usage

33

Key Runtime Options - Diagnostics

• TERMTHDACT
•Tells LE what type of diagnostic information to produce

• DYNDUMP
•Tells LE to produce a dynamically-allocated dump for
diagnostics

• HEAPCHK
•Performs diagnostic checks of the user heap

34

Key Runtime Options – Diagnostics…

• STORAGE
•Controls initial contents of storage when obtained or freed

• TRAP
•Controls LE’s condition handling

• RPTOPTS
•Produces a report of the runtime options settings for a
specific run of an application

35

