IBM z Systems Introduction tSpark

Joe Bostian jbostian@us.ibm.com

April, 2016

Acknowledgements

• Apache Spark, Spark, Apache, and the Spark logo are trademarks of The Apache Software Foundation.

Topics

- What Spark is (and is not)
- The Spark community and IBM's commitment
- Spark details
- Why use Spark on z/OS?
- The ecosystem for Spark on z/OS
- Demo video
- Discussion

What Spark is (and is not)

What Spark Is, What it Is Not

- An Apache Foundation open source project
 - Not a product
- An in-memory compute engine that works with data
 - Not a data store
- Enables highly iterative analysis on *huge* volumes of data at scale
- Unified environment for data scientists, developers and data engineers
- Radically simplifies the process of developing intelligent apps fueled by data

What Spark on z/OS is Not

What it is not

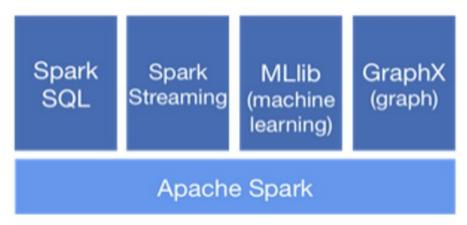
- A data cache for all data in DB2, IMS, IDAA, VSAM ...
- Just a different SQL engine or query optimizer
- An effective mechanism to access a *single* data source for analytics

Why isn't it the same as a query acceleration / IDAA?

- Spark does not optimize SQL queries
- Spark is not a mechanism to store data, but rather provides interfaces to access portions of required data & most importantly to apply analytics using a unified interface
- IDAA interaction with applications is via the DB2 z/OS paradigm; Spark interaction with applications is via Spark interfaces (Stream, MLlib, Graphx, SQL), driven through REST or java
- Spark analytics can access data in DB2, IDAA, VSAM, IMS, off platform, etc.

Apache Spark - a Compute Engine

General Purpose


- Covers a wide range of workloads
- Provides SQL, streaming and complex analytics

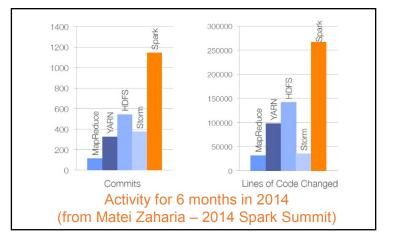
Fast

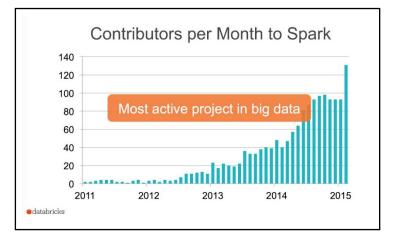
- Aggressively caches data
- Distributes computing
- Uses JVM threads
- Faster than MapReduce for some workloads

Easy to Use

- Written in Java
- Scala, Python and Java APIs
- Runs on Hadoop with Mesos, standalone, or cloud
- Scala and Python interactive shells

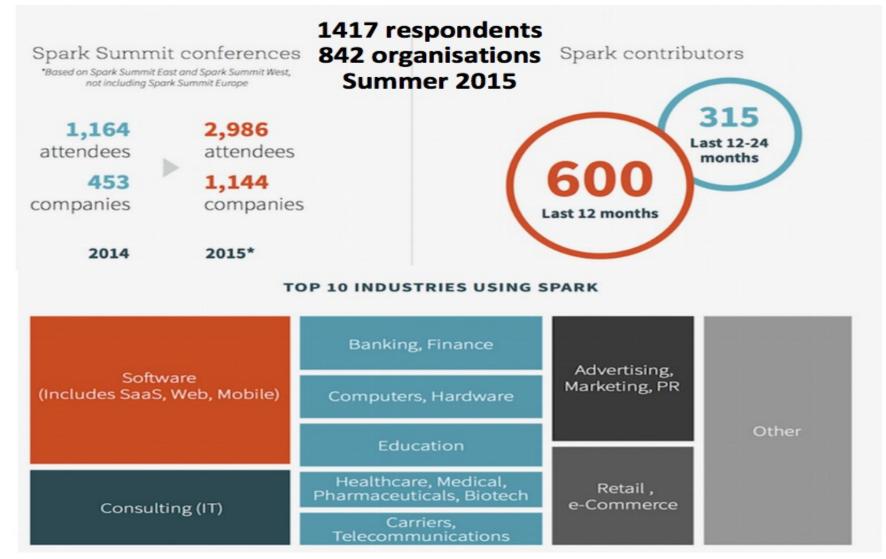
From http://spark.apache.org/




The Spark community and IBM's commitment

Brief History of Spark

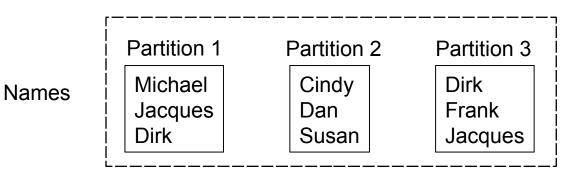
- 2014 1.0.0 release in May
- 2014 1.1.0 release in September
- 2014 1.2.0 release in December
- 2015 1.3.0 release in March
- 2015 1.4.0 release in June
- 2015 1.5.0 release in September
- 2016 1.6.0 release in January
- 2016 2.0.0 release in April/May
- Most active project in Apache Software Foundation
- Databricks founded by the creators of Spark from UC Berkeley's AMPLab



IBM's Involvement and Commitment

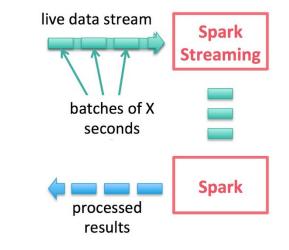
- IBM is one of the four founding members of the UC Berkeley AMPLab
 - Work closely with AMPLab research on projects of mutual interest
- June 2015, IBM announced:
 - 3,500 researchers and developers to work on Spark-related projects at IBM labs worldwide
 - IBM donated SystemML machine learning technology to the Spark open source ecosystem
 - Spark Technology Center established in San Francisco for the data science and developer community
- IBM supports the Spark community
 - Code contributions
 - Partnerships with AMPLab Galvanize and Big Data University (MOOC)
 - Education for data scientists and developers
- Visit the IBM Spark Technology Center at http://www.spark.tc

Spark Activity and Users by Industry


Spark Details

Resilient Distributed Datasets (RDDs)

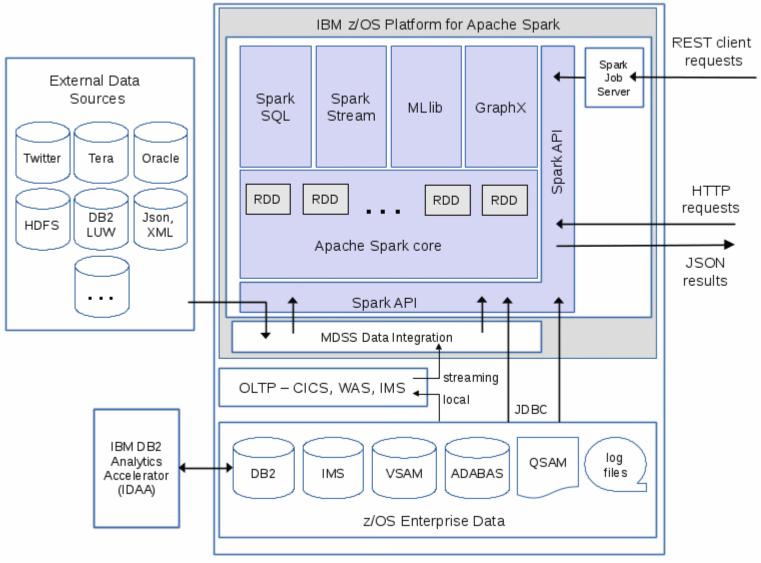
- Spark's basic unit of data
- Immutable, fault tolerant collection of elements that can be operated on in parallel across a cluster
- Fault tolerance
 - If data in memory is lost it will be re-created from lineage
- Caching, persistence (memory, spilling, disk) and check-pointing
- Many database or file types can be supported
- An RDD is physically distributed across the cluster, but manipulated as one logical entity:
 - Spark will "distribute" any required processing to all partitions where the RDD exists and perform necessary redistribution and aggregations as well.
 - Example: Consider a distributed RDD "Names" made of names



- Spark SQL
 - Provide for relational queries expressed in SQL, HiveQL and Scala
 - Seamlessly mix SQL queries with Spark programs
 - Provide a single interface for efficiently working with structured data including Apache Hive, Parquet and JSON files
 - Standard connectivity through JDBC/ODBC
 - Integration of Spark z/OS with Rocket Software provides unique functionality to access data across a wide variety of environments with very high performance and flexibility
- Spark R
 - Spark R is an R package that provides a light-weight front-end to use Apache Spark from R
 - Spark R exposes the Spark API through the RDD class and allows users to interactively run jobs from the R shell on a cluster.
 - Goal is to make Spark R production ready
 - Rocket Software has announced intent to support R on z/OS

Spark Streaming

- Run a streaming computation as a series of very small, deterministic batch jobs
 - Chop up live stream into batches of X seconds
 - Spark treats each batch of data as RDDs and processes them using RDD operations
 - The process results of the RDD operations are returned in batches
- Combine live data streams with historical data
 - Generate historical data models with Spark
 - Use data models to process live data
- Combine Streaming with MLlib algorithms
 - Offline learning, online predictions
 - Actionable information



IBM

Soark

IBM z/OS Platform for Apache Spark

IBM z/OS Platform for Apache Spark ...

- Almost any data source from any location can be processed in the Spark environment on z/OS
- Mainframe Data Service for Apache Spark (MDSS) is key to providing a single, optimized view of heterogeneous data sources
 - MDSS can integrate off-platform data sources as well
 - Large majority of cycles used by MDSS are zIIP-elegible
 - Possible to use Spark on z/OS without it, but MDSS is recommended
- OnLine Transaction Processing (OLTP) is possible, but performance may be challenging
 - Spark is the high performance solution for processing big data, but was never intended to provide analysis in real-time
 - Off-platform data sources may have latency concerns
 - Is near-real-time performance good enough for your needs?
- IDAA optimization with with z/OS DB2 can be integrated with this environment

Why use Spark on z/OS?

Why Use Spark on z/OS?

The environment where Apache Spark z/OS makes sense:

- Running real-time or batch analytics over a variety of *heterogeneous* data sources
 - Efficient real-time access to current and historical transactions
- Where a majority of data is z/OS resident
- When data contains sensitive information
 - Don't scatter across several distributed nodes to be held in memory for some unknown period of time
- When implementing common analytic interfaces that are shared with users on distributed platforms

z/OS strengths are valuable in a Spark environment:

- Intra-SQL and intra-partition parallelism for optimal data access to:
 - Nearly all z/OS data environments
 - Distributed data sources

z/OS Strengths and Spark ...

- Sysplex enabled Spark clusters for world class availability
- Best-fit analytic capability for the investments made in SMF in-memory analytics
- SMT2 for added thread performance
- SIMD enhances performance on select operations
- zIIP eligible to reduce CPU cost
- z/OS's superior memory management:
 - RDMA capabilities
 - Large page support
 - Off-heap memory
 - DRAM integration with Flash for scalable elastic memory
- zEDC compression for internal data when Spark caches and shuffles
- Network acceleration for Spark clusters through RDMA SMC-R technology

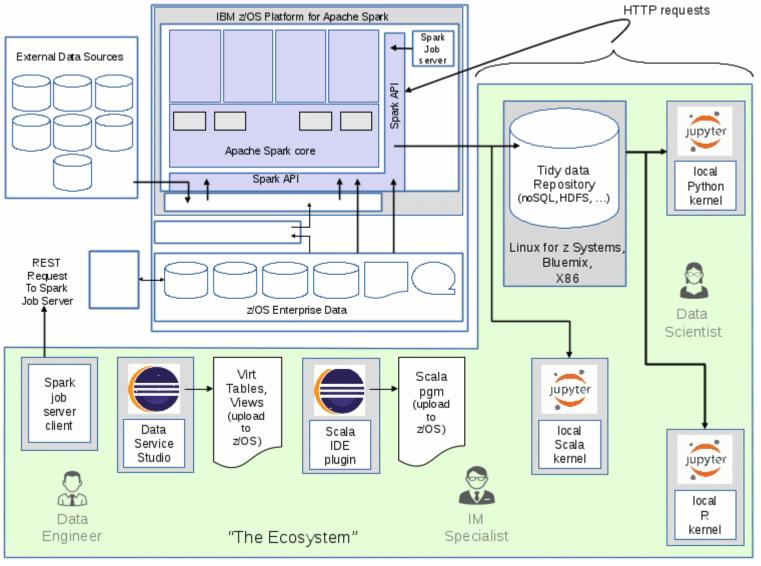
The ecosystem for Spark on z/OS

The Ecosystem for Spark on z/OS

There are several consumers / customers for the analysis performed on z/OS:

- *The Data Scientist* the primary customer
 - Creates the spark application(s) that produce insights with business value
 - Probably doesn't know or care where all of the Spark resources come from
- The Information Management Specialist
 - Helps the Data scientist assemble and clean the data, write applications
 - Probably better awareness about resource details, but still is primarily concerned with the problem to solve, not the platform

• The Data Engineer


- Also called the "data wrangler"
- Close to the platform, probably a Z-based person
- Works with the IM specialist to associate a view of the data with the actual onplatform assets

Spark

The Ecosystem

The Ecosystem for Spark on z/OS ...

- A Spark environment on z/OS can be used without an associated ecosystem, but:
 - The primary user (Data Scientist) lives here
 - This is where the rich set of tools to develop Spark applications is located
- The tidy data repository catches all of the results reduced from the original data
 - Allows access to results for a large number of users without driving MIPs on the host
 - Keeps the results in a noSQL form that consumers already recognize
- Support for this ecosystem is available at our github site
 - http://zos-spark.github.io/
 - Contains information and installable code at no charge

IBM z Systems Spark Demo: A Use Case

https://youtu.be/sDmWcuO5Rk8

References

- Spark Communities
 - https://cwiki.apache.org/confluence/display/SPARK/Committers
 - https://amplab.cs.berkeley.edu/software/
- Spark SQL Programming Guide:
 - http://spark.apache.org/docs/latest/sql-programming-guide.html
- IBM SystemML
 - Open Source: June 2015, we announced to open source SystemML
 - https://developer.ibm.com/open/systemml/
 - SystemML has been accepted as an Apache Incubator project
 - http://systemml.apache.org/
 - Source code: https://github.com/apache/incubator-systemml
 - Published paper: http://researcher.watson.ibm.com/researcher/files/us-ytian/systemML.pdf
- Big Data University Spark Fundamentals course
 - http://bigdatauniversity.com/bdu-wp/bdu-course/spark-fundamentals/
- IBM paper on Fueling Insight Economy with Apache
 - www-01.ibm.com/marketing/iwm/dre/signup?source=ibm-analytics&S_PKG=ov37158&dynform=19
- A Deeper Understanding of Spark Internals
 - https://www.youtube.com/watch?v=dmL0N3qfSc8
- IBM z/OS Platform for Apache Spark documentation
 - http://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.azk/azk.htm

Backup slides

Backup

Use Cases for Apache Spark on z/OS

Analytics across OLTP & Warehouse information

- OLTP resides on z/OS
- Data warehouses on distributed platforms
- Analytics across these environments can be challenging and inconsistent

Analytics combining business-owned data and external / social data

- Clients have OLTP on z/OS
- Clients have external public --- or social data on distributed servers
- External data delivers more value when combined with analytics from business data

Analytics of real-time transactions via streaming, combine with OLTP & social

 Combining real-time data streamlining into Spark with high performance with OLTP data and social media data --- for example, claims analytics

Custom analytics of SMF leveraging real-time as well as archived data

 SMF real-time data can add much more insight for IT across multiple systems, add in analytics over SMF data that has been archived

Use Cases for Real Time SMF Analytics

- Detect excessive memory consumption SMF30
 - -Monitor high water mark for real memory usage for jobs and send alerts if usage exceeds normal consumption

Detect security violations in real-time – SMF 80

 Monitor volume of datasets/files accessed per user within a given time period and raise alerts for above normal access rates

Discussion & Next Steps

- There are very likely 'Spark' projects occurring in your organizationsthey may even be using z Systems data at some levelwe're anxious to engage to understand what these use cases are and whether there may be a fit with z/OS Spark capabilities and to help us understand requirements, integration scenarios, etc.
- What Operational / Integration Requirements can you envision?
 - -WLM for resource management
 - -TWS for Spark job scheduling
 - -Application and runtime access from transactional systems
 - others?

developerWorks \supset Technical topics \supset Java technology | Big data and analytics \supset

IBM Packages for Apache Spark

Exploit the big data analytics capabilities of Apache Spark with this new package for IBM platforms.

- Acquire and Install z/OS Apache Spark
 - https://www.ibm.com/developerworks/java/jdk/spark/
 - z/OS Apache Spark is essentially a JVM that is launched and loaded with Spark class files
 - z/OS 2.1 (64bit Java 8 SDK)
- The installation instructions for the z/OS package are available in the document
 - Installing IBM zOS Platform for Apache Spark
- z/OS Analytics Ecosystem Repository Github: zos-spark (It's Coming!)
 - Spark z/oS Scala Workbench
 - Apache Job Server
 - Python & R Workbenches
 - Sample snippets of Scala code connecting to IMS, DB2, VSAM
 - Industry specific mappings for data formats e.g. card data
- Technical Support
 - Use dW Answers to ask questions and share your expertise
 - Our development team would like to hear your feedback
 - Please include the "ibmjdk" and "spark" tags to help us find your questions quickly

IBM developerWorks®

Use Cases for Real Time SMF Analytics

- Detect excessive memory consumption SMF30

 Monitor high water mark for real memory usage for jobs
 and send alerts if usage exceeds normal consumption
- Detect security violations in real-time SMF 80

 Monitor volume of datasets/files accessed per user within
 a given time period and raise alerts for above normal
 access rates
- Real time monitoring resource usage in cloud environments (CPU, Memory, Disk)

> Platform of choice for Apache Spark depends on use case

- For environments where most of the volume of data to be analyzed resides on z/OS, or where most quickly changing data resides on z/OS or most sensitive data resides on z/OS, co-locate Spark on z/OS for optimal performance, security & governance
- Spark reduces the need for clients to construct fragile, quickly out-of-date and non-agile physical "data lakes"
- Spark enables federation of analytic functions where clients can analyze data where it originates and avoid continual, costly movement
 - Available today on both z/OS and Linux on z: No-cost POCs available now Available now via developerWorks: https://www.ibm.com/developerworks/java/jdk/spark/

> *** NEW Product – March GA with IBM support and service

- IBM z/OS Platform for Apache Spark
- Optimized, native parallel access to DB2, IMS, VSAM, ADABAS, ….
- Not limited to z/OS data access warehouses, HDFS, etc. off platform
- Will include special pricing for HW –zIIPs & memory
- Analyze with Spark capabilities without spending MIPS moving data

IBM z/OS Platform for Apache Spark

ANNOUNCE DATE: Tuesday, March 22 GA DATE: Friday, March 25

LAUNCH EVENT: Strata+Hadoop World, San Jose, March 28-31

IBM z/OS Platform for Apache Spark 1.1.0

•PID: 5655-AAB

•S&S PID: 5655-AAC

- •FMIDs
 - HSPK110 Z/OS APACHE SPARK, CompID= 5655AAB01
 - HMDS110 Z/OS MDS FOR SPARK, CompID= 5655AAB02

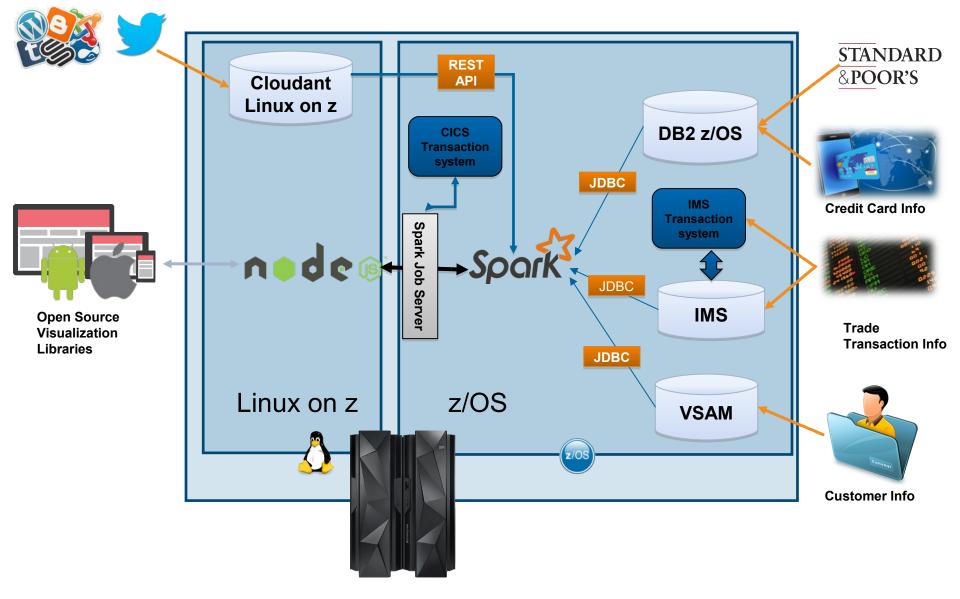
Spark z/OS Demo: Business Use Case

Financial Institution: offers both retail / consumer banking as well as investment services

Business Critical Information owned by the organization:

Credit Card Info

Stock Price History – public data



Social Media Data: Twitter

Produce right-time offers for cross sell or upsell, tailored for individual customers based on: customer profile, trade transaction history, credit card purchases and social media sentiment and information

