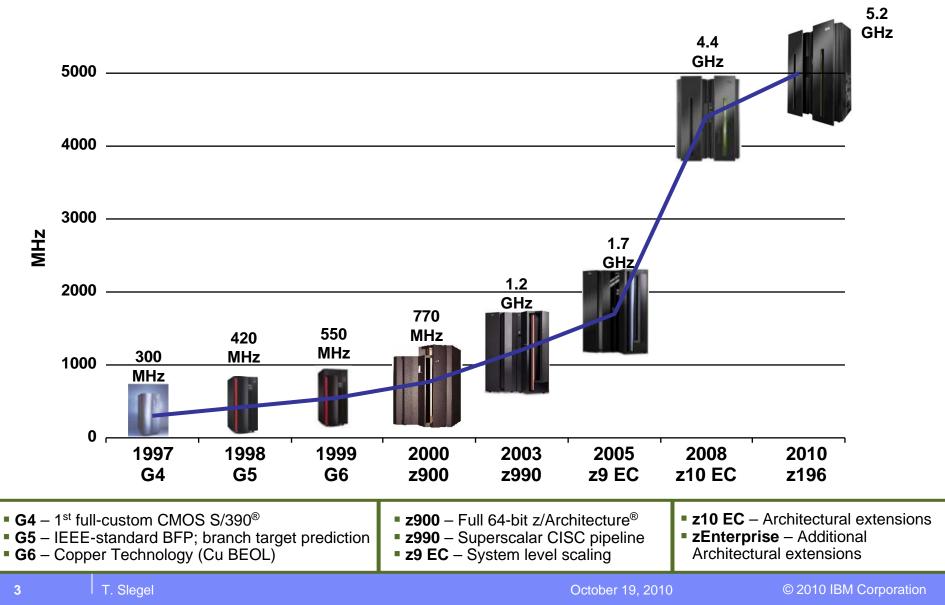
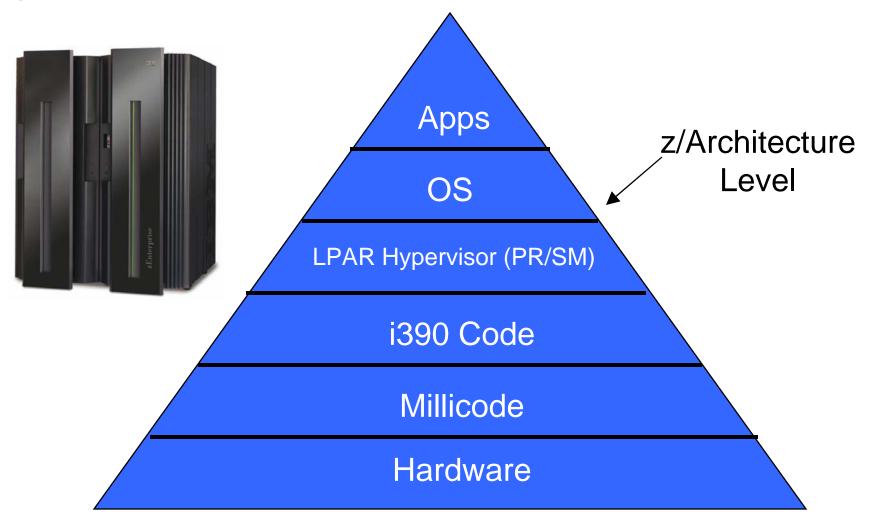


System z: A Peek Under the Hood

Tim Slegel IBM Distinguished Engineer System z Processor Development

October 19, 2010


© 2010 IBM Corporation


Topics

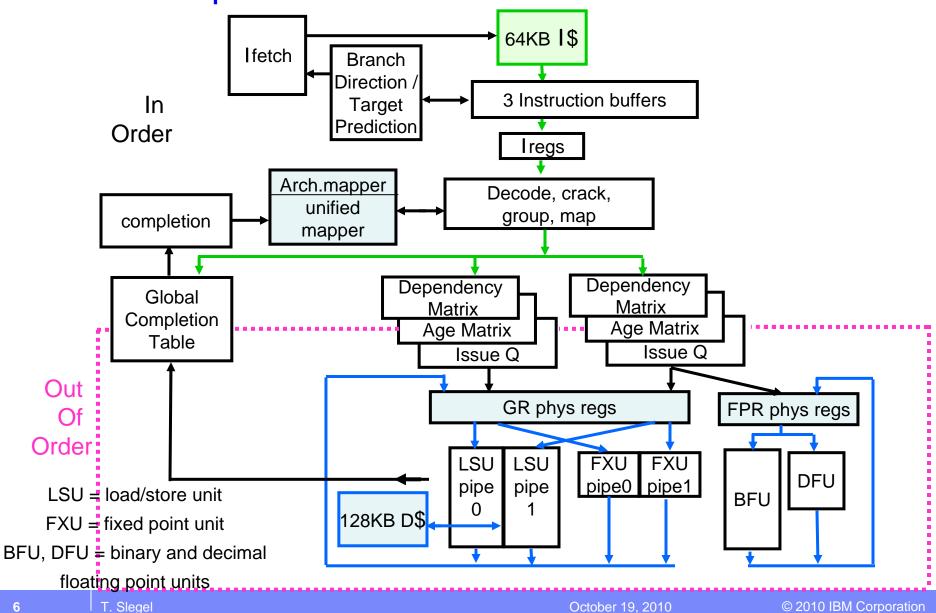
- Review of recent System z mainframes
- Processor hardware overview
- Millicode and Virtualization
- Cache/memory subsystem
- Performance
- New Instruction Set Architecture for z196
- zBX: A system of systems
- Energy efficiency

IBM zEnterprise 196 Continues the CMOS Mainframe Heritage



System Hardware, Firmware, and Software

Quad Core zEnterprise 196 Processor Chip

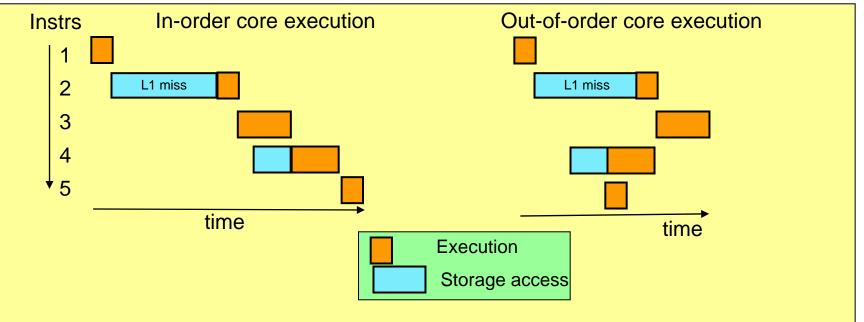


- 45nm SOI Technology
 - 13 layers of metal
 - 3.5 km wire

- Chip Area 512.3mm²
 - 23.5mm x 21.8mm
 - 8093 Power C4's
 - 1134 signal C4's

- Up to Four active cores per chip
 - 5.2 GHz system operation fastest processor in the world
 - L1 cache/ core
 - 64 KB I-cache
 - 128 KB D-cache
 - 1.5 MB private L2 cache/ core
- Two Co-processors (COP)
 - Crypto & compression accelerators
 - Includes 16KB cache
 - Shared by two cores
- 24MB eDRAM L3 Cache
 - Shared by all four cores
- Interface to SC chip / L4 cache
 - 40+ GB/sec to each of 2 SCs
- I/O Bus Controller (GX)
 - Interface to Host Channel Adapter (HCA)
- Memory Controller (MC)
 - Interface to controller on memory DIMMs
 - Supports RAIM design

z196 Microprocessor Core


z196 Out-of-Order (OOO) Operation

Design:

- Instruction decoding and completion in architected program order
- Operand address generation, operand access, and instruction execution can occur out of order
- Special circuitry makes all out-of-order operation invisible to software

Performance value

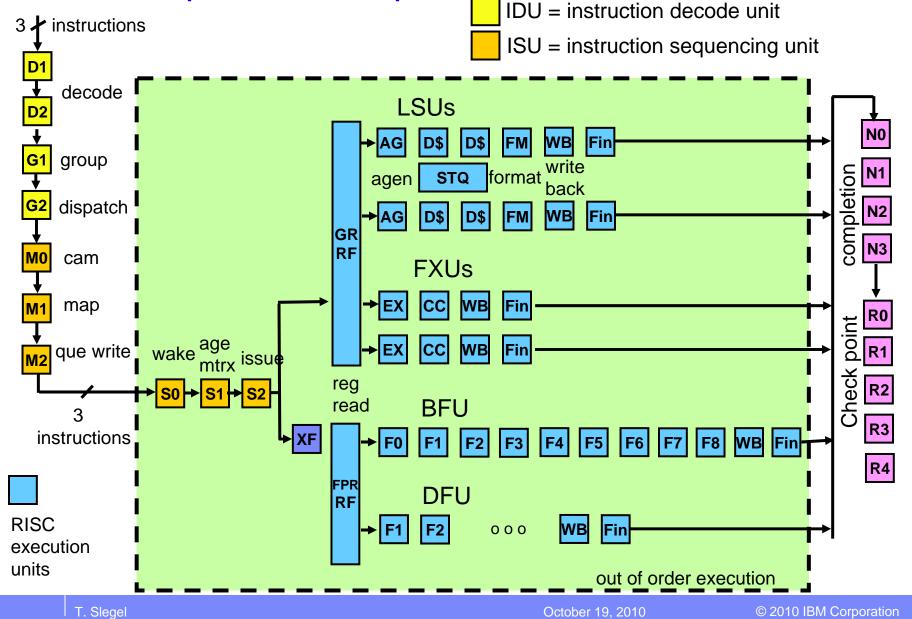
- Reordering instruction execution around operand dependencies
- Reordering storage accesses around address dependencies
- Hiding storage access latency
- Allowing full utilization of varying-depth pipelines

7

IBM

Basic z196 OOO Terminology

IFU (in-order)


- Fetches instructions
- Forms and sends clumps of 1 to 3 instructions to IDU

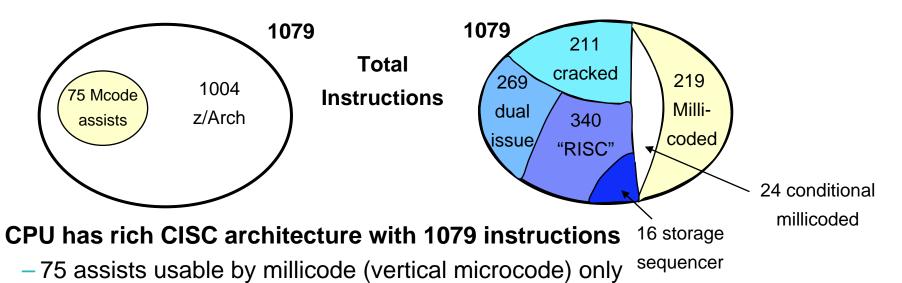
IDU (in-order)

- Decodes z/Architecture instructions
- Cracks or expands complex instructions into multiple μ ops
 - Cracking results in 2 or 3 μops (one group)
 - Expansion results in >3 μops (multiple groups)
- μop is fundamental unit of work which issues to one execution unit in one execution slot (generally) and updates at most one register or DW in storage
- Creates a dispatch group of 1 to 6 μ ops
- Dispatches up to 1 group to ISU per cycle
- ISU
 - Issues μ ops to execution units (LSU, FXU, BFU, DFU)
 - Rescinds instructions which need to be re-executed
 - E.g. instruction dependent on load which misses D\$
 - Flushes groups of instructions which need to be discarded or re-executed
 - E.g. branch mispredictions
- Execution units
 - Reject μ ops which cannot be executed (E.g. D\$ miss, TLB miss, ...)
 - Create finish reports after μ ops have executed
- Completion (ISU)
 - Completes up to 1 group per cycle in order

z196 Microprocessor Pipeline

z196 CPU core

- Each core is a superscalar, out of order processor with these characteristics:
 - The cycle time is 5.2 GHz
 - Six RISC-like execution units
 - 2 fixed point (integer), 2 load/store, 1 binary floating point, 1 decimal floating point
 - Up to three instructions decoded per cycle (vs. 2 in z10)
 - Up to five instructions/operations executed per cycle (vs. 2 in z10)
 - Execution can occur out of (program) order
 - Memory address generation and memory accesses can occur out of (program) order
 - Special circuitry to make execution and memory accesses appear in order to software
 - Each core has 3 private caches
 - 64KB 1st level cache for instructions, 128KB 1st level cache of data
 - 1.5MB L2 cache containing both instructions and data
- The same physical processor can be used for all of the following CPU types:
 - Normal client CPUs
 - Specialty Engines: zIIPs, zAAPs, IFLs
 - Coupling Facilities
 - SAPs I/O and service processors
 - Spare CPUs used for Dynamic Processor Sparing in the event of a failing processor


Extensive use of hardware speculation

- z/Architecture places many strict constraints on how the CPU has to appear to be behave
 - Example Strict storage ordering rules (see POPS chapter 5)
 - Good for software significantly easier and more robust MP programming than other ISAs
 - Bad for the CPU design team difficult to achieve good performance

CPU has to make use of speculative processing techniques

- Assume things will go well, and have mechanisms to detect and backoff if they do not
- In CPU design, "It's OK to cheat as long as you don't get caught."
- Under the covers, the CPU violates the storage ordering rules in POPS, but has extensive/complex logic to detect if software might observe it violating those rules. If it detects possible observation, it needs to redo the operation precisely following POPS rules.
- Result is software only can observe the CPU following all rules

Instruction Set Architecture (ISA)

- Most complex instructions are executed by millicode
 - Another 24 instructions are conditionally executed by millicode
- Medium complexity instructions cracked at decode into 2 or more µops
- Most RX instructions cracked at issue → dual issued
 - RX have one storage operand and one register operand
- Some storage-storage ops executed by LSU sequencer
- Remaining z instructions are RISC-like and map to single µop

Millicode

- Our name for the vertical microcode that executes on the processor
- Runs in a special mode on the normal processor pipeline no specialized microcode engine
- Written in assembler (with optimizers and semantic correctness tools)
- Most z/Architecture instructions are available for use in millicode routines
- Resides in HSA and is cached in the I-cache. Storage operands can be in the D-cache.
- Separate set of millicode General Purpose Registers
- Special millicode assist instructions
 - Move data to/from micro-architected control registers and facilities
 - Performance enhancing instructions (over the years, some of these have been transferred to POPS and are usable by normal software)
 - Pipeline controls
 - Ability to move data anywhere in storage between LPAR partitions or to/from HSA
 - CoP access for crypto and compression
 - Perform System Operations (page mover engine, multi-CPU operations such as broadcast TLB purges, I/O operations, service functions, etc.)
- Interestingly, for some millicode instructions full pipeline interlocks are not maintained in hardware
 - E.g., read after write of a special register may not yield the updated value
 - Improves performance and simplifies hardware complexity but makes it more difficult to write millicode

Hardware/Millicode Support for Virtualization

Full <u>logical</u> virtualization via the START INTERPRETIVE EXECUTION (SIE) instruction

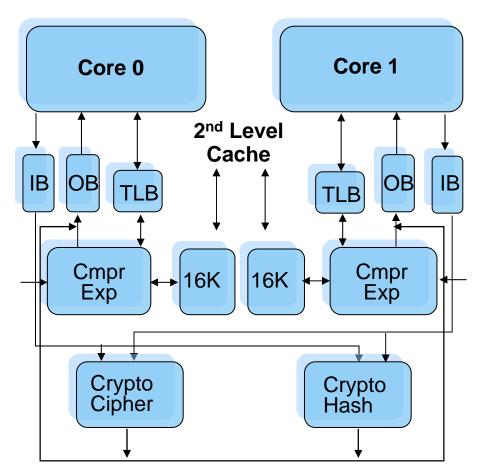
Nested SIE supports two level guests:

- LPAR Hypervisor (firmware) runs natively. First level guests are normal OSes (e.g., zOS, zLinux, zVM). Up to 60 1st level partitions.
- If zVM is running as a first level guest, then it supports hundreds (or thousands) of second level guests (e.g., zLinux)

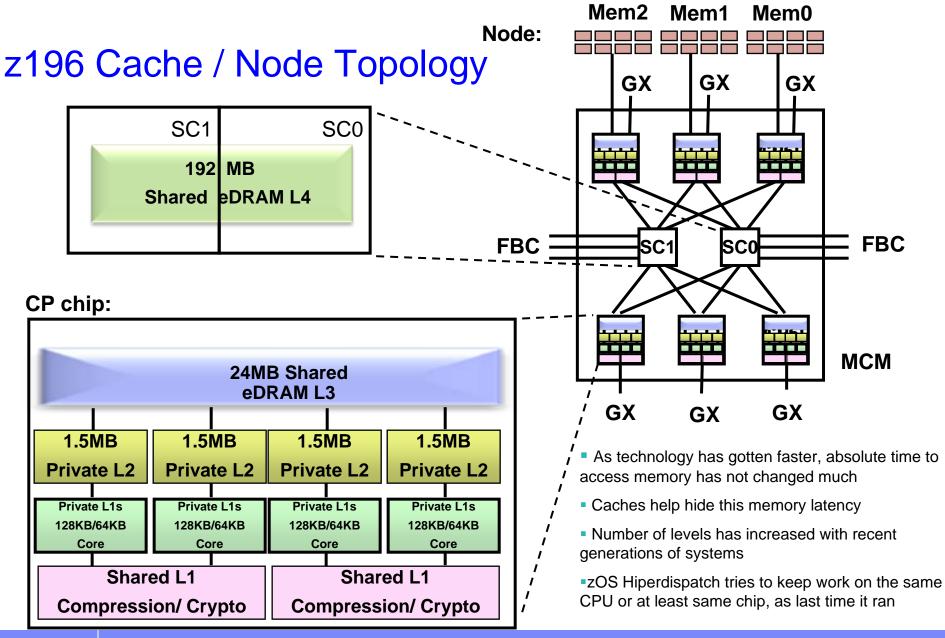
Separate hardware Host/Guest-1/Guest-2 facilities:

- z/Architecture control registers
- Timing Facility (including interrupt controls)
- All important SIE State Description controls are buffered into hardware control registers during SIE-entry/exit, which is performed by millicode
- Hardware detects most SIE Intercept and Intervention conditions

Full hardware support for SIE address translation:

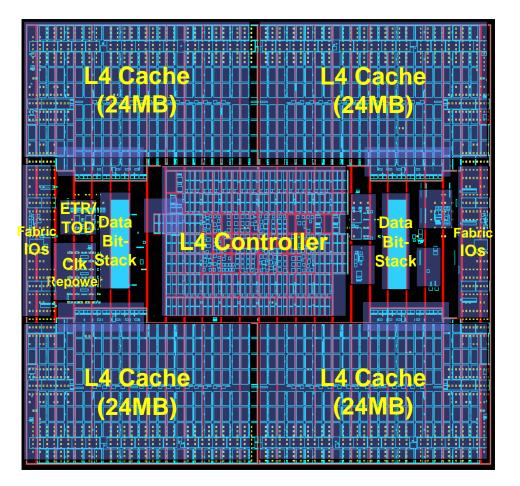

- RRF supports zone relocation (and zone based I/O interrupts)
- Multi-level pageable guest support (up to 56 table fetches required for a single 2nd level guest ART/DAT translation)
- MCDS handling of ARs
- TLB2 holds multiple SIE guest entries simultaneously
- Appropriate TLB purging on all CPUs for IPTE/IDTE operations with filtering

Timing Facility


- Master Time-of-Day (TOD) kept on one SC chip in the system
- All processors have their own local copy of the TOD
 - Provides faster access to the TOD for STCK, STCKF, TRACE, etc.
 - Full TOD, CPU Timer, Clock Comparator
 - Logic to provide system-wide uniqueness and monotonically increasing (as required by POPS)
- Synchronization pulse provides check and precise timebase
- Server Time Protocol (STP) provides for synchronization between multiple systems
 - Hardware provides interrupt to millicode when TOD steering is required

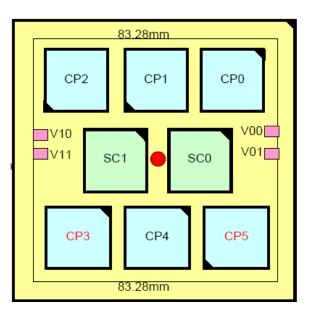
z196 Compression and Cryptography Accelerator

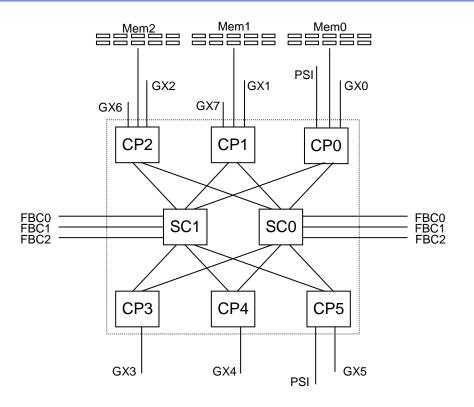
- Data compression engine
 - Static dictionary compression and expansion
 - Dictionary size up to 64KB (8K entries)
 - Local 16KB cache per core for dictionary data
- CP Assist for Cryptographic Function (CPACF)
 - Enhancements for new NIST standard
 - Complemented prior ECB and CBC symmetric cipher modes with XTS, OFB, CTR, CFB, CMAC and CCM
 - New primitives (128b Galois Field multiply) for GCM
- Accelerator unit shared by 2 cores
 - Independent compression engines
 - Shared cryptography engines


T. Slegel

17

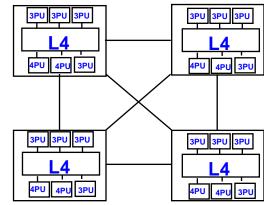
Hub / Shared Cache Chip for z196


- eDRAM Shared L4 Cache
 - 96 MB per SC chip
 - 192 MB per Node
- 6 CP chip interfaces
 - 40+ GB/sec each
- 3 Fabric interfaces
 - 40+ GB/sec each
- 45nm SOI Technology
 - 13 layers of metal
- Chip Area 478.8mm²
 - 24.4mm x 19.6mm
 - 7100 Power C4's
 - 1819 signal C4's


1.5 Billion Transistors

- 1 Billion cells for eDRAM

z196 MCM / Book


- 96mm x 96mm MCM
 - 103 Glass Ceramic wiring layers
 - -8 chip sites
 - -7356 LGA connections
 - Up to 24 active cores
 - Up to 1800W power dissipation

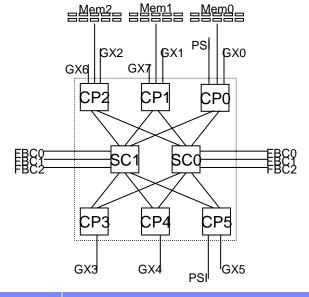
4 book System

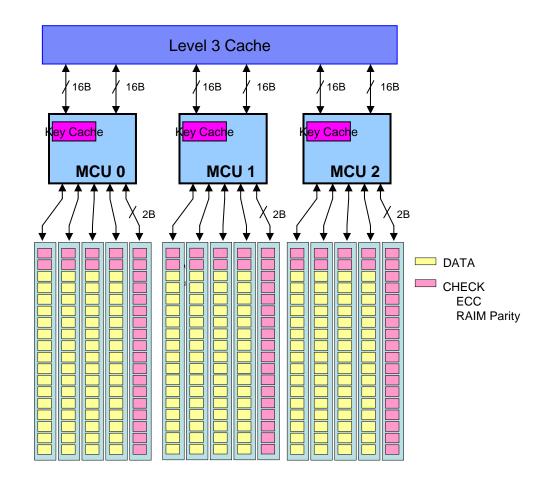
- Fully connected topology
- 96 Total CPUs
- 12 Memory Controllers
- Up to 32 IO Hub port
- Up to 3TB Memory capacity

T. Slegel

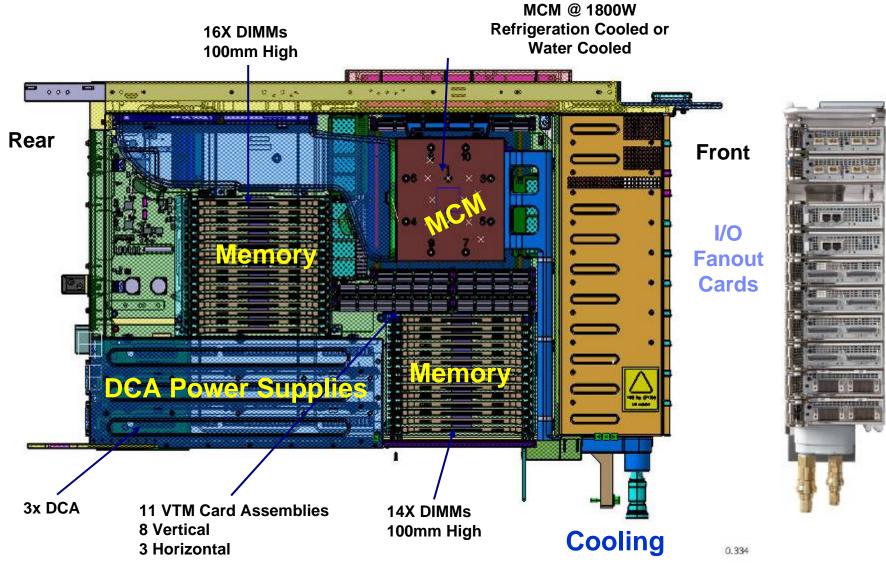
z196 RAIM Memory Structure

Redundant Array of Independent Memory

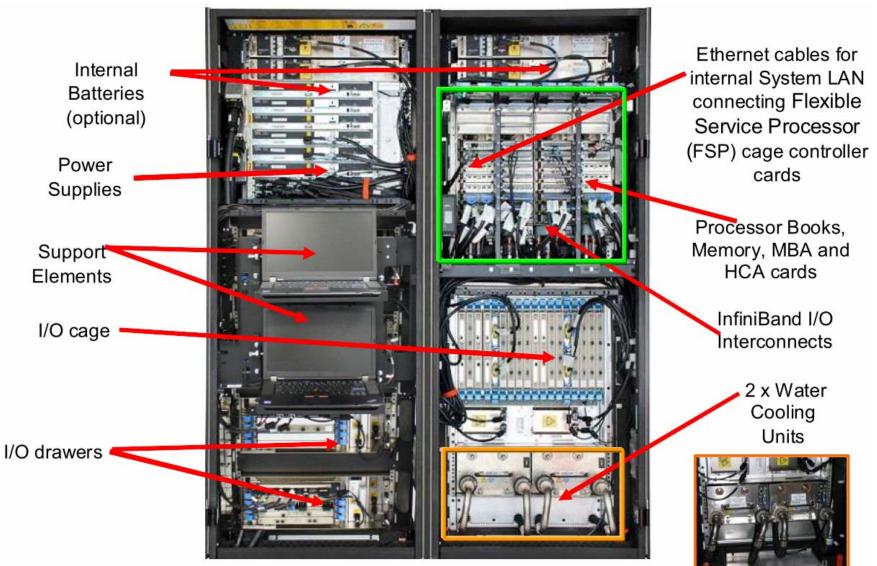

- 5 channel memory controller
- DIMM bus CRC error retry
- Industry leading reliability


• Up to 3TB Memory capacity

3 MCUs per MCM


T. Slegel

2-deep DIMM cascade



z196 Book Layout

IBM z196 System

Reliability/Availability Features

- Near 100% hardware error detection for logic faults far higher than other platforms
- Multi-level error recovery capability:
 - On-the-fly error correction of array errors. Automatically deletes failing sections of arrays for solid errors.
 - Within the processor, all instructions are checkpointed in fault-hardened registers/arrays. If a hardware error is detected, processor retry allows for the re-execution of the failed instruction. Effective for soft-errors.
 - In the event of a hard-error where retry is unsuccessful, Dynamic Processor Sparing moves the entire micro-architected state to a spare processor. Happens transparently to software and even the OS.

IBM

IBM compilers exploit System z for maximum performance

- Compilers exploit new hardware instructions introduced by System z
- Code generated by the compilers is highly tuned for System z
- Boost in performance of applications running on System z

z/OS XL C/C++

- Enterprise COBOL for z/OS
- Enterprise PL/I for z/OS
- 135 new / changed instructions

Java and WAS performance with zEnterprise

World class per-thread performance yields outstanding results:

results:	System z10	Uplevel	zEnterprise	
CPU benchmark	announce	software	hardware	
63%				
ILOG/CONfirm				
45-62%				
Multi-threaded				
45%				
WebSphere V7				
up to 93%	WebSphere	WebSphere	WebSphere	
 Extensive hardware and software collaboration with deep platform exploitation: 	Version 7	Version 7	Version 7	
	Announce	JPA Feature Pack	JPA Feature Pack	
	DayTrader 2.0	DayTrader 2.0	DayTrader 2.0	
 New out of order pipeline design 	No Caching	Data Caching	Data Caching	
 New instructions optimized for software usage 	System z10	System z10	zEnterprise	
 Java runtime environment general optimizations 	Then		Now	

z196 New Instruction Set Architecture

High word extension

- General register high word independently addressable
- Gives software 32 word-sized registers
- Add/subtracts, compares, rotates, loads/stores

New atomic ops

- Load and "arithmetic" (ADD, AND, XOR, OR)
 - •(Old) storage location value loaded into GR
 - •Arithmetic result overwrites value at storage location
- Load Pair Disjoint

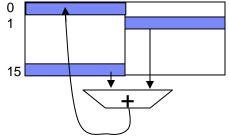
T. Slegel

•Load from two different storage locations into GR N, N+1

•Condition code indicates whether fetches were atomic

Conditional load, store, register copy

- Based on condition code
- Used to eliminate unpredictable branches


Old code

compare

instruction X

branch

load

New code

compare

conditional load instruction X

z196 New Instruction Set Architecture

Distinct-Operands Facility (22 new instructions)

- Independent specification of result register (different than either source register)
- Reduces register value copying

Population-Count Facility (1 new instruction)

- Hardware implementation of bit counting ~5x faster than prior software implementations
- Integer to/from Floating point converts (39 new instructions)
- New truncate and OR inexactness Binary Floating Point rounding mode
- New Decimal Floating Point quantum exception
 - Eliminates need for test data group for every operation

z196 New Instruction Set Architecture

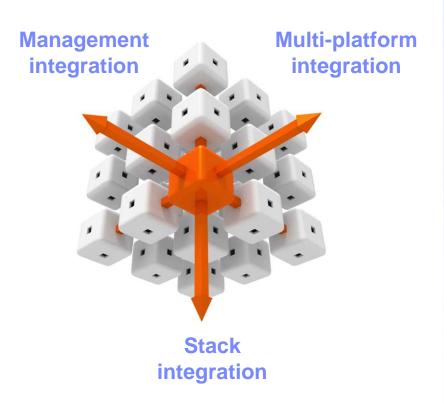
Virtual Architecture Level

- Allows the zVM Live Guest Relocation Facility to make a z196 behave architecturally like a z10 system
- Facilitates moving work transparently between z196 and z10 systems for backup and capacity reasons

Non-quiescing SSKE:

- Significant performance improvement for systems with large number CPUs (typically 30+)
- Improves MP ratio for larger systems
- Up to 10% performance increase when exploited by the operating system
- Exploited by all zOS 1.10 and above (with PTF for 1.10 and 1.11),
- Will be exploited by Linux and zVM

PER Zero Address Detect


Improved debug capability to detect uninitialized pointers

Other minor architecture features

 RRBM, Fast-BCR-Serialization Facility, Fetch-Store-Access Exception Indicator, CMPSC Enhancement Facility

Announcing the IBM zEnterprise System: *A New Dimension in Computing*

- A "System of Systems", integrating IBM's leading technologies to dramatically improve productivity of today's multi-architecture data centers and tomorrow's private clouds.
- The world's fastest and most scalable enterprise system with unrivalled reliability, security, and manageability.
- The industry's most efficient platform for large scale data center simplification and consolidation.

IBM zEnterprise System – Best-in-class systems and software technologies

A "System of Systems" that unifies IT for predictable service delivery

IBM zEnterprise 196 (z196)

- Optimized to host large-scale database, transaction, and mission-critical applications
- The most efficient platform for large-scale Linux consolidation
- Capable of massive scale-up
- New easy-to-use z/OS V1.12

* All statements regarding IBM future direction and intent are subject to change or withdrawal without notice, and represents goals and objectives only.

zEnterprise Unified Resource Manager

- Unifies management of resources, extending IBM System z qualities of service end-to-end across workloads
- Provides platform, hardware and workload management

zEnterprise BladeCenter Extension (zBX)

- Select IBM POWER7[®] and IBM x86* blades for tens of thousands of AIX and Linux applications
- High-performance optimizers and appliances to accelerate time to insight and reduce cost
- Dedicated high-performance private network

T. Slegel

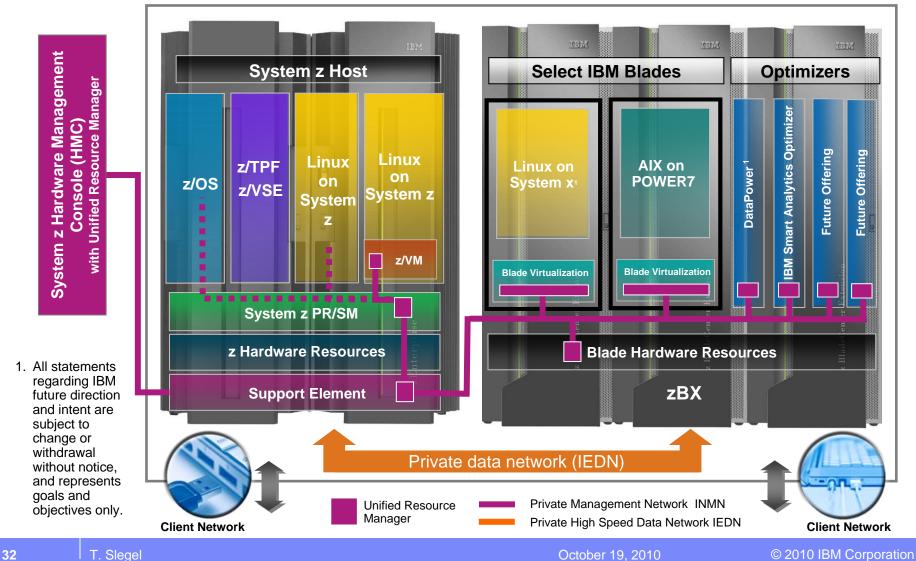
zBX – Infrastructure to support more resources

zBX houses the multiplatform solutions key to the zEnterprise System.

- Optimizers that are dedicated to workloads.
 - IBM Smart Analytics Optimizer and WebSphere DataPower appliance¹
 - Closed environments with hardware and software included in solution
 - Individualized tools for sizing and customizing dependant on the optimizer
- Select IBM POWER7 and IBM x86¹ blades running any application supported by the operating system installed on the blade – with no change.
- Mix and match Optimizer and select general purpose POWER7 and IBM x86 blades in the same rack.
- zBX is a System z machine type for integrated fulfillment, maintenance, and support

Secure network connection between zBX and z196 for data and support.

- Fast 10 Gb Ethernet connection to the data
- Less latency fewer 'hops' to get to the data and no need for encryption / firewall
- Traffic on user networks not affected.
- Sharing of resources up to eight z196 servers can attach to the zBX and have access to solutions
- Configuration, support, monitoring, management - all by Unified Resource Manager



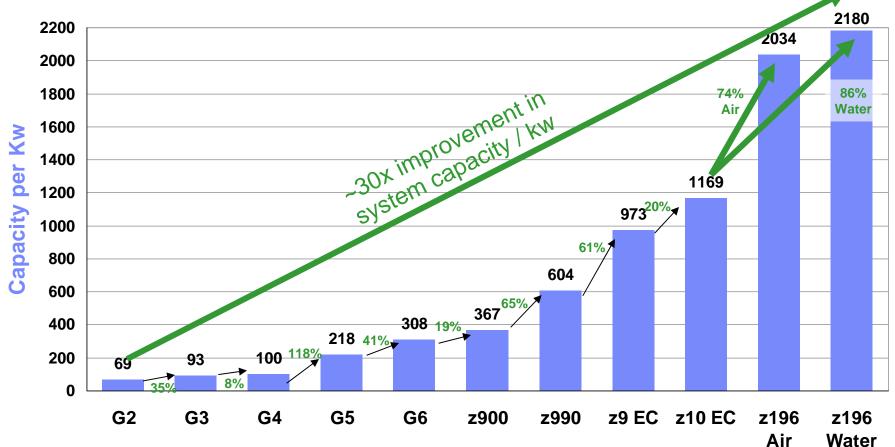
1. All statements regarding IBM future direction and intent are subject to change or withdrawal without notice, and represents goals and objectives only.

Putting zEnterprise System to the task

Use the smarter solution to improve your application design

z196 – Helping to control energy consumption in the data center

- Better control of energy usage and improved efficiency in your data center
- New water cooled option allows for energy savings without compromising performance
 - Maximum capacity server has improved power efficiency of 60% compared to the System z10 and a 70% improvement with water cooled option
- Savings achieved on input power with optional High Voltage DC by removing the need for an additional DC to AC inversion step in the data center
- Improve flexibility with overhead cabling option while helping to increase air flow in a raised floor environment
- z196 is same footprint as the System z10 EC¹



1. With the exception of water cooling and overhead cabling

33

z196 capacity per watt improvements

15 years of CMOS: G2 to z196 *		Net Effect: G2 to z196 *		
Power Increase:	17% per year	Performance increased by:	~300x	Note: Capacity/kWatt assumes hot room, max plugged I/O power, max
Performance increase:	46% per year	Performance / kWatt increased by:	~30x	memory power and all engines turned on. Real world max
Power density increase:	13% per year	Performance / sq ft increased by:	~190x	capacity system is about 3/4 of this.

34

Summary

- There is a lot of hardware/firmware complexity under the hood for:
 - Performance
 - Reliability
 - "But, we worry about the details, so you don't have to."
- Instruction Set Architecture continues to evolve
 - Close collaboration with software to optimize performance and functionality
- zBX opens up a new dimension in System z
 - Will likely continue this trend with more accelerator functions
- Energy efficiency will continue to improve

Thank you!

- Feel free to contact me offline with processor hardware questions on IBM System z performance, functionality, etc.
- e-mail: slegel@us.ibm.com