

System z10 I/O Subsystem

Connie K. Beuselinck IBM Corporation Poughkeepsie, NY U.S.A conniek@us.ibm.com

© 2008 IBM Corporation

IBM Systems

Trademarks

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries.

390	HiperSockets	Parallel Sysplex*	Tivoli *
ACF/VTAM *	HPR	PR/SM	TotalStorage *
APPN *	IBM*	RACF *	VM/ESA*
CICS *	IBM logo*	Redbooks	VSE/ESA
DB2 *	IBM System z	Resource Link	VTAM *
ESCON *	IBM System z9	RMF	WebSphere *
eServer	IBM System z10	System Storage	z9
GDPS*	IMS	Sysplex Timer*	z10
FICON*	Infoprint	System z9	z/Architecture*
		System z10	z/OS*
			zSeries*
* Registered trademarks of IBM Corr	poration		z/VM *
			z/VSE

The following are trademarks or registered trademarks of other companies:

Linux is a registered trademark of Linus Torvalds

Penguin (Tux) compliments of Larry Ewing

Java and all Java-related trademarks and logos are trademarks of Sun Microsystems, Inc., in the United States and other countries

UNIX is a registered trademark of The Open Group in the United States and other countries.

Microsoft, Windows and Windows NT are registered trademarks of Microsoft Corporation.

SET and Secure Electronic Transaction are trademarks owned by SET Secure Electronic Transaction LLC.

* All other products may be trademarks or registered trademarks of their respective companies. **Notes**:

Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput improvements equivalent to the performance ratios stated here.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual environmental costs and performance characteristics will vary depending on individual customer configurations and conditions. This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without notice. Consult your local IBM business contact for information on the product or services available in your area. All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

Performance data disclaimers

The performance data contained herein was obtained in a controlled environment based on the use of specific data. Actual results that may be obtained in other operating environments may vary significantly. These values do not constitute a guarantee of performance.

Product data is accurate as of initial publication and is subject to change without notice.

No part of this presentation may be reproduced or transmitted in any form without written permission from IBM Corporation.

References in this document to IBM products, programs, or services do not imply that IBM intends to make these available in all countries in which IBM operates. Any reference to an IBM program product in this document is not intended to state or imply that only IBM's program product may be used. Any functionally equivalent program may be used instead. Future plans and announcements are subject to change.

The information provided in this document has not been submitted to any formal IBM test and is distributed "As Is" basis without any warranty either express or implied. The use of this information or the implementation of any of these techniques is a customer responsibility and depends on the customer's ability to evaluate and integrate them into their operating environment.

While each item may have been reviewed by IBM for accuracy in a specific situation, there is no guarantee that the same or similar results will be obtained elsewhere. Customers attempting to adapt these techniques to their own environments do so at their own risk.

The mentioning of 3rd party products does not constitute a warranty or endorsement of any kind.

InfiniBand coupling links

- Note: The InfiniBand link data rate of 6 GBps or 3 GBps does not represent the performance of the link. The actual performance is dependent upon many factors including latency through the adapters, cable lengths, and the type of workload. With InfiniBand coupling links, while the link data rate may be higher than that of ICB, the service times of coupling operations are greater, and the actual throughput may be less than with ICB links.
- Refer to the Coupling Facility Configuration Options whitepaper for a more specific explanation of when to continue using the current ICB technology versus migrating to InfiniBand coupling links.
- The Coupling Facility Configuration Options whitepaper is available at:
 - http://www.ibm.com/systems/z/advantages/pso/whitepaper.html
- Refer also to Getting Started with InfiniBand on System z10 and System z9 (SG24-7539)
 - http://www.redbooks.ibm.com/

	_	
	_	_
	-	-
_	_	_

Agenda

- System z10 I/O Subsystem
- Coupling
 - IC, ICB-4, ISC-3
 - InfiniBand on System z10, System z9
- Storage
 - ESCON, FICON, FCP
- Networking
 - HiperSockets
 - OSA-Express3

Acronym	Full Name	Use
CCW	Channel Control Word	An architecture supporting I/O communications
CHPID	Channel Path Identifier	Identifier for channel path type in I/O Control Program
CRH	Channel Request Handler	Internal host bus for communication between I/O & memory
CSS	Channel Subsystem	A group of resources for use by channels
СТС	Channel-To-Channel	Protocol for host-to-host communication; ESCON, FICON
ESCON	Enterprise Systems Connection	Channel architecture used by switches, directors, storage, printers
EREP	Environmental Record Editing and Printing Program	Processes SYS1.LOGREC datasets
FCP	Fibre Channel Protocol	Fixed format protocol to communicate with SCSI devices
FICON	Fibre Connection	Channel architecture used by switches, directors, storage, printers
IFB	InfiniBand New	Refer to next slide
ISL	InterSwitch Link	Data path between Directors to minimize cross-site fiber optic
km	kilometer	Distance measurement identified with fiber optic cabing
LCSS	Logical Channel Subsystem	Architecture allowing more than one physical channel subsystem

	1200	and the second second
	_	and the local division of the local division
-	_	Statistics and

Acronym	Full Name	Use
LUN	Logical Unit Number	Associated with fixed block / SCSI devices
LX	Long wavelength	Light source designed for use with single mode fiber
MBps	MegaByptes per second	Information transfer at one million bytes per second
MBA	Memory Bus Adapter	Building block of Central Electronic Complex and MCM
МСМ	MultiChip Module	"Brick" containing Processor Units
ММ	Multimode	Short form used in graphics; refers to multimode fiber
мро	Multi-fiber Push-On	Connector used with 12x IB-DDR fiber optic cables; packaged with 12 fibers for transmit and 12 fibers for receive
PCI	Peripheral Component Interconnect	Local bus standard used with Crypto, FICON, OSA hardware
PCI-X	PCI Extended	Faster than PCI
RAS	Reliability, Availability, Serviceability	
SAN	Storage Area Network	
SCSI	Small Computer System Interface	Fixed block architecture; communication between servers & devices
SM	Single mode	Short form used in graphics; refers to single mode fiber
STI	Self-Timed Interconnect	System z internal host bus for communication between I/O & memory
SX	Short wavelength	Light source designed for use with multimode fiber

		and the second sec
	-	() when has
States of the local division of the local di	-	Contraction of the local division of the loc
_		

Term	Description
Gbps	Gigabits per second; Information transfer at one billion bits per second
GBps	GigaBytes per second; Information transfer at one billion bytes per second (1,024 megabytes)
1x	One "lane", one pair of fibers
12x	12 "lanes", 12 pairs of fiber
SDR	Single Data Rate – 2.5 Gbps per "lane" (0.25 GBps)
DDR	Double Data Rate – 5 Gbps per "lane" (0.5 GBps)
12x IB-SDR	12 "lanes" (pairs) for a total link data rate of 3 GBps, 150 meters point-to-point Used with OM3, 2000 MHz-k 50 micron multimode fiber with MPO connectors
12x IB-DDR	12 "lanes" (pairs) for a total link data rate of 6 GBps, 150 meters point-to-point Used with OM3, 2000 MHz-k 50 micron multimode fiber with MPO connectors
1x IB-DDR LR* (SOD)	One "lane" (one pair), 5 Gbps link data rate, unrepeated distance of 10 km Used with 9 micron single mode fiber with LC Duplex connector

 * Statement of Direction (SOD)
All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

Acronym	Full name	Comments
AID	Adapter identification	HCA fanout has an AID instead of PCHID; used to assign a CHPID to a port using HCD/IOCP
CIB	Coupling using InfiniBand	CHPID type System z10, System z9
HCA	Host Channel Adapter	Path for communication
MBA	Memory Bus Adapter	Path for communication
PSIFB	Parallel Sysplex using InfiniBand	InfiniBand coupling links
IFB-MP	InfiniBand Multiplexer	I/O cage intra-connection
STI-MP	Self-Timed Interconnect Multiplexer	I/O cage intra-connection

Туре	System z9	System z10 EC
HCA1-O fanout	Optical - Coupling 12x IB-SDR	NA
HCA2-C fanout	NA	Copper - I/O Cage - 12x IB-DDR
HCA2-O fanout	NA	Optical - Coupling 12x IB-DDR
MBA fanout	I/O cage connection to CEC or Coupling (ICB-4)	Coupling (ICB-4)
IFB-MP	NA	I/O cage intra-connection
STI-MP	I/O cage intra-connection	NA

Host Bus Evolution

© 2008 IBM Corporation

I/O subsystem host bus interface GigaBytes per second (GBps)

IBM Systems

_	_	

Host Channel Adapter 2 (HCA2) fanouts

- 12x IB-DDR interfaces, 6 GBps
 - > HCA2-C (copper) = to I/O cages
 - > HCA2-O (optical) = External coupling

z10 EC I/O infrastructure

IBM Systems

HCA2-O fanout

OM3 cable (aqua cladding) 2000 MHz-km, 50 micron multimode fiber

> MPO connector 150 meters point-to-point

> > IBM Systems

12x IB-DDR fiber optic cabling

- 12x IB-DDR jumper cables two MPO connectors on each side
 - One labeled TX for transmitter
 - One labeled RX for receiver
 - Ports on HCA1-O and HCA2-O fanout cards are also labeled TX and RX
 - Connect the MPO connector labeled TX to the fanout card port labeled TX
 - Connect the MPO connector labeled RX to the fanout card port labeled RX
- Use of patch panels
 - Acceptable as long as the link loss budget does not exceed 2.06 dB.
 - A minimum of two fiber-to-fiber connections can generally be supported with the link loss budget for InfiniBand coupling links.

HCA2-O

MBA

Coupling on z10 EC

Туре	Distance
ICB-4	10 meters
InfiniBand	150 meters

Up to 16 CHPIDs – across 2 ports

AID

2 CHPIDs – 1 per port

- HCA2-O fanout
- InfiniBand coupling link
 - New CHPID type CIB
 - Fiber optic external coupling link
 - Cabling is customer-supplied
- MBA fanout (not available on Model E64)
- ICB-4 still uses an STI
 - Same CHPID type CBP
 - New cable and connector
 - Cable available as feature

THE OWNER DESIGNATION.

Coupling on z9 EC, z9 BC

Туре	Distance
ICB-4	10 meters
InfiniBand	150 meters

Up to 16 CHPIDs – across 2 ports

AID

2 CHPIDs – 1 per port

- HCA1-O fanout
- InfiniBand coupling link
 - New CHPID type CIB
 - Fiber optic external coupling link
 - Cabling is customer-supplied
- MBA fanout
- ICB-4 still uses an STI
 - Same CHPID type CBP
 - New cable and connector for connection to z10
 - Cable available as feature

_	_	
_	-	and the second s
	_	
		the second s

Coupling links using InfiniBand Trade Association standard

- 12x Multi-fiber Push-On (MPO) connector
- 24-fiber cable with Duplex 12x MPO connectors
 - > 12 fibers for transmit and 12 fibers for receive

		3 GB /	' sec	6 GB /	sec
Fiber Core (μ) (Light source)	Fiber Bandwidth @ wavelength	Unrepeate d distance	Link loss budget*	Unrepeated distance	Link loss budget*
50µ MM (SX laser)	2000 MHz-km @ 850 nm	150 meters 492 feet	2.06 dB	150 meters 492 feet	2.06 dB

- 1. 12x IB-SDR links operating at 3 GBps (2.5 Gbps per lane) are used to connect a System z10 to a z9 EC or a z9 BC Coupling Facility.
- 2. 12x IB-DDR links operating at 6 GBps (5.0 Gbps per lane) are used to connect System z10 EC servers.

* The link loss budget is the total link optical passive loss (fiber, connectors, and unallocated link margin) as defined by the standard for fiber specified above.

=		-
	-	and the second second
-		

Supported InfiniBand 12x IB-DDR cable lengths OM3 50/125 micrometer multimode fiber optic cabling

- Cables available from:
 - IBM Global Technology Services (GTS)
 - Anixter
- Fiber core 50u multimode
- Light source SX laser
- Fiber bandwidth @ wavelength: 2000 MHz-km @ 850 nm
- Only IBM cable part numbers accepted

		Cable	Cable	
ltem	Cable	Length	Length	Connector
Description	IBM P/N	Meters	Feet	Туре
Duplex 24-fiber cable Assembly	41V2466	10.0 m	32.8 f	MPO - MPO
Duplex 24-fiber cable Assembly	15R8844	13.0 m	42.7 f	MPO - MPO
Duplex 24-fiber cable Assembly	15R8845	15.0 m	49.2 f	MPO - MPO
Duplex 24-fiber cable Assembly	41V2467	20.0 m	65.6 f	MPO - MPO
Duplex 24-fiber cable Assembly	41V2468	40.0 m	131.2 f	MPO - MPO
Duplex 24-fiber cable Assembly	41V2469	80.0 m	262.4 f	MPO - MPO
Duplex 24-fiber cable Assembly	41V2470	120.0 m	393.7 f	MPO - MPO
Duplex 24-fiber cable Assembly	41V2471	150.0 m	492.1 f	MPO - MPO
Duplex 24-fiber cable Assembly	42V2083	Custom	N/A	MPO - MPO

HCA-O fanouts for InfiniBand coupling links

Planned availability May 30, 2008 System z9 EC dedicated CFs and z9 BC Model S07 dedicated CFs

System z10

1x IB-DDR Statement of Direction

One "lane" (one pair), 5 Gbps link data rate, unrepeated distance of 10 km Used with 9 micron single mode fiber with LC Duplex connector

- One fiber pair (1x transmit fiber and receive fiber)
- Double data rate (DDR) 5 gigabits per second (Gbps) for one lane
- Unrepeated distance of 10 km (6.2 miles)
- Expected repeated distance of 100 km (62 miles)
- Complement and/or replace ISC-3 (2 Gbps link data rate
- Same cabling as ISC-3, single mode fiber, 9 micron (yellow cladding)
- Same connecter as ISC-3, LC Duplex
- Exclusive to System z10 EC
- Will be an additional fanout, complementing HCA2-O fanout
- Server time protocol (STP) synchronization signals can flow over 1x IB-DDR

z10 EC Coupling link options

Туре	Description	Use	Link data rate	Distance	z10 EC Maximum	Combined Maximum	z10 EC Maximum
IC	Internal Coupling channel	Internal communication	Internal speeds	NA	32	NA	
ICB-4 ^a	Copper connection between OS and CF	z10 EC, z9 EC, z9 BC z990, z890	2 GBps	10 meters ^b (33 feet)	16 ^C	32	64
IFB d	12x IB-DDR	z10 EC to z10 EC z10 EC to z9 CF	6 GBps 3 GBps ^e	150 meters ^b (492 feet)	₃₂ d f	links	CHPIDs
ISC-3	Fiber connection between OS and CF	z10 EC, z9 EC, z9 BC z990, z890	2 Gbps	10 km (6.2 miles) unrepeated 100 km repeated	48	NA	

For each MBA fanout installed for ICB-4's, the number of HCA fanouts is reduced by one

^a ICB-4 is not supported on z10 EC Model E64. See RPQ 8P2334

- ^b 3 meters (10 feet) reserved for internal routing and strain relief
- ^c ICB-4 and IFB in combination cannot exceed 32 links.
- ^d Each HCA2-O fanout supports definition of up to 16 CHPID type CIB
- ^e z10 EC negotiates to 3 GBps (12x IB-SDR) when connected to a System z9 Dedicated CF
- ^f 16 IFB links on z10 EC Model E12

System z – Supported Coupling Links

System	IFB** (2Q2008)	ICB-4	ICB-3	ISC-3	IC	Max # Links
z10 EC	32*	16* Except E64	N/A	48	32	64
z9 Dedicated CF	16	16	16	48	32	64
Any z9	SOD**	16	16	48	32	64
z990	N/A	16	16	48	32	64
z890	N/A	8	16	48	32	64

* Maximum of 32 IFB + ICB-4 links on System z10 EC. ICB-4 not supported on Model E64.

** All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice and represent goals and objectives only.

IBM

InfiniBand coupling links software requirements

- z/OS V1.7 with PTFs.
- z/VM V5.3 to define, modify, and delete an InfiniBand coupling link, CHPID type CIB, when z/VM is the controlling LPAR for dynamic I/O.

31

Guidance - InfiniBand coupling links

- Refer to the Coupling Facility Configuration Options whitepaper for a more specific explanation of when to continue using the current ICB technology versus migrating to InfiniBand coupling links.
- The Coupling Facility Configuration Options whitepaper is available at:
 - http://www.ibm.com/systems/z/advantages/pso/whitepaper.html
- Refer also to Getting Started with InfiniBand on System z10 and System z9 (SG24-7539)
 - http://www.redbooks.ibm.com/
- Note: The InfiniBand link data rate of 6 GBps or 3 GBps does not represent the performance of the link. The actual performance is dependent upon many factors including latency through the adapters, cable lengths, and the type of workload. With InfiniBand coupling links, while the link data rate may be higher than that of ICB, the service times of coupling operations are greater, and the actual throughput may be less than with ICB links.

IBM Systems

-	TAXABLE INCOME.
	State of the local division of the local div
_	
_	

System z10 EC - 8 STIs in I/O cage Top view

□ I/O cage

≻8 STIs

_		
_	_	
	_	and the second second
		the second s
		_

IFB-MP with Redundant I/O interconnect

IFB-MP(multiplexer)

IBM Systems

Strict

System z Storage Area Network (SAN)

16-port ESCON

MT-RJ connector

	Statement of State	
	States States	
-	the Real Property lies and	
_		

ESCON channel plugging

FICON Express4

Personalize as:
FC (Fibre Channel)

Native FICON
Channel-To-Channel (CTC)
-z/OS, z/VM, z/VSE, z/TPF, Linux on System z

FCP (Fibre Channel Protocol)

Support of SCSI devices
z/VM, z/VSE, Linux on System z

FCV not supported

Small form factor pluggable (SFP) optics Concurrent repair/replace for each SFP

IBM Systems

FICON Express4 LX optics - Unrepeated distances

FICON features that can be "carried forward"

1 Gbps, 2 channels Small form factor - LC Duplex LX – configured as FC, FCP, FCV SX – configured as FC, FCP

Was available on:

z990, z900 FICON Express

2 Gbps, 4 channels LX & SX – configured as FC, FCP

Was available on: z9 EC, z990 FICON Express2

123	The second second
	ETR. 2000.
_	

FICON performance – Start I/Os

FICON channel performance Full duplex read/write mix data transfers

*This performance data was measured in a controlled environment running an I/O driver program under z/OS. The actual throughput or performance that any user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed.

FCP performance - Reads/writes/mix An 80% increase on z10 EC compared to z9 EC

I/Os per second - 4k block size - Channel 100% utilized

System z10 EC + *Extended Distance FICON* + z/OS Global Mirror + DS8000 = Enables protection at less cost

- Optimize the FICON pacing to increase the number of commands in flight
 - IBM System Storage DS8000 series Licensed Machine Code (LMC) level 5.3.1xx.xx (bundle version 63.1.xx.xx), or later
 - Available 07 March 2008
- Enables communication over greater distances without substantial reduction to effective data rate
- Supports increased link utilization
- Can significantly reduce the cost of remote mirroring over FICON for z/OS Global Mirror (XRC) solution
 - Eliminates need for more expensive 3rd party protocol-specific channel extender products

Extended distance FICON

Servers, operating systems, features

- System z10 EC
- Transparent to operating systems
- FICON Express4, FICON Express2 (CHPID type FC native FICON)

Fabric support

Require sufficient buffer credits on FICON directors to support the link data rate at extended distance

Fiber Quick Connect (FQC)

- Available for ESCON 62.5 multimode fiber optic cabling
- Facilitates adds, moves/changes, deletes
- Harnesses factory-installed to support maximum-configured cages
- **Reduces fiber installation time by up to 80%**
- Significant fiber optic cable reduction

-144 ESCON cables (288 fibers) versus 2 trunks (144 fibers in a trunk)

Front View

Front View

Fiber cabling solutions

Fiber Quick Connect (FQC) in System z

Replace individual cables

with trunk cables

and fiber harnesses

FQC for FICON LX channels

- FQC factory installation of Fiber Transport System (FTS) fiber harnesses
- Connection to all ESCON and FICON LX channels in all I/O cages
- Help minimize disruptions
- Isolate fiber cabling activities away from the active system

LC Duplex

System z10 EC Cabling in frames

-	STATISTICS.
_	the pay the payment
_	

Fiber Quick Connect (FQC) harnesses

IBM Systems

System z HiperSockets High-speed "intraserver" network Independent, integrated, virtual LANs Communication path – system memory

- Communication across LPARs
 - Single LPAR connect up to 16 HiperSockets
 - One HiperSocket shared by up to 30 LPARs
- Support for multiple LCSS's & spanned channels
- Virtual LAN (IEEE 802.1q) support
- Broadcast support for IPv4 packets
- No physical cabling or external connections required

z10 EC HiperSockets Enhancements

HiperSockets Multiple Write Facility

- Performance improvements
 - For the streaming of bulk data over a HiperSockets link between LPARs
 - Allows receiving LPARs to process a much larger amount of data per I/O interrupt
 - z/OS V1.10*
 - Transparent to software in receiving LPARs
 - z/VM 5.2 Guest support
- HiperSockets Layer 2 support
 - Hosting of new workloads
 - Host non-IP protocols (IPX, NetBIOS, SNA)
 - Bridge from and into distributed switched fabrics
 - Supports broadcast, unicast, or multicast
 - ▶ VLANs: In Layer 2 the same rules apply as for Layer 3 VLAN handling.
 - Linux on System z
 - Layer 3 applications cannot communicate with Layer 2 applications
 - z/VM 5.2 or higher Guest support

Open Systems Adapter2

- OSA-Express2 10 GbE
 - 10 Gbps
 - LR 9µ fiber
 - SC Duplex connector

- 1000BASE-T Ethernet
 - ▶ 10, 100, 1000 Mbps
 - Category 5 copper, RJ-45
- GbE
 - 1 Gbps
 - SX 50, 62.5µ fiber, LC Duplex
 - LX 9µ fiber, LC Duplex

Announced 05 May on System 10

✓ OSA-Express3 GbE ✓ Availability of OSA-Express3 10 GbE May 30, 2008

Open Systems Adapter3

-	Statistics of some lines.
_	the pay the payment

OSA-Express3 May 30, 2008

- Double the port density
 - CHPID type OSD (QDIO)
 - **Two CHPIDs per feature**
- Reduced latency

62

- Hardware data router
- Improved throughput standard & jumbo frames
 - New microprocessor
 - New PCI adapter

	OSA-Express2 10 GbE GbE	OSA-Express3
Microprocessor	500 MHz 448 MHz	660 MHz
PCI bus	PCI-X	PCI-E G1

10 GbE LR (#3370)

GbE SX (#3363) GbE LX (#3362)

=	THE OWNER WHEN THE OWNER
-	

OSA-Express3 10 Gigabit Ethernet

- 1. mSTI 2 GBps
- 2. IBM multiplexer
- 3. FPGA
- 4. IBM ASIC
- 5. PCI-E adapter
- LC Duplex connector with LR transceiver supporting 9μ single mode fiber

Open Systems Adapter data paths

- OSA-Express3
- Direct memory access
 - Hardware data router
 - Eliminates "store and forward" delays

OSA-Express3 performance benchmarks

- OSA-Express3 round-trip networking time up to a 45% reduction in latency
 - ▶ 10 GbE
 - Minimum round-trip time at the TCP/IP application layer 40% less than with OSA-Express2 10 Gigabit Ethernet
 - GbE
 - 45% less than with OSA-Express2 Gigabit Ethernet
- OSA-Express3 10 GbE throughput up to a 4x improvement
 - Mix of inbound and outbound TCP streams traffic
 - 1 gigabytes per second (1 GBps, i.e., 1,000,000,000 bytes per second) when the packet maximum transmission unit (MTU) size is 1492 bytes
 - 1.1 GBps when MTU size is 8992-byte

Improvements from 3x to 4x that of OSA-Express2 10 GbE on z9 EC system

*** Projections – performance *** OSA-Express3 10 Gigabit Ethernet

Full-duplex data transfers Mixed direction streams workload

IBM

OSA-Express3 software requirements

- Exploitation of 4 ports on Gigabit Ethernet
 - z/OS V1.9 with PTFs (planned to be available third quarter 2008).
 - z/VM V5.2 with PTFs (planned to be available July 2008).
 - z/VSE V4.1 with PTFs (planned to be available July 2008).
 - z/TPF 1.1 PUT 4 with APARs (planned to be available June 2008).
 - Linux on System z distributions
- I0 Gigabit Ethernet and use of 2 of the 4 ports on Gigabit Ethernet
 - /OS V1.7.
 - ▶ z/VM V5.2.
 - z/VSE V3.1 with PTF.
 - ▶ TPF V4.1 at PUT 13 with PTF.
 - > z/TPF 1.1.
 - Linux on System z distributions:
 - Novell SUSE SLES 9 and SLES 10.
 - Red Hat RHEL 4 and RHEL 5.

OSA-Express3 4-port GbE features - Benefits

- Reduced latency (up to 45% reduction) and increased throughput (up to 4x) for applications (software changes are not required to exploit the two ports on OSA-Express3 10 GbE or to exploit two of the four ports on OSA-Express3 GbE SX or LX)
- More physical connectivity to service the network and less resources:
 - Fewer CHPIDs to define and manage
 - Reduction in the number of required I/O slots
 - May reduce the number of I/O cages
 - Double the port density of OSA-Express2
 - Satisfies requirement for more than 48 LAN ports (now up to 96 ports)
- For the operating system to recognize all four ports on an OSA-Express3 Gigabit Ethernet feature, a new release and/or PTF is required. If software updates are not applied, only two of the four ports will be "visible" to the operating system.

OSA-Express3 GbE support of OSA for NCP Preview

- Connectivity between System z operating systems and IBM Communication Controller for Linux (CCL). CCL
- Allows you to keep your business data and applications on the mainframe operating systems while moving NCP functions to Linux on System z.
- CCL helps to simplify their network infrastructure while supporting traditional Systems Network Architecture (SNA) functions such as SNA Network Interconnect (SNI).
- Communication Controller for Linux on System z
 - Program Number 5724-J38
 - Helps improve network availability by replacing token-ring networks and ESCON channels with an Ethernet network

Thanks You!

IBM Systems

© 2008 IBM Corporation

z10 EC Connectivity summary

Maximum of 1024 CHPIDs, three I/O cages, 84 I/O slots (28 I/O slots per I/O cage) *

Features	Minimum # of features	Maximum # of features	Maximum connections	Increments per feature	Purchase increments
16-port ESCON	0 (1)	69*	1024 channels	16 channels 1 reserved as a spare	4 channels
FICON Express4	0 (1)	84*	336 channels	4 channels	4 channels
FICON Express2**	0 (1)	84*	336 channels	4 channels	4 channels
FICON Express**	0 (1)	60	120 channels	2 channels	2 channels
ICB-4	0 (1)	8	16 links ^{(2) (3) (4)}	2 links	1 link
HCA2-O	0 (1)	16	32 links ^{(3) (4)}	2 links	2 links
ISC-3	0 (1)	12	48 links ⁽²⁾	4 links	1 link
OSA-Express3	0	24	48 ports	2 ports - 10 GbE	2 ports
OSA-Express2	0	24	48 ports	2 or 1 (10 GbE has 1)	2 ports / 1 port
Crypto Express2	0	8	16 PCI-X adapters	2 PCI-X adapters	2 PCI-X adapters (5)

1. Minimum of one I/O feature (ESCON, FICON) or one Coupling Link (ICB-4, IFB, ISC-3) required.

2. Maximum number of Coupling Links combined (ICB-4s, IFBs, and active ISC-3 links) cannot exceed 64 per server.

3. ICB-4 and HCA2-O (InfiniBand) are not included in the maximum feature count for I/O slots but are included in the CHPID count.

4. Total number of ICB-4 + IFB ports cannot exceed 32.

5. Initial order of Crypto Express2 is 4 PCI-X adapters (two features). Each PCI-X adapter can be configured as a coprocessor or an accelerator.

* Model E12 has 1 book: Supports maximum of three I/O cages and 64 I/O slots.

** Available only when carried forward on an upgrade from z990 or z9 EC.
TBM

Publications

- **SA24-7172** FICON I/O Interface Physical Layer
- •GA23-0367 Planning for Fiber Optic Links (Resource Link) http://www.ibm.com/servers/resourcelink After logging in select "library" on the left Select the server Scroll down to find the publication
- •SG24-5444 System z Connectivity Handbook (*Redbook*)
- **SG24-6497** FICON Implementation Guide (*Redbook*)

73

On the Internet

IBM Redbooks

www.redbooks.ibm.com

Network connectivity home page

www.ibm.com/systems/z/networkiing

I/O connectivity home page

- www.ibm.com/systems/z/connectivity
 - Go to this location for a list of FICON/FCP supported devices

Announcement Letters, sales manual

www.ibm.com/common/ssi/OIX.wss