Comparing and Contrasting Virtualization Technologies

Abstract

- Do you know the differences between Xen and VMware?
- Do you know when it is more advantageous to use one over the other?
- Virtualization can be a complicated subject with many different facets, and it is not always easy to choose the strategy that best fits your needs. This session will explore the various virtualization options that apply to System x, System p and System z. You will learn about the commonalities between each offering and also how they differ.

buzzetti@us.ibm.com

and Linux

The Design Center

IBM Design Centers for IT Optimization & Business Flexibility

Our mission – "To design and architect innovative end-to-end solutions with select worldwide clients that leverage appropriate leading-edge technologies and accelerate their deployment."

Engagement Offerings:

3 <u>flexible</u> engagement models that can be tailored by industry to suit the individual client's needs

- Whiteboarding Session
- ✓ Architectural Review
 - ✓ Design Workshop

There is no free lunch

Virtualization

Popek and Goldberg

In 1974, Gerald Popek and Robert Goldberg released an article titled "Formal Requirements for Virtualizable Third Generation Architectures"

Virtual Machine Monitors

VMM Properties

Equivalence

Resource Control

Efficiency

Requirements

- Privileged instructions
- Control sensitive
 instructions
- Behavior sensitive
 instructions

Hypervisors

Type 1 Hyper Visor

Physical Machine

Operating System

Physical Machine

Trap and Emulate

Examples: CP-67, VM/370 Benefits: Runs unmodified OS Issues: Substantial overhead

Translate, Trap, and Emulate

Examples: VMware, Microsoft VS Benefits: Runs unmodified, translated OS Issues: Substantial overhead

Paravirtualization

Examples: POWER VM, Xen Benefits: High efficiency Issues: OS must be modified

Direct Hardware Virtualization

Examples: System z LPAR, z/VM Benefits: High efficiency, runs unmodified OS Issues: Requires underlying hardware support

System x

Virtualizing IA-32

- The IA-32 was not designed to be virtualized
- Many protected instructions are not required to be executed in protected mode
 - There are a great deal of devices which must be supported

VMWare Virtualization

- CPU: Direct Execution w/ Binary Translation
- MEM: Shadow Table w/ Ballooning Driver
- I/O: Hosted
 Architecture or
 Limited Support

VMware ESX Server

Device Driver Model

Vmware ESXi

3

.

ESXi VS ESX

		VI	VI	VI
	ESXi	Foundation	Standard	Enterprise
Core hypervisor	Yes	Yes	Yes	Yes
Virtual SMP	Yes	Yes	Yes	Yes
VMFS	Yes	Yes	Yes	Yes
VirtualCenter Agent		Yes	Yes	Yes
Update Manager		Yes	Yes	Yes
Consolidated Backup		Yes	Yes	Yes
High Availability			Yes	Yes
VMotion				Yes
Storage VMotion				Yes
DRS				Yes
DPM				Yes

Xen full virtualization

|--|

Xen para virtualization

Device Driver Model

KVM

Sun x/VM (Virtual Box)

Microsoft Hyper V

Hardware

System p

LPARs

1 CPU	2 CPUs	2 CPUs	4 CPUs								
Linux	i5/OS	AIX	Linux	I5/OS	AIX	<i>Mic</i>	ro-part	XIY	AIX	Linux	AIX
Hypervisor											

Micropartition

IBM System p Servers Live Partition Mobility

Workload Partitions (WPARs)

Workload Partition 1

Workload Partition 2

Workload Partition 3

Virtualizing System/360

Chip Design Affects Virtualization Capabilities

Z/VM

HiperSockets

z/VM Virtual Switch

How do I choose?

What are the pain points

Lan Spiders

It's ok to laugh, its a joke.

MINIMUM MAINTENANCE ROAD

TRAVEL AT YOUR OWN PISK

Know your workload

Source: IDC, May 2006

Agent Proliferation

Where is my data ?

Image

Management
Where to start ?

Go for the low hanging fruit

touch .../.../dns.so -Idl -Insl make[2]: Leaving directory '/home/rusek/Projects/eggnidoo/eggdropl. make[2]: Entering directory `/home/rusek/Projects/eggnicbo/eggdrog gcc -pipe -fPIC -g -O2 -Wall -I. -I..... -I..... -I....... _CONFIG_H -DMAKING_MODS -c ... /. filesys.mod/filesys.c my filesys.o ..! .6.17) ltcl8.4 -lm -ldl -lnsl touch .../.../filesys.so lush.h make[2]: Leaving directory 'home/rusek/Projects/eggnicho/ TURES Makefile filesys.mod' Makefile make[2]: Entering directory '/home/rusek/Projects/eggnin TALL gcc -pipe -fPIC -g -O2 -Wall -I. -I., I., -I., I., I. /gnb.mod' CONFIG_H -DMAKING_MODS -c ... / ./grb., mod/grb., c nisc guage NEHS

Development

Quality Assurance

AECORO ABLE

Types of Virtualization

Physical Machine

Machine Virtualization

Physical Machine

Fully virtualized hyper visor

Physical machine

Para-virtualizied hyper visor

Physical machine

Operating System

Physical Machine

Basic CPU Virtualization

- VMM runs in most privileged mode
 - VMM can maintain complete control
- Guest OS runs in an unprivileged mode
 - Privileged instructions will trap
 - VMM then emulates the required instruction in a safe manner

Basic Memory Virtualization

- VMM maintains a "shadow" page table
 - Guest OS establishes a mapping
 - VMM detects changes, updates shadow
 - Hardware uses shadow page table
- VMM can over commit memory
 - Just like normal virtual memory

Why "Basic" Doesn't Work

- Architectures not designed for virtualization
 - Unprivileged privileged instructions
- Performance implications
 - Traps are slow
- Wasted resources from redundant code
- Lack of information leads to ineffectiveness

Benefits and Drawbacks

- Unmodified applications and operating systems can run on the VMM
- Performance can suffer because of the need to emulate protected operations
 - Especially bad on the IA-32
 - Virtual Memory Especially Difficult
 - Special tricks can be employed

VLAN Trunking/Tagging

Virtual Private Network

PRIVATE PROPERTY

Keep out

HiperSockets

Channel Bonding

External Terabytes Worldwide

Utilization

IBM Storage

Block Level Virtualization

SANs Today

Servers are mapped to specific physical disks i.e., "physical mapping"

Block Virtualization

Servers are mapped to a virtual disk i.e., "logical mapping"

SAN Volume Controller

Desktop

Individual Desktops

Connection Broker: Deploying Desktops

How Customers Use VDI

Centralize or Desktop Replacement

Replace traditional PCs with centralized virtual desktops for better control and efficient management. End users have flexibility

Disaster Recovery & Business Continuity

Provide continuous availability of desktops to end users by making high availability and disaster recovery solutions more cost-effective, simpler, and more reliable.

Transactional Office Workers or Developers

Eliminate the need for moves, adds or changes for call centers. Allow in house developers access to workspace while keeping IP safe in data center.

Thin clients

IBM HC10 Blades

Workstation Blade Architecture

Dimension with stand	CD2 (32nm (H) x 94mm (W) x 174mm (D)
Weight with stand	1,100grams
Ethernet connection to HC10	10/100/1000BASE-T IEEE 802.3 compliant
Display	Two independent DVI-I
USB	USB 1.1 compliant, (2) in rear and (2) in front
Audio	HD Audio speaker jack (rear), Head phone jack (front), microphone in jack (front)
LED	CP20 Power Status LED, Connected HC10 Power Status (sleep mode indicator) LED, Session Status LED
Control button	Remote HC10 power button, Session disconnection button
Acoustics	0db (fanless)
Power consumption	25W (nominal)

touch .../.../dns.so -Idl -Insl make[2]: Leaving directory '/home/rusek/Projects/eggnidoo/eggdropl. make[2]: Entering directory `/home/rusek/Projects/eggnicbo/eggdrog gcc -pipe -fPIC -g -O2 -Wall -I. -I..... -I..... -I........ _CONFIG_H -DMAKING_MODS -c ... /. filesys.mod/filesys.c my filesys.o ..! .6.17) ltcl8.4 -lm -ldl -lnsl touch .../.../filesys.so lush.h make[2]: Leaving directory 'home/rusek/Projects/eggnicho/ TURES Makefile filesys.mod' Makefile make[2]: Entering directory '/home/rusek/Projects/eggnin gcc -pipe -fPIC -g -O2 -Wall -I. -I., I., -I., I., I. TALL /gnb.mod' CONFIG_H -DMAKING_MODS -c ... / ./grb., mod/grb., c nisc guage NEHS

Applicatoin

Chroot (jail)

ThinApp

Application Virtual Machines

Emulation

Wine

ScummVM

Script Creation Utility for Maniac Mansion

Wii

Architecture Translation

Exit / Sortie

SimpleDB

If computers of the kind I have advocated become the computers of the future, then computing may someday be organized as a public utility just as the telephone system is a public utility... The computer utility could become the basis of a new and important industry.

—John McCarthy, MIT Centennial in 1961

Cloud / Utility

Characteristics:

- Bare-metal hypervisors offer high efficiency and availability
- Hosted hypervisors are useful for clients where host OS integration is important
 - Hardware partitioning is less flexible than hypervisor-based solutions

Microsoft Virtual Server 2005

Experiments

Figure 3: Relative performance of native Linux (L), XenoLinux (X), VMware workstation 3.2 (V) and User-Mode Linux (U).

HP Integrity Servers - nPars

HP Integrity Servers Soft Partitions / VMs

Virtual Partitions (vPars)

- Soft Partitions for HP-UX workloads
- Each vPar has subset of CPUs, memory & I/O
- Granularity of one or more cores per vPar
- Minimum performance overhead
- Dynamically reconfigurable

Integrity Virtual Machines

- VM platform hosted on HP-UX
- Can host HP-UX, Linux or Windows operating systems
- Shared I/O
- Granularity up to 20 VMs per core
- Greater performance overhead than nPars & vPars

HP Virtual Server Environment (VSE)

- Tight integration of key system components
 - Virtualization functions (nPars, vPars, Integrity Virtual Machines)
 - Workload management tools (gWLM)
 - Serviceguard HA/DR tools
 - Utility pricing
- Helps maintain service levels and increase business agility
 - Admins control which apps are the most important
 - Designate how much of available resources apps get
 - Can automatically / dynamically readjust resource allocations in response to changes in workload demand or failure conditions
 - Goal-based WLM policies

Sun Dynamic Domains

Sun Dynamic Domains

Sun SPARC Servers UltraSPARC T2 CoolThreads

Sun CoolThreads & Logical Domains (LDOMs)

• Virtual Machine Platforms

-x86 Server Virtualization

- Xen implementations
 - Citrix/XenSource
 - Virtual Iron
 - Red Hat Enterprise Linux
 - SUSE Linux Enterprise Server
 - Sun xVM
 - Oracle
- Microsoft Hyper-V (July)
- Linux Kernel Virtual Machine (KVM)

- » Virtual Server Solutions
 - Parallels (Swsoft Virtuozzo)
 - Solaris Containers
 - » Hardware-assisted Partitions
 - Unisys ES7000
 - IBM X Architecture
 - Hitachi Virtage

The Players -- Server Virtualization

- VMware
 - ESX Server, Virtual Infrastructure 3
 - VMware Server
- Microsoft
 - Windows Server Virtualization Service (coming in Windows Server 2008)
 - Virtual Server 2005
- Xen
 - XenSource, Virtual Iron, Novell, Red Hat

The Players – OS Virtualization

SWsoft

- Virtuozzo
- Linux, Windows

Sun

- Solaris Containers
- HP
 - Virtual Server Environment (VSE)
- IBM
 - Virtual Partition Manager

Non-x86 Virtualization Platforms

- IBM Mainframes (System z)
 - z/OS, Linux
- IBM System p
 - UNIX (AIX), Linux
- HP Integrity
 - UNIX (HP-UX), Linux, Windows
- Sun SPARC
 - UNIX (Solaris)

Non-x86 Virtualization Platforms

- IBM Mainframes (System z)
 - z/OS, Linux
- IBM System p
 - UNIX (AIX), Linux
- HP Integrity
 - UNIX (HP-UX), Linux, Windows
- Sun SPARC
 - UNIX (Solaris)

Network Virtualization

- Emerging Technology
- Cisco (Network-Based)
 - The efficient utilization of network resources through logical segmentation of a single physical network.
 - Generic Routing Encapsulation (GRE)
 - Virtual Routing and Forwarding (VRF)
 - Multi-protocol Label Switching (MPLS) VPNs
 - Single Physical Network -- multiple closed logical groups

Network Virtualization

• Sun Crossbow (Host-Based)

- Physical NIC divided into multiple virtual NICs
- Bandwidth resource control and virtualization included in the network stack
- Bandwidth and priority dynamically assigned to services (FTP, SMB, etc) or Virtual Machines

Storage Virtualization

Host-Based

- RAID

Network-Based

- In-band
 - Virtualization appliance resides directly in the data path
 - Commonly associated with SANs
 - Cisco, IBM, EMC, Pillar
- Out-of-band
 - Virtualization appliance resides outside of the data path
 - DFS, Global Namespace

In-band Virtualization

- Physical storage resources translated into virtual resources
- Replication
- Data Management
 Combined w Virtualization Appliance virtualization
 FC Switch Disk Array

Distributed File Systems

 Abstract the physical storage location from the data path

Clustering

• Applications run within virtual servers that reside on one or more physical host systems.

• Common Implementations:

- Failover Clusters
- Load Balanced Clusters
- Shared Data Clusters

Failover Clustering

Virtualizing Storage

- More efficient utilization of storage resources
- Simplifies administration
- Provides additional methods for data protection
- Better Server virtualization flexibility
- Considerations:
 - Integration with existing hardware platforms and operating systems
 - Integration with existing data protection/backup products

Server Virtualization Methods

Technique	Advantages	Disadvantages
Hard Partitions	 Maximum isolation between virtualized workloads Can protect workloads against some HW failures Can enable online HW upgrade 	 Limited granularity (1+ CPUs/ partitions) May have limited flexibility (w/ out OS support) Reconfiguration can be time- consuming
Logical ("Soft") Partitions (LPARs)	 Finer granularity than hard partitions 	 Lacks protection from extreme hardware failures
Virtual Machines	•Finer granularity than LPARs	 Incurs higher performance overhead
Virtual Servers (OS Virtualization)	•Maximum granularity & responsiveness	•All workloads must run on same OS instance (i.e. kernel revision & patch level)

Positioning Virtualization Options

Platform	Key Benefits	Notes
IBM System z Mainframes	•Industry-leading maturity, performance & functionality	•Suitable for z/OS & Linux only
IBM System p	•Strong virtual infrastructure support w/live migration capabilities	•Suitable for UNIX, i5/OS & Linux only
HP Integrity	 Heterogeneous platform: suitable for UNIX, Linux & Windows workloads Leading HA/DR & WLM integration w/HP Virtual Server Environment 	 I/O overhead in Integrity Virtual Machines Lacks migration functions for virtualized workload
<i>Sun SPARC Servers</i>	•Proven isolation & reconfiguration in Dynamic Domains	 Suitable for UNIX only LDOMs limited by lack of true SMP in Niagara Lacks migration functions for virtualized workload
x86/x64 Hardware	•Growing choice of platforms	<i>•I/O overhead still major concern in VMs</i>

x86 Comparison

Name	Host CPU	Guest CPU	Host OS	Guest OS
				Linux, Solaris,
	x86, AMD64, (PowerPC and	(Same as	NetBSD, Linux,	Windows XP & 2003
Xen	IA-64 ports in progress)	host)	Solaris	Server, Plan 9
				Windows 2008,
			Windows 2008 w/	Windows XP,
Hyper-V	x64 + (Intel VT or AMD-V)	x64,x86	Hyper-V Role	Windows Vista, Linux
				Windows, Red Hat,
VMware ESX			none (bare metal	SuSE, Netware,
Server 3.0	x86, AMD64	x86, AMD64	install)	Solaris
	Intel/AMD processor with X86			
KVM	virtualization	x86/AMD64	Linux	Linux, Windows

System p

Name	Host CPU	Guest CPU	Host OS	Guest OS
		POWFR4		
		PowerPC		
	POWER4, PowerPC	970,	hardware /	
	970, POWER5,	POWER5,	firmware, no	Linux-PPC, AIX,
PowerVM	POWER6	POWER6	host OS	i5/OS

System z

Name	Host CPU	Guest CPU	Host OS	Guest OS
z/VM	z/Architecture	z/Architecture	None or itself	Linux on zSeries, z/OS, z/VSE, z/TPF, z/VM, VM/CMS, MUSIC/SP, and predecessors
			Intrinsic feature of	Linux on zSeries, z/OS, z/VSE,
			System z	z/TPF, z/VM, VM/CMS,
z LPARs	z/Architecture	z/Architecture	mainframes	MUSIC/SP, and predecessors

Features

Name	Can boot an OS on another disk partition as guest	USB	GUI	Live memory allocation	3D acceleration	Live migration
					Supported with	
KVM	Yes	Yes	Yes		VMGL	Yes
PowerVM	Yes	Yes	No	Yes	No	Yes (on POWER 6- based systems, requires PowerVM Enterprise Licensing)
VMware ESX Server 3.0	Yes	Yes	Yes	No	No	Yes
Xen	Yes	Yes	Enomalism	Yes	Supported with VMGL	Yes
z/VM	Yes	N/A	with add- ons	Yes	No	with GDPS
z LPARs	Yes	N/A	Yes	Yes	No	with GDPS