
© 2008, 2009 IBM Corporation

RACF Users Group Meeting
November 10, 2009

Quick Start to Implementing X.509
Certificates on z/OS Communications Server

Presentation by: Gwen Dente, IBM Advanced Technical Support, Gaithersburg, MD

Speaker: Linda Harrison,

IBM Advanced Technical Support,

Gaithersburg, MD

cert-ring-design.PRZ Page 1

© 2008, 2009 IBM Corporation

Abstract and Acknowledgments

You know the theory of certificates and you have seen the sessions on setting up SSL/TLS or IPsec with
certificates. But you don't know how to design this certificate and keying implementation for your
environment.
Sure, you have been to all the sessions on configuring certificate requests and certificates . You have
been to the sessions on providing security with x.509 certificates. You have been to the sessions on
Public Key Infrastructure (PKI). But you still don't know how to design the certificates for use with
practical applications.
When do you use SITE certificates? When do you use a user or personal certificate? When do you use a
CA certificate? What exactly do you put on a keyring? Which certificates belong there?
This session shows you how to design a certificate and keyring environment, focusing on the
requirements for implementation on z/OS Communications Server applications.
Although many of the materials in this section are original, other materials were derived from work
produced by the following people, whom we wish to acknowledge:

Wai Choi, IBM
zOS RACF Development

Alyson Comer, IBM
z/OS System SSL Development

Erin Farr, IBM
z/OS OpenSSH Development

Vicente Ranieri, IBM
Advanced Technical Support, System z Security

Christopher Meyer, IBM
z/OS Communications Server Development

cert-ring-design.PRZ Page 2

© 2008, 2009 IBM Corporation

Agenda

Encryption
Keys
X.509 Certificate
Keyring / Key Database
RACF Commands
Certificate and Key Management
OpenSSH Security
Appendices:
Protocol Comparisons (IPsec, SSL, SSH)
Advanced Certificate Concepts

References

cert-ring-design.PRZ Page 3

© 2008, 2009 IBM Corporation

Encryption

cert-ring-design.PRZ Page 4

© 2008, 2009 IBM Corporation

Data Confidentiality, Privacy: Encryption of Data

We encrypt data to make it:
Confidential

Private

Unintelligible to "outsiders"

Unintelligible to those who have no need to know!

Unintelligible to those who are not trustworthy!

Confidentiality and Privacy are required by Security Mandates for
certain types of data:
Data Payload itself (i.e., Credit Card Data with Payment Card Industry
- PCI - Mandates)

Passwords and optionally Userids (PCI, NIST, etc.)

Encryption Keys for maintaining Data Privacy

cert-ring-design.PRZ Page 5

© 2008, 2009 IBM Corporation

PCI and Encryption Requirements

Within the PCI DSS, encryption is required for the following items:

Wireless (Requirements 2.1.1, 4.1.1)

Non-console administrative access (Requirement 2.3)

Data at rest (Requirement 3)

Data in transit (Requirement 4.1)

E-mail (Requirement 4.2)

Passwords in transit or stored (Requirement 8.4)

FROM: http://www.volubis.com/2006/07/09/encryption-requirements-in-pci-dss/

cert-ring-design.PRZ Page 6

WIRELESS:
Requirement 2.1.1: "For wireless environments connected to the cardholder data environment or transmitting cardholder
data, change wireless vendor defaults, including but not limited to default wireless encryption keys, passwords, and SNMP
community strings. Ensure wireless device security settings are enabled for strong encryption technology for authentication
and transmission."
Requirement 4.1.1: "4.1.1 Ensure wireless networks transmitting cardholder data or connected to the cardholder data
environment, use industry best practices (for example, IEEE 802.11i) to implement strong encryption for authentication and
transmission.

For new wireless implementations, it is prohibited to implement WEP after March 31, 2009.
For current wireless implementations, it is prohibited to use WEP after June 30, 2010."

Requirement 2.3: "2.3 Encrypt all non-console administrative access. Use technologies such as SSH, VPN, or SSL/TLS for
webbased management and other non-console administrative access."
Requirement 3: "Protect stored cardholder data. Protection methods such as encryption, truncation, masking, and hashing
are critical components of cardholder data protection. If an intruder circumvents other network security controls and gains
access to encrypted data, without the proper cryptographic keys, the data is unreadable and unusable to that person. Other
effective methods of protecting stored data should be considered as potential risk mitigation opportunities. For example,
methods for minimizing risk include not storing cardholder data unless absolutely necessary, truncating cardholder data if full
PAN is not needed, and not sending PAN in unencrypted e-mails."
Requirement 4.1: "4.1 Use strong cryptography and security protocols such as SSL/TLS or IPSEC to safeguard sensitive
cardholder data during transmission over open, public networks. Examples of open, public networks that are in scope of the
PCI DSS are:

.. The Internet,

.. Wireless technologies,

.. Global System for Mobile communications (GSM), and

.. General Packet Radio Service (GPRS)."
Requirement 4.2: "Never send unencrypted PANs by end-user messaging technologies (for example, e-mail, instant
messaging, chat)."
Requirement 8.4: "8.4 Render all passwords unreadable during transmission and storage on all system components using
strong cryptography (defined in PCI DSS Glossary of Terms, Abbreviations, and Acronyms)."

© 2008, 2009 IBM Corporation

Keys

cert-ring-design.PRZ Page 7

© 2008, 2009 IBM Corporation

Focus on Encryption

Encryption Algorithm
A set of mathematical instructions (a
procedure) for encoding data to make the
data unrecognizable.
The data encryption algorithms themselves
are publicly known. Therefore, the
algorithms by themselves are not secure!
But the algorithms use "keys" during the
cryptographic execution and those keys do
not all have to be publicly known!
The keys and the algorithm together are
what make the encrypted output a secret!
To unlock or decode or "decrypt" the
encoded data, you need to know the key or
keys that were used to encrypt the data to
begin with!

Keys are Essential to Privacy (Encryption
Algorithms)

Symmetric Keys
Asymmetric Keys

Keys are Essential to
Authentication and
Non-Repudiation

Hashes are Essential to
Data Integrity Verification
Data Privacy

Sender Recipient

Symmetric Keys

Sender/Recipient Recipient/Sender

Asymmetric Keys

Encryption Algorithm

cert-ring-design.PRZ Page 8

© 2008, 2009 IBM Corporation

Symmetric Encryption of Data

We encrypt data to make it:
Confidential

Private

Unintelligible to "outsiders"

Algorithm

M
essage

ENCRYPT
ENCRYPTED MESSAGE

KEY

Decrypted

M
essage

DECRYPT
ENCRYPTED MESSAGE

KEY

Algorithm

Symmetric Keys are used for:
Authentication

Integrity Checking

Encryption

Efficient encryption & decryption of
session data ("Data payload")

cert-ring-design.PRZ Page 9

Symmetric Keys are Defined keys; with symmetric keys the SAME KEY
resides at both ends of the communication connection.
They Provide data encryption capabilities
The encryption Algorithm defines the strength of the encryption – DES, Triple
DES, AES etc
Symmetric encryption is typically more efficient -- i.e., faster and less
CPU-intensive -- than asymmetric encryption. This is why they are used for
the encryption and descryption of the payload data ... that is, the actual
session data. Therefore we find that the keys used for session traffic, i.e., the
Session Keys, are symmetric keys. "Efficiency" is a relative term when it
comes to encryption. Encryption always carries a price in terms of response
time, CPU, and throughput. But Symmetric encryption is more efficient than
Asymmetric encryption, which can be 1000x more compute-intensive than
symmetric.
Remember that symmetric session keys must be transmitted in a confidential
fashion to minimize their chance of compromise. The security technologies
we use to provide data security tend to employ Asymmetric encryption
algorithms in order to transmit the symmetric key in a confidential fashion.

© 2008, 2009 IBM Corporation

Exploiting Asymmetric Keys for Confidentiality (Privacy)

Message
ENCRYPT ENCRYPTED MESSAGE

John's

Public KEY

ENCRYPTED MESSAGE

DECRYPT

Message

DECRYPTED MESSAGE

Mary

John

John's
Computer

1. Mary encrypts a message with John's

Public Key.

2. John decrypts the secret message

with his Private Key.

3. Only John can read the message!

1

23
John's

Private KEY

cert-ring-design.PRZ Page 10

The private and public keys are mathematically related. The
private key, owned by one entity (John in this case), can
"unlock" the secret that was encrypted by John's Public key
that is available to anyone.
Note that the Public key can be made available to the world if
necessary. In our example, Mary is using John's Publicly
available key to send him an encrypted message that only his
private key can decrypt. But the Private key is in the
possession of only ONE entity (John in this case).

© 2008, 2009 IBM Corporation

Example: Asymmetric Keys for Privacy of Session Key

Session Key
ENCRYPT ENCRYPTED MESSAGE

John's

Public KEY

ENCRYPTED MESSAGE

DECRYPTDECRYPTED MESSAGE

Mary

John

John's
Computer

1. Mary encrypts a message with John's

Public Key.

2. John decrypts the secret message

with his Private Key.

3. Only John can read the message!

1

23
John's

Private KEY

Session Key

cert-ring-design.PRZ Page 11

In this example you see how Asymmetric Public/Private Key
Pair are used to maintain the confidentiality of the symmetric
Session Key. Once the partners have authenticated, a Session
Key is generated using a mathematical algorithm. Then that
Symmetric Key is sent to the partner; but it is sent encrypted
using a Public/Private key algorithm so that it remains
confidential in transit.
For SSL/TLS or AT-TLS, the authentication need not be
bidirectional. That is, Server authentication is required.
However, Client Authentication is optional. This is all
configurable.
For IPSec, authentication must be bidirectional: both peers
need to authentication to each other.
For OpenSSH, authentication can be bidirectional or
unidirectional only. This is all configurable.

© 2008, 2009 IBM Corporation

Exploiting Asymmetric Keys for Non-Repudiation

Message
ENCRYPT ENCRYPTED MESSAGE

Mary's

Private KEY

ENCRYPTED MESSAGE

DECRYPT

Message from
MaryMaryMaryMary

DECRYPTED MESSAGE

Mary

John

John's
Computer

1. Mary encrypts a message with her

own Private Key.

2. John decrypts the secret message

with Mary's Public Key.

3. The message MUST have come from

Mary!

"Digital Signature"

MaryMaryMaryMary

MaryMaryMaryMary

1

23

Mary's

Public KEY

cert-ring-design.PRZ Page 12

The private and public keys are mathematically related. The
private key, owned by one entity (Mary in this case), can "unlock"
the secret that was encrypted by the public key that is available to
anyone. If Mary's private key can unlock the secret, then Mary
must have been the sender and she cannot refute or repudiate it --
that is, unless someone has STOLEN her private key. This fact
explains why KEY VALUES MUST BE PROTECTED!
Note that the Public key can be made available to the world if
necessary.
 In our example of Non-Repudiation, we have used the Digital
Signature feature, whereby we can prove that Mary sent the
message. Only Mary's Public key can unlock the secret that was
sent, thereby proving that Mary was the sender.
Digital Signature: If it bears your signature, it came from you!
Certificate Digital Signature - Signature generated using the
issuer’s private key .

© 2008, 2009 IBM Corporation

Asymmetric Encryption of Data: Public & Private Keys

Algorithm

M
essage

ENCRYPT

ENCRYPTED MESSAGE

Private KEY

DECRYPT

D
ecrypted

M
essage

Algorithm

M
essage

ENCRYPT ENCRYPTED MESSAGE

Private KEY

DECRYPT

Public KEY

Session

Key Generation

Public KEY

Asymmetric Keys are used for:
Authentication

To help generate a Symmetric Session Key and send it
over an encrypted transport.

Data Integrity Checking

Symmetric Keys are the Session Keys
Encryption

Data Integrity Checking

cert-ring-design.PRZ Page 13

Asymmetric Keys
Public/private key pairs
A public key and a related private key are numerically
associated with each other.
Data encrypted/signed using one of the keys may only be
decrypted/verified using the other key.
Strength of the encryption or signature is defined by the size
of the keys
e.g. RSA – 1024, 2048, 4096-bit keys

Public key is intended to be given freely
Private key needs to be treated very securely and not
distributed. The private key can also be stored in
Cryptographic Hardware.

Asymmetric encryption is typically less efficient -- i.e., slower
and more CPU-intensive -- than symmetric encryption.

© 2008, 2009 IBM Corporation

Hash Algorithms
(One-Way Algorithms)

Mathematical

Algorithm

MessageMessage
Bit String

MD5 = 128 bits (16 bytes)
SHA-1 = 160 bits (20 bytes)
SHA-256 = 256 bits (32 bytes)

Pay US$ 100 to Vicente Ranieri = 5064c498576ec57e9e75fbb04ee8ccaa58c29c1a

Pay US$ 100 to Vicente Ramieri = 83a8e63994fba9d9c927dd6fcf7c92ddc3185063

m = D4 (Hexadecimal) = 1101 0100 (Binary)
n = D5 (Hexadecimal) = 1101 0101 (Binary)

What Does a Hash Algorithm Do?

Wikipedia: A hash function is any ... mathematical function for turning data into a small integer.

Not Wikipedia:
The hash can be encrypted in a message;

Upon decryption of the message the hash function can be re-executed by the recipient.

If the resulting hash matches the received hash, then the message was not altered in transit!

Though technically not encryption, hashes do keep data PRIVATE.

M
essage

HASH

Encrypt with

Session Key

Decrypt with

Session Key

M
essage

HASH

Recompute
HASH

newHASH

If they match, message has

not been altered!

Pay US$ 100 to Vicente Ranieri = ad193204ec83edcde97fa54d6c925b1c

Pay Euro 100 to Vicente Ranieri = 9d6d9b11a909d07085e7ec164cfd7aab

 .

cert-ring-design.PRZ Page 14

When the hash value is used for providing data integrity for the
data phase of a flow, the hash value is protected by the session
(symmetric) key.
In the negotiation phase of a secure connection establishment,
the hash is generated against the session key to prove that it
has not been altered in flight. When the hash value is used in
certificates, it also provides data integrity for a subset of the
certificate and becomes the signature in the certificate.
A hash is a way of representing the original content in a
compressed and unique form. Since it is one-way, it cannot be
reversed to reveal the original value or form. But if the original
value or form is hashed again, the new hash should match the
hash that was received, thus proving that the original data was
not changed.

© 2008, 2009 IBM Corporation

General Architecture of Encryption Flow

Encryption
Flow
Sequence

What happens? SSL/TLS
Terminology

IPSec
Terminology

OpenSSH
Terminology

Stage 1 Negotiation of Secure
Connection:
Authentication and
Generation of and
encrypted Transmit of
Session Key

"Handshake
Layer"

"Phase I" <no official
terminology;
just
"negotiation
stage">

Stage 2 Encryption and
Decryption of Data
Payload (Session
Data)

"Record
Layer"

"Phase II" <no official
terminology;
just "data
transfer
stage">

Asymmetric
Algorithms

Symmetric
Algorithms

Negotiation; Key Generation

Encrypted Session Data

1

2

Essentially all these security protocols use the same basic architecture:

1. Authenticate the partner; generate a symmetric key

Encrypt symmetric key with asymmetric algorithm and send

2. Encrypt session data with symmetric ("Session") key and transmit session data

1

2

cert-ring-design.PRZ Page 15

From the z.OS Security Server RACF Security Administrator's Guide
(SA22-7683-11), Chapter 21 "RACF and Digital Certificates"
"Each party, both client and server, has its own certificate, a matching private key,
and a list of trusted certificate-authority certificates. When the client needs to
authenticate itself to the server to be able to perform a transaction, both the server
and client need to verify one another. The protocol for a secure handshake for
mutual verification begins with the parties exchanging certificates. Each party then
separately validates the other’s certificate to make sure that its signature is valid,
that the subject name in the certificate is correct, and that the certificate originated
from a trusted certificate authority. If successful, each party must prove to the other
that it owns the private key that matches its public key certificate. This step
establishes proof of possession and can be accomplished by having each party sign
a known unique value, such as a hash of the message traffic between the two
parties. If each signature can be validated using the associated public key, the
proofs are successful. The final step in this handshake is for one of the parties to
generate a random symmetric key, encrypt it using the other party’s public key, and
send it to the other party. This random symmetric key may then be used to encrypt
the data for the remainder of the session. Once the secure handshake is complete,
secure transactions can be safely handled in the z/OS environment between this
client and server."

© 2008, 2009 IBM Corporation

Digital Keys Are Integral to Data Security

Key Functions:
Authentication and Non-Repudiation
Encryption
Data Integrity Verification through Hashing (not covered in this topic)

Key Types:
Symmetric; Asymmetric

Common Networking Protocols that Use Keys
SSL/TLS (or AT-TLS)
IPSec (Virtual Private Networks or "VPN")
Secured Shell ("SSH")

Where Can Keys Be Stored? How Are They Distributed?
In a Configuration File (Definition File)

OSPF in OMPRoute (Dynamic Routing Protocol)
OSPF uses a "password" that is used to build an MD5 Hashing value -- not really a key, but used for
authentication of partner.

Manual Tunnels for VPNs (Symmetric Keys)
Dynamic Tunnel with Pre-Shared Keys (Symmetric Keys)

In a Generated Key File and "known_hosts file"
SSH (Uses Asymmetric, Public/Private Keys to generate Session Key)

Bound to an x.509 Certificate: Public Asymmetric Key
Public / Private Key Pair work together to generate a Session Key
With x.509 Certificates, the implementation is called Public Key Infrastructure (PKI)

In a Keyring or Key Database: Private Asymmetric Key
In Cryptographic Hardware (Master Key)

Not recommended to store Private key in hardware, but rather in PKDS dataset for
ICSF.

cert-ring-design.PRZ Page 16

© 2008, 2009 IBM Corporation

X.509 Certificate

cert-ring-design.PRZ Page 17

© 2008, 2009 IBM Corporation

Security Architecture Role and x.509 Certificates

International Standard ISO 7498-2, "Security Architecture", provides a good starting point

MANAGEMENT

Identifying
Users/Entities

Denying
Access to
Resources
(a.k.a.

Authorization)

Preventing
Unauthorized
Disclosure of
Stored and
Transmitted

Data

Detecting
Unauthorized
Modification
of Stored and
Transmitted

Data

Proof of:

Origin

Receipt

Transaction

Time

Logon IDs

Passwords

Pass Tickets

Digital
Certificates

Private Keys

Smart Cards
 and PINs

PCMCIA Cards

Biometrics

Access
Control
Lists

Security
Labels

Roles

Physical
Barriers

Encryption
(based on
Selected
Algorithms,
e.g. 3DES,
AES, etc.)

Data
masking

Checksum

Message
integrity
 code

Digital
Signatures

AntiVirus

Digital
Signatures

Digital
Certificates

Trusted Time

Access ControlAuthentication Confidentiality Non-RepudiationData Integrity Governance

Documented
Policies

Logging and
Archiving
where
Necessary

Regular
Internal

Audits

Required
External

Audits

this day of , 199 ,

by

x.509 Cx.509 CERTIFICATEERTIFICATE

PPRESENTED TO:RESENTED TO:

We appreciate your contributions to our organization. In
recognition of valuable achievements and hard work, we

gladly present this certificate of award.

cert-ring-design.PRZ Page 18

This is an older version of the ISO security model. Note the
entry for "Governance" and "Logging." This is not part of the ISO
model, but it is nevertheless integral for any security
implementation. We have added it here to show its importance.
Certificates play security roles in four respects:
For Authentication of the Server and Optionally the Client
For Encrypting data that will flow between entities secured by
x.509 certificates
For Ensuring that data has not been altered in flight
For providing proof of origin and receipt of data.

In some ways, especially if one considers the use of Client
Certificates in an SSL/TLS or AT-TLS implementation, the Client
Certificate can be considered to provide access to a server. This
is why the arrow pointing from "x.509 Certificate" to "Access
Control" is represented with a dotted line.

© 2008, 2009 IBM Corporation

Exploiting Asymmetric Keys on Keyrings (e.g., Privacy -
Client to Server)

Message

ENCRYPT ENCRYPTED MESSAGE

Server's

Certificate &

Public KEY

ENCRYPTED MESSAGE

DECRYPT

Message

DECRYPTED MESSAGE

1. Client encrypts a message with

Server's Public Key.

2. Server decrypts the secret message

with his Private Key.

3. Only Server can read the message!

1

23
Server's

Private KEY

Client

Platform

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)

Serial Number unique number assigned by the signing/issuing CA
Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)

Issuer Distinguished name associated with the signing CA

Validity Lifetime of the certificate

Not Before

Not After

Subject Distinguished name of the identity represented by the certificate

Subject Public Key Info

Public Key Algorithm
�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identifier (Optional)

Extensions (Optional)

…

Public
Key

Server

Platform

Client Keyring

Server Keyring

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA
Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)
Issuer Distinguished name associated with the signing CA
Validity Lifetime of the certificate
Not Before
Not After
Subject Distinguished name of the identi ty represented by the certificate
Subject Public Key Info
Public Key Algorithm

�Subject Public Key
Issuer Unique Identifier (Optional)

�Subject Unique Identifier (Optional)
Extensions (Optional)
…

Public
Key

Server Cert

Server Cert

cert-ring-design.PRZ Page 19

The private and public keys are mathematically related. The private key,
owned by one entity (the Server in this case), can "unlock" the secret that
was encrypted by the public key that is available to anyone.
Note that the Public key can be made available to the world if necessary. In
our example, The Client is using the Server's Publicly available key to send
the server an encrypted message that only the Server's Private key can
decrypt. But the Private key is in the possession of only ONE entity (the
Server in this case).
Notice how the Client Keyring contains a copy of the Server Certificate. The
Client's keyring does not have access to the Private key of the Server.

The Server's Certificate can be pre-installed on the Client Keyring. It is
more typical to accept the Server Certificate and Install it on the Client
Keyring or in the Client Key Database as part of the security negotiation or
Handshake.

Notice how the Server Keyring contains the Server's Certificate (which
includes the Public Key) and how it contains the Server's private key as well.
If Client Authentication is desired, then a Client may also make use of an
x.509 Certificate.

© 2008, 2009 IBM Corporation

Exploiting Asymmetric Keys on Keyrings
(Non-Repudiation - Server to Client)

ENCRYPT ENCRYPTED MESSAGE

ENCRYPTED MESSAGE

DECRYPT

Message from
ServerServerServerServer

DECRYPTED MESSAGE

1. Server encrypts a message with its

own Private Key.

2. Client decrypts the secret message

with Server's Public Key.

3. The message MUST have come from

the Server!

"Digital Signature"

ServerServerServerServer

ServerServerServerServer

1

23

Server's

Public KEY

Message

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)

Serial Number unique number assigned by the signing/issuing CA

Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)
Issuer Distinguished name associated with the signing CA

Validity Lifetime of the certificate

Not Before

Not After

Subject Distinguished name of the identity represented by the certificate

Subject Public Key Info

Public Key Algorithm

�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identifier (Optional)

Extensions (Optional)

…

Public

Key

Server

Platform

Server Keyring

Client Keyring

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)

Serial Number unique number assigned by the signing/issuing CA
Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)

Issuer Distinguished name associated with the signing CA

Validity Lifetime of the certificate

Not Before

Not After

Subject Distinguished name of the identity represented by the certificate

Subject Public Key Info

Public Key Algorithm
�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identifier (Optional)

Extensions (Optional)

…

Public

Key

Server's

Private KEY

Client

Platform

Server Cert

Server Cert

cert-ring-design.PRZ Page 20

The private and public keys are mathematically related. The private key, owned by one
entity (the Server in this case), can "unlock" the secret that was encrypted by the public
key that is available to anyone. If the Server's public key can unlock the secret, then the
Server must have been the sender and that server cannot refute or repudiate it -- that is,
unless someone has STOLEN the Server's private key. This fact explains why KEY
VALUES MUST BE PROTECTED!
Note that the Public key can be made available to the world if necessary.
 In our example of Non-Repudiation, we have used the Digital Signature feature, whereby
we can prove that the Server sent the message. Only the Server's Public key can unlock
the secret that was sent, thereby proving that this Server was the sender.
Digital Signature: If it bears your signature, it came from you!

Certificate Digital Signature - Signature generated using the issuer’s private key .
Notice how the Client Keyring contains a copy of the Server Certificate. The Client's
keyring does not have access to the Private key of the Server.

The Server's Certificate can be pre-installed on the Client Keyring. It is more typical to
accept the Server Keyring and Install it on the Client Keyring or in the Client Key
Database as part of the security negotiation or Handshake.

Notice how the Server Keyring contains the Server's Certificate (which includes the
Public Key) and how it contains the Server's private key as well.
If Client Authentication is desired, then a Client may also make use of an x.509
Certificate.

© 2008, 2009 IBM Corporation

What Is in a Digital Certificate?

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)

Serial Number unique number assigned by the signing/issuing CA

Algorithm ID algorithm used to sign the certificate (ie.SHA1 with
RSA)

Issuer Distinguished name associated with the signing CA

Issuer Signature

Validity Lifetime of the certificate

Not Before

Not After

Subject Distinguished name of the identity represented by the
certificate

Subject Public Key Info

Public Key Algorithm

�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identifier (Optional)

Extensions (Optional)

…

Public

Key

Private

Key

Keyring

An x.509 certificate contains information about the entity that uses it. It
establishes the credentials of the entity that it represents.
It also contains a public key that can be used to assist with encryption and
signature validations.
When the certificate is generated, a private key is also produced, but this private
key is not stored inside the x.509 certificate.

It is stored on a keyring or key database together with the digital certificate.
The certificate must be TRUSTED.

TRUSTED

cert-ring-design.PRZ Page 21

Only the Public key resides in the x.509 certificate itself.
The private key resides in the repository of the end-entity that is
represented with the certificate.
The private key is used for signing certificates.
It is also used to decrypt data that has been encrypted with
the corresponding public key.
It is also used to encrypt data that can be decrypted only by
the corresponding public key.

Any certificate in the "chain of trust" must be marked as
TRUSTED in the repository where the keyring or key database
resides.
Digital signature: This is generated using the signing authority's
(CA's) private key. To verify the digital signature, we need the
signing authority's public key, which is found in the certificate of
the signing authority.

© 2008, 2009 IBM Corporation

Summary: What Is a Digital Certificate?

A digitally encoded certificate in what is called the "x.509" format
Establishes the credentials of the entity that uses it in a TCP/IP communications flow
or in data at rest on tape or disk; the entity could be ...

a server application on a computing platform (workstation, router, mainframe, etc.)
The server application may need to present the credential, i.e., the x.509
certificate.
Example: a server invoking security with SSL/TLS must present the credential,
e.g., the certificate. This is called SERVER AUTHENTICATION.

a client application on a computing platform (workstation, router, mainframe, etc.)
Whoever invokes the client application may need to present the credential, i.e.,
the x.509 certificate.
Example: a client invoking security with SSL/TLS may be asked for the
credential, e.g., the certificate. This is called CLIENT AUTHENTICATION and it
is OPTIONAL with SSL/TLS.

two nodes represented by peer applications
Each peer must present his credentials (x.509 certificate) to the other for
validation.
Example: two peers setting up a dynamic VPN (Virtual Private Network) with
IPSec RSA Signature Mode must present an x.509 credential to each other.
That is, IPSec requires MUTUAL AUTHENTICATION.

A trusted Certificate Authority (CA) certificate that signs a certificate, thus vouching
for the trustworthiness of this certificate.

It is stored with other information on a "keyring"
The keyring is stored digitally on a card, a chip, or in an area of storage on a
computing platform.

cert-ring-design.PRZ Page 22

Platforms are usually built with a common list of well-known
Certificate Authority Certificates. On z/OS you must mark as
"Trusted" the desired CA certificates that you wish to add to
keyrings. Here is an example of the RACF racdcert command
that can mark a well-known CA as Trusted.
RACDCERT CERTAUTH ALTER(LABEL(’Verisign Class 3
Primary CA’)) TRUST

© 2008, 2009 IBM Corporation

Why Are Digital Certificates Trusted? Chain of Trust

You must trust a Digital Certificate's Issuer in order to accept it as a credential.
Who is the Issuer?

The Server entity itself
Self-signed Certificate (the issuer signed its own certificate)
Not considered safe except in testing situations

A well-known Certificate Authority (CA) corporation (Verisign, Thawte, etc.)
CA-signed

A "local" CA that is established within a corporation to sign server or client certificates.
What is a Certificate Hierarchy?

A single or a chain of TRUSTED certificates vouching for the validity of the information
in the certificate.

End Entity
Issuer – CN=Intermediate CA,OU=Signers,O=IBM,C=US
Subject -CN=Server Certificate,OU=z/OS,O=IBM,C=US
…
Signature

Intermediate CA

Issuer - CN=Root CA,OU=Signers,O=IBM,C=US
Subject – CN=Intermediate CA,OU=Signers,O=IBM,C=US
…
Signature

Root CA
Issuer – CN=Root CA,OU=Signers,O=IBM,C=US
Subject -CN=Root CA,OU=Signers,O=IBM,C=US
…
Signature

Chain of Trust
3. Root Signs Intermediate CA certificate,

then ...

4. Intermediate signs Server or Client Certificate,

? Well-known CA ?

? Your Own CA ?

"Tivoli PKI Services"

? Your Server or Client ?

1. Generated a Public/Private Key and

Sent a Certificate Request

2. Generated a Public/Private Key

and Sent a Certificate Request

Server

CA2

CA1

cert-ring-design.PRZ Page 23

Self signed Certificates are Self-issued
Issuer and subject names identical
Signed by iServer or Owning Entity itself using associated private key

Signed Certificates
Signed/issued by a trusted Certificate Authority Certificate using its private key.
By signing the certificate, the CA certifies the validity of the information. Can be a well-known commercial organization or local/internal organization.

Hierarchy:
Single (self-signed) level in the Chain of Trust ("no chain")

Not recommended for end entity certificates in production
No trusted party involved; trusting subject

Multiple levels in the Chain of Trust
Consists of the end entity certificate and 1 or more certificate authority (CA) certificates
No defined limit on number of CA certificates

You might use a publicly trusted corporation as your Certificate Authority or you might use IBM's TIVOLI PKI Services to be your own Certificate Authority.
The Certificate hierarchy depicted here contains 3 entities. The end-entity certificate is issued by the Intermediate CA. The Intermediate CA is issued by the
Root CA. The Root CA is self-issued (signed by its own private key).

You can use any depth CA chain. The key to getting this to work is what is sent in the certificate request payload. A CA chain
Root->Sub1->Sub2->Sub3-Sub4-Sub5...SubN-EE will work as long as a Certificate Request sent identifies SubN or is empty.
WARNING: When using a multi-level CA hierarchy, the Windows 2003 server sent its certificate using PKCS #7 encoding, which z/OS
Communications Server did not support for IPSec prior to V1R10. The support was rolled back to z/OS Communications Server V1R9. Different
Windows servers behave different - the problem with PKCS#7 has only surfaced with the 2003 server and with IPSec -- not SSL/TLS or AT-TLS.

When validating the certificate chain, validation starts with end entity certificate. The public key of the Intermediate CA certificates is used to verify the
end-entity certificate. If valid, the public key of the Root CA certificate is used to verify the Intermediate CA certificate. If valid, the Root CA is validated using
its own public key.
Note: Signature validation of the self-signed root certificate ensures that the certificate has not been altered but does not guarantee the trust of the certificate.
You must establish trust with the certificate authority prior to using the certificate.
A certificate signing request (also CSR or certification request) is a message sent from the certificate requestor to a certificate authority to obtain a signed
digital certificate

contains identifying information and public key for the requestor
Corresponding private key is not included in the CSR, but is used to digitally sign the request to ensure the request is actually coming from the
requestor
CSR may be accompanied by other credentials or proofs of identity required by the certificate authority, and the certificate authority may contact the
requestor for further information.
If the request is successful, the certificate authority will send back an identity certificate that has been digitally signed with the private key of the
certificate authority.

© 2008, 2009 IBM Corporation

How Do You Ship Certificates to the Using Entities?

Certificates are packaged in "formats":
Single Binary Certificate

Coded as DER (Distinguished Encoding Rules), platform-independent format
Use: Used mostly for Certificate Requests, which are always DER-encoded and then
base64-encoded, like base64-encoded certificates.

PKCS#7 (binary package)
One or more Certificates packaged together but not signed or encrypted

End Entity Certificate
Certificate Chain of Trust

Use: When the CA wants to deliver multiple certificates to a destination
PKCS#12 (binary package)

One or more Certificates packaged together, password-encrypted
End Entity Certificate
Certificate Chain of Trust

Can Contain the Private Key if generated by the Certificate Authority
Use: When the CA wants to ship a package confidentially that contains the private
key.
Use: To migrate certificates and keys from one platform to another.

Base64-encoded Certificates
Ascii, Text
Use: When making a Certificate Request in an email. (See Single Binary Certificate.)

Either PKCS#7 or #12 is supported by SSL and IPSec. However, there was a problem with
PKCS#7 "wrapped certificates" from Microsoft for IPSec; as of z/OS V1R9 such certificates

can be used for z/OS IKED.

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA

Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)

Issuer Distinguished name associated with the signing CA
Validity Lifetime of the certificate

Not Before
Not After

Subject Distinguished name of the ident ity represented by the certificate

Subject Public Key Info
Public Key Algorithm

�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identifier (Optional)

Extensions (Optional)
…

Public

Key

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA

Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)

Issuer Distinguished name associated with the signing CA
Validity Lifetime of the certificate

Not Before
Not After

Subject Distinguished name of the ident ity represented by the certificate

Subject Public Key Info
Public Key Algorithm

�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identifier (Optional)

Extensions (Optional)
…

Public

Key

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)

Serial Number unique number assigned by the signing/issuing CA

Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)

Issuer Distinguished name associated with the signing CA
Validity Lifetime of the cert ificate
Not Before

Not After

Subject Distinguished name of the identity represented by the cert ificate
Subject Public Key Info

Public Key Algorithm
�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identifier (Optional)

Extensions (Optional)

…

Public

Key

Private Key

cert-ring-design.PRZ Page 24

PKCS = Public Key Cryptographic Standards
If you want to create a backup copy of an existing certificate
(and its non-ICSF private key) on a different system, use the
RACDCERT EXPORT command to create a PKCS #12 format
data set on the system where the certificate resides, and send
the data set to the other system where you can use it as input
with the RACDCERT ADD command to recreate the same
certificate. Restriction: If the private key is stored in ICSF (key
type ICSF or PCICC), a PKCS #12 data set cannot be created.
(See z/OS Security Server RACF Command Language
Reference for details about using the RACDCERT EXPORT
command.)

© 2008, 2009 IBM Corporation

Keyring / Key Database

cert-ring-design.PRZ Page 25

© 2008, 2009 IBM Corporation

How Do You Create, Where Do You Store Certificates?

Create Certificates or Certificate Requests with:

gskkyman in z/OS UNIX

Stores and manages Certificates in a Key Database File

RACDCERT in z/OS RACF or other Security Access Facility (SAF)

Stores and manages certificates stored in a RACF KeyRing (real or virtual keyring).

gskkyman

UNIX Key Database

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)

Serial Number unique number assigned by the signing/issuing CA

Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)

Issuer Distinguished name associated with the signing CA

Validity Lifetime of the certificate

Not Before

Not After

Subject Distinguished name of the identity represented by the certificate

Subject Public Key Info

Public Key Algorithm
�Subject Public Key

Issuer Unique Identifier (Optional)

�Subject Unique Identifier (Optional)

Extensions (Optional)

…

Public
Key

Server Certx.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)

Serial Number unique number assigned by the signing/issuing CA

Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)

Issuer Distinguished name associated with the signing CA

Validity Lifetime of the certificate

Not Before
Not After

Subject Distinguished name of the identity represented by the certificate

Subject Public Key Info

Public Key Algorithm

�Subject Public Key

Issuer Unique Identifier (Optional)

�Subject Unique Identifier (Optional)

Extensions (Optional)

…

Public
Key

CA-1 Cert

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)

Serial Number unique number assigned by the signing/issuing CA

Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)

Issuer Distinguished name associated with the signing CA

Validity Lifetime of the certificate

Not Before

Not After
Subject Distinguished name of the identity represented by the certificate

Subject Public Key Info

Public Key Algorithm

�Subject Public Key

Issuer Unique Identifier (Optional)

�Subject Unique Identifier (Optional)

Extensions (Optional)

…

Public

Key

CA-2 Cert

racdcert ...

RACF Database

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)

Serial Number unique number assigned by the signing/issuing CA

Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)

Issuer Distinguished name associated with the signing CA

Validity Lifetime of the certificate
Not Before

Not After

Subject Distinguished name of the identity represented by the certificate

Subject Public Key Info

Public Key Algorithm

�Subject Public Key

Issuer Unique Identifier (Optional)

�Subject Unique Identifier (Optional)

Extensions (Optional)

…

Public

Key

Server Certx.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)

Serial Number unique number assigned by the signing/issuing CA
Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)

Issuer Distinguished name associated with the signing CA

Validity Lifetime of the certificate

Not Before

Not After

Subject Distinguished name of the identity represented by the certificate

Subject Public Key Info

Public Key Algorithm
�Subject Public Key

Issuer Unique Identifier (Optional)

�Subject Unique Identifier (Optional)

Extensions (Optional)

…

Public

Key

CA-1 Cert

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)

Serial Number unique number assigned by the signing/issuing CA

Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)

Issuer Distinguished name associated with the signing CA
Validity Lifetime of the certificate

Not Before

Not After

Subject Distinguished name of the identity represented by the certificate

Subject Public Key Info

Public Key Algorithm

�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identifier (Optional)

Extensions (Optional)

…

Public

Key

CA-2 Cert

RACF KeyRing

cert-ring-design.PRZ Page 26

The RACF RACDCERT Command can be used to generate a Certificate Request that can be sent to a Certificate Authority that will produce the x.509 certificate and
send it back. RACDCERT is used to install and maintain digital certificates, key rings, and digital certificate mappings in RACF. RACDCERT should be used for all
maintenance of the DIGTCERT, DIGTRING, and DIGTNMAP class profiles.

It also produces a keyring.
It can generate keys.
It can produce a self-signed certificate.
Imports/Exports certificates (with and without private keys)
Can renew and revoke a certificate.

The RACDCERT command is a RACF TSO command used to:
List information about the certificates for a specified RACF-defined user ID, or your own user ID.
Add a certificate definition and associate it with a specified RACF-defined user ID, or your own user ID, and set the TRUST flag.
Alter the TRUST flag or the label name for a definition.
Delete a definition.
List a certificate contained in a data set and determine if it is associated with a RACF-defined user ID.
Add or remove a certificate from a key ring.
Create, delete, or list a key ring.
Generate a public/private key pair and certificate.
Write a certificate to a data set.
Create a certificate request.
Create, alter, delete, or list a user ID mapping.
Add, delete, or list a z/OS PKCS #11 token.
Bind a certificate to a z/OS PKCS #11 token.
Remove (unbind) a certificate from a z/OS PKCS #11 token.
Export a certificate (with its private key, if present) from a z/OS PKCS #11 token and add it to RACF.

Alternatively, the UNIX System Services Command "gskkyman" can be used to generate the Certificate Request.
It also produces a keyring.
It can generate keys.
It can produce a self-signed certificate.
Imports/Exports certificates (with and without private keys)
Can renew and revoke a certificate.

RACF Key Rings
RACF key rings are protected by resource profiles.
Users need read access to IRR.DIGTCERT.LISTRING to be able to read the contents of their key ring.

gskkyman key database files
Protected by the file system’s permission bits and password
Upon creation, permission bits are 700 giving the issuer of gskkyman read and write to the file only.
Applications using these files need at least read to the file

OTHER PLATFORMS: Other utilities on different platforms are commonly used to create certificates as well. You may run into a utility called "mkkf" or another one
called "ikeyman."

© 2008, 2009 IBM Corporation

Self-Signed or CA-Signed Certificate?

Who is the Issuer of a Certificate?

The Server entity itself

Self-signed Certificate (the issuer
signed its own certificate)

Not considered safe except in
testing situations

A well-known Certificate Authority
(CA) corporation (Verisign, Thawte,
etc.)

CA-signed

A "local" CA that is established
within a corporation to sign server
or client certificates.

CA-signed

A Self-Signed certificate can reside
alone on a keyring.

Other end-entity certificates reside on
a keyring with their CA cert or
certificates

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA
Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)
Issuer Distinguished name associated with the signing CA
Validity Lifetime of the certificate
Not Before
Not After
Subject Distinguished name of the identity represented by the

certificate
Subject Public Key Info

Public Key Algorithm
�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identifier (Optional)

Extensions (Optional)
…

Public
Key

Server1

[Default]

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA
Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)
Issuer Distinguished name associated with the signing CA
Validity Lifetime of the certificate
Not Before
Not After
Subject Distinguished name of the identity represented by the

certificate

Subject Public Key Info
Public Key Algorithm

�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identifier (Optional)

Extensions (Optional)
…

Public

Key

CA-1 CERT.

KeyRing

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA
Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)
Issuer Distinguished name associated with the signing CA
Validity Lifetime of the certificate
Not Before
Not After
Subject Distinguished name of the identity represented by the

certificate
Subject Public Key Info
Public Key Algorithm

�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identifier (Optional)

Extensions (Optional)
…

Public

Key

ServerX

[Default]

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA
Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)
Issuer Distinguished name associated with the signing CA
Validity Lifetime of the certificate

Not Before
Not After
Subject Distinguished name of the identity represented by the

certificate
Subject Public Key Info
Public Key Algorithm

�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identifier (Optional)

Extensions (Optional)

…

Public

Key

CA-2 CERT.

KeyRing

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA
Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)
Issuer Distinguished name associated with the signing CA
Validity Lifetime of the certificate

Not Before
Not After
Subject Distinguished name of the identity represented by the

certificate
Subject Public Key Info
Public Key Algorithm

�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identifier (Optional)

Extensions (Optional)

…

Public

Key

CA-1 CERT.

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA
Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)
Issuer Distinguished name associated with the signing CA
Validity Lifetime of the certificate
Not Before
Not After
Subject Distinguished name of the identity represented by the

certificate
Subject Public Key Info
Public Key Algorithm

�Subject Public Key
Issuer Unique Identifier (Optional)

�Subject Unique Identifier (Optional)
Extensions (Optional)
…

Public

Key

Server

[Default]

KeyRing

Self-signed

z/OS
SSL,

IPSec

z/OS
SSL,

IPSec

z/OS
SSL,

IPSec

cert-ring-design.PRZ Page 27

System SSL and other security middleware use the R_datalib callable service (IRRSDL00 or IRRSDL64) to retrieve certificate
information from RACF. In order for applications to retrieve certificates and private keys from RACF, the certificates must be
connected to a RACF key ring (including a virtual key ring) or a z/OS PKCS #11 token.
Note how the self-signed certificate resides alone on its keyring.
Note how the keyring in the middle of the page shows a Server Certificate that is signed by a well-known CA named "CA1."
Note how the keyring at the bottom of the page shows a Server Certificate that is signed by a corporate (intermediate CA) CA
(CA2), which has then been signed by a well-known CA (CA1).
Which certificates should be on a LOCAL keyring? In short, you should find the certificates that will authenticate both any local
certificate that might be needed and any remote certificate that might be presented. For example:

the local end-entity certificate if it is to be presented to a peer in the secure exchange.
the Certificate that has signed the local end-entity certificate
The Certificate that has signed the signing certificate
at least one TRUSTED certificate that has signed the remote end-entity's certificate.

NOTE: Although it is possible for a keyring to work successfully even if not all of the cited certificates reside on it, it is wiser to
place all the certificates in the keyring. Otherwise certain negotiations may fail due to the protocol and platform differences
that exist for the implementation of SSL/TLS (AT-TLS) and IPSec.
The usage assigned to a certificate when it is connected to a key ring indicates its intended purpose.

Personal certificates are to be used by the local server application to identify itself.
Certificate-authority certificates are to be used to verify the peer entity’s certificate.
Peers with certificates issued by certificate authorities connected to the key ring are considered trusted network entities.
NOTE: Peers possessing certificates that can not be verified because the certificate-authority certificate is not available
may also be considered trusted if their certificates are connected to the key ring as a trusted site certificate.
RESTRICTIONS:

1. Use caution when connecting a peer’s certificate to a key ring as a trusted site certificate. The normal certificate
verification tests performed by the server on the peer’s certificate are bypassed in this case. Hence, even expired
certificates are considered trusted.
2. Certificates marked NOTRUST cannot be retrieved using the R_datalib callable service even if they are connected
to a key ring. RACF hides them from the calling application and does not indicate that they are connected to the key
ring.

© 2008, 2009 IBM Corporation

What is Associated with the Keyring Contents: TLS?

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA
Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)
Issuer Distinguished name associated with the signing CA
Validity Lifetime of the certificate
Not Before
Not After
Subject Distinguished name of the identity represented by the

certificate
Subject Public Key Info
Public Key Algorithm

�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identifier (Optional)

Extensions (Optional)

…

Public

Key

CA-1 CERT.

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA
Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)
Issuer Distinguished name associated with the signing CA
Validity Lifetime of the certificate
Not Before
Not After
Subject Distinguished name of the identity represented by the

certificate
Subject Public Key Info
Public Key Algorithm

�Subject Public Key
Issuer Unique Identifier (Optional)

�Subject Unique Identifier (Optional)

Extensions (Optional)
…

Public

Key

Server

[Default]

TLS_Client_KeyRing

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA
Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)
Issuer Distinguished name associated with the signing CA
Validity Lifetime of the certificate
Not Before
Not After
Subject Distinguished name of the identity represented by the

certificate
Subject Public Key Info

Public Key Algorithm
�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identif ier (Optional)

Extensions (Optional)
…

Public

Key

Server

[Default]

TLS_Server_KeyRing

Self-signed

If deploying with Server Authentication only:

TLS_Client_KeyRing
x.509 Cx.509 CERTIFICATEERTIFICATE

Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA
Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)
Issuer Distinguished name associated with the signing CA
Validity Lifetime of the certificate

Not Before
Not After
Subject Distinguished name of the identity represented by the

certificate
Subject Public Key Info
Public Key Algorithm

�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identifier (Optional)

Extensions (Optional)

…

Public

Key

Server1

[Default]

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA
Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)
Issuer Distinguished name associated with the signing CA
Validity Lifetime of the certificate
Not Before
Not After
Subject Distinguished name of the identity represented by the

certificate
Subject Public Key Info
Public Key Algorithm

�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identifier (Optional)

Extensions (Optional)

…

Public

Key

CA-1 CERT.

TLS_Server_KeyRing

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA

Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)

Issuer Distinguished name associated with the signing CA

Validity Lifetime of the certificate

Not Before

Not After

Subject Distinguished name of the identity represented by the certificate

Subject Public Key Info

Public Key Algorithm
�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identifier (Optional)

Extensions (Optional)

…

Public

Key

CA-2 CERT.

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA

Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)

Issuer Distinguished name associated with the signing CA

Validity Lifetime of the certificate

Not Before

Not After

Subject Distinguished name of the identity represented by the certificate

Subject Public Key Info

Public Key Algorithm
�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identifier (Optional)

Extensions (Optional)

…

Public

Key

CA-1 CERT.

TLS_Client_KeyRing

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA

Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)

Issuer Distinguished name associated with the signing CA

Validity Lifetime of the certificate

Not Before

Not After

Subject Distinguished name of the identity represented by the certificate

Subject Public Key Info

Public Key Algorithm
�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identifier (Optional)

Extensions (Optional)

…

Public
Key

ServerX

[Default]

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA

Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)

Issuer Distinguished name associated with the signing CA

Validity Lifetime of the certificate

Not Before

Not After

Subject Distinguished name of the identity represented by the certificate

Subject Public Key Info

Public Key Algorithm
�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identifier (Optional)

Extensions (Optional)

…

Public

Key

CA-2 CERT.

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA

Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)

Issuer Distinguished name associated with the signing CA

Validity Lifetime of the certificate

Not Before

Not After

Subject Distinguished name of the identity represented by the certificate

Subject Public Key Info

Public Key Algorithm
�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identifier (Optional)

Extensions (Optional)

…

Public

Key

CA-1 CERT.

TLS_Server_KeyRing

cert-ring-design.PRZ Page 28

We show you here three examples of keyring configurations when using Server Authentication only for SSL/TLS or
AT-TLS. In general, a TRUSTED Certificate or Certificate Chain and the PRIVATE Key of the End-Entity that owns
the certificate is required. But whether or not the PRIVATE KEY need be available depends on whether mutual
authentication is required or not. You see in the three examples that the client keyring needs no PRIVATE key
associated with it if only Server Authnetication is in use.
In the first example, you see that we have deployed only a server certificate. In this case, the server's keyring or
key repository must have access to the server's private key as well as to its own server certificate.

The Client's keyring needs a copy of the self-signed server certificate in order to validate the certificate that the
Server sends to it during SSL/TLS or AT-TLS negotiation.

In the second example, you see that we have deployed a server certificate that has been signed by a CA certificate
(CA1). In this case, the server's keyring or key repository must have access to the server's private key as well as to
its own server certificate. It must also have access to the CA certificate that has signed the server certificate.

The Client's keyring needs a copy of the CA certificate that has signed the Server certificate in order to validate
the certificate that the Server sends to it during SSL/TLS or AT-TLS negotiation.

In the third example, you see that we have deployed a server certificate that has been signed by a CA certificate
(CA2), which itself has been signed by another root CA certificate (CA1). In this case, the server's keyring or key
repository must have access to the server's private key as well as to its own server certificate. It must also have
access to both CA certificates.

The Client's keyring needs a copy of both CA certificates that were used to sign the server certificate and the
intermediate CA certificate.

EXAMPLE:
A local keyring should contain:
The server certificate for the local End Entity.
The CA certificate that signed the local End Entity certificate.
The CA certificate that signed a remote End Entity certificate, if the negotiation requests Client Authentication.
The CA certificates that may have signed an Intermediate CA certificate that resides on the ring.

© 2008, 2009 IBM Corporation

What is Associated with the Keyring Contents: TLS?

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA
Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)
Issuer Distinguished name associated with the signing CA
Validity Lifetime of the certificate
Not Before
Not After
Subject Distinguished name of the identity represented by the

certificate
Subject Public Key Info
Public Key Algorithm

�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identifier (Optional)

Extensions (Optional)

…

Public

Key

CA-1 CERT.

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA
Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)
Issuer Distinguished name associated with the signing CA
Validity Lifetime of the certificate
Not Before
Not After
Subject Distinguished name of the identity represented by the

certificate
Subject Public Key Info
Public Key Algorithm

�Subject Public Key
Issuer Unique Identifier (Optional)

�Subject Unique Identifier (Optional)

Extensions (Optional)
…

Public

Key

Server

[Default]

Virtual Keyring

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA
Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)
Issuer Distinguished name associated with the signing CA
Validity Lifetime of the certificate
Not Before
Not After
Subject Distinguished name of the identity represented by the

certificate
Subject Public Key Info

Public Key Algorithm
�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identif ier (Optional)

Extensions (Optional)
…

Public

Key

Server

[Default]

TLS_Server_KeyRing

Self-signed

Server Authentication only: Virtual Keyring for Client

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA
Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)
Issuer Distinguished name associated with the signing CA
Validity Lifetime of the certificate

Not Before
Not After
Subject Distinguished name of the identity represented by the

certificate
Subject Public Key Info
Public Key Algorithm

�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identifier (Optional)

Extensions (Optional)

…

Public

Key

Server1

[Default]

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA
Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)
Issuer Distinguished name associated with the signing CA
Validity Lifetime of the certificate
Not Before
Not After
Subject Distinguished name of the identity represented by the

certificate
Subject Public Key Info
Public Key Algorithm

�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identifier (Optional)

Extensions (Optional)

…

Public

Key

CA-1 CERT.

TLS_Server_KeyRing

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA

Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)

Issuer Distinguished name associated with the signing CA

Validity Lifetime of the certificate

Not Before

Not After

Subject Distinguished name of the identity represented by the certificate

Subject Public Key Info

Public Key Algorithm
�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identifier (Optional)

Extensions (Optional)

…

Public

Key

CA-2 CERT.

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA

Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)

Issuer Distinguished name associated with the signing CA

Validity Lifetime of the certificate

Not Before

Not After

Subject Distinguished name of the identity represented by the certificate

Subject Public Key Info

Public Key Algorithm
�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identifier (Optional)

Extensions (Optional)

…

Public

Key

CA-1 CERT.

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA

Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)

Issuer Distinguished name associated with the signing CA

Validity Lifetime of the certificate

Not Before

Not After

Subject Distinguished name of the identity represented by the certificate

Subject Public Key Info

Public Key Algorithm
�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identifier (Optional)

Extensions (Optional)

…

Public
Key

ServerX

[Default]

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA

Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)

Issuer Distinguished name associated with the signing CA

Validity Lifetime of the certificate

Not Before

Not After

Subject Distinguished name of the identity represented by the certificate

Subject Public Key Info

Public Key Algorithm
�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identifier (Optional)

Extensions (Optional)

…

Public

Key

CA-2 CERT.

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA

Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)

Issuer Distinguished name associated with the signing CA

Validity Lifetime of the certificate

Not Before

Not After

Subject Distinguished name of the identity represented by the certificate

Subject Public Key Info

Public Key Algorithm
�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identifier (Optional)

Extensions (Optional)

…

Public

Key

CA-1 CERT.

TLS_Server_KeyRing

Virtual Keyring

Virtual Keyring

cert-ring-design.PRZ Page 29

This chart shows you that as of V1R8 you can build a RACF Virtual Keyring if you are not presenting a client
certificate for verification.
For applications using System SSL, such as z/OS FTP, or other middleware programs that read RACF key rings
through the R_datalib callable service, a virtual key ring can be specified in place of a real key ring, whenever a
real key ring is expected. To include virtual key rings, the application user specifies an asterisk (*) for the key ring
name along with the ring owner's user ID using the form ring-owner/*
We show you here three examples of keyring configurations when using Server Authentication only for SSL/TLS
or AT-TLS. In general, a TRUSTED Certificate or Certificate Chain and the PRIVATE Key of the End-Entity that
owns the certificate is required. But whether or not the PRIVATE KEY need be available depends on whether
mutual authentication is required or not. You see in the three examples that the client keyring needs no PRIVATE
key associated with it if only Server Authnetication is in use.
In the first example, you see that we have deployed only a server certificate. In this case, the server's keyring or
key repository must have access to the server's private key as well as to its own server certificate.

The Client's keyring needs a copy of the self-signed server certificate in order to validate the certificate that
the Server sends to it during SSL/TLS or AT-TLS negotiation.

In the second example, you see that we have deployed a server certificate that has been signed by a CA
certificate (CA1). In this case, the server's keyring or key repository must have access to the server's private key
as well as to its own server certificate. It must also have access to the CA certificate that has signed the server
certificate.

The Client's keyring needs a copy of the CA certificate that has signed the Server certificate in order to
validate the certificate that the Server sends to it during SSL/TLS or AT-TLS negotiation.

In the third example, you see that we have deployed a server certificate that has been signed by a CA certificate
(CA2), which itself has been signed by another root CA certificate (CA1). In this case, the server's keyring or key
repository must have access to the server's private key as well as to its own server certificate. It must also have
access to both CA certificates.

The Client's keyring needs a copy of both CA certificates that were used to sign the server certificate and the
intermediate CA certificate.

© 2008, 2009 IBM Corporation

What is Associated with the Keyring Contents: TLS?

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA
Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)
Issuer Distinguished name associated with the signing CA
Validity Lifetime of the certificate
Not Before
Not After
Subject Distinguished name of the identity represented by the

certificate
Subject Public Key Info
Public Key Algorithm

�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identifier (Optional)

Extensions (Optional)

…

Public

Key

CA-1 CERT.

TLS_Client_KeyRingTLS_Server_KeyRing

Self-signed

If deploying with Server + Client Authentication:

TLS_Client_KeyRing
x.509 Cx.509 CERTIFICATEERTIFICATE

Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA
Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)
Issuer Distinguished name associated with the signing CA
Validity Lifetime of the certificate

Not Before
Not After
Subject Distinguished name of the identity represented by the

certificate
Subject Public Key Info
Public Key Algorithm

�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identifier (Optional)

Extensions (Optional)

…

Public

Key

Server1

[Default]

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA
Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)
Issuer Distinguished name associated with the signing CA
Validity Lifetime of the certificate
Not Before
Not After
Subject Distinguished name of the identity represented by the

certificate
Subject Public Key Info
Public Key Algorithm

�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identifier (Optional)

Extensions (Optional)

…

Public

Key

CA-1 CERT.

TLS_Server_KeyRing

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA

Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)

Issuer Distinguished name associated with the signing CA

Validity Lifetime of the certificate

Not Before

Not After

Subject Distinguished name of the identity represented by the certificate

Subject Public Key Info

Public Key Algorithm
�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identifier (Optional)

Extensions (Optional)

…

Public

Key

CA-2 CERT.

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA

Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)

Issuer Distinguished name associated with the signing CA

Validity Lifetime of the certificate

Not Before

Not After

Subject Distinguished name of the identity represented by the certificate

Subject Public Key Info

Public Key Algorithm
�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identifier (Optional)

Extensions (Optional)

…

Public

Key

CA-1 CERT.

TLS_Client_KeyRing

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA

Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)

Issuer Distinguished name associated with the signing CA

Validity Lifetime of the certificate

Not Before

Not After

Subject Distinguished name of the identity represented by the certificate

Subject Public Key Info

Public Key Algorithm
�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identifier (Optional)

Extensions (Optional)

…

Public
Key

ServerX

[Default]

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA

Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)

Issuer Distinguished name associated with the signing CA

Validity Lifetime of the certificate

Not Before

Not After

Subject Distinguished name of the identity represented by the certificate

Subject Public Key Info

Public Key Algorithm
�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identifier (Optional)

Extensions (Optional)

…

Public

Key

CA-2 CERT.

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA

Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)

Issuer Distinguished name associated with the signing CA

Validity Lifetime of the certificate

Not Before

Not After

Subject Distinguished name of the identity represented by the certificate

Subject Public Key Info

Public Key Algorithm
�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identifier (Optional)

Extensions (Optional)

…

Public

Key

CA-1 CERT.

TLS_Server_KeyRing

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)

Serial Number unique number assigned by the signing/issuing CA

Algorithm ID algorithm used to sign the certif icate (ie.SHA1 with RSA)

Issuer Distinguished name associated with the signing CA
Validity Lifetime of the certificate

Not Before
Not After

Subject Distinguished name of the identity represented by the certificate

Subject Public Key Info
Public Key Algorithm

�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identifier (Optional)

Extensions (Optional)

…

Public

Key

Server

[Default]

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)

Serial Number unique number assigned by the signing/issuing CA

Algorithm ID algorithm used to sign the certif icate (ie.SHA1 with RSA)
Issuer Distinguished name associated with the signing CA

Validity Lifetime of the certificate
Not Before

Not After

Subject Distinguished name of the identity represented by the certif icate
Subject Public Key Info

Public Key Algorithm
�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identif ier (Optional)

Extensions (Optional)
…

Public

Key

Client
x.509 Cx.509 CERTIFICATEERTIFICATE

Version (1, 2, 3)

Serial Number unique number assigned by the signing/issuing CA
Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)

Issuer Distinguished name associated with the signing CA
Validity Lifetime of the certificate

Not Before

Not After
Subject Distinguished name of the identity represented by the certif icate

Subject Public Key Info

Public Key Algorithm
�Subject Public Key

Issuer Unique Identif ier (Optional)
�Subject Unique Identifier (Optional)

Extensions (Optional)

…

Public

Key

Server
x.509 Cx.509 CERTIFICATEERTIFICATE

Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA

Algorithm ID algorithm used to sign the certif icate (ie.SHA1 with RSA)
Issuer Distinguished name associated with the signing CA

Validity Lifetime of the certificate

Not Before
Not After

Subject Distinguished name of the identity represented by the certificate

Subject Public Key Info

Public Key Algorithm
�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identif ier (Optional)

Extensions (Optional)

…

Public

Key

Client

[Default]

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA
Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)
Issuer Distinguished name associated with the signing CA
Validity Lifetime of the certif icate

Not Before
Not After
Subject Distinguished name of the identity represented by the

certificate
Subject Public Key Info
Public Key Algorithm

�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identifier (Optional)

Extensions (Optional)

…

Public

Key

Client1

[Default]

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA
Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)

Issuer Distinguished name associated with the signing CA
Validity Lifetime of the certificate
Not Before

Not After
Subject Distinguished name of the identity represented by the certificate

Subject Public Key Info
Public Key Algorithm

�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identifier (Optional)

Extensions (Optional)
…

Public

Key

Client1

[Default]

cert-ring-design.PRZ Page 30

We show you here three examples of keyring configurations when using Server and Client (or MUTUAL) Authentication only for
SSL/TLS or AT-TLS. In general, a TRUSTED Certificate or Certificate Chain and the PRIVATE Key of the End-Entity that owns
the certificate is required. But whether or not the PRIVATE KEY need be available depends on whether mutual authentication is
required or not. You see in the three examples that the client keyring needs a copy of its own PRIVATE key, and of its own
Certificate, and also of the signing CA for the server Certificate. Similar requirements exist for the Server Ring, as you saw on
the previous page.
In the first example, you see that we have deployed mutual authentication with self-signed certificates.

In this case, the server's keyring or key repository must have access to the server's private key as well as to its own server
certificate. It also needs a copy of the Client certificate in order to validate the Client certificate sent to it during client
authentication.
The Client's keyring needs a copy of the self-signed server certificate in order to validate the certificate that the Server sends
to it during SSL/TLS or AT-TLS negotiation. It must also have a copy of its own self-signed Client Certificate.

In the second example, you see that we have deployed a server certificate that has been signed by a CA certificate (CA1). The
Client certificate has been signed by the same CA (CA1).

In this case, the server's keyring or key repository must have access to the server's private key as well as to its own server
certificate. It must also have access to the CA certificate (CA1) that has signed the server certificate. It must also have
access to the CA certificate (CA1) that has signed the client certificate.
The Client's keyring needs a copy of the Client Certificate and of the CA certificate (CA1) that has signed the Client
certificate. The Private Key of the client must be available as well. The client's keyring must also have access to the CA
certificate (CA1) that has signed the Server certificate. In this example, the signing CA was the same for both the client and
the server certificates.

In the third example, you see that we have deployed a server certificate that has been signed by a CA certificate (CA2), which
itself has been signed by another root CA certificate (CA1).

In this case, the server's keyring or key repository must have access to the server's private key as well as to its own server
certificate. It must also have access to both CA certificates (CA1 and CA2).
The Client's keyring needs a copy of both CA certificates that were used to sign the server certificate (CA2) and the
intermediate CA certificate (CA1). The client keyring requires a copy of its own client certificate and access to the private key
of the Client. It requires copies of the CA chain that has signed the Client certificate. However, since this is the same CA
chain that was used for the Server Certificate, the presence of both CA1 and CA2 provides a trusted string to authenticate
both the client and server certificates.

© 2008, 2009 IBM Corporation

What is Associated with the Keyring Contents: IKE?

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA
Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)
Issuer Distinguished name associated with the signing CA
Validity Lifetime of the certificate
Not Before
Not After
Subject Distinguished name of the identity represented by the

certificate
Subject Public Key Info
Public Key Algorithm

�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identifier (Optional)

Extensions (Optional)

…

Public

Key

CA-1 CERT.

IKE_Server2_KeyRingIKE_Server1_KeyRing

Self-signed

IPSec and IKE with RSA Signature Mode Authentication require
Mutual Authentication:

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA
Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)
Issuer Distinguished name associated with the signing CA
Validity Lifetime of the certificate

Not Before
Not After
Subject Distinguished name of the identity represented by the

certificate
Subject Public Key Info
Public Key Algorithm

�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identifier (Optional)

Extensions (Optional)

…

Public

Key

IKE1

[Default]

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA
Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)
Issuer Distinguished name associated with the signing CA
Validity Lifetime of the certificate
Not Before
Not After
Subject Distinguished name of the identity represented by the

certificate
Subject Public Key Info
Public Key Algorithm

�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identifier (Optional)

Extensions (Optional)

…

Public

Key

CA-1 CERT.

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA

Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)

Issuer Distinguished name associated with the signing CA

Validity Lifetime of the certificate

Not Before

Not After

Subject Distinguished name of the identity represented by the certificate

Subject Public Key Info

Public Key Algorithm
�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identifier (Optional)

Extensions (Optional)

…

Public
Key

CA-2 CERT.

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA

Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)

Issuer Distinguished name associated with the signing CA

Validity Lifetime of the certificate

Not Before

Not After

Subject Distinguished name of the identity represented by the certificate

Subject Public Key Info

Public Key Algorithm
�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identifier (Optional)

Extensions (Optional)

…

Public
Key

CA-1 CERT.

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA

Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)

Issuer Distinguished name associated with the signing CA

Validity Lifetime of the certificate

Not Before

Not After

Subject Distinguished name of the identity represented by the certificate

Subject Public Key Info

Public Key Algorithm
�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identifier (Optional)

Extensions (Optional)

…

Public
Key

ServerX

[Default]

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA

Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)

Issuer Distinguished name associated with the signing CA

Validity Lifetime of the certificate

Not Before

Not After

Subject Distinguished name of the identity represented by the certificate

Subject Public Key Info

Public Key Algorithm
�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identifier (Optional)

Extensions (Optional)

…

Public
Key

CA-2 CERT.

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA

Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)

Issuer Distinguished name associated with the signing CA

Validity Lifetime of the certificate

Not Before

Not After

Subject Distinguished name of the identity represented by the certificate

Subject Public Key Info

Public Key Algorithm
�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identifier (Optional)

Extensions (Optional)

…

Public
Key

CA-1 CERT.

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA
Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)
Issuer Distinguished name associated with the signing CA
Validity Lifetime of the certificate
Not Before
Not After
Subject Distinguished name of the identity represented by the certificate
Subject Public Key Info
Public Key Algorithm

�Subject Public Key
Issuer Unique Identifier (Optional)

�Subject Unique Identifier (Optional)
Extensions (Optional)
…

Public

Key

IKE1

[Default]

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA
Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)
Issuer Distinguished name associated with the signing CA
Validity Lifetime of the certificate
Not Before
Not After
Subject Distinguished name of the identity represented by the certificate
Subject Public Key Info
Public Key Algorithm

�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identifier (Optional)

Extensions (Optional)
…

Public

Key

IKE2
x.509 Cx.509 CERTIFICATEERTIFICATE

Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA
Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)
Issuer Distinguished name associated with the signing CA
Validity Lifetime of the certificate
Not Before
Not After
Subject Distinguished name of the identity represented by the certificate
Subject Public Key Info
Public Key Algorithm

�Subject Public Key
Issuer Unique Identifier (Optional)

�Subject Unique Identifier (Optional)
Extensions (Optional)
…

Public

Key

IKE1
x.509 Cx.509 CERTIFICATEERTIFICATE

Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA
Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)
Issuer Distinguished name associated with the signing CA
Validity Lifetime of the certificate
Not Before
Not After
Subject Distinguished name of the identity represented by the certificate
Subject Public Key Info
Public Key Algorithm

�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identifier (Optional)

Extensions (Optional)
…

Public

Key

IKE2

[Default]

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA
Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)
Issuer Distinguished name associated with the signing CA
Validity Lifetime of the certif icate

Not Before
Not After
Subject Distinguished name of the identity represented by the

certificate
Subject Public Key Info
Public Key Algorithm

�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identifier (Optional)

Extensions (Optional)

…

Public

Key

IKE2

[Default]

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA
Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)

Issuer Distinguished name associated with the signing CA
Validity Lifetime of the certificate
Not Before

Not After
Subject Distinguished name of the identity represented by the certificate

Subject Public Key Info
Public Key Algorithm

�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identifier (Optional)

Extensions (Optional)
…

Public

Key

Client1

[Default]

IKE_Server2_KeyRingIKE_Server1_KeyRing

IKE_Server2_KeyRingIKE_Server1_KeyRing

cert-ring-design.PRZ Page 31

We show you here three examples of keyring configurations when using MUTUAL Authentication only for an IPSec
environment using RSA Signature Mode Authentication. In general, a TRUSTED Certificate or Certificate Chain and
the PRIVATE Key of the End-Entity that owns the certificate is required.
The configuration of the keyrings is similar to what you saw for AT-TLS, when Client/Server authentication is in use. In
both cases mutual authentication is required.
In the first example, you see that we have deployed mutual authentication with self-signed certificates.

In this case, the IKE1 keyring or key repository must have access to its own private key as well as to its IKE1
end-entitiy certificate. It also needs a copy of the IKE2 certificate in order to validate the IKE2 certificate sent to it
during IKE authentication.
The IKE2 keyring must have access to its own private key as well as to its IKE2 end entity certificate. It also
needs a copy of the IKE1 certificate in order to validate the IKE1 certificate sent to it during IKE authentication.

In the second example, you see that we have deployed IKE certificates that have been signed by a CA certificate
(CA1).

In this case, the IKE1 keyring or key repository must have access to the IKE1 private key as well as to its own
IKE1 certificate. It must also have access to the CA certificate (CA1) that has signed the IKE1 certificate. It must
also have access to the CA certificate (CA1) that has signed the IKE2 certificate. (In our example, the same CA
signed both IKE1 and IKE2 certificates.
The IKE2 keyring needs a copy of the IKE2 Certificate and of the CA certificate (CA1) that has signed the IKE2
certificate. The Private Key of IKE2 must be available as well. The IKE2 keyring must also have access to the CA
certificate (CA1) that has signed the IKE1 certificate. In this example, the signing CA was the same for both of the
IKEs.

In the third example, you see that we have deployed an IKE1 certificate that has been signed by a CA certificate
(CA2), which itself has been signed by another root CA certificate (CA1). The IKE2 certificate has also been signed by
CA2, which has been signed by the root CA certificate (CA1).

In this case, the IKE1 must have access to the IKE1 private key as well as to the IKE1 certificate. It must also
have access to both CA certificates (CA1 and CA2).
In this case, the IKE2 must have access to the IKE2 private key as well as to the IKE2 certificate. It must also
have access to both CA certificates (CA1 and CA2).

© 2008, 2009 IBM Corporation

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA
Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)
Issuer Distinguished name associated with the signing CA
Validity Lifetime of the certificate
Not Before
Not After
Subject Distinguished name of the identity represented by the

certificate
Subject Public Key Info
Public Key Algorithm

�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identifier (Optional)

Extensions (Optional)
…

Public

Key

Server2

[Default]

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA
Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)
Issuer Distinguished name associated with the signing CA
Validity Lifetime of the certificate
Not Before

Not After
Subject Distinguished name of the identity represented by the

certificate
Subject Public Key Info
Public Key Algorithm

�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identifier (Optional)

Extensions (Optional)
…

Public

Key

CA CERT.

ABCRING2

Certificate Types and Their Keyring and Key Access

There are three types of
certificates that can be
stored in RACF keyrings:

Individual USER or
PERSONAL Certificate

Only one client or server user Id
can be associated with this
certificate.

The Private Key must reside on
the keyring if this entity is to
present the certificate to the
partner.

Example: Scenario A

Shared SITE Certificate
Multiple client and/or server user
IDs can share this certificate.

The Private Key must reside on
the keyring if this entity is to
present the certificate to the
partner.

Example: Scenario B

Note: "gskkyman" does not work
with this type of certificate.

Certificate Authority
Certificate

Well-known CA

Local CA

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA
Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)
Issuer Distinguished name associated with the signing CA
Validity Lifetime of the certificate
Not Before
Not After
Subject Distinguished name of the identity represented by the

certificate

Subject Public Key Info
Public Key Algorithm

�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identifier (Optional)

Extensions (Optional)
…

Public

Key

Server1

[Default]

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA
Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)
Issuer Distinguished name associated with the signing CA
Validity Lifetime of the certificate
Not Before
Not After
Subject Distinguished name of the identity represented by the

certificate
Subject Public Key Info
Public Key Algorithm

�Subject Public Key
Issuer Unique Identifier (Optional)

�Subject Unique Identifier (Optional)

Extensions (Optional)
…

Public

Key

CA CERT.

User

(Individual Certificates;

Individual Private Keys)

ABCRING1

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA
Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)
Issuer Distinguished name associated with the signing CA

Validity Lifetime of the certificate
Not Before
Not After
Subject Distinguished name of the identity represented by the

certificate
Subject Public Key Info
Public Key Algorithm

�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identifier (Optional)

Extensions (Optional)
…

Public

Key

ServersALL

[Default]

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA
Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)
Issuer Distinguished name associated with the signing CA
Validity Lifetime of the certificate
Not Before
Not After
Subject Distinguished name of the identity represented by the

certificate
Subject Public Key Info
Public Key Algorithm

�Subject Public Key
Issuer Unique Identifier (Optional)

�Subject Unique Identifier (Optional)

Extensions (Optional)
…

Public

Key

CA CERT.

SITE

(Shared Certificate;

Shared Private Key)

ABCRINGX

Server2Server1

A

A

B

cert-ring-design.PRZ Page 32

USER CERTIFICATE:
A certificate that is associated with a RACF user ID and is used to authenticate the
user’s identity. The RACF user ID can represent a traditional user or be assigned to
a server or started procedure.

SHARED SITE CERTIFICATE:
You can share a certificate and the certificate’s private key among two or more
servers (user IDs) when you add or generate the shared certificate and its private
key as a SITE certificate, for example using the RACDCERT SITE GENCERT
command. Sharing a certificate can save you the expense of purchasing a new
certificate for each server and avoids the overhead of exporting and importing
certificate copies. Sharing a private key requires a high degree of authority for each
server involved. The key ring containing the shared certificate must be protected and
each server must be configured to access the shared key ring and have sufficient
access authority to read it. In addition, each server must have CONTROL authority
for the IRR.DIGTCERT.GENCERT resource. This resource controls the server’s
ability to retrieve private keys using the R_datalib callable service and is checked
when you issue the RACDCERT GENCERT SIGNWITH command.

CERTIFICATE-AUTHORITY CERTIFICATE:
A certificate that is associated with a certificate authority and is used to verify
signatures in other certificates. Also called a "Signing Certificate."

© 2008, 2009 IBM Corporation

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA
Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)
Issuer Distinguished name associated with the signing CA

Validity Lifetime of the certificate
Not Before
Not After
Subject Distinguished name of the identity represented by the

certificate
Subject Public Key Info
Public Key Algorithm

�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identifier (Optional)

Extensions (Optional)
…

Public

Key

Server2

[Default]

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA
Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)

Issuer Distinguished name associated with the signing CA
Validity Lifetime of the certificate
Not Before
Not After
Subject Distinguished name of the identity represented by the

certificate
Subject Public Key Info
Public Key Algorithm

�Subject Public Key
Issuer Unique Identifier (Optional)

�Subject Unique Identifier (Optional)

Extensions (Optional)
…

Public

Key

CA CERT.

ABCRING2

How Do Servers (or Clients) Identify Their Keyrings?

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA
Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)
Issuer Distinguished name associated with the signing CA
Validity Lifetime of the certificate
Not Before
Not After
Subject Distinguished name of the identity represented by the

certificate
Subject Public Key Info
Public Key Algorithm

�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identifier (Optional)

Extensions (Optional)
…

Public

Key

Server1

[Default]

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA
Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)
Issuer Distinguished name associated with the signing CA
Validity Lifetime of the certificate

Not Before
Not After
Subject Distinguished name of the identity represented by the

certificate
Subject Public Key Info
Public Key Algorithm

�Subject Public Key
Issuer Unique Identifier (Optional)

�Subject Unique Identifier (Optional)
Extensions (Optional)
…

Public

Key

CA CERT.

User

(Individual Certificates;

Individual Private Keys)

ABCRING1

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)
Serial Number unique number assigned by the signing/issuing CA

Algorithm ID algorithm used to sign the certificate (ie.SHA1 with RSA)
Issuer Distinguished name associated with the signing CA
Validity Lifetime of the certificate
Not Before
Not After
Subject Distinguished name of the identity represented by the

certificate
Subject Public Key Info

Public Key Algorithm
�Subject Public Key

Issuer Unique Identifier (Optional)
�Subject Unique Identifier (Optional)

Extensions (Optional)
…

Public

Key

ServersALL

[Default]

x.509 Cx.509 CERTIFICATEERTIFICATE
Version (1, 2, 3)

Serial Number unique number assigned by the signing/issuing CA
Algorithm ID algorithm used to sign the certif icate (ie.SHA1 with RSA)
Issuer Distinguished name associated with the signing CA
Validity Lifetime of the certificate
Not Before
Not After
Subject Distinguished name of the identity represented by the

certificate
Subject Public Key Info
Public Key Algorithm

�Subject Public Key
Issuer Unique Identifier (Optional)

�Subject Unique Identifier (Optional)

Extensions (Optional)
…

Public

Key

CA CERT.

SITE

(Shared Certificate;

Shared Private Key)

ABCRINGX

Server2Server1

A

A

B

ACF2
Notes
below

PERSONAL Certificate:
The Server MUST OWN its PERSONAL
Certificate.

It need not own the keyring it resides on.

Definition of Keyring association:

'KEYRING ABCRING1'

Server1 owns the keyring as well.

'KEYRING ADMIN/ABCRING2'

ADMIN -- not Server2 -- owns the
keyring.

Servers or Clients require READ access
to their certificate to access their own
Private key.

SITE Certificate:
Every server implicitly owns a SITE
Certificate.

Definition of Keyring association:

'KEYRING ADMIN/ABCRINGX'

Servers or Clients require CONTROL
access to access the Private key.

CERTAUTH Virtual Keyring for
TLS for Clients

Cannot be used if Client Authentication is
necessary

Definition of Keyring association:

'KEYRING *AUTH*/*'

Client authenticates server certificate by
using RACF repository to locate certificate
of signing authority.

cert-ring-design.PRZ Page 33

You have learned that an individual certificate and individual private key provide the most granular security. You see such a scenario
in Example A.

ABCRING1 is owned by Server1 and is populated with the CA Cert that signed the individual Server Certificate. The individual
Server Certificate for Server1 resides on this keyring.

An individual Server Certificate MUST BE OWNED BY THE PROCESS that invokes it!
The keyring can be owned by any user. It just happens to be owned by Server1 in this example.

ABCRING2 is not owned by Server2, but this ring is populated with the CA Cert that signed the individual Server Certificate. The
individual Server Certificate for Server2 resides on this keyring.

An individual Server Certificate MUST BE OWNED BY THE PROCESS that invokes it!
Now you see that ADMIN owns the keyring, but Server2 owns the Server Certificate. When Server2 needs to point to its
keyring, it needs to specify that the owner is ADMIN:

KEYRING ADMIN/ABCRING2.
In Scenario B both of the servers are sharing a certificate and a private key. This is not the most granular security implementation, but
it may be safe enough within an Intranet as long as other compliance mandates -- like PCI -- do not prohibit you from setting up a
scenario like this.

Either server -- Server1 or Server2 -- may use the SITE Certificate for authentication; either server may use the same private key.
(This might have been a client ring, in which case, any client can use that key.)
When the servers point to their keyring in their implementation definitions, they can simply use a definition like:

KEYRING ADMIN/ABCRINGX (if the keyring is owned by ADMIN and by neither of the servers.)
Alternatives to this are as follows:

KEYRING ABCRINGX for Server1 (if Server1 owns the keyring), or
KEYRING ADMIN/ABCRINGX (if Server1 does not own the keyring).

Each RACF user ID is associated with a virtual key ring. The most common type is the CERTAUTH virtual key ring, which is used
when an application validates the certificates of others but has no need for its own certificate and private key.
For applications using System SSL, such as z/OS FTP, or other middleware programs that read RACF key rings through the R_datalib
callable service, a virtual key ring can be specified in place of a real key ring, whenever a real key ring is expected. To include virtual
key rings, the application user specifies an asterisk (*) for the key ring name along with the ring owner's user ID using the form
ring-owner/*. Client authentication is not required and the virtual key ring is used only to authenticate the FTP server.
If using a SAF repository other than RACF, note that ACF2 appends a suffix of ".KEYRING" to the keyring name. Therefore, a keyring
that you think is called "MYKEYRING" must be referenced as "MYKEYRING.KEYRING" for an ACF2 repository.

© 2008, 2009 IBM Corporation

RACF Commands

cert-ring-design.PRZ Page 34

© 2008, 2009 IBM Corporation

Authority Required for RACF Functions

Two z/OS Security Services manuals are critical to RACF functions and syntax:

z/OS Security Server RACF Security Administrator's Guide (SA22-7683-11)
Chapter 21: RACF and Security Certificates

z/OS V1R9 Security Server RACF Command Language Reference (SA22-7687-11)
Chapter 5: RACF Command Syntax

cert-ring-design.PRZ Page 35

In Chapter 5 of the z/OS Security Server RACF Command Language Reference you will find many variations of the RACDCERT command. You will
see examples of these commands in the JCL we show you with which we have produced keyrings and certificates. You will also find several Facility
Classes for Certificates and Keyrings. The authorities required (READ, UPDATE, CONTROL) to access these classes or functions are described in
the Command Language Reference.
Effective use of RACDCERT requires that its privileges be carefully controlled. However, end-users and application administrators should be allowed
some flexibility in defining their security characteristics. These guidelines might prove useful.

The ability to add certificate authorities and site certificates should be allowed to only a small set of trusted people.
End users should be permitted to add, delete, and modify the contents of their own key rings and add, delete, and alter their own certificates.
Help desk personnel should be allowed the ability to list certificates and rings.

Key rings are associated with specific RACF user IDs. A RACF user ID can have more than one key ring. Key rings are managed using the
RACDCERT command, and are maintained in the general resource class called DIGTRING.

Authority to the IRR.DIGTCERT.function resource in the FACILITY class allows a user to issue the RACDCERT command. To issue the
RACDCERT command, users must have one of the following authorities:
The SPECIAL attribute
Sufficient authority to resource IRR.DIGTCERT.function in the FACILITY class.

– READ access to IRR.DIGTCERT.function to issue the RACDCERT command for themselves.
– UPDATE access to IRR.DIGTCERT.function to issue the RACDCERT command for others.
– CONTROL access to IRR.DIGTCERT.function to issue the RACDCERT command for SITE and CERTAUTH certificates. (This authority also
has other uses.)

**
Authority required for the GENCERT function [Table 23 above]: The GENCERT keyword allows a certificate to be generated and signed. Effective
controls on the user ID that is being associated with the certificate and what certificate is being used to sign the generated certificate are essential.
Notes [on Table 20 above]: With the following exceptions, the access levels listed (READ, UPDATE and CONTROL) in this table [Table 20 above]
are based on authority to the resource IRR.DIGTCERT.function in the FACILITY class.

1. ADDTOKEN—Controlled by ICSF using resources in the CRYPTOZ class. (No authority to FACILITY class resources is required.)
2. BIND—Controlled by ICSF using resources in the CRYPTOZ class, and by both IRR.DIGTCERT.BIND and IRR.DIGTCERT.ADD.
3. CHECKCERT—Controlled by IRR.DIGTCERT.LIST
4. DELTOKEN—Controlled by ICSF using resources in the CRYPTOZ class. (No authority to FACILITY class resources is required.)
5. EXPORT—Controlled by either IRR.DIGTCERT.EXPORT or IRR.DIGTCERT.EXPORTKEY.
6. GENCERT—Controlled by both IRR.DIGTCERT.ADD and IRR.DIGTCERT.GENCERT.
7. IMPORT—Controlled by ICSF using resources in the CRYPTOZ class, and by IRR.DIGTCERT.ADD.
8. LISTTOKEN—Controlled by ICSF using resources in the CRYPTOZ class, and by IRR.DIGTCERT.LIST.
9. UNBIND—Controlled by ICSF using resources in the CRYPTOZ class. (No authority to FACILITY class resources is required.)

© 2008, 2009 IBM Corporation

Granularity for Authorization to RACF Functions

So instead of giving access to all the rings
• PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY)
ACCESS(UPDATE) ID(CLN2)

• Just give access to that particular ring
• PERMIT CLN1.COMMONRING.LST CLASS(RDATALIB)
ACCESS(READ) ID(CLN2)

• If you want to share the private key, then
• PERMIT CLN1.COMMONRING.LST CLASS(RDATALIB)
ACCESS(UPDATE) ID(CLN2)

cert-ring-design.PRZ Page 36

V1R9 provides another solution – Granular access control on Key Ring
Access is based on a profile of a specific key ring in a new class called
RDATALIB
The class RDATALIB must be RACLISTed
A resource with the format <ringOwner>.<ringName>.LST is used to
provide access control to a specific key ring on

R_datalib READ functions
This new support also allows the retrieval of another person’s private
key
So instead of giving access to all the rings

PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY)
ACCESS(UPDATE) ID(CLN2)

Just give access to that particular ring
PERMIT CLN1.COMMONRING.LST CLASS(RDATALIB)
ACCESS(READ) ID(CLN2)

If you want to share the private key, then
PERMIT CLN1.COMMONRING.LST CLASS(RDATALIB)
ACCESS(UPDATE) ID(CLN2)

© 2008, 2009 IBM Corporation

Sample Certificate Generation Job for RACF: CA Cert.

//CERT32 JOB MSGCLASS=X,NOTIFY=&SYSUID

//CERT32 EXEC PGM=IKJEFT01,DYNAMNBR=30,REGION=4096K

//***

//* Create Certificate Authority for This Installation *

//***

//SYSTSPRT DD SYSOUT=*

//SYSTSIN DD *

RACDCERT CERTAUTH GENCERT

 SUBJECTSDN(O('I.B.M Corporation') -

 CN('itso.ibm.com') -

 C('US')) -

 WITHLABEL('My Local Certificate Authority') -

 KEYUSAGE(certsign)

 setropts raclist(DIGTCERT) refresh

 racdcert ID(IKED) list(label('My Local Certificate Authority'))

/*

a

b

c
d

Creating a Certificate Authority Certificate

e

f

Consult z/OS Security Services
Documentation for more information....

cert-ring-design.PRZ Page 37

A. The CERTAUTH parameter identifies this certificate that is being
generated (GENCERT) as a Certificate Authority (CA) certificate.

B. SUBJECTSDN identifies several components that comprise the x.509
Distinguished Name (DN) of the certificate owner or holder. Each DN
should be unique at least within a RACF database; it should also be
unique across the world, since this DN is used to distinguish identities
in many cases. We have utilized here only two components of the DN:
CN, and C.

C.The RACF database requires a label for organizing the certificates
within a RACF database. The label must be unique.

D.This definition tells the GENCERT process that this is a CA certificate
for which the key will be created.

E. The setropts command refreshes the DIGTCERT class so that the
changes are made immediately known in the running RACF
environment and operating system.

F. The racdcert command allows us to verify that our certificate has been
properly created; it displays the certificate with its attributes.

© 2008, 2009 IBM Corporation

Sample Certificate Generation Job for RACF: Server

//CERT32 JOB MSGCLASS=X,NOTIFY=&SYSUID

//CERT32 EXEC PGM=IKJEFT01,DYNAMNBR=30,REGION=4096K

//***

//* Create Individual Personal Certificate for SC32 *

//***

//SYSTSPRT DD SYSOUT=*

//SYSTSIN DD *

RACDCERT ID(IKED) GENCERT a -

 SUBJECTSDN (CN('IKE Daemon on SC32') b -

 OU('ITSO') -

 C('US')) -

 NOTBEFORE(DATE(2007-09-11)) c -

 NOTAFTER(DATE(2008-09-11)) c -

 WITHLABEL('IKE Daemon on SC32') d -

 SIGNWITH(CERTAUTH -

 Label('My Local Certificate Authority')) e

 setropts raclist(DIGTCERT) refresh f

 racdcert ID(IKED) list(label('IKE Daemon on SC32')) g

/*

a

b

c

c
d

e

f

g

Creating a Server Certificate

cert-ring-design.PRZ Page 38

A. The ID parameter identifies this certificate that is being generated (GENCERT)
as a personal user certificate. (It is not a CA or SITE certificate.)

B. SUBJECTSDN identifies several components that comprise the x.509
Distinguished Name (DN) of the certificate owner or holder. Each DN should
be unique at least within a RACF database; it should also be unique across
the world, since this DN is used to distinguish identities in many cases. We
have utilized only three components of the DN for SC32: CN, OU, and C.

C.These parameters set a timeframe for the certificate’s validity. The default
timeframe is only one year. It is common in a production environment to use a
much longer timeframe than we have used.

D.The RACF database requires a label for organizing the certificates within a
RACF database. The label must be unique.

E. This definition tells the GENCERT process which CA should be the signing
authority for the user’s personal certificate.

F. The setropts command refreshes the DIGTCERT class so that the changes
are made immediately known in the running RACF environment and operating
system.

G.The racdcert command allows us to verify that our certificate has been
properly created; it displays the certificate with its attributes.

© 2008, 2009 IBM Corporation

Installing Certificates on a Keyring with RACF

//KEYRNG32 JOB MSGCLASS=X,NOTIFY=&SYSUID

//KEYRNG32 EXEC PGM=IKJEFT01,DYNAMNBR=30,REGION=4096K

//***

//* Add a separate keyring for IKE for SC32 *

//***

//SYSTSPRT DD SYSOUT=*

//SYSTSIN DD *

 racdcert ID(IKED) addring(IKED32_keyring)

 racdcert ID(IKED) CONNECT(ID(IKED) -

 LABEL('IKE Daemon on SC32') -

 RING(IKED32_keyring) -

 USAGE(PERSONAL)DEFAULT)

 racdcert ID(IKED) CONNECT(CERTAUTH -

 LABEL('My Local Certificate Authority') -

 RING(IKED32_keyring) -

 USAGE(CERTAUTH))

 PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ID(IKED) ACCESS(READ)

 PERMIT IRR.DIGTCERT.GENCERT CLASS(FACILITY) ID(IKED) ACCESS(READ)

 setropts raclist(DIGTRING) refresh

 setropts raclist(DIGTCERT) refresh

 setropts raclist(FACILITY) refresh

 racdcert listring(IKED32_keyring) id(iked)

Creating a Keyring; Installing Certificates

a

b

c

d

e
f

h

.

i

g

cert-ring-design.PRZ Page 39

A. This adds a keyring to the RACF database.
B. This connects a certificate that is already in the RACF database to the keyring that

was just created.
C.USAGE(PERSONAL) indicates that this certificate may be used by a single entity

(e.g., server) only. It cannot be shared. If an application program cannot or does
not indicate a specific PERSONAL certificate, then it must use the DEFAULT
certificate on the ring. (More about this later.)

D.This connects the installation's CA certificate to the keyring.
E. USAGE(CERTAUTH) indicates again that this is a CA certificate. CA certificates

are always found by means of their labels and they do not need to assume a
DEFAULT role the way a PERSONAL certificate does.

F. This protects the keyring with RACF access control commands.
G.Protect the private key and permit the user IDs of each server to access it. The

private key is represented by the facility named IRR.DIGTCERT.GENCERT. In this
case, userid of IKED owns the certificate and therefore an ACCESS(READ) is
sufficient for GENCERT. If this had been a Site Certificate (which has no specific
owner), then IKED would have needed ACCESS(CONTROL).

H.This refreshes classes in MVS storage, again protecting the contents of the various
classes of objects.

I. This command lists the contents of the keyring with the label identified.

© 2008, 2009 IBM Corporation

Certificate and Key Management

cert-ring-design.PRZ Page 40

© 2008, 2009 IBM Corporation

3.4.1.b Verify that cryptographic keys are stored securely (for
example, stored on removable media that is adequately protected
with strong access controls).

3.5 Verify processes to protect keys used for encryption of
cardholder data against disclosure and misuse by performing the
following:

3.5.1 Examine user access lists to verify that access to keys is
restricted to very few custodians.

3.5.2 Examine system configuration files to verify that keys are
stored in encrypted format and that key-encrypting keys are stored
separately from data-encrypting keys.

Key Management in PCI

From PCI DSS 1.2 and Security Assessment Procedures

cert-ring-design.PRZ Page 41

© 2008, 2009 IBM Corporation

3.6 Fully document and implement all key-management processes and
procedures for cryptographic keys used for encryption of cardholder
data, including the following:
3.6.a Verify the existence of key-management procedures for keys
used for encryption of cardholder data.
Note: Numerous industry standards for key management are available
from various resources including NIST, which can be found at
http://csrc.nist.gov.
3.6.b For service providers only: If the service provider shares keys
with their customers for transmission of cardholder data, verify that the
service provider provides documentation to customers that includes
guidance on how to securely store and change customer’s keys (used
to transmit data between customer and service provider).
3.6.n Verify that key-management procedures are implemented to
require

the generation of strong keys (3.6.1)
secure key distribution (3.6.2)
secure key storage (3.6.3)

Key Management in PCI

From PCI DSS 1.2 and Security Assessment Procedures

cert-ring-design.PRZ Page 42

© 2008, 2009 IBM Corporation

Managing Keys and Certificates

You must keep track of

expiring certificates and keys!

certificates that need revocation!

PCI demands policies on these issues.

This is why you need:

PKI
Services

You can be
your own CA

You can
generate the
reminders
necessary for
PCI and audit
purposes!

User Renews
Certificate

Administrator
approves the
request

CA Generates
and distributes
certificates

rejects

Owner uses
the certificate

Certificate Expires or
Administrator or User
Revokes Certificate

User Requests
Certificate

cert-ring-design.PRZ Page 43

PKI Services
A component on z/OS since V1R3
Closely tied to RACF
The CA cert must be installed in RACF’s key ring
Authority checking goes through RACF’s callable service
Supports more functions than RACDCERT
Full certificate life cycle management: request, create, renew, revoke
Generation and administration of certificates via customizable web pages
Support automatic or administrator approval process
Support multiple revocation checking mechanisms
Certificate Revocation List (CRL)
Online Certificate Status Protocol (OCSP)
Certificates and CRLs can be posted to LDAP
Provides email notification

to notify end user for completed certificate request and expiration warnings
to notify administrator for pending requests

Provides Trust Policy Plug-in for certificate validation
Manual - "PKI Services Guide and Reference"

Advantages:
Not a priced product. Licensed with z/OS. An alternative to purchasing third party certificates
IdenTrust™ compliant

ensures adherence to a common standard to provide a solid foundation for trust between financial institutions and their customers
Relatively low mips to drive thousands of certificates
Leverage existing z/OS skills and resources
Cost efficient for banks, government agencies to host Digital Certificate management
Run in separate z/OS partitions (integrity of zSeries® LPARs)
Scalable (Sysplex exploitation)
Secure the CA private key with zSeries cryptography

PREREQUISITE PRODUCTS:
RACF (or equivalent) For storing PKI CA certificate and for authorization
IBM z/OS HTTP Server For web page interface
LDAP Directory (z/OS or other platforms) For publishing issued certificates and CRLs and for email notification
ICSF (optional) For more secure CA private key

z /OS Communications Server (optional) For email notification

© 2008, 2009 IBM Corporation

Managing Certificate & Key Expiration for Data in Flight

Mismanagment of Certificates or Keys here means

Loss of Availability and Security Exposure

while Certificates or Keys are replaced,

refreshed, or revoked!

Procedures:
Manually or with automation track certificate expirations
and key expirations so that renewals can be requested in
a timely manner

Manually or with automation remove certificates and keys
for employees or nodes no longer in service at the
company.

cert-ring-design.PRZ Page 44

For data in flight, you don't lose access to your data if you lose
or mismanage your keys. However, key expiration or certificate
expiration mean that you lose some availability while you
refresh keys or certificates so that you can continue sending
data in flight. So, with regard to data in flight, key and
certificate management only applies from the perspective of
keeping your certificates up to date.

© 2008, 2009 IBM Corporation

Managing Certificate & Key Expiration for Data at Rest

1.Performance

• Encryption that isn’t built into the storage
infrastructure could cause serious
performance penalties

2.Potential to Lose data

• If you encrypt the data and lose the key then
the data is lost

3.Complexity

• Some solutions add extra boxes on the wire,
classification, constant configuration,
application changes

4.Total cost of ownership

• Some solutions can double the cost of the
storage solution

–Our encrypting storage solutions have an
impact on performance that is less than 1%

• Our key management is proven with
thousands of customers today

• Our solution is simple to install, configure,
with no application or server changes

required

• Our Encryption and key management adds
small incremental cost

IBM’s Response:Customer Concern:

Loss of Certificates or Keys here means

Loss of Data!

www.ibm.com/security/ **and**
www.ibm.com/security/products/

cert-ring-design.PRZ Page 45

Because expired or inactive data accounts for a large percentage
of total data storage, encryption and key management solutions
need to support data that an organization might use in the future
as well as securely dispose of data that is no longer needed.
Furthermore, organizations may have data retention policies,
which, if implemented using encryption and key lifecycle
management, can simplify and make more predictable the erasure
of data.
“I can’t afford to lose data because of poorly managed encryption.
Can you assure me that my data will be available?”
One does not have to be an expert in cryptography to understand
that lost keys required to decrypt the data leads to unrecoverable
data. Cryptographic key management will therefore be one of the
storage manager’s top concerns. Beyond this fundamental issue,
however, are requirements for assuring availability and
performance according to service levels and policy demands.

© 2008, 2009 IBM Corporation

List of IBM Products for Security

etc.

cert-ring-design.PRZ Page 46

This is a sample of the products you can find links to from URL
.http://www..ibm.com/security/products/

© 2008, 2009 IBM Corporation

Managing Keys for Data at Rest: TKLM

Evolved from

IBM Encryption Key
Management (EKM)

cert-ring-design.PRZ Page 47

This is a description of Tivoli Key Lifecycle Manager, which
points to two white papers: one about data at rest in general
and one specifically about TKLM. The URL for this page is:
http://www-01.ibm.com/software/tivoli/products/key-lifecycle-mg
r/
The URL for the white paper on Keys for Data at Rest is:
ftp://submit.boulder.ibm.com/sales/ssi/sk/p0/5/r246447k43524l
55/EMA_IBMSTORAGEDARSECURITY_WP.PDF
The URL for the white paper on TKLM is:
http://www.servicemanagementcenter.com/main/pages/IBMRB
MS/SMRC/ShowCollateral.aspx?oid=39509

© 2008, 2009 IBM Corporation

You want more supported
extensions in the certs

You just need basic extensions in
the certs

You want the certs to be checked
for revocation status

You don’t care if the certs are
revoked

You want the other parties to
retrieve the certs themselves

You want to manually send the
certs to the other parties

You want to get notification on
the expiration dates of the certs

You can manually keep track of
the expiration dates of the certs

Need to generate a large number
of certificates

Just need to generate a handful
of certificates

Use PKI Services ifUse RACDCERT if

You want more supported
extensions in the certs

You just need basic extensions in
the certs

You want the certs to be checked
for revocation status

You don’t care if the certs are
revoked

You want the other parties to
retrieve the certs themselves

You want to manually send the
certs to the other parties

You want to get notification on
the expiration dates of the certs

You can manually keep track of
the expiration dates of the certs

Need to generate a large number
of certificates

Just need to generate a handful
of certificates

Use PKI Services ifUse RACDCERT if

Your Own CA: Racdcert or PKI Services

cert-ring-design.PRZ Page 48

Note: PKI Services does not have any function to manage the
key ring. Ring management is provided by RACF.

© 2008, 2009 IBM Corporation

OpenSSH Security

cert-ring-design.PRZ Page 49

© 2008, 2009 IBM Corporation

Public / Private Key Security without x.509 Certificates

OpenSSH – suite of network connectivity tools that provide secure encrypted
communications between two untrusted hosts over an insecure network.

Program product: IBM Ported Tools for z/OS
Unpriced, runs on z/OS 1.4 or higher.
Version: OpenSSH 3.8.1p1, OpenSSL 0.9.7d, zlib 1.1.4

Encrypts Userid and Password in communication flows

Function OpenSSH Utility

Secure remote login ssh, sshd

Secure file transfer
sftp, sftp-server,

scp

Key management ssh-keygen, ssh-agent, ssh-add, ssh-keyscan

An alternative to…

rlogin, rsh

rcp

OpenSSH additionally provides these utilities:

cert-ring-design.PRZ Page 50

© 2008, 2009 IBM Corporation

OpenSSH Authentication & Encryption

sshd daemonssh client

OpenSSH – TCP/IP Port Forwarding

Application

Client

Application

Server

ssh forwards the data through an SSH tunnel, sshd delivers to server

Host B

Listening

Port 2001

Listening

Port 22

Host A

Listening

Port 27

TCP

Connect

Socket(A,2001)

TCP

sshd daemonssh client

OpenSSH – Without TCP/IP Port Forwarding

Application

Client

Application

Server

Direct client/server connection (no forwarding)

Host B

Listening

Port 22

Host A

Listening

Port 27

TCP

Connect

Socket(B,27)

TCP

OpenSSH’s key generation and management is
separate from other key management provided
by IBM.

• ssh-keygen
•creates public/private key pairs

•ssh-agent
•holds private keys in memory, saving you

from retyping your passphrase repeatedly

•ssh-add
•loads private keys into the agent

• ssh-keyscan
•gathers SSH public host keys

Encrypts Userid and
Password in
communication flows
Directly, or

Through Port Forwarding or
"Tunneling"

cert-ring-design.PRZ Page 51

© 2008, 2009 IBM Corporation

Appendix A: Protocol
Comparisons (IPSec, SSL, SSH)

cert-ring-design.PRZ Page 52

© 2008, 2009 IBM Corporation

Comparison: SSL/TLS or AT-TLS, IPSec, & OpenSSH

Public Key
Technology

Security:
Authentication of Partner
Data Integrity Checking
Encryption of Userid, Password, Data

IP Protocol
Protected?

Types of Files?
Number of

"sessions" on
encrypted pipe

SSL/TLS or
AT-TLS with
x.509
Certificates

Yes
Server Authentication with Server
Certificate
Optional Client Authentication with
Client Certificate

Protects TCP MVS datasets
and UNIX files

1 per TCP
connection

IPSec with x.509
Certificates

Yes
Partner Authentication required with
Certificate at both endpoints.

Protects TCP,
UDP, any IP
protocol

MVS datasets
and UNIX files

Multiple per
connection

OpenSSH with
Public and
Private Key Pair
(Assumption:
 SSH V2)

Yes
Server Authentication with Server
Public/Private Key Pair
 Stored in "$HOME/.ssh/known_hosts"
file

Client Authentication
 Client Public Key has been loaded into
Server-Side
"$HOME/.ssh/authorized_keys" file and
"PubkeyAuthentication Yes" is specified
in server configuration file.

Protects TCP UNIX files only** No SSH Tunnel:
1 per TCP
connection

SSH Tunnel:
Multiple per TCP
connection

** Note: OpenSSH works with UNIX file systems only; EOM vendor implementations exist to work
with MVS files. OpenSSH can operate against MVS files if they have been copied or moved into an
HFS or zFS.

cert-ring-design.PRZ Page 53

OpenSSH from IBM z/OS: Program Product: IBM Ported Tools for z/OS
`•` unpriced, runs on z/OS 1.4 and higher
`• order from ShopzSeries, under “MVS: System Mgmt. and Security.”
`• GA Version info: OpenSSH 3.5p1, OpenSSL 0.9.7b, zlib 1.1.4
`• OA10315 version is: OpenSSH 3.8.1p1, OpenSSL 0.9.7d, zlib 1.1.4
Base SSH: Uses Public Key Infrastructure for authentication and encryption,
Authentication (both client and server) through:
– Public key cryptography
– Existing login passwords
– Trusted hosts authentication
• Data Privacy - through encryption
• Data Integrity - guarantees data traveling over the network is unaltered
• Authorization – regulates access control to accounts
• Forwarding (a.k.a. tunneling) – encryption of other TCP/IP-based sessions
BUT key management and distribution for large numbers of users are difficult because there is no concept of a
Certificate Authority. As a result, the keys themselves or the trusted hosts file itself for each server needs to be
distributed to the participants. In addition, the SSH option for eliminating
Only for UNIX files with SFTP; only for UNIX shell with SSH (Tectia extensions allow usage on MVS files); only
uses crypto card for generation of the keys

Base SSL or TLS: Either Unix or MVS files with either TN3270 or FTPS;
also uses Public Keys, but in addition relies on x.509 Certificates for authentication thus simplifying key
management and distribution, especially if you use a well-known Certificate Authority;
can store master key in hardware and can take advantage of crypto cards for handshakes and sometimes data
encryption

© 2008, 2009 IBM Corporation

Public Key
Technology

Private
Key

Repository
Key Management Encryption Protocols

Hashing
Protocols

SSL/TLS or
AT-TLS with
x.509
Certificates

In Keyring
or key
database

Usually low maintenance:
Certificate Authority
Services for x.509 cert.***

Asymmetric: RSA for Server (and
optionally Client) Authentication and
Generation of Session Key
Symmetric: RC2, RC4, DES, 3DES,
AES128, AES256

MD5, SHA-1

IPSec with x.509
Certificates

In Keyring
or key
database

Usually low maintenance:
Certificate Authority
Services for x.509 cert.***

Asymmetric: RSA for peer
authentication; Diffie-Hellman (DH)
for Generation of Session Key
Symmetric: RC2, RC4, DES, 3DES,
AES128, AES256

MD5, SHA-1

OpenSSH with
Public and
Private Key Pair
(Assumption:
SSH V2)

In a trusted
hosts file*

Can be high maintenance:
Distribution of each public
key; verification at
server***

Asymmetric: RSA, DSA for peer
authentication and Generation of
Session Key and Generation of
Digital Signature
Symmetric: DES, 3DES, AES128,
AES192, AES256

MD5, SHA-1,
RIPEMD-160

* Note: The system-wide known hosts file is in /etc/ssh/ssh_known_hosts.

The user-specific file is in $HOME/.ssh/known_hosts.

***Note: With x.509, each client participant needs a copy of only the Certificate Authority's certificate
that signed the server certificate in its keyring or key database in order to authenticate the server.

For example, 20 server certificates may have been signed by the same CA, and yet the client requires
only the 1 trusted CA certificate in order to authenticate the server(s). With OpenSSH each client requires a
copy of the public key for each server in order to authenticate that server. If there are 20 servers, then the
client requires copies of 20 public keys.

Comparison: SSL/TLS or AT-TLS, IPSec, & OpenSSH

cert-ring-design.PRZ Page 54

Diffie-Hellman key exchange (D-H) is a cryptographic protocol that allows two parties that have no prior knowledge of each other to jointly establish a shared secret
key over an insecure communications channel. This key can then be used to encrypt subsequent communications using a symmetric key cipher.

Perform setup for server authentication:
– Generate host keys for server
• allows a client to verify the identity of the server.

• Use ssh-keygen to create host keys:
ssh keygen t dsa f /etc/ssh/ssh_host_dsa_key N ""
ssh keygen t rsa f /etc/ssh/ssh_host_rsa_key N ""

– Create local and remote ssh_known_hosts files
• Contains host public keys for all hosts you know about
 • Copy local host’s public keys to the remote hosts
• Gather public keys of remote hosts

OpenSSH from IBM z/OS: Program Product: IBM Ported Tools for z/OS
`•` unpriced, runs on z/OS 1.4 and higher
`• order from ShopzSeries, under “MVS: System Mgmt. and Security.”
`• GA Version info: OpenSSH 3.5p1, OpenSSL 0.9.7b, zlib 1.1.4
`• OA10315 version is: OpenSSH 3.8.1p1, OpenSSL 0.9.7d, zlib 1.1.4
Base SSH: Uses Public Key Infrastructure for authentication and encryption,
Authentication (both client and server) through:
– Public key cryptography
– Existing login passwords
– Trusted hosts authentication
• Data Privacy - through encryption
• Data Integrity - guarantees data traveling over the network is unaltered
• Authorization – regulates access control to accounts
• Forwarding (a.k.a. tunneling) – encryption of other TCP/IP-based sessions
BUT key management and distribution for large numbers of users are difficult because there is no concept of a Certificate Authority. As a result, the keys themselves
or the trusted hosts file itself for each server needs to be distributed to the participants.
Only for UNIX files with SFTP; only for UNIX shell with SSH (Tectia extensions allow usage on MVS files); only uses crypto card for generation of the keys

Base SSL or TLS: Either Unix or MVS files with either TN3270 or FTPS;
also uses Public Keys, but in addition relies on x.509 Certificates for authentication thus simplifying key management and distribution, especially if you use a
well-known Certificate Authority;
can store master key in hardware and can take advantage of crypto cards for handshakes and sometimes data encryption

© 2008, 2009 IBM Corporation

IPSec vs. AT-TLS

IPSec AT-TLS

Traffic protected with data
authentication and encryption

All protocols TCP

End-to-end protection Yes Yes

Segment protection Yes No

Scope of protection Security association
1)all traffic
2)protocol
3)single connection
4)Certificate Content is protected

TLS session
1)single connection
2)Certificate Content flows in clear

How controlled IPSec policy
1)z/OS responds to IKE peer
2)z/OS initiates to IKE peer
based on outbound packet,
IPSec command, or policy
autoactivation

AT-TLS policy
1)For handshake role of server,
responds to TLS client based on policy
2)For handshake role of client,
initializes TLS based on policy
3)Advanced function applications

Requires application
modifications

No No, unless advanced function needed
1)Obtain client cert/userid
2)Start TLS

Type of security Device to device Application to application

Type of authentication Peer-to-peer 1)Server to client
2)Client to server (opt)

Authentication credentials 1)Preshared keys
2)X.509 certificates

X.509 certificates

Authentication principals Represents host Represents user

Session key generation/refresh "Yes" with IKE
"No" with manual IPSec

TLS handshake

cert-ring-design.PRZ Page 55

There is one more difference between the two protocols.
If the SSL Private key is compromised, then any negotiation
of a new Session Key is compromised
If the IPSec Private key is compromised, then there is a bit
more protection, because the Session Key is independently
negotiated with Diffie-Hellman.

How likely is this? Not very.

© 2008, 2009 IBM Corporation

Appendix B:

Advanced Certificate Concepts

cert-ring-design.PRZ Page 56

© 2008, 2009 IBM Corporation

Common Exploiters of x.509 Certificates

Exploiter
Connecting a Personal User
(Server) Cert to a Keyring

Where to Specify the Keyring
Name

TN3270 Server
 (native SSL/TLS)

Connect Server Certificate as the DEFAULT
on the Keyring.

Telnet Profile (case-sensitive)
"KEYRING SAF ABCRING" (RACF)
"KEYRING SAF ABCRING.KEYRING"
(ACF2)

TN3270 Server
 (AT-TLS)

Connect as the DEFAULT if the AT-TLS Policy
does not exploit the Certificate Label Name
Feature. If the Policy exploits Label Name,
then certificate need not be the DEFAULT.

AT-TLS Policy
(case-sensitive)

FTP Server
 (native SSL/TLS)

Connect Server Certificate as the DEFAULT
on the Keyring.

FTP.DATA file
"KEYRING ABCRING"
(case-sensitive)

FTP Server
 (AT-TLS)

Connect as the DEFAULT if the AT-TLS Policy
does not exploit the Certificate Label Name
Feature. If the Policy exploits Label Name,
then certificate need not be the DEFAULT.

AT-TLS Policy
(case-sensitive)

IP Security (IPSEC)
Dynamic VPN in z/OS
Communications Server
with RSA Signature
Mode

Connect as the DEFAULT if the AT-TLS Policy
does not exploit the Certificate Label Name
Feature. If the Policy exploits Label Name,
then certificate need not be the DEFAULT.

iked.conf file
"KEYRING ABCRING"
(case-sensitive)

HTTP Server
 (native SSL/TLS)

Connect Server Certificate as the DEFAULT
on the Keyring.

httpd.conf file
"KEYRING ABCRING SAF"
(case-sensitive)

WebSphere MQ
 (native SSL/TLS)

NOTE: Label of the certificate must start with
"ibmWebSphereMQ"

Issue MQ Command:
"ALTER QMGR SSLKEYR(ABCRING)"
(case-sensitive)

cert-ring-design.PRZ Page 57

Consult the application Configuration Guide for details on case
sensitivity, parameters, and so on.
If using a SAF repository other than RACF, note that ACF2
appends a suffix of ".KEYRING" to the keyring name.
Therefore, a keyring that you think is called "MYKEYRING"
must be referenced as "MYKEYRING.KEYRING" for an ACF2
repository.

© 2008, 2009 IBM Corporation

Sample Certificate Generation Job for RACF: Shared

//CERTSITE JOB MSGCLASS=X,NOTIFY=&SYSUID

//CERTSITE EXEC PGM=IKJEFT01,DYNAMNBR=30,REGION=4096K

//***

//* Step 2: *

//* CREATE SITE AUTHORITY CERTIFICATE FOR ALL SERVERS (SHARED) *

//***

//SYSTSPRT DD SYSOUT=*

//SYSTSIN DD *

 RACDCERT SITE GENCERT SUBJECTSDN(CN('ITSO.IBM.COM') - 1

 O('IBM CORPORATION') -

 OU('ITSO CS19 SHARED SITE') -

 C('US')) -

 WITHLABEL('CS19 ITSO SHAREDSITE1') - 2

 SIGNWITH(CERTAUTH LABEL('CS19 ITSO CA1') 3

 RACDCERT SITE LIST

/*

a

b

c
d

Creating a SITE Certificate

cert-ring-design.PRZ Page 58

A. Instead of a user ID, the SITE ID is used to indicate that this certificate is to be
used as a site certificate, and is not associated with a specific user. The SITE
parameter is used in this example because the private key of the certificate
being generated is to be shared by multiple servers. It’s not a bad idea (but not
required) to make sure that the common name (CN) is the same as the domain
name of the site.

B. The LABEL name implies that the certificate is a shared site certificate
C.The SIGNWITH parameter indicates that the internally signed CA certificate

that we created previously is used to sign this site certificate. The label of the
CA certificate is specified to identify the CA certificate. This indicates that the
site certificate should be digitally signed with the internal CA’s private key.

D.This command lists the names of all known site certificates in the RACF
Database.

Site certificates are SHARED certificates -- multiple servers can use the same
certificate. A site certificate should be used only when it is not necessary to have
granular control over the SSL/TLS operations of specific servers. For PCI
purposes, it is recommended to use individual PERSONAL (or USER)
certificates: one for each server that is subject to PCI compliance mandates.

© 2008, 2009 IBM Corporation

Sample Keyring Operations for SHARED Site Certificate

//KEYRINGS JOB MSGCLASS=X,NOTIFY=&SYSUID

//KEYRINGS EXEC PGM=IKJEFT01,DYNAMNBR=30,REGION=4096K

//***

//* Step 3: *

//* Add a new keyring to the various clients' RACF ID , then ... *

//* Add the SITE certificate to the servers' keyring.

//***

//SYSTSPRT DD SYSOUT=*

//SYSTSIN DD *

 RACDCERT ID(TCPIP) ADDRING(SHAREDRING1) 1

 RACDCERT ID(TCPIP) CONNECT(CERTAUTH - 2

 LABEL('CS19 ITSO CA1') -

 RING(SHAREDRING1) -

 USAGE(CERTAUTH)

 RACDCERT ID(TCPIP) CONNECT(SITE - 3

 LABEL('CS19 ITSO SHAREDSITE1') -

 RING(SHAREDRING1) -

 DEFAULT -

 USAGE(PERSONAL)

 SETROPTS RACLIST(DIGTRING) REFRESH

 SETROPTS RACLIST(DIGTCERT) REFRESH

 RACDCERT LISTRING(*) ID(TCPIP)

/*

a

b

c

Creating a Keyring for a Shared SITE Certificate

cert-ring-design.PRZ Page 59

A.Create a new RACF shared key ring using the RACDCERT
ADDRING command.

B.Connect the internal CA certificate to the new key ring using
the RACDCERT CONNECT command.

C.Connect the site certificate (which was signed by the internal
CA certificate) to the new key ring using the RACDCERT
CONNECT command. Even though the certificate was created
as a site certificate, the USAGE must be specified as
PERSONAL because the servers use it to authenticate
themselves to the clients. It is this certificate that the servers
send to the client during server authentication.

© 2008, 2009 IBM Corporation

Permitting Servers to the Keyrings

//PERMRING JOB MSGCLASS=X,NOTIFY=&SYSUID

//PERMRING EXEC PGM=IKJEFT01,DYNAMNBR=30,REGION=4096K

//***

//* Step 4: *

//* Permitting access to the keyring *

//* Owners of KEYRING need READ access *

//* FTP and TN3270 PROCS are owned by Userid 'TCPIP' *

//* Other PROCS may have different owners *

//* Non-Owners of KEYRING need UPDATE access *

//***

//SYSTSPRT DD SYSOUT=*

//SYSTSIN DD *

 PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ID(TCPIP) ACCESS(READ)
1

 PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ID(PAGENT) ACCESS(UPDATE)
2

 PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ID(CS01) ACCESS(UPDATE)
3

 PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ID(CS02) ACCESS(UPDATE)

 PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ID(CS03) ACCESS(UPDATE)

 PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ID(CS04) ACCESS(UPDATE)

 PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ID(CS05) ACCESS(UPDATE)

 PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ID(CS06) ACCESS(UPDATE)

 PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ID(CS07) ACCESS(UPDATE)

 PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ID(CS08) ACCESS(UPDATE)

 PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ID(CS09) ACCESS(UPDATE)

 PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ID(CS10) ACCESS(UPDATE)

/*

a

b

c

In z/OS V1R9, you can provide granular control of access to individual keyrings.

Prior to V1R9 any userid permitted to the IRR.DIGTCERT.LISTRING class can access ANY
keyring (i.e., no granular control).

cert-ring-design.PRZ Page 60

A. The JCL shows the RACF PERMIT commands that are necessary to grant key ring
access to the servers sharing the key ring. Because the key ring is associated with the
FTPD and TN3270 user ID, the user ID for the servers needs only READ access.

B. But any other started task IDs (B) or user IDs (C) need UPDATE access because the
key ring belongs to a different user ID.

Prior to V1R9 any userid permitted to the IRR.DIGTCERT.LISTRING class can access
ANY keyring (i.e., no granular control).

In z/OS V1R9, you can provide granular control of access to individual keyrings.
Instead of giving access to all the rings

PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ACCESS(UPDATE)
ID(OTHER)

Just give access to that particular ring with a PERMIT to <ringowner.ringname.LST>:
PERMIT TCPIP.SHAREDRING1.COMMONRING.LST CLASS(RDATALIB)
ACCESS(READ) ID(OTHER)

If you want to share the private key, then
PERMIT TCPIP.SHAREDRING1.COMMONRING.LST CLASS(RDATALIB)
ACCESS(UPDATE) ID(OTHER)

© 2008, 2009 IBM Corporation

Permitting Servers to the Private Key

//PERMKEY JOB MSGCLASS=X,NOTIFY=&SYSUID

//PERMKEY EXEC PGM=IKJEFT01,DYNAMNBR=30,REGION=4096K

//***

//* Step 5: *

//*Permitting access to the private key of shared SITE cert in keyring*

//***

//SYSTSPRT DD SYSOUT=*

//SYSTSIN DD *

 PERMIT IRR.DIGTCERT.GENCERT CLASS(FACILITY) ID(TCPIP) ACCESS(CONTROL)

 PERMIT IRR.DIGTCERT.GENCERT CLASS(FACILITY) ID(PAGENT) ACCESS(CONTROL)

 PERMIT IRR.DIGTCERT.GENCERT CLASS(FACILITY) ID(CS01) ACCESS(CONTROL)

 PERMIT IRR.DIGTCERT.GENCERT CLASS(FACILITY) ID(CS02) ACCESS(CONTROL)

 PERMIT IRR.DIGTCERT.GENCERT CLASS(FACILITY) ID(CS03) ACCESS(CONTROL)

 PERMIT IRR.DIGTCERT.GENCERT CLASS(FACILITY) ID(CS04) ACCESS(CONTROL)

 PERMIT IRR.DIGTCERT.GENCERT CLASS(FACILITY) ID(CS05) ACCESS(CONTROL)

 PERMIT IRR.DIGTCERT.GENCERT CLASS(FACILITY) ID(CS06) ACCESS(CONTROL)

 PERMIT IRR.DIGTCERT.GENCERT CLASS(FACILITY) ID(CS07) ACCESS(CONTROL)

 PERMIT IRR.DIGTCERT.GENCERT CLASS(FACILITY) ID(CS08) ACCESS(CONTROL)

 SETROPTS RACLIST(FACILITY) REFRESH

/*

a

In z/OS V1R9, you can provide granular control of access to individual keyrings.

Prior to V1R9 any userid permitted to the IRR.DIGTCERT.LISTRING class can access ANY
keyring (i.e., no granular control).

cert-ring-design.PRZ Page 61

A.Protect the private key and permit the user IDs of each server to access it.
The private key is represented by the facility named
IRR.DIGTCERT.GENCERT. They all need CONTROL access.

Prior to V1R9 any userid permitted to the IRR.DIGTCERT.LISTRING class can
access ANY keyring (i.e., no granular control).

In z/OS V1R9, you can provide granular control of access to individual keyrings.
Instead of giving access to all the rings
PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ACCESS(UPDATE)
ID(OTHER)
Just give access to that particular ring
PERMIT TCPIP.SHAREDRING1.LST CLASS(RDATALIB) ACCESS(READ)
ID(OTHER)
If you want to share the private key, then
PERMIT TCPIP.SHAREDRING1.COMMONRING.LST CLASS(RDATALIB)
ACCESS(UPDATE) ID(OTHER)

© 2008, 2009 IBM Corporation

References

cert-ring-design.PRZ Page 62

© 2008, 2009 IBM Corporation

RACF Command Samples for TCP/IP on z/OS
SYS1.TCPIP.SEZAINST(EZARACF)

RACF web site:
http://www.ibm.com/servers/eserver/zseries/zos/racf

IBM Redbooks
z/OS V1 R8 RACF Implementation (SG24-7248)
Communications Server for z/OS V1R9 TCP/IP Implementation Volume 4: Security
and Policy-Based Networking (SG24-7535)

Security Server Manuals:
RACF Command Language Reference (SC28-1919)
RACF Security Administrator's Guide (SC28-1915)
RACF Callable Services Guide (SC28-1921)
LDAP Administration and Use (SC24-5923)

PKI Services web site:
http://www.ibm.com/servers/eserver/zseries/zos/pki

PKI Services Red Book:
http://www.redbooks.ibm.com/abstracts/sg246968.html

Cryptographic Services
PKI Services Guide and Reference (SA22-7693)
OCSF Service Provider Developer's Guide and Reference (SC24-5900)
ICSF Administrator's Guide (SA22-7521)
System SSL Programming (SC24-5901)

Web Sites, Manuals, TCP/IP Samples

cert-ring-design.PRZ Page 63

© 2008, 2009 IBM Corporation

End of Topic

cert-ring-design.PRZ Page 64

© 2008, 2009 IBM Corporation

End of Topic

cert-ring-design.PRZ Page 65

