

Page 1 of 39

© Copyright IBM Corp. 2020

 “RACF commands” to administer UNIX security

Author: Bruce R. Wells

 z/OS Security Server RACF

brwells@us.ibm.com

Last updated: 03/31/21

Change Date Change Description

01/24/2020 Introduction of this download

06/30/2020 ORLIST:

• Added RECURSIVE option consistent with the others. Careful!

Can generate LOTS of output! However,

• Added a NODISPLAY option, because

• Added creation of an output file containing command output

• Changed noIrrxutil config variable to doIrrxutil (with default be-

havior unchanged)

ORALTER/OPERMIT:

• Avoid exit status 255 when running script via OSHELL command

All:

• Support output file to data set

• Support an OUTFILE command keyword to dynamically override

the outputFile configuration variable.

• Cosmetic and structural changes to improve internal consistency

between execs where possible

02/02/21 OPERMIT:

• Allow relative permissions (e.g. +x, -w, etc) in the ACCESS key-

word

All:

• Support a new PATH keyword, to apply the command to each

path name component without having to specify them individually

03/31/21 V4

• Handle non-regular file types with the RECURSIVE option

I gratefully acknowledge Bill Schoen of IBM z/OS development for his advice, patience

with my questions and user errors, and even a few code snippets along the way!

This download is dedicated to my long-time colleague, mentor, and friend, John Dayka. Read
more here.

Page 2 of 39

© Copyright IBM Corp. 2020

Table of Contents
Background ... 3

Invoking the execs .. 4

Using the execs – an overview .. 5

Configuration variable reference .. 10

ORLIST .. 12

Purpose .. 12

Details listed .. 12

Authorization required .. 13

Syntax.. 13

Examples ... 15

ORALTER .. 18

Purpose .. 18

Authorization required .. 18

Syntax.. 18

Examples ... 27

OPERMIT .. 29

Purpose .. 29

Authorization required .. 29

Syntax.. 29

Examples ... 34

Disclaimers, etc .. 37

Dedication to John C. Dayka .. 38

Page 3 of 39

© Copyright IBM Corp. 2020

Background
The security data associated with UNIX files and directories is managed by a set
of shell commands. Many clients have expressed a wish to protect these
objects by (path)name as RACF profiles. However, such an approach is in
direct conflict with the architecture of a UNIX file system, in which path names
are convenient ways to reference an object but aren’t necessarily permanent or
unique.

Security administrators generally prefer to use RACF commands. The UNIX
shell, and its suite of commands, are unfamiliar to the RACF administrator and
can be daunting to learn. (Did you know that there are seven different shell
commands to update security attributes? Or that to display these attributes
requires two different commands, and the use of several different options on the
‘ls’ command?) The lack of understanding can lead to mistakes, which can open
vulnerabilities in the protection of UNIX-based data.

This download provides a set of REXX execs that accept a command syntax like
that of RACF TSO commands and use UNIX syscall support in REXX to display
or update the appropriate security attributes for a file or directory.

• ORLIST: Displays UNIX security attributes in a format like the RLIST
command. To provide a deeper understanding of how the object is
actually protected, it also displays mount attributes of the file system data
set in which the object resides, and optionally, the name of RACF profiles
covering that file system where applicable.

• ORALTER: Allows for UNIX security management using a syntax like the
RALTER command.

• OPERMIT: Manages UNIX access control lists (ACLs) using a syntax like
the PERMIT command.

The idea is to pretend that path names are protected by RACF profiles, and to
use ‘RLIST’, ‘RALTER’, and ‘PERMIT’ commands to view and manage them.
Note that there isn’t a ‘ORDEFINE’ or ‘ORDELETE” command as part of this
download. This is because, with UNIX files and directories, security information
is part of the object itself. It would make no sense to create and delete the
actual files and their contents as a security administrator.

Page 4 of 39

© Copyright IBM Corp. 2020

Notes:

• SMF 80 records are only created for UNIX security information changes if
SETROPTS LOGOPTIONS is in effect for the FSSEC class. I recommend
SETROPTS LOGOPTIONS(ALWAYS(FSSEC)) so that both successful and

failed attempts to update UNIX security information are logged. That is, if
you are logging all updates to RACF profiles, you also want to log all UNIX
security changes.

• Further, RACF will not issue an ICH408I message for an authorization
error unless an SMF record is created. There can be more than one
authorization mechanism controlling a given change, and ICH408I is
essential in determining the nature of the authorization failure for such
cases.

The syntax for each command is described below, in the same format that
RACF commands are documented in z/OS Security Server RACF Command
Language Reference.

Invoking the execs

The standard way to invoke a REXX exec on the TSO command line is to
specify the TSO ‘execute’ command, passing it the data set/member name in
one quoted string, followed by the parameters in another quoted string. For
example:

EX ‘HLQ.UNIX.EXECS(ORALTER)’ ‘FSSEC /u/bruce/myFile OWNER(JDAYKA) GROUP(SECADMIN)’

But that is awkward, and burdensome on the user.

These execs will most closely resemble RACF commands by placing them into
a PDS that is part of your SYSEXEC concatenation, so that they can be invoked
the same way you would invoke a TSO command. For example:

ORALTER FSSEC /u/bruce/myFile OWNER(JOHND) GROUP(SECADMIN)

You can, of course, name these execs whatever you want to as you download

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.4.0/com.ibm.zos.v2r4.icha400/abstract.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.4.0/com.ibm.zos.v2r4.icha400/abstract.htm

Page 5 of 39

© Copyright IBM Corp. 2020

into a PDS. One option is to name them the same as the model RACF
command (RLIST, RALTER, and PERMIT). However, TSO will give preference
to a TSO command with the same name as a REXX exec. The RACF TSO
command will then fail with a syntax error, due to the syntax differences.
However, you can prefix the exec with the percent sign (“%”) so that TSO
understands that you want to run the exec instead of the TSO command. For
example:

%RALTER FSSEC /u/bruce/myFile OWNER(JOHND) GROUP(SECADMIN)

To allow the ‘commands’ to look as much like the RACF commands as possible,
we use the FSSEC (File System SECurity) class in positions where the RACF
commands would require a class name. However, the class name is completely
optional in all the commands, so feel free to save keystrokes by omitting it.

Using the execs – an overview
There are many ways in which you might find value in using this download. I
suggest a possible progression:

1. Read this document. If you never even use the execs, the documentation
can serve as a one-stop-shop to learn what the various UNIX file security
attributes are, and what authority is required to view and modify them.
Have you ever wondered what the sticky bit does? What authority is
required to turn on the APF bit? Read the ‘Authorization required’ sections
and the individual keyword descriptions to find out.

2. Try the execs. By default, they won’t update anything. Invoke the execs
with no keywords to see the syntax and some examples. When you
specify keywords, the execs will display the shell commands that would
update security information based on the keywords you specify. They will
also create a REXX shell script in your home directory containing these
commands. The prolog contains the date and time of creation, the name
of the exec, and the keywords you specified. The body contains the shell
command(s) that would perform the requested change(s).

3. Use the execs for real. There are two ways to do this:

a. Edit/Run the shell script that was generated. You don’t even have to
leave the TSO command line! (Read on for details).

b. Once you’ve gained some confidence, edit the exec to take it out of

Page 6 of 39

© Copyright IBM Corp. 2020

‘noRun mode’, and the update(s) will be made immediately.

4. Teach others. You’re an expert now! Spread the word.

Here are more details, before we dive into individual command syntax:

As stated above, ORALTER and OPERMIT create a REXX shell script in your
home directory named exec-name.script, where exec-name is ORALTER,
OPERMIT, of whatever name you’ve chosen to save them as. ORLIST creates
a UNIX file named exec-name.output containing the command output. You can
change the name and location of the file that gets created by changing the
scriptName configuration variable within the exec. You can also use the

OUTFILE keyword to dynamically override the scriptName setting. Both

mechanisms also allow you to specify a pre-allocated sequential data set or
PDS member instead of a UNIX file. However, you cannot execute the script
from a data set, and if you are not in noRun mode, OPERMIT issues a message
indicating this (because OPERMIT, unlike ORALTER, relies on executing the
script to make the changes).

The UNIX file is created such that you, the owner, are the only person with
permission to read, update, or execute it (i.e. the permission bits are rwx --- ---,
or 700 in octal notation). If the script file already exists, it is replaced with each
command issued.

Note that you need not even enter the UNIX shell to edit and execute your shell
script. The z/OS OEDIT and OSHELL commands can be invoked directly from
the TSO command line to edit and run your script.

For example, say that you enter the following command on the TSO command
line:

oralter /u/jdayka/testFile owner(tsousr6) group(sys1) apf noprogram

 nosticky setuid nosetgid audit(failures(rw)) perms(rwx------)

You can then view/edit the contents of the generated script by entering the
following:

OEDIT ORALTER.script

This puts you into an ISPF edit session. When you are finished viewing/editing

Page 7 of 39

© Copyright IBM Corp. 2020

the script, you can leave your edit session and run the script by issuing:

OSHELL ORALTER.script

If you enter the ORALTER command shown, you also see the following on the
display as part of the command output:

This command would result in the following UNIX shell command(s):

chown TSOUSR6 /u/jdayka/testFile

chgrp SYS1 /u/jdayka/testFile

chmod 700 /u/jdayka/testFile

chmod u+s /u/jdayka/testFile

chmod g-s /u/jdayka/testFile

chmod -t /u/jdayka/testFile

extattr +a /u/jdayka/testFile

extattr -p /u/jdayka/testFile

chaudit rw+f /u/jdayka/testFile

If you want ORALTER and OPERMIT to update security information directly,
edit the execs, search for the noRun configuration variable, and change its

value to 0. The script is always generated for your reference.

IMPORTANT:

• When ORALTER directly updates UNIX security information, it uses UNIX
REXX syscall command support (except for SECLABEL changes, which
use the chlabel shell command because no syscall API exists), as
opposed to executing the generated shell commands. Thus, if you truly
want ‘what you see is what you get’, then leave noRun=1 and execute the

ORALTER.script file. Be aware, however, that when ORALTER uses the
syscall support, it issues some reassuring confirmation messages when in
verbose mode that you won’t see when executing shell commands.

• In contrast, OPERMIT executes the generated script. I chose this
approach for OPERMIT because I feel that it leaves a better audit trail
than does the aclset() syscall command.

The shell commands generated were the choice of the author (me!). With shell
commands, there is generally more than one way to skin a cat, and so the
command syntax is not necessarily the only way the command could have been
generated. For example, the permission bits used in the chmod command (in
response to use of the PERMS keyword on ORALTER) are expressed in octal
notation but could have been expressed in symbolic notation. I also made no
attempt to use a “-r” style recursive option in response to the RECURSIVE

Page 8 of 39

© Copyright IBM Corp. 2020

keyword. In fact, some of the commands lack such an option. Rather,
individual shell commands are generated for each object affected. For
OPERMIT, I chose to generate individual setfacl commands for each ID value
specified, and for each acl type specified, rather than attempting to combine
them on a single command.

Do not abbreviate keywords, unless otherwise noted (for example, for the
RECURSIVE keyword). A keyword that allows abbreviation is shown in the
syntax diagram with the minimum allowable abbreviation in uppercase, and the
remainder in lowercase. For example, the recursive keyword is shown as
“RECursive”, meaning “REC”, “RECU”, “RECUR”, “RECURS”, “RECURSI”,
“RECURSIV”, and “RECURSIVE” are all valid ways to specify the keyword.

General fun facts:

• These work from the UNIX shell also! Note that the generated script will
be unix-file-name.script where unix-file-name is whatever you’ve named it,
with case preserved.

• ORALTER and OPERMIT have a RECURSIVE keyword! Be careful using
it. When in ‘run mode’, it can generate a large number of commands, and
a large number of ICH408I violations if you are not authorized for a given
file or keyword. If you specify RECURSIVE with the DEBUG keyword, a
list of the objects affected will be displayed. You can specify RECURSIVE
and DEBUG in the absence of any other keywords in order to see the set
of objects that would be affected. ORLIST also has a RECURSIVE
keyword. Consider also using the NODISPLAY keyword so that the ouput
is written to the output file but not displayed at the terminal.

• By default, ORALTER and OPERMIT run in ‘verbose mode’. In addition to
displaying the generated shell command(s), verbose mode will issue
additional informational messages where appropriate for the path name
you specify. If you crank the verboseVal configuration variable up to 11,

it applies to all objects when RECURSIVE is specified. Beware, this can
result in a lot of messages! If verbose mode gets annoying, edit the
execs, search for the verboseVal configuration variable, and change its

value to 0. You can optionally specify the VERBOSE keyword for
individual commands, at your discretion. This will act as if
verboseVal=1. There is no keyword equivalent of verboseVal=11.

• What if you are not authorized to make a given update? When specifying
RECURSIVE, there is always the possibility that you are authorized to
update some files but not others. I have chosen to implement OPERMIT
and ORALTER such that they continue even when an authorization error
is encountered. With ORALTER, even when not using RECURSIVE,

Page 9 of 39

© Copyright IBM Corp. 2020

specifying multiple keywords can update multiple security attributes, each
of which have different authorization requirements. Again, I have chosen
to continue attempting to process the keywords when an authorization
error has occurred. Consider limiting the keywords specified on each
command instance until you are confident you have all the necessary
authority.

• One of the frustrating ‘features’ of UNIX is that you can have authority to
the target object, but lack authority to reach it due to lack of search
(execute) permission on an intermediate directory higher up in the
specified path name. If this is the case, the execs will tell you the first
such directory to which you lack search permission.

• ORLIST takes a holistic approach when displaying security information.
That is, regardless of what an object’s security attributes are, they may not
accurately reflect the effective access authority. For example, the
permission bits may indicate write access, but the containing file system is
mounted read-only. Or, the permission bits may indicate execute access,
but the file system is covered by an FSACCESS class profile (for a
directory), or an FSEXEC class profile (for a file) which restrict that
access. ORLIST will display attributes of the containing file system.
Optionally, ORLIST will use IRRXUTIL (which calls the R_admin callable
service) to look for a covering FSACCESS or FSEXEC profile name, when
applicable. R_admin requires READ access to IRR.RADMIN.RLIST in the
FACILITY class, and the authority you would need to RLIST the profile. As
such, IRRXUTIL is not called by default, so as not to result in possible
FACILITY class violation messages. If you want this extra information,
change the value of the doIrrxutil configuration variable to 1.

• If you want to run reports on many UNIX file system objects, consider
using the IRRHFSU (Hierarchical File System Unload) download, which
‘unloads’ file system security data much as SMF Unload (IRRADU00) and
Database Unload (IRRDBU00) do for RACF SMF records and the RACF
database, respectively.

And now, on with the show.

ftp://public.dhe.ibm.com/eserver/zseries/zos/racf/irrhfsu/

Page 10 of 39

© Copyright IBM Corp. 2020

Configuration variable reference

These variables can be found towards the top of each script. Search for the
variable name itself, or for “Start of Configuration Variables”.

Variable
name

Description Applies to

noRun 1 = (default) Don’t make changes
0 = Make changes immediately

ORALTER
OPERMIT

verboseVal 0 = Don’t display extra informational messages
1 = (default) Display extra messages for
 specified path
11 = Display extra messages for all objects
 when RECURSIVE is specified

ORALTER
OPERMIT

outputFile outputFile is the name of the file in which the
generated output will be written. By default, it is set
to exec-name.output for ORLIST and exec-
name.script for OPERMIT and ORALTER.

You can change this to any path name you want,
relative or absolute.

You can also specify a pre-allocated, cataloged data
set. It can be a sequential data set or a PDS
member. To specify a data set use the shell
convention for a data set, which is to start it with "//"
and enclose it within single quotes. For example:

 outputFile = "//'HLQ.SEQUENTL.DATASET'"

or
 outputFile = "//'HLQ.PDS(MEMBER)'"

Warning!: When the output is written to a data set, it
cannot be executed as a shell script. OPERMIT will
issue a message if you are not in noRun mode.

This variable can be overridden by specifying the
OUTFILE keyword on any of the commands.

all

doIrrxutil 0 = (default) Don’t invoke IRRXUTIL to ORLIST

Page 11 of 39

© Copyright IBM Corp. 2020

 determine if file system is covered by an
 FSACCESS or FSEXEC profile
1 = Perform extra checking

Page 12 of 39

© Copyright IBM Corp. 2020

ORLIST

Purpose

Use the ORLIST command to display security information of a UNIX file or directory, including
information about the file system data set in which it resides, and applicable RACF profiles
that may cover the data set.

Details listed

• The containing data set’s
o name
o file system type
o mount point directory
o mount mode (read/only, read/write, NOSECURITY, NOSETUID, etc)
o the covering FSACCESS class profile name, if one exists. This is only

displayed for non-root zFS file systems, if the noIrrxutil configuration

variable is set to 0.
o the covering FSEXEC profile name, if one exists. This is only displayed for

executable files (one with any user, group, or other execute bit set ON), if the
noIrrxutil configuration variable is set to 0.

• the file type (directory or regular file)

• owner (the UID is mapped to a user ID where possible)

• group owner (the GID is mapped to a group name where possible)

• the ‘other’ permission bits are displayed as the ‘UNIVERSAL ACCESS’

• your access to the file or directory

• security label

• owner audit options

• auditor audit options

• creation date, last reference date, and last status change date

• For a regular file, the extended attributes, if present: APF, program-controlled,
SHAREAS (_BPX_SHAREAS=YES and _BPX_SHAREAS=REUSE environment vari-
able settings are ignored when the file is spawned), and the ‘loaded from shared li-
brary’

• the value of the sticky, set-user-ID, and set-group-ID bits

• the file permission bits (owner, group, and other)

• the access list, if one exists

• for a directory:
o the file model acl, if one exists
o the directory model acl, if one exists

Page 13 of 39

© Copyright IBM Corp. 2020

Authorization required

To list a file or directory, search access to each directory component up to and including the
parent directory is required. This authority can be granted with either:

• execute (search) access to the directory via permission bits or an acl entry

• READ access to SUPERUSER.FILESYS.DIRSRCH or SUPERUSER.FILESYS in the
UNIXPRIV class

• The RACF AUDITOR or ROAUDIT attribute

If search access is lacking, ORLIST will indicate the first directory component to which the
issuer lacks access.

To display the covering FSACCESS and FSEXEC class profiles, the following authority is
required:

• READ access to IRR.RADMIN.RLIST in the FACILITY class

• RACF command authority to list profiles in these classes (See the RLIST command in
z/OS Security Server RACF Command Language Reference).

Syntax

Note: Simply invoking the exec with no parameters results in the command syntax and
examples being displayed.

ORLIST (or whatever name you have chosen for it)

[FSSEC]

[absolute-path-name]

[AUTH]

[DEBUG]

[NODISplay]

OUTFILE(path-or-dataset-name)

PATH

[RECursive[(CURRENT|FILESYS|ALL)]]

FSSEC

Specifies the FSSEC class. This keyword is optional, and is supported so that ORLIST
syntax can match the RACF RLIST command syntax as closely as possible.

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.4.0/com.ibm.zos.v2r4.ich/ich.htm

Page 14 of 39

© Copyright IBM Corp. 2020

absolute-path-name

Specifies the UNIX absolute path name of the file or directory you want to list. If the
path is a symbolic link, the link is followed, and the target object is listed.

AUTH

Limits the output to only those fields required to determine POSIX access authority to
the file or directory.

• Owner (user and group), universal access, and your access

• Permission bits

• Access ACL

DEBUG

Specifies that various internal information is displayed to help understand and debug
exec processing. This can be particularly useful if you want to see what objects are af-
fected when the RECURSIVE option is used. In fact, you can specify RECURSIVE
and DEBUG without specifying other keywords so that you can see the set of objects
without listing them.

NODISplay

Specifies that no output (other than error messages) is displayed on your terminal.
The output is written to the output file only. This option is particularly useful with the
RECURSIVE option, which can generate a large volume of output.

OUTFILE(path-or-dataset-name)

Specifies a unix path name, or MVS data set name (sequential or PDS member) to
contain the output of the command. This value overrides the setting of the output-

File configuration variable. This keyword can be useful when the execs are invoked

from different jobs running concurrently under the same user ID. See documentation
for the outputFile configuration variable for the syntax of a data set ‘path’ (do not

include the enclosing double-quotes).

PATH

Specifies that the command is to apply to each component of the specified path name.
This provides a convenient way to, for example, get a summary of permissions for
each component of the path name displayed in an ICH408I message for a DIRSRCH
violation, without having to specify each component separately.

Page 15 of 39

© Copyright IBM Corp. 2020

RECursive(ALL|CURRENT|FILESYS)

Applies the changes specified for the other keywords to the specified directory path
name and sub-objects under it. “REC” is the shortest allowable abbreviation for this
keyword. RECURSIVE is not allowed if the specified path name is a file. Symbolic
and external links are excluded.

ALL

 The keywords specified are applied to all sub-objects in the mounted file system

structure.

CURRENT

The keywords specified are applied to all sub-objects in the specified directory
only. This is the default if no sub-operand is specified.

 FILESYS

The keywords specified are applied to all sub-objects within the same zFS file
system data set. That is, mount points are not crossed.

Examples

To display security information about the file at /etc/inetd.conf:

ORLIST /etc/inetd.conf

FILE SYSTEM CONTAINER ATTRIBUTES

NAME = ZOS24.ETC.ZFS TYPE = ZFS

MOUNT POINT = /SYSTEM/etc

Mount mode = READ/WRITE

Covered in FSACCESS class by ZOS24.ETC.*

FILE TYPE

Regular file

OWNER GROUP OWNER UNIVERSAL ACCESS YOUR ACCESS

---------- ----------- ---------------- -----------

IBMUSER SYS1 r-- rw-

Page 16 of 39

© Copyright IBM Corp. 2020

SECLABEL

SYSMULTI

AUDITING

FAILURES(READ),FAILURES(UPDATE),FAILURES(EXECUTE)

GLOBALAUDIT

NONE(READ),NONE(UPDATE),NONE(EXECUTE)

CREATION DATE LAST REFERENCE DATE LAST STATUS CHANGE DATE

------------- ------------------- -----------------------

2019-09-20 2019-10-02 2019-09-20

EXTENDED ATTRIBUTES

SHAREAS

FILE MODE BITS

Sticky bit is: 0

Set-uid bit is: 0

Set-gid bit is: 0

FILE PERMISSIONS

 OWNER GROUP OTHER

 ----- ----- -----

 rw- r-- r-- (644 in octal notation)

ID TYPE ACCESS

-- ---- ------

TSOUSR4 USER R-X

SYS1 GROUP R-X

To limit the above display to show only the access-related fields, use the AUTH keyword:

ORLIST /etc/inetd.conf AUTH

OWNER GROUP OWNER UNIVERSAL ACCESS YOUR ACCESS

---------- ----------- ---------------- -----------

IBMUSER SYS1 r-- rw-

Page 17 of 39

© Copyright IBM Corp. 2020

FILE PERMISSIONS

 OWNER GROUP OTHER

 ----- ----- -----

 rw- r-- r-- (644 in octal notation)

ID TYPE ACCESS

-- ---- ------

TSOUSR4 USER R-X

SYS1 GROUP R-X

Page 18 of 39

© Copyright IBM Corp. 2020

ORALTER

Purpose

Use the ORALTER command to modify security information of a UNIX file or directory.

Authorization required

To modify an object’s attributes, you must first be able to reach it. This requires search
access to each directory component up to and including the parent directory. This authority
can be granted with either:

• execute (search) access to the directory via permission bits or an acl entry

• READ access to SUPERUSER.FILESYS.DIRSRCH or SUPERUSER.FILESYS in the
UNIXPRIV class

• The RACF AUDITOR or ROAUDIT attribute

If search access is lacking, ORALTER will indicate the first directory component to which the
issuer lacks access.

Upon reaching the object, there may be additional authorization requirements depending on
the attribute(s) being changed.

If you are the owner of the object, you can change the object’s permission bits, access control
list, and audit bits. You can also change the group owner to another group to which you are
connected.

If you have a UID value of 0 or READ access to the appropriate UNIXPRIV profile (where
relevant), you are said to have ‘superuser privilege’, and you can change many of the security
attributes for any file or directory. However, there are exceptions.

The individual keyword descriptions document the authority required to change the attribute
when ownership or UID(0) are insufficient. If a specific UNIXPRIV resource grants authority, it
is shown.

Syntax

Page 19 of 39

© Copyright IBM Corp. 2020

Note: Simply invoking the exec with no parameters results in the command syntax and
examples being displayed.

ORALTER (or whatever name you have chosen for it)

[FSSEC]

[absolute-path-name]

[APF | NOAPF]

[AUDIT(access-attempt [(audit-access-level)])]

[DEBUG]

[GLOBALaudit(access-attempt[(audit-access-level)])]

[GROUP(group-name)]

OUTFILE(path-or-dataset-name)

[OWNER(userId)]

PATH

PERMS(perm-string)

[PROGRAM | NOPROGRAM]

[RECursive[(CURRENT|FILESYS|ALL)]]

[SECLABEL(seclabel-name)]

[SETGID | NOSETGID]

[SETUID | NOSETUID]

[STICKY | NOSTICKY]

[VERBOSE]

FSSEC

Specifies the FSSEC class. This keyword is optional, and is supported so that
ORALTER syntax can match the RACF RALTER command syntax as closely as
possible.

absolute-path-name

Specifies the UNIX absolute path name of the file or directory you want to change. If
the path is a symbolic link, the link is followed, and the target object is updated.

APF | NOAPF

Either turn on or off the APF extended attribute, which indicates that the program is
APF authorized or not.

Page 20 of 39

© Copyright IBM Corp. 2020

These keywords require write access to the file being modified (via permission bit or
acl entry – SUPERUSER.FILESYS authority is not sufficient) and READ access to
BPX.FILEATTR.APF in the FACILITY class. If you receive an authorization error, look
on the security console for an ICH408I message that identifies the nature of the
authorization failure.

 APF
Turns on the APF extended attribute. APF is not allowed with RECURSIVE.

NOAPF

 Turns off the APF extended attribute.

AUDIT(access-attempt[(audit-access-level)])

Specifies which access attempts and access levels you want logged to the SMF data
set. This keyword sets the owner (or “user”) audit bits for the file.

Unlike the RACF RALTER command, you can specify only one value for access-at-
tempt(audit-access-level) per ORALTER command. For example, RALTER allows
“AUDIT(SUCCESS(READ) FAILURES(UPDATE))”. However, two ORALTER com-

mands are necessary in this case: one specifying “AUDIT(SUCCESS(R))” and another

specifying “AUDIT(FAILURES(W))”

You must have a UID value of 0 or be the file owner in order to change the owner audit
bits.

access-attempt

Specifies which access attempts you want logged to the SMF data set. The fol-
lowing options are available:

ALL

Specifies that you want to log both authorized accesses and unau-
thorized attempts to access the resource.

FAILURES

Specifies that you want to log unauthorized attempts to access the
resource.

NONE

Specifies that you do not want any logging to be done for accesses
to the resource.

SUCCESS

Page 21 of 39

© Copyright IBM Corp. 2020

Specifies that you want to log authorized accesses to the resource.

audit-access-level

Specifies which access levels you want logged to the SMF data set. The levels
you can specify are:

R

Logs read access-level attempts.

W
Logs write access attempts.

X

Logs execute access attempts.

These values can be specified in any combination and in any order (E.G. “R”,
“RW”, “X”, and “XRW” are all valid.

DEBUG

Specifies that various internal information is displayed to help understand and debug
exec processing. This can be particularly useful if you want to see what objects are af-
fected when the RECURSIVE option is used. In fact, you can specify RECURSIVE
and DEBUG without specifying other keywords so that you can see the set of objects
without making any changes to them.

GLOBALaudit(access-attempt[(audit-access-level)])

Specifies which access attempts and access levels you want logged to the SMF data
set. “GLOBAL” is the shortest allowable abbreviation for this keyword. This keyword
sets the AUDITOR audit bits for the file. The syntax is exactly same as for the AUDIT
keyword, documented above.

You must have the RACF AUDITOR attribute to use this keyword.

GROUP(group-name)

Specifies a RACF-defined group to be assigned as the new group owner of the re-
source you are changing. The group must have an OMVS segment with a GID as-
signed. ORALTER maps the group name to a GID and stores that value as the file’s
new group owner. In verbose mode (and not noRun mode), ORALTER issues a mes-
sage notifying you of the mapped-to GID value.

Changing the group owner (even to its current value) also turns off the set-user-ID bit
and set-group-ID bit of the named file or directory. If SETUID or SETGID is specified
on the same command, the bit(s) are turned back on.

Page 22 of 39

© Copyright IBM Corp. 2020

In the absence of superuser privilege, the file owner can change the group owner to
any group to which the user is connected. Additionally, the file owner can change the
group owner to any value if the user has READ access to CHOWN.UNRESTRICTED
in the UNIXPRIV class.

The UNIXPRIV resource that allows any group change to a file for which you are not
the owner is SUPERUSER.FILESYS.CHOWN.

OUTFILE(path-or-dataset-name)

Specifies a unix path name, or MVS data set name (sequential or PDS member) to
contain the output of the command. This value overrides the setting of the output-

File configuration variable. This keyword can be useful when the execs are invoked

from different jobs running concurrently under the same user ID. See documentation
for the outputFile configuration variable for the syntax of a data set ‘path’ (do not

include the enclosing double-quotes).

OWNER(userId)

Specifies a RACF-defined user to be assigned as the new owner of the resource you
are changing. UserId must have an OMVS segment with a UID assigned. ORALTER
maps the user ID to a UID and stores that value as the file’s new owner. In verbose
mode (and not noRun mode), ORALTER issues a message notifying you of the
mapped-to UID value.

Changing the owner (even to its current value) also turns off the set-user-ID bit and
set-group-ID bit of the named file or directory. If SETUID or SETGID is specified on
the same command, the bit(s) are turned back on.

The UNIXPRIV resource that allows an owner change is
SUPERUSER.FILESYS.CHOWN.

In the absence of superuser privilege, a user can change the owner with access to
CHOWN.UNRESTRICTED in the UNIXPRIV class:

• READ allows you to change the owner to any value other than 0.

• UPDATE allows you to change the owner to any value

PATH

Specifies that the command is to apply to each component of the specified path name.
This provides a convenient way to, for example, grant ‘other’ search (execute) access
all the way down a path name without having to specify each component separately.

PERMS(perm-string)

Page 23 of 39

© Copyright IBM Corp. 2020

Specifies the permission bits (user, group, and other) to be assigned to the resource
you are changing.

The UNIXPRIV resource that allows a permission change is
SUPERUSER.FILESYS.CHANGEPERMS.

Perm-string can be specified in roughly the same formats that are allowed on the
chmod shell command. These formats can be categorized into three different formats
as follows:

Octal format

Permissions are expressed as a three-digit number, where each digit represents the
read, write, and execute bits of each grouping (user, group, and other). A single group-
ing is a base-8 number in which x is represented as 1, w is represented as two, and
read is represented as 4. These individual values are added together to get the result.

For example, a combination of r-x is represented as the number 5, because the ones
position (x) is on, the twos position (w) if off, and the fours position (r) is on. 1 + 0 + 4 =
5.

All three numbers, corresponding to the user, group, and other permissions must be
specified. The file’s existing permissions are replaced with this value.

For example, if you want the file owner to have all permissions, people connected to
the file’s owning group to have read and execute, but not write, and for nobody else to
have any access, specify an octal value of 750.

Note that ORLIST displays permission bits in both octal and full symbolic format. This
can help you get used to recognizing the relationship between the two notations.

Full symbolic

Permissions are expressed as nine characters (uuugggooo), three for each of the cate-
gories (user, group, other), all of which must be specified without imbedded spaces.

Each category consists of permissions in the form of “rwx”, specifying a dash (“-“) when
that permission is not to be granted.

For example, to specify the same permissions as in the octal example above (750),
specify rwxr-x---.

If you only want to change a subset of this information using this notation, then obtain
the current settings (for example, by using ORLIST), and then modify only the positions
you want changed.

Page 24 of 39

© Copyright IBM Corp. 2020

For example, if the permissions are currently rwxr-x--- and you wish to turn on the

other-read bit, specify rwxr-xr--.

Alternatively, you can use the ‘operator’ format to change a subset of bits.

Operator format

Permissions are expressed by a set of categories (u, g, o, a), followed by an operation
(=, +, -), followed by the bits you wish to change (r, w, x).

A category of “a” (all) is a shorthand for specifying “ugo” (which is also supported).

For example, you could accomplish the goal of the previous example (turning on the
other read bit), by specifying just o+r. To remove write access to anybody except the

file owner, specify go-w.

The categories can be specified in any order (e.g. ug, gou, and o are all valid). The
same is true for the permissions bits (rwx, xrw, x, and xr, for example, are all valid).

The chmod command supports/tolerates some redundant forms (uug, rrw), some short-
hand forms (+r), and some useless forms (u+) that will result in an error using ORAL-
TER. Our goal is force precision in order to maximize understanding and reduce mis-
takes.

Note: to manage access control lists, use the OPERMIT command.

PROGRAM | NOPROGRAM

Either turn on or off the program-control extended attribute, which indicates that the
program is defined to RACF program control or not.

These keywords require write access to the file being modified (via permission bit or
acl entry – SUPERUSER.FILESYS authority is not sufficient) and READ access to
BPX.FILEATTR.PROGCTL in the FACILITY class. If you receive an authorization
error, look on the security console for an ICH408I message that identifies the nature of
the authorization failure.

 PROGRAM

Turns on the program-control attribute. PROGRAM is not allowed with
RECURSIVE.

NOPROGRAM

Turns off the program-control attribute.

RECursive(ALL|CURRENT|FILESYS)

Page 25 of 39

© Copyright IBM Corp. 2020

Applies the changes specified for the other keywords to the specified directory path
name and sub-objects under it. “REC” is the shortest allowable abbreviation for this
keyword. RECURSIVE is not allowed if the specified path name is a file. Symbolic
and external links are excluded.

ALL

 The keywords specified are applied to all sub-objects in the mounted file system

structure.

CURRENT

The keywords specified are applied to all sub-objects in the specified directory
only. This is the default if no sub-operand is specified.

 FILESYS

The keywords specified are applied to all sub-objects within the same zFS file
system data set. That is, mount points are not crossed.

SECLABEL(seclabel-name)

Specifies an installation-defined security label for this profile. A security label corre-
sponds to a particular security level (such as CONFIDENTIAL) with a set of zero or
more security categories (such as PAYROLL or PERSONNEL).

Setting the security label is only allowed if the user has RACF SPECIAL authority, and
no security label currently exists on the resource. Once a security label is set, it cannot
be changed.

SETGID | NOSETGID

Either turn on or off the set-group-ID bit.

If this bit is on for an executable file, when a user executes the file, the effective GID
plus the saved GID for the process running the program is changed to the owning GID
of the file. This change temporarily gives the process running the program access to
data the owning group can access.

If the RACF profile named FILE.GROUPOWNER.SETGID exists in the UNIXPRIV
class, then the set-group-ID bit for a directory determines how the group owner is ini-
tialized for new objects created within the directory:
• If the set-group-ID bit is on, then the owning GID is set to that of the directory.
• If the set-group-ID bit is off, then the owning GID is set to the effective GID of the

process.

The UNIXPRIV resource that allows a set-group-ID bit change is
SUPERUSER.FILESYS.CHANGEPERMS.

Page 26 of 39

© Copyright IBM Corp. 2020

 SETGID

Turns on the set-group-ID bit.

NOSETGID

Turns off the set-group-ID bit.

SETUID | NOSETUID

Either turn on or off the set-user-ID bit.

If this bit is on for an executable file, when a user executes the file, the effective UID
plus the saved UID for the process running the program is changed to the owning UID
of the file. This change temporarily gives the process running the program access to
data the owning user can access.

The UNIXPRIV resource that allows a set-user-ID bit change is
SUPERUSER.FILESYS.CHANGEPERMS.

 SETUID

Turns on the set-user-ID bit.

NOSETUID

Turns off the set-user-ID bit.

STICKY | NOSTICKY

Either turn on or off the sticky bit.

For a file, the sticky bit causes a search for the program in the user's STEPLIB, the link
pack area, or link list concatenation. For a directory, the sticky bit allows files in a direc-
tory or subdirectories to be deleted or renamed only by the owner of the file, by the
owner of the directory, or by a superuser.

The UNIXPRIV resource that allows a sticky bit change is
SUPERUSER.FILESYS.CHANGEPERMS.

 STICKY

Turns on the sticky bit.

Page 27 of 39

© Copyright IBM Corp. 2020

NOSTICKY

Turns off the sticky bit.

VERBOSE

Causes extra messages to be issued during exec processing. For example, messages
confirming successful updates of each attribute will be displayed when not in noRun
mode.

You can change the verboseVal variable value to 1 directly in the ORALTER exec so

that you are in ‘verbose mode’ without having to specify the VERBOSE keyword every
time. You can set the variable value to 11 to get the same messages for every object
affected when the RECURSIVE option is specified (this option is not available using
the keyword). Be careful! This can result in a large number of messages.

Examples

To change the file’s owner, use the OWNER keyword:

ORALTER /u/bruce/myfile OWNER(JDAYKA)

To change the file’s group owner, use the GROUP keyword:

ORALTER /u/bruce/myfile GROUP(RACFERS)

To change the file’s owner, and preserve the set-user-ID bit:

ORALTER /u/bruce/myfile OWNER(JDAYKA) SETUID

To replace the file’s permission bits, use the PERMS keyword:

ORALTER /u/bruce/myfile PERMS(rwxr-x---)

Or, using octal notation:

ORALTER /u/bruce/myfile PERMS(750)

To grant the file owner read and write access:

ORALTER /u/bruce/myfile PERMS(u+rw)

To remove write access from all but the file’s owner:

ORALTER /u/bruce/myfile PERMS(og-w)

Page 28 of 39

© Copyright IBM Corp. 2020

To turn on the file’s APF and program-control bits, use the APF and PROGRAM keywords:

ORALTER /u/bruce/myfile APF PROGRAM

To turn off the file’s APF and program-control bits, and other write access, for every file within
a directory, use the RECURSIVE keyword:

ORALTER /u/bruce/myfile NOAPF NOPROGRAM PERMS(o-w) RECURSIVE

To turn on successful write access attempts to the file using the AUDITOR bits, use the
GLOBALAUDIT keyword:

ORALTER /u/bruce/myfile GLOBALAUDIT(SUCCESS(w))

To turn on ‘other’ execute (search) access for every component of a path name::

ORALTER /a/b/c/d/e PERMS(o+x) PATH

Page 29 of 39

© Copyright IBM Corp. 2020

OPERMIT

Purpose

Use the OPERMIT command to manage access control lists (acls) for UNIX files and
directories.

Authorization required

To modify or copy an object’s acl, you must first be able to reach it. This requires search
access to each directory component up to and including the parent directory. This authority
can be granted with either:

• execute (search) access to the directory via permission bits or an acl entry

• READ access to SUPERUSER.FILESYS.DIRSRCH or SUPERUSER.FILESYS in the
UNIXPRIV class

• The RACF AUDITOR or ROAUDIT attribute

If search access is lacking, OPERMIT will indicate the first directory component to which the
issuer lacks access.

Upon reaching the object, one of the following authorities is required in order to create,
modify, or delete an acl:

• File ownership

• READ access to SUPERUSER.FILESYS.CHANGEPERMS in the UNIXPRIV class

• UID 0

Syntax

Note: Simply invoking the exec with no parameters results in the command syntax and
examples being displayed.

OPERMIT (or whatever name you have chosen for it)

[absolute-path-name-1]

Page 30 of 39

© Copyright IBM Corp. 2020

[ACCess(access-authority) | DELETE]

[ACL] [FMODEL] [DMODEL] | [ALL]

[CLASS(FSSEC)]

[DEBUG]

[FROM(absolute-path-name-2)]

[FTYPE(ACL | DMODEL | FMODEL)]

[ID(name ...)]

OUTFILE(path-or-dataset-name)

PATH

[RECursive[(CURRENT|FILESYS|ALL)]]

[RESET]

[VERBOSE]

absolute-path-name-1

Specifies the UNIX absolute path name of the file or directory you want to change. If
the path is a symbolic link, the link is followed, and the target object is updated.

ACCess(access-authority) | DELETE

ACCess(access-authority)

Specifies the access authority you want to associate with the names that you
identify on the ID operand. RACF sets the access authority in the type of access
list(s) specified by the ACL, FMODEL, and DMODEL keywords, or the ALL key-
word. If none of these are specified, ACL is defaulted.

Specify access-authority in one of two formats:

1) Absolute permissions: in the form of “rwx”, specifying a dash (“-“) when that
permission is not to be granted. All three characters must be specified. If you
only want to change a subset of this information, then obtain the current settings
(for example, by using ORLIST), and then modify only the positions you want
changed. Alternatively, use the relative permissions format.

For example, if the permissions are currently r-x, and you wish to turn on the

write bit, specify rwx.

2) Relative permissions: in the form <operator><permissions>, where operator
is “+” or “-“, and permissions can contain any of r, w, and x.

Page 31 of 39

© Copyright IBM Corp. 2020

For example, to turn on execute (search) permission, without knowing the exist-
ing permissions, specify +x. To turn off write access, specify -w.

DELETE

Specifies that you are removing the names you identify on the ID operand from
an access list for the resource. RACF deletes the names from the type of access
list(s) specified by the ACL, FMODEL, and DMODEL keywords, or the ALL key-
word. If none of these are specified, ACL is defaulted.

[ACL] [FMODEL] [DMODEL] | [ALL]

Specifies the type(s) of acl you want to modify. ACL, DMODEL, and FMODEL can be
specified in any combination, or ALL can be specified. That is, you can modify multiple
acl types with a single command. If none of these options are specified, ACL is the de-
fault.

ACL

Specifies the access acl (yes, “access access control list” is redundant. Sorry!).
This is the acl that actually determines access for a file or directory.

ALL

Specifies that the access acl, directory model acl, and file model acl are all to be
modified. When ALL is specified, neither ACL, DMODEL, nor FMODEL can be
specified. ALL can only be specified when absolute-path-name-1 specifies a di-
rectory.

DMODEL

Specifies the directory model acl. This acl is applied as the access acl to new
sub-directories created within the specified directory, and is copied as the direc-
tory model acl to these sub-directories. DMODEL can only be specified when
absolute-path-name-1 specifies a directory.

FMODEL

Specifies the file model acl. This acl is applied as the access acl to new files cre-
ated within the specified directory, and is copied as the file model acl to new
sub-directories created within the specified directory. FMODEL can only be
specified when absolute-path-name-1 specifies a directory.

CLASS(FSSEC)

Page 32 of 39

© Copyright IBM Corp. 2020

Specifies a class name of FSSEC. This keyword and value are optional, and are sup-
ported so that OPERMIT syntax can match the RACF PERMIT command syntax as
closely as possible.

DEBUG

Specifies that various internal information is displayed to help understand and debug
exec processing. This can be particularly useful if you want to see what objects are af-
fected when the RECURSIVE option is used. In fact, you can specify RECURSIVE
and DEBUG without specifying other keywords so that you can see the set of objects
without making any changes to them.

FROM(absolute-path-name-2)

Specifies the path name of the existing file or directory that contains the access list
RACF is to merge into the access list(s) for absolute-path-name-1.

RACF modifies the access list for absolute-path-name-1 as follows (which is how the
PERMIT FROM command works for RACF profiles):
• Authorizations for absolute-path-name-2 are added to the access list for absolute-

path-name-1.
• If a group or user appears in both lists, RACF uses the authorization granted in ab-

solute-path-name-1.
• If you specify a group or user on the ID operand and that group or user also ap-

pears in the absolute-path-name-2 access list, RACF uses the authorization
granted on the ID operand.

To specify FROM, you must have search access to absolute-path-name-2, as
described above under “Authorization required”.

FTYPE(ACL | DMODEL | FMODEL)

Specifies the type of acl from which you wish to model, from absolute-path-name-2
specified in the FROM keyword. FTYPE is ignored if FROM is not also specified.

ACL

Specifies the access acl is to be used as the source. If FTYPE is not specified,
ACL is the default.

DMODEL

Specifies the directory model acl is to be used as the source. DMODEL can
only be specified when absolute-path-name-2, specified on the FROM keyword,
specifies a directory.

FMODEL

Page 33 of 39

© Copyright IBM Corp. 2020

Specifies the file model acl is to be used as the source. FMODEL can only be
specified when absolute-path-name-2, specified on the FROM keyword, speci-
fies a directory.

ID(name ...)

Specifies the user IDs and group names of RACF-defined users or groups whose au-
thority to access the resource you are granting, removing, or changing. If you omit this
operand, OPERMIT ignores the ACCESS and DELETE operands.

A user value of name must have an OMVS segment with a UID assigned. A group
value of name must have an OMVS segment with a GID assigned. OPERMIT maps a
user ID to a UID and a group name to a GID and stores that value in the acl entry.
When DEBUG is specified, OPERMIT displays the mapped-to ID value(s).

OUTFILE(path-or-dataset-name)

Specifies a unix path name, or MVS data set name (sequential or PDS member) to
contain the output of the command. This value overrides the setting of the output-

File configuration variable. This keyword can be useful when the execs are invoked

from different jobs running concurrently under the same user ID. See documentation
for the outputFile configuration variable for the syntax of a data set ‘path’ (do not

include the enclosing double-quotes).

PATH

Specifies that the command is to apply to each component of the specified path name.
This provides a convenient way to, for example, grant search (execute) access all the
way down a path name without having to specify each component separately.

RECursive(ALL|CURRENT|FILESYS)

Applies the changes specified for the other keywords to the specified directory path
name and sub-objects under it. “REC” is the shortest allowable abbreviation for this
keyword. RECURSIVE is not allowed if the specified path name is a file. Symbolic
and external links are excluded.

ALL

 The keywords specified are applied to all sub-objects in the mounted file system

structure.

CURRENT

The keywords specified are applied to all sub-objects in the specified directory

Page 34 of 39

© Copyright IBM Corp. 2020

only. This is the default if no sub-operand is specified.

 FILESYS

The keywords specified are applied to all sub-objects within the same zFS file
system data set. That is, mount points are not crossed.

RESET

Specifies that RACF is to delete the entire access list(s) from the object at the specified
path name.

OPERMIT deletes the access list before it processes any operands (ID and ACCESS
or FROM) that create new entries in an access list.

VERBOSE

Causes extra messages to be issued during exec processing

You can change the verboseVal variable value to 1 directly in the ORALTER exec so

that you are in ‘verbose mode’ without having to specify the VERBOSE keyword every
time. You can set the variable value to 11 to get the same messages for every object
affected when the RECURSIVE option is specified (this option is not available using
the keyword). Be careful! This can result in a large number of messages.

Examples

To permit the user ELLIE and the group SECADMNS to a file with only read permission, use
the ID, ACCESS, and ACL keywords to modify the access acl:

OPERMIT /u/emily/myfile ID(ELLIE SECADMNS) ACCESS(r--) ACL

Since ACL is the default, it may be omitted:

OPERMIT /u/emily/myfile ID(ELLIE SECADMNS) ACCESS(r--)

To remove the acl associated with a file, use the RESET keyword:

OPERMIT /u/emily/myfile RESET

To permit the user ELLIE and the group SECADMNS to a file with only read permission, and
ensure that these are the only access list entries in effect:

OPERMIT /u/emily/myfile RESET ID(ELLIE SECADMNS) ACCESS(r--)

To merge the acl from one object into the acl of another object, use the FROM keyword:

Page 35 of 39

© Copyright IBM Corp. 2020

OPERMIT /u/emily/myfile FROM(/u/cameron)

To merge the directory model acl from one object into the file model acl of another object, use
the FTYPE keyword:

OPERMIT /u/emily/myfile FMODEL FROM(/u/cameron) FTYPE(DMODEL)

To completely replace the acl of one object with the acl from another object:

OPERMIT /u/emily/myfile RESET FROM(/u/cameron)

To completely replace the acl of one object with the acl from another object, while adding a
new acl entry:

OPERMIT /u/emily/myfile RESET FROM(/u/cameron) ID(PATRICK) ACCESS(r-x)

To change a directory’s access acl and apply the same change to sub-objects within the same
directory, use the RECURSIVE keyword with the CURRENT sub-operand:

OPERMIT /u/emily ID(ELLIE SECADMNS) ACCESS(r--) RECURSIVE(CURRENT)

Since CURRENT is the default, it may be omitted:

OPERMIT /u/emily ID(ELLIE SECADMNS) ACCESS(r--) RECURSIVE

To make the same change apply to all sub-objects within the same file system data set, use
the FILESYS sub-operand:

OPERMIT /u/emily ID(ELLIE SECADMNS) ACCESS(r--) RECURSIVE(FILESYS)

To make the same change apply to all sub-objects within the entire mounted file system hier-
archy, use the ALL sub-operand:

OPERMIT /u/emily ID(ELLIE SECADMNS) ACCESS(r--) RECURSIVE(ALL)

To change a directory’s file model acl, use the FMODEL keyword:

OPERMIT /u/emily/myfile ID(ELLIE SECADMNS) ACCESS(r--) FMODEL

To change a directory’s directory model acl, use the DMODEL keyword:

OPERMIT /u/emily/myfile ID(ELLIE SECADMNS) ACCESS(r--) DMODEL

To change a directory’s access acl, directory model acl, and file model acl at the same time:

OPERMIT /u/emily/myfile ID(ELLIE SECADMNS) ACCESS(r--) ALL

Page 36 of 39

© Copyright IBM Corp. 2020

To apply a file model acl change to the file model acl of the specified directory and subdirecto-
ries within the specified directory:

OPERMIT /u/emily ID(ELLIE SECADMNS) ACCESS(r--) FMODEL RECURSIVE

To replace a directory’s file model acl with that of another and apply it to sub-directories with
the same file system data set:

OPERMIT /u/emily RESET FMODEL FROM(/u/cameron) RECURSIVE(FILESYS)

To update a directory’s access acl and synchronize it with its file and directory model acls and
all sub-objects, use two (or more) commands. First, get the directory’s acl as you want it.
Then, copy it to itself (and its model acls if you are using them), use the RESET keyword to
clear any existing acl entries, and use the RECURSIVE keyword to apply the new acl to sub-
objects in the same file system data set:

OPERMIT /u/emily ID(RICHARD VIRGINIA) ACCESS(rwx)

OPERMIT /u/emily FROM(/u/emily) RESET ALL RECURSIVE(FILESYS)

This is a good use case for ‘named acls’. That is, create a file somewhere whose only pur-
pose is to contain an acl, for the purpose of applying that acl elsewhere in the file system.
You could establish a directory to contain such named acls. The idea is to maintain the
model over time, and as changes are made, re-apply that acl where desired. For example:

OPERMIT /etc/acls/ProjectX ID(GROUP1 GROUP2 …) ACCESS(rw-)

OPERMIT /etc/acls/ProjectX ID(GROUPA GROUPB …) ACCESS(r--)

OPERMIT /bin/ProjectX/source FROM(/etc/acls/ProjectX)

 ALL RECURSIVE(FILESYS)

Page 37 of 39

© Copyright IBM Corp. 2020

Disclaimers, etc

This program contains code made available by IBM® Corporation on an AS IS basis. Any one receiv-

ing this program is considered to be licensed under IBM copyrights to use the IBM-provided source

code in any way he or she deems fit, including copying it, compiling it, modifying it, and redistributing

it, with or without modifications, except that it may be neither sold nor incorporated within a product

that is sold. No license under any IBM patents or patent applications is to be implied from this copy-

right license.

The software is provided "as-is", and IBM disclaims all warranties, express or implied, including but

not limited to implied warranties of merchantability or fitness for a particular purpose. IBM shall not

be liable for any direct, indirect, incidental, special or consequential damages arising out of this agree-

ment or the use or operation of the software.

A user of this program should understand that IBM cannot provide technical support for the program

and will not be responsible for any consequences of use of the program.

Page 38 of 39

© Copyright IBM Corp. 2020

Dedication to John C. Dayka

This download is dedicated in loving memory to my big brother in mainframe security,

John Dayka, on the first anniversary of his passing.

For my first three years at IBM, fresh out of college, I had been working in VM

development in Kingston, NY. That mission was then being moved to Endicott, NY, and

we had the option of moving with it, or joining a different group. There was a job fair.

John was there representing RACF/VM. I was interested because my final VM project

was security-related. The senior people on that project had worked with the RACF

people. John was spoken of highly by them, and I was flattered that he took the time to

recruit newbies like myself.

John explained that RACF/VM was a unique and interesting product. As a modified

port of the RACF/MVS product, it embodied general security concepts, implemented by

a combination of VM and MVS programming models. John’s enthusiasm convinced me

to join the team, and I’ve been involved in security, and RACF in particular, ever since.

John was the technical team leader. It became quickly apparent that he was the

undisputed, indispensable expert. He was always the smartest person in the room.

Despite his pressures and workload, he took the time to educate me, and others, on the

nuances of the product. John taught me a whole bunch of MVS concepts, some of

which I finally started to understand within the last two years, I think.

At some point, I got promoted, and was horrified to discover that I was at the same level

as John. To IBM’s credit, they quickly rectified that situation. Over the ensuing 29

years, as John advanced through the ranks, he pulled me along in his wake.

On his journey, he would often invite me to participate in career development

opportunities such as technical discussions with senior level experts, client meetings,

business travel, and a couple of patents, none of which it had even occurred to me to ask

for. For all those years, I had the additional pleasure of working in close physical

proximity to John; across multiple sites and buildings, separated only by thin walls,

some of which lacked ceilings and doors. This afforded me the luxury of profiting from

his wit, wisdom, creativity, and tact, even when I was not invited.

When I refer to John as a big brother, I didn’t mean the kind of big brother who would

chase you down and give you wedgies, but the big brother who would protect you from

exactly that, metaphorically speaking. When John was in the room, the pressure was

off. If you had the seed of a good idea, John encouraged you to put yourself out there

and show the world. If the audience wasn’t receiving it well, John was there to absorb

Page 39 of 39

© Copyright IBM Corp. 2020

the slings and arrows. “Now hold on a minute …”. John would jump to your defense,

and the respect he commanded would compel people to step back and reconsider their

position. He had a natural affinity to deflect any criticism into a productive discussion

of what outcome the audience would like to see. I could only sit in awe, not taking any

offense at all, but rather admiring John’s ability to take control of a situation and hoping

I could someday do that myself with half as much grace. While I would like to think

that I had a unique relationship with John in this way, I know that there are many others

who feel the same way as I do.

One of our last collaborations was brain-storming with clients to find ways of addressing

separation-of-duties issues regarding UNIX security management on the platform. It

was instructional, and inspirational, to watch John try to solve problems in a creative

manner, even if done outside the traditional development process. This download is a

direct result of those discussions, and of John’s relentless, infectious energy, enthusiasm,

and encouragement.

I wish John were around so I could show him this download. I like to image it going

something like this:

I pop into his office to demonstrate an early prototype. He drops whatever he’s doing

and gives me his full attention. John says: “Bruce, that’s fanTAStic!”, whether it was or

not. We proceed to discuss various aspects of UNIX security, and John casually

mentions Client Pain Point X. As we continue our discussion, his phone rings, as it

inevitably would. “We’ll put a bookmark here”, he says.

I wander back to my office and tinker around some more while eavesdropping on his

conversation through our shared wall. After some amount of time, I bring it back to him

and show how I’ve addressed Client Pain Point X. John says: “Bruce, youda man!

That’s brilliant!”, as if it was my idea. His encouragement makes me want to improve it

even more.

I hope that John would be pleased with this download, and I hope that you find some

value in it as well.

	Background
	Invoking the execs
	Using the execs – an overview
	Configuration variable reference
	ORLIST
	Purpose
	Details listed
	Authorization required
	Syntax
	Examples

	ORALTER
	Purpose
	Authorization required
	Syntax
	Examples

	OPERMIT
	Purpose
	Authorization required
	Syntax
	Examples

	Disclaimers, etc
	Dedication to John C. Dayka

