
z/OS

UNIX System Services Planning: APAR
OW54653 and OW54824

���

z/OS

UNIX System Services Planning: APAR
OW54653 and OW54824

���

ii APAR OW54653 and OW54824

Contents

About this document . v

Chapter 1. Shared HFS in a Sysplex. 1
What Does Shared HFS Mean? 1
How the End User Views the HFS 2
Summary of New HFS Data Sets 2
Comparing File Systems in Single System Pre-OS/390 UNIX V2R9 and OS/390

UNIX V2R9 or Later Environments 3
File Systems in Single System Pre-OS/390 UNIX V2R9 Environments 4
File Systems in Single System OS/390 UNIX V2R9 or Later Environments . . 5

File Systems in OS/390 UNIX V2R9 or Later Sysplex Environments 6
Procedures for Establishing Shared HFS in a Sysplex 7

Creating the Sysplex Root HFS Data Set. 7
Creating the System-Specific HFS Data Sets 8
Mounting the Version HFS . 8
Creating an OMVS Couple Data Set (CDS) 10
Customizing BPXPRMxx for Shared HFS 13

Sysplex Scenarios Showing Shared HFS Capability 15
Scenario 1: First System in the Sysplex 15
Scenario 2: Multiple Systems in the Sysplex – Using the Same Release Level 18
Scenario 3: Multiple Systems in a Sysplex Using Different Release Levels 21

Keeping Automount Policies Consistent on All Systems in the Sysplex 23
Moving File Systems in a Sysplex 24
Shared HFS Implications During System Failures and Recovery. 25

Movement of data . 26
Shared HFS Implications during a Planned Shutdown of z/OS UNIX 27
File System Initialization . 28
Locking Files . 29
Preparing File Systems for Shutdown 29
Mounting File Systems Using NFS Client Mounts 29
Tuning z/OS UNIX Performance in a Sysplex. 30
DFS Considerations . 30

Chapter 2. Managing Operations 33
Stopping Processes . 33

Terminating a Process with the MODIFY Command 33
Terminating a Process with the kill Command 33
Terminating a Process with the CANCEL Command 34

Terminating Threads with the MODIFY Command 34
Shutting Down z/OS UNIX. 35

Planned Shutdowns . 36
Partial Shutdowns (for JES2 Maintenance). 37
File System Shutdown . 38

Dynamically Changing the BPXPRMxx Parameter Values 38
Dynamically Changing Certain BPXPRMxx Parameter Values. 39
Dynamically Switching to Different BPXPRMxx Members 40
Dynamically Adding FILESYSTYPE Statements in BPXPRMxx 40

Tracing Events in z/OS UNIX 43
Tracing DFSMS/MVS Events. 43
Re-creating Problems for IBM Service 43

Displaying the Status of the Kernel 44
Displaying the Status of BPXPRMxx Parmlib Limits 45

Taking a Dump of the Kernel and User Processes 46

© Copyright IBM Corp. 1996, 2004 iii

||
||
||

||

Displaying the Kernel Address Space 46
Displaying Process Information 47
Displaying Global Resource Information. 47
Allocating a Sufficiently Large Dump Data Set 47
Taking the Dump . 48
Reviewing Dump Completion Information 48

Recovering from a Failure . 48
System Services Failure . 49
File System Type Failure . 49
File System Failure . 49
Recovery of DCE Components 49

Managing Interprocess Communication (IPC). 50

Chapter 3. MODIFY Command 51
Controlling UNIX System Services (z/OS UNIX) 51

Appendix A. Accessibility . 57
Using assistive technologies . 57
Keyboard navigation of the user interface 57

Appendix B. Notices . 59
Trademarks . 60

iv APAR OW54653 and OW54824

About this document

This document supports APARs OW54824 and OW54653 for UNIX System
Services (z/OS UNIX), which are available for z/OS Version 1 Release 2.This
document is available only on the z/OS UNIX System Services Web site at:
http://www.ibm.com/servers/eserver/zseries/zos/unix/ow54824.html

© Copyright IBM Corp. 1996, 2004 v

vi APAR OW54653 and OW54824

Chapter 1. Shared HFS in a Sysplex

This chapter describes shared HFS capability available as of OS/390 UNIX V2R9
for those who participate in a multi-system sysplex. It assumes that you already
have a sysplex up. It will define what shared HFS is, introduce you to HFS data
sets that exist in a sysplex, and help you establish that environment. The topics in
this chapter reflect the tasks you must do.

Task Topic

Creating the Sysplex Root HFS Data Set 7

Creating the System-Specific HFS Data Sets 8

Mounting the Version HFS 8

Creating an OMVS Couple Data Set (CDS) 10

Updating COUPLExx to Define the OMVS CDS to XCF 13

Customizing BPXPRMxx for Shared HFS 13

Keeping Automount Policies Consistent on All Systems in the
Sysplex

23

Tuning z/OS UNIX Performance in a Sysplex 30

Although IBM recommends that you exploit shared HFS support, you are not
required to. If you choose not to, you will continue to share HFS data sets as you
have before OS/390 UNIX V2R9. To see how your file system structure differs in
OS/390 UNIX V2R9 from V2R8, see “Comparing File Systems in Single System
Pre-OS/390 UNIX V2R9 and OS/390 UNIX V2R9 or Later Environments” on page 3.

z/OS Parallel Sysplex Test Report describes how IBM’s integration test team
implemented shared HFS.

What Does Shared HFS Mean?
Sysplex users can access data throughout the file hierarchy.

The best way to describe the benefit of this function is by comparing what was the
file system sharing capability prior to OS/390 UNIX V2R9 with the capability that
exists now. Consider a sysplex that consists of two systems, SY1 and SY2:

v Users logged onto SY1 can write to the directories on SY1. For users on SY1 to
make a change to file systems mounted on SY2’s /u directory, they would have
to log onto SY2.

v The system programmer who makes configuration changes for the sysplex needs
to change the entries in the /etc file systems for SY1 and SY2. To make the
changes for both systems, the system programmer must log onto each system.

With shared HFS, all file systems that are mounted by a system participating in
shared HFS are available to all participating systems. In other words, once a file
system is mounted by a participating system, that file system is accessible by any
other participating system. It is not possible to mount a file system so that it is
restricted to just one of those systems. Consider a OS/390 UNIX V2R9 sysplex that
consists of two systems, SY1 and SY2:

v A user logged onto any system can make changes to file systems mounted on
/u, and those changes are visible to all systems.

© Copyright IBM Corp. 1996, 2004 1

v The system programmer who manages maintenance for the sysplex can change
entries in both /etc file systems from either system.

In this chapter, the term participating group is used to identify those systems that
belong to the same SYSBPX XCF sysplex group and have followed the required
installation and migration activities to participate in shared HFS. To be in the
participating group, the system level must be at OS/390 UNIX V2R9 or later.
Systems earlier than OS/390 UNIX V2R9 can coexist in the sysplex with systems
using shared HFS support, but the earlier systems will only be able to share file
systems mounted on other systems in read-only mode, and not in read/write mode.

With shared HFS, there is greater availability of data in case of system outage.
There is also greater flexibility for data placement and the ability for a single
BPXPRMxx member to define all the file systems in the sysplex.

How the End User Views the HFS
This chapter describes the kinds of file systems and data sets that support the
shared HFS capability in the sysplex. Figure 1 shows that, to the end users, the
logical view of the HFS does not change for OS/390 UNIX V2R9. From their point
of view, accessing files and directories in the system is just the same. That is true
for all end users, whether they are in a sysplex or not.

This logical view applies to the end user only. However, system programmers need
to know that the illustration of directories found in Figure 1 does not reflect the
physical view of file systems. Starting in OS/390 UNIX V2R9, some of the
directories are actually symbolic links, as is described in the following information.

Summary of New HFS Data Sets
This chapter introduces HFS data sets and terms needed to use shared HFS.
Table 1 on page 3 summarizes the HFS data sets that are needed in a sysplex that
has shared HFS. As you study the illustrations of file system configurations in this
chapter, you can refer back to this table.

SYSTEM dev tmp var etcusrbinu lib opt samples

lpp

booksrv tcpip
. . .

Figure 1. Logical View of Shared HFS for the End User

2 APAR OW54653 and OW54824

Table 1. HFS Data Sets That Exist in a Sysplex

Name Characteristics Purpose How Created

Sysplex root It contains directories
and symbolic links that
allow redirection of
directories. Only one
sysplex root HFS is
allowed for all systems
participating in shared
HFS.

The sysplex root is used
by the system to
redirect addressing to
other directories. It is
very small and is
mounted read/write. See
for a more complete
description of the
sysplex root HFS.

The user runs the
BPXISYSR job.

System specific It contains data
specific to each
system, including the
/dev, /tmp, /var, and
/etc directories for one
system. There is one
system-specific HFS
data set for each
system participating in
the shared HFS
capability.

The system-specific
HFS data set is used by
the system to mount
system-specific data. It
contains the necessary
mount points for
system-specific data
and the symbolic links
to access sysplex-wide
data, and should be
mounted read/write. See
“Creating the
System-Specific HFS
Data Sets” on page 8
for a complete
description of the
system-specific HFS.

The user runs the
BPXISYSS job on each
participating system.

Version

In a sysplex,
version HFS is
the new name
for the root
HFS.

It contains system
code and binaries,
including the /bin,
/usr, /lib, /opt, and
/samples directories.
IBM delivers only one
version root; you
might define more as
you add new system
levels and new
maintenance levels.

The version HFS has
the same purpose as
the root HFS in the
non-sysplex world. It
should be mounted
read-only. See
“Mounting the Version
HFS” on page 8 for a
complete description of
the version HFS.

IBM supplies this HFS
in the ServerPac.
CBPDO users create
the HFS by following
steps defined in the
Program Directory.

Comparing File Systems in Single System Pre-OS/390 UNIX V2R9 and
OS/390 UNIX V2R9 or Later Environments

The illustrations in this section show you how the file system structures that existed
before OS/390 UNIX V2R9 compare with the structures in OS/390 UNIX V2R9 and
later. IBM’s recommendations for several releases prior to OS/390 UNIX V2R9 has
been that you separate the system setup parameters from the file system
parameters so that each system in the sysplex has two BPXPRMxx members: a
system limits member and a file system member. In the shared HFS environment,
that separation of system limit parameters from file system parameters is even
more important. In the shared HFS environment, each system will continue to have
a system limits BPXPMRxx member. As you will see in sections that follow, with
shared HFS, you might have a file system BPXPRMxx member for each
participating system or you might replace those individual file system BPXPRMxx
members with a single file system BPXPRMxx member for all participating systems.

Chapter 1. Shared HFS in a Sysplex 3

File Systems in Single System Pre-OS/390 UNIX V2R9 Environments
The following example shows what BPXPRMxx file system parameters would look
like in a single system environment (before OS/390 UNIX V2R9) with no regard to
sysplex.

Note: The root can be mounted either read-only or read/write.

Figure 3 shows the recommended setup of the root HFS in a single system
environment.

The directories in the root HFS represent “first-level” directories created by IBM.
The /etc, /dev, /var, /tmp, and /u directories are used as mount points for other
HFS data sets.

BPXPRMxx

FILESYSTYPE
TYPE(HFS)
ENTRYPOINT(GFUAINIT)
PARM(’ ’)

ROOT
FILESYSTEM(’OMVS.ROOT.HFS’)
TYPE(HFS) MODE(RDWR)

MOUNT
FILESYSTEM(’OMVS.ETC.HFS’)
TYPE(HFS) MODE(RDWR)
MOUNTPOINT(’/etc’)
.
.
.

Figure 2. BPXPRMxx for Single System before OS/390 UNIX V2R9 or Later Environments

Figure 3. Single System before OS/390 UNIX V2R9

4 APAR OW54653 and OW54824

File Systems in Single System OS/390 UNIX V2R9 or Later
Environments

Figure 4 shows what BPXPRMxx file system parameters would look like in an
OS/390 UNIX V2R9 (or later) single system environment, and Figure 5 on page 6
shows the corresponding single system image. SYSPLEX(NO) is specified (or the
default taken), and the mount mode is read/write.

Note: The root can be mounted either read-only or read/write.

BPXPRMxx

FILESYSTYPE
TYPE(HFS)
ENTRYPOINT(GFUAINIT)
PARM(’ ’)

SYSPLEX(NO)

ROOT
FILESYSTEM(’OMVS.ROOT.HFS’)
TYPE(HFS) MODE(RDWR)

MOUNT
FILESYSTEM(’OMVS.DEV.HFS’)
TYPE(HFS) MODE(RDWR)
MOUNTPOINT(’/dev’)

MOUNT
FILESYSTEM(’OMVS.TMP.HFS’)
TYPE(HFS) MODE(RDWR)
MOUNTPOINT(’/tmp’)

MOUNT
FILESYSTEM(’OMVS.VAR.HFS’)
TYPE(HFS) MODE(RDWR)
MOUNTPOINT(’/var’)

MOUNT
FILESYSTEM(’OMVS.ETC.HFS’)
TYPE(HFS) MODE(RDWR)
MOUNTPOINT(’/etc’)

Figure 4. BPXPRMxx Parmlib Member for Single System: OS/390 UNIX V2R9

Chapter 1. Shared HFS in a Sysplex 5

The presence of symbolic links is transparent to the user. In the illustrations
used throughout this chapter, symbolic links are indicated with an arrow.

In Figure 5, the root file system contains an additional directory, /SYSTEM; existing
directories, /etc, /dev, /tmp and /var are converted into symbolic links. These
changes, however, are transparent to the user who brings up a single system
environment.

Note that if the content of the symbolic link begins with $SYSNAME and SYSPLEX
is specified NO, then $SYSNAME is replaced with /SYSTEM when the symbolic link
is resolved.

File Systems in OS/390 UNIX V2R9 or Later Sysplex Environments
This section describes file systems in sysplex environments (OS/390 UNIX V2R9 or
later) and what you need to do to take advantage of shared HFS support, such as
creating specific HFS data sets (also see Table 1 on page 3) and the OMVS Couple
Data Set, updating COUPLExx, and customizing BPXPRMxx.

You must not assume that with shared HFS, two systems can share a common
HFS data set for /etc, /tmp, /var, and /dev. This is not the case. Even with shared
HFS, each system must have specific HFS data sets for each of these file systems.
The file systems are then mounted under the system-specific HFS (see Figure 15
on page 20). With shared HFS support, one system can access system-specific file
systems on another system. (Note that the existing security model remains the
same.) For example, while logged onto SY2, you can gain read/write access to
SY1’s /tmp by specifying /SY1/tmp/.

You should also be aware that when SYSPLEX(YES) is specified, each
FILESYSTYPE in use within the participating group must be defined for all systems
participating in shared HFS. The easiest way to accomplish this is to create a single

Figure 5. Single System: OS/390 UNIX V2R9

6 APAR OW54653 and OW54824

BPXPRMxx member that contains file system information for each system
participating in shared HFS. If you decide to define a BPXPRMxx member for each
system, the FILESYSTYPE statements must be identical on each system. To see
the differences between having one BPXPRMxx member for all participating
systems and having one member for each participating system, see the two
examples in “Scenario 2: Multiple Systems in the Sysplex – Using the Same
Release Level” on page 18.

In addition, facilities required for a particular file system must be initiated on all
systems in the participating group. For example, NFS requires TCP/IP; if you
specify a filesystype of NFS, you must also initialize TCP/IP when you initialize
NFS, even if there is no network connection.

Procedures for Establishing Shared HFS in a Sysplex

Creating the Sysplex Root HFS Data Set
The sysplex root is an HFS data set that is used as the sysplex-wide root. This
HFS data set must be mounted read/write and designated AUTOMOVE (see
“Customizing BPXPRMxx for Shared HFS” on page 13 for a description of the
AUTOMOVE BPXPRMxx parameter). Only one sysplex root is allowed for all
systems participating in shared HFS. The sysplex root is created by invoking the
BPXISYSR sample job in SYS1.SAMPLIB. After the job runs, the sysplex root file
system structure would look like Figure 6:

No files or code reside in the sysplex root data set. It consists of directories and
symbolic links only, and it is a small data set.

The sysplex root provides access to all directories. Each system in a sysplex can
access directories through the symbolic links that are provided. Essentially, the

Figure 6. Sysplex Root

Chapter 1. Shared HFS in a Sysplex 7

sysplex root provides redirection to the appropriate directories, and it should be kept
very stable; updates and changes to the sysplex root should be made as infrequent
as possible.

Creating the System-Specific HFS Data Sets
Directories in the system-specific HFS data set are used as mount points,
specifically for /etc, /var, /tmp, and /dev. To create the system-specific HFS, run
the BPXISYSS sample job in SYS1.SAMPLIB on each participating system (in other
words, you must run the sample job separately for each system that will participate
in shared HFS). After you invoke the job, the system-specific file system structure
would look like Figure 7:

The system-specific HFS data set should be mounted read/write, and should be
designated NOAUTOMOVE (see “Customizing BPXPRMxx for Shared HFS” on
page 13 for a description of the NOAUTOMOVE BPXPRMxx parameter). /etc, /var,
/tmp, and /dev should also be mounted NOAUTOMOVE. I

n addition, IBM recommends that the name of the system-specific data set contain
the system name as one of the qualifiers. This allows you to use the &SYSNAME
symbolic (defined in IEASYMxx) in BPXPRMxx. “Shared HFS Implications during a
Planned Shutdown of z/OS UNIX” on page 27.

Mounting the Version HFS
The version HFS is the IBM-supplied root HFS data set. To avoid confusion with the
sysplex root HFS data set, “root HFS” has been renamed to “version HFS”.

Figure 8 on page 9 shows a version HFS.

Figure 7. System HFS

8 APAR OW54653 and OW54824

|
|
|
|

IBM recommends that you mount the version HFS read-only in a sysplex
environment, and that you designate it AUTOMOVE. The mount point for the
version HFS is dynamically created if the VERSION statement is used in
BPXPRMxx.

Note: IBM does not recommend using &SYSNAME as one of the qualifiers for the
version HFS data set name. In “Sysplex Scenarios Showing Shared HFS
Capability” on page 15, REL9 and REL9A are used as qualifiers, which
correspond to the system release levels. However, you do not necessarily
have to use the same qualifiers. Other appropriate names are the name of
the target zone, &SYSR1, or another qualifier meaningful to the system
programmer.

IBM supplies the version HFS in ServerPac. CBPDO users obtain the version HFS
by following directions in the Program Directory. There is one version HFS for each
set of systems participating in shared HFS and who are at the same release level
(that is, using the same SYSRES volume). In other words, each version HFS
denotes a different level of the system or a different service level. For example, if
you have 20 systems participating in shared HFS and 10 of those systems are at
OS/390 UNIX V2R9 and the the other 10 are at z/OS UNIX V1R1, then you’ll have
one version HFS for the OS/390 V2R9 systems and one for the z/OS UNIX V1R1
systems. In essence, you will have as many version HFSs for the participating
systems as you have different levels running.

Before you mount your version HFS read-only, you may have some
element-specific actions. These are described in “Mounting the Root HFS in
Read-Only Mode” in the Managing the Hierarchical File System chapter.

Figure 8. Version HFS

Chapter 1. Shared HFS in a Sysplex 9

Creating an OMVS Couple Data Set (CDS)
The couple data set (CDS) contains the sysplex-wide mount table and information
about all participating systems, and all mounted file systems in the sysplex. To
allocate and format a CDS, customize and invoke the BPXISCDS sample job in
SYS1.SAMPLIB. The job will create two CDSs: one is the primary and the other is
a backup that is referred to as the alternate. In BPXISCDS, you also specify the
number of mount records that are supported by the CDS.

Use of the CDS functions in the following manner:

1. The first system that enters the sysplex with SYSPLEX(YES) initializes an
OMVS CDS. The CDS controls shared HFS mounts and will eventually contain
information about all systems participating in shared HFS.

This system processes its BPXPRMxx parmlib member, including all its ROOT
and MOUNT statement information. It is also the designated owner of the byte
range lock manager for the participating group. The MOUNT and ROOT
information are logged in the CDS so that other systems that eventually join the
participating group can read data about systems that are already using shared
HFS.

2. Subsequent systems joining the participating group will read what is already
logged in the CDS and will perform all mounts. Any new BPXPRMxx mounts are
processed and logged into the CDS. Systems already in the participating group
will then process the new mounts added to the CDS.

Figure 9 on page 11 shows the sample JCL with comments. The statements in bold
contain the values you specify based on your environment.

10 APAR OW54653 and OW54824

//*
//STEP10 EXEC PGM=IXCL1DSU
//STEPLIB DD DSN=SYS1.MIGLIB,DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

/* Begin definition for OMVS couple data set(1) */
DEFINEDS SYSPLEX(PLEX1) /* Name of the sysplex in

which the OMVS couple data
set is to be used. */

DSN(SYS1.OMVS.CDS01) VOLSER(3390x1)
/* The name and

volume for the OMVS
couple data set. The
utility will allocate a
new data set by the name
specified on the volume
specified. */

MAXSYSTEMS(8)
/* Specifies the number

of systems to be supported
by the OMVS CDS.
Default = 8 */

NOCATALOG /* Default is not to CATALOG */
DATA TYPE(BPXMCDS) /* The type of data in the

data set being created is
for OMVS. BPXMCDS is the
TYPE for OMVS. */

ITEM NAME(MOUNTS) NUMBER(500)
/* Specifies the number of

MOUNTS that can be supported
by OMVS.
Default = 100
Minimum = 1
Maximum = 50000 */

ITEM NAME(AMTRULES) NUMBER(50)
/* Specifies the number

of automount rules that can
be supported by OMVS.
Default = 50
Minimum = 50
Maximum = 1000 */

Figure 9. BPXISCDS: Sample z/OS JCL for Formatting a Couple Data Set (Part 1 of 2)

Chapter 1. Shared HFS in a Sysplex 11

Note: Automount mounts must be included in the MOUNTS value. The number of
automount mounts is the expected number of concurrently mounted file
systems using the automount facility. For example, you may have specified
1000 file systems to be automounted, but if you expect only 50 to be used
concurrently, you should factor these 50 into your MOUNTS value.

For more information about setting up a sysplex on MVS and descriptions of XCF
and CDS, see z/OS MVS Setting Up a Sysplex.

The NUMBER(nnnn) specified for mounts and automount rules (a generic or
specific entry in an automount map file) is directly linked to function performance
and the size of the CDS. If maximum values are specified, the size of the CDS will
increase accordingly and the performance level for reading and updating it will
decline.

Conversely, if the NUMBER values are too small, the function (for example, the
number of mounts supported) would fail after the limit is reached. However, a new
CDS can be formatted and switched in with larger values specified in NUMBER. To
make the switch, issue the SETXCF COUPLE,PSWITCH command. For more
information on this command, see “Considerations for all Couple Data Sets” in z/OS

/* Begin definition for OMVS couple data set(2) */
DEFINEDS SYSPLEX(PLEX1) /* Name of the sysplex in

which the OMVS couple data
set is to be used. */

DSN(SYS1.OMVS.CDS02) VOLSER(3390x2) /* The name and
volume for the OMVS
couple data set. The
utility will allocate a
new data set by the name
specified on the volume
specified. */

MAXSYSTEMS(8)
/* Specifies the number

of systems to be supported
by the OMVS CDS.
Default = 8 */

NOCATALOG /* Default is not to CATALOG */
DATA TYPE(BPXMCDS) /* The type of data in the

data set being created is
for OMVS. BPXMCDS is the
TYPE for OMVS. */

ITEM NAME(MOUNTS) NUMBER(500)
/* Specifies the number of

MOUNTS that can be supported
by OMVS.
Default = 100
Minimum = 10
Maximum = 50000 */

ITEM NAME(AMTRULES) NUMBER(50)
/* Specifies the number

of automount rules that can
be supported by OMVS.
Default = 50
Minimum = 50
Maximum = 1000 */

Figure 9. BPXISCDS: Sample z/OS JCL for Formatting a Couple Data Set (Part 2 of 2)

12 APAR OW54653 and OW54824

MVS Setting Up a Sysplex. The number of file systems required (factoring in an
additional number to account for extra mounts), determines your minimum and
maximum NUMBER value.

After the CDS is created, it must be identified to XCF for use by z/OS UNIX.

Updating COUPLExx to Define the OMVS CDS to XCF
Update the active COUPLExx parmlib member to define a primary and alternate
OMVS CDS to XCF. The primary and alternate CDSs should be placed on separate
volumes. (Figure 9 on page 11 shows the primary CDS on volume 3390x1 and the
secondary CDS on 3390x2.)

Figure 10 shows the COUPLExx parmlib member; statements that define the CDS
are in bold.

The MVS operator commands (DISPLAY XCF, SETXCF, DUMP, CONFIG, and
VARY) enable the operator to manage the z/OS UNIX CDS. For a complete
description of these commands, see z/OS MVS System Commands.

Customizing BPXPRMxx for Shared HFS
HFS sharing enables you to use one BPXPRMxx member to define all the file
systems in the sysplex. This means that each participating system has its own
BPXPRMxx member to define system limits, but shares a common BPXPRMxx
member to define the file systems for the sysplex. This is done through the use of
system symbolics. Figure 13 on page 18 shows an example of this unified member.
You can also have multiple BPXPRMxx members defining the file systems for
individual systems in the sysplex. An example of this is Figure 14 on page 19.

The following parameters set up HFS sharing in a sysplex:

v SYSPLEX(YES) sets up HFS sharing for those who are in the SYSBPX XCF
group, the group that is participating in HFS data sharing. To participate in HFS
data sharing, the systems must be at the OS/390 V2R9 level or later. Those
system that specify SYSPLEX(YES) make up the participating group for the
sysplex.

If SYSPLEX(YES) is specified in the BPXPRMxx member, but the system is
initialized in XCF-local mode, either by specifying COUPLE SYSPLEX(LOCAL) in
the COUPLExx member or by specifying PLEXCFG=XCFLOCAL in the

/* For all systems in any combination, up to an eightway */
COUPLE INTERVAL(60) /* 1 minute */

OPNOTIFY(60) /* 1 minute */
SYSPLEX(PLEX1) /* SYSPLEX NAME*/
PCOUPLE(SYS1.PCOUPLE,CPLPKP) /* COUPLE DS */
ACOUPLE(SYS1.ACOUPLE,CPLPKA) /* ALTERNATE DS*/
MAXMSG(750)
RETRY(10)

DATA TYPE(CFRM)
PCOUPLE(SYS1.PFUNCT.CTTEST,FDSPKP)
ACOUPLE(SYS1.AFUNCT.CTTEST,FDSPKA)

DATA TYPE(BPXMCDS)
PCOUPLE(SYS1.OMVS.CDS01,3390x1)
ACOUPLE(SYS1.OMVS.CDS02,3390x2)

/* CTC DEFINITIONS: ALL SYSTEMS */
PATHOUT DEVICE(8E0)
PATHIN DEVICE(CEF)

Figure 10. COUPLExx Parmlib Member

Chapter 1. Shared HFS in a Sysplex 13

|
|
|

IEASYSxx member, then the kernel will ignore the SYSPLEX(YES) value and
initialize with SYSPLEX(NO). This system will not participate in shared HFS
support after the initialization completes.

v VERSION('nnnn') allows multiple releases and service levels of the binaries to
coexist and participate in HFS sharing. nnnn is a qualifier to represent a level of
the version HFS. The most appropriate values for nnnn are the name of the
target zone, &SYSR1, or another qualifier meaningful to the system programmer.
A directory with the value nnnn specified on VERSION will be dynamically
created at system initialization under the sysplex root and will be used as a
mount point for the version HFS.

There is one version HFS for every instance of the VERSION parameter. More
information about version HFS appears in “Mounting the Version HFS” on page 8.

v The SYSNAME(sysname) parameter on ROOT and MOUNT statements specifies
the particular system on which a mount should be performed. sysname is a 1–8
alphanumeric name of the system. This system will then become the owner of
the file system mounted. The owning system must be IPLed with
SYSPLEX(YES). IBM recommends that you specify SYSNAME(&SYSNAME.) or
omit the SYSNAME parameter. In this case, the system that processes the
mount request mounts the file system and becomes its owner.

The SYSNAME parameter is also used with SETOMVS when moving file
systems, as demonstrated in “Moving File Systems in a Sysplex” on page 24

v The AUTOMOVE|NOAUTOMOVE parameters on ROOT and MOUNT indicate
what happens to the file system if the system that owns that file system goes
down. AUTOMOVE specifies that ownership of the file system automatically
moves to another system. NOAUTOMOVE specifies that the file system will not
be moved if the owning system goes down and the file system is inaccessible.
AUTOMOVE is the default.

You should define your version and sysplex root HFS data sets as AUTOMOVE,
and define your system-specific HFS data sets as NOAUTOMOVE. Do not define
a file system as NOAUTOMOVE and a file system underneath it as AUTOMOVE;
in this case, the file system defined as AUTOMOVE will not be recovered after a
system failure until that failing system is restarted.

Note: To ensure that the root is always available, use the default: AUTOMOVE.

For file systems that are mostly used by DFS clients, consider specifying
NOAUTOMOVE on the MOUNT statement. Then the file systems will not change
ownership if the system is suddenly recycled, and they will be available for
automatic re-export by DFS. Specifying NOAUTOMOVE is recommended
because a file system can only be exported by the DFS server at the system that
owns the file system. Once a file system has been exported by DFS, it cannot be
moved until it has been unexported from DFS. When recovering from system
outages, you need to weigh sysplex availability against availability to the DFS
clients. When an owning system recycles and a DFS-exported file system has
been taken over by one of the other systems, DFS cannot automatically re-export
that file system. The file system will have to be moved from its current owner
back to the original DFS system, the one that has just been recycled, and then
exported again.

If file systems are mounted read-only on all systems, the owner is the first system,
with connectivity to the DASD, that processes the mount. If that system is taken
down and other systems have the file system mounted read-only with connectivity
to the DASD, the ownership will change to one of those systems, no matter what
the value of the AUTOMOVE statement is.

14 APAR OW54653 and OW54824

|
|
|

For more information about VERSION, SYSPLEX, SYSNAME and
AUTOMOVE|NOAUTOMOVE, see z/OS MVS Initialization and Tuning Reference.

Sysplex Scenarios Showing Shared HFS Capability

Scenario 1: First System in the Sysplex
Figure 11 and Figure 12 on page 17 shows a z/OS UNIX file system configuration
for shared HFS. Here, SYSPLEX(YES) and a value on VERSION are specified, and
a directory is dynamically created on which the version HFS data set is mounted.
This type of configuration requires a sysplex root and system-specific HFS.

�1� This is the sysplex root HFS data set, and was created by running the
BPXISYSR job. AUTOMOVE is the default and therefore is not specified,
allowing another system to take ownership of this file system when the owning
system goes down.

�2� This is the system-specific HFS data set, and was created by running the
BPXISYSS job. It must be mounted read/write. NOAUTOMOVE is specified

BPXPRMxx for (SY1)

FILESYSTYPE
TYPE(HFS)
ENTRYPOINT(GFUAINIT)
PARM(’ ’)

VERSION(’REL9’)
SYSPLEX(YES)

ROOT
FILESYSTEM (’OMVS.SYSPLEX.ROOT’) �1�
TYPE(HFS) MODE(RDWR)

MOUNT
FILESYSTEM(’OMVS.&SYSNAME..SYSTEM.HFS’) �2�
TYPE(HFS) MODE(RDWR) NOAUTOMOVE
MOUNTPOINT(’/&SYSNAME.’)

MOUNT
FILESYSTEM(’OMVS.ROOT.HFS’) �3�
TYPE(HFS) MODE(READ)
MOUNTPOINT(’/$VERSION’)

MOUNT
FILESYSTEM(’OMVS.&SYSNAME..DEV’) �4�
TYPE(HFS) MODE(RDWR) NOAUTOMOVE
MOUNTPOINT(’/&SYSNAME./dev’)

MOUNT
FILESYSTEM(’OMVS.&SYSNAME..TMP’) �5�
TYPE(HFS) MODE(RDWR) NOAUTOMOVE
MOUNTPOINT(’/&SYSNAME./tmp’)
.
.
.

Figure 11. BPXPRMxx Parmlib Setup — HFS Sharing

Chapter 1. Shared HFS in a Sysplex 15

because this file system is system-specific and ownership of the file system
should not move to another system should the owning system go down. The
MOUNTPOINT statement /&SYSNAME. will resolve to /SY1 during parmlib
processing. This mount point is created dynamically at system initialization.

�3� This is the old root HFS (version HFS). IBM recommends that it be mounted
read-only. Its mount point is created dynamically and the name of the HFS is the
value specified on the VERSION statement in the BPXPRMxx member.
AUTOMOVE is the default and therefore is not specified, allowing another
system to take ownership of this file system when the owning system goes
down.

�4� This HFS contains the system-specific /dev information. NOAUTOMOVE is
specified because this file system is system-specific; ownership should not move
to another system should the owning system go down. The MOUNTPOINT
statement /&SYSNAME./dev will resolve to /SY1/dev during parmlib processing.

�5� This HFS contains system-specific /tmp information. NOAUTOMOVE is
specified because this file system is system-specific; ownership should not move
to another system should the owning system go down. The MOUNTPOINT
statement /&SYSNAME./tmp will resolve to /SY1/tmp during parmlib
processing.

16 APAR OW54653 and OW54824

If the content of the symbolic link begins with $VERSION or $SYSNAME, the
symbolic link will resolve in the following manner:

v If you have specified SYSPLEX(YES) and the symbolic link for /dev has the
contents $SYSNAME/dev, the symbolic link resolves to /SY1/dev on system SY1
and /SY2/dev on system SY2.

v If you have specified SYSPLEX(YES) and the content of the symbolic link begins
with $VERSION, $VERSION resolves to the value nnnn specified on the
VERSION parameter. Thus, if VERSION in parmlib is set to REL9, then
$VERSION resolves to /REL9. For example, a symbolic link for /bin, which has
the contents $VERSION/bin, resolves to /REL9/bin on a system whose
$VERSION value is set to REL9.

In the above scenario, if ls –l /bin/ is issued, the user expects to see the contents
of /bin. However, because /bin is a symbolic link pointing to $VERSION/bin, the
symbolic link must be resolved first. $VERSION resolves to /REL9 which makes the
pathname /REL9/bin. The contents of /REL9/bin will now be displayed.

Figure 12. HFS Sharing in a Sysplex

Chapter 1. Shared HFS in a Sysplex 17

Scenario 2: Multiple Systems in the Sysplex – Using the Same Release
Level

Figure 15 on page 20 shows another SYSPLEX(YES) configuration. In this
configuration, however, two or more systems are sharing the same version HFS
(the same release level of code). Figure 13 shows a sample BPXPRMxx for the
entire sysplex (what IBM recommends) using &SYSNAME. as a symbolic name,
and Figure 14 on page 19 shows a configuration where each system in the sysplex
has its own BPXPRMxx. For our example, SY1 has its own BPXPRMxx and SY2
has its own BPXPRMxx.

One BPXPRMxx Member to Define File Systems for the Entire Sysplex

FILESYSTYPE
TYPE(HFS)
ENTRYPOINT(GFUAINIT)
PARM(’ ’)

VERSION(’REL9’)
SYSPLEX(YES)

ROOT
FILESYSTEM (’OMVS.SYSPLEX.ROOT’)
TYPE(HFS) MODE(RDWR)

MOUNT
FILESYSTEM(’OMVS.&SYSNAME..SYSTEM.HFS’)
TYPE(HFS) MODE(RDWR) NOAUTOMOVE
MOUNTPOINT(’/&SYSNAME.’)

MOUNT
FILESYSTEM(’OMVS.ROOT.HFS’)
TYPE(HFS) MODE(READ)
MOUNTPOINT(’/$VERSION’)

MOUNT
FILESYSTEM(’OMVS.&SYSNAME..DEV’)
TYPE(HFS) MODE(RDWR) NOAUTOMOVE
MOUNTPOINT(’/&SYSNAME./dev’)

MOUNT
FILESYSTEM(’OMVS.&SYSNAME..TMP’)
TYPE(HFS) MODE(RDWR) NOAUTOMOVE
MOUNTPOINT(’/&SYSNAME./tmp’)
.
.
.

Figure 13. Sharing HFS Data Sets: One Version HFS and One BPXPRMxx for Entire Sysplex

18 APAR OW54653 and OW54824

BPXPRMS1 (for SY1) BPXPRMS2 (for SY2)

FILESYSTYPE FILESYSTYPE
TYPE(HFS) TYPE(HFS)
ENTRYPOINT(GFUAINIT) ENTRYPOINT(GFUAINIT)
PARM(’ ’) PARM(’ ’)

VERSION(’REL9’) VERSION(’REL9’)
SYSPLEX(YES) SYSPLEX(YES)

ROOT ROOT
FILESYSTEM(’OMVS.SYSPLEX.ROOT’) FILESYSTEM(’OMVS.SYSPLEX.ROOT’)
TYPE(HFS) MODE(RDWR) TYPE(HFS) MODE(RDWR)

MOUNT MOUNT
FILESYSTEM(’OMVS.SY1.SYSTEM.HFS’) FILESYSTEM(’OMVS.SY2.SYSTEM.HFS’)
TYPE(HFS) MODE(RDWR) NOAUTOMOVE TYPE(HFS) MODE(RDWR) NOAUTOMOVE
MOUNTPOINT(’/SY1’) MOUNTPOINT(’/SY2’)

MOUNT FILESYSTEM(’OMVS.ROOT.HFS’) MOUNT FILESYSTEM(’OMVS.ROOT.HFS’)
TYPE(HFS) MODE(READ) TYPE(HFS) MODE(READ)
MOUNTPOINT(’/$VERSION’) MOUNTPOINT(’/$VERSION’)

MOUNT FILESYSTEM(’OMVS.SY1.DEV’) MOUNT FILESYSTEM(’OMVS.SY2.DEV’)
TYPE(HFS) MODE(RDWR) NOAUTOMOVE TYPE(HFS) MODE(RDWR) NOAUTOMOVE
MOUNTPOINT(’/SY1/dev’) MOUNTPOINT(’/SY2/dev’)

MOUNT FILESYSTEM(’OMVS.SY1.TMP’) MOUNT FILESYSTEM(’OMVS.SY2.TMP’)
TYPE(HFS) MODE(RDWR) NOAUTOMOVE TYPE(HFS) MODE(RDWR) NOAUTOMOVE
MOUNTPOINT(’/SY1/tmp’) MOUNTPOINT(’/SY2/tmp’)
.
.
.

Figure 14. Sharing HFS Data Sets: One Version HFS and Separate BPXPRMxx Members for
Each System in the Sysplex

Chapter 1. Shared HFS in a Sysplex 19

In this scenario, where multiple systems in the sysplex are using the same version
HFS, if ls –l /bin/ is issued from either system, the user expects to see the contents

Figure 15. Sharing HFS Data Sets in a Sysplex for Release 9– Multiple Systems in a Sysplex Using the Same
Release Level

20 APAR OW54653 and OW54824

of /bin. However, because /bin is a symbolic link pointing to $VERSION/bin, the
symbolic link must be resolved first. $VERSION resolves to /REL9 which makes the
pathname /REL9/bin. The contents of this directory will be displayed.

Scenario 3: Multiple Systems in a Sysplex Using Different Release
Levels

If your participating group is in a sysplex that runs multiple levels of z/OS and/or
OS/390, your configuration might look like the one in Figure 17 on page 22. In that
configuration, each system is running a different level of z/OS and, therefore, has
different version HFS data sets; SY1 has the version HFS named
OMVS.SYSR9A.ROOT.HFS and SY2 has the version HFS named
OMVS.SYSR9.ROOT.HFS. Figure 16 shows two BPXPRMxx parmlib members that
define the file systems in this configuration. Figure 18 on page 23 shows a single
BPXPRMxx parmlib member that can be used to define this same configuration; it
uses &SYSR1. as the symbolic name for the two version HFS data sets.

BPXPRMxx (for SY1) BPXPRMxx (for SY2)

FILESYSTYPE FILESYSTYPE
TYPE(HFS) TYPE(HFS)
ENTRYPOINT(GFUAINIT) ENTRYPOINT(GFUAINIT)
PARM(’ ’) PARM(’ ’)

VERSION(’REL9A’) VERSION(’REL9’)
SYSPLEX(YES) SYSPLEX(YES)

ROOT ROOT
FILESYSTEM(’OMVS.SYSPLEX.ROOT’) FILESYSTEM(’OMVS.SYSPLEX.ROOT’)
TYPE(HFS) MODE(RDWR) TYPE(HFS) MODE(RDWR)

MOUNT MOUNT
FILESYSTEM(’OMVS.&SYSNAME..SYSTEM.HFS’) FILESYSTEM(’OMVS.&SYSNAME..SYSTEM.HFS’)
TYPE(HFS) MODE(RDWR) NOAUTOMOVE TYPE(HFS) MODE(RDWR) NOAUTOMOVE
MOUNTPOINT(’/&SYSNAME.’) MOUNTPOINT(’/&SYSNAME.’)

MOUNT MOUNT
FILESYSTEM(’OMVS.SYSR9A.ROOT.HFS’) FILESYSTEM(’OMVS.SYSR9.ROOT.HFS’)
TYPE(HFS) MODE(READ) TYPE(HFS) MODE(READ)
MOUNTPOINT(’/$VERSION’) MOUNTPOINT(’/$VERSION’)

MOUNT MOUNT
FILESYSTEM(’OMVS.&SYSNAME..DEV’) FILESYSTEM(’OMVS.&SYSNAME..DEV’)
TYPE(HFS) MODE(RDWR) NOAUTOMOVE TYPE(HFS) MODE(RDWR) NOAUTOMOVE
MOUNTPOINT(’/&SYSNAME./dev’) MOUNTPOINT(’/&SYSNAME./dev’)

MOUNT MOUNT
FILESYSTEM(’OMVS.&SYSNAME..TMP’) FILESYSTEM(’OMVS.&SYSNAME..TMP’)
TYPE(HFS) MODE(RDWR) NOAUTOMOVE TYPE(HFS) MODE(RDWR) NOAUTOMOVE
MOUNTPOINT(’/&SYSNAME./tmp’) MOUNTPOINT(’/&SYSNAME./tmp’)
.
.
.

Figure 16. BPXPRMxx Parmlib Setup for Multiple Systems Sharing HFS Data Sets and Using Different Release Levels

Chapter 1. Shared HFS in a Sysplex 21

In this scenario, for example, if ls –l /bin/ is issued on SY1, the user expects to see
the contents of /bin. However, because /bin is a symbolic link pointing to
$VERSION/bin, the symbolic link must be resolved first. $VERSION resolves to

Figure 17. Sharing HFS Data Sets between Multiple Systems Using Different Release Levels

22 APAR OW54653 and OW54824

/SYSR9A on SY1, which makes the pathname /SYSR9A/bin. The contents of this
directory will now display. If ls –l /bin/ is issued on SY2, the contents of
/SYSR9/bin will display.

From SY2 you can display information on SY1 by fully qualifying the directory. For
example, to view SY1’s /bin directory, you issue ls –l /SY1/bin/.

In order to use one BPXPRMxx parmlib file system member, we have used another
system symbolic like &SYSR1. This system symbolic is used in the VERSION
parameter and also as a qualifier in the version HFS data set name.

Keeping Automount Policies Consistent on All Systems in the Sysplex
IBM recommends that you keep the automount policies consistent across all the
participating systems in the sysplex.

One BPXPRMxx Member to Define File Systems for the Entire Sysplex
Using Different Releases

FILESYSTYPE
TYPE(HFS)
ENTRYPOINT(GFUAINIT)
PARM(’ ’)

VERSION(’&SYSR1.’)
SYSPLEX(YES)

ROOT
FILESYSTEM (’OMVS.SYSPLEX.ROOT’)
TYPE(HFS) MODE(RDWR)

MOUNT
FILESYSTEM(’OMVS.&SYSNAME..SYSTEM.HFS’)
TYPE(HFS) MODE(RDWR) NOAUTOMOVE
MOUNTPOINT(’/&SYSNAME.’)

MOUNT
FILESYSTEM(’OMVS.&SYSR1..ROOT.HFS’)
TYPE(HFS) MODE(READ)
MOUNTPOINT(’/$VERSION’)

MOUNT
FILESYSTEM(’OMVS.&SYSNAME..DEV’)
TYPE(HFS) MODE(RDWR) NOAUTOMOVE
MOUNTPOINT(’/&SYSNAME./dev’)

MOUNT
FILESYSTEM(’OMVS.&SYSNAME..TMP’)
TYPE(HFS) MODE(RDWR) NOAUTOMOVE
MOUNTPOINT(’/&SYSNAME./tmp’)
.
.
.

Figure 18. One BPXPRMxx Parmlib Member for Multiple Systems Sharing HFS Data Sets
and Using Different Release Levels

Chapter 1. Shared HFS in a Sysplex 23

Before OS/390 UNIX V2R9, your automount policy most likely resided in the
/etc/auto.master and /etc/u.map files. For those using shared HFS, each
participating system has a separate /etc file system. In order for automount policy
to be consistent across participating systems, the same copy of the automount
policy must exist in every system’s /etc/auto.master and /etc/u.map files.

For example both SY1 and SY2 have the following files:

v /etc/auto.master
/u /etc/u.map

v /etc/u.map
name *
type HFS
filesystem OMVS.<uc_name>.HFS
mode rdwr
duration 60
delay 60

When the automount daemon initializes on SY1, it will read its local
/etc/auto.master file to identify what directories to manage; in this case, it is /u.
Next, the automount daemon will use the policy specified in the local /etc/u.map file
to mount file systems with the specified naming convention under /u. The
automount daemon on SY2 will perform similar actions. Because all mounted file
systems are available to all participating systems in the sysplex, your automount
policy must be consistent. This is true for the file system name specified in
/etc/u.map and the values for other parameters in /etc/u.map and
/etc/auto.master.

Moving File Systems in a Sysplex
You may need to change ownership of the file system for recovery or re-IPLing. To
check for file systems that have already been mounted, use the df command from
the shell.

The SETOMVS command used with the FILESYS, FILESYSTEM, mount point and
SYSNAME parameters can be used to move a file system in a sysplex, or you can
use the chmount command from the shell. However, do not move two types of file
systems:

v System-specific file systems

v File systems that are being exported by DFS. You have to unexport them from
DFS first and then move them

Examples of moving file systems are:

1. To move ownership of the file system that contains /u/wjs to SY1:
chmount -d SY1 /u/wjs

2. To move ownership of the payroll file system from the current owner to SY2
using SETOMVS, issue:
SETOMVS FILESYS,FILESYSTEM=’POSIX.PAYROLL.HFS’,SYSNAME=SY2

or (assuming the mount point is over directory /PAYROLL)
SETOMVS FILESYS,mountpoint=’/PAYROLL’,SYSNAME=SY2

24 APAR OW54653 and OW54824

Shared HFS Implications During System Failures and Recovery
File system recovery in a shared HFS environment takes into consideration file
system specifications such as AUTOMOVE, NOAUTOMOVE, and whether or not
the file system is mounted read-only or read/write.

Generally, when an owning system fails, ownership over its automove-mounted file
system is moved to another system and the file is usable. However, if a file system
is mounted read/write and the owning system fails, then all file system operations
for files in that file system will fail. This happens because data integrity is lost when
the file system owner fails. All files should be closed (BPX1CLO) and reopened
(BPX1OPN) when the file system is recovered. (The BPX1CLO and BPX1OPN
callable services are discussed in z/OS UNIX System Services Programming:
Assembler Callable Services Reference.)

For file systems that are mounted read-only, specific I/O operations that were in
progress at the time the file system owner failed may need to be started again.

In some situations, even though a file system is mounted AUTOMOVE, ownership
of the file system may not be immediately moved to another system. This may
occur, for example, when a physical I/O path from another system to the volume
where the file system resides is not available. As a result, the file system becomes
unowned; if this happens, you will see message BPXF213E. This is true if the file
system is mounted either read/write or read-only. The file system still exists in the
file system hierarchy so that any dependent file systems that are owned by another
system are still usable. However, all file operations for the unowned file system will
fail until a new owner is established. The shared HFS support will continue to
attempt recovery of AUTOMOVE file systems on all systems in the sysplex that are
enabled for shared HFS. Should a subsequent recovery attempt succeed, the file
system transitions from the unowned to the active state.

Applications using files in unowned file systems will need to close (BPX1CLO)
those files and reopen (BPX1OPN) them after the file system is recovered.

File systems that are mounted NOAUTOMOVE will become unowned when the file
system owner exits the sysplex. The file system will remain unowned until the
original owning system restarts or until the unowned file system is unmounted. Note
that since the file system still exists in the file system hierarchy, the file system
mount point is still in use.

File systems that are mounted NOAUTOMOVE will become unowned when the file
system owner exits the sysplex. The file system will remain unowned until the
original owning system restarts or until the unowned file system is unmounted. Note
that since the file system still exists in the file system hierarchy, the file system
mount point is still in use. File systems that are mounted below a NOAUTOMOVE
file system will not be accessible via pathname when the NOAUTOMOVE file
system becomes unavailable.

It is not recommended that you mount AUTOMOVE file systems within
NOAUTOMOVE file systems. When a NOAUTOMOVE file system becomes
unowned and there are AUTOMOVE file systems mounted within it, those
AUTOMOVE file systems will retain a level of availability, but only for files that are
already open. When the NOAUTOMVE file system becomes unowned, it will not be
possible to perform pathname lookup through it to the file systems mounted within

Chapter 1. Shared HFS in a Sysplex 25

|
|
|
|
|
|
|

|
|
|
|
|
|

it, making those file systems unavailable for new access. When ownership is
restored to the unowned file system, access to the file systems mounted within it
will also be restored.

Movement of data
File systems can be managed so as to maximize their availability when systems
exit the participating group. You have more control over this when the outage is
planned, but there are steps you can take to help manage the placement of data in
the event of a system failure.

Recovery processing for the file systems that are owned by a failed system is
managed internally by all the systems in the participating group. If you want special
considerations for the placement of certain file systems, you can use the options
provided by the various mount services to specify the original owner and
subsequent owners for a particular file system.

To assist with file system management, the MOUNT command supports the
following automove options:

v SYSNAME() indicates teh initial owner of the file system.

v AUTOMOVE options:

– NOAUTOMOVE indicates that no attempt will be made to keep the file system
active when the current owner fails. The file system will remain in the
hierarchy for possible recovery when the original owner reinitializes. Use this
option on mounts for system-specific file systems if you want to have
automatic recovery when the original owner rejoins the participating group.

When the NOAUTOMOVE option is used, the file system becomes unowned
when the owning system exits the participating group. The file system remains
unowned until the last owning system restarts, or until the file system is
unmounted. Because the file system still exists in the file system hierarchy,
the file system mount point is still in use.

An unowned file system is a mounted file system that does not have an
owner. Because it still exists in the file system hierarchy, it can be recovered
or unmounted.

– AUTOMOVE indicates that recovery of the file system is to be performed to a
randomly selected owner when the current owner fails. This option is
recommended for use on mounts of file systems that are critical to operation
across all the systems in the participating group. AUTOMOVE is the default.

v Do not mount automoveable file systems within a fiel system that is mounted
NOAUTOMOVE.

Note: To ensure that the root is always available use the default: AUTOMOVE.

For file systems that are mostly used by DFS clients, consider specifying
NOAUTOMOVE on the MOUNT statement. Then the file systems will now change
ownership if the system is suddenly recycled, and they will be available for
automatic re-export by DFS. Specifying NOAUTOMOVE is recommended because
a file system can only be exported by the DFS server at the system that owns the
file system. Once a file system has been exported by DFS, it cannot be moved until
it has been unexported from DFS. When recovering from system outages, you need
to weigh sysplex availability against availability to the DFS clients. When an owning
system recycles and a DFS-exported file system has been taken over by one of the
other systems, DFS cannot automatically re-export that file system. The file system
will have to be moved from its current owner back to the original DFS system, the
one that has just been recycled, and then exported again.

26 APAR OW54653 and OW54824

|
|
|

|

|
|
|
|

|
|
|
|
|

|
|

|

|

|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|

Most of the z/OS UNIX interfaces that provide for mounting file systems (such as
TSO, shell, ISHELL, and BPX2MNT) support some form of the options described
here. See the associated documentation for the exact syntax.

Shared HFS Implications during a Planned Shutdown of z/OS UNIX
“File System Shutdown” on page 38 describes the procedures to use when you are
planning a shutdown of z/OS UNIX. It is important that you understand the system
actions that result when you use those procedures.

The current automove option dictates if and how the participating group recovers
file system ownership from an exited system. It has no effect on the manual
movement of the file system. However, when you are using the procedures for
shutting down z/OS UNIX to prepare for a planned system outage, the automove
option does apply. This can be explained with the following rationale:

v A system failure does not provide any means for manual intervention. The
automove option provides a set of rules for automatic recovery.

v A request to move a file system manually is a deliberate action on behalf of an
authorized user or administrator, and should override any rules for automatic
recovery

v Using tools to prepare for a system outage is also a deliberate action on behalf
of an authorized user or administrator, but you are using these tools in an
environment that can be customized to allow for additional manual intervention.
You can synchronize data before the system outage, and then manage the
planned outage in the same way as the unplanned outage, by making use of the
automatic recovery rules that are supplied by the automove options. If you prefer
some other action, you can perform manual intervention to move specific file
system ownership before you use these methods for shutdown preparation.

There are two system commands that prepare file systems for a system
shutdown:

– F BPXOINIT,SHUTDOWN=FILESYS

– F BPXOINIT,SHUTDOWN=FILEOWNER

The F BPXOINIT,SHUTDOWN=FILESYS system command removes file system
ownership from the system in preparation for a system shutdown. File systems
are moved according to the automove options or unmounted. Shared HFS
activity on the active systems in the participating group can still have an effect on
the system on which F BPXOINIT,SHUTDOWN=FILESYS has been issued. To
prevent the issuing system from becoming the new owner of file systems that are
being relocated by another system, shutdown processing should be coordinated
with other systems. Entering the SHUTDOWN=FILESYS command does not
prevent the system from being eligible to own any file system that is being
mounted, moved, or recovered, including the ones that were just moved off the
system. Once SHUTDOWN=FILESYS has completed processing, the system is
free to take ownership of file systems as a result of activity on this system or
another system.

The F BPXOINIT,SHUTDOWN=FILEOWNER system command removes file
system ownership from the system in preparation for a system shutdown. File
systems are moved according to the automove options or unmounted. The
system is disabled from becoming a file system owner via move or recovery
options until z/OS UNIX has been recycled. However, new mounts (where this
system is the file owner) are not blocked. Avoid mounting file systems (where this
system is the target owner) during shutdown operations. When using this

Chapter 1. Shared HFS in a Sysplex 27

|
|
|

|

|
|
|

|
|
|
|
|

|
|

|
|
|

|
|
|
|
|
|
|
|

|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

command, you do not need to coordinate shutdown processing with other
systems in the shared HFS configuration.

Note: Automounted file systems are always AUTOMOVE on V1R2 and lower.
Failures during this processing cause message BPXM054I to be
displayed, and file systems may remain owned by the system when
shutdown completes. See “Shared HFS Implications during a Planned
Shutdown of z/OS UNIX” on page 27 for more information.

When a system is removed from the sysplex, there is a window of time during
which any file systems it owned will become inaccessible to other systems. This
window occurs while other systems are being notified of the system’s exit from the
sysplex, and before they start the cleanup for that system. Ideally, ownership of
critical file systems will have been moved to other systems before the system exits,
but if it has not, there will be a period of time during which these critical file system
are unowned. It is then possible for another system that is performing initialization
to see mount failures because critical file systems cannot be accessed. These
failures can cause the initializing system to come up with out the necessary file
systems from being mounted. To avoid this situation, it is important to make sure
that any system that is being removed from the sysplex does not own any critical
file systems.

File System Initialization
When you are preparing to bring a system back into the participating group after it
has left, it is helpful to understand the coordination that occurs among the systems
that are already participating in the group. You might see delays in the availability of
the entering system because of activity occurring elsewhere in the sysplex.
Although it is possible to bring up multiple systems simultaneously, when they reach
the point of z/OS UNIX initialization, their processing is serialized so as to allow
only one system at a time to initialize z/OS UNIX.

Other examples of activities occurring on other active systems that can cause the
initializing system to experience delays are
v Unmounting a file system
v Changing ownership of a file system
v Recovering for systems that have left the participating group

Before it rejoins the participating group, a system processes all the file systems that
are listed in the current hierarchy of the participating group. It also attempts to
reclaim any unowned file systems that it previously owned when it was part of the
participating group. It does not attempt to reclaim those file systems that were
successfully moved or recovered to another system in the sysplex.

During initialization, any new MOUNT statements in the BPXPRMxx parmlib
member are processed, which makes those file systems available for use within the
participating group after they are successfully mounted.

While a system is initializing in a sysplex, critical file systems that are necessary for
initialization to complete succesfully might become unavailable due to a system
outage. When a system is removed from the sysplex, there is a window of time
during which any file systems it owned will become inaccessible to other systems.
This window of time occurs while other systems are being notified of the system’s
exit from the sysplex and before they start the cleanup for that system.

28 APAR OW54653 and OW54824

|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|

Ideally, ownership of critical file systems will have been moved to other systems
before the system exits. If that has not happened, there will be a window of time
during which these critical file systems are unowned. If the initializing system
requires access to these critical file systems during this window, there will likely be
mount failures that prevents the initialization from completing successfully. To avoid
this situation, you must make sure that any system that is being removed from the
sysplex does not own any critical file systems.

Locking Files
Users can lock all or part of a file that they are accessing for read/write purposes by
using the Byte Range Lock Manager (BRLM) within the system.

The lock manager is initialized on only one system in the sysplex. The first system
that enters the sysplex initializes the lock manager and becomes the system that
owns the manager. For example, if SY1 is the first system in the sysplex, then SY1
owns the BRLM; all lock requests are routed to SY1.

When a system failure occurs on the system owning the BRLM, all history of byte
range locks is lost. A new BRLM is established by one of the surviving systems in
the sysplex, and locking can begin once that recovery has completed. However, to
maintain data integrity after a failure where byte range locks are lost, z/OS UNIX
provides the following information to processes which have used byte range locking:

v Access to open files for which byte range locks are held by any process will
result in an I/O error. The file must be closed and reopened before use can
continue.

v A signal is issued to any process which has made use of byte range locking. By
default, a SIGTERM signal is issued against every such process, and an EC6
abend with reason code 0D258038 will terminate the process. If you do not want
the process to be terminated, the process can use BPX1PCT (the physical file
system control callable service) to specify a different signal for z/OS UNIX to use
for notifying the process that the BRLM has failed. Any signal can be used for
this purpose, thus allowing the user or application the ability to catch or ignore
the signal and react accordingly.

The system completion code EC6 and its associated reason codes are described
in z/OS MVS System Codes. See z/OS UNIX System Services Programming:
Assembler Callable Services Reference for more information about BPX1PCT.

Preparing File Systems for Shutdown
Chapter 2, “Managing Operations”, on page 33 describes the recommended
procedures for shutting down z/OS UNIX.

Mounting File Systems Using NFS Client Mounts
With the z/OS NFS server, the client has remote access to z/OS UNIX files from a
client workstation. Using the Network File System, the client can mount all or part of
the file system and make it appear as part of its local file system. From the
workstation, the client user can create, delete, read, write, and treat the
host-located files as part of the workstation’s own file system.

In a similar way, the z/OS NFS client gives users remote access to files on an NFS
server. Using NFS, the user can mount all or part of the remote file system and

Chapter 1. Shared HFS in a Sysplex 29

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|

make it appear as part of the local z/OS file hierarchy. From there, the user can
create, delete, read, write, and treat the remotely located files as part of the own file
system.

In a sysplex, the NFS Client-NFS Server relationship is as follows: the data that
becomes accessible is accessible from any place in the sysplex as long as at least
one of the systems has connectivity to the NFS server.

Note: Entries in the NFS Server Export Data Set can control which HFS directories
can be mounted by client users. When specifying path names in this data
set, you must specify fully qualified path names. That is, the use of symbolic
links in this data set are not supported.

Tuning z/OS UNIX Performance in a Sysplex
The intersystem communication required to provide the additional availability and
recoverability associated with z/OS UNIX shared HFS support, affects response
time and throughput on R/W file systems being shared in a sysplex.

For example, assume that a user on SY1 requests a read on a file system mounted
R/W and owned by SY2. Using shared HFS support, SY1 sends a message
requesting this read to SY2 via an XCF messaging function:
SY1 ===> (XCF messaging function) ===> SY2

After SY2 gets this message, it issues the read on behalf of SY1, and gathers the
data from the file. It then returns the data via the same route the request message
took:
SY2 ===> (XCF messaging function) ===> SY1

Thus, adding z/OS UNIX to a sysplex increases XCF message traffic. To control this
traffic, closely monitor the number and size of message buffers and the number of
message paths within the sysplex. It is likely that you will need to define additional
XCF paths and increase the number of XCF message buffers above the minimum
default. For more information on signaling services in a sysplex environment, see
z/OS MVS Setting Up a Sysplex.

You should also be aware that because of I/O operations to the CDS, every mount
request requires additional system overhead. Mount time increases as a function of
the number of mounts, the number of members in a sysplex, and the size of the
CDS. You will need to consider the effect on your recovery time if a large number of
mounts are required on any system participating in shared HFS.

DFS Considerations
A file system can only be exported by the DFS server at the system that owns the
file system. Once a file system has been exported by DFS, it cannot be moved until
it has been unexported by DFS.

To recover from system outages, you need to weigh sysplex availability against
availability to the DFS and Server Message Block (SMB) clients. When an owning
system recycles and a DFS-exported file system has been taken over by one of the
other systems, DFS will not be able to automatically reexport that file system. The
file system will have to be moved from its current owner back to the original DFS
system, the one that has just been recycled, and then reexported.

30 APAR OW54653 and OW54824

For file systems that are mostly for use by DFS clients, you should consider
specifying NOAUTOMOVE on the MOUNT statement so that they will not be taken
over if the system is recycled, and they will be available for automatic reexport by
DFS.

Chapter 1. Shared HFS in a Sysplex 31

32 APAR OW54653 and OW54824

Chapter 2. Managing Operations

z/OS UNIX is designed to be continually available. This chapter discusses these
tasks, which are done by operators.

Task Topic

Stopping Processes 33

Terminating Threads with the MODIFY Command 34

Shutting Down z/OS UNIX 35

Dynamically Changing the BPXPRMxx Parameter Values 38

Tracing Events in z/OS UNIX 43

Displaying the Status of the Kernel 44

Taking a Dump of the Kernel and User Processes 46

Recovering from a Failure 48

Managing Interprocess Communication (IPC) 50

For information about the CANCEL, DISPLAY, MODIFY MSGRT, and TRACE
operator commands, see z/OS MVS System Commands.

Stopping Processes
There are three ways to stop a process:

v The operator enters a MODIFY operator command to terminate a process.

v A shell user enters the kill command to cancel processes.

v The operator enters a CANCEL command to stop an address space containing a
process. If the address space contains multiple processes, CANCEL terminates
all of the processes.

Terminating a Process with the MODIFY Command
If a process is hung, the operator can enter one of these two MODIFY console
commands to terminate the process:

v To allow the signal interface routine to receive control before the process is
terminated, issue:
F BPXOINIT,TERM=pppp

where pppp is the process identifier.

v Sometimes a process is not terminated when a TERM request is sent. In these
cases, issue:
F BPXOINIT,FORCE=pppp

where pppp is the process identifier.

Terminating a Process with the kill Command
The best way to end a process is to issue the kill command. Using the DISPLAY
OMVS operator command or the ps command, display all the active processes.
Then issue the kill command, specifying the signal and the PID (process identifier)
for the process.

© Copyright IBM Corp. 1996, 2004 33

Start by sending a SIGTERM signal:
kill -s TERM pid

where pid is the process identifier. If that does not work, try sending a SIGKILL
signal:
kill -s KILL pid

where pid is the process identifier.

Terminating a Process with the CANCEL Command
An operator can cancel all processes or selected processes in an address space.
To cancel all processes, use the CANCEL command. Before issuing CANCEL,
display all processes running in that address space and the address space identifier
by issuing:
DISPLAY OMVS,A=xxxx

If there is only one process in the address space or if you want to terminate all the
processes, issue:
CANCEL name,A=asid

For example, for a user with a TSO/E user ID of JOE, Figure 19 shows how to
obtain the ASIDs for the user’s work and then cancel the user’s process that is
running the sleep 6000 shell command.

If you want to terminate one or more selected processes in an address space, but
not all the processes, then use the MODIFY command as described in “Terminating
a Process with the MODIFY Command” on page 33 or the kill command as
described in “Terminating a Process with the kill Command” on page 33.

Terminating Threads with the MODIFY Command
An operator can terminate a thread, without disrupting the entire process. The
syntax of the MODIFY command to terminate a thread is:
F BPXOINIT,{TERM}=pid[.tid]

{FORCE}

where

v pid indicates the process identifier (PID) of the thread to be terminated. The PID
is specified in decimal form as displayed by the D OMVS command.

display omvs,u=joe
BPXO001I 17.12.23 DISPLAY OMVS 361

OMVS ACTIVE OMVS=(93)
USER JOBNAME ASID PID PPID STATE START CT_SECS
JOE JOE 001D 5 1 1RI 17.00.10 1.203
JOE JOE3 001B 131076 262147 1SI 17.00.10 .111
LATCHWAITPID= 0 CMD=sleep 6000

JOE JOE1 0041 262147 5 1WI 17.00.10 .595
LATCHWAITPID= 0 CMD=-sh

cancel joe3,a=1b

Figure 19. Console Display for a CANCEL Command

34 APAR OW54653 and OW54824

v tid indicates the thread identifier (TID) of the thread to be terminated. The TID is
16 hexadecimal (0-9,A-F) characters as displayed by the following command:
D OMVS,PID=pppppppp

v TERM= indicates the signal interface routine will be allowed to receive control
before the thread is terminated.

v FORCE= indicates the signal interface routine will not be allowed to receive control
before the thread is terminated.

Although abnormal termination of a thread usually causes a process to terminate,
using the MODIFY command to terminate a thread will not cause the process to
terminate.

You will typically want to terminate a single thread when the thread represents a
single user in a server address space. Otherwise, random termination of threads
can cause some processes to hang or fail.

If a thread in a process is hung, the operator can enter one of these two MODIFY
console commands to terminate the thread without terminating the entire process.
We recommend that you use the TERM keyword first, and if that does not succeed,
use FORCE:

v To allow the signal interface routine to receive control before the thread is
terminated, use:
F BPXOINIT,TERM=pppppppp.tttttttttttttttt

where pppppppp is the process identifier and tttttttttttttttt is the thread
identifier.

v To terminate the thread without allowing the signal interface routine to receive
control, use:
F BPXOINIT,FORCE=pppppppp.tttttttttttttttt

where pppppppp is the process identifier and tttttttttttttttt is the thread
identifier.

Shutting Down z/OS UNIX
This section explains how to shut down z/OS UNIX. When you are doing a planned
shutdown and will be re-IPLing the system, issue the following operator command:
F BPXOINIT,SHUTDOWN=FORKINIT

“Planned Shutdowns” on page 36 describes the procedure. If you want to shut down
the system as part of JES2 maintenance and do not want to re-IPL the system, use
the following operator command:
F BPXOINIT,SHUTDOWN=FORKS

“Partial Shutdowns (for JES2 Maintenance)” on page 37 describes the procedure.

To shut down file systems as part of a planned shutdown, use the following
operator command:
F BPXONIT,SHUTDOWN=FILESYS
F BPXONIT,SHUTDOWN=FILEOWNER

“File System Shutdown” on page 38 describes the procedure.

Chapter 2. Managing Operations 35

|
|

|
|

|

Planned Shutdowns
As part of a planned shutdown, you should clean up the system first before
re-IPLing.

1. Use the operator SEND command to send a note to all TSO/E users telling
them that the system will be shut down at a certain time. For example:
send ’The system is being shut down in five minutes. Log off.’,NOW

2. Use the wall command to send a similar note about the impending shutdown
to all logged-on shell users. For example:
wall The system is being shut down in five minutes. Please log off.

3. Prevent new TSO/E logons and shut down other z/OS subsystems (such as
CICS and IMS), following your usual procedures.

4. Shut down all JES initiators.

5. Unmount all NFS-mounted file systems as part of the normal shutdown
process.

6. Use normal shutdown procedures to terminate all file system address spaces
such as TCP/IP and DFSS. Do this after the final warning has been sent to
users that the system is terminating.

7. Terminate running daemons such as inetd. To get a list of daemons that are
running, issue, for example:
D OMVS,U=OMVSKERN

In this example, OMVSKERN is the user ID that is used for the kernel and
daemons. In addition, you can display all processes (most daemons will have
recognizable names) by issuing:
D OMVS,A=ALL

Then use the F BPXOINIT,TERM=xxxxxxxx operator command or the kill
command to terminate those processes.

7a. Terminate any remaining processes.

8. Move or unmount all file systems (including the root file system) by using the F
BPXOINIT,SHUTDOWN=FILEOWNER or F BPXONIT,SHUTDOWN=FILESYS
command.

9. Take down JES. At this point, there may still be a number of initiators that are
provided by WLM for use on fork and spawn. These initiators time out after 30
minutes on their own. To terminate the initiators, you can issue the following
operator command:
F BPXOINIT,SHUTDOWN=FORKINIT

10. After all the processes have been terminated, you can do any of the following:
v IPL
v Power off
v Take down JES, restart JES, and then rebuild your environment. For

example:

– Remount any file systems that you unmounted. To do all the mounts, you
must issue mount commands or construct a REXX exec or CLIST. If you
are using automount for user file systems, there will be less work
involved.

– If you terminated the address spaces for TCP/IP and DFSS, you must
restart these.

– If you terminated daemons, logon to TSO as superuser and run /etc/rc
from a shell or from the ISHELL.

36 APAR OW54653 and OW54824

|

– Notify users that the system is once again available for UNIX
processing.

Partial Shutdowns (for JES2 Maintenance)
Before JES2 can be shut down for maintenance purposes, part of z/OS UNIX must
be shut down. This section explains how you can terminate all of the forked
processes without having to re-IPL the entire system. (The kernel remains active
but new forked processes are not allowed.) Use this procedure for JES2
maintenance only.

Do the partial shutdown as infrequently as possible because it is a disruptive
shutdown; all the user processes that are either forked or non-local spawned are
terminated.

After the forked processes have been terminated, you can terminate the colony
address spaces. Now JES2 can be shut down for maintenance. z/OS UNIX can be
reinitialized after JES2 has been restarted, and forked processes will start being
dubbed again. The file system colonies can then be restarted manually. The
following steps describe the procedure:

1. Use the operator SEND command to send a note to all TSO/E users telling
them that the system will be shut down. For example:
send ’The system is being shut down in five minutes. Please log off.’

2. Use the wall command to send a similar note to all logged-on shell users:
wall The system is being shut down in five minutes. Please log off.

3. Issue the following operator command to begin the shutdown of z/OS UNIX.
F BPXOINIT,SHUTDOWN=FORKS

This terminates all forked and non-local spawned address spaces on the
system. If the operator receives a success message, the shutdown can be
continued.

A failure message means that some forked processes or non-local spawned
address spaces could not be terminated. Try to find these processes by issuing:
D OMVS,A=ALL

To terminate them, issue:
F BPXOINIT,FORCE,FORCE=xxxxxxxx

If that does not work, use the CANCEL or FORCE operator commands.

4. Terminate the file system colonies that were started under JES (those without
SUB=MSTR specified when they were defined).. Use normal shutdown
procedures to close these file system address spaces such as Network File
System Client (NFSC) and the Distributed File System Cache Manager
(DFSCM).

For NFSC, determine what the process name was used to start this colony. Use
this name to cancel it. (For example, C NFSC.)

For DFSCM, use the procedure in z/OS Distributed File Service DFS
Administration to stop the DFS Cache Manager. Issue STOP DFSCM to stop
DFSCM.

For all other colonies, use the procedures documented in their publications.

5. Now you can do whatever corrective or maintenance actions that were needed
for JES2, such as restarting it.

Chapter 2. Managing Operations 37

|
|
|
|
|

6. To restart z/OS UNIX, issue the Modify (F) command.
F BPXOINIT,RESTART=FORKS

7. Restart the file system address spaces.

For NFSC, you have to respond to the operator message BPXF014D issued
when the colony was taken down. Then reissue all the mounts.

For DFSCM, respond to the operator message BPXF014D.

For all other colonies, use the procedures they have documented in their
product publications.

File System Shutdown
As part of a planned shutdown, you should clean up the file systems before
reIPLing by issuing one of the following operator commands:

v F BPXOINIT,SHUTDOWN=FILEOWNER

v F BPXOINIT,SHUTDOWN=FILESYS

This synchronizes data to the file systems and possibly unmounts or moves
ownership of the file systems. When SHUTDOWN=FILEOWNER is used, the
system will also be disabled as a future file system owner via move or recovery
operations until z/OS UNIX has been recycled.

The steps for shutting down z/OS UNIX file systems are the same whether or not
the system is participating in shared HFS. However, in a shared HFS environment,
the resulting system actions are more complex, because they may involve the
movement of file system ownership between systems in the shared HFS group. For
more information about the system actions that may occur in a shared HFS
environment, see “Shared HFS Implications during a Planned Shutdown of z/OS
UNIX” on page 27.

Dynamically Changing the BPXPRMxx Parameter Values
The SETOMVS command enables you to modify BPXPRMxx parmlib settings
without re-IPLing. For example:
SETOMVS MAXTHREADTASKS=100,MAXPROCUSER=8

You can dynamically change process-wide limits separately for each process. For
example:
SETOMVS PID=123,MAXFILEPROC=200

The SET OMVS command enables you to dynamically change the BPXPRMxx
parmlib members that are in effect. Because you can have multiple BPXPRMxx
definitions, you can easily reconfigure a large set of the system characteristics. You
can keep the reconfiguration settings in a permanent location for later reference or
reuse. A sample SET OMVS command is:
SET OMVS=(AA,BB)

If a parameter is specified more than once with different values, in the parmlib
members, the first value specified is the first value that is used. For example, if you
specify SET OMVS=(AA,BB) where AA has a MAXPROCUSER=10 value and BB
has a MAXPROCUSER=5 value, MAXPROCUSER =10 is used.

You can use the SETOMVS RESET command to dynamically add the
FILESYSTYPE, NETWORK, and SUBFILESYSTYPE statements without having to

38 APAR OW54653 and OW54824

|

|
|

|

|

|
|
|
|

|
|
|
|
|
|
|

re-IPL. However, if you change the values, a re-IPL will be necessary. For more
information, see “Dynamically Adding FILESYSTYPE Statements in BPXPRMxx” on
page 40.

See z/OS MVS System Commands for a complete description of the SET OMVS
and SETOMVS commands.

Dynamically Changing Certain BPXPRMxx Parameter Values
The MAXPROCSYS, MAXPTYS, IPCMSGNIDS, MAXFILEPROC, IPCSEMNIDS,
IPCSHMNIDS, and IPCSHMSPAGES specify maximum values. You can use the
SETOMVS or SET OMVS command to dynamically increase the current system
setting, but if you specify a value that is too low or too high, you will get an error
message. To use a value outside the range, you must change the specification in
BPXPRMxx and re-IPL.

To avoid specifying a value that is too low or too high, you can use a formula to
calculate the maximum values. The minimum value is sometimes the current setting
of the parameter and sometimes lower than that, as identified in the description of
each parameter. The formula for each parameter is described later in this section.

The following example shows you how to perform the calculations using the
IPCMSGNIDS parameter, which determines the highest number of unique message
queues in the system. To use SETOMVS IPCMSGNIDS=xxx to increase the current
setting, you must calculate the highest number that you can specify. According to
the description of IPCMSGNIDS in “IPCMSGNIDS and IPCSEMNIDS” on page 40,
the formula is:
MIN(20000,MAX(4096,3*initial value))

For this example, the current value of IPCMSGNIDS is 1000; the value of
IPCMSGNIDS at IPL is also 1000 (that is, 1000 is the initial value). Use the formula
in the following way:

1. Compare 4096 with 3 times 1000 to find the higher number (the MAX). 4096 is
the higher number.

2. Compare 20000 with 4096 to find the smaller number (the MIN). 4096 is the
smaller number.

Therefore, the highest number that you can specify on SETOMVS IPCMSGNIDS is
4096. The range of numbers that you can specify is 1000 (the current value) to
4096. The correct SETOMVS command for increasing the message queue limit to
the maximum (assuming a starting value of 1000) would be:
SETOMVS IPCMSGNIDS=4096

To change to a number higher than 4096 (but lower than 20000), you will have to
change BPXPRMxx and re-IPL.

MAXPROCSYS
The range that you can use has a minimum value of 5; the maximum value is
based on the following formula:
MIN(32767,MAX(4096,3*initial value)

The initial value is the MAXPROCSYS value that was specified during BPXPRMxx
initialization. You cannot use a value less than 5. If you want to use a value greater
than the current maximum (as calculated by the formula) but lower than the initial
maximum (32767), you will have to change the value in BPXPRMxx and re-IPL.

Chapter 2. Managing Operations 39

MAXPTYS
The range’s minimum value is 1 and the maximum is based on the following
formula:
MIN(10000,MAX(256,2*initial value)

The initial value is the MAXPTYS value that was specified during BPXPRMxx
initialization.

IPCMSGNIDS and IPCSEMNIDS
The range’s minimum value is the current setting of IPCMSGNIDS or
IPCSEMNIDS, and the maximum is based on the following formula:
MIN(20000,MAX(4096,3*initial value)

The initial value is the value that was specified during BPXPRMxx initialization. If
you want to use a value greater than the current maximum (as calculated by the
formula) but lower than the initial maximum (20000), you will have to change the
value in BPXPRMxx and re-IPL.

IPCSHMNIDS and IPCSHMSPAGES
The range’s minimum value is the current setting of IPCMSGNIDS or
IPCSHMSPAGES, and the maximum is based on the following formula:
MIN(20000,MAX(4096,3*initial value)

The initial value is the value that was specified during BPXPRMxx initialization. If
you want to use a value greater than the current maximum (as calculated by the
formula) but lower than the initial maximum (20000), you will have to change the
value in BPXPRMxx and re-IPL.

Dynamically Switching to Different BPXPRMxx Members
Another way to dynamically reconfigure parameters is to use the SET OMVS
command to change the BPXPRMxx parmlib members that are in effect. With the
SET OMVS command, you can have multiple BPXPRMxx definitions and use them
to easily reconfigure a set of the z/OS UNIX system characteristics. You can keep
the reconfiguration settings in a permanent location for later reference or reuse.

For example, you could keep the system limits parameters that can be reconfigured
in parmlib member BPXPRMLI. When you need to change any of the limits, edit the
parmlib member and then issue SET OMVS. For example:
SET OMVS=(LI)

Changes to system limits (for example, MAXPROCSYS) take effect immediately.
Changes to user limits (for example, MAXTHREADS) are set when a new user
enters the system (for example, rlogin or a batch job). These limits persist for the
length of the user connection to z/OS UNIX.

Dynamically Adding FILESYSTYPE Statements in BPXPRMxx
Use the SETOMVS RESET command to dynamically add the FILESYSTYPE,
NETWORK, and SUBFILESYSTYPE statements without having to re-IPL. If you
want to change the values, you will have to edit the BPXPMRxx member that is
used for IPLs. You can also dynamically add the parmlib statements currently
supported by SETOMVS, such as MAXPROCSYS.

To display information about the current FILESYSTYPE, NETWORK, or
SUBFILESYSTYPE statements, issue the following command:
DISPLAY OMVS,PFS

40 APAR OW54653 and OW54824

The following section shows examples of some of the more common configuration
changes, adding the HFS and adding sockets. The examples discuss:

1. Activating the HFS file system for the first time.

2. Activating a single sockets file system for the first time.

3. Activating multiple sockets file systems for the first time with Common INET.

4. Adding another sockets file system to an existing common INET configuration.

5. Changing the MAXSOCKETS value.

Activating the HFS File System for the First Time
To activate the HFS file system for the first time, do the following:

1. Set up a root HFS data set.

2. Create a temporary BPXPRMtt member that has the following statement:
FILESYSTYPE TYPE(HFS) ENTRYPOINT(GFUAINIT)

3. Issue SETOMVS RESET=(tt).

4. From TSO or the ISHELL, do the following:

a. Unmount the current root file system.

b. Mount the root HFS data set as the new root file system.

c. Mount any additional HFS data sets as needed.

5. Add the following statements to the BPXPRMxx parmlib member used on IPL:

a. The FILESYSTYPE statement used above.

b. A ROOT statement for the root HFS.

c. MOUNT statements for the additional mounts that should be done initially.

Activating a Single Sockets File System for the First Time
This example explains how to activate a single sockets file system for the first time.
It uses the SecureWay TCP/IP Socket File System for network sockets and also
brings up support for local sockets. The MAXSOCKETS value used is just an
example; the value that you use may be different.

1. Create a temporary BPXPRMtt member with the following statements:
/* Start Address Family AF_INET for Network Sockets /*
FILESYSTYPE TYPE(INET) ENTRYPOINT(EZBPFINI)
NETWORK TYPE(INET) MAXSOCKETS(2000)

DOMAINNAME(AF_INET) DOMAINNUMBER(2)

/* Start Address Family AF_UNIX for Local Sockets */
FILESYSTYPE TYPE(UDS) ENTRYPOINT(BPXTUINT)
NETWORK TYPE(UDS) MAXSOCKETS(1000)

DOMAINNAME(AF_UNIX) DOMAINNUMBER(1)

2. Issue SETOMVS RESET=(tt).

3. Start the TCPIP address space.

4. Add these parmlib statements to the BPXPRMxx member used on IPL.

Activating Multiple Sockets File Systems for the First Time with
Common INET
This example shows how to activate multiple sockets file systems for the first time
with Common INET. It starts two socket file systems, TCP/IP and AnyNet. Because
they both support address family AF_INET, they are configured underneath
Common INET to give applications the appearance of a single AF_INET socket file
system.

Because this is an example of the initial configuration of sockets, the support for
local, or AF_UNIX, sockets is also included for completeness.

1. Create a temporary BPXPRMtt member with the following statements:

Chapter 2. Managing Operations 41

/* Start Address Family AF_INET for Common INET */
FILESYSTYPE TYPE(CINET) ENTRYPOINT(BPXTCINT)
NETWORK TYPE(CINET) MAXSOCKETS(64000)

DOMAINNAME(AF_INET) DOMAINNUMBER(2)
INADDRANYPORT(5000) INADDRANYCOUNT(100)

/* Start TCP/IP and AnyNet under Common INET */
SUBFILESYSTYPE TYPE(CINET) NAME(TCPIP) ENTRYOINT(EZBPFINI) DEFAULT
SUBFILESYSTYPE TIME(CINET) NAME(ANYNET) ENTRYPOINT(ISTOEPIT)

2. Issue SETOMVS RESET=(tt).

3. Start the TCPIP address space.

4. Start the Sockets Over SNA address space.

5. Add these parmlib statements to the BPXPRMxx member used on IPL.

The names used in the example, TCPIP and ANYNET must match those used when
configuring the associated products.

Increasing the MAXSOCKETS Value
This example shuts down TCP/IP and brings it back up with a new value for
MAXSOCKETS:

1. Shut down TCP/IP. For example:
p tcpip

Most socket programs and daemons will either terminate after TCP/IP is shut
down or will tolerate a recycle of TCP/IP. There may be others that will have to
be stopped manually.

2. Create a temporary BPXPRMtt member that has the following statements:
NETWORK TYPE(INET) MAXSOCKETS(10000)

DOMAINNAME(AF_INET) DOMAINNUMBER(2)

3. Issue SETOMVS RESET=(tt).

4. Restart TCP/IP. For example:S TCPIP.

5. Restart the socket programs and daemons, as necessary.

6. Update the MAXSOCKETS value in the BPXPRMxx member used on IPL.

Only the SecureWay Socket PFS, EZBPFINI, supports picking up a new
MAXSOCKETS value when it is recycled.

The MAXSOCKETS value for a Common INET configuration can be changed with a
similar procedure:

1. The TYPE() keyword of the NETWORK statement would specify the TYPE
name of the Common INET PFS, which was “CINET” in the previous examples.

2. Common INET is not shut down, though, and the change takes effect in each
TCP/IP stack when that stack was recycled.

3. INADDRANYPORT and INADDRANYCOUNT cannot be changed.

Adding Another Sockets File System to an Existing Common
INET Configuration
This example starts a second SecureWay Sockets File System and uses names
based on the previous examples.

1. Create a temporary BPXPRMtt member with the following statements:
SUBFILESYSTYPE TYPE(CINET) NAME(TCPIP2) ENTRYPOINT(EZBPFINI)

2. Issue SETOMVS RESET=(tt).

3. Start the TCPIP2 address space.

4. Add this parmlib statement to the BPXPRMxx member used on IPL.

42 APAR OW54653 and OW54824

Tracing Events in z/OS UNIX
To provide problem data, events are traced. When the OMVS address space is
started, the trace automatically starts. The trace cannot be completely turned off.

Your installation specifies events to be traced in CTnBPXxx parmlib members. Each
member should specify one or more events; keep the number of events small
because tracing affects system performance. The installation can filter the events by
address spaces, user IDs, and level of detail.

The CTnBPXxx member to be used when the OMVS address space is initialized is
identified on the CTRACE parameter of the BPXPRMxx parmlib member. You also
specify the size of the trace buffers in the CTnBPXxx member used when the
system is IPLed. You can change the buffer size while z/OS UNIX is running. The
buffer can be 16KB minimum to 4MB maximum. If you need a different buffer size,
change buffer size (BUFSIZE) in a CTnBPXxx member and issue:
TRACE CT,ON,COMP=SYSOMVS,PARM=CTnBPXxx

An operator starts and stops tracing events in the z/OS UNIX system with the
commands:
TRACE CT,ON,COMP=SYSOMVS,PARM=CTnBPXxx
TRACE CT,OFF,COMP=SYSOMVS

The operator can resume full tracing, with the previously used CTnBPXxx parmlib
member or a different member, with the command:
TRACE CT,ON,COMP=SYSOMVS,PARM=CTnBPXxx

The PARM operand specifies the parmlib member with the tracing options.

Tracing DFSMS/MVS Events
You can also trace DFSMS/MVS events for the HFS. For example, to set up a
trace, you can enter the following command:
TRACE CT,nnnnk,COMP=SYSSMS
R X,OPTIONS=(CALL,RRTN,CB,SUSP,EXITA,COMP=(ALL,NOIMF,NOSSF)),END

or:
TRACE CT,nnnnk,COMP=SYSSMS
R X,OPTIONS=(ENTRY,EXIT,EXITA,CB,COMP=(PFS,CDM)),END

Attention: SMS trace buffers are allocated in every initiator running kernel
workloads. They are allocated in DREF ELSQA, which can cause a shortage
of real pages.

For information about how to set up and use a trace, and for diagnosis information
on interpreting a trace, see z/OS DFSMSdfp Diagnosis Reference.

Re-creating Problems for IBM Service
If you are re-creating a problem for IBM service, it is generally a good idea to
increase the OMVS CTRACE buffer size to 4MB. To do this, issue:
TRACE CT,4M,COMP=SYSOMVS,PARM=CTnBPXxx

Chapter 2. Managing Operations 43

with the parmlib member specifying the desired options. Alternatively, you could
change the parmlib member to specify the desired buffer size. After you capture the
dump for the problem, you can reset the trace buffer size to the original setting.
Issue:
TRACE CT,xxxK,COMP=SYSOMVS

where xxxK is the size of the desired trace buffer.

Displaying the Status of the Kernel
Display information about the kernel or processes as follows:

v The operator enters a DISPLAY OMVS command to display the status of the
kernel and processes.

v The operator enters the DISPLAY TRACE,COMP=SYSOMVS command to
display the status of the kernel trace.

v A shell user enters the ps command or the PS ISHELL command to display the
status of the user’s processes.

v A superuser enters the ps command or the PS ISHELL command to display the
status of all processes.

The operator displays the status for kernel services with the command:
DISPLAY OMVS

The command can be used to show information about a user ID, about the parmlib
members that are in effect, or about the current values of reconfigurable parmlib
member settings.

To display the status of address spaces that the user ID JANES is using and the
processor resources used by each address space, the operator enters:
DISPLAY OMVS,U=JANES

For another example, see Figure 19 on page 34.

If the system IPLed with the specification of OMVS=(XX,YY,ZZ), the output for the D
OMVS command is:
BPXO004I 10.17.23 DISPLAY OMVS 869
OMVS ACTIVE 000E OMVS=(XX,YY,ZZ)

The keyword OPTIONS lets you display the current configuration of the BPXPRMxx
parmlib statements that are reconfigurable via the SET OMVS or SETOMVS
command. The updated output from D OMVS,OPTIONS reflects any changes that
resulted from a SETOMVS or a SET OMVS= operator command invocation.

In this example, when the PID option is used to obtain the thread identifiers, the
output is:

44 APAR OW54653 and OW54824

You can then cancel selected threads, as shown in this example:
F BPXOINIT,FORCE=117440514.04962E5800000003
BPXM027I COMMAND ACCEPTED.

F BPXOINIT,TERM=117440514.0496624800000009
BPXM027I COMMAND ACCEPTED.

An operator displays status for the rest of the z/OS system with the commands:

v DISPLAY TS,LIST: The number of time-sharing users, including the number of
users

v DISPLAY JOBS,LIST: The number of active jobs, including the number of
address spaces that were forked or that were created in other ways but
requested kernel services.

v DISPLAY A,LIST: The combined information from the DISPLAY TS,LIST and
DISPLAY JOBS,LIST commands.

Displaying the Status of BPXPRMxx Parmlib Limits
You can display information about current system-wide parmlib limits, including
current usage and high-water usage, with the DISPLAY OMVS,LIMITS command:

D OMVS,PID=117440514

BPXO040I 14.16.58 DISPLAY OMVS 177
OMVS 000E ACTIVE OMVS=(93)
USER JOBNAME ASID PID PPID STATE START CT_SECS
MEGA TC1 0021 117440514 117440515 HKI 14.16.14 .170

LATCHWAITPID= 0 CMD=ACEECACH
THREAD_ID TCB@ PRI_JOB USERNAME ACC_TIME SC STATE
0496146000000000 009E0438 .050 PTJ KU
04961D0800000001 009D5E88 .002 SLP JSN
049625B000000002 009D8798 .003 SLP JSN
04962E5800000003 009D5090 .012 SLP JSN
0496370000000004 009D5228 .011 SLP JSN
04963FA800000005 009D5A88 .010 SLP JSN
0496485000000006 009D8048 .011 SLP JSN
049650F800000007 009D81E0 .011 SLP JSN
049659A000000008 009D8378 .011 SLP JSN
0496624800000009 009D8510 .011 SLP JSN
04966AF00000000A 009D8930 .030 SLP JSN

DISPLAY OMVS,L
BPXO051I 14.05.52 DISPLAY OMVS 904
OMVS 0042 ACTIVE OMVS=(69)
SYSTEM WIDE LIMITS: LIMMSG=NONE

CURRENT HIGHWATER SYSTEM
USAGE USAGE LIMIT

MAXPROCSYS 1 4 256
MAXUIDS 0 0 200
MAXPTYS 0 0 256
MAXMMAPAREA 0 0 256
MAXSHAREPAGES 0 10 4096
IPCMSGNIDS 0 0 500
IPCSEMNIDS 0 0 500
IPCSHMNIDS 0 0 500
IPCSHMSPAGES 0 0 262144 *
IPCMSGQBYTES --- 0 262144
IPCMSGQMNUM --- 0 10000
IPCSHMMPAGES --- 0 256
SHRLIBRGNSIZE 0 0 67108864
SHRLIBMAXPAGES 0 0 4096

Chapter 2. Managing Operations 45

An * displayed after a system limit indicates that the system limit was changed via a
SETOMVS or SET OMVS= command.

The display output shows for each limit the current usage, high-water (peak) usage,
and the system limit as specified in the BPXPRMxx parmlib member. The displayed
system values may be the values as specified in the BPXPRMxx parmlib member,
or they may be the modified values resulting from the SETOMVS or SET OMVS
commands.

You can also use the DISPLAY OMVS,LIMITS command with the PID= operand to
display information about high-water marks and current usage for an individual
process.

The high-water marks for the system limits can be reset to 0 with the D
OMVS,LIMITS,RESET command. Process limit high-water marks cannot be reset.

Taking a Dump of the Kernel and User Processes
If you have a loop, hang, or wait condition in a process and need a dump for
diagnosis, you need to dump several types of data:

v The kernel address space.

v Any kernel data spaces that may be associated with the problem.

v Any process address spaces that may be associated with the problem.

v Appropriate storage areas containing system control blocks (for example, SQA,
CSA, RGN, TRT).

The steps are:

1. Use DISPLAY commands to display information on currently active address
spaces and data spaces. (For more details on these DISPLAY commands, see
z/OS MVS System Commands.)

2. Allocate a sufficiently large dump data set.

3. Take the dump.

4. Review the dump completion information.

Displaying the Kernel Address Space
To find the kernel address space and associated data spaces, use D A,OMVS. Here
is a sample output:

D A,OMVS
IEE115I 12.55.47 94.208 ACTIVITY 503
JOBS M/S TS USERS SYSAS INITS ACTIVE/MAX VTAM
00001 00013 00002 00019 00019 00002/00050
OMVS OMVS OMVS NSW SO A=000E PER=NO SMC=000

PGN=001 DMN=001 AFF=NONE
CT=033.466S ET=03.44.48
WUID=STC06055 USERID=OMVSKE
ADDR SPACE ASTE=0173ECC0
DSPNAME=SYSZBPXU ASTE=00A35
DSPNAME=SYSGFU01 ASTE=007F8
DSPNAME=SYSZBPX3 ASTE=007F8
DSPNAME=SYSIGWB1 ASTE=007F8
DSPNAME=SYSZBPX2 ASTE=00A35
DSPNAME=SYSZBPX1 ASTE=00A35

46 APAR OW54653 and OW54824

The display output shows the kernel address space identifier (ASID) as A=nnnn
where nnnn is the hexadecimal ASID value. In this example, A=000E. The display
output also shows the data space names associated with the kernel address space.
The system uses these data spaces as follows:

v SYSZBPX1 for kernel data (including CTRACE buffers). The CTRACE buffers
are automatically included in the dump and need not be explicitly added to a
DUMP command or a SLIP trap.

v SYSZBPX2 for file system data

v SYSZBPX3 for pipes

v SYSIGWB1 for byte-range locking

v SYSGFU01 for file system adapter

v SYSZBPXU for AF_UNIX sockets

v SYSZBPXC for common INET sockets

v SYSZBPXL for local AF_INET sockets

Dump other data spaces if there is reason to believe that they contain data that
could be useful in analyzing the problem.

Displaying Process Information
To display the process information for address spaces, use D OMVS,A=ALL. Here is a
sample output:

The display output shows all of the active processes, ASIDs, process identifiers,
parent process IDs, and states. Use this to obtain ASIDs of processes you wish to
dump.

Displaying Global Resource Information
To display global resource serialization information to see possible latch contention,
use D GRS,C.

This display may show latch contention, which could be the cause of the problem.
You should dump the address space of the process holding the latch. If the latch is
a file system latch, dump the file system data space SYSZBPX2 also.

Allocating a Sufficiently Large Dump Data Set
Because you are dumping multiple address spaces, multiple data spaces, and
multiple storage data areas, you may need a much larger dump data set defined
than is normally used for dumping a single address space. You should preallocate a

D OMVS,A=ALL

USER JOBNAME ASID PID PPID STATE
OMVSKERN BPXOINIT 002A 1 0 1WI
MVS TCPIP 002B 65538 1 MR
DCEKERN DCEKERN 003A 262147 1 HK
DCEKERN DCEKERN 003A 262148 262147 HK
DCEKERN DCEKERN 003A 65541 262147 HK
DCEKERN DCEKERN 003A 65542 262147 HF
DCEKERN DCEKERN 003A 7 262147 HK
DCEKERN DCEKERN 003A 8 262147 HK
TS65106 TS65106 0032 9 1 1RI
TS65106 TS65106 0032 10 9 1CI

LATCHWAITPID= 0 CMD=-sh

Chapter 2. Managing Operations 47

very large SYS1.DUMPnn data set. For more information on SYS1.DUMPnn data,
see the DUMPDS command in z/OS MVS System Commands.

SDUMP has a limit on how much storage it allows in a single dump. It is called
MAXSPACE. To determine the current value of MAXSPACE, issue the D D,O
command. The default value is 500 megabytes. To change this value, issue:
CD SET,SDUMP,MAXSPACE=nnnnM

In a large server environment, you may need to increase MAXSPACE to 2000M (2
gigabytes) or more.

Taking the Dump
To initiate the dump, enter this command:
DUMP COMM=(dname)

where dname is a descriptive name for this dump. You can specify up to 100
characters for the title of the dump. The system responds and gives you a prompt
ID. You reply by specifying the data to be included in the dump. If you specify the
operand CONT, the system will prompt you for more input.

In the following examples of replies you can give, rn is the REPLY number to the
prompt.

The data areas in the following reply contain system control blocks and data areas
generally necessary for investigating problems:
R rn,SDATA=(CSA,SQA,RGN,TRT,GRSQ),CONT

In the next reply, x'E' is the OMVS address space. The other address space IDs
specified are those believed to be part of the problem. You can specify up to 15
ASIDs.
R rn,ASID=(E,3A,32),CONT

This example specifies data spaces:
R rn,DSPNAME=(’OMVS’.SYSZBPX2,’OMVS’.SYSZBPX1),END

The file system data space, SYSZBPX2, is useful if the hang condition appears to
be due to a file system latch.

For more information on the DUMP command, particularly on specifying a large
number of operands, see z/OS MVS System Commands.

Reviewing Dump Completion Information
After the dump completes, you receive an IEA911E message indicating whether the
dump was complete or partial. If it was partial, check the SDRSN value. If
insufficient disk space is the reason, delete the dump, allocate a larger dump data
set, and request the dump again.

Recovering from a Failure
The operator needs to recover if a failure occurs:

v Kernel failure: As a result, interactive processing in the shell and z/OS UNIX
applications fail.

48 APAR OW54653 and OW54824

v File system type failure: z/OS UNIX continues processing even though the file
system type is not operational. Requests to use the files in any file systems of
that file system type will fail.

v File system failure: As a result, some files cannot be used, which may cause
programs to fail.

The operator starts recovery by collecting messages and a dump, if written.

System Services Failure
If the z/OS UNIX system fails, the operator collects problem data, which includes
messages, SVC dumps, and SYS1.LOGREC records for abends and decides if
re-IPL is warranted.

The work in progress when the failure occurred is lost and must be started from the
beginning.

File System Type Failure
After a failure of a file system type, the system issues message BPXF014D. In
response, the operator or automation corrects the problem as indicated by previous
messages and then enters R in reply to message BPXF014D.

File System Failure
These events can be symptoms of file system failure:
v 0F4 abend
v EMVSPFSFILE return code
v EMVSPFSPERM return code
v A file becomes unrecognizable or unopenable

After a failure of a file system, the operator:

1. Restores the HFS data set with the data set from the previous level. For more
information on recovering an HFS data set, see:
v z/OS DFSMS Migration
v z/OS DFSMShsm Storage Administration Guide

2. Asks a superuser to logically mount the restored HFS data set with a TSO/E
MOUNT command.

3. Notifies all shell users that when they invoke the shell they will mount a
backlevel file system, telling them the mount point. (Use the wall command to
broadcast a message to all shell users.)

Files added since the back-level data set was saved must be re-created and added
again.

If the physical file system owning the root fails, or if the root file system is
unmounted, the operator must restore the root file system. This can be done by a
superuser who is defined with a home directory of /; (root). All work in progress
when the failure occurred is lost and must be started from the beginning.

Recovery of DCE Components
Perform any necessary backup of DCE program libraries, configurations, and
optional data sets as a part of your regular installation backup and recovery
procedures. See z/OS DCE Administration Guide for information about DCE
recovery.

Chapter 2. Managing Operations 49

Managing Interprocess Communication (IPC)
Users can invoke applications that create IPC resources and wait for IPC
resources. IPC resources are not automatically released when a process terminates
or a user logs off. Therefore, it is possible that an IPC user may need assistance to:

v Remove an IPC resource using the shell’s ipcrm command

v Remove an IPC resource using the shell’s ipcrm command to release a user
from an IPC wait state

To display IPC resources and which user ID owns the resource, issue the following
command:
ipcs -w

To delete message queue IDs, use the ipcrm -q or ipcrm -Q command.

Another problem may occur when a user waits a long time for a resource such as
semaphores or a message receive. Removing a message queue ID or semaphore
ID brings any users in an IPC wait state out of the wait state. To display which
users are waiting for semaphores and message queues, issue:
ipcs -w

50 APAR OW54653 and OW54824

Chapter 3. MODIFY Command

Controlling UNIX System Services (z/OS UNIX)
You can use the MODIFY command to control UNIX System Services and to
terminate a z/OS UNIX process or thread. You can also use it to shut down z/OS
UNIX initiators and to request a SYSMDUMP for a process.

F BPXOINIT,{APPL=appl_data}
{DUMP=pid}
{FILESYS={DISPLAY[,FILESYSTEM=filesystemname]}[,OVERRIDE]}

|,ALL
|,EXCEPTION
|,GLOBAL

{DUMP }
{FIX }
{REINIT }
{RESYNC }
{UNMOUNT,FILESYSTEM=filesystemname }
{UNMOUNTALL }

{FORCE=pid[.tid]}
{RESTART=FORKS}
{SHUTDOWN={FILEOWNER | FILESYS | FORKINIT | FORKS}}
{TERM=pid[.tid]}

The parameters are:

BPXOINIT
The name of the job.

APPL=appl_data
Allows information to pass straight through to the application. appl_data is a
string that is passed back to the invoker in whatever format the application
expects it.

DUMP=pid
Requests a SYSMDUMP. A SIGDUMP signal is sent to the specified process.
pid is the decimal form of the process id to be terminated.

FILESYS=
Indicates that a file system diagnostic or recovery operation is to be performed.

This function is applicable only to a sysplex environment where Shared-HFS
has been enabled by specifying SYSPLEX(YES) in the BPXPRMxx parmlib
member named during system initialization. The command is intended to help
diagnose and correct certain Shared-HFS problems or errors that impact one or
more systems in a sysplex environment.

Use this command with caution, and only under the direction of an IBM
service representative.

To obtain the best results, issue this command at the system with the highest
Shared-HFS software service level. To determine which system is executing
with the highest Shared-HFS software service level, issue the command
F BPXOINIT,FILESYS=DISPLAY,GLOBAL

and select the system with the highest “LFS Version” value.

© Copyright IBM Corp. 1996, 2004 51

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Specify one of the following functions:

DISPLAY or D
Display the type BPXMCDS couple data set information relating to the
Shared-HFS file system. D is an alias of DISPLAY.

Specify one of the following display options:

ALL
Displays all file systems in the Shared-HFS hierarchy.

EXCEPTION
Displays all file systems that are in an exception state. A file system is
in an exception state if one of the following criteria is met:

v State = Mount in progress

v State = Unmount in progress

v State = Quiesce in progress

v State = Quiesced

v State = Unowned

v State = In recovery

v State = Unusable

v The file system state in the couple data set representation is
inconsistent with the local file system.

FILESYSTEM=filesystemname
Displays information for the specified file system.

GLOBAL
Displays the current sysplex state, consisting of the following items:

v The active systems in the sysplex (system name, logical file system
(LFS) version, verification status, recommended recovery action)

v The type BPXMCDS couple data set version number

v The minimum LFS version required to enter the BPXGRP sysplex
group

v The name of the system serving BRLM

v The device number of the last mounted file system

v The active ″serialization categories,″ which systems are associated
with each category, and the time that each ″serialization category″
was first started. The following serialization categories are defined:

– SYSTEMS PERFORMING INITIALIZATION

– SYSTEMS PERFORMING MOVE

– SYSTEMS PERFORMING QUIESCE

– SYSTEMS PERFORMING UNMOUNT

– SYSTEMS PERFORMING MOUNT RESYNC

– SYSTEMS PERFORMING LOCAL FILE SYSTEM RECOVERY

– SYSTEMS PERFORMING FILE SYSTEM TAKEOVER
RECOVERY

– SYSTEMS RECOVERING UNOWNED FILE SYSTEMS

– SYSTEMS PERFORMING REPAIR UNMOUNT

GLOBAL is the default display option.

MODIFY Command

52 APAR OW54653 and OW54824

DUMP
Initiate an SVC dump to capture all of the file system sub-records in the
active type BPXMCDS couple data set.

FIX
Perform automatic file system and couple data set diagnosis and repair. As
a part of the file system analysis, the system performs an analysis of
possible file system latch contention on each system in the sysplex. An
operator message identifies any possible problems. The system also
analyzes file system serialization data that is maintained in the couple data
set, and corrects it if an error is detected. It reports the status of the
analysis in an operator message.

Note that the system initiates a dump of critical file system resources as a
part of the FIX function. The dump is captured prior to the diagnosis and
repair. If, however, a dump was captured due to a FIX or DUMP function
that was initiated within the previous 15 minutes, the dump is suppressed.

Perform FIX prior to the UNMOUNTALL and REINIT functions.

REINIT
Re-initialize the file system hierarchy based on the ROOT and MOUNT
statements in the BPXPRMxx parmlib member used by each system during
its initialization. (Any changes to the BPXPRMxx parmlib member that are
made after the system’s initialization are not included in the REINIT
processing. The system uses the version of the file system parmlib
statements that is maintained in kernel storage. It does not re-process the
parmlib member.)

Note that the system where the MODIFY command is issued will become
the file system server to those file systems common to all systems in the
sysplex (such as the ROOT file system) unless the SYSnAME() parameter
is specified on the parmlib MOUNT statement.

The intended use of this function is to re-initialize the file system hierarchy
after an UNMOUNTALL has been performed. However, you can issue
REINIT at any time; those file systems that are already mounted will not be
impacted when REINIT processes the parmlib mount statements.

Always issue the FIX function before performing the REINIT function.

RESYNC
Perform a file system hierarchy check on all systems. If a system has not
mounted a file system that is active in the Shared-HFS hierarchy, it is
mounted locally and thus made available to local applications.

UNMOUNT
Unmount the file system specified by the filesystem= parameter. The file
system cannot have any active mount points for other file systems. You
must unmount those file systems first.

UNMOUNTALL
Unmount all file systems in the sysplex file system hierarchy, including the
root file system. When processing is complete, mount SYSROOT on all
systems.

Always issue the FIX function before performing the UNMOUNTALL
function.

OVERRIDE
Normally only one MODIFY command for a FILESYS= function canbe
active on each system. Additionally, only one instance of the MODIFY

MODIFY Command

Chapter 3. MODIFY Command 53

command in the sysplex can be active for the FIX, UNMOUNT,
UNMOUNTALL, and REINIT functions. If you specify the OVERRIDE
parameter, the system accepts multiple invocations of this command on
each system for the DISPLAY, DUMP, and RESYNC functions. Note,
however, that the second invocation may be delayed.

The primary intent of the OVERRIDE parameter is to allow issuance of the
DISPLAY functions while there is still a MODIFY in progress and the
MODIFY appears to be delayed.

FORCE=
Indicates that the signal interface routine cannot receive control before the
thread is terminated.

pid.tid
pid is the decimal form of the process id to be terminated. tid is the
hexadecimal form of the thread id to be terminated.

RESTART=FORKS
Enables the system to resume normal processing. Suspended dub requests are
resumed.

SHUTDOWN=FILEOWNER
Moves or unmounts the z/OS UNIX file systems. The system is disabled as a
future file system owner via move or recovery operations until z/OS UNIX has
been recycled. New mounts (where this system is designated as the file owner)
are not blocked.

SHUTDOWN=FILESYS
Moves or unmounts the z/OS UNIX file systems.

SHUTDOWN=FORKINIT
Shuts down the z/OS UNIX initiators. Normally, these initiators shut themselves
down in 30 minutes. Attempts to purge JES2 (command= P JES2) cannot
complete until z/OS UNIX initiators have shut down.

SHUTDOWN=FORKS
Requests a shutdown of the fork() service by preventing future forks and
non-local spawns. The kernel cannot obtain additional WLM fork initiators for
fork and spawn. It attempts to terminate all WLM fork initiator address spaces
that are running processes created by fork or non-local spawn. All other
services remain “up”, but any new dub requests are suspended until the fork()
service is restarted.

TERM=
Indicates that the signal interface routine can receive control before the thread
is terminated.

pid.tid
pid is the decimal form of the process id to be terminated. tid is the
hexadecimal form of the thread id to be terminated.

Example 1

To display process information for a process id of ’117440514’ enter:
DISPLAY OMVS,pid=117440514

BPXO040I 14.16.58 DISPLAY OMVS 177
OMVS 000E ACTIVE
USER JOBNAME ASID PID PPID STATE START CT_SECS
MEGA TC1 0021 117440514 117440515 HKI 14.16.14 .170

LATCHWAITPID= 0 CMD=ACEECACH

MODIFY Command

54 APAR OW54653 and OW54824

|
|
|
|
|

|

THREAD_ID TCB@ PRI_JOB USERNAME ACC_TIME SC STATE
0496146000000000 009E0438 OMVS .050 PTJ KU
04961D0800000001 009D5E88 OMVS WELLIE1 .002 SLP JSN
049625B000000002 009D8798 OMVS WELLIE1 .003 SLP JSN
04962E5800000003 009D5090 OMVS WELLIE1 .012 SLP JSN
0496370000000004 009D5228 OMVS WELLIE1 .011 SLP JSN
04963FA800000005 009D5A88 OMVS WELLIE1 .010 SLP JSN
0496485000000006 009D8048 OMVS WELLIE1 .011 SLP JSN
049650F800000007 009D81E0 OMVS WELLIE1 .011 SLP JSN
049659A000000008 009D8378 OMVS WELLIE1 .011 SLP JSN
0496624800000009 009D8510 OMVS WELLIE1 .011 SLP JSN
04966AF00000000A 009D8930 OMVS WELLIE1 .030 SLP JSN

f bpxoinit,force=117440514.04962E5800000003
BPXM027I COMMAND ACCEPTED.

f bpxoinit,term=117440514.0496624800000009
BPXM027I COMMAND ACCEPTED.

Example 2

To shut down the fork() service, enter:
F BPXOINIT,SHUTDOWN=FORKS
BPXIxxxE FORK SERVICE HAS BEEN SHUTDOWN SUCCESSFULLY. ISSUE F
BPXOINIT,RESTART=FORKS TO RESTART FORK SERVICE.

Example 3

To restart the fork() service, enter:
F BPXOINIT,RESTART=FORKS

Example 4

Sample outputs of the MODIFY BPXOINIT,FILESYS command:

v F BPXOINIT,FILESYS=DISPLAY,GLOBAL
SY1 BPXM027I COMMAND ACCEPTED.
SY1 BPXF041I 2000/05/12 11.19.18 MODIFY BPXOINIT,FILESYS=DISPLAY,GLOBAL
SYSTEM LFS VERSION ---STATUS--------------------- RECOMMENDED ACTION
SY1 1. 1. 0 VERIFIED NONE
SY2 1. 1. 0 VERIFIED NONE
SY3 1. 1. 0 VERIFIED NONE
CDS VERSION= 1 MIN LFS VERSION= 1. 1. 0
BRLM SERVER=SY3 DEVICE NUMBER OF LAST MOUNT= 11
SY1 BPXF040I MODIFY BPXOINIT,FILESYS PROCESSING IS COMPLETE.

v F BPXOINIT,FILESYS=DISPLAY,FILESYSTEM=POSIX.SY4.HFS

SY1 BPXM027I COMMAND ACCEPTED.
SY1 BPXF035I 2000/05/12 11.55.34 MODIFY BPXOINIT,FILESYS=DISPLAY
--------------NAME-------------------------- DEVICE MODE
POSIX.SY4.HFS 23 RDWR

PATH=/SY4
PARM=SYNC(04)
STATUS=ACTIVE LOCAL STATUS=ACTIVE
OWNER=SY1 RECOVERY OWNER=SY1 AUTOMOVE=Y PFSMOVE=Y
TYPENAME=HFS MOUNTPOINT DEVICE= 12
MOUNTPOINT FILESYSTEM=POSIX.SYSPLEX9.HFS1
ENTRY FLAGS=90000000 FLAGS=40000000 LFSFLAGS=08000000
LOCAL FLAGS=40000000 LOCAL LFSFLAGS=2A000000

SY1 BPXF040I MODIFY BPXOINIT,FILESYS PROCESSING IS COMPLETE.

v F BPXOINIT,FILESYS=DISPLAY,FILESYSTEM=POSIX.ZFS.ETC

MODIFY Command

Chapter 3. MODIFY Command 55

SY1 BPXM027I COMMAND ACCEPTED.
SY1 BPXF035I 2000/05/12 11.55.34 MODIFY BPXOINIT,FILESYS=DISPLAY
--------------NAME-------------------------- DEVICE MODE
POSIX.ZFS.ETC 23 RDWR

AGGREGATE NAME=POSIX.ZFS.ETC
PATH=/SY1/etc
PARM=SYNC(04)
STATUS=ACTIVE LOCAL STATUS=ACTIVE
OWNER=SY1 RECOVERY OWNER=SY1 AUTOMOVE=Y PFSMOVE=Y
TYPENAME=ZFS MOUNTPOINT DEVICE= 12
MOUNTPOINT FILESYSTEM=POSIX.SYSPLEX9.ZFS1
AGGREGATE=POSIX.ZFS.ETC
ENTRY FLAGS=90000000 FLAGS=40000000 LFSFLAGS=08000000
LOCAL FLAGS=40000000 LOCAL LFSFLAGS=2A000000

SY1 BPXF040I MODIFY BPXOINIT,FILESYS PROCESSING IS COMPLETE.

For zFS file systems, the display includes an aggregate file system name,
indicating membership in a data set containing multiple file systems. Aggregates
provide member file systems with a common pool of disk space.

MODIFY Command

56 APAR OW54653 and OW54824

Appendix A. Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS™ enable users to:

v Use assistive technologies such as screen-readers and screen magnifier
software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies
Assistive technology products, such as screen-readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using it to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User’s Guide, and z/OS ISPF User’s Guide Volume I for
information about accessing TSO/E and ISPF interfaces. These guides describe
how to use TSO/E and ISPF, including the use of keyboard shortcuts or function
keys (PF keys). Each guide includes the default settings for the PF keys and
explains how to modify their functions.

© Copyright IBM Corp. 1996, 2004 57

58 APAR OW54653 and OW54824

Appendix B. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1996, 2004 59

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Mail Station P300
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

If you are viewing this information softcopy, the photographs and color illustrations
may not appear.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

BookManager
CICS
CICS/ESA
DB2
DFS
DFSMS
DFSMSdfp
DFSMSdss
DFSMShsm
DFSMS/MVS
IBM
IBMLink
Language Environment
Library Reader
MVS

NetView
OpenEdition
OS/390
Parallel Sysplex
RACF
Resource Link
SAA
S/390
SecureWay
VTAM
WebSphere
z/OS
z/OS.e
z/Series

Lotus, Domino, and Lotus Go Webserver are trademarks of the Lotus Development
Corporation in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

NetView is a trademark of International Business Machines Corporation or Tivoli
Systems Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, and service names may be trademarks or service marks
of others.

60 APAR OW54653 and OW54824

v ANSI (American National Standards Institute)
v IEEE (Institute of Electrical and Electronics Engineers)
v POSIX (Institute of Electrical and Electronics Engineers)
v Tivoli (Tivoli Systems)

Appendix B. Notices 61

62 APAR OW54653 and OW54824

����

Program Number: 5694-A01, 5655-G52

Printed in U.S.A.

	Contents
	About this document
	Chapter 1. Shared HFS in a Sysplex
	What Does Shared HFS Mean?
	How the End User Views the HFS
	Summary of New HFS Data Sets
	Comparing File Systems in Single System Pre-OS/390 UNIX V2R9 and OS/390 UNIX V2R9 or Later Environments
	File Systems in Single System Pre-OS/390 UNIX V2R9 Environments
	File Systems in Single System OS/390 UNIX V2R9 or Later Environments

	File Systems in OS/390 UNIX V2R9 or Later Sysplex Environments
	Procedures for Establishing Shared HFS in a Sysplex
	Creating the Sysplex Root HFS Data Set
	Creating the System-Specific HFS Data Sets
	Mounting the Version HFS
	Creating an OMVS Couple Data Set (CDS)
	Updating COUPLExx to Define the OMVS CDS to XCF

	Customizing BPXPRMxx for Shared HFS

	Sysplex Scenarios Showing Shared HFS Capability
	Scenario 1: First System in the Sysplex
	Scenario 2: Multiple Systems in the Sysplex – Using the Same Release Level
	Scenario 3: Multiple Systems in a Sysplex Using Different Release Levels

	Keeping Automount Policies Consistent on All Systems in the Sysplex
	Moving File Systems in a Sysplex
	Shared HFS Implications During System Failures and Recovery
	Movement of data

	Shared HFS Implications during a Planned Shutdown of z/OS UNIX
	File System Initialization
	Locking Files
	Preparing File Systems for Shutdown
	Mounting File Systems Using NFS Client Mounts
	Tuning z/OS UNIX Performance in a Sysplex
	DFS Considerations

	Chapter 2. Managing Operations
	Stopping Processes
	Terminating a Process with the MODIFY Command
	Terminating a Process with the kill Command
	Terminating a Process with the CANCEL Command

	Terminating Threads with the MODIFY Command
	Shutting Down z/OS UNIX
	Planned Shutdowns
	Partial Shutdowns (for JES2 Maintenance)
	File System Shutdown

	Dynamically Changing the BPXPRMxx Parameter Values
	Dynamically Changing Certain BPXPRMxx Parameter Values
	MAXPROCSYS
	MAXPTYS
	IPCMSGNIDS and IPCSEMNIDS
	IPCSHMNIDS and IPCSHMSPAGES

	Dynamically Switching to Different BPXPRMxx Members
	Dynamically Adding FILESYSTYPE Statements in BPXPRMxx
	Activating the HFS File System for the First Time
	Activating a Single Sockets File System for the First Time
	Activating Multiple Sockets File Systems for the First Time with Common INET
	Increasing the MAXSOCKETS Value
	Adding Another Sockets File System to an Existing Common INET Configuration

	Tracing Events in z/OS UNIX
	Tracing DFSMS/MVS Events
	Re-creating Problems for IBM Service

	Displaying the Status of the Kernel
	Displaying the Status of BPXPRMxx Parmlib Limits

	Taking a Dump of the Kernel and User Processes
	Displaying the Kernel Address Space
	Displaying Process Information
	Displaying Global Resource Information
	Allocating a Sufficiently Large Dump Data Set
	Taking the Dump
	Reviewing Dump Completion Information

	Recovering from a Failure
	System Services Failure
	File System Type Failure
	File System Failure
	Recovery of DCE Components

	Managing Interprocess Communication (IPC)

	Chapter 3. MODIFY Command
	Controlling UNIX System Services (z/OS UNIX)

	Appendix A. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface

	Appendix B. Notices
	Trademarks

