
A sysprog view of z/OS 64A sysprog view of z/OS 64--
bit Virtual Application bit Virtual Application

Support Support

Thomas PetrolinoThomas Petrolino
IBM PoughkeepsieIBM Poughkeepsie
tapetro@us.ibm.comtapetro@us.ibm.com

Copyright International Business Machines Corporation 2004, 2006

Copyright IBM Corp. 2004, 2006

TrademarksTrademarks
The following are trademarks of the International Business Machines Corporation in the United States and/or other countries.

CICS®
Hiperspace
IMS
Language Environment®
MVS
OS/390®
z/Architecture
z/OS®
z/Series®

® Registered trademarks of IBM Corporation

The following are trademarks or registered trademarks of other companies.
Java and all Java-related trademarks and logos are trademarks of Sun Microsystems, Inc., in the United States and other countries.
Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.
Microsoft, Windows and Windows NT are registered trademarks of Microsoft Corporation.
UNIX is a registered trademark of The Open Group in the United States and other countries.
SET and Secure Electronic Transaction are trademarks owned by SET Secure Electronic Transaction LLC.

* All other products may be trademarks or registered trademarks of their respective companies.

Notes:
Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput
that any user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage
configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput improvements equivalent to the performance ratios
stated here.
IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.
All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may
have achieved. Actual environmental costs and performance characteristics will vary depending on individual customer configurations and conditions.
This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be
subject to change without notice. Consult your local IBM business contact for information on the product or services available in your area.
All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.
Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm
the performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those
products.
Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

Copyright IBM Corp. 2004, 2006

AgendaAgenda

Overview
64-bit Application Stack
Application Environment

Migration/coexistence
Installation

Run time options
64 bit DLL Support
Programming environment

Compiler support

Pre-initialized Environment
64 bit exploitation considerations
Appendix

Copyright IBM Corp. 2004, 2006

High level languages need to address storage above the
2G Bar
ƒBoth application programs and middleware

Solution: Language Environment creates a separate
64bit run-time environment
ƒ The support is for C/C++ (and Assembler) only.

OverviewOverview

Copyright IBM Corp. 2004, 2006

Using 64bit Virtual support, the customer can
ƒAccess data above the 2G Bar
ƒAllocate large data areas (even those in excess of 2G)
ƒMore easily port applications from other 64bit platforms

Advantage:
ƒConsolidation of data within a single address space

(especially for databases and large buffer pools)
ƒManipulating large amounts data within storage

OverviewOverview

Middleware by IBM and Other Software
Suppliers

64-bit Virtual Basic Support z/OS
V1R2, V1R3 & V1R5

64-bit Real Support
z/OS V1R1(OS/390 R10)

64-bit Virtual C/C++ and Java
- z/OS V1R5 & V1R6

z/Architecture
zSeries 900

z/OS 64z/OS 64--bit virtual supportbit virtual support

Copyright IBM Corp. 2004, 2006

What are the 64What are the 64--bit virtual releases?bit virtual releases?

z/OS V1.2 - 9/2001 GA
basic 64-bit virtual

z/OS V1.3 - 3/2002 GA
can bind/load/execute AMODE64 assembler programs

z/OS V1.5 - 3/2004 GA
basic 64-bit shared virtual storage across address spaces
can experiment with compilation only for 64-bit C/C++
programs

z/OS V1.6 - 9/2004 GA
64-bit C/C++/Java programming environment
64-bit C/C++ compiler and debugger

64-bit Address Space Memory Map

The Bar

26
4

24
9

0

23
2

24
1

User Private

Shared Area

User Private

Reserved
Below 2GB 23

1

512TB (default shared
memory end address)

2TB (default shared memory
start address)

Program execution still below 2GB

Copyright IBM Corp. 2004, 2006

6464--bit Memory Objectbit Memory Object

Guard Area

Usable Area

1
megabyte
boundary

1
megabyte
boundary one

megabyte
multiple

one
megabyte
multiple

Memory Object

z/OS manages virtual storage above 2GBs differently. Memory
requests cause the creation of "memory objects" which impose
discipline on the virtual storage. It's not just bytes.

Copyright IBM Corp. 2004, 2006

64 bit Application Stack64 bit Application Stack

C/C++ Compiler
1.6 compiler produces amode 64 program objects
1.5 compiler only for test compiles to fix compile-time
problems. Does not produce object code for 64-bit.

Binder
require the z/OS 1.6 binder for 64 bit virtual programs

Unix System Services
64-bit API for standard UNIX functions in C/C++
New interfaces for 64-bit assembler code (BPX4*)

Copyright IBM Corp. 2004, 2006

64 bit Application Stack64 bit Application Stack (cont.)(cont.)

Runtime
V1R6 Language environment
C/C++/Assembler support available

Debugger
DBX is the only debugger available

z/OS Base (BCP)
various services provide 64-bit APIs where needed

most traditional MVS services do not support 64-bit mode

Copyright IBM Corp. 2004, 2006

With the addition of this 64-bit form of LE, the
Language Environment component of z/OS will consist
of three forms:
ƒBase form (31-Bit, EBCDIC, Standard LE linkage, Hex,

IEEE)
ƒXPLink form (31-Bit, EBCDIC, Enhanced ASCII, XPLink

linkage, Hex, IEEE)
ƒ64-Bit form (64-Bit, EBCDIC, Enhanced ASCII, XPLink

linkage, Hex (z/OS V1.7), IEEE)

OverviewOverview

Copyright IBM Corp. 2004, 2006

Application Environment

Copyright IBM Corp. 2004, 2006

Application EnvironmentApplication Environment

Hardware
z/Architecture (z/900 and later)

Software
z/OS 1.6
z/OS 1.6 C/C++ compiler
z/OS 1.6 Binder

Copyright IBM Corp. 2004, 2006

InstallationInstallation

Prerequisites for installation:
New members CELQ* shipped in existing Language Environment

datasets:
SCEERUN2
SCEEBND2
SCEESAMP

A new CELQDOPT usermod is available to customize default run-time
options for AMODE 64 applications
To enable Language Environment AMODE 64 support you must set

MEMLIMIT
U4093 RC=548 if MEMLIMIT is not set
see Appendix for details to set MEMLIMIT

Publications References, e.g.:
SA22-7564 z/OS V1R6.0 Language Environment Customization

Copyright IBM Corp. 2004, 2006

Migration and CoexistenceMigration and Coexistence
24-bit and 31-bit support is not affected
Existing applications will continue to run and be supported
LE will continue to enhance and ship existing 24/31 bit libraries
A new library was added to provide the 64-bit virtual support
There is no support for bimodal applications
ƒ 64-bit and 31-bit programs must run in separate processes.

ƒThe appropriate Run Time Library, 31-bit or 64-bit, is loaded at
execution.

ƒAll High Level Language code within a process must run in a single
mode.

ƒAssembler language routines can switch modes if desired, but must not
invoke the Run Time Library in the "other mode".

ƒCommunications between 31-bit and 64-bit processes is through the
standard Unix interprocess functions.

Copyright IBM Corp. 2004, 2006

Which RunWhich Run--time will be used?time will be used?

The form of LE selected is based on the name of the
LE bootstrap routine that is referenced in the first
csect emitted by the compiler.
ƒIn 64-Bit LE, the C compiler emits a csect CELQSTRT

instead of CEESTART.
ƒ The names of the bootstrap routines are as follows:

ƒCEEROOTA - Base form of LE
ƒCEEROOTD - XPLink form of LE
ƒCELQBST - 64-Bit form of LE

The application load module
ƒ fewer library modules than an LE-enabled application module

today (details in appendix)
ƒ All library-provided 64-bit CSECTs renamed to CELQ*

Copyright IBM Corp. 2004, 2006

Which RunWhich Run--time will be used?time will be used?

AMODE 31 or AMODE 24 main program
The “regular” Language Environment run-time will be

loaded and initialized
These programs may have CEESTART as the entry point

with CEEROOTA (non-XPLINK) and
CEEROOTD(XPLINK) as the boot strap routines

AMODE 64 main program
The AMODE 64 specific Language Environment run-time

will be loaded and initialized (CELQLIB)
AMODE 64 main programs will have CELQSTRT as the

entry point and CELQBST as the boot strap routine

Copyright IBM Corp. 2004, 2006

64 bit form of Language Environment supports
data above the ''bar' (>= 2G address)

user stack above the 'bar'
user heap above the 'bar'
ƒcapability to obtain heap below the 'bar'

data objects are obtained in Megabyte increments
Writable Static Area (WSA) above the 'bar'
code execution below the 'bar' (< 2G address)

no execution support above the 'bar'

C Runtime environment is always initialized
XPLink is the only linkage model for 64-bit.

For the initial release (R6)
Supported languages are C, C++ and LE conforming assembler

Amode64 EnvironmentAmode64 Environment

Copyright IBM Corp. 2004, 2006

Run Time Options

Copyright IBM Corp. 2004, 2006

LE Runtime OptionsLE Runtime Options

The set of supported Runtime options is reduced
and some defaults are changed when LP64 is
specified.
New run-time options to support both stack and
heap storage above-the-bar

heap64, stack64, threadstack64, heappools64,
ioheap64, libheap64

Options not required for 64-bit support have
been removed (i.e. ALL31, RTLS)

if 31-bit only option specified, message issued
See appendix for details

Copyright IBM Corp. 2004, 2006

ƒWhere options can be specified for LP64
CELQDOPT - Installation wide amode 64 run-time options (similar to
CEEDOPT)

link-edited with CELQLIB
CELQUOPT- Application specific amode 64 run-time options (similar to
CEEUOPT)

link-edited with user application
System defaults - CEEPRMxx parmlib member, SETCEE command (V1.7)
#pragma runopts - C program source, C/C++ compiler builds CELQUOPT
included with program
DD:CEEOPTS - Execution time run-time options from data set (V1.7)
PARM card - PARM="run-time options/program parms"
_CEE_RUNOPTS Environment variable for spawn/exec family of functions
(USS)

RunRun--Time Options for AMODE64Time Options for AMODE64

Copyright IBM Corp. 2004, 2006

Run Time OptionsRun Time Options

Propagation via spawn() and exec()
When going from 31-Bit to 64-Bit and vice versa through the
spawn or exec functions, Language Environment rebuilds the
_CEE_RUNOPTS environment variable as a means to propagate
run-time options to the new program.
In the situations where 31-Bit specific options or 64-Bit specific
options would be passed across to the other mode, options
processing will ignore these options.
No messages will be issued. For example, when the STACK
option is sent across from 31-Bit to 64-Bit, it will be ignored. This
is because the 64-Bit program uses the STACK64 option.

No attempt to convert the 31-Bit option to the new 64-Bit option
will be performed.

Copyright IBM Corp. 2004, 2006

Programming Environment
C data model and data neutrality
Amode64 APIs
External control structures
Exception handling

Copyright IBM Corp. 2004, 2006

C/C++ Data ModelC/C++ Data Model

ILP32 used for AMODE24/31 programs
integer 32 bits (4 bytes)
long 32 bits (4 bytes)
pointer 32 bits (4 bytes)

LP64 used for AMODE64 programs
integer 32 bits (4 bytes)
long 64 bits (8 bytes)
pointer 64 bits (8 bytes)

NOTE: with ILP32 it was “ok” to assign pointers to
integers and long to integers. With LP64 this is no
longer the case.

Copyright IBM Corp. 2004, 2006

64 bit C/C++ Compiler Support 64 bit C/C++ Compiler Support

The default addressing mode is 31-bit
The addressing mode is controlled by the LP64
compiler option
There is a warn64 option allows to detect portability
errors from 32-bit to 64-bit

e.g truncation, wrong results, implicit conversions of data types
due to casting,etc.

The only object file format supported is GOFF
Must use PDSE or z/OS UNIX file system
The only linkage convention is XPLINK
Defines _LP64 feature test macro

Copyright IBM Corp. 2004, 2006

C/C++ Support C/C++ Support -- compiler compiler

OS-linkage
OS_NOSTACK
#pragma linkage(func_name,OS_NOSTACK)
provides 64 bit OS linkage
144 byte savearea pointed by register 13 (on
application's 64 bit stack)
Register 1 pointing to OS style parameter list

great for calling assembler stubs from a C/C++
program to invoke system services

e.g C system APIs

Copyright IBM Corp. 2004, 2006

C Data NeutralityC Data Neutrality

The objective is to have common source code.
The code can then be compiled 31-bit or 64-bit based on the
LP64 compiler option.
The _LP64 feature test macro can be used for mode-specific code.

When you have hard coded offsets or want different logic flow

Function prototype are highly recommended since the default
return type is still int.
The compiler reserves two new pointer qualifiers, __ptr32 and
__ptr64. __ptr32 can be used to define a 31-bit pointer in a 64-bit
program.
Structures and control blocks have different lengths and field
offsets when compiled for 31 bit vs. 64 bit

Copyright IBM Corp. 2004, 2006

Data neutrality issuesData neutrality issues
What to look out for when making the code data
neutral....

Loss or truncation of data due to size/type mismatch
Assigning pointer to integer
casting of long, int, pointer
constant definition - max range
implicit vs. explicit padding
doubleword address alignment
array sizes, hardcoded offsets
size_t and return values or input parms
Lots of documentation out there
The WARN64 compiler option can be used to have the
compiler identify potential problem areas.

Copyright IBM Corp. 2004, 2006

AMODE64 Conforming Assembler AMODE64 Conforming Assembler

New AMODE 64 macros are available
CELQPRLG Entry (prolog) macro

EXPORT=YES to export function

CELQEPLG Exit (epilog) macro
CELQCALL Call macro

Only supports “call-by-reference”

Floating point parameters not allowed
ƒ You may code that based on XPLINK design

CEEPDDA define imported/exported data
CEEPLDA locate imported/exported data

Copyright IBM Corp. 2004, 2006

Programming EnvironmentProgramming Environment

Stack and User heap are above the bar
increments are on Meg boundaries
Maximum stack size specified
Overall above the bar storage allocation limited by
MEMLIMIT specification

APIs are also provided in C/C++ to obtain
storage below-the-bar and below-the-line

__malloc31() - obtain 31-bit addressable storage
__malloc24() - obtain 24-bit addressable storage

Copyright IBM Corp. 2004, 2006

AMODE64 APIsAMODE64 APIs

Callable services are not supported in their current form
(CEExxxx). C/C++ functions are used instead.

In some cases a similar C API already existed
CEEGTST and malloc()

In some cases a new C API is introduced
CEE3ABD and __cabend()

Most require __le_api.h be included at compile time
In some cases there is no corresponding C API or the function is

not supported in AMODE 64.
Additional APIs will be added as required

LE anchor is changed, from CAA to LAA, and R12 not
required to contain address of CAA
See Appendix for more details.

Copyright IBM Corp. 2004, 2006

AMODE64 Message HandlingAMODE64 Message Handling

Message Handling
Messages written using Language Environment services will

now be sent to stderr
When stderr is redirected so are these messages

stderr will default to the DD SYSOUT except in the USS shell
The MSGFILE run-time option is not honored

The following services are available to the user to write to
the LE style message (see Appendix):

__le_message_add_insert()
__le_message_get()
__le_message_get_and_write()
__le_message_write()

Copyright IBM Corp. 2004, 2006

AMODE64 I/O SupportAMODE64 I/O Support

Non-message Language Environment AMODE 64 I/O support
All access methods supported by the AMODE 31 C/C++ run-

time continue to be supported… except
HFS I/O supports user buffers allocated above the bar
ƒ All other I/O must use system/library buffers below the bar

HIPERSPACE is not supported for AMODE 64
ƒ All requests to open a file “type=memory(hiperspace)” will be
treated as a regular memory file

Global streams are not supported (not required without
nested enclaves)

Copyright IBM Corp. 2004, 2006

AMODE64 user exitAMODE64 user exit

Language Environment AMODE 64 User Exit
The only user exit supported in AMODE 64 is the

abnormal termination user exit (ATUE).
New parts (SCEESAMP)

CELQXTAN AMODE 64 ATUE CSECT
CELQWEXT Sample job to install exit
CEEQWATX Sample ATUE exit

The exit will be called AMODE 64 and XPLINK
Must be LE-conforming assembler
R1 contains the address of the CIB

Copyright IBM Corp. 2004, 2006

LE Exception HandlingLE Exception Handling

Provide support for a 'stack frame' (thread)
based exception handler in 64-Bit LE.

Multiple Exception Handlers may be registered for a given thread. However,
only one may be registered per stack frame
A maximum of one Exception Handler is active at any point in time
Exception Handlers are only driven for program exceptions and abends
The Exception Handler should not 'return' to LE. If it does, the thread or the
environment will be abnormally terminated

Two new APIs allow one to register and unregister an
Exception Handler

__set_exception_handler() -- Register an Exception Handler Routine
__reset_exception_handler() -- Unregister an Exception Handler Routine

Copyright IBM Corp. 2004, 2006

AMODE 64 DLLs

Copyright IBM Corp. 2004, 2006

AMODE 64 DLL SupportAMODE 64 DLL Support

A DLL runs in the environment of the code that links to it
Either AMODE 31 or AMODE 64

It is not possible to create a DLL which will run in both
AMODE 31 and AMODE 64

You may have common source

Therefore, as with most other platforms, 2 separate DLLs
are required to support AMODE31 applications and
AMODE 64 applications

DLL providers may need to provide both a 31-bit and
64-bit DLL to support both modes.

Assembler DLL support is also now available.

Copyright IBM Corp. 2004, 2006

ƒƒ Assembler DLL Support Assembler DLL Support -- newnew

Support is being provided to:
Export Assembler entry points as DLL functions
Export Assembler data as DLL data
Import DLL functions into Assembler code
Import DLL data into Assembler code

Support provided for these environments:
31-bit "standard" LE
31-bit XPLINK LE
64-bit LE

XPLINK Asm parameter passing restricted to "by
reference"

Copyright IBM Corp. 2004, 2006

Pre-initialized Environments

Copyright IBM Corp. 2004, 2006

AMODE64 PreAMODE64 Pre--InitializationInitialization

Language Environment AMODE 64 Pre-Initialization support
(PIPI)

CELQPIPI (alias for CELQLIB) resides in SCEERUN2
supports unauthorized, problem state programs only

Three pieces
A non-LE conforming assembler driver (AMODE 64)
ƒ User written program to control the environment
ƒ Calls CELQPIPI with 64bit OS linkage (not XPLINK)

A PIPI Table
ƒ Identifies the routines to be executed in the environment
ƒ Routines must be AMODE 64 (XPLINK)

CELQPIPI services
ƒ Calls from the assembler driver use the services to control the
environment

Copyright IBM Corp. 2004, 2006

AMODE64 PreAMODE64 Pre--InitializationInitialization

Language Environment AMODE 64 Pre-Initialization
support (PIPI)

Two types of PIPI environments
Main
ƒ A new pristine environment is created for each call
ƒ Run-time options can be specified on each call
ƒ Support for multiple main environments

–only one can be POSIX(ON)

Sub
ƒ Best performance
ƒ Environment is left in state of previous call
ƒ Run-time options can only be specified at init
ƒ Routine must be declared "fetchable"
ƒ Call sub by address supported

Copyright IBM Corp. 2004, 2006

64 bit Debugging

Copyright IBM Corp. 2004, 2006

Debugger supportDebugger support
CEEDUMP

Content of CEEDUMP is being reduced in this environment.
SYSMDUMPs and IPCS verb exits will provide equivalent or greater

debugging capabilities
VERBEXIT available for LE called LEDATA

The following is a list of what will be in a CEEDUMP:
Traceback of the routines on each stack
Condition information
Entry information
The entire content of each stackframe, including formatting of

certain sections
The data around registers (96 bytes)
The run-time options report
The storage diagnostic report (if the HEAPCHK option was

active)

Copyright IBM Corp. 2004, 2006

Debugger SupportDebugger Support
Debugger support

IBM Debuggers – DBX
A 64 bit application capable of debugging 31bit and 64bit
applications
uses industry standard DWARF architecture
Supports MVS 64 bit binary dumps

Non-IBM Debuggers are supported
Debug event handler – CELQVDBG

Is a DLL with an exported function called CELQVDBG
May be loaded from PDS or HFS (new for AMODE 31 too)
Controlled by environment variable
ƒ __CEE_DEBUG_FILENAME64

Separate presentation on 64bit debugging

Copyright IBM Corp. 2004, 2006

64 bit Exploitation Considerations

Copyright IBM Corp. 2004, 2006

64 bit Exploitation considerations64 bit Exploitation considerations

Pure C/C++ application
compile and build C/C++ application code w/LP64

make data neutral changes where needed
add conditional 64 bit logic to take advantage of larger
addressable storage in same address space (_LP64 FTM)

package the 64 bit application / DLL
same name in different library/path
different name in same library/path

Copyright IBM Corp. 2004, 2006

6464--bit virtual exploitation considerations bit virtual exploitation considerations

64-bit virtual for large data buffer
create a new AMODE 64 program

do you have all the necessary 64-bit APIs support?
if not, may end up with a lot of amode switching

use existing AMODE 31 program and switch
amode as required

may end up with a lot of amode switching

64-bit API support considerations - mixed HLL
use a thin layer of AMODE 64 code if all code
cannot be converted to AMODE 64
parameter list can be 31-bit or 64-bit

avoid additional data move

different API name/same API name consideration

Copyright IBM Corp. 2004, 2006

6464--bit virtual exploitation considerations bit virtual exploitation considerations

What if all your code cannot be converted to
AMODE 64?

interface must be 64 bit
can build parameter list below the bar (31 bit
storage)

switch to assembler
must be 64 bit on entry
switch to 31 bit and call the 31 bit code

the 31 bit code cannot run on the same stack
ƒsince stack is above the bar

31 bit code cannot call the runtime
switch back to 64 bit
return to mainline application code

Copyright IBM Corp. 2004, 2006

Appendix

Copyright IBM Corp. 2004, 2006

Appendix Appendix -- PublicationsPublications

New book
z/OS V1R6.0 Language Environment Programming Guide for 64-bit Virtual Addressing

Mode, SA22-7569

Existing books which include AMODE 64 information
SA22-7567 z/OS V1R6.0 Language Environment Concepts Guide
SA22-7564 z/OS V1R6.0 Language Environment Customization
GA22-7560 z/OS V1R6.0 Language Environment Debugging Guide
SA22-7562 z/OS V1R6.0 Language Environment Programming Reference
SA22-7566 z/OS V1R6.0 Language Environment Run-time Messages
GA22-7565 z/OS V1R6.0 Language Environment Migration Guide
SA22-7568 z/OS V1R6.0 Language Environment Vendor Interfaces
SA22-7563 z/OS V1R6.0 Language Environment Writing ILC applications
SA22-7821 z/OS V1R6.0 C/C++ Run-time Library Reference

Red Paper
z/OS 64-bit C/C++ and Java Programming Environment -
http://www.redbooks.ibm.com/abstracts/redp9110.html

Copyright IBM Corp. 2004, 2006

AMODE 64 load modules AMODE 64 load modules

64 bit module 31 bit module source function

CELQSTRT CEESTART Compiler emitted module entry point
CELQMAIN CEEMAIN Compiler emitted address of main(), env., inpl
CELQFMAN CEEFMAIN Compiler emitted addr of FETCHABLE main()
CELQBST CEEROOTA/B

CEEROOTD/ CEEINT/
CEEBPIRA

SCEEBND2/SCEELKED Bootstrap module.

CELQETBL CEEBETBL SCEEBND2/SCEELKED Externals Routine Table
CELQSG03 CEESG003 SCEEBND2/SCEELKED C Signature CSECT

CELQLLST CEEBLLST SCEEBND2/SCEELKED Language List Table

CELQINPL EDCINPL SCEEBND2/SCEELKED Initialization parameter list
CELQTRM CEEBTRM SCEEBND2/SCEELKED termination stub

All forms of Language Environment will continue to reside in datasets beginning
with SCEE
ƒAll parts associated with AMODE 64 support will start with the CELQ prefix

Copyright IBM Corp. 2004, 2006

RunRun--Time Options for Amode64Time Options for Amode64

Some AMODE 24/31 run-time options remain
Several AMODE 64 specific run-time options are

added
HEAPPOOLS64 (HP64)

HEAP64 (H64)
IOHEAP64 (IH64)
LIBHEAP64 (LH64)
STACK64 (S64)
THREADSTACK64 (TS64)

The list of available run-time options is reduced

Copyright IBM Corp. 2004, 2006

RunRun--Time Options for Amode64Time Options for Amode64

Existing run-time options supported in AMODE 64
All other existing run-time options are not supported
* indicates some suboptions have changed or are not
supported

ARGPARSE/NOARGPARSE
ENVAR
EXECOPTS/NOEXECOPS
FILETAG
HEAPCHK
INFOMSGFILTER
NATLANG
POSIX
PROFILE

REDIR/NOREDIR
RPTOPTS
RPTSTG
STORAGE *
TERMTHDACT *
TEST/NOTEST
TRACE *
TRAP

Copyright IBM Corp. 2004, 2006

RunRun--time options time options

HEAP64(init64,inc64,disp64,init31, inc31, disp31,
init24, inc24,

disp24)
Controls user heap storage

init64 Initial size of above the bar storage (in MB)
inc64 Increment size of above the bar storage (in MB)
disp64 KEEP or FREE (how to treat 64 increments)
init31 Initial size of above the line storage (in bytes)
inc31 Increment size of above the line storage (bytes)
disp31 KEEP or FREE (how to treat 31 increments)

init24 Initial size of below the line storage (in bytes)

inc24 Increment size of below the line storage (bytes)
disp24 KEEP or FREE (how to treat 24 increments)

Copyright IBM Corp. 2004, 2006

RunRun--time options time options

HEAPPOOLS64(ON|OFF,cell1 size, cell1 count,…,cell12
size, cell12 count)

ON|OFF Are heappools on?
cellX size Size of cells with this pool (8 to 64K)
cellX count Number of cells in this pool (min 4)
NOTE: Different from AMODE 24/31 (HEAPPOOLS) – was

percentage (not changing in AMODE 24/31)

Copyright IBM Corp. 2004, 2006

RunRun--time options time options

IOHEAP64(init64,inc64,disp64,init31, inc31, disp31,
init24, inc24, disp24)

Controls I/O storage for the run-time
init64 Initial size of above the bar storage (in MB)
inc64 Increment size of above the bar storage (in MB)
disp64 KEEP or FREE (how to treat 64 increments)
init31 Initial size of above the line storage (in bytes)
inc31 Increment size of above the line storage (bytes)
disp31 KEEP or FREE (how to treat 31 increments)

init24 Initial size of below the line storage (in bytes)

inc24 Increment size of below the line storage (bytes)
disp24 KEEP or FREE (how to treat 24 increments)

Copyright IBM Corp. 2004, 2006

RunRun--time options time options

LIBHEAP64(init64,inc64,disp64,init31, inc31, disp31,
init24, inc24,

disp24)
Controls heap storage usage for the runtime (non I/O)

init64 Initial size of above the bar storage (in MB)
inc64 Increment size of above the bar storage (in MB)
disp64 KEEP or FREE (how to treat 64 increments)
init31 Initial size of above the line storage (in bytes)
inc31 Increment size of above the line storage (bytes)
disp31 KEEP or FREE (how to treat 31 increments)

init24 Initial size of below the line storage (in bytes)

inc24 Increment size of below the line storage (bytes)
disp24 KEEP or FREE (how to treat 24 increments)

Copyright IBM Corp. 2004, 2006

RunRun--time options time options

THREADSTACK64(initial, increment, maximum)
Controls the allocation of user stack

initial Size of initial stack (in MB)
increment Size of increments of stack (in MB)
maximum Maximum stack size (in MB)

NOTES:
THREADSTACK64 is always above the bar
THREADSTACK64 is always one contiguous segment
ƒ Initially we reserve “maximum” space
ƒ Only use initial size and increase in increments until maximum is
reached.

THREADSTACK64 is downward growing (XPLINK)

Copyright IBM Corp. 2004, 2006

RunRun--time options time options

STACK64(initial, increment, maximum)
Controls the allocation of user stack

initial Size of initial stack (in MB)
increment Size of increments of stack (in MB)
maximum Maximum stack size (in MB)

NOTES:
STACK64 is always above the bar
STACK64 is always one contiguous segment
ƒ Initially we reserve “maximum” space
ƒ Only use initial size and increase in increments until maximum is
reached.

ƒOnly what is actually used, counts towards MEMLIMIT

STACK64 is downward growing (XPLINK)

Copyright IBM Corp. 2004, 2006

Data sizes in LP64 data modelData sizes in LP64 data model

Data Type Size in LP64 Size in ILP32
int 4

4
long 8

4
pointer 8

4
size_t 8

4
ssize_t 8

4
off_t 8

4
ino_t 4

4
useconds_t 4
4
int_addr_t 4
4
ptrdiff_t 8

4

rlim_t 8
4

Copyright IBM Corp. 2004, 2006

AMODE64 APIsAMODE64 APIs

New AMODE 64 C APIs
Two additional C functions have been added to complement

the malloc() function.
__malloc24() Obtain heap storage below the line
__malloc31() Obtain heap storage below the bar

__cabend() Similar to CEE3ABD
__le_condition_token_build() Similar to CEENCOD
__le_debug_set_resume_mch() Similar to CEEMRCM
__le_get_cib() Similar to CEE3CIB
__le_msg_add_insert() Similar to CEECMI
__le_msg_get() Similar to CEEMGET
__le_msg_get_and_write() Similar to CEEMSG
__le_msg_write() Similar to CEEMOUT

Copyright IBM Corp. 2004, 2006

APPENDIX APPENDIX -- C APIsC APIs
Callable Service Description

AMODE 64 name
CEE3ABD Terminate with ABEND code

__cabend() *
CEE3CIB Return pointer to Condition Information Blk. __le_get_cib() *
CEE3CTY Set default country

setlocale()
CEE3DMP Generate a Language Environment dump

cdump(), ctrace() or csnap()
CEE3GRN Get routine name that incurred condition

sigaction()
CEE3MCS Get default currency symbol

localeconv()
CEE3MDS Get default decimal separator

localeconv()
CEE3MTS Get default thousands separator

localeconv()
CEE3PRM Query parameter string

argv[], argc
CEECMI Store and load message insert data

l dd i t() *

Copyright IBM Corp. 2004, 2006

APPENDIX APPENDIX -- C APIsC APIs
Callable Service Description

AMODE 64 name
CEEGMT Get GMT time

gmtime(time())
CEEGMTO Get offset from GMT

getenv(TZ)
CEEGPIDGet LE version and release

__librel() (existing func)
CEEGTST Get heap storage

malloc()
CEELCNV Query local numeric conventions

localeconv()
CEELOCT Get local time

time()
CEEMGET Get a message

__le_msg_get() *
CEEMOUT Write a message

__le_msg_write() *
CEEMRCM Move Resume Cursor – Machine

__le_debug_set_resume_mch() *
CEEMSG G f d i

Copyright IBM Corp. 2004, 2006

LE Anchor
Register 12 can no longer be relied upon to contain the
address of LE's Common Anchor Area (CAA).
A new LE anchor, Library Anchor Area - LAA, is being
defined that is anchored in the PSA (prefix save area)
field PSALAA at +x'4B8'.
The LAA points to a new 'Library Common Area - LCA'
which has a pointer to the existing updated CAA.
This basing now maps through the PSA->LAA->LCA-
>CAA.
All / most external fields now moved to LAA or LCA

LE AnchorLE Anchor

Copyright IBM Corp. 2004, 2006

CEELAA
New anchor for 64 bit Language Environment

CAA is not the LE anchor in 64 bit
The PSALAA field (+ x'4B8') always points to the LAA for the currently active unit of
work
It is a key 0 control block, anchored from the STCB.

CEELCA
allocated in the key of the caller, when a LE environment is actually initialized.
It is allocated along with the LE control blocks and is pointed to by the CEELAA (+ x'60').

CEEDIA
A new LE control block has been defined for the Debugger hooks, called the Debugger

Interface Area (DIA)
The DIA is anchored off the LCA at an architected offset (+16 or 0x10).
The DIA is allocated in 31-bit addressable storage during LE initialization and will remain
for the duration of the process.
The size and order of the hooks remains consistent with the CAA debugger section.

External Control StructuresExternal Control Structures

Copyright IBM Corp. 2004, 2006

External Control StructuresExternal Control Structures

CAA – Common Anchor Area (external section)
Pointed to from LCA (CEELCA_CAA)
Note: R12 no longer points to CAA

EDB – Enclave Data Block (external section)
Pointed to from CAA (CEECAAEDB)

PCB – Process Control Block (external section)
Pointed to from CAA (CEECAAPCB)

RCB – Region Control Block (external section)
Pointed to from CAA (CEECAARCB)

Copyright IBM Corp. 2004, 2006

Setting MEMLIMITSetting MEMLIMIT
ƒHow is 64-bit virtual limit(MEMLIMIT)?

SMFPRMxx parameter MEMLIMIT sets the system defaults for each
address space
Use SETSMF command to change limit online
MEMLIMIT keyword in JOB & EXEC JCL
MEMLIMIT in RACF OMVS segment for Unix System Services users
MEMLIMIT on spawn system call using inheritance structure

ƒNote: System programmer must set the SMFPRMxx parameter
as system default based on their system requirement

ƒHow is the final MEMLIMIT is chosen?
JOB MEMLIMIT overrides EXEC MEMLIMIT
If no JOB or EXEC MEMLIMIT specified

and REGION=0, MEMLIMIT=no limit
and REGION^=0, use MEMLIMIT in SMFPRMxx

IEFUSI exit can override the SMFPRMxx MEMLIMIT value
ƒSetting MEMLIMIT

MEMLIMIT(NOLIMIT)|nnnnnM| nnnnnG| nnnnnT| nnnnnP

Copyright IBM Corp. 2004, 2006

Inherit the
MEMLIMIT and

MEMLIMIT source
data from the parent

address space

YesNo Is this an
OMVS

child's job-
step

initialization
?

continued
at label
IEFUSI

continued
next page

Determining MEMLIMITDetermining MEMLIMIT

Copyright IBM Corp. 2004, 2006

Use MEMLIMIT
from JOB card

Yes

Memlimit
specified

on the
EXEC

statement
?

Memlimit
specified

on the
JOB

statement
?

No

Use MEMLIMIT from
the EXEC statement.

YesNo

Is
REGION=
0 specified

in the
JCL?

continued

Determining MEMLIMIT (continued)Determining MEMLIMIT (continued)

Copyright IBM Corp. 2004, 2006

MEMLIMIT is
UNLIMITEDHas an

installation
default

MEMLIMIT
been

defined via
SMFPRMx

x or set
smf

command
?

No Yes

Use the current
SMF installation

default MEMLIMIT

Yes

MEMLIMIT=0

continued

Region=0?

No

Determining MEMLIMIT (continued)Determining MEMLIMIT (continued)

Copyright IBM Corp. 2004, 2006

continued Is there an
active

IEFUSI
exit

limiting the
MEMLIMIT

?

IEFUSI MEMLIMIT
value is used.

Yes

MEMLIMIT remains
as previously
established

No

continued

IEFUSI:

Determining MEMLIMIT (continued)Determining MEMLIMIT (continued)

Copyright IBM Corp. 2004, 2006

Use the current
(higher) MEMLIMIT

Use the MEMLIMIT
established at step

initialization

YesNo

Finally...
Done!

Was the
MEMLIMIT
set by SMF

-and-
is the current
MEMLIMIT
greater than

that
established at

job-step
initialization?

continued

Determining MEMLIMIT (continued)Determining MEMLIMIT (continued)

Copyright IBM Corp. 2004, 2006

Additional InformationAdditional Information

Language Environment AMODE 64
Items not supported initially

HLL languages other than C and C++
Nested Enclaves
Hex math (added in z/OS V1.7)
CICS
IMS
LRR
SPC
PICI

