
The Ins and Outs of The Ins and Outs of
Language Environment’s Language Environment’s

CEEPIPI ServiceCEEPIPI Service

Thomas Thomas PetrolinoPetrolino
IBM PoughkeepsieIBM Poughkeepsie

tapetro@us.ibm.comtapetro@us.ibm.com

©copyright IBM Corporation 2001, 2006

2

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries.

The following are trademarks or registered trademarks of other companies.
* Registered trademarks of IBM Corporation

* All other products may be trademarks or registered trademarks of their respective companies.

Java and all Java-related trademarks and logos are trademarks of Sun Microsystems, Inc., in the United States and other countries.
Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.
Microsoft, Windows and Windows NT are registered trademarks of Microsoft Corporation.
UNIX is a registered trademark of The Open Group in the United States and other countries.
SET and Secure Electronic Transaction are trademarks owned by SET Secure Electronic Transaction LLC.

Notes:
Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will experience will vary depending
upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will
achieve throughput improvements equivalent to the performance ratios stated here.
IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.
All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual environmental costs and
performance characteristics will vary depending on individual customer configurations and conditions.
This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without notice. Consult your local
IBM business contact for information on the product or services available in your area.
All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.
Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance, compatibility, or any other claims
related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.
Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

Trademarks

•CICS®
•DB2®
•Language Environment®
•OS/390®
•z/OS®

3

AgendaAgenda

Understanding The Basics of PreInitialization
Using the Language Environment PreInitialization
Programming Interface (Preinit)
Preinit Interfaces
Preinit Service Routines
A Preinit Example
Sources of Additional Information

Understanding The Understanding The
Basics of Basics of

PreInitializationPreInitialization

5

Background Background -- LE Init/TermLE Init/Term

Process - Collection of Resources
(LE message file, library code/data)

unaffected by HLL semantics, logically
independent address space

Enclave - Collection of Routines
(Load modules, Heap, external data)

defines scope of HLL semantics, first
routine is designated "main"

Thread - "thread" of execution (Stack,
raised conditions)

share the resources of the enclave

Process

Enclave

Thread

6

Understanding The BasicsUnderstanding The Basics

Read Language Environment Programming Guide, Chapter 30
"Using preinitialization services" (SA22-7561)

Read Language Environment Programming Guide for 64-bit
Virtual Addressing Mode, Chapter 22 “Using preinitialization
services with AMODE 64” (SA22-7569)

7

Understanding The Basics…Understanding The Basics…

You can use preinitialization to enhance the performance of
certain applications

Preinitialization lets a non-LE-conforming application (eg.
Assembler) initialize an LE environment once, perform
multiple executions of LE-conforming programs using that
environment, and then explicitly terminate the LE environment

Because the environment is initialized only once (even if you
perform multiple executions), you free up system resources
and allow for faster responses to your requests.

8

non-LE-conforming
(LE not active)

Invoke A

Invoke B

Invoke C

Initialize LE
Run A
Terminate LE

LE-conforming

Initialize LE
Run B
Terminate LE

LE-conforming

Initialize LE
Run C
Terminate LE

LE-conforming

A nonA non--PreinitPreinit scenarioscenario

9

LE Preinit Init

Invoke A

Invoke B

Invoke C

LE Preinit Term

Same application using Same application using PreinitPreinit

Run specified program

LE-conforming (Preinit environment)

non-LE-conforming
(LE not active)

10

Older forms of preinitialization Older forms of preinitialization

The following is a list of pre-LE language-specific forms of
preinitialization. These environments are supported by LE but
will not be enhanced.

C and PL/I -- supports prior form of C and PL/I preinitialization
(PICI) through use of Extended Parameter List
C++ -- no prior form of preinitialization
COBOL -- supports the prior form of COBOL preinitialization
through use of RTEREUS run-time option and ILBOSTP0 and
IGZERRE functions
Fortran -- no prior form of preinitialization

LE Library Routine Retention (LRR) is also supported but is
not the "preferred" method

11

Restrictions on preRestrictions on pre--LE preinitializationLE preinitialization

POSIX(ON)

XPLINK

AMODE 64

12

Users of preinitializationUsers of preinitialization

Numerous IBM products currently utilize
preinitialization

•Program Management Binder – for C++
demangler

•DB2 – for stored procedures
•CICS – TS V3.1 for recently announced XPLink
support

•. . .
Many IBM customers…

Using the Language Using the Language
Environment Environment

PreInitialization PreInitialization
Programming Programming

Interface (Interface (PreinitPreinit))

14

Using Using PreinitPreinit

The main Preinit interface is the loadable module "CEEPIPI“
The AMODE 64 Preinit interface is the loadable module “CELQPIPI”

CEEPIPI handles the requests and provides services for:
LE Environment Initialization
Application Invocation
LE Environment Termination

All requests for services by CEEPIPI must be made from a
non-Language Environment environment
The parameter list for CEEPIPI is an OS standard linkage
parameter list

First parameter on each call to CEEPIPI is a Preinit function code

15

The The PreinitPreinit tabletable

The Preinit table identifies routines to be executed (and
optionally loaded) in a Preinit environment

It contains routine names and/or entry point addresses
It is possible to have an "empty" Preinit table with empty rows

routines can be added later using the Preinit add_entry interface

In the Preinit table, entry point addresses are maintained
with the High Order Bit set to indicate AMODE of routine

HOB on, routine is AMODE31 and invoked in 31 bit mode
HOB off, routine is AMODE24 and invoked in 24 bit mode

CEEBXITA (Asm User Exit), CEEBINT (HLL User Exit),
CEEUOPT are obtained from first entry in Preinit table

16

Generate the Generate the PreinitPreinit tabletable

LE provides the following assembler macros to generate the
Preinit table

CEEXPIT generates a header for the Preinit table
CEEXPITY generates an entry within the Preinit table

specify entry name and/or entry_point address of the routine
each invocation generates a row in the Preinit table
if name is blank and entry_point is zero, then an empty row is added to
the Preinit table

CEEXPITS identifies the end of the Preinit table
CELQPIT, CELQPITY, CELQPITS for AMODE 64

The size of the Preinit table cannot be increased dynamically

17

Layout of Layout of PreinitPreinit TableTable

0

8

10

18

20

eyecatcher

#entries Entry size

version flags

entry name

entry addr reserved

Header information
(CEEXPIT)

Entry information
(CEEXPITY)

.

.

.

PreinitPreinit InterfacesInterfaces

19

PreinitPreinit InitializationInitialization

LE supports three forms of preinitialized environments
They are distinguished by the level of initialization

init_main - supports the execution of main routine
initializes LE environment through process-level
each call_main invocation initializes enclave- and thread-level

init_sub - supports the execution of subroutines
initializes LE environment through process-, enclave-, and thread-level
each call_sub invocation has minimal overhead

init_sub_dp - a special form of the init_sub that allows multiple
preinitialized environments, for executing subroutines, to be created
under the same task (TCB). For AMODE 64 init_sub is comparable.

•Only one POSIX(ON) environment per TCB

20

PreinitPreinit Initialization...Initialization...

main Environment
Advantages

A new, pristine environment is created
Run-Time options can be specified for each application

Disadvantages
Poorer performance

sub Environment
Advantages

Best performance

Disadvantages
The environment is left in what ever state the previous
application left it (including WSA, working storage, etc)
Run-Time options cannot be changed

21

PreinitPreinit Initialization ServicesInitialization Services

Call CEEPIPI|CELQPIPI (init_main, ceexptbl_addr, service_rtns, token)

Syntax

init_main function code is 1
ceexptbl_addr is the address of the Preinit table
service_rtns not currently supported with CELQPIPI

token is returned and identifies this Preinit environment to
subsequent calls to CEEPIPI

Register 15 contains a return code that indicates the success or
failure of the Preinit service

22

PreinitPreinit Initialization Services...Initialization Services...

Call CEEPIPI (init_sub_dp, ceexptbl_addr, service_rtns, runtime_opts, token)

Call CEEPIPI|CELQPIPI (init_sub, ceexptbl_addr, service_rtns, runtime_opts, token)

Syntax

init_sub function code is 3, init_sub_dp function code is 9
ceexptbl_addr is the address of the Preinit table
runtime_opts is a string containing LE run-time options
token is returned and identifies this Preinit environment to
subsequent calls to CEEPIPI

Register 15 contains a return code that indicates the success or
failure of the Preinit service

23

PreinitPreinit Application InvocationApplication Invocation

Language Environment provides services to invoke either a
main routine or subroutine.

When invoking main routines, the environment must have been
initialized with init_main
When invoking subroutines, the environment must have been
initialized with init_sub or init_sub_dp

The Preinit environment identified by token is activated
before the specified routine is called
After the called routine returns, the environment
becomes "dormant“
The parameter list is passed to the application as-is

XPLink & 64-bit convert from OS format to XPLink

24

Reentrancy ConsiderationsReentrancy Considerations

You can make multiple calls to main routines or subroutines
In general, you should specify only reentrant routines for multiple
invocations:

Multiple calls to a reentrant main routine are not influenced by a previous
execution of the same routine
For example, external variables are reinitialized for every call to a
reentrant main

If you have a nonreentrant COBOL program, condition IGZ0044S
is signalled when the routine is invoked again
If you have a nonreentrant C main() program that uses external
variables, then when your routine is invoked again, the variables
will be in last-use state
Multiple calls to reentrant subroutines reuse the same working
storage, it is only initialized once during (call_sub)

25

PreinitPreinit Application Invocation Application Invocation
ServicesServices

Call CEEPIPI|CELQPIPI (call_main, ceexptbl_index, token, runtime_options,

parm_ptr, enclave_return_code, enclave_reason_code, appl_feedback_code)

Syntax

call_main function code is 2
ceexptbl_index is the Preinit table row number of the main to call
token identifies this Preinit environment (from init_main)
runtime_opts is a string containing LE run-time options
parm_ptr in the format expected by the HLL language of main

Register 15 contains a return code that indicates the success or
failure of the Preinit service

26

PreinitPreinit Application Invocation Application Invocation
Services...Services...

Call CEEPIPI|CELQPIPI (call_sub, ceexptbl_index, token, parm_ptr,

sub_return_code, sub_reason_code, sub_feedback_code)

Syntax

call_sub function code is 4
ceexptbl_index is the Preinit table row number of the subrtn to call
token identifies this Preinit environment (from init_sub or init_sub_dp)
parm_ptr in the format expected by the HLL language of sub

Register 15 contains a return code that indicates the success or failure
of the Preinit service

27

PreinitPreinit Application Invocation Application Invocation
Services...Services...

Call CEEPIPI|CELQPIPI (call_sub_addr, routine_addr, function_pointer, token,

parm_ptr, sub_return_code, sub_reason_code, sub_feedback_code)

Syntax

call_sub_addr function code is 10
routine_addr is doubleword containing the address of the subrtn to call
(loaded by driver program, not LE)
function_pointer is extra 16 byte parameter for CELQPIPI only
token identifies this Preinit environment (from init_sub or init_sub_dp)
parm_ptr in the format expected by the HLL language of sub

Register 15 contains a return code that indicates the success or failure
of the Preinit service

28

Stop Semantics in Stop Semantics in PreinitPreinit subssubs

When one of the following occurs within a preinitialized
environment for subroutines, the logical enclave is
terminated:

C exit(), abort(), or signal handling function specifying a normal or
abnormal termination
COBOL STOP RUN statement
PL/I STOP or EXIT
an unhandled condition causing termination of the (only) thread

The process level of the environment is retained
Modules in Preinit table are not deleted
The next call to a subrtn in this environment will initialize
a new enclave (possibly with different user exits)

29

PreinitPreinit Termination ServiceTermination Service

Call CEEPIPI|CELQPIPI (term, token, env_return_code)

Syntax

term function code is 5
token identifies this Preinit environment (from previous
initialization call)
env_return_code is set to the return code from the environment
termination

Register 15 contains a return code that indicates the success or
failure of the Preinit service

30

init_sub,
init_sub_dp call_main

call_sub or
call_sub_addr
ended with STOP
semantics

term for "clean"
init_sub or
init_sub_dp
environment term

CEEBXITA (enclave
init) x x x(next call)
CEEBINT
(HLL exit) x x x(next call)
C atexit() functions x x x
CEEBXITA
(enclave term) x x x
CEEBXITA
(process term) x x

User Exit InvocationUser Exit Invocation

CEEBXITA and CEEBINT application-specific user exits are taken
from the first valid entry in Preinit table
All other occurrences are ignored!

31

Updating the Updating the PreinitPreinit TableTable

Call CEEPIPI|CELQPIPI (add_entry, token, routine_name,
routine_entry, ceexptbl_index)

Syntax

add_entry function code is 6
token identifies a dormant Preinit environment (from previous
initialization call)
routine_name is char(8) name of routine to add (and optionally
load), or blank
routine_entry is entry point address of routine to add (or zero)
ceexptbl_index is Preinit table row number where added

Register 15 contains a return code that indicates the success or
failure of the Preinit service

32

Updating the Updating the PreinitPreinit Table...Table...

Call CEEPIPI (delete_entry, token, ceexptbl_index)

Syntax

delete_entry function code is 11
token identifies a dormant Preinit environment (from previous
initialization call)
ceexptbl_index is Preinit table row number of the entry to delete
(and delete from storage if it was loaded by LE)

Register 15 contains a return code that indicates the success or
failure of the Preinit service

33

XPLINK XPLINK PreinitPreinit

Will allow users to run XPLINK-compiled programs
in a Preinit environment.
LE initializes either an XPLINK environment or a
"regular" (non-XPLINK) environment

Never "both"
But we might switch - more later...

34

XPLINK XPLINK PreinitPreinit......

init_main
If the first program in the Preinit table was compiled non-
XPLINK...

Then a non-XPLINK Preinit main environment is initialized
If the first program in the Preinit table was compiled
XPLINK...

Then an XPLINK Preinit main environment is initialized
If the Preinit table is empty at initialization time...

Then a non-XPLINK Preinit main environment is initialized

35

XPLINK XPLINK PreinitPreinit......

init_sub or init_sub_dp
If the first program in the Preinit table was compiled
XPLINK...

Then an XPLINK Preinit sub environment is initialized
If the XPLINK(ON) run-time option is specified...

Then an XPLINK Preinit sub environment is initialized

If neither of the above are true...
Then a non-XPLINK Preinit sub environment is initialized

36

XPLINK XPLINK PreinitPreinit......

call_main
If the Preinit main environment is non-XPLINK and

(the program to be invoked was compiled XPLINK)
or
(the XPLINK(ON) run-time option was specified)

Then rebuild as an XPLINK Preinit environment

This Preinit enviroment will always remain an XPLINK
Preinit environment (ie. we won't switch back).

37

XPLINK XPLINK PreinitPreinit......

call_sub or call_sub_addr
If the Preinit sub environment is non-XPLINK and

the called subroutine was compiled XPLINK...
Then the call will return with a "mis-match" error and
the subroutine will not be executed.

Note: XPLINK subroutines must be defined as fetchable
#pragma linkage (fetchable) statement

38

Summary Summary -- PreinitPreinit InterfacesInterfaces

Function Code Integer Value Service Performed
Initialization

Termination

init_main 1 Create and initialize an
environment for mains

init_sub 3 Create and initialize an
environment for subs

init_sub_dp 9 Create and initialize an
environment for subs

term 5 Explicitly terminate an
environment

39

Summary Summary -- PreinitPreinit Interfaces...Interfaces...

Function Code Integer Value Service Performed
Application Invocation

Addition of an entry to Preinit table

call_main 2 Invoke a main routine with
an already init'd environment

call_sub 4 Invoke a subroutine with an
already init'd environment

call_sub_addr 10 Invoke a subroutine by addr
with an already init'd environment

add_entry 6 Dynamically add a routine to the
already init'd environment

40

Summary Summary -- PreinitPreinit Interfaces...Interfaces...

Function Code Integer Value Service Performed
Deletion of an entry to Preinit table

Identification of a Preinit table entry

identify_entry 13 Identify the language of an entry in
the Preinit table

identify_attributes 16 Identify the attributes of an entry
in the Preinit table

delete_entry 11 Delete an entry from the Preinit
table, making it available to later
add_entry

Identification of the Preinit environment

identify_environment 15 Identify the Preinit init'd environment
(not available with CELQPIPI)

PreinitPreinit Service Service
RoutinesRoutines

42

Service routinesService routines
Under Language Environment, you can specify several service routines
for use with running a main routine or subroutine in the preinitialized
environment
To use the routines, specify a list of addresses of the routines in a service
routine vector

Pass the address of this list on the init_main, init_sub, or init_sub_dp interfaces
The service_rtns parameter that you specify contains the address of the
vector itself
If this pointer is specified as zero (0), LE routines are used instead of the
service routines

Why?
Preinit environments to be used in SRB mode, where SVCs cannot be issued
Execution environment has its own storage or program management
services

43

Service routines...Service routines...

Format of Service Routine Vector

SERV_RTNS Count

User Word

@WorkArea

@Load

@Delete

@Getstore

@Freestore

@Exceprtrn

reserved

@Msgrtn

44

Service routines...Service routines...

Count
the number of fullwords that follow

User Word
passed to the service routines
provides a means for your routine to communicate to the
service routines

@Workarea
address of a work area of at least 256 bytes that is doubled
word aligned. First word contains the length of area provided.
Required if service routines present in vector

@Load
loads named routines for application management

@Delete
deletes routines for application management

45

Service routines...Service routines...

@Getstore
allocates storage on behalf of the storage manager. This
routine relies on the caller to provide a save area, which can
be the @Workarea

@Freestore
frees storage on behalf of storage manager

@Exceprtn
traps program interrupts and abends for condition
management

@Msgrtn
allows error messages to be processed by caller of the
application

A A PreinitPreinit ExampleExample

The following example provides an illustration of an assembler pThe following example provides an illustration of an assembler program rogram
ASMPIPI ASSEMBLE invoking CEEPIPI to:ASMPIPI ASSEMBLE invoking CEEPIPI to:
Initialize a LE Initialize a LE PreinitPreinit subroutine environment subroutine environment
Load and call a reentrant C/COBOL/PLI subroutineLoad and call a reentrant C/COBOL/PLI subroutine
Terminate the LE Terminate the LE PreinitPreinit environmentenvironment

47

Following the assembler program are interchangeable
examples of the program HLLPIPI written in:

C, COBOL, and PL/I

HLLPIPI is called by an assembler program, ASMPIPI.
ASMPIPI uses the Language Environment preinitialized
program subroutine call interface
You can use the assembler program to call the HLL
versions of HLLPIPI.

ExampleExample

48

*
*COMPILATION UNIT: LEASMPIP

* *
* Function: CEEPIPI - Initialize the Preinitialization *
* environment,call a Preinitialization *
* HLL program,and terminate the environment. *
* *
* 1. Call CEEPIPI to initialize a subroutine environment under LE. *
* 2. Call CEEPIPI to load and call a reentrant HLL subroutine. *
* 3. Call CEEPIPI to terminate the LE Preinitialization environment. *
* *
* Note: ASMPIPI is not reentrant. *
* *

Example...Example...

49

* =======================================
* Standard program entry conventions.
* =======================================
ASMPIPI CSECT

STM R14,R12,12(R13) Save caller’s registers
LR R12,R15 Get base address
USING ASMPIPI,R12 Identify base register
ST R13,SAVE+4 Back-chain the save area
LA R15,SAVE Get addr of this routine’s save area
ST R15,8(R13) Forward-chain in caller’s save area
LR R13,R15 R13 -> save area of this routine

*
* Load LE CEEPIPI service routine into main storage.
*

LOAD EP=CEEPIPI Load CEEPIPI routine dynamically
ST R0,PPRTNPTR Save the addr of CEEPIPI routine

Example...Example...

50

*
* Initialize an LE Preinitialization subroutine environment.
*
INIT_ENV EQU *

LA R5,PPTBL Get address of Preinit Table
ST R5,@CEXPTBL Ceexptbl_addr ->Preinit Table
L R15,PPRTNPTR Get address of CEEPIPI routine

* Invoke CEEPIPI routine
CALL (15),(INITSUB,@CEXPTBL,@SRVRTNS,RUNTMOPT,TOKEN)

* Check return code:
LTR R2,R15 Is R15 = zero?
BZ CSUB Yes (success)..go to next section

* No (failure)..issue message
WTO ’ASMPIPI: call to (INIT_SUB) failed’,ROUTCDE=11
C R2,=F’8’ Check for partial initialization
BE TSUB Yes..go do Preinit termination

* No..issue message & quit
WTO ’ASMPIPI: INIT_SUB failure RC is not 8.’,ROUTCDE=11
ABEND (R2),DUMP Abend with bad RC and dump memory

Example...Example...

51

*
* Call the subroutine, which is loaded by LE
*
CSUB EQU *

L R15,PPRTNPTR Get address of CEEPIPI routine
CALL (15),(CALLSUB,PTBINDEX,TOKEN,PARMPTR, X

SUBRETC,SUBRSNC,SUBFBC)
* Check return code:

LTR R2,R15 Is R15 = zero?
BZ TSUB Yes (success)..go to next section

* No (failure)..issue message & quit
WTO ’ASMPIPI: call to (CALL_SUB) failed’,ROUTCDE=11
ABEND (R2),DUMP Abend with bad RC and dump memory

Example...Example...

52

*
* Terminate the environment
*
TSUB EQU *

L R15,PPRTNPTR Get address of CEEPIPI routine
CALL (15),(TERM,TOKEN,ENV_RC)

* Check return code:
LTR R2,R15 Is R15 = zero ?
BZ DONE Yes (success)..go to next section

* No (failure)..issue message & quit
WTO ’ASMPIPI: call to (TERM) failed’,ROUTCDE=11
ABEND (R2),DUMP Abend with bad RC and dump memory

*
* Standard exit code.
*
DONE EQU *

LA R15,0 Passed return code for system
L R13,SAVE+4 Get address of caller’s save area
L R14,12(R13) Reload caller’s register 14
LM R0,R12,20(R13) Reload caller’s registers 0-12
BR R14 Branch back to caller

Example...Example...

53

* ===
* CONSTANTS and SAVE AREA.
* ===
SAVE DC 18F’0’
PPRTNPTR DS A Save the address of CEEPIPI routine
*
* Parameters passed to an (INIT_SUB) call.
INITSUB DC F’3’ Function code to initialize for subr
@CEXPTBL DC A(PPTBL) Address of Preinitialization Table
@SRVRTNS DC A(0) Addr of service-rtns vector,0 = none
RUNTMOPT DC CL255’’ Fixed length string of runtime optns
TOKEN DS F Unique value returned(output)
*
* Parameters passed to a (CALL_SUB) call.
CALLSUB DC F’4’ Function code to call subroutine
PTBINDEX DC F’0’ The row number of Preinit Table entry
PARMPTR DC A(0) Pointer to @PARMLIST or zero if none
SUBRETC DS F Subroutine return code (output)
SUBRSNC DS F Subroutine reason code (output)
SUBFBC DS 3F Subroutine feedback token (output)

Example...Example...

54

*
* Parameters passed to a (TERM) call.
TERM DC F’5’ Function code to terminate
ENV_RC DS F Environment return code (output)
* ===
* Preinitialization Table.
* ===
*
PPTBL CEEXPIT , Preinitialization Table with index

CEEXPITY HLLPIPI,0 0=dynamically loaded routine
CEEXPITS , Endof PreInit table

*
LTORG

R0 EQU 0
R1 EQU 1
...
R14 EQU 14
R15 EQU 15

END ASMPIPI

Example...Example...

55

Example...Example...

#include <stdio.h>

HLLPIPI ()
{

printf("C subroutine beginning \n");
printf("Called using LE PreInit call \n");
printf("Subroutine interface.\n");
printf("C subroutine returns to caller \n");

}

C Subroutine Called by ASMPIPI

56

Example...Example...

CBL LIB,QUOTE
*Module/File Name: IGZTPIPI

* *
* HLLPIPI is called by an assembler program, ASMPIPI. *
* ASMPIPI uses the LE preinitialized program *
* subroutine call interface. HLLPIPI can be written *
* in COBOL, C, or PL/I. *
* *

IDENTIFICATION DIVISION.
PROGRAM-ID. HLLPIPI.
DATA DIVISION.
WORKING-STORAGE SECTION.
PROCEDURE DIVISION.

DISPLAY "COBOL subprogram beginning".
DISPLAY "Called using LE Preinitialization".
DISPLAY "Call subroutine interface.".
DISPLAY "COBOL subprogram returns to caller.".
GOBACK.

COBOL Program Called by ASMPIPI

57

Example...Example...

/*Module/File Name: IBMPIPI */
/**/
/* */
/* HLLPIPI is called by an assembler program, ASMPIPI. */
/* ASMPIPI uses the LE preinitializedprogram */
/* subroutine call interface.HLLPIPI can be written */
/* in COBOL,C,or PL/I. */
/* */
/**/
HLLPIPI: PROC OPTIONS(FETCHABLE);

DCL RESULT FIXED BIN(31,0)INIT(0);
PUT SKIP LIST

(’HLLPIPI: PLI subroutine beginning.’);
PUT SKIP LIST

(’HLLPIPI: CalledLE Preinit Call ’);
PUT SKIP LIST

(’HLLPIPI: Subroutine interface.’);
PUT SKIP LIST

(’HLLPIPI: PLI program returns to caller.’);
RETURN;

END HLLPIPI;

PL/I Routine Called by ASMPIPI

58

Sources of Additional InformationSources of Additional Information

LE Debug Guide and Runtime Messages
LE Programming Reference
LE Programming Guide (64-bit too!)
LE Customization
LE Migration Guide
LE Writing ILC Applications
Web site

http://www.ibm.com/servers/eserver/zseries/zos/le/

	Trademarks

