
Chapter 30. Using preinitialization services

You can use preinitialization to enhance the performance of your application.
Preinitialization lets an application initialize an HLL environment once, perform
multiple executions using that environment, and then explicitly terminate the
environment. Because the environment is initialized only once (even if you
perform multiple executions), you free up system resources and allow for faster
responses to your requests.

This topic describes the Language Environment-supplied routine, CEEPIPI, that
provides the interface for preinitialized routines. Using CEEPIPI, you can initialize
an environment, invoke applications, terminate an environment, and add an entry
to the Preinitialization table (PreInit table). (The PreInit table contains the names
and entry point addresses of routines that can be executed in the preinitialized
environment.)

This topic also describes reentrancy considerations for a preinitialized environment,
XPLINK considerations, user exit invocation, stop semantics, service routines, and
an example of CEEPIPI invocation.

Before the introduction of a common runtime environment, introduced with
Language Environment, some of the individual languages had their own form of
preinitialization. This older form of preinitialization is supported by Language
Environment, but it is not strategic. The following is a list of these older forms of
preinitialization and some considerations for their use:
v C

Language Environment supports the prior form of C preinitialization, through
the use of an extended parameter list. For more information about this interface,
see z/OS XL C/C++ Programming Guide.

v C++
There is no prior form of preinitialization for C++.

v COBOL
Language Environment supports the prior form of COBOL preinitialization,
RTEREUS, ILBOSTP0, and IGZERRE. For more information about these
interfaces, see the Enterprise COBOL for z/OS library (http://www-
01.ibm.com/support/docview.wss?uid=swg27036733). This prior form of COBOL
preinitialization cannot be used at the same time that Language Environment
preinitialization is used.

v Fortran
There is no prior form of preinitialization for Fortran.

v PL/I
Language Environment supports the prior form of PL/I preinitialization,
through the use of an Extended Parameter List. For more information about this
interface, see the IBM Enterprise PL/I for z/OS library (http://www.ibm.com/
support/docview.wss?uid=swg27036735). This prior form of PL/I
preinitialization does not support PL/I multitasking applications.

© Copyright IBM Corp. 1991, 2013 479

http://www-01.ibm.com/support/docview.wss?uid=swg27036733
http://www-01.ibm.com/support/docview.wss?uid=swg27036733
http://www.ibm.com/support/docview.wss?uid=swg27036735
http://www.ibm.com/support/docview.wss?uid=swg27036735

Using preinitialization
From a non-Language Environment-conforming driver (such as assembler) you can
use Language Environment preinitialization facilities to create and initialize a
common run-time environment, execute applications written in a Language
Environment-conforming HLL multiple times within the preinitialized
environment, and terminate the preinitialized environment. Language Environment
provides a preinitialized interface to perform these tasks.

In the preinitialized environment, the first routine to execute can be treated as
either the main routine or a subroutine of that execution instance. Language
Environment provides support for both of these types of preinitialized routines:
v Executing one main routine multiple times
v Executing subroutines multiple times

Language Environment preinitialization is commonly used to enhance performance
for repeated invocations of an application or for a complex application where there
are many repetitive requests and where fast response is required. For instance, if
an assembler routine invokes either a number of Language Environment-
conforming HLL routines or the same HLL routine a number of times, the creation
and termination of that HLL environment multiple times is needlessly inefficient. A
more efficient method is to create the HLL environment only once for use by all
invocations of the routine.

The interface for preinitialized routines is a loadable routine called CEEPIPI. This
routine is loaded as an RMODE(24) / AMODE(ANY) routine and returns in the
AMODE of its caller when the request is satisfied.

CEEPIPI handles the requests and provides services for environment initialization,
application invocation, and environment termination. All requests for services by
CEEPIPI must be made from a non-Language Environment environment.
(“Preinitialization interface” on page 486 contains a detailed description and
information about how to invoke each of these services.) The parameter list for
CEEPIPI is an OS standard linkage parameter list. Each request to CEEPIPI is
identified by a function code that describes the CEEPIPI service and that is the first
parameter in the parameter list. The function code is a fullword integer (for
example, 1 = init_main, 2 = call_main).

The preinitialization services offered under Language Environment are listed in
Table 68 on page 486. Preinitialization services do not support PL/I multitasking
applications.

An example assembler program in “An example program invocation of CEEPIPI”
on page 519 illustrates invocation of CEEPIPI for the function codes init_sub,
call_sub, and term.

Using the PreInit table
Language Environment uses the PreInit table to identify the routines that are
candidates for execution in the preinitialized environment, as well as optionally to
load the routine when it is called. It is possible to have an empty PreInit table with
no entries. The PreInit table contains the names and the entry point addresses of
each routine that can be executed within the preinitialized environment. Candidate
routines can be present in the table when the init_main or init_sub functions are
invoked, or can be added to the table using (add_entry).

Preinitialization services

480 z/OS V2R1.0 Language Environment Programming Guide

When the entry point address is supplied either as an entry in the initial PreInit
table provided with initialization functions, or as specified on the add_entry
function, the high order bit of the address must be set to indicate the addressing
mode for the routine. If the high order bit is OFF the routine is called in 24 bit
addressing mode and the address must be a valid 24 bit address. If the high order
bit is ON the routine is called in 31 bit addressing mode and the address must be a
valid 31 bit address.

C considerations
C routines that are the target of (call_main) or (call_sub) must be z/OS C routines.
v C main routines must be initialized with (init_main).
v C routines that are the target of (call_main) must contain a main().

C++ considerations
The preinitialization routines (call_main) or (call_sub) can support C++ applications.
v C++ main routines must be initialized with (init_main).
v C++ routines that are the target of (call_main) must contain a main().

COBOL considerations
COBOL programs that are the target of (call_main) or (call_sub) must be Enterprise
COBOL for z/OS, COBOL for OS/390 & VM, COBOL for MVS & VM, or
COBOL/370 programs.

Fortran considerations
Fortran routines cannot be the target of a CEEPIPI call.

PL/I considerations
PL/I routines that are the target of (call_main) or (call_sub) must be Enterprise
PL/I for z/OS or PL/I for MVS & VM routines. OS PL/I Version 1 and OS PL/I
Version 2 routines can run in the preinitialized environment only when called from
PL/I routines that are the target of (call_main) or (call_sub).

Macros that generate the PreInit table
Language Environment provides the following assembler macros to generate the
PreInit table for you: CEEXPIT, CEEXPITY, and CEEXPITS.

CEEXPIT: CEEXPIT generates a header for the PreInit table.

Syntax

�� table_name CEEXPIT
NOSTOR=

ABEND
RC

��

table_name
Assembler symbolic name assigned to the first word in the PreInit table. The
address of this symbol should be used as the ceexptbl_addr parameter in a
(init_main) or a (init_sub) call.

NOSTOR=ABEND
Indicates that the system is to issue an abend if it cannot obtain storage for the
preinitialization environment. This is the default.

Preinitialization services

Chapter 30. Using preinitialization services 481

NOSTOR=RC
Indicates that the system is to issue a return code if it cannot obtain storage for
the preinitialization environment.

CEEXPITY: CEEXPITY generates an entry within the PreInit table.

Syntax

�� CEEXPITY ,
name entry_point

��

name
The first eight characters of the load name of a routine that can be invoked
within the Language Environment preinitialized environment.

entry_point
The address of the load module that is to be invoked, or 0, to indicate that the
module is to be dynamically loaded.

The high-order bit of the entry_point address must be set to indicate the
addressing mode for the routine. If the high-order bit is OFF, the routine is called
in 24 bit addressing mode and the address must be a valid 24 bit address. If the
high-order bit is ON, the routine is called in 31 bit addressing mode and the
address must be a valid 31 bit address.

You have the option of specifying either, both, or neither of the parameters:
v If name is omitted and entry_point is present, the comma must be present.
v If both parameters are omitted, the entry is a candidate for assignment to the

PreInit table by a call to (add_entry).
v If both parameters are present, name is ignored and entry_point is used as the

start of the routine.

Each invocation of the CEEXPITY macro generates a row in the PreInit table. The
first entry is row 0, the second is row 1, and so on.

CEEXPITS: CEEXPITS identifies the end of the PreInit table. This macro has no
parameters.

Syntax

�� CEEXPITS ��

Reentrancy considerations
You can make multiple calls to main routines by invoking CEEPIPI services and
making multiple requests from a single PreInit table. In general, you should specify
only reentrant routines for multiple invocations, or you might get unexpected
results.

Preinitialization services

482 z/OS V2R1.0 Language Environment Programming Guide

For example, if you have a reentrant C main program that is invoked using
(call_main) and that uses external variables, then when your routine is invoked
again, the external variables are re-initialized. Multiple executions of a reentrant
main routine are not influenced by a previous execution of the same routine.

However, if you have a nonreentrant C main program that is invoked using
(call_main) and that uses external variables, then when your routine is invoked
again, the external variables can potentially contain last-used values. Local
variables (those contained in the object code itself) might also contain last-used
values. If main routines are allowed to execute multiple times, a given execution of
a routine can influence subsequent executions of the same routine.

If you are calling init_sub, init_sub_dp, or add_entry for C/C++, the routines can
either be naturally reentrant or may be compiled RENT and made reentrant by
using the z/OS C Prelinker Utility. If the subroutine is made reentrant using the
z/OS C Prelinker Utility, multiple instances of the same subroutine are influenced
by the previous instance of the same subroutine.

If you have a nonreentrant COBOL program that is invoked using (call_main),
condition IGZ0044S is signaled when the routine is invoked again.

PreInit XPLINK considerations
Language Environment preinitialization services (PreInit) support programs that
have been compiled XPLINK. Specifically, it allows programs and subroutines that
have been compiled XPLINK to be defined in the PreInit table. The following
guidelines are provided for this new option:
v XPLINK CEEPIPI subroutines must be fetchable. For C programs, this is done

using the #pragma linkage (fetchable) statement. For more details on fetchable
subroutines, refer to the documentation on fetch() in z/OS XL C/C++ Runtime
Library Reference.

v Non-XPLINK PreInit programs can run in an XPLINK PreInit environment, but
there may be performance degradation since non-XPLINK programs will be
required to execute linkage-switching glue code. If possible, consider having
separate PreInit environments for running XPLINK and non-XPLINK programs.

v If a PreInit environment has been initialized as a non-XPLINK environment and
either the main() function is XPLINK or the XPLINK(ON) runtime option has
been specified, then the PreInit environment will be rebuilt as an XPLINK
environment. This is a one-time occurrence that can not be undone.

Creating an XPLINK environment versus a non-XPLINK
environment
When initializing a PreInit environment, you can select to create an XPLINK or a
non-XPLINK environment. There are four methods used to initialize a PreInit
environment; init_main, init_main_dp, init_sub, and init_sub_dp. In each case, a token
of the preinitialized environment is passed back to the customer PreInit driver
program. This token ID is used and passed as input when executing PreInit
programs. The following rules will determine if the initialized PreInit environment
will be XPLINK or non-XPLINK. You can make a one-time dynamic change in the
PreInit environment from non-XPLINK to XPLINK by using (call_main) to an
XPLINK main().

init_main: (Input: PreInit table pointer, no runtime options are passed as input)
v If the first program in the customer PreInit table is an XPLINK program, then an

XPLINK environment will be initialized.

Preinitialization services

Chapter 30. Using preinitialization services 483

v If the first program in the PreInit table is a non-XPLINK program, then a
non-XPLINK environment will be initialized.

v If the PreInit table is empty at initialization time, then a non-XPLINK
environment will be initialized.

init_main_dp: (Input: PreInit table pointer, no runtime options are passed as input)
v If the first program in the customer PreInit table is an XPLINK program, then an

XPLINK environment will be initialized.
v If the first program in the PreInit table is a non-XPLINK program, then a

non-XPLINK environment will be initialized.
v If the PreInit table is empty at initialization time, then a non-XPLINK

environment will be initialized.

init_sub: (Input: PreInit table pointer, and runtime options)
v If the first program in the customer PreInit table is an XPLINK program, then an

XPLINK environment will be initialized.
v If the runtime options are passed as input and the XPLINK option is specified as

XPLINK(ON), then an XPLINK environment will be initialized.
v If neither of the above are true (the first program in the customer PreInit table is

a non-XPLINK program and the XPLINK runtime option is off or not specified),
then a non-XPLINK environment will be initialized.

Note:

1. The runtime options you specify will apply to all of the subroutines that are
called by (call_sub) function. This includes options such as XPLINK. Therefore,
all of your subroutines must have the same characteristics and requirements
needed for these runtime options.

2. If this is a non-XPLINK sub environment, then do not allow an XPLINK
subroutine to be added to the table.

init_sub_dp: (Input: PreInit table pointer, and runtime options)
v If the first program in the customer PreInit table is an XPLINK program, then an

XPLINK environment will be initialized.
v If the runtime options are passed as input and the XPLINK option is specified as

XPLINK(ON), then an XPLINK environment will be initialized.
v If neither of the above are true (the first program in the customer PreInit table is

a non-XPLINK program and the XPLINK runtime option is off or not specified),
then a non-XPLINK environment will be initialized.

Note: The runtime options you specify will apply to all of the subroutines that are
called by (call_sub) function. This includes options such as XPLINK. Therefore, all
of your subroutines must have the same characteristics and requirements needed
for these runtime options.

User exit invocation
User exits are invoked for initialization and termination during calls to CEEPIPI as
shown in Table 67 on page 485.

Preinitialization services

484 z/OS V2R1.0 Language Environment Programming Guide

Table 67. Invocation of user exits during process and enclave initialization and termination

Function When invoked

Assembler user exit for first
enclave initialization

v (init_sub)

v (init_sub_dp)

v (call_main)

v (call_sub) or (call_sub_addr) or (call_sub_addr) ended
with stop semantics (see “Stop semantics”)

HLL user exit v (init_sub)

v (init_sub_dp)

v (call_main)

v (call_sub) or (call_sub_addr) or (call_sub_addr) ended
with stop semantics

C atexit() functions v (call_main)

v (call_sub) or (call_sub_addr), which ended stop
semantics.

v (term) for environment created with (init_sub) or
(init_sub_dp), if the last (call_sub) or (call_sub_addr) did
not end with stop semantics

Assembler user exit for first
enclave termination

v (call_main)

v (call_sub) or (call_sub_addr), which ended stop
semantics

v (term) for environment created with (init_sub) or
(init_sub_addr) if the last (call_sub) or (call_sub_addr)
did not end with stop semantics

Assembler user exit for process
termination

v (term)

For main environments:

The CEEBXITA assembler user exit and CEEBINT HLL user exit that are used with
the environment are taken from the main routine being called.

For sub environments:

The CEEBXITA assembler user exit and CEEBINT HLL user exit that are used with
the environment are taken from the first entry in the PreInit table. Any occurrences
of CEEBXITA or CEEBINT in any other PreInit table entries, or in load modules
used for call_sub_addr-type calls, are ignored.

See Chapter 28, “Using runtime user exits,” on page 419 for more information
about user exits.

Stop semantics
When one of the following is issued within the preinitialized environment for
subroutines:
v C exit(), abort(), or signal handling function specifying a normal or abnormal

termination
v COBOL STOP RUN statement
v PL/I STOP or EXIT

Preinitialization services

Chapter 30. Using preinitialization services 485

or when an unhandled condition causes termination of the (only) thread, the
logical enclave is terminated. The process level of the environment is retained.
Language Environment does not delete those entries that were loaded explicitly by
Language Environment during the preinitialization processing.

Attention: If the first entry in the PreInit table is either different or deleted from
when the enclave was last initialized, the assembler user exit (CEEBXITA), HLL
user exit (CEEBINT), or programmer default runtime options (CEEUOPT) used
during either an enclave reinitialization or enclave termination will either be
different or not available. This will result in unpredictable results. Therefore, when
using PreInit subroutine environments and in order to keep consistent enclave
initialization and termination behavior, users need to ensure the first valid entry in
the PreInit table does not change, especially when it contains the aforementioned
external references.

Preinitialization interface
The following section describes how to invoke the PreInit interface, CEEPIPI, to
perform the following tasks:
v Initialization
v Application invocation
v Termination
v Addition of an entry to the PreInit table
v Deletion of a main entry from the PreInit table
v Identification of an entry in the PreInit table
v Access to the CAA user word

The PreInit services offered under Language Environment using CEEPIPI are listed
in Table 68.

Table 68. Preinitialization services accessed using CEEPIPI

Function code Integer
value

Service performed

Initialization

init_main 1 Create and initialize an environment for multiple
executions of main routines.

init_main_dp 19 Create and initialize an environment for multiple
executions of main routines.

init_sub 3 Create and initialize an environment for multiple
executions of subroutines.

init_sub_dp 9 Create and initialize an environment for multiple
executions of subroutines.

Application invocation

call_main 2 Invoke a main routine within an already initialized
environment.

call_sub 4 Invoke a subroutine within an already initialized
environment.

start_seq 7 Start a sequence of uninterruptable calls to a number
of subroutines.

call_sub_addr 10 Invoke a subroutine by address within an already
initialized environment.

Termination

Preinitialization services

486 z/OS V2R1.0 Language Environment Programming Guide

Table 68. Preinitialization services accessed using CEEPIPI (continued)

Function code Integer
value

Service performed

term 5 Explicitly terminate the environment without
executing a user routine.

end_seq 8 Terminate a sequence of uninterruptable calls to a
number of subroutines.

Addition of an entry to PreInit table

add_entry 6 Dynamically add a candidate routine to execute
within the preinitialized environment.

Deletion of an entry from PreInit table

delete_entry 11 Delete an entry from the PreInit table, making it
available for subsequent add_entry functions.

Identification of a PreInit table entry

identify_entry 13 Identify the programming language of an entry in the
PreInit table.

identify_attributes 16 Identify the attributes of an entry in the PreInit table.

Identification of the environment

identify_environment 15 Identify the environment that was preinitialized.

Access to the CAA user word

set_user_word 17 Set value to be used to initialize CAA user word.

get_user_word 18 Get value to be used to initialize CAA user word.

Initialization
Language Environment supports four forms of preinitialized environments. The
first supports the execution of main routines. The second is a special form of the
first, that allows multiple preinitialized environments, for executing main routines.
to be created within the same address space. The third supports the execution of
subroutines. The fourth is a special form of the third, that allows multiple
preinitialized environments, for executing subroutines, to be created within the
same address-space.

The primary difference between these environments is the amount of Language
Environment initialization (and termination) that occurs on each application
invocation call. With an environment that supports main routines, most of the
application's execution environment is reinitialized with each invocation. With an
environment that supports subroutines, very little of the execution environment is
reinitialized with each invocation. This difference has its advantages and
disadvantages.

For the main environment, the advantages are:
v A new, pristine environment is created.
v Runtime options can be specified for each application.

and the disadvantages are:
v Poorer performance.

For the subenvironment, the advantages are:
v Best performance.

Preinitialization services

Chapter 30. Using preinitialization services 487

and the disadvantages are:
v The environment is left in what ever state the previous application left it in.
v Runtime options cannot be changed.

(init_main) — initialize for main routines
The invocation of this routine:
v Creates and initializes a new common run-time environment (process) that

allows the execution of main routines multiple times
v Sets the environment to dormant so that exceptions are percolated out of it
v Returns a token identifying the environment to the caller
v Returns a code in register 15 indicating whether an environment was

successfully initialized

Syntax

�� CALL CEEPIPI (init_main , ceexptbl_addr , service_rtns , �

� token) ��

init_main (input)
A fullword function code (integer value = 1) containing the init_main request.

ceexptbl_addr (input)
A fullword containing the address of the PreInit table to be used during
initialization of the new environment. Language Environment does not alter
the user-supplied copy of the table. If an entry address is zero and the entry
name is non-blank, Language Environment searches for the routine (in the
LPA, saved segment, or nucleus) and dynamically loads it. Language
Environment places the entry address in the corresponding slot of a Language
Environment-maintained table.

Language Environment uses the high-order bit of the entry address to
determine what AMODE to use when calling the routine. If the entry address
is zero, and the entry name is supplied, Language Environment uses the
AMODE returned by the system loader. If the entry address is supplied, you
must provide the AMODE in the high-order bit of the address.

service_rtns (input)
A fullword containing the address of the service routine vector or 0, if there is
no service routine vector. See “Service routines” on page 512 for more
information.

token (output)
A fullword containing a unique value used to represent the environment. The
token should be used only as input to additional calls to CEEPIPI, and should
not be altered or used in any other manner.

Return codes: Register 15 contains a return code indicating if an environment was
successfully initialized. Possible return codes (in decimal) are:

0 A new environment was successfully initialized.

4 The function code is not valid.

8 All addresses in the table were not resolved. This can occur if a LOAD

Preinitialization services

488 z/OS V2R1.0 Language Environment Programming Guide

failure was encountered or a routine within the table was generated by a
non-Language Environment-conforming HLL.

12 Storage for the preinitialization environment could not be obtained.

16 CEEPIPI was called from an active environment.

32 An unhandled error condition was encountered. This error is a result of a
program interrupt or other abend that occurred that prevented the
preinitialization services from completing.

Usage notes:

v The assembler user exit (CEEBXITA), HLL user exit (CEEBINT), and
programmer defaults (CEEUOPT) that are used to initialize the environment are
taken from the main routine being called through call_main.

v If a program in the PreInit table failed to load (return code 8), the
identify_attributes CEEPIPI function can be used to help determine what table
entry address did not resolve.

XPLINK considerations:

v If the environment being initialized is to be an XPLINK environment then the
first program in the PreInit table must be an XPLINK module.

v If there is no entry in the PreInit table or if the first module is a non-XPLINK
program, a non-XPLINK environment will be initialized.

v It is possible to change the environment from a non-XPLINK to an XPLINK
environment when doing a call_main. For more details, see call_main.

(init_main_dp) — initialize for main routines (multiple
environment)
The invocation of this routine:
v Creates and initializes a new common run-time environment (process) that

allows the execution of main routines multiple times.
v Sets the environment dormant so that exceptions are percolated out of it.
v Returns a token identifying the environment to the caller.
v Returns a code in register 15 indicating whether an environment was

successfully initialized.
v Ensures that the environment tolerates the existence of multiple Language

Environment processes or enclaves.

Note: Multiple main environments can be established by using (init_main_dp), as
opposed to using (init_main), which can establish only a single environment.

Syntax

�� CALL CEEPIPI (init_main_dp , ceexptbl_addr , service_rtns , �

� token) ��

init_main_dp (input)
A fullword function code (integer value = 19) containing the (init_main_dp)
request.

Preinitialization services

Chapter 30. Using preinitialization services 489

ceexptbl_addr (input)
A fullword containing the address of the PreInit table to be used during
initialization of the new environment. A user-supplied copy of the table is not
altered. If an entry address is zero and the entry name is non-blank, a search is
performed for the routine (in the LPA, saved segment, or nucleus) and the
routine is dynamically loaded. An entry is placed in the corresponding slot of a
Language Environment-maintained table.

The high-order bit of the entry address determines what AMODE to use when
calling the routine. If the entry address is zero, and the entry name is supplied,
the AMODE returned by the system loader is used. If the entry address is
supplied, you must provide the AMODE in the high-order bit of the address.

service_rtns (input)
A fullword containing the address of the service routine vector or 0, if there is
no service routine vector. See “Service routines” on page 512 for more
information.

token (output)
A fullword containing a unique value used to represent the environment. The
token should be used only as input to additional calls to CEEPIPI, and should
not be altered or used in any other manner.

Return codes: Register 15 contains a return code indicating if an environment was
successfully initialized. Possible return codes (in decimal) are:

0 A new environment was successfully initialized.

4 The function code is not valid.

8 All addresses in the table were not resolved. This can occur if a LOAD
failure was encountered or a routine within the table was generated by a
non-Language Environment-conforming HLL.

12 Storage for the preinitialization environment could not be obtained.

16 CEEPIPI was called from an active environment other than a CEEPIPI
main_dp environment.

32 An unhandled error condition was encountered. This error is a result of a
program interrupt or other abend that occurred that prevented the
preinitialization services from completing.

Usage notes:

v The assembler user exit (CEEBXITA), HLL user exit (CEEBINT), and
programmer defaults (CEEUOPT) that are used to initialize the environment are
taken from the main routine being called through (call_main).

v If a program in the PreInit table failed to load (return code 8), the
(identify_attributes) CEEPIPI function can be used to help determine what table
entry address did not resolve.

v If the process ID needs to be the same for all programs called by (call_main), the
preinitialization driver program should pre-dub the task (TCB) before
performing (init_main_dp).

v MSGFILE output can be directed to either a spool or to a unique file.
v Language Environment resources are not shared across multiple environments.
v C memory files are not shared across multiple environments.
v Calling POSIX(ON) programs in an (init_main_dp) environment is not

supported.

Preinitialization services

490 z/OS V2R1.0 Language Environment Programming Guide

XPLINK considerations:

v If the environment being initialized is to be an XPLINK environment then the
first program in the PreInit table must be an XPLINK module.

v If there is no entry in the PreInit table or if the first module is a non-XPLINK
program, a non-XPLINK environment will be initialized.

v It is possible to change the environment from a non-XPLINK to an XPLINK
environment when using (call_main). For more information, see “(call_main) —
invocation for main routine” on page 496.

Nested main_dp environment considerations:

v Main_dp environments can be initialized by calling CEEPIPI(init_main_dp) from
an active main_dp environment. From an active main_dp environment, nested
calls to CEEPIPI can be made with a token returned from (init_main_dp) to
perform certain other functions:
– (call_main)
– (add_entry)
– (delete_entry)
– (term)
– (set_user_word)
– (get_user_word)
– (identify_entry)
– (identify_environment)
– (identify_attributes)

v Restrictions for nested main_dp environments:
– When the calling environment has a user-provided @EXCEPRTN, the nested

main_dp environment must also have a user-provided @EXCEPRTN.
– If the user-written preinitialization driver program has established a SPIE or

ESPIE routine, the nested main_dp environment must have a user-provided
@EXCEPRTN.

– All CEEPIPI calls that use a token must be made from the same TCB.
– The INTERRUPT(ON) runtime option is not supported when using nested

main_dp environments under TSO/E.
– When the TRAP runtime option is used with nested main_dp environments,

use of the TSO/E attention key is not supported.
– If an ABEND (40XX, for example) causes the immediate ending of a nested

main_dp environment without orderly Language Environment termination,
the user-provided preinitialization driver program cannot be returned to. The
calling main_dp environment will also end without orderly Language
Environment termination

– If the ABTERMENC(ABEND) runtime option is in effect and an unhandled
condition causes a nested main_dp environment to ABEND, Language
Environment will not return to the preinitialization assembler driver program.
The calling main_dp environment will also ABEND without orderly Language
Environment termination. Consider using ABTERMENC(RETCODE) in nested
main_dp environments

– If a main_dp environment which uses the TRAP(ON,SPIE) runtime option
does (call_main) to a nested main_dp environment which uses
TRAP(ON,NOSPIE), language environment issues an ESPIE macro to prevent
program checks from being passed to any existing ESPIE routine. If this
ESPIE call must be avoided, do not call a nested main_dp environment with
TRAP(ON,NOSPIE) from a main_dp environment that uses TRAP(ON,SPIE).

Preinitialization services

Chapter 30. Using preinitialization services 491

(init_sub) — initialize for subroutines
The invocation of this routine:
v Creates and initializes a new common run-time environment (process and

enclave) that allows the execution of subroutines multiple times
v Sets the environment dormant so that exceptions are percolated out of it
v Returns a token identifying the environment to the caller
v Returns a code in register 15 indicating whether an environment was

successfully initialized
v Ensures that when the environment is dormant, it is immune to other Language

Environment enclaves that are created or terminated

Syntax

�� CALL CEEPIPI (init_sub , ceexptbl_addr , service_rtns , �

� runtime_opts , token) ��

init_sub (input)
A fullword function code (integer value = 3) containing the init_sub request.

ceexptbl_addr (input)
A fullword containing the address of the PreInit table to be used during
initialization of the new environment. Language Environment does not alter
the user-supplied copy of the table. If an entry address is zero and the entry
name is non-blank, Language Environment searches for the routine (in the
LPA, saved segment, or nucleus) and dynamically loads it. Language
Environment then places the entry address in the corresponding slot of a
Language Environment-maintained table.

Language Environment uses the high-order bit of the entry address to
determine what AMODE to use when calling the routine. If the entry address
is zero, and the entry name is supplied, Language Environment uses the
AMODE returned by the system loader. If the entry address is supplied, you
must provide the AMODE in the high-order bit of the address.

service_rtns (input)
A fullword containing the address of the service routine vector. It contains 0 if
there is no service routine vector. See “Service routines” on page 512 for more
information.

runtime_opts (input)
A fixed-length 255-character string containing runtime options (see z/OS
Language Environment Programming Reference for a list of runtime options that
you can specify).

Note:

1. The runtime options you specify will apply to all of the subroutines that
are called by the (call_sub) function. This includes options such as POSIX.
Therefore, all of your subroutines must have the same characteristics and
requirements needed for these runtime options.

2. If the Language Environment being initialized is a non-XPLINK
environment, then all of your subroutines must be non-XPLINK
subroutines.

Preinitialization services

492 z/OS V2R1.0 Language Environment Programming Guide

token (output)
A fullword containing a unique value used to represent the environment. The
token should be used only as input to additional calls to CEEPIPI, and should
not be altered or used in any other manner.

Return codes: Register 15 contains a return code indicating if an environment was
successfully initialized. Possible return codes (in decimal) are:
0 A new environment was successfully initialized.
4 The function code is not valid.
8 All addresses in the table were not resolved. This can occur if a LOAD

failure was encountered, a routine within the table was not generated by a
Language Environment-conforming HLL, or a C or PL/I routine within the
table was not fetchable.

12 Storage for the preinitialization environment could not be obtained.
16 CEEPIPI was called from an active environment.
32 An unhandled error condition was encountered. This error is a result of a

program interrupt or other abend that occurred that prevented the
preinitialization services from completing.

40 An entry in the PreInit table is an XPLINK subroutine and the
environment is a non-XPLINK sub environment. This entry is not valid.

Usage notes:

v The assembler user exit (CEEBXITA), HLL user exit (CEEBINT), and
programmer defaults (CEEUOPT) that are used to initialize the environment are
taken from the first valid entry in the PreInit table. Any occurrences of
CEEBXITA, CEEBINT, and CEEUOPT in other PreInit table entries are ignored.
Unpredictable results will occur if this first entry is deleted or changed.

v If a program in the PreInit table failed to load (return code 8 or 40), the
identify_attributes CEEPIPI function can be used to help determine what table
entry address did not resolve.

XPLINK considerations:

v If the first program in the customer PreInit table is an XPLINK program, then an
XPLINK environment will be initialized.

v If the runtime options are passed as input and the XPLINK option is specified as
XPLINK(ON), then an XPLINK environment will be initialized.

v If neither of the above are true (the first program in the customer PreInit table is
a non-XPLINK program and the XPLINK runtime option is off or not specified),
then a non-XPLINK environment will be initialized.

Note:

1. The runtime options you specify will apply to all of the subroutines that are
called by (call_sub) function. This includes options such as XPLINK. Therefore,
all of your subroutines must have the same characteristics and requirements
needed for these runtime options.

2. If this is a non-XPLINK sub environment, then do not allow an XPLINK
subroutine to be added to the table.

(init_sub_dp) — initialize for subroutine (multiple environment)
The invocation of this routine:
v Creates and initializes a new Language Environment process and enclave to

allow the execution of subroutines multiple times
v Sets the environment dormant so that exceptions are percolated out of it
v Returns a token identifying the environment to the caller

Preinitialization services

Chapter 30. Using preinitialization services 493

v Returns a code in register 15 indicating whether an environment was
successfully initialized

v Ensures that the environment tolerates the existence of multiple Language
Environment enclaves

v Ensures that when the environment is dormant, it is immune to other Language
Environment enclaves that are created or terminated

Multiple environments can be established only by using (init_sub_dp) as opposed
to (init_sub), which can establish only a single environment.

Syntax

�� CALL CEEPIPI (init_sub_dp , ceexptbl_addr , service_rtns , �

� runtime_opts , token) ��

init_sub_dp (input)
A fullword function code (integer value = 9) containing the init_sub_dp request.

ceexptbl_addr (input)
A fullword containing the address of the PreInit table to be used during
initialization of the new environment. Language Environment does not alter
the user-supplied copy of the table. If an entry address is zero and the entry
name is non-blank, Language Environment searches for the routine (in the
LPA, saved segment, or nucleus) and dynamically loads it. Language
Environment then places the entry address in the corresponding slot of a
Language Environment-maintained table.

Language Environment uses the high-order bit of the entry address to
determine what AMODE to use when calling the routine. If the entry address
is zero, and the entry name is supplied, Language Environment uses the
AMODE returned by the system loader. If the entry address is supplied, you
must provide the AMODE in the high-order bit of the address.

service_rtns (input)
A fullword containing the address of the service routine vector. It contains 0 if
there is no service routine vector. See “Service routines” on page 512 for more
information.

runtime_opts (input)
A fixed-length 255-character string containing runtime options (see z/OS
Language Environment Programming Referencefor a list of runtime options that
you can specify).

Note:

1. The runtime options you specify will apply to all of the subroutines that
are called by the (call_sub) function. This includes options, such as POSIX.
Therefore, all of your subroutines must have the same characteristics and
requirements needed for these runtime options.

2. If you want to run XPLINK routines in a PreInit sub environment, you
must specify the XPLINK(ON) runtime option field when you create the
sub environment by calling CEEPIPI(init_sub). You can not run XPLINK
routines in a sub environment when runtime option XPLINK(OFF) is in
effect.

Preinitialization services

494 z/OS V2R1.0 Language Environment Programming Guide

token (output)
A fullword containing a unique value used to represent the environment. The
token should be used only as input to additional calls to CEEPIPI, and should
not be altered or used in any other manner.

Return codes: Register 15 contains a return code indicating if an environment was
successfully initialized. Possible return codes (in decimal) are:
0 A new environment was successfully initialized.
4 The function code is not valid.
8 All addresses in the table were not resolved. This can occur if a LOAD

failure was encountered or a routine within the table was not generated by
a Language Environment-conforming HLL.

12 Storage for the preinitialization environment could not be obtained.
32 An unhandled error condition was encountered. This error is a result of a

program interrupt or other abend that occurred that prevented the
preinitialization services from completing.

40 An entry in the PreInit table is an XPLINK subroutine and the
environment is a non-XPLINK sub environment. This entry is not valid.

Usage notes:

v The assembler user exit (CEEBXITA), HLL user exit (CEEBINT), and
programmer defaults (CEEUOPT) that are used to initialize the environment are
taken from the first valid entry in the PreInit table. Any occurrences of
CEEBXITA, CEEBINT, and CEEUOPT in other PreInit table entries are ignored.
Unpredictable results will occur if this first entry is deleted or changed.

v COBOL, PL/I, and C routines must be compiled RENT to participate in this
environment

v You can direct MSGFILE output to either a spool or to a unique file.
v C memory files are not shared across multiple environments.
v If the (init_sub_dp,...) interface is used to create additional environments, neither

the existing environment, nor the one trying to be created can be POSIX(ON).
v If a program in the PreInit table failed to load (return code 8 or 40), the

identify_attributes CEEPIPI function can be used to help determine what table
entry address did not resolve.

XPLINK considerations:

v If the first program in the customer PreInit table is an XPLINK program, then an
XPLINK environment will be initialized.

v If the runtime options are passed as input and the XPLINK option is specified as
XPLINK(ON), then an XPLINK environment will be initialized.

v If neither of the above are true (the first program in the customer PreInit table is
a non-XPLINK program and the XPLINK runtime option is off or not specified),
then a non-XPLINK environment will be initialized.

Note: The runtime options you specify apply to all of the subroutines that are
called by (call_sub_dp) function. This includes options such as XPLINK. Therefore,
all of your subroutines must have the same characteristics and requirements
needed for these runtime options.

Application invocation
Language Environment provides facilities to invoke either a main routine or
subroutine. When invoking main routines, the environment must have been

Preinitialization services

Chapter 30. Using preinitialization services 495

initialized using the init_main or init_main_dp function code. Similarly, when
invoking subroutines, the environment must have been initialized with the init_sub
or init_sub_dp function codes.

(call_main) — invocation for main routine
This invocation of CEEPIPI invokes as a main routine the routine that you specify.
The common execution environment identified by token is activated before the
called routine is invoked, and after the called routine returns, the environment is
dormant.

At termination, the currently active HLL event handlers are driven to enforce
language semantics for the termination of an application such as closing files and
freeing storage. The process level is made dormant rather than terminated. The
thread and enclave levels are terminated. The assembler user exit is driven with
the function code for first enclave termination. (For more information about user
exits, see Chapter 28, “Using runtime user exits,” on page 419.)

Syntax

�� CALL CEEPIPI (call_main , ceexptl_index , token , �

� runtime_opts , parm_ptr , enclave_return_code , �

� enclave_reason_code , appl_feedback_code) ��

call_main (input)
A fullword function code (integer value = 2) containing the call_main request.

ceexptbl_index (input)
A fullword containing the row number within the PreInit table of the entry
that should be invoked. The index starts at 0.

Each invocation of the CEEXPITY macro generates a row in the PreInit table.
The first entry is row 0, the second is row 1 and so on. A call to (add_entry) to
add an entry to the PreInit table also returns a row number in the
ceexptbl_index parameter.

token (input)
A fullword with the value of the token returned by (init_main) or
(init_main_dp) when the common run-time environment is initialized. The
token must identify a previously preinitialized environment that is not active at
the time of the call.

runtime_opts (input)
A fixed-length 255-character string containing runtime options. (See z/OS
Language Environment Programming Reference for a list of runtime options that
you can specify.)

parm_ptr (input)
A fullword parameter list pointer or 0 (zero) that is placed in register 1 when
the main routine is executed. The parameter list that is passed must be in a
format that HLL subroutines expect (for example, in an argc, argv format for
C routines).

enclave_return_code (output)
A fullword containing the enclave return code returned by the called routine

Preinitialization services

496 z/OS V2R1.0 Language Environment Programming Guide

when it finished executing. For more information about return codes, see
“Managing return codes in Language Environment” on page 151.

enclave_reason_code (output)
A fullword containing the enclave reason code returned by the environment
when the routine finished executing. For more information about reason codes,
see “Managing return codes in Language Environment” on page 151.

appl_feedback_code (output)
A 96-bit condition token indicating why the application terminated.

Return codes: Register 15 contains a return code indicating the success or failure
of the request. Possible return codes (in decimal) are:
0 The environment was activated and the routine called.
4 The function code is not valid.
8 If token was initialized by (init_main) or (init_sub), CEEPIPI(call_main) was

called from a Language Environment-conforming HLL.

If token was initialized by (init_main_dp), CEEPIPI(call_main) was called
from a Language Environment-conforming HLL that is not running in a
(main_dp) environment, or token is already in use for another call to
CEEPIPI.

12 The indicated environment was initialized for subroutines. No routine was
executed.

16 The token is not valid.
20 The index points to an entry that is not valid or empty.
24 The index that was passed is outside the range of the table.
32 An unhandled error condition was encountered. This error is a result of a

program interrupt or other abend that occurred that prevented the
preinitialization services from completing.

The user return code and Language Environment return code modifier are set to
zero before invoking the target routine.

Usage notes:

v The NOEXECOPS and CBLOPTS runtime options (see z/OS Language
Environment Programming Reference) are ignored since the parameter inbound to
the application and the runtime options are separated already. Therefore,
NOEXECOPS and CBLOPTS do not affect the parameter string format. See “C
PLIST and EXECOPS Interactions” on page 563 for more information.

v The assembler user exit (CEEBXITA), HLL user exit (CEEBINT), and
programmer defaults (CEEUOPT) that are used to initialize the environment are
taken from the main routine being called. Any occurrences of CEEBXITA,
CEEBINT, and CEEUOPT in other PreInit table entries are ignored.

v For more information about return codes, see “Managing return codes in
Language Environment” on page 151.

(call_sub) — invocation for subroutines
This invocation of CEEPIPI invokes as a subroutine the routine that you specify.
The common run-time environment identified by token is activated before the
called routine is invoked, and after the called routine returns, the environment is
dormant.

The enclave is terminated when an unhandled condition is encountered or a STOP
statement is executed. (See “Stop semantics” on page 485 for more information.)

Preinitialization services

Chapter 30. Using preinitialization services 497

However, the process level is maintained. The next call to (call_sub) initializes a
new enclave.

Syntax

�� CALL CEEPIPI (call_sub , ceexptl_index , token , parm_ptr , �

� sub_ret_code , sub_reason_code , sub_feedback_code) ��

call_sub (input)
A fullword function code (integer value = 4) containing the call_sub request for
a subroutine.

ceexptbl_index (input)
A fullword containing the row number of the entry within the PreInit table
that should be invoked; the index starts at 0.

Note: If the token pointing to the previously preinitialized environment is a
non-XPLINK environment and the subprogram to be invoked is XPLINK, then
a Return Code of 40 will be returned because this is not valid.

token (input)
A fullword with the value of the token returned when the common run-time
environment is initialized. This token is initialized by the (init_sub) or
(init_sub_dp). The token must identify a previously preinitialized environment
that is not active at the time of the call. You must not alter the value of the
token.

Note: If the token pointing to the previously preinitialized environment is a
non-XPLINK environment and the subprogram to be invoked is XPLINK a
Return Code of 40 will be returned because this is not valid.

parm_ptr (input)
A parameter list pointer or 0 (zero) that is placed in register 1 when the routine
is executed.

C and C++ users need to follow the subroutine linkage convention for C/C++
— assembler ILC applications, as described in z/OS XL C/C++ Programming
Guide.

sub_ret_code (output)
The subroutine return code. If the enclave is terminated due to an unhandled
condition, a STOP statement, or EXIT statement (or an exit() function), this
contains the enclave return code for termination.

sub_reason_code (output)
The subroutine reason code. This is 0 for normal subroutine returns. If the
enclave is terminated due to an unhandled condition, a STOP statement, or
EXIT statement (or an exit() function), this contains the enclave reason code for
termination.

sub_feedback_code (output)
The feedback code for enclave termination. This is the CEE000 feedback code
for normal subroutine returns. If the enclave is terminated due to an
unhandled condition, a STOP statement, or EXIT statement (or an exit()
function), this contains the enclave feedback code for termination.

Preinitialization services

498 z/OS V2R1.0 Language Environment Programming Guide

Return codes: Register 15 contains a return code indicating the success or failure
of the request. Possible return codes (in decimal) are:

0 The environment was activated and the routine called.

4 The function code is not valid.

8 CEEPIPI was called from a Language Environment-conforming HLL.

12 The indicated environment was initialized for main routines. No routine
was executed.

16 The token is not valid.

20 The index points to an entry that is not valid or empty.

24 The index passed is outside the range of the table.

28 The enclave was terminated but the process level persists.

This value indicates the enclave was terminated while the process was
retained. This can occur due to a STOP statement being issued or due to an
unhandled condition. The sub_ret_code, sub_reason_code, and
sub_feedback_code indicate this action.

40 The subprogram was an XPLINK program and the preinitialized
environment is non-XPLINK. This is not valid.

Usage notes:

v The enclave terminates if the subroutine issues a STOP statement, EXIT
statement (or an exit() function), or if there is an unhandled condition. However,
the process level is not terminated. When the enclave level is terminated, any
subsequent invocation creates a new enclave by using the same runtime options
used in the creation of the first enclave. Language Environment does not delete
any user routines that were loaded into the PreInit table.
However, if, the first valid entry in the PreInit table is different than when the
enclave was last initialized, the assembler user exit (CEEBXITA), HLL user exit
(CEEBINT), and/or programmer default runtime options (CEEUOPT) used
during the enclave re-initialization might be different. PreInit subroutine
initialization uses these external references only when associated with the first
valid entry in the PreInit table. Therefore, when using PreInit subroutine
environments and you want consistent enclave initialization behavior across the
stop semantics, you need to ensure the first valid entry in the PreInit table does
not change, especially when it contains the aforementioned external
references.(See “Stop semantics” on page 485.)

v Any subroutine that modifies external data cannot make assumptions about the
initial state of that external data. The initial state of the external data is
influenced by previous instances of the same subroutine and also by previous
instances of any subroutine that caused enclave termination.

v If the first entry in the PreInit table contained a CEEBXITA, CEEBINIT or
CEEUOPT when the environment was initialized and is then deleted or
changed, the results of subsequent enclave re-initialization or termination is
unpredictable. It is the responsibility of the user to ensure the first entry in the
PreInit table does not change, especially when it contains the aforementioned
external references.

(call_sub_addr) — invocation for subroutines by address
This invocation of CEEPIPI invokes a specified routine as a subroutine. The
common run-time environment identified by token is activated before the called
routine is invoked; after the called routine returns, the environment is dormant.

Preinitialization services

Chapter 30. Using preinitialization services 499

The enclave is terminated when an unhandled condition is encountered or a STOP
or EXIT statement (or an exit() function) is executed. (See “Stop semantics” on
page 485 for more information.) However, the process level is maintained; only the
enclave level terminates.

Syntax

�� CALL CEEPIPI (call_sub_addr , routine_addr , token , �

� parm_ptr , sub_ret_code , sub_reason_code , sub_feedback_code) ��

call_sub_addr (input)
A fullword function code (integer value = 10) containing the call_sub request
for a subroutine.

routine_addr (input/output)
A doubleword containing the address of the routine that should be invoked.
The first fullword contains the entry point address.

Note:

1. If this is an XPLINK environment and the second fullword is zero,
Preinitialization services will create a new function pointer to call the
routine directly. The new function pointer will be returned in the second
fullword.

2. If this is an XPLINK environment and the second fullword is a function
pointer, the XPLINK subroutine is called directly. This fast path avoids the
overhead of translating the routine address to the function pointer.

token (input)
A fullword with the value of the token returned by (init_sub) or (init_sub_dp)
when the common run-time environment is initialized. The token must identify
a previously preinitialized environment that is not active at the time of the call.
You must not alter the value of the token.

Note: If the token pointing to the previously preinitialized environment is a
non-XPLINK environment and the subprogram to be invoked is XPLINK, then
a return code of 40 will be returned because this is not valid.

parm_ptr (input)
A parameter list pointer or 0 (zero) that is placed in register 1 when the routine
is executed.

C and C++ users are advised to follow the subroutine linkage convention for
C/C++ — assembler ILC applications, as described in z/OS XL C/C++
Programming Guide.

sub_ret_code (output)
The subroutine return code. If the enclave is terminated due to an unhandled
condition or a STOP or EXIT statement (or an exit() function), this contains the
enclave return code for termination.

sub_reason_code (output)
The subroutine reason code. This is 0 for normal subroutine returns. If the

Preinitialization services

500 z/OS V2R1.0 Language Environment Programming Guide

enclave is terminated due to an unhandled condition or a STOP or EXIT
statement (or an exit() function), this contains the enclave reason code for
termination.

sub_feedback_code (output)
The feedback code for enclave termination. This is the CEE000 feedback code
for normal subroutine returns. If the enclave is terminated due to an
unhandled condition or a STOP or EXIT statement (or an exit() function), this
contains the enclave feedback code for termination.

Return codes: Register 15 contains a return code indicating the success or failure
of the request. Possible return codes (in decimal) are:

0 The environment was activated and the routine called.

4 The function code is not valid.

8 CEEPIPI was called from a Language Environment-conforming HLL.

12 The indicated environment was initialized for main routines. No routine
was executed.

16 The token is not valid.

28 The enclave was terminated but the process level persists.

This value indicates the enclave was terminated while the process was
retained. This can occur due to a STOP or EXIT statement (or an exit()
function) being issued or due to an unhandled condition. The sub_ret_code,
sub_reason_code, and sub_feedback_code indicate this action.

40 The subprogram was an XPLINK program and the preinitialized
environment is non-XPLINK. This is not valid.

41 Indicates the routine address could not be converted to a function
descriptor.

Usage notes:

v The enclave terminates if the subroutine issues a STOP or EXIT statement (or an
exit() function), or if there is an unhandled condition. However, the process level
is not terminated. When the enclave level is terminated, any subsequent
invocation creates a new enclave using the same runtime options used in the
creation of the first enclave. Language Environment does not delete any user
routines that were loaded into the PreInit table.
However, if, the first valid entry in the PreInit table is different than when the
enclave was last initialized, the assembler user exit (CEEBXITA), HLL user exit
(CEEBINT), and/or programmer default runtime options (CEEUOPT) used
during the enclave re-initialization might be different. PreInit subroutine
initialization uses these external references only when associated with the first
valid entry in the PreInit table. Therefore, when using PreInit subroutine
environments and you want consistent enclave initialization behavior across the
stop semantics, you need to ensure the first valid entry in the PreInit table does
not change, especially when it contains the aforementioned external
references.(See “Stop semantics” on page 485.)

v Any subroutine that modifies external data cannot make assumptions about the
initial state of that external data. The initial state of the external data is
influenced by previous instances of the same subroutine and also by previous
instances of any subroutine that caused enclave termination.

Preinitialization services

Chapter 30. Using preinitialization services 501

v C subroutines that are not naturally reentrant and C++ subroutines can be
invoked using call_sub_addr only in an XPLINK environment. In a non-XPLINK
environment, they must be invoked using call_sub.

v If the first entry in the PreInit table contained a CEEBXITA, CEEBINIT or
CEEUOPT when the environment was initialized and is then deleted or
changed, the results of subsequent enclave re-initialization or termination is
unpredictable. It is the responsibility of the user to ensure the first entry in the
PreInit table does not change, especially when it contains the aforementioned
external references.

(end_seq) — end a sequence of calls
This invocation of CEEPIPI declares that a sequence of uninterrupted calls to
subroutines by this driver program has finished.

Syntax

�� CALL CEEPIPI (end_seq , token) ��

end_seq (input)
A fullword function code (integer value = 8) containing the end_seq request

token (input)
A fullword with the value of the token returned by (init_sub_dp) when the
common runtime environment is initialized.

The token must identify a previously preinitialized environment that was
prepared for multiple calls by the (start_seq) call.

Return codes: Register 15 contains a return code indicating the success or failure
of the request. Possible return codes (in decimal) are:

0 The environment is no longer prepared for a sequence of calls.

4 The function code is not valid.

8 The indicated environment was already active; no action taken.

16 The token is not valid.

20 The token was not used in a start_seq call.

Usage notes:

v (end_seq) can be used only in conjunction with a Language Environment
environment initialized by an (init_sub_dp) function code. A return code of 4 is
set for environments initialized by other than (init_sub_dp).

v Only (call_sub) or (call_sub_addr) invocations are allowed between the
(start_seq) and (end_seq) calls.

v The driver program cannot cancel any STAE or ESPIE routines.
v This function can be called from an active environment if the Preinitialization

environment indicated by token was created with the (init_sub_dp) function.

(start_seq) — start a sequence of calls
This invocation of CEEPIPI declares that a sequence of uninterrupted calls is made
to a number of subroutines by this driven program to the same preinitialized

Preinitialization services

502 z/OS V2R1.0 Language Environment Programming Guide

environment. This minimizes the overhead between calls by performing as much
activity as possible at the start of a sequence of calls.

Syntax

�� CALL CEEPIPI (start_seq , token) ��

start_seq (input)
A fullword function code (integer value = 7) containing the start_seq request.

token (input)
A fullword with the value of the token returned by (init_sub_dp) when the
common runtime environment is initialized.

The token must identify a previously preinitialized environment for subroutines
that are dormant at the time of the call.

Return codes: Register 15 contains a return code indicating the success or failure
of the request. Possible return codes (in decimal) are:

0 The environment was prepared for a sequence of calls.

4 The function code is not valid.

8 The indicated environment was already active; no action taken.

16 The token is not valid.

20 Sequence already started using token.

Usage notes:

v (start_seq) can be used only in conjunction with a Language Environment
environment initialized by (init_sub_dp) function code. A return code 4 is set for
environments not initialized by (init_sub_dp).

v (start_seq) minimizes the overhead between calls by allowing Language
Environment to perform as much activity as possible at the start of the sequence
of calls.

v Only (call_sub) or (call_sub_addr) invocations are allowed between the
(start_seq) and (end_seq) calls.

v The same token must be passed for all invocations of (call_sub) or
(call_sub_addr) between the (start_seq) and (end_seq) function codes. You can
vary the routine invoked.

v During a CEEPIPI call sequence, the user's CEEPIPI driver must insure that the
Language Environment recovery routines are never invoked when a program
check or abend occurs in the user application code. One way to do this is to run
with Trap (ON,NOSPIE), and also establish an ESTAE to handle errors when
Language Environment is not active.

(term) — terminate environment
This invocation of CEEPIPI terminates the environment identified by the value
given in token. This service is used for terminating environments created for
subroutines or main routines.

Preinitialization services

Chapter 30. Using preinitialization services 503

Syntax

�� CALL CEEPIPI (term , token , env_return_code) ��

term (input)
A fullword function code (integer value = 5) containing the termination
request.

token (input)
A fullword with the value of the token of the environment to be terminated.
This token is returned by a (init_main), (init_main_dp), (init_sub), or
(init_sub_dp) request during the initialization call.

The token must identify a previously preinitialized environment that is dormant
at the time of the call.

env_return_code (output)
A fullword integer which is set to the return code from the environment
termination.

If the environment was initialized for a main routine or a subroutine, and the
last (call_sub) or (call_sub_addr) issued stop semantics, the value of
env_return_code is zero.

If the environment was initialized for a subroutine and the last (call_sub) or
(call_sub_addr) did not terminate with stop semantics, env_return_code contains
the same value as that in sub_ret_code from the last (call_sub) or
(call_sub_addr).

Return codes: Register 15 contains a return code indicating the success or failure
of the request. Possible return codes (in decimal) are:

0 The environment was activated and termination was requested.

4 Non-valid function code.

8 If token was initialized by (init_main) or (init_sub), CEEPIPI(term) was
called from a Language Environment-conforming routine.

If token was initialized by (init_main_dp), CEEPIPI(term) was called from a
Language Environment-conforming routine that is not running in a
(main_dp) environment, or token is already in use for another call to
CEEPIPI

16 The token is not valid.

Usage notes:

v All resources obtained are released when the environment terminates.
v All routines loaded by Language Environment are deleted when the

environment terminates.
v Subsequent references to token by preinitialization services result in an error

indicating the token is not valid.

(add_entry) — add an entry to the PreInit table
This invocation of CEEPIPI adds an entry for the environment represented by token
in the Language Environment-maintained table. If a routine entry address is not
provided, the routine name is used to dynamically load the routine and add it to

Preinitialization services

504 z/OS V2R1.0 Language Environment Programming Guide

the PreInit table. The PreInit table index for the new entry is returned to the calling
routine.

Syntax

�� CALL CEEPIPI (add_entry , token , routine_name , �

� routine_entry , ceexptbl_index) ��

add_entry (input)
A fullword function code (integer value = 6) containing the add_entry request.

token (input)
A fullword with the value of the token associated with the environment that
adds this new routine. This token is returned by a (init_main), (init_main_dp),
(init_sub), or (init_sub_dp) request.

The token must identify a previously preinitialized environment that is dormant
at the time of the call.

routine_name (input)
A character string of length 8, left-justified and padded right with blanks,
containing the name of the routine. To indicate the absence of the name, this
field should be blank. If routine_entry is zero, this is used as the load name.

routine_entry (input/output)
The routine entry address that is added to the PreInit table. If routine_entry is
zero on input, routine_name is used as the load name. On output, routine_entry
is set to the load address of routine_name.

The high-order bit of the entry_point address must be set to indicate the
addressing mode for the routine. If the high-order bit is OFF, the routine is
called in 24 bit addressing mode and the address must be a valid 24 bit
address. If the high-order bit is ON, the routine is called in 31 bit addressing
mode and the address must be a valid 31 bit address.

ceexptbl_index (output)
The index to the PreInit table where this routine was added. If the return code
is nonzero, this value is indeterminate. The index starts at zero.

Note: The environment that was preinitialized can be an XPLINK environment
or a non-XPLINK environment. If the routine being added is an XPLINK
routine, then the previously initialized environment must also be XPLINK.

Return codes: Register 15 contains a return code indicating the success or failure
of the request. Possible return codes (in decimal) are:

0 The routine was added to the PreInit table.

4 Non-valid function code.

8 If token was initialized by (init_main) or (init_sub), CEEPIPI(add_entry)
was called from a Language Environment-conforming routine.

If token was initialized by (init_main_dp), CEEPIPI(add_entry) was called
from a Language Environment-conforming routine that is not running in a
(main_dp) environment, or token is already in use for another call to
CEEPIPI

Preinitialization services

Chapter 30. Using preinitialization services 505

12 The routine did not contain a valid Language Environment entry prolog.
Ensure that the routine was compiled with a current Language
Environment enabled compiler. The PreInit table was not updated.

16 The token is not valid.

20 The routine_name contains only blanks and the routine_entry was zero. The
PreInit table was not updated.

24 The routine_name was not found or there was a load failure; the PreInit
table was not updated.

28 The PreInit table is full. No routine was added to the table, nor was any
routine loaded by Language Environment.

32 An unhandled error condition was encountered. This error is a result of a
program interrupt or other abend that occurred that prevented the
preinitialization services from completing.

38 Non-valid entry: A non-XPLINK subenvironment was preinitialized and
the program that was being added is an XPLINK program.

42 Non-valid entry: The routine_entry had the high-order bit off indicating this
routine is a 24 bit addressing mode routine but the environment is an
XPLINK 31-bit environment. This is not valid.

Usage notes:

v The PreInit table is built using the macros described in this topic. Therefore, its
size is under the control of your application, not Language Environment.

v None of the routines in the PreInit table can be nested routines. All routines
must be external routines.

v Language Environment uses the high-order bit of the entry address to determine
what AMODE to use when calling the routine. If the routine_entry is zero, and
the routine_name is supplied, Language Environment uses the AMODE returned
by the system loader. If the routine_entry is supplied, you must provide the
AMODE in the high-order bit of the address.

v An add_entry of an XPLINK program into a non-XPLINK preinitialized
sub-environment will be not valid. If the environment is non-XPLINK, then the
subprogram added with the add_entry function must also be non-XPLINK.
However, you can do an add_entry of a main XPLINK program into a
non-XPLINK environment. When a call_main is done with this scenario the
environment will switch to XPLINK in order to allow the program to run.

(delete_entry) — delete an entry from the PreInit table
This function deletes an entry from the PreInit table. The entry is then available for
subsequent (add_entry) functions.

Syntax

�� CALL CEEPIPI (delete_entry , token , ceexptbl_index) ��

delete_entry (input)
fullword function code (integer value = 11) containing the delete_entry request

Preinitialization services

506 z/OS V2R1.0 Language Environment Programming Guide

token (input)
a fullword with the value of the token of the environment. This is the token
returned by a (init_main), (init_main_dp), (init_sub), or (init_sub_dp) request.

ceexptbl_index (input)
the index into the PreInit table of the entry to delete.

Return codes: Register 15 contains a return code indicating the success or failure
of the request. Possible return codes (in decimal) are:

0 The routine was deleted from the PreInit table

4 The function code is not valid.

8 If token was initialized by (init_main) or (init_sub), CEEPIPI(delete_entry)
was called from an active environment.

If token was initialized by (init_main_dp), CEEPIPI(add_entry) was called
from an active environment other than a (main_dp) environment, or token
is already in use for another call to CEEPIPI.

No entries were deleted from the PreInit table.

16 The token is not valid

20 The PreInit table entry indicated by ceexptbl_index was empty.

24 The index passed is outside the range of the table.

28 The system request to delete the routine failed; the routine was not deleted
from the PreInit table.

Usage notes:

v The token must identify a previously preinitialized environment that is dormant
at the time of the call.

v If the routine indicated by ceexptbl_index had been loaded by CEEPIPI, it will be
deleted.

v (delete_entry) no longer issues return code 12 (the environment indicated by
token was not created with a (init_main) request; the routine was not deleted
from the PreInit table).

(identify_entry) — identify an entry in the PreInit table
This invocation of CEEPIPI identifies the language of the entry point for a routine
in the PreInit table.

Syntax

�� CALL CEEPIPI (identify_entry , token , ceexptbl_index , �

� programming language) ��

identify_entry (input)
A fullword containing the identify_entry function code (integer value=13).

token (input)
A fullword with the value of the token of the environment. This is the token
returned by a (init_main), (init_main_dp), (init_sub) or (init_sub_dp) request.

Preinitialization services

Chapter 30. Using preinitialization services 507

ceexptbl_index (input)
A fullword containing the index in the PreInit table of the entry to identify the
programming language.

programming language (output)
A fullword with one of the following possible values:
3 C/C++
5 COBOL
10 PL/I
11 Enterprise PL/I for z/OS
15 Language Environment-enabled assembler
16 PL/X

Return codes: Register 15 contains a return code indicating the success or failure
of the request. Possible return codes (in decimal) are:
0 The programming language has been returned.
4 Non-valid function code.
8 CEEPIPI was called from an active environment.
16 The token is not valid.
20 The PreInit table entry indicated by ceexptbl_index was empty.
24 The index passed is outside the range of the table.

Usage notes:

v The token must identify a previously preinitialized environment that is dormant
at the time of the call and was established with the (init_main), (init_main_dp),
(init_sub) or (init_sub_dp) request.

v The programming language can be used by the driver to determine the format of
the parameter list for the routine in cases where the language of the entry is not
known.

v When a PreInit table entry contains multiple languages, programming_language is
the language of the entry point for the entry.

(identify_environment) — identify the environment in the PreInit
table
This invocation of CEEPIPI identifies the environment that was preinitialized.

Syntax

�� CALL CEEPIPI (identify_environment , token , pipi_environment) ��

identify_environment (input)
A fullword containing the identify_environment function code (integer value=15).

token (input)
A fullword with the value of the token of the environment. This is the token
returned by a (init_main), (init_main_dp), (init_sub) or (init_sub_dp) request.

pipi_environment (output)
A fullword (32 Bit) mask value will be returned. For information about the
mask value, see Table 69 on page 509.

Preinitialization services

508 z/OS V2R1.0 Language Environment Programming Guide

Table 69. pipi_environment mask values

pipi_environment Mask value Action

ceepipi_main X'80000000' PreInit main environment is initialized.

ceepipi_enclave_initialized X'40000000' PreInit enclave is initialized.

ceepipi_dp_environment X'20000000' PreInit sub dp environment is initialized.

ceepipi_dp_seq_of_calls_active X'10000000' PreInit seq call function is active.

ceepipi_dp_exits_established X'08000000' PreInit sub dp exits is set.

ceepipi_sir_unregistered X'04000000' PreInit sir is registered.

ceepipi_sub_environment X'02000000' PreInit sub environment is initialized.

ceepipi_XPLINK_environment X'01000000' PreInit XPLINK environment is initialized.

ceepipi_init_main_dp_environment X'00200000' PreInit main dp environment is initialized.

Note: Mask bits other than those listed in the table may be nonzero. The
meaning of these bits is not defined.

Return codes: Register 15 contains a return code indicating the success or failure
of the request. Possible return codes (in decimal) are:
0 The Preinitialization environment mask has been returned.
4 Non-valid function code.
8 CEEPIPI was called from an active environment.
16 The token is not valid.

(identify_attributes) — identify the program attributes in the
PreInit table
This invocation of CEEPIPI identifies the program attributes of a program in the
PreInit table.

Syntax

�� CALL CEEPIPI (identify_attributes , token , �

� ceexptbl_index(input) program_attributes) ��

identify_attributes (input)
A fullword containing the identify_attributes function code (integer value=16).

token (input)
A fullword with the value of the token of the environment. This is the token
returned by a (init_main), (init_main_dp), (init_sub) or (init_sub_dp) request.

ceexptbl_index (input)
A fullword containing the index in the PreInit table of the entry to identify the
programming attributes.

program_attributes (output)
A fullword (32–bit) mask value will be returned indicating the following:

Preinitialization services

Chapter 30. Using preinitialization services 509

Table 70. program_attributes mask values

program_attribute Mask value Action

loaded_by_pipi X'80000000' The Preinitialization entry was loaded by
Language Environment

XPLINK_program X'40000000' The Preinitialization entry loaded is an
XPLINK program

Address_not_resolved X'20000000' The Preinitialization entry could not be
loaded

Return codes: Register 15 contains a return code indicating the success or failure
of the request. Possible return codes (in decimal) are:
0 The Preinitialization environment mask has been returned.
4 Non-valid function code.
8 CEEPIPI was called from an active environment.
16 The token is not valid.
20 The PreInit table entry indicated by ceexptbl_index was empty.
24 The index passed is outside the range of the table.

(set_user_word) -- set value to be used to initialize CAA user
word

Syntax

�� CALL CEEPIPI (set_user_word , token , value) ��

set_user_word (input)
A fullword containing the set_user_word function code (integer value = 17).

token (input)
A fullword with the value of the token of the environment. This is the token
returned by a (init_main), (init_main_dp), (init_sub) or (init_sub_dp) request.

value (input)
A fullword value that will be used to initialize the user word in the initial
thread CAA when the application is invoked using the (call_main), (call_sub),
(call_sub_addr), (call_sub_addr_nochk), or (call_sub_addr_nochk2) functions
for the passed-in environment token.

Return codes: Register 15 contains a return code indicating the success or failure
of the request. Possible return codes (in decimal) are::
0 The User Word has been set.
4 Non-valid function code.
16 The token is not valid.

Usage notes:

v This value is saved in an area associated with the passed-in environment token.
It is copied into the CAA for the initial thread when the next (call_main),
(call_sub), (call_sub_addr), (call_sub_addr_nochk), or (call_sub_addr_nochk2)
function is done to start an application. The application can then examine or
update this user word in the CAA (CEECAA_USER_WORD). When the
application ends, the final value in CEECAA_USER_WORD is not copied back
into the area associated with the environment token. When the next application

Preinitialization services

510 z/OS V2R1.0 Language Environment Programming Guide

is started using a function such as (call_main), (call_sub), or(call_sub_addr), the
user word value last established by (set_user_word) is used again.

v The user word associated with the environment token is initialized to 0 when
(init_main), (init_main_dp), (init_sub), or (init_sub_dp) is done. The CAA for the
initial process thread is initialized with 0 if no (set_user_word) function call has
been done before the application is started.

v The user word in all CAAs other than the initial thread CAA is set to 0. The
user word in all CAAs in nested enclaves is set to 0.

v When fork() is done, the user word in the CAA for the new process inherits the
value that is in the CAA at the time fork() is done.

v The use of the CAA user word is not supported in the assembler user exit
routine (CEEBXITA and related modules), or in the CEEPIPI service routines
specified in the service routine vector (@LOAD, @DELETE, @GETSTORE,
@FREESTORE, @EXCEPRTN, @MSGRTN).

v Any user code that runs on a CEEPIPI environment before the first (call_main),
(call_sub), (call_sub_addr), (call_sub_addr_nochk), or (call_sub_addr_nochk2)
request will see zero in the CAA_USER_WORD. Examples of this code include
static constructors run for programs that get loaded when a CEEPIPI
environment is initialized. Any changes to the CAA_USER_WORD made by this
code are overlaid when the next (call_main), (call_sub), (call_sub_addr),
(call_sub_addr_nochk), or (call_sub_addr_nochk2) is done for that environment.

(get_user_word) -- get value to be used to initialize CAA user
word

Syntax

�� CALL CEEPIPI (get_user_word , token , value) ��

get_user_word (input)
A fullword containing the get_user_word function code (integer value = 18).

token (input)
A fullword with the value of the token of the environment. This is the token
returned by a (init_main), (init_main_dp), (init_sub) or (init_sub_dp) request.

value (output)
A fullword that will be returned containing the current value that will be used
to initialize the CAA user word when the next application is invoked using the
(call_main), (call_sub), (call_sub_addr), (call_sub_addr_nochk), or
(call_sub_addr_nochk2) functions.

Return codes: Register 15 contains a return code indicating the success or failure
of the request. Possible return codes (in decimal) are:
0 The current value of the User Word has been returned.
4 Non-valid function code.
16 The token is not valid.

Usage notes:

v The value returned will be the one previously set by the last (set_user_word)
request for this token. If no (set_user_word) has yet been done for this token, 0
will be returned.

Preinitialization services

Chapter 30. Using preinitialization services 511

Service routines
Under Language Environment, you can specify several service routines to execute
a main routine or subroutine in the preinitialized environment. To use the routines,
specify a list of addresses of the routines in a service routine vector as shown in
Figure 108.

The service routine vector is composed of a list of fullword addresses of routines
that are used instead of Language Environment service routines. The list of
addresses is preceded by the number of the addresses in the list, as specified in the
count field of the vector. The service_rtns parameter that you specify in calls to
(init_main) and (init_sub) contains the address of the vector itself. If this pointer is
specified as zero (0), Language Environment routines are used instead of the
service routines shown in Figure 108.

The @GETSTORE and @FREESTORE service routines must be specified together; if
one is zero, the other is automatically ignored. The same is true for the @LOAD
and @DELETE service routines. If you specify the @GETSTORE and @FREESTORE
service routines, you do not have to specify the @LOAD and @DELETE service
routines and vice-versa.

When replacing only the storage management routines without the program
management routines, the user must be aware that they may not be accounting for
all the storage obtained on behalf of the application. Contents management obtains
storage for the load module being loaded. This storage will not be managed by the
user storage management routines.

The service routines may be AMODE(31) / RMODE(ANY) if the application has
no AMODE(24) programs. Otherwise the service routines must be AMODE(ANY)
/ RMODE(24).

Count
A fullword binary number representing the number of fullwords that follow.

SERV_RTNS Count

User Word

@WorkArea

@LOAD

@DELETE

@GETSTORE

@FREESTORE

@EXCEPRTN

reserved

@MSGRTN

Figure 108. Format of service routine vector

Preinitialization services

512 z/OS V2R1.0 Language Environment Programming Guide

The count does not include itself. In Figure 108 on page 512, the count is 9. For
each vector slot, a zero represents the absence of the routine, a nonzero
represents the presence of a routine.

User Word
A fullword that is passed to the service routines. The user word is provided as a
means for your routine to communicate to the service routines.

@WorkArea
An address of a work area of at least 256 bytes that is doubleword aligned.
The first word of the area contains the length of the area provided. This
parameter is required if service routines are present in the service routine
vector. This length field must be initialized each time you bring up a new
PreInit environment.

@LOAD
This routine loads named routines for application management. The parameter
that is passed contains the following:

Name_addr
The fullword address of the name of the module to load (input
parameter).

Name_length
A fixed binary(31) length of the module name (input parameter).

User_word
A fullword user field (input parameter).

Load_point
Either zero (0), or the address where the @LOAD routine is to store the
load point address of the loaded routine (input and output parameter).

Entry_point
The fullword entry point address of the loaded routine (output
parameter).

Module_size
The fixed binary(31) size of the module that was loaded (output
parameter).

Return code
The fullword return code from load (output).

Reason code
The fullword reason code from load (output). The return and reason
codes are listed in Table 71.

Table 71. Return and reason codes

Return code Reason code Description

0 0 Successful

0 12 Successful — loaded using SVC8

4 4 Unsuccessful — module loaded above the line when in
AMODE(24)

8 4 Unsuccessful — load failed

16 4 Unsuccessful — uncorrectable error occurred

@DELETE
This routine deletes routines for application management. The parameter that
is passed contains the following:

Preinitialization services

Chapter 30. Using preinitialization services 513

Name_addr
The fullword address of the module name to be deleted (input
parameter).

Name_length
A fixed binary(31) length of module name (input parameter).

User_word
A fullword user field (input parameter).

Rsvd_word
A fullword reserved for future use (input parameter); must be zero.

Return code
The return code from delete service (output).

Reason code
The reason code from delete service (output). The return and reason
codes are listed in Table 72.

Table 72. Return and reason codes

Return code Reason code Description

0 0 Successful

8 4 Unsuccessful — delete failed

16 4 Unsuccessful — uncorrectable error occurred

@GETSTORE
This routine allocates storage on behalf of the storage manager. This routine
can rely on the caller to provide a save area, which can be the @Workarea. The
parameter list that is passed contains the following:

Amount
A fixed binary(31) amount of storage requested (input parameter).

Subpool_no
A fixed binary(31) subpool number 0-127 (input parameter). Language
Environment allocates storage from the process-level storage pools.

User word
A fullword user field (input parameter).

Flags A fullword flag area (input parameter), as shown in the following
table. The remaining flag bits are reserved for future use and must be
zero.

Bit Setting Description

Zero ON The storage required must be allocated below the 16MB line.

OFF The storage required can be allocated anywhere.

One ON The storage required was requested to be backed by 1MB pages. This
setting might be ignored.

OFF The storage required was requested to be backed by the default 4KB
pages.

Stg_address
The fullword address of the storage obtained or zero (output
parameter).

Preinitialization services

514 z/OS V2R1.0 Language Environment Programming Guide

Obtained
A fixed binary(31) number of bytes obtained (output parameter).

Return code
The return code from @GETSTORE service (output parameter).

Reason code
The reason code from the @GETSTORE service (output parameter).

The return and reason codes are listed in Table 73.

Table 73. Return and reason codes

Return code Reason code Description

0 0 Successful

16 0 Unsuccessful — uncorrectable error occurred

@FREESTORE
This routine frees storage on behalf of the storage manager. The parameter list
passed contains the following:

Amount
The fixed binary(31) amount of storage to free (input parameter).

Subpool_no
The fixed binary(31) subpool number 0-127 (input parameter).
Language Environment allocates storage from the process-level storage
pools.

User word
A fullword user field (input parameter).

Stg_address
The fullword address of the storage to free (input parameter).

Return code
The return code from the @FREESTORE service (output).

Reason code
The reason code from the @FREESTORE service (output).

The return and reason codes are listed in Table 74.

Table 74. Return and reason codes

Return code Reason code Description

0 0 Successful

16 0 Unsuccessful — uncorrectable error occurred

@EXCEPRTN
This routine traps program interruptions and abends for condition
management. The parameter list passed contains the following:

Handler_addr
During an initialization call, this parameter contains the address of the
Language Environment condition handler. During a termination call,
this parameter contains a pointer to a fullword field containing zeroes.

Environment_token
A fullword Recovery Environment token (input). This token is different
from the Preinitialization environment token used with CEEPIPI calls.

Preinitialization services

Chapter 30. Using preinitialization services 515

User_word
A fullword user field (input parameter)

Abend_flags
A fullword flag area containing abend flags (input)

Check_flags
A fullword flag area containing program check flags (input)

Return code
The return code from the @EXCEPRTN service (output).

Reason code
The reason code from the @EXCEPRTN service (output).

The exception router is responsible for trapping and routing exceptions. These
are the services typically obtained via the ESTAE and ESPIE macros.

During initialization, Language Environment puts the address of the Language
Environment condition handler in the first field of the above parameter list,
and sets the environment token field to a value that must be passed on to the
Language Environment condition handler. It also sets abend and check flags as
appropriate, and then calls your exception router to establish an exception
handler.

The meaning of the bits in the abend flags are given by the following declare:
dcl
1 abendflags,

2 system,
3 abends bit(1), /* control for system abends desired */
3 rsrv1 bit(15), /* reserved */

2 user,
3 abends bit(1), /* control for user abends desired */
3 rsrv2 bit(15); /* reserved */

The meaning of the bits in the check flags is given by the following declare:
1 checkflags,

2 type,
3 reserved3 bit(1),
3 operation bit(1),
3 privileged_operation bit(1),
3 execute bit(1),
3 protection bit(1),
3 addressing bit(1),
3 specification bit(1),
3 data bit(1),
3 fixed_overflow bit(1),
3 fixed_divide bit(1),
3 decimal_overflow bit(1),
3 decimal_divide bit(1),
3 exponent_overflow bit(1),
3 exponent_underflow bit(1),
3 significance bit(1),
3 float_divide bit(1),

2 reserved4 bit(16);

The return and reason codes that the exception router must use are listed in
Table 75.

Table 75. Return and reason codes

Return code Reason code Description

0 0 Successful

Preinitialization services

516 z/OS V2R1.0 Language Environment Programming Guide

Table 75. Return and reason codes (continued)

Return code Reason code Description

4 4 Unsuccessful — the exit could not be established or
removed

16 4 Unsuccessful — unrecoverable error occurred

When an exception occurs, the exception handler must determine if the
Language Environment condition handler is interested in the exception (by
examining abend and check flags). If the condition handler is not interested in
the exception, the exception handler must treat the program as in error, but can
assume the environment for the thread to be functional and reusable. If the
condition handler is interested in the exception, the exception handler must
invoke the condition handler, passing the parameters listed in Table 76.

Table 76. Parameters for language environment condition handler

Parameter Attributes Type

Environment Token Fixed Bin(31) Input

Address of SDWA Pointer Input

Return Code Fixed Bin(31) Output

Reason Code Fixed Bin(31) Output

The return and reason codes upon return from the Language Environment
condition handler are listed in Table 77.

Table 77. Return and reason codes

Return code Reason code Description

0 0 Continue with the exception.

Percolate the exception taking whatever action would
have been taken had it not been handled at all. In this
case, your exception handler can assume the environment
for the thread to be functional and reusable.

0 4 Continue with the exception.

Percolate the exception taking whatever action would
have been taken had it not been handled at all. In this
case, the environment for the thread is probably
unreliable and not reusable. A forced termination is
suggested.

4 0 Resume execution using the updated SDWA.

The invoked Language Environment condition handler
will have already used the SETRP RTM macro to set the
SDWA for correct resumption.

During termination, the exception router is invoked with the condition handler
address (first parameter) set to zero to de-establish the exit (if it was
established during initialization).

When a nested enclave is created, Language Environment calls the exception
router to establish another exception handler exit, and then makes a call to
de-establish it when the nested enclave terminates. If an exception occurs while
the second exit is active, special processing is performed. Depending on what

Preinitialization services

Chapter 30. Using preinitialization services 517

this second exception is, either the first exception will not be retried, or
processing will continue on the first exception by requesting retry for the
second exception.

If the Language Environment condition handler determines that execution
should resume for an exception, it will set the SDWA with SETRP and return
with return/reason codes 4/0. Execution will resume in library code or in user
code, depending on what the exception was.

The exception handler must be capable of restoring all the registers from the
SDWA when control is given to the retry routine. The ESPIE and ESTAE
services are capable of accomplishing this.

In using the exception router service:
v The exception handler should not invoke the Language Environment

condition handler if active I/O has been halted and is not restorable.
v This service requires an XA or ESA environment.

If an exception occurs while the exception handler is in control before another
exception handler exit has been stacked, the exception handler should assume
that the exception could not be handled and that the environment for the
program (thread) is damaged. In this case, the exception handler should force
termination of the preinitialized environment.

When @EXCEPRTN is specified, the following items are not supported:
v XPLINK applications
v POSIX(ON) applications
v DYNDUMP settings other than DYNDUMP(,NODYNAMIC)
v IMS applications
v Applications that use Binary Floating Point (BFP) or Decimal Floating Point

(DFP) numbers
v Applications that use the Compare-and-Trap family of instructions

Note:

1. If the passed-in SDWA from the exception handler to the Language
Environment condition handler does not contain valid high registers, the
"HR_VALID" flag bit in the Machine State "FLAGS" field will be off,
indicating that the saved high registers are not valid.

2. If a nested enclave ends because of an unhandled condition and a 4094-40
ABEND is declared, the high registers may not be valid in the Machine
State that contains information about the 4094-40 ABEND.

3. If registers in the passed-in SDWA at the time of interrupt (in the
SDWAGRSV field) are not appropriate or recognizable, and Language
Environment instead saves the registers from the SDWASRSV field in the
Machine State, the high registers may not be valid in the Machine State.

@MSGRTN
This routine allows error messages to be processed by the caller of the
application.

If the message pointer is zero, your message routine is expected to return the
size of the line to which messages are written (in the line_length field). This
allows messages to be formatted correctly — that is, broken at places such as
blanks.

Preinitialization services

518 z/OS V2R1.0 Language Environment Programming Guide

Message
A pointer to the first byte of text that is printed, or zero (input
parameter).

Msg_len
The fixed binary(31) length of the message (input parameter).

User word
A fullword user field (input parameter).

Line_length
The fixed binary(31) size of the output line length. This is used when
Message is zero (output parameter).

Return and reason codes
Two fullwords containing the return and reason codes listed in Table 78
(output parameters).

Table 78. Return and reason codes

Return code Reason code Description

0 0 Successful

16 4 Unsuccessful — uncorrectable error occurred

An example program invocation of CEEPIPI
This section includes a sample of a PreInit assembler driver program. This
assembler program called ASMPIPI invokes CEEPIPI to:
v Initialize a subroutine environment under Language Environment
v Load and call a reentrant HLL subroutine
v Terminate the Language Environment environment

Following the assembler program are examples of the program HLLPIPI written in
C, COBOL, and PL/I. HLLPIPI is called by an assembler program, ASMPIPI.
ASMPIPI uses the Language Environment preinitialized program subroutine call
interface. You can use the assembler program to call the HLL versions of HLLPIPI.
*COMPILATION UNIT: LEASMPIP

* *
* Function : CEEPIPI - Initialize the Preinitialization *
* environment, call a Preinitialization *
* HLL program, and terminate the environment. *
* *
* 1.Call CEEPIPI to initialize a subroutine environment under LE. *
* 2.Call CEEPIPI to load and call a reentrant HLL subroutine. *
* 3.Call CEEPIPI to terminate the LE Preinitialization environment. *
* *
* Note: ASMPIPI is not reentrant. *
* *

*
* ===
* Standard program entry conventions.
* ===
ASMPIPI CSECT

STM R14,R12,12(R13) Save caller’s registers
LR R12,R15 Get base address
USING ASMPIPI,R12 Identify base register
ST R13,SAVE+4 Back-chain the save area
LA R15,SAVE Get addr of this routine’s save area
ST R15,8(R13) Forward-chain in caller’s save area

Preinitialization services

Chapter 30. Using preinitialization services 519

LR R13,R15 R13 -> save area of this routine
*
* Load LE CEEPIPI service routine into main storage.
*

LOAD EP=CEEPIPI Load CEEPIPI routine dynamically
ST R0,PPRTNPTR Save the addr of CEEPIPI routine

*
* Initialize an LE Preinitialization subroutine environment.
*
INIT_ENV EQU *

LA R5,PPTBL Get address of Preinitialization Table
ST R5,@CEXPTBL Ceexptbl-addr -> Preinitialization Table
L R15,PPRTNPTR Get address of CEEPIPI routine

* Invoke CEEPIPI routine
CALL (15),(INITSUB,@CEXPTBL,@SRVRTNS,RUNTMOPT,TOKEN)

* Check return code:
LTR R2,R15 Is R15 = zero?
BZ CSUB Yes (success).. go to next section

* No (failure).. issue message
WTO ’ASMPIPI : call to (INIT_SUB) failed’,ROUTCDE=11
C R2,=F’8’ Check for partial initialization
BE TSUB Yes.. go do Preinitialization termination

* No.. issue message & quit
WTO ’ASMPIPI : INIT_SUB failure RC is not 8.’,ROUTCDE=11
ABEND (R2),DUMP Abend with bad RC and dump memory

*
* Call the subroutine, which is loaded by LE
*
CSUB EQU *

L R15,PPRTNPTR Get address of CEEPIPI routine
CALL (15),(CALLSUB,PTBINDEX,TOKEN,PARMPTR, X

SUBRETC,SUBRSNC,SUBFBC) Invoke CEEPIPI routine
* Check return code:

LTR R2,R15 Is R15 = zero?
BZ TSUB Yes (success).. go to next section

* No (failure).. issue message & quit
WTO ’ASMPIPI : call to (CALL_SUB) failed’,ROUTCDE=11
ABEND (R2),DUMP Abend with bad RC and dump memory

*
* Terminate the environment
*
TSUB EQU *

L R15,PPRTNPTR Get address of CEEPIPI routine
CALL (15),(TERM,TOKEN,ENV_RC) Invoke CEEPIPI routine

* Check return code:
LTR R2,R15 Is R15 = zero ?
BZ DONE Yes (success).. go to next section

* No (failure).. issue message & quit
WTO ’ASMPIPI : call to (TERM) failed’,ROUTCDE=11
ABEND (R2),DUMP Abend with bad RC and dump memory

*
* Standard exit code.
*
DONE EQU *

LA R15,0 Passed return code for system
L R13,SAVE+4 Get address of caller’s save area
L R14,12(R13) Reload caller’s register 14
LM R0,R12,20(R13) Reload caller’s registers 0-12
BR R14 Branch back to caller

*
* ===
* CONSTANTS and SAVE AREA.
* ===
SAVE DC 18F’0’
PPRTNPTR DS A Save the address of CEEPIPI routine
*
* Parameters passed to a (INIT_SUB) call.

Preinitialization services

520 z/OS V2R1.0 Language Environment Programming Guide

*
INITSUB DC F’3’ Function code to initialize for subr
@CEXPTBL DC A(PPTBL) Address of Preinitialization Table
@SRVRTNS DC A(0) Addr of service-rtns vector, 0 = none
RUNTMOPT DC CL255’ ’ Fixed length string of runtime optns
TOKEN DS F Unique value returned (output)
*
* Parameters passed to a (CALL_SUB) call.
*
CALLSUB DC F’4’ Function code to call subroutine
PTBINDEX DC F’0’ The row number of Preinitialization Table entry
PARMPTR DC A(0) Pointer to @PARMLIST or zero if none
SUBRETC DS F Subroutine return code (output)
SUBRSNC DS F Subroutine reason code (output)
SUBFBC DS 3F Subroutine feedback token (output)
*
* Parameters passed to a (TERM) call.
*
TERM DC F’5’ Function code to terminate
ENV_RC DS F Environment return code (output)
*
* ===
* Preinitialization Table.
* ===
PPTBL CEEXPIT , Preinitialization Table with index

CEEXPITY HLLPIPI,0 0 = dynamically loaded routine
*

CEEXPITS , End of PreInit table
*
*

LTORG
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

END ASMPIPI

HLLPIPI examples
Following is an example of a C subroutine called by ASMPIPI:
/*Module/File Name: EDCPIPI */
/**/
/* */
/* HLLPIPI is called by an assembler program, ASMPIPI. */
/* ASMPIPI uses the LE preinitialized program */
/* subroutine call interface. HLLPIPI can be written */
/* in COBOL, C, or PL/I. */
/* */
/**/
#include <stdio.h>
#include <string.h>
#include <time.h>
#pragma linkage(HLLPIPI, fetchable)
HLLPIPI ()
{

Preinitialization services

Chapter 30. Using preinitialization services 521

printf ("C subroutine beginning\n");
printf ("Called using LE PreInit call\n");
printf ("Subroutine interface.\n");
printf ("C subroutine returns to caller\n");
}

Following is an example of a COBOL program called by ASMPIPI:
CBL LIB,QUOTE

*Module/File Name: IGZTPIPI

* *
* HLLPIPI is called by an assembler program, ASMPIPI. *
* ASMPIPI uses the LE preinitialized program *
* subroutine call interface. HLLPIPI can be written *
* in COBOL, C, or PL/I. *
* *

IDENTIFICATION DIVISION.
PROGRAM-ID. HLLPIPI.

DATA DIVISION.
WORKING-STORAGE SECTION.
PROCEDURE DIVISION.

DISPLAY "COBOL subprogram beginning".
DISPLAY "Called using LE Preinitialization ".
DISPLAY "Call subroutine interface.".
DISPLAY "COBOL subprogram returns to caller.".

GOBACK.

Following is an example of a routine called by ASMPIPI:
/*Module/File Name: IBMPIPI */
/**/
/* */
/* HLLPIPI is called by an assembler program, ASMPIPI. */
/* ASMPIPI uses the LE preinitialized program */
/* subroutine call interface. HLLPIPI can be written */
/* in COBOL, C, or PL/I. */
/* */
/**/
HLLPIPI: PROC OPTIONS(FETCHABLE);

DCL RESULT FIXED BIN(31,0) INIT(0);
PUT SKIP LIST

(’HLLPIPI : PLI subroutine beginning.’);
PUT SKIP LIST

(’HLLPIPI : Called LE PIPI Call ’);
PUT SKIP LIST

(’HLLPIPI : Subroutine interface. ’);
PUT SKIP LIST

(’HLLPIPI : PLI program returns to caller.’);
RETURN;

END HLLPIPI;

Preinitialization services

522 z/OS V2R1.0 Language Environment Programming Guide

